2020年高考山东数学卷分析(修改)

合集下载

2020年全国新高考Ⅰ卷数学试卷(含解析)

2020年全国新高考Ⅰ卷数学试卷(含解析)

2020年全国新高考Ⅰ卷数学试卷一、选择题1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}=()2.2−i1+2iA.1B.−1C.iD.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去一个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3买名,则不同的安排方法共有() A.120种 B.90种 C.60种 D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面,在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40∘,则晷针与点A处的水平面所成角为()A.20∘B.40∘C.50∘D.90∘5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%6.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT ,有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →⋅AB →的取值范围是()A.(−2,6)B.(−6,2)C.(−2,4)D.(−4,6)8.若定义在R 的奇函数f (x )在(−∞,0)单调递减,且f (2)=0,则满足xf (x −1)≥0的x 的取值范围是()A.[−1,1]∪[3,+∞)B.[−3,−1]∪[0,1]C.[−1,0]∪[1,+∞)D.[−1,0]∪[1,3]二、多选题9.已知曲线C :mx 2+ny 2=1.()A.若m >n >0,则C 是椭圆,其焦点在y 轴上B.若m =n >0,则C 是圆,其半径为√nC.若mn <0,则C 是双曲线,其渐近线方程为y =±√−m n xD.若m =0, n >0,则C 是两条直线10.如图是函数y =sin (ωx +φ)的部分图像,则sin (ωx +φ)=()A.sin (x +π3)B.sin (π3−2x)C.cos (2x +π6)D.cos (5π6−2x)11.已知a >0,b >0,且a +b =1,则()A.a 2+b 2≥12B.2a−b >12C.log 2a +log 2b ≥−2D.√a +√b ≤212.信息熵是信息论中的一个重要概念,设随机变量X 所有可能的取值为1,2,⋯,n ,且P(X =i)=p i >0(i =1,2,⋯,n),∑p i n i=1=1,定义X 的信息熵H (X )=−∑p i n i=1log 2p i ,则()A.若n =1,则H (X )=0B.若n =2,则H (X )随着p i 的增大而增大C.若p i =1n (i =1,2,…,n ),则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m ,且P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m),则H (X )≤H (Y )三、填空题13.斜率为√3的直线过抛物线C:y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB|=________.14.将数列{2n −1}与{3n −2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.15.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=3,BH//DG,EF=12cm,DE=2cm,A到直线DE和EF的距离均为7cm,5圆孔半径为1,则图中阴影部分的面积为________cm2.16.已知直四棱柱ABCD−A1B1C1D1的棱长均为2,∠BAD=60∘,以D1为球心,√5为半径的球面与侧面BCC1B1的交线长为________.四、解答题17.在①ac=√3,②csinA=3,③c=√3b这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sinA=√3sinB,C=π,________?618.已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N∗)中的项的个数,求数列{b m}的前100项和S100.19.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?,附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)20.如图,四棱锥P−ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD 与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.21.已知函数f(x)=ae x−1−lnx+lna.(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.22.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.2020年全国新高考Ⅰ卷数学试卷一、选择题1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}【解答】解:集合A={x|1≤x≤3},B={x|2<x<4},则A∪B={x|1≤x<4}.故选C.2.2−i1+2i=()A.1B.−1C.iD.−i【解答】解:2−i1+2i =(2−i)(1−2i) (1+2i)(1−2i)=2−4i−i−21+4=−5i5=−i.故选D.3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去一个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3买名,则不同的安排方法共有() A.120种 B.90种 C.60种 D.30种【解答】解:由题意可得,不同的安排方法共有C61⋅C52=60(种).故选C.4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面,在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40∘,则晷针与点A处的水平面所成角为()A.20∘B.40∘C.50∘D.90∘【解答】解:如图所示,AB为日晷晷针,∠AOC=40∘,由题意知,∠AOC+∠OAB=90∘,∠DAB+∠OAB=90∘,∴∠DAB=∠AOC=40∘,即晷针与点A处的水平面所成角为40∘.故选B.5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%【解答】解:设喜欢足球为A,喜欢游泳为B,由题意知,P(A)=60%,P(B)=82%,P(A∪B)=96%,所以P(A∩B)=P(A)+P(B)−P(A∪B)=60%+82%−96%=46%.故选C.6.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT,有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天【解答】解:3.28=1+r ⋅6得r =0.38,I(t)=e 0.38t ,e 0.38(t+x)=2⋅e 0.38t 得x =ln20.38≈1.8.故选B .7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →⋅AB →的取值范围是()A.(−2,6)B.(−6,2)C.(−2,4)D.(−4,6) 【解答】解:如图:设A(−1,√3),P (x,y ),B (−2,0),AP →=(x +1,y −√3),AB →=(−1,−√3),则:AP →⋅AB →=−x −√3y +2,令z =−x −√3y +2,由线性规则得,最优解为:C(−1,−√3)和F(1,√3),代入得z =6或z =−2.故AP →⋅AB →的取值范围是(−2,6).故选A .8.若定义在R 的奇函数f (x )在(−∞,0)单调递减,且f (2)=0,则满足xf (x −1)≥0的x 的取值范围是()A.[−1,1]∪[3,+∞)B.[−3,−1]∪[0,1]C.[−1,0]∪[1,+∞)D.[−1,0]∪[1,3] 【解答】解:根据题意,函数图象大致如图:①当x=0时,xf(x−1)=0成立;②当x>0时,要使xf(x−1)≥0,即f(x−1)≥0,可得0≤x−1≤2或x−1≤−2,解得1≤x≤3;③当x<0时,要使xf(x−1)≥0,即f(x−1)≤0,可得x−1≥2或−2≤x−1≤0,解得−1≤x<0.综上,x的取值范围为[−1,0]∪[1,3].故选D.二、多选题已知曲线C:mx2+ny2=1.()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为√nC.若mn<0,则C是双曲线,其渐近线方程为y=±√−mnx D.若m=0, n>0,则C是两条直线【解答】解:A,mx2+ny2=1,即x 21 m +y21n=1,∵m>n>0,∴1m <1n,∴此时C是椭圆,且其焦点在y轴上,A选项正确;B,m=n>0时,x2+y2=1n,∴r=√nn,B选项错误;C,mn<0时,可推断出C是双曲线,且其渐近线方程为y=±√−1n1mx=±√−mnx,C选项正确;D,m=0时,C:ny2=1,∴y=±√1n,代表两条直线,D选项正确.故选ACD.如图是函数y=sin(ωx+φ)的部分图像,则sin(ωx+φ)=()A.sin(x+π3) B.sin(π3−2x) C.cos(2x+π6) D.cos(5π6−2x)【解答】解:由函数y=sin(ωx+φ)的部分图像,可知,T2=2π3−π6=π2,∴T=π,∴ω=2ππ=2,∴y=sin(2x+φ).将点(π6,0)代入得,0=sin(π3+φ),∴π3+φ=(2k+1)π(k∈Z).A,当x=π6时,sin(x+π3)=sinπ2=1,不符合题意,故A选项错误;B,当k=0时,φ=2π3,y=sin(2x+2π3)=sin(2x−π3+π3+2π3)=sin(2x−π3+π)=−sin(2x−π3 )=sin(π3−2x),故B选项正确;C,sin(2x+2π3)=sin(2x+π6+π2)=cos(2x+π6),故C正确;D,cos(5π6−2x)=cos(2x−5π6)=cos(2x−π2−π3)=sin(2x−π3 )=−sin(2x+2π3),故D选项错误.故选BC.已知a>0,b>0,且a+b=1,则()A.a2+b2≥12B.2a−b>12C.log2a+log2b≥−2D.√a+√b≤2【解答】解:A,∵a+b=1,则a2+b2+2ab=1,2ab≤a2+b2,当且仅当a=b时取等号,∴1=a 2+b 2+2ab ≤2(a 2+b 2),可得a 2+b 2≥12,故A 正确; B ,∵a −b =a −(1−a)=2a −1>−1,∴2a−b >2−1=12,故B 正确;C ,∵ab ≤(a+b 2)2=14,当且仅当a =b 时取等号, ∴log 2a +log 2b =log 2(ab)≤log 214=−2,故C 错误;D ,∵a +b ≥2√ab ,当且仅当a =b 时取等号,∴(√a +√b)2=a +b +2√ab =1+2√ab ≤2,即√a +√b ≤√2,则√a +√b ≤2,故D 正确.故选ABD .信息熵是信息论中的一个重要概念,设随机变量X 所有可能的取值为1,2,⋯,n ,且P(X =i)=p i >0(i =1,2,⋯,n),∑p i n i=1=1,定义X 的信息熵H (X )=−∑p i n i=1log 2p i ,则()A.若n =1,则H (X )=0B.若n =2,则H (X )随着p i 的增大而增大C.若p i =1n (i =1,2,…,n ),则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m ,且P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m),则H (X )≤H (Y )【解答】解:A ,若n =1,则p 1=1,H (X )=−1×log 21=0,故A 正确;B ,若n =2,则H (X )=−[p 1log 2p 1+(1−p 1)log 2(1−p 1)].设f (p )=−[plog 2p +(1−p )log 2(1−p )],则:f ′(p )=−[log 2p +p ⋅1p⋅ln2−log 2(1−p )+(1−p )−1(1−p )ln2]=−log 2p 1−p =log 21−p p , 当0<p <12时,f ′(p )>0;当12<p <1时,f ′(p )<0,∴f (p )在(0,12)上单调递增,在(12,1)上单调递减,p 1=12时,H(X)取最大值,故B 错误;C ,若p i =1n (i =1,2,⋯,n ),则H (X )=−∑p i n i=1log 2p i =−n ⋅1n log 21n =log 2n ,所以H(x)随着n 的增大而增大,故C 正确;D ,若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m ,由P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m )知:P (Y =1)=p 1+p 2m ;P (Y =2)=p 2+p 2m−1;P (Y =3)=p 3+p 2m−2;⋯⋯P (Y =m )=p m +p m+1;H (Y )=−[(p 1+p 2m )log 2(p 1+p 2m )+(p 2+p 2m−1)log 2(p 2+p 2m−1)+⋯+(p m +p m+1)log 2(p m +p m+1)],H (X )=−[p 1log 2p 1+p 2log 2p 2+⋯+p 2m log 2p 2m ]=−[(p 1log 2p 1+p 2m log 2p 2m )+(p 2log 2p 2+p 2m−1log 2p 2m−1)+⋯+(p m log 2p m +p m+1log 2p m+1)],∵(p 1+p 2m )log 2(p 1+p 2m )−p 1log 2p 1−p 2m log 2p 2m >0,⋯⋯(p m +p m+1)log 2(p m +p m+1)−p m log 2p m −p m+1log 2p m+1>0,所以H (X )>H (Y ),故D 错误.故选AC .三、填空题斜率为√3的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则|AB|=________.【解答】解:设A(x1,y1),B(x2,y2),抛物线的焦点为(1,0),则直线方程为y=√3(x−1),代入抛物线方程得3x2−10x+3=0,∴x1+x2=10,3.根据抛物线方程得定义可知|AB|=x1+1+x2+1=163.故答案为:163将数列{2n−1}与{3n−2}的公共项从小到大排列得到数列{a n},则{a n}的前n项和为________.【解答】解:数列2n−1各项为:1,3,5,7,9,⋯数列3n−2各项为:1,4,7,10,13,⋯观察可知,{a n}是首项为1,公差为6的等差数列,数列{a n}的前n项和为3n2−2n.故答案为:3n2−2n.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与,直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=35 BH//DG,EF=12cm,DE=2cm,A到直线DE和EF的距离均为7cm,圆孔半径为1,则图中阴影部分的面积为________cm2.【解答】解:由已知得A到DG的距离与A到FG的距离相等,均为5. 作AM⊥GF于M,设AN⊥DG于N.则∠NGA=45∘.∵BH//DG,∴∠BHA=45∘.∵∠OAH=90∘,∴∠AOH=45∘.由tan∠ODC=35,设O到DG的距离为3t,则O到DE的距离为5t,∴{OAcos45∘+5t=7,OAsin45∘+3t=5,解得{t=1, OA=2√2.半圆之外阴影部分面积为:S1=2√2×2√2×12−45∘×π×(2√2)2360∘=4−π,阴影部分面积为:S=12(π⋅(2√2)2−π⋅12)+S1=5π2+4.故答案为:5π2+4.已知直四棱柱ABCD −A 1B 1C 1D 1的棱长均为2,∠BAD =60∘,以D 1为球心,√5为半径的球面与侧面BCC 1B 1的交线长为________.【解答】解:以C 1为原点,C 1B 1→,C 1C →所在直线分别为x 轴、z 轴建立如图1所示的空间直角坐标系O −xyz ,y 轴是平面A 1B 1C 1D 1内与C 1B 1互相垂直的直线,即D 1(1,−√3,0), 设交线上的点的坐标是(x,0,z ),根据题意可得(x −1)2+3+z 2=5,化简得(x −1)2+z 2=2,所以球面与侧面BCC 1B 1的交线平面如图2所示,即交线长l =14⋅2√2π=√2π2. 故答案为:√2π2. 四、解答题在①ac =√3,②csinA =3,③c =√3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sinA=√3sinB,C=π6,________?【解答】解:选①:∵sinA=√3sinB,C=π6,ac=√3,∴sin(56π−B)=√3sinB,∴12cosB+√32sinB=√3sinB,∴sin(π6−B)=0,∴B=π6.又∵C=π6,∴b=c.由正弦定理可得:a=√3b,又ab=√3解得a=√3, b=1,∴c=1,故满足条件存在△ABC;选②:sinA=√3sinB,C=π6,csinA=3. ∵csinA=3,∴asinC=3,∴a=6.由正弦定理可得:a=√3b,∴b=2√3,∴c2=a2+b2−2abcosC=36+12−24√3×√32=12,∴c=2√3,∴B=π6,A=23π,故满足条件存在△ABC;选③:c=√3b,sinA=√3sinB,C=π6,由①可知,B=π6,故△ABC为等腰三角形c=b,又c=√3b,矛盾.故不存在△ABC满足条件.已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N∗)中的项的个数,求数列{b m}的前100项和S100.【解答】解:(1)由题意可知{a n}为等比数列,a2+a4=20,a3=8,+a3q=20,可得a3q得2q2−5q+2=0,(2q−1)(q−2)=0.∵q>1,∴q=2,∵a1×q2=a3,可得a1=2,∴{a n}的通项公式为:a n=2×2n−1=2n.(2)∵b m为{a n}在(0,m](m∈N∗)中的项的个数,当m=2k时,b m=k,当m∈[2k−1,2k)时,b m=k−1,其中k∈N+.可知S100=b1+(b2+b3)+(b4+b5+b6+b7)+(b8+b9+⋯+b15)+(b16+b17+⋯+b31)+(b32+b33+⋯+b63)+(b64+b65+⋯+b100)=0+1×2+2×4+3×8+4×16+5×32+6×37=480.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?,附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)【解答】解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且SO2浓度不超过150的天数为:32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,=0.64.且SO2浓度不超过150的概率的估计值为64100(2)根据抽查数据,可得2×2列联表:(3)根据(2)的列联表得K2=100×(64×10−16×10)2≈7.484,80×20×74×26由于7.484>6.635,故有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关.如图,四棱锥P−ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【解答】(1)证明:因为四边形ABCD为正方形,故BC⊥CD.又因为PD⊥底面ABCD,故PD⊥BC,又由于PD∩DC=D,因此BC⊥平面PDC.因为在正方形ABCD中BC//AD,且AD⊂平面PAD,BC⊄平面PAD,故BC//平面PAD.又因为BC⊂平面PBC,且平面PAD与平面PBC的交线为l,故BC//l.因此l⊥平面PDC.(2)解:由已知条件,P−ABCD底面为正方形,PD⊥底面ABCD,以D为原点,DA为x轴,DC为y轴,DP为z轴,建立D−xyz空间直角坐标系,如图所示:因为PD =AD =1,Q 在直线l 上,设Q (a,0,1),其中a ∈R ,由题意得,D (0,0,0),C (0,1,0),B (1,1,0),P (0,0,1),则PB →=(1,1,−1),DC →=(0,1,0),DQ →=(a,0,1),设平面QCD 法向量为n →=(x,y,z),则{n →⋅DC →=0,n →⋅DQ =0,得{y =0,ax +z =0, 令z =−a ,则平面QCD 的一个法向量为:n →=(1,0,−a ),设PB 与平面QCD 成角为θ,则sinθ=|cos <n →,PB →>|=|1+a|√3×√1+a 2 =1√3×√(1+a)21+a 2 =√33×√1+2a 1+a 2,①若a =0,则sinθ=√33, ②若a ≠0,则sinθ=√33×√1+21a+a , a >0时, ∵1a +a ≥2×√1a ⋅a =2,当且仅当1a =a ,即a =1时,$``="$成立,∴sinθ≤√33×√1+22=√63. 当a <0时,sinθ<√33, ∴当a =1时,sinθ=√63取到最大值.综上所述,PB与平面QCD成角的正弦值的最大值为√63.已知函数f(x)=ae x−1−lnx+lna.(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.【解答】解:(1)当a=e时,f(x)=e x−lnx+1,f′(x)=e x−1x,∴k=f′(1)=e−1,f(1)=e+1,∴y−(e+1)=(e−1)(x−1),即y=(e−1)x+2,∴在y轴上的截距为2,在x轴的截距为21−e,∴S=12×2×|21−e|=2e−1.(2)①当0<a<1时,f(1)=a+lna<1;②当a=1时,f(x)=e x−1−lnx,f′(x)=e x−1−1x,当x∈(0,1)时,f′(x)<0,当x∈(1,+∞)时,f′(x)>0,所以当x=1时,f(x)取得最小值,最小值为f(1)=1,从而f(x)≥1;③当a>1时,f(x)=ae x−1−lnx+lna≥e x−1−lnx≥1. 综上,a的取值范围是[1,+∞).已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√22,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.【解答】(1)解:由题设得4a 2+1b 2=1, a 2−b 2a 2=12,解得a 2=6,b 2=3. ∴C 的方程为x 26+y 23=1.(2)证明:设M(x 1,y 1),N(x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为 y =kx +m ,代入x 26+y 23=1得(1+2k 2)x 2+4kmx +2m 2−6=0. 于是x 1+x 2=−4km 1+2k 2,x 1x 2=2m 2−61+2k 2.①由AM ⊥AN 知AM →⋅AN →=0,故(x 1−2)(x 2−2)+(y 1−1)(y 2−1)=0,可得 (k 2+1)x 1x 2+(km −k −2)(x 1+x 2)+(m −1)2+4=0, 将①代入上式可得(k 2+1)2m 2−61+2k 2−(km −k −2)4km 1+2k 2+(m −1)2+4=0,整理得(2k +3m +1)(2k +m −1)=0, 因为A(2,1)不在直线MN 上,所以2k +m −1≠0,故2k +3m +1=0,k ≠1,于是MN 的方程为y =k(x −23)−13(k ≠1), 所以直线MN 过点P(23,−13).若直线MN 与x 轴垂直,可得N(x 1,−y 1). 由AM →⋅AN →=0得(x 1−2)(x 1−2)+(y 1−1)(−y 1−1)=0.又x 126+y 123=1,可得3x 12−8x 1+4=0,解得x 1=2(舍去),x 1=23, 此时直线MN 过点P(23,−13). 令Q 为AP 的中点,即Q(43,13). 若D 与P 不重合,则由题设知 AP 是Rt △ADP 的斜边,故|DQ|=12|AP|=2√23. 若D 与P 重合,则|DQ|=12|AP|. 综上,存在点Q(43,13),使得|DQ|为定值.。

新高考数学多选题命题分析

新高考数学多选题命题分析
B 选项错误;从图中可以发现,第 3 天到第 9 天的复工、复产
指数均在 80% 以上,从而 C 选项正确;第 9 天至第 11 天的
复产指数增量的斜率要大于复工指数增量的斜率,从而 D
选项正确.综上所述,本题答案为 CD.
例 4 ( 2020 年 全 国 新 高 考 Ⅰ 卷) 已 知 曲 线 C: mx2 +
排放量与时间的关系如图 3 所示.
图3
数学学习与研究 2021 20
高 考 研 究
GAOKAO YANJIU

给出下列四个结论:
①在[ t 1 ,t 2 ] 这段时间内,甲企业的污水治理能力比乙
企业强;
②在 t 2 时刻,甲企业的污水治理能力比乙企业强;
③在 t 3 时间,甲、乙两企业的污水排放都已达标;
为 ACD.
例 5 ( 2020 年北京卷) 为满足人民对美好生活的向
往,环保部门要求相关企业加强污水治理,排放未达标的企
业要限期整改.该企业的污水排放量 W 与时间 t 的关系为
f( b) -f( a)
W = f( t) ,且-
的大小评价在[ a,b] 这段时间内企
b-a
业污水治理能力的强弱.已知整改期间,甲、乙两企业的污水
sin

2π
π
π
π
= sin 2x+
= cos 2x+

又由 sin 2x+





从而 C 选项正确;
ab ≤2,
例 2 ( 2020 年 全 国 新 高 考 Ⅰ 卷 ) 图 1 是 函 数 y =
图2
数学学习与研究 2021 20
A.这 11 天复工指数和复产指数均逐日增加

2020高考全国二卷数学试题分析解析解读

2020高考全国二卷数学试题分析解析解读

2020高考全国二卷数学试题分析解析解读2020年1月,教育部发布《中国高考评价体系》,明确“一核”、“四层”、“四翼”的高考评价体系,即高考要体现“立德树人、服务选才、引导教学”的核心功能,考查“核心价值、学科素养、关键能力、必备知识”四层内容考查要求,考查“基础性、综合性、应用性、创新性”的四翼要求。

2020年全国Ⅱ卷高考文理科数学试题,依托高考评价体系,充分落实了“一核”“四层”“四翼”的要求,在试题整体结构稳定的基础上,有适度创新,突出数学学科特色,突出学科素养导向,有时代特色,注重能力考查,着重考查学生的思维能力,综合运用数学思维方法分析问题、解决问题的能力。

试题主要呈现以下特点:一、试题稳中有变,大题结构动态调整2020年的高考数学保持题型、考点、难度的相对稳定,但是为了对接新高考,以学科素养立意命题,增加了阅读量、信息量,学生明显表现出不适应,感觉难度增大。

尤其是在题的顺序上打破常规,文理科的第3、4题新颖试题过早出现,出乎学生意料,耽误了一定的答题时间,在感觉和信心上受挫。

若学生能及时调整答题策略,后面的选择填空题都很常规,多数学生都能轻松解决。

此试卷对学生和教师的提醒是,困难的试题可能会在试卷的任何地方出现,不能再坚持难题一定在后面的观念了。

全国Ⅱ卷的理科和文科试题,对主观题的结构布局及考查难度也都进行了动态调整,文理科的解答题顺序均为:17题解三角形、18题概率统计,19题圆锥曲线,20题立体几何,21题函数导数;22、23题为二选一。

其中第一道大题第17题考查解三角形的相关知识,替换了2019年的立体几何大题的位置;而立体几何大题后移至第20题,仍然考查平行、垂直关系,直线和平面所成的角及体积的计算,但灵活性加大;解析几何大题前移至第19题的位置,难度有所降低。

大题结构的调整主要考查学生灵活应变的能力和主动调整适应的能力。

对重点内容的考查,在整体符合考试大纲的前提下,各部分内容和难度进行动态设计,这种设计有助于学生全面学习和掌握重点知识和重点内容,同时破解应试教育,指导高中教学。

2020年山东高考数学试卷(详细解析版)

2020年山东高考数学试卷(详细解析版)

2020年普通高等学校招生全国统一考试新高考全国一卷(山东卷)数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{|13}A x x =≤≤,{|24}B x x =<<,则A B =A .{|23}x x <≤B .{|23}x x ≤≤C .{|14}x x ≤<D .{|14}x x <<答案:C解析:利用并集的定义可得{|14}A B x x =≤< ,故选C.2.2i 12i -=+A .1B .−1C .iD .−i 答案:D 解析:222i (2i)(12i)(22)(41)i i 12i 125----+--===-++,故选D3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A .120种B .90种C .60种D .30种答案:C解析:不同的安排方法有123653C C C 60⋅⋅=4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°答案:B 解析:因为晷面与赤道所在平面平行,晷针垂直晷面,所以晷针垂直赤道所在平面,如图所示,设AB 表示晷针所在直线,且AB OB ⊥,AC 为AB 在点A 处的水平面上的射影,则晷针与点A 处的水平面所成角为BAC ∠,因为OA AC ⊥,AB OB ⊥,所以BAC AOB ∠=∠,由已知40AOB ∠=︒,所以40BAC ∠=︒,故选B5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是A .62%B .56%C .46%D .42%答案:C解析:既喜欢足球又喜欢游泳的学生数占该校学生总数的比例=60%+82%-96%=46%,故选C6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,。

2020年山东省新高考数学试卷(新高考)含解析

2020年山东省新高考数学试卷(新高考)含解析

2020年⼭东省新⾼考数学试卷⼀、选择题:本题共8⼩题,每⼩题5分,共40分。

在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的。

1.(5分)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4} 2.(5分)=()A.1B.﹣1C.i D.﹣i3.(5分)6名同学到甲、⼄、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,⼄场馆安排2名,丙场馆安排3名,则不同的安排⽅法共有()A.120种B.90种C.60种D.30种4.(5分)⽇晷是中国古代⽤来测定时间的仪器,利⽤与晷⾯垂直的晷针投射到晷⾯的影⼦来测定时间.把地球看成⼀个球(球⼼记为O),地球上⼀点A的纬度是指OA与地球⾚道所在平⾯所成⻆,点A处的⽔平⾯是指过点A且与OA垂直的平⾯.在点A处放置⼀个⽇晷,若晷⾯与⾚道所在平⾯平⾏,点A处的纬度为北纬40°,则晷针与点A处的⽔平⾯所成⻆为()A.20°B.40°C.50°D.90°5.(5分)某中学的学⽣积极参加体育锻炼,其中有96%的学⽣喜欢⾜球或游泳,60%的学⽣喜欢⾜球,82%的学⽣喜欢游泳,则该中学既喜欢⾜球⼜喜欢游泳的学⽣数占该校学⽣总数的⽐例是()A.62%B.56%C.46%D.42%6.(5分)基本再⽣数R0与世代间隔T是新冠肺炎的流⾏病学基本参数.基本再⽣数指⼀个感染者传染的平均⼈数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以⽤指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增⻓率r与R0,T近似满⾜R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为()(ln2≈0.69)A.1.2天B.1.8天C.2.5天D.3.5天7.(5分)已知P是边⻓为2的正六边形ABCDEF内的⼀点,则•的取值范围是()A.(﹣2,6)B.(﹣6,2)C.(﹣2,4)D.(﹣4,6)8.(5分)若定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,则满⾜xf(x ﹣1)≥0的x的取值范围是()A.[﹣1,1]∪[3,+∞)B.[﹣3,﹣1]∪[0,1]C.[﹣1,0]∪[1,+∞)D.[﹣1,0]∪[1,3]⼆、选择题:本题共4⼩题,每⼩题5分,共20分。

2020年新高考(全国卷地区)数学考试试卷结构及题型变化

2020年新高考(全国卷地区)数学考试试卷结构及题型变化

新高考(全国卷)地区数学试卷结构及题型变化新高考数学考试试卷及试卷结构说明:新高考数学试卷结构:第一大题,单项选择题,共8小题,每小题5分,共40分;第二大题,多项选择题,共4小题,每小题5分,部分选对得3分,有选错得0分,共20分.第三大题,填空题,共4小题,每小题5分,共20分。

第四大题,解答题,共6小题,均为必考题,涉及的内容是高中数学的六大主干知识:三角函数,数列,统计与概率,立体几何,函数与导数,解析几何。

单项选择题考点分析:多项选择题考点分析:①新高考全国Ⅰ卷与新高考全国Ⅱ卷相同新高考选择题部分分析:①新高考与之前相比,最大的不同就是增加了多项选择题部分,选择题部分由原来的12道单选题,变成了8道单选题与4道多选题。

这有利于缩小学生选择题部分成绩的差距,过去学生错一道单选题,可能就会丢掉5分,在新高考中,考生部分选对就可以得3分,在一定程度上保证了得分率。

②新高考的单项选择题部分主要考察学生的基础知识和基本运算能力,总体上难度不大,只要认真复习,一般都可以取得一个较好的成绩。

在多项选择题上,前两道较为基础,后两道难度较大,能够突出高考的选拔性功能,总体上来看,学生比以往来讲,更容易取得一个不错的成绩,但对于一些数学基础比较的好的同学来说,这些题比以往应该更有挑战性。

过去,只需要在四个选项中选一个正确答案,现在要在四个选项中,选出多个答案,比以往来说,要想准确的把正确答案全部选出来,确实有一定的难度、③新高考数学试卷的第4题,第6题和第12题都体现了创新性。

第4题,以古代知识为背景,考察同学们的立体几何知识,这体现了数学考试的价值观导向。

弘扬传统文化的同时也鼓励同学们走进传统文化。

近年来,对于这类题目也是屡见不鲜,平时也应该鼓励学生去关注一些古代的数学著作,如《九章算术》,《孙子算经》等等,通过对这些著作的了解,再遇到这类题目时,在一定程度上能够减少恐惧感与焦虑感。

第6题则体现了聚焦民生,关注社会热点。

2020届山东省新高考高三优质数学试卷分项解析-专题03-函数及其应用(解析版)

2020届山东省新高考高三优质数学试卷分项解析-专题03-函数及其应用(解析版)

专题3 函数及其应用1.关于函数图象的考查: (1)函数图象的辨识与变换;(2)函数图象的应用问题,运用函数图象理解和研究函数的性质,数形结合思想分析与解决问题的能力; 2.关于函数性质的考查:以考查能力为主,往往以常见函数(二次函数、指数函数、对数函数)为基本考察对象,以绝对值或分段函数的呈现方式,与不等式相结合,考查函数的基本性质,如奇偶性、单调性与最值、函数与方程(零点)、不等式的解法等,考查数学式子变形的能力、运算求解能力、等价转化思想和数形结合思想.其中函数与方程考查频率较高.涉及函数性质的考查;3.常见题型,除将函数与导数相结合考查外,对函数独立考查的题目,不少于两道,近几年趋向于稳定在选择题、填空题,易、中、难的题目均有可能出现.,预测2020年将保持对数形结合思想的考查,主要体现在对函数图象、函数性质及其应用的考查,客观题应特别关注分段函数相关问题,以及与数列、平面解析几何、平面向量、立体几何的结合问题.主观题依然注意与导数的结合.一、单选题1.(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( )A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,2【答案】C 【解析】311(1)(1)()302f --=--=-<,301(0)0(102f =-=-<,@13211112()()()02228f =-=-<,31111(1)1()10222f =-=-=>,321115(2)2()80222f =-=-=>,由()1102f f ⎛⎫⋅< ⎪⎝⎭. 故选:C2.(2020届山东省泰安市高三上期末)函数()3ln xf x x=的部分图象是( ) A . B .C .D .【答案】A 【解析】:()()()33ln ln ,x xf x f x f x x x=-==--, ()f x 为奇函数,排除B 当1x >时,()3ln 0xf x x=>恒成立,排除CD 故答案选A3.(2020·河南高三月考(理))已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是( )A .2()(2)3-∞+∞,,B .2(2)3, C .22()33-,D .22()()33-∞-+∞,, 【答案】D 【解析】》因为(2)f x +是偶函数,所以()f x 关于直线2x =对称; 因此,由(0)0f =得(4)0f =;又()f x 在(]2-∞,上单调递减,则()f x 在[)2,+∞上单调递增;所以,当232x -≥即0x ≤时,由(23)0f x ->得(23)(4)f x f ->,所以234x ->, 解得23x <-; 当232x -<即0x >时,由(23)0f x ->得(23)(0)f x f ->,所以230x -<, 解得23x >; 因此,(23)0f x ->的解集是22()()33-∞-+∞,,. 》4.(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞ B .(],4-∞C .()2,4-D .(]2,4-【答案】A 【解析】令()2g x x m =-+,画出()f x 与()g x 的图象,平移直线,当直线经过()1,2时只有一个交点,此时4m =,向右平移,不再符合条件,故4m < 故选:A$5.(2020届山东省烟台市高三上期末)设0.5log 3a =,30.5b =,0.513c -⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .a c b <<C .b a c <<D .b c a <<【答案】A 【解析】由题,因为0.5log y x =单调递减,则0.50.5log 3log 10a =<=;因为0.5xy =单调递减,则3000.50.51b <=<=;因为3xy =单调递增,则0.50.5013313c -⎛⎫==>= ⎪⎝⎭,所以01a b c <<<<,—故选:A6.(2020届山东省潍坊市高三上期中)函数ln ()xf x x x=-的大致图象为( )A .B .C .D .【答案】A 【解析】函数的定义域为(,0)(0,)-∞+∞,||||()()()ln x ln x f x x x f x x x--=--=--=--,则函数()f x 是奇函数,图象关于原点对称,排除B ,D ,"当0x >且0x →,()f x →+∞,排除C . 故选:A.7.(2020届山东省潍坊市高三上期中)已知3log 2a =,143b =,2ln 3c =,则a ,b ,c 的大小关系为( ) A .a b c >> B .b a c >> C .c b a >>D .c a b >>【答案】B 【解析】因为3log 2(0,1)a =∈,1431b =>,203c ln =<,则a ,b ,c 的大小关系:b a c >>.|故选:B.8.(2020届山东省泰安市高三上期末)若()33log 21log a b ab +=+2+a b 的最小值为( )A .6B .83C .3D .163【答案】C 【解析】∵()3log 21a b +=+∴()33log 21log a b ab +=+()3log 3ab =, ∴23a b ab +=,且0a >,0b >,《∴123a b+=, ∴()112223a b a b a b ⎛⎫+=++ ⎪⎝⎭122143b a a b ⎛⎫=+++ ⎪⎝⎭5233b a a b ⎛⎫=++ ⎪⎝⎭5233≥+⋅3=, 当且仅当b aa b =且123a b+=即1a b ==时,等号成立; 故选:C .9.(2020届山东省日照市高三上期末联考)三个数0.87,70.8,0.8log 7的大小顺序是( )A .70.80.8log 70.87<< B .0.870.8log 770.8<<C .70.80.80.87log 7<<D .0.870.870.8log 7<<,【答案】A 【解析】0.871>,700.81<<,0.8log 70<,故70.80.8log 70.87<<.故选A.10.(2020届山东省济宁市高三上期末)若0.1212,ln 2,log 5a b c ===,则( ) A .b c a >> B .b a c >> C .c a b >> D .a b c >>【答案】D 【解析】,0.10221a =>=;0ln1ln 2ln 1b e =<=<=;221log log 105c =<=,即a b c >> 故选:D11.(2020·山东省淄博实验中学高三上期末)“0x <”是“ln(1)0x +<”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】由题意得,ln(1)001110x x x +<⇔<+<⇔-<<,故是必要不充分条件,故选B .)12.(2020届山东省滨州市三校高三上学期联考)若a ,b ,c ,满足2log 3a =,25b =,3log 2c =,则( )A .b c a <<B .c a b <<C .a b c <<D .c b a <<【答案】B 【解析】2221log log 3log 242=<<=,故12a <<;又22542b =>=,故2b >; 33log 2log 31c =<=,c a b ∴<<,)故选:B.13.(2020届山东省九校高三上学期联考)若函数()y f x =的大致图像如图所示,则()f x 的解析式可以为( )A .()22x xxf x -=+B .()22x xxf x -=-C .()22x xf x x-+=D .()22x xf x x--=【答案】C 【解析】对四个选项解析式分析发现B ,D 两个均为偶函数,图象关于y 轴对称,与题不符,故排除;(极限思想分析,0,222,022xxx x xx +--→+→→+,A 错误;220,222,x xx xx x-+-+→+→→+∞,C 符合题意.故选:C14.(2020届山东省枣庄、滕州市高三上期末)函数()y f x =是R 上的奇函数,当0x <时,()2xf x =,则当0x >时,()f x =( ) A .2x - B .2x - C .2x -- D .2x【答案】C 【解析】`0x <时,()2xf x =.当0x >时,0x -<,()2xf x --=,由于函数()y f x =是奇函数,()()2xf x f x -∴=--=-,因此,当0x >时,()2xf x -=-,故选C.15.(2020届山东省德州市高三上期末)已知1232a b -=⋅,()212log 23c b x x -=++,则实数a ,b ,c 的大小关系是( ) A .a b c >> B .b a c >> C .c b a >> D .a c b >>【答案】A 【解析】…1232a b -=⋅,1232a b -+∴=>,11a b ∴-+>,则a b >.()2223122x x x ++=++≥,()21122log 23log 21c b x x ∴-=++≤=-,b c ∴>.因此,a b c >>. 故选:A.16.(2020·山东省淄博实验中学高三上期末)已知定义在[]5,12m m --上的奇函数()f x ,满足0x >时,()21x f x =-,则()f m 的值为( )A .-15B .-7C .3D .15【答案】A 【解析】?因为奇函数的定义域关于原点中心对称 则5120m m -+-=,解得4m =-因为奇函数()f x 当0x >时,()21xf x =-则()()()4442115f f -=-=--=-故选:A17.(2020届山东省临沂市高三上期末)函数()22xf x =-(0x <)的值域是( )A .1,2B .(),2-∞C .()0,2D .1,【答案】A$【解析】0x <,021x ∴<<, 120x ∴-<-<1222x ∴<-<. 即()()2221,xf x =-∈故选:A18.(2020届山东实验中学高三上期中)若,a b 是任意实数,且a b >,则( ))A .22a b >B .1b a<C .()10g a b ->D .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】a 、b 是任意实数,且a b >,如果0a =,2b =-,显然A 不正确;如果0a =,2b =-,显然B 无意义,不正确; 如果0a =,12b =-,显然C ,102lg <,不正确;因为指数函数12xy ⎛⎫= ⎪⎝⎭在定义域上单调递减,且a b >,1122ab⎛⎫⎛⎫∴< ⎪ ⎪⎝⎭⎝⎭满足条件,正确.故选:D .~19.(2020届山东省滨州市高三上期末)已知x ∈R ,则“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】由121x⎛⎫ ⎪⎭>⎝解得0x <,所以由“21x -<<-”能推出“0x <”,反之,不能推出; 因此“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的必要不充分条件. 故选:B.~20.(2020届山东省济宁市高三上期末)已知奇函数()f x 在R 上单调,若正实数,a b 满足()()490f a f b +-=,则11a b+的最小值是( ) A .1B .92C .9D .18【答案】A 【解析】奇函数()f x 在R 上单调,()()490f a f b +-=,则()()()499f a f b f b =--=- 故49a b =-即49a b +=()()11111141452451999b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭当4b a a b =即3,32a b ==时等号成立 ~故选:A21.(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞ B .[1,)+∞C .(,1)-∞D .(,1]-∞【答案】B 【解析】1x ≥时,()ln 1f x x ==,x e =,所以函数()1y f x =-在1x ≥时有一个零点,从而在1x <时无零点,即()1f x =无解.而当1x <时,21x ->,()(2)f x f x k =-+ln(2)x k =-+,它是减函数,值域为(,)k +∞, 要使()1f x =无解.则1k.|故选:B.22.(2020届山东省潍坊市高三上期末)函数()y f x =与()y g x =的图象如图所示,则()()y f x g x =⋅的部分图象可能是( )A .B .C .D .【答案】A 【解析】由图象可知()y f x =的图象关于y 轴对称,是偶函数,()y g x =的图象关于原点对称,是奇函数,并且定义域{}0x x ≠,$()()y f x g x ∴=⋅的定义域是{}0x x ≠,并且是奇函数,排除B ,又0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x >,()0g x <,()()0f x g x ∴⋅<,排除C,D.满足条件的只有A. 故选:A23.(2020届山东省滨州市高三上期末)已知31log 3aa ⎛⎫= ⎪⎝⎭,133log bb =,131log 3cc ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .c b a << B .a b c << C .b c a << D .b a c <<【答案】C 【解析】/在同一直角坐标系内,作出函数13x y⎛⎫= ⎪⎝⎭,3logy x=,3xy=,13logy x=的图像如下:因为31log3aa⎛⎫=⎪⎝⎭,133logb b=,131log3cc⎛⎫=⎪⎝⎭,所以a是13xy⎛⎫= ⎪⎝⎭与3logy x=交点的横坐标;b是3xy=与13logy x=交点的横坐标;c是13xy⎛⎫= ⎪⎝⎭与13logy x=交点的横坐标;由图像可得:b c a<<.故选:C.24.(2020届山东师范大学附中高三月考)函数()312xf x x⎛⎫=- ⎪⎝⎭的零点所在区间为()A.()1,0-B.10,2⎛⎫⎪⎝⎭C.1,12⎛⎫⎪⎝⎭D.()1,2(【答案】C【解析】311(1)(1)()302f--=--=-<,301(0)0()102f=-=-<,13211112()()()022282f=-=-<,31111(1)1()10222f=-=-=>,321115(2)2()80222f =-=-=>,由()1102f f ⎛⎫⋅< ⎪⎝⎭. 故选:C25.(2020届山东省德州市高三上期末)已知()f x 为定义在R 上的奇函数,当0x ≥时,有()()1f x f x +=-,且当[)0,1x ∈时,()()2log 1f x x =+,下列命题正确的是( )A .()()201920200f f +-=B .函数()f x 在定义域上是周期为2的函数{C .直线y x =与函数()f x 的图象有2个交点D .函数()f x 的值域为[]1,1-【答案】A 【解析】函数()y f x =是R 上的奇函数,()00f ∴=,由题意可得()()100f f =-=, 当0x ≥时,()()()21f x f x f x +=-+=,()()()()()()2019202020192020100f f f f f f ∴+-=-=-=,A 选项正确;当0x ≥时,()()1f x f x +=-,则2616log 555f f ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,2449log 555f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,4462555f f f ⎛⎫⎛⎫⎛⎫∴-≠-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则函数()y f x =不是R 上周期为2的函数,B 选项错误; 若x 为奇数时,()()10f x f ==,%若x 为偶数,则()()00f x f ==,即当x ∈Z 时,()0f x =,当0x ≥时,()()2f x f x +=,若n N ∈,且当()2,21x n n ∈+时,()20,1x n -∈,()()()20,1f x f x n =-∈,当()1,2x ∈时,则()10,1x -∈,()()()11,0f x f x ∴=--∈-,当()21,22x n n ∈++时,()21,2x n -∈,则()()()21,0f x f x n =-∈-, 所以,函数()y f x =在[)0,+∞上的值域为()1,1-,由奇函数的性质可知,函数()y f x =在(),0-∞上的值域为()1,1-, 由此可知,函数()y f x =在R 上的值域为()1,1-,D 选项错误;|如下图所示:由图象可知,当11x -<<时,函数y x =与函数()y f x =的图象只有一个交点, 当1x ≤-或1x ≥时,()()1,1f x ∈-,此时,函数y x =与函数()y f x =没有交点, 则函数y x =与函数()y f x =有且只有一个交点,C 选项错误. 故选:A.26.(2020届山东实验中学高三上期中)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的解12341234,,,,x x x x x x x x <<<且,则()3122341x x x x x ⋅++⋅的取值范围是( ) A .(]1,1-B .[]1,1-C .[)1,1- D .()1,1-'【答案】A 【解析】先作()f x 图象,由图象可得12343121,1.2x x x x x ⎡⎫+=-=∈⎪⎢⎣⎭,,因此()31232343112x x x x x x x ⋅++=-+⋅为1,12⎡⎫⎪⎢⎣⎭单调递减函数,从而()(] 31223411,1x x xx x⋅++∈-⋅,选A.二、多选题27.(2020届山东省临沂市高三上期末)若104a=,1025b=,则()…A.2a b+=B.1b a-=C.281g2ab>D.lg6b a->【答案】ACD【解析】由104a=,1025b=,得lg4a=,lg25b=,则lg4lg25lg1002a b∴+=+==,25lg25lg4lg4b a∴-=-=,25lg101lg lg64=>>lg6b a∴->)24lg2lg54lg2lg48lg2ab∴=>=,故正确的有:ACD故选:ACD.28.(2020届山东省日照市高三上期末联考)已知定义在R上的函数()y f x=满足条件()()2f x f x+=-,且函数()1y f x=-为奇函数,则()A.函数()y f x=是周期函数B.函数()y f x=的图象关于点()1,0-对称C .函数()y f x =为R 上的偶函数D .函数()y f x =为R 上的单调函数【答案】ABC 【解析】、因为()()2f x f x +=-,所以()()()42f x f x f x +=-+=,即4T=,故A 正确;因为函数()1y f x =-为奇函数,所以函数()1y f x =-图像关于原点成中心对称,所以B 正确; 又函数()1y f x =-为奇函数,所以()()11f x f x --=--,根据()()2f x f x +=-,令1x -代x 有()()11f x f x +=--,所以()()11f x f x +=--,令1x -代x 有()()f x f x -=,即函数()f x 为R 上的偶函数,C 正确;因为函数()1y f x =-为奇函数,所以()10f -=,又函数()f x 为R 上的偶函数,()10f =,所以函数不单调,D 不正确. 故选:ABC.29.(2020届山东省潍坊市高三上期中)已知函数22,0()(2),0x x x f x f x x ⎧--<=⎨-≥⎩,以下结论正确的是( )A .(3)(2019)3f f -+=-B .()f x 在区间[]4,5上是增函数》C .若方程() 1f x k x =+恰有3个实根,则11,24k ⎛⎫∈-- ⎪⎝⎭D .若函数()y f x b =-在(,4)-∞上有6个零点(1,2,3,4,5,6)i x i =,则()61iii x f x =∑的取值范围是()0,6【答案】BCD 【解析】函数()f x 的图象如图所示:对A ,(3)963f -=-+=-,(2019)(1)(1)1f f f ==-=,所以(3)(2019)2f f -+=-,故A 错误; 对B ,由图象可知()f x 在区间[]4,5上是增函数,故B 正确;对C ,由图象可知11,24k ⎛⎫∈-- ⎪⎝⎭,直线() 1f x k x =+与函数图象恰有3个交点,故C 正确; ]对D ,由图象可得,当函数()y f x b =-在(,4)-∞上有6个零点(1,2,3,4,5,6)i x i =,则01b <<,所以当0b →时,()610i i i x f x =→∑;当1b →时,()616i i i x f x =→∑,所以()61i i i x f x =∑的取值范围是()0,6,故D 正确. 故选:BCD.30.(2020届山东省枣庄、滕州市高三上期末)如图所示,一座小岛距离海岸线上最近的P 点的距离是2km ,从P 点沿海岸正东12km 处有一个城镇.假设一个人驾驶的小船的平均速度为3/km h ,步行的速度为5/km h ,时间t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.设24,u x x =++24v x x =+-,则( )A .函数()v f u =为减函数B .15432t u v --=C .当 1.5x =时,此人从小岛到城镇花费的时间最少D .当4x =时,此人从小岛到城镇花费的时间不超过3h?【答案】AC 【解析】A.∵,u x =v x =,22u v u vx +-==, 由题意4uv =,4v u=在(0,)+∞上是减函数,A 正确.B.125x t -=+126510u v u v+-=+-,整理得15436t u v =++,B 错误;C.由A 、B 得1615363644t u u =++≥=,16u u =即4u =时取等号,4x =,解得31.52x ==,C 正确;D.4x =时,85t =+,7305t -===>,3t >,D 错. :故选:AC.31.(2020届山东省枣庄市高三上学期统考)下列函数既是偶函数,又在(),0-∞上单调递减的是( ) A .2xy = B .23y x-=C .1y x x=- D .()2ln 1y x =+【答案】AD 【解析】对于A 选项,2xy =为偶函数,且当0x <时,122xx y -==为减函数,符合题意. 对于B 选项,23y x -=为偶函数,根据幂函数单调性可知23y x -=在(),0-∞上递增,不符合题意. 对于C 选项,1y x x=-为奇函数,不符合题意. {对于D 选项,()2ln 1y x =+为偶函数,根据复合函数单调性同增异减可知,()2ln 1y x =+在区间(),0-∞上单调递减,符合题意. 故选:AD.32.(2020届山东省潍坊市高三上期末)把方程1169x x y y+=-表示的曲线作为函数()y f x =的图象,则下列结论正确的有( )A .()y f x =的图象不经过第一象限B .()f x 在R 上单调递增C .()y f x =的图象上的点到坐标原点的距离的最小值为3D .函数()()43g x f x x =+不存在零点 【答案】ACD;【解析】当0,0x y >>,方程是221169x y +=-不表示任何曲线,故A 正确;当0,0x y ≥≤ ,方程是221169x y -=-,即221916y x -= ,当0,0x y ≤≥ ,方程是221169x y -+=- ,即221169x y -=,当0,0x y ≤≤ ,方程是221169x y --=-,即221169x y+= ,如图画出图象由图判断函数在R 上单调递减,故B 不正确;、由图判断()y f x =图象上的点到原点距离的最小值点应在0,0x y ≤≤的图象上,即满足221169x y += ,设图象上的点(),P x y2222279191616x PO x y x x ⎛⎫=+=+-=+ ⎪⎝⎭当0x =时取得最小值3,故C 正确; 当()430f x x += ,即()34f x x =-, 函数()()43g x f x x =+的零点,就是函数()y f x = 和34y x =-的交点, 而34y x =-是曲线221916y x -=,0,0x y ≥≤和221169x y -=0,0x y ≤≥的渐近线,所以没有交点,由图象可知34y x =-和221169x y +=,0,0x y ≤≤没有交点,所以函数()()43g x f x x =+不存在零点,故D 正确.<故选:ACD33.(2020届山东省滨州市高三上期末)在平面直角坐标系xOy 中,如图放置的边长为2的正方形ABCD 沿x 轴滚动(无滑动滚动),点D 恰好经过坐标原点,设顶点(),B x y 的轨迹方程是()y f x =,则对函数()y f x =的判断正确的是( )A .函数()y f x =是奇函数B .对任意的x ∈R ,都有()()44f x f x +=-C .函数()y f x =的值域为0,22⎡⎣D .函数()y f x =在区间[]6,8上单调递增【答案】BCD 【解析】由题意,当42x -≤<-时,顶点(),B x y 的轨迹是以点(2,0)A -为圆心,以2为半径的14圆; ,当22x -≤<时,顶点(),B x y 的轨迹是以点(0,0)D 为圆心,以214圆;当24x ≤<时,顶点(),B x y 的轨迹是以点(2,0)C 为圆心,以2为半径的14圆; 当46x ≤<,顶点(),B x y 的轨迹是以点(4,0)A 为圆心,以2为半径的14圆,与42x -≤<-的形状相同,因此函数()y f x =在[]4,4-恰好为一个周期的图像; 所以函数()y f x =的周期是8; 其图像如下:A 选项,由图像及题意可得,该函数为偶函数,故A 错;B 选项,因为函数的周期为8,所以(8)()f x f x +=,因此(4)(4)f x f x +=-;故B 正确;·C 选项,由图像可得,该函数的值域为0,22⎡⎣;故C 正确;D 选项,因为该函数是以8为周期的函数,因此函数()y f x =在区间[]6,8的图像与在区间[]2,0-图像形状相同,因此,单调递增;故D 正确; 故选:BCD.34.(2020届山东师范大学附中高三月考)下列函数中,既是偶函数,又在(0,)+∞上单调递增的是( ) A .3y x = B .2yxC .xy e =D .2lg y x =【答案】CD 【解析】本题主要考查函数的单调性和函数的奇偶性.|A 项,对于函数3y x =,因为()33()()f x x x f x -=-=-≠,所以函数3y x =不是偶函数.故A 项不符合题意.B 项,对于函数2yx ,因为当1x =时,1y =,当2x =,14y =,所以函数2y x 在区间(0,)+∞上不是单调递增的.故B 项不符合题意.C 项,对于函数x y e =,因为定义域为R ,()()x x g x g x e e --===,所以函数xy e =为偶函数,因为函数xy e =,当0x >时,xx y e e ==,而1e >,函数x y e =在R 上单调递增,所以函数xy e =在区间(0,)+∞上为增函数.故C 项符合题意.D 项,对于函数2lg y x =,因为函数()22lg )(l ()g h x x x h x -=-==,所以函数2lg y x =是偶函数.而2yx 在(0,)+∞上单调递增,lg y x =在(0,)+∞上单调递增,所以函数2lg y x =在(0,)+∞上单调递增.故D 项符合题意. 故选:CD.35.(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a =-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( )A .12B .2C .2e D【答案】BCD—【解析】令函数21()()2T x f x x =-,因为2()()f x f x x -+=,22211()()()()()()()022T x T x f x x f x x f x f x x ∴+-=-+---=+--=,()T x ∴为奇函数,当0x 时,()()0T x f x x '='-<, ()T x ∴在(],0-∞上单调递减, ()T x ∴在R 上单调递减.存在0{|()(1)}x x T x T x ∈-,/∴得00()(1)T x T x -,001x x -,即012x ,()x g x e a =-;1()2x, 0x 为函数()y g x =的一个零点;当12x时,()0x g x e '=-, ∴函数()g x 在12x 时单调递减,由选项知0a >,取12x =<,又0g ee ⎛-=> ⎝,∴要使()g x 在12x时有一个零点,.只需使102g a ⎛⎫= ⎪⎝⎭, 解得e a, a ∴的取值范围为⎡⎫+∞⎪⎢⎪⎣⎭, 故选:BCD . 三、填空题36.(2020届山东省枣庄市高三上学期统考)若()3,0{1,0x x f x x x≤=>,则()()2f f -=__________. 【答案】9 【解析】《因为21(2)309f --==>,所以1((2))()99f f f -==,应填答案9. 37.(2020届山东省潍坊市高三上期中)已知函数()f x 是定义在R 上的偶函数,且在[)0,+∞上是减函数,10,3f ⎛⎫-= ⎪⎝⎭则不等式18log 0f x ⎛⎫> ⎪⎝⎭的解集为__________.【答案】1,22⎛⎫ ⎪⎝⎭【解析】()f x 是定义在R 上的偶函数,且在[0,)+∞上是减函数,1()03f -=,11()()033f f ∴=-=,则不等式18(log )0f x >等价为不等式181(|log |)()3f x f >,即181|log |3x <⇒1811log 33x -<<⇒122x <<,{即不等式的解集为1(,2)2, 故答案为:1(,2)2.38.(2020届山东省九校高三上学期联考)已知[]x 表示不超过x 的最大整数,如[]33=,[]1.51=,[]1.72-=-.令()2x f x x =⋅,[]()()g x f x x =-,则下列说法正确的是__________.①()g x 是偶函数 ②()g x 是周期函数③方程()0g x -=有4个根④()g x 的值域为[]0,2 【答案】②③|【解析】1111()([])()33333g f f =-==,1112()([])()33333g f f -=---== 显然11()()33g g -≠,所以()g x 不是偶函数,所以①错误;[][](1)(11)()()g x f x x f x x g x +=+-+=-=,所以()g x 是周期为1的周期函数,所以②正确; 作出函数y x =的图象和()g x 的图象:根据已推导()g x 是周期为1的周期函数,只需作出()g x 在[0,1)x ∈的图象即可,当[0,1)x ∈时[]()()()2x g x f x x f x x =-==⋅,根据周期性即可得到其余区间函数图象,如图所示:》可得()g x 值域为[0,2),函数y x =()g x 的图象一共4个交点,即方程()0g x x =有4个根, 所以③正确,④错误; 故答案为:②③39.(2020届山东省滨州市三校高三上学期联考)已知定义在R 上的函数满足(3)(3)f x f x -=-+,且()f x 图像关于1x =对称,当(1,2]x ∈时,2()log (21)f x x =+,则8252f ⎛⎫= ⎪⎝⎭________. 【答案】-2 【解析】因为()f x 图像关于1x =对称,则()(2)f x f x =-,()(2)(31)(31)(4)(8)f x f x f x f x f x f x =-=--=-++=-+=+,)故()f x 是以8为周期的周期函数,82511113851443131222222f f f f ff⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=⨯++=+=++=---=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭23log (21)22=-⨯+=-故答案为:2-.40.(2020届山东师范大学附中高三月考)已知函数()f x 是定义在R 上的奇函数,当12x x ≠时,有1212[()()]()0f x f x x x --<恒成立,若(31)(2)0f x f ++>,则x 的取值范围是________.【答案】(,1)-∞- 【解析】根据已知条件:当12x x ≠时,有1212[()()]()0f x f x x x --<恒成立,得函数()f x 是定义在R 上的减函数,…又因为函数()f x 是定义在R 上的奇函数,所以(2)(2)f f -=-,故(31)(2)0f x f ++>等价于(31)(2)(2)f x f f +>-=-,所以312x +<-,即1x <-. 故答案为:(),1-∞-.41.(2020届山东省济宁市高三上期末)2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N 随时间t (单位:年)的衰变规律满足573002tN N -=⋅(0N 表示碳14原有的质量),则经过5730年后,碳14的质量变为原来的________;经过测定,良渚古城遗址文物样本中碳14的质量是原来的12至35,据此推测良渚古城存在的时期距今约在________年到5730年之间.(参考数据:22log 3 1.6,log 5 2.3≈≈) 【答案】124011 【解析】当5730t =时,100122N N N -=⋅=∴经过5730年后,碳14的质量变为原来的12令035N N =,则5730325t-= 2223log log 3log 50.757305t ∴-==-≈- 。

2020年新高考全国卷Ⅰ数学高考试题(山东)(附答案)

2020年新高考全国卷Ⅰ数学高考试题(山东)(附答案)

2020年普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.2i 12i -= +A.1B.−1C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e)rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 A .()2,6- B .()6,2- C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是 A .[)1,1][3,-+∞ B .3,1][,[01]-- C .[)1,0][1,-+∞ D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。

2020年新高考(全国卷)数学试卷结构与评析

2020年新高考(全国卷)数学试卷结构与评析

新高考(全国卷)地区数学试卷结构及题型变化新高考数学考试试卷及试卷结构说明:新高考数学试卷结构:第一大题,单项选择题,共8小题,每小题5分,共40分;第二大题,多项选择题,共4小题,每小题5分,部分选对得3分,有选错得0分,共20分.第三大题,填空题,共4小题,每小题5分,共20分。

第四大题,解答题,共6小题,均为必考题,涉及的内容是高中数学的六大主干知识:三角函数,数列,统计与概率,立体几何,函数与导数,解析几何。

单项选择题考点分析:多项选择题考点分析:①新高考全国Ⅰ卷与新高考全国Ⅱ卷相同新高考选择题部分分析:①新高考与之前相比,最大的不同就是增加了多项选择题部分,选择题部分由原来的12道单选题,变成了8道单选题与4道多选题。

这有利于缩小学生选择题部分成绩的差距,过去学生错一道单选题,可能就会丢掉5分,在新高考中,考生部分选对就可以得3分,在一定程度上保证了得分率。

②新高考的单项选择题部分主要考察学生的基础知识和基本运算能力,总体上难度不大,只要认真复习,一般都可以取得一个较好的成绩。

在多项选择题上,前两道较为基础,后两道难度较大,能够突出高考的选拔性功能,总体上来看,学生比以往来讲,更容易取得一个不错的成绩,但对于一些数学基础比较的好的同学来说,这些题比以往应该更有挑战性。

过去,只需要在四个选项中选一个正确答案,现在要在四个选项中,选出多个答案,比以往来说,要想准确的把正确答案全部选出来,确实有一定的难度、③新高考数学试卷的第4题,第6题和第12题都体现了创新性。

第4题,以古代知识为背景,考察同学们的立体几何知识,这体现了数学考试的价值观导向。

弘扬传统文化的同时也鼓励同学们走进传统文化。

近年来,对于这类题目也是屡见不鲜,平时也应该鼓励学生去关注一些古代的数学著作,如《九章算术》,《孙子算经》等等,通过对这些著作的了解,再遇到这类题目时,在一定程度上能够减少恐惧感与焦虑感。

第6题则体现了聚焦民生,关注社会热点。

2020年全国新高考Ⅰ卷数学试卷(解析版)

2020年全国新高考Ⅰ卷数学试卷(解析版)

2020年全国新高考Ⅰ卷数学试卷一、选择题1. 设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2. 2−i1+2i=( )A.1B.−1C.iD.−i3. 6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去一个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A.120种B.90种C.60种D.30种4. 日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A 且与OA垂直的平面,在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40∘,则晷针与点A处的水平面所成角为()A.20∘B.40∘C.50∘D.90∘5. 某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%6. 基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT,有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)( )A.1.2天B.1.8天C.2.5天D.3.5天7. 已知P是边长为2的正六边形ABCDEF内的一点,则AP→⋅AB→的取值范围是( )A.(−2,6)B.(−6,2)C.(−2,4)D.(−4,6)8. 若定义在R上的奇函数f(x)在(−∞,0)上单调递减,且f(2)=0,则满足xf(x−1)≥0的x的取值范围是()A.[−1,1]∪[3,+∞)B.[−3,−1]∪[0,1]C.[−1,0]∪[1,+∞)D.[−1,0]∪[1,3]二、多选题9. 已知曲线C:mx2+ny2=1.( )A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为√nC.若mn<0,则C是双曲线,其渐近线方程为y=±√−mnxD.若m=0,n>0,则C是两条直线10. 如图是函数y=sin(ωx+φ),则sin(ωx+φ)=( )A.sin(x+π3) B.sin(π3−2x) C.cos(2x+π6) D.cos(5π6−2x)11. 已知a>0,b>0,且a+b=1,则( )A.a2+b2≥12B.2a−b>12C.log2a+log2b≥−2D.√a+√b≤212. 信息熵是信息论中的一个重要概念,设随机变量X所有可能的取值为1,2,⋯,n,且P(X=i)=p i> 0(i=1,2,⋯,n),∑p ini=1=1,定义X的信息熵H(X)=−∑p ini=1log2p i,则( )A.若n=1,则H(X)=0B.若n=2,则H(X)随着p i的增大而增大C.若p i =1n (i =1,2,…,n ),则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m ,且P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m),则H (X )≤H (Y ) 三、填空题13. 斜率为√3的直线过抛物线C:y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB|=________.14. 将数列{2n −1}与{3n −2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.15. 某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形, BC ⊥DG ,垂足为C ,tan ∠ODC=35, BH//DG ,EF =12cm ,DE =2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1,则图中阴影部分的面积为________cm 2.16. 已知直四棱柱ABCD −A 1B 1C 1D 1的棱长均为2,∠BAD =60∘,以D 1为球心,√5为半径的球面与侧面BCC 1B 1的交线长为________. 四、解答题17. 在①ac =√3,②c sin A =3,③c =√3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =√3sin B ,C =π6, ________?18. 已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8. (1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m](m ∈N ∗)中的项的个数,求数列{b m }的前100项和S 100 .19. 为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO 2浓度(单位:μg/m 3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO 2浓度有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),20. 如图,四棱锥P −ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.21. 已知函数f (x )=ae x−1−ln x +ln a .(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.22. 已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足. 证明:存在定点Q,使得|DQ|为定值.参考答案与试题解析2020年全国新高考Ⅰ卷数学试卷一、选择题1.【答案】C【考点】并集及其运算【解析】根据集合并集的运算法则求解.【解答】解:集合A={x|1≤x≤3},B={x|2<x<4},则A∪B={x|1≤x<4}.故选C.2.【答案】D【考点】复数代数形式的混合运算【解析】根据复数的除法运算法则求解.【解答】解:2−i1+2i =(2−i)(1−2i) (1+2i)(1−2i)=2−4i−i−21+4=−5i5=−i.故选D.3.【答案】C【考点】排列、组合及简单计数问题【解析】先让甲场馆选1人,再让乙场馆选2,剩下的去丙场馆即可得解. 【解答】解:由题意可得,不同的安排方法共有C61⋅C52=60(种).故选C.4.【答案】B【考点】直线与平面所成的角空间点、线、面的位置【解析】根据纬度的定义和线面角的定义,结合直角三角形的性质,可得晷针与点A处的水平面所成角. 【解答】解:如图所示,AB为日晷晷针,∠AOC=40∘,由题意知,∠AOC+∠OAB=90∘,∠DAB+∠OAB=90∘,∴ ∠DAB=∠AOC=40∘,即晷针与点A处的水平面所成角为40∘.故选B.5.【答案】C【考点】概率的应用【解析】利用互斥事件的概率公式代入求解.【解答】解:设''该中学学生喜欢足球''为事件A,''该中学学生喜欢游泳''为事件B,则''该中学学生喜欢足球或游泳''为事件A∪B,''该中学学生既喜欢足球又喜欢游泳''为事件A∩B. 由题意知,P(A)=60%,P(B)=82%,P(A∪B)=96%,所以P(A∩B)=P(A)+P(B)−P(A∪B)=60%+82%−96%=46%.故选C.6.【答案】B【考点】函数模型的选择与应用指数式与对数式的互化【解析】先根据所给模型求得r,然后求得初始病例数I,最后求得感染病例数增加1倍所需的时间.【解答】解:3.28=1+r ⋅6得r =0.38,I(t)=e 0.38t , e 0.38(t+x)=2⋅e 0.38t 得x =ln 20.38≈1.8. 故选B . 7.【答案】 A【考点】平面向量数量积求线性目标函数的最值 【解析】先画出图形,并用坐标表示AP →⋅AB →,然后向量问题转化为求线性目标函数的最值,最终得AP →⋅AB →的取值范围.【解答】 解:如图:设A(−1,√3),P (x,y ),B (−2,0), AP →=(x +1,y −√3),AB →=(−1,−√3), 则AP →⋅AB →=−x −√3y +2.令z =−x −√3y +2,该问题可转化为求该目标函数在可行域中的最值问题,由图可知,z =−x −√3y +2经过点C 时,z 取得最大值;经过点F 时,z 取得最小值, 故最优解为C(−1,−√3)和F(1,√3), 代入得z max =6或z min =−2, 故AP →⋅AB →的取值范围是(−2,6). 故选A . 8.【答案】 D【考点】函数单调性的性质 函数奇偶性的性质【解析】先根据函数的奇偶性确定函数的大致图像,然后判断函数的单调性,最后利用分类讨论思想讨论不等式成立时x 的取值范围. 【解答】解:根据题意,函数图象大致如图:①当x =0时,xf(x −1)=0成立; ②当x >0时,要使xf(x −1)≥0, 即f(x −1)≥0,可得0≤x −1≤2或x −1≤−2, 解得1≤x ≤3;③当x <0时,要使xf(x −1)≥0, 即f(x −1)≤0,可得x −1≥2或−2≤x −1≤0, 解得−1≤x <0.综上,x 的取值范围为[−1,0]∪[1,3]. 故选D .二、多选题 9.【答案】 A,C,D 【考点】双曲线的渐近线 椭圆的标准方程 圆的标准方程 直线的一般式方程【解析】根据所给条件,逐一分析对应的方程形式,结合椭圆、圆、双曲线方程的定义进行判断即可. 【解答】解:A ,mx 2+ny 2=1,即x 21m+y 21n=1.∵ m >n >0, ∴ 1m <1n ,∴ 此时C 是椭圆,且其焦点在y 轴上, A 选项正确;B ,m =n >0时,x 2+y 2=1n , ∴ r =√n n, B 选项错误;C,mn<0时,可推断出C是双曲线,且其渐近线方程为y=±√−1n1mx=±√−mnx,C选项正确;D,m=0时,C:ny2=1,∴ y=±√1n代表两条直线,D选项正确.故选ACD.10.【答案】B,C【考点】诱导公式由y=Asin(ωx+φ)的部分图象确定其解析式正弦函数的图象【解析】先用图像上两零点间的距离求出函数的周期,从而求得ω,而后利用五点对应法求得φ,进而求得图像的解析式.【解答】解:由函数y=sin(ωx+φ)的部分图像,可知,T2=2π3−π6=π2,∴ T=π,∴ ω=2ππ=2,∴ y=sin(2x+φ).将点(π6,0)代入得,0=sin(π3+φ),∴π3+φ=(k+1)π(k∈Z).A,当x=π6时,sin(x+π3)=sinπ2=1,不符合题意,故A选项错误;B,当k=0时,φ=2π3,y=sin(2x+2π3 )=sin(2x−π3+π3+2π3)=sin(2x−π3+π)=−sin(2x−π3)=sin(π3−2x),故B选项正确;C,sin(2x+2π3)=sin(2x+π6+π2)=cos(2x+π6),故C选项正确;D,cos(5π6−2x)=cos(2x−5π6)=cos(2x−π2−π3)=sin(2x−π3)=−sin(2x+2π3),故D选项错误.故选BC.11.【答案】A,B,D【考点】不等式性质的应用基本不等式在最值问题中的应用【解析】选项A左边是代数式形式,右边是数字形式,且已知a+b=1,故可考虑通过基本不等式和重要不等式建立a2+b2与a+b的关系;选项B先利用指数函数的增减性将原不等式简化为二元一次不等式,然后利用不等式的性质及已知条件判断;选项C需要利用对数的运算和对数函数的增减性将不等式转化为关于a, b的关系式,然后利用基本不等式建立与已知条件a+b的关系;选项D基本不等式的变形应用.【解答】解:A,∵ a+b=1,则a2+b2+2ab=1,2ab≤a2+b2,当且仅当a=b时取等号,∴ 1=a2+b2+2ab≤2(a2+b2),可得a2+b2≥12,故A正确;B,∵ a−b=a−(1−a)=2a−1>−1,∴2a−b>2−1=12,故B正确;C,∵ ab≤(a+b2)2=14,当且仅当a=b时取等号,∴log2a+log2b=log2ab≤log214=−2,故C错误;D ,∵ a +b ≥2√ab ,当且仅当a =b 时取等号, ∴ (√a +√b)2=a +b +2√ab =1+2√ab ≤2, 即√a +√b ≤√2,则√a +√b ≤2,故D 正确. 故选ABD . 12. 【答案】 A,C【考点】 概率的应用概率与函数的综合 利用导数研究函数的单调性【解析】选项A 根据题目给出信息熵的定义可直接判断;选项B 根据题意先得到p 1,p 2的关系,然后构造关于p 1的函数,最后利用导数判断新函数的增减性; 选项C 根据题目给定信息化简H(x)后可判断;选项D 分别求出H(x),H(y),利用作差法结合对数的运算即可判断. 【解答】解:A ,若n =1,则p 1=1,H (X )=−1×log 21=0,故A 正确; B ,若n =2,则p 1+p 2=1,则H (X )=−[p 1log 2p 1+(1−p 1)log 2(1−p 1)]. 设f (p )=−[p log 2p +(1−p )log 2(1−p )],则f ′(p )=−[log 2p +p ⋅1p ln 2−log 2(1−p )+(1−p )−1(1−p )ln 2] =−log 2p1−p =log 21−p p,当0<p <12时,f ′(p )>0; 当12<p <1时,f ′(p )<0,∴ f (p )在(0,12)上单调递增,在(12,1)上单调递减, 当p 1=12时,H(X)取最大值,故B 错误;C ,若p i =1n (i =1,2,⋯,n ),则H (X )=−∑p i n i=1log 2p i =−n ⋅1n log 21n =log 2n ,所以H(x)随着n 的增大而增大,故C 正确;D ,若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m , 由P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m )知: P (Y =1)=p 1+p 2m ; P (Y =2)=p 2+p 2m−1 ;P (Y =3)=p 3+p 2m−2 ; ⋯⋯P (Y =m )=p m +p m+1 ;H (Y )=−[(p 1+p 2m )log 2(p 1+p 2m )+(p 2+p 2m−1)log 2(p 2+p 2m−1)+⋯+(p m +p m+1)log 2(p m +p m+1)], H (X )=−[p 1log 2p 1+p 2log 2p 2+⋯+p 2m log 2p 2m ]=−[(p 1log 2p 1+p 2m log 2p 2m )+(p 2log 2p 2+p 2m−1log 2p 2m−1)+⋯ +(p m log 2p m +p m+1log 2p m+1)],∵ (p 1+p 2m )log 2(p 1+p 2m )−p 1log 2p 1−p 2m log 2p 2m >0, ⋯⋯(p m +p m+1)log 2(p m +p m+1)−p m log 2p m −p m+1log 2p m+1>0, 所以H (X )>H (Y ),故D 错误. 故选AC . 三、填空题 13.【答案】163【考点】 抛物线的性质 【解析】先根据题目给定信息求出直线方程,联立直线和抛物线方程,再利用韦达定理和抛物线的性质转化求出弦长|AB|. 【解答】解:设A(x 1,y 1),B(x 2,y 2), 抛物线的焦点为(1,0),则直线方程为y =√3(x −1),代入抛物线方程得3x 2−10x +3=0, ∴ x 1+x 2=103,根据抛物线方程的定义可知|AB|=x 1+1+x 2+1=163.故答案为:163.14.【答案】 3n 2−2n 【考点】等差数列的前n 项和 等差关系的确定【解析】先判断出{2n −1}与{3n −2}公共项所组成的新数列{a n }的公差、首项,再利用等差数列的前n 项和的公式得出结论. 【解答】解:数列{2n −1}各项为:1,3,5,7,9,⋯数列{3n −2}各项为:1,4,7,10,13,⋯观察可知,{a n }是首项为1,公差为6的等差数列, 所以数列{a n }的前n 项和为3n 2−2n . 故答案为:3n 2−2n . 15. 【答案】5π2+4 【考点】同角三角函数基本关系的运用 扇形面积公式【解析】先利用解三角形和直线的位置关系求出圆的半径,然后求出阴影部分的面积,运用了数形结合的方法. 【解答】解:由已知得A 到DG 的距离与A 到FG 的距离相等,均为5. 作AM ⊥GF 延长线于M ,AN ⊥DG 于N ,则∠NGA =45∘. ∵ BH//DG , ∴ ∠BHA =45∘. ∵ ∠OAH =90∘, ∴ ∠AOH =45∘.设O 到DG 的距离为3t ,由tan ∠ODC =35,可知O 到DE 的距离为5t , ∴ {OA ⋅cos 45∘+5t =7,OA ⋅sin 45∘+3t =5,解得{t =1,OA =2√2.半圆之外阴影部分面积为:S 1=2√2×2√2×12−45×π×(2√2)2360=4−π,阴影部分面积为:S =12[π⋅(2√2)2−π⋅12]+S 1=5π2+4.故答案为:5π2+4.16. 【答案】√2π2【考点】 弧长公式空间直角坐标系 圆的标准方程 两点间的距离公式【解析】根据题意画出直观图,建立合适的坐标系,求出交线上的点的轨迹方程,进而确定点的轨迹在平面BCC 1B 1上是以√2为半径的90∘的弧,最后根据弧长公式求解. 【解答】解:以C 1为原点,C 1B 1→,C 1C →所在直线分别为x 轴、z 轴建立如图1所示的空间直角坐标系O −xyz ,y 轴是平面A 1B 1C 1D 1内与C 1B 1互相垂直的直线, 即D 1(1,−√3,0),设交线上的点的坐标是(x,0,z ),根据题意可得(x −1)2+3+z 2=5, 化简得(x −1)2+z 2=2,所以球面与侧面BCC 1B 1的交线平面如图2所示,即交线长l =14⋅2√2π=√2π2. 故答案为:√2π2. 四、解答题 17.【答案】解:选①:∵sin A=√3sin B,C=π6,ac=√3,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.由正弦定理可得:a=√3b,又ab=√3,解得a=√3,b=1,∴c=1,故存在△ABC满足条件;选②:sin A=√3sin B,C=π6,c sin A=3. ∵c sin A=3,∴a sin C=3,∴a=6.由正弦定理可得:a=√3b,∴b=2√3,∴c2=a2+b2−2ab cos C=36+12−24√3×√32=12,∴c=2√3,∴B=π6,A=23π,故存在△ABC满足条件;选③:c=√3b,sin A=√3sin B,C=π6,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.又c=√3b,矛盾.故不存在△ABC满足条件.【考点】两角和与差的正弦公式余弦定理正弦定理【解析】条件①先根据题意,结合正弦定理用一边去表示另外两条边,然后用余弦定理求出三角形的三边的长;条件②先用正弦定理结合已知求出a,b的长,然后用余弦定理求出c的长;条件③先利用正弦定理结合已知用b表示a,c,然后利用余弦定理求得∠C与给定值不同,从而判定三角形不存在.【解答】解:选①:∵sin A=√3sin B,C=π6,ac=√3,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.由正弦定理可得:a=√3b,又ab=√3,解得a=√3,b=1,∴c=1,故存在△ABC满足条件;选②:sin A=√3sin B,C=π6,c sin A=3.∵c sin A=3,∴a sin C=3,∴a=6.由正弦定理可得:a=√3b,∴b=2√3,∴c2=a2+b2−2ab cos C=36+12−24√3×√32=12,∴c=2√3,∴B=π6,A=23π,故存在△ABC满足条件;选③:c=√3b,sin A=√3sin B,C=π6,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.又c=√3b,矛盾.故不存在△ABC满足条件.18.【答案】解:(1)由题意可知{a n}为等比数列,a2+a4=20,a3=8,可得a3q+a3q=20,得2q2−5q+2=0,∴ (2q−1)(q−2)=0 .∵ q>1,∴ q=2,∵a1q2=a3,可得a1=2,∴{a n}的通项公式为:a n=2×2n−1=2n.(2)∵b m为{a n}在(0,m](m∈N∗)中的项的个数,当m=2k时,b m=k,当m∈[2k−1,2k)时,b m=k−1,其中k∈N+.可知S100=b1+(b2+b3)+(b4+b5+b6+b7)+(b8+b9+⋯+b15)+(b16+b17+⋯+b31)+(b32+b33+⋯+b63)+(b64+b65+⋯+b100)=0+1×2+2×4+3×8+4×16+5×32+6×37=480.【考点】数列的求和等比数列的通项公式【解析】(1)先根据已知列式求出公比,求出首项,最后求得等比数列的通项公式;(2)由题意求得0在数列{b m}中有1项,1在数列{b m}中有2项,2在数列{b m}中有4项,⋯,可知b63=5,b64= b65=⋯=b100=6.则数列{b m}的前100项和S100可求.【解答】解:(1)由题意可知{a n}为等比数列,a2+a4=20,a3=8,可得a3q+a3q=20,得2q2−5q+2=0,∴ (2q−1)(q−2)=0 .∵ q>1,∴ q=2,∵a1q2=a3,可得a1=2,∴{a n}的通项公式为:a n=2×2n−1=2n.(2)∵b m为{a n}在(0,m](m∈N∗)中的项的个数,当m=2k时,b m=k,当m∈[2k−1,2k)时,b m=k−1,其中k∈N+.可知S100=b1+(b2+b3)+(b4+b5+b6+b7)+(b8+b9+⋯+b15)+(b16+b17+⋯+b31)+(b32+b33+⋯+b63)+(b64+b65+⋯+b100)=0+1×2+2×4+3×8+4×16+5×32+6×37=480.19.【答案】解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且SO2浓度不超过150的天数为:32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150的概率的估计值为64100=0.64.(2)根据抽查数据,可得2×2列联表:(3)根据(2)的列联表得K2=100×(64×10−16×10)280×20×74×26≈7.484,由于7.484>6.635,故有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关. 【考点】独立性检验概率的意义【解析】(1)根据题目已知信息利用频率估计概率;(2)根据题目给定信息画出2×2列联表;(3)根据列联表计算K的观测值K2,得出统计结论.【解答】解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且SO2浓度不超过150的天数为:32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150的概率的估计值为64100=0.64.(2)根据抽查数据,可得2×2列联表:(3)根据(2)的列联表得 K 2=100×(64×10−16×10)280×20×74×26≈7.484,由于7.484>6.635,故有99%的把握认为该市一天空气中PM2.5浓度与SO 2浓度有关. 20.【答案】(1)证明:因为四边形ABCD 为正方形, 故BC ⊥CD .因为PD ⊥底面ABCD ,故PD ⊥BC .又由于PD ∩DC =D ,因此BC ⊥平面PDC .因为在正方形ABCD 中BC//AD ,且AD ⊂平面PAD , BC ⊄平面PAD , 故BC//平面PAD .又BC ⊂平面PBC ,且平面PAD 与平面PBC 的交线为l , 故BC//l .因此l ⊥平面PDC .(2)解:由已知条件,四棱锥P −ABCD 底面为正方形,PD ⊥底面ABCD . 以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DP 所在直线为z 轴, 建立空间直角坐标系D −xyz ,如图所示.因为PD =AD =1,Q 在直线l 上, 设Q (a,0,1),其中a ∈R .由题意得,D (0,0,0),C (0,1,0),B (1,1,0),P (0,0,1), 则PB →=(1,1,−1),DC →=(0,1,0),DQ →=(a,0,1). 设平面QCD 的一个法向量为n →=(x,y,z), 则{n →⋅DC →=0,n →⋅DQ =0,得{y =0,ax +z =0,令z =−a ,则平面QCD 的一个法向量为n →=(1,0,−a ). 设PB 与平面QCD 成角为θ,则sin θ=|cos <n →,PB →>| =√3×√1+a 2=1√3×√(1+a)21+a 2=√33×√1+2a 1+a 2.①若a =0,则sin θ=√33, ②若a ≠0,则sin θ=√33×√1+21a+a.当a >0时,∵ 1a+a ≥2×√1a⋅a =2,当且仅当1a =a ,即a =1时,$`` = "$成立, ∴ sin θ≤√33×√1+22=√63. 当a <0时,sin θ<√33, ∴ 当a =1时,sin θ=√63为最大值. 综上所述,PB 与平面QCD 成角的正弦值的最大值为√63. 【考点】用空间向量求直线与平面的夹角 基本不等式在最值问题中的应用直线与平面垂直的判定【解析】(1)先求l 的平行线BC 与面PCD 垂直,再利用线面垂直的判定即可得证;(2)选取合适的点建立空间直角坐标系,然后运用向量法结合基本不等式即可求得线面夹角的最大值. 【解答】(1)证明:因为四边形ABCD 为正方形, 故BC ⊥CD .因为PD ⊥底面ABCD ,故PD ⊥BC .又由于PD ∩DC =D ,因此BC ⊥平面PDC .因为在正方形ABCD 中BC//AD ,且AD ⊂平面PAD , BC ⊄平面PAD , 故BC//平面PAD .又BC ⊂平面PBC ,且平面PAD 与平面PBC 的交线为l , 故BC//l .因此l ⊥平面PDC .(2)解:由已知条件,四棱锥P −ABCD 底面为正方形,PD ⊥底面ABCD .以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DP 所在直线为z 轴, 建立空间直角坐标系D −xyz ,如图所示.因为PD =AD =1,Q 在直线l 上, 设Q (a,0,1),其中a ∈R .由题意得,D (0,0,0),C (0,1,0),B (1,1,0),P (0,0,1), 则PB →=(1,1,−1),DC →=(0,1,0),DQ →=(a,0,1). 设平面QCD 的一个法向量为n →=(x,y,z), 则{n →⋅DC →=0,n →⋅DQ =0,得{y =0,ax +z =0,令z =−a ,则平面QCD 的一个法向量为n →=(1,0,−a ). 设PB 与平面QCD 成角为θ, 则sin θ=|cos <n →,PB →>| =|1+a|√3×√1+a 2=1√3×√(1+a)21+a 2 =√33×√1+2a 1+a 2.①若a =0,则sin θ=√33, ②若a ≠0,则sin θ=√33×√1+21a+a.当a >0时,∵ 1a +a ≥2×√1a ⋅a =2,当且仅当1a =a ,即a =1时,$`` = "$成立, ∴ sin θ≤√33×√1+22=√63. 当a <0时,sin θ<√33, ∴ 当a =1时,sin θ=√63为最大值. 综上所述,PB 与平面QCD 成角的正弦值的最大值为√63. 21.【答案】解:(1)当a =e 时, f (x )=e x −ln x +1,f ′(x )=e x −1x,∴ f ′(1)=e −1,f (1)=e +1, ∴ y −(e +1)=(e −1)(x −1), 即y =(e −1)x +2,∴ 该切线在y 轴上的截距为2,在x 轴上的截距为21−e,∴ S =12×2×|21−e|=2e−1.(2)①当0<a <1时,f (1)=a +ln a <1; ②当a =1时,f(x)=e x−1−ln x , f ′(x)=e x−1−1x ,当x ∈(0,1)时,f ′(x )<0, 当x ∈(1,+∞)时,f ′(x )>0,所以当x =1时,f (x )取得最小值, 最小值为f (1)=1,从而f (x )≥1; ③当a >1时,f (x )=ae x−1−ln x +ln a >e x−1−ln x ≥1. 综上,a 的取值范围是[1,+∞). 【考点】利用导数研究不等式恒成立问题 利用导数研究曲线上某点切线方程【解析】(1)根据导数的几何意义即可求出切线方程,可得三角形的面积;(2)不等式等价于e x−1+ln a +ln a +x −1≥ln x +x =e ln x +ln x ,令g(t)=e t +t ,根据函数单调性可得ln a >ln x −x +1,再构造函数ℎ(x)=ln x −x +1,利用导数求出函数的最值,即可求出a 的范围. 【解答】解:(1)当a =e 时, f (x )=e x −ln x +1, f ′(x )=e x −1x ,∴ f ′(1)=e −1,f (1)=e +1, ∴ y −(e +1)=(e −1)(x −1), 即y =(e −1)x +2,∴ 该切线在y 轴上的截距为2,在x 轴上的截距为21−e,∴ S =12×2×|21−e|=2e−1. (2)①当0<a <1时,f (1)=a +ln a <1; ②当a =1时,f(x)=e x−1−ln x , f ′(x)=e x−1−1x ,当x ∈(0,1)时,f ′(x )<0, 当x ∈(1,+∞)时,f ′(x )>0,所以当x =1时,f (x )取得最小值, 最小值为f (1)=1,从而f (x )≥1; ③当a >1时,f (x )=ae x−1−ln x +ln a >e x−1−ln x ≥1. 综上,a 的取值范围是[1,+∞). 22. 【答案】 (1)解:由题设得4a2+1b2=1,a 2−b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明:设M(x 1,y 1),N(x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m , 代入x 26+y 23=1得(1+2k 2)x 2+4kmx +2m 2−6=0.于是x 1+x 2=−4km1+2k 2,x 1x 2=2m 2−61+2k 2. ① 由AM ⊥AN 知AM →⋅AN →=0,故(x 1−2)(x 2−2)+(y 1−1)(y 2−1)=0,可得(k 2+1)x 1x 2+(km −k −2)(x 1+x 2)+(m −1)2+4=0,将①代入上式可得(k 2+1)2m 2−61+2k 2−(km −k −2)4km1+2k 2+(m −1)2+4=0, 整理得(2k +3m +1)(2k +m −1)=0. 因为A(2,1)不在直线MN 上, 所以2k +m −1≠0,故2k +3m +1=0,k ≠1,于是MN 的方程为y =k(x −23)−13(k ≠1),所以直线MN 过点P(23,−13).若直线MN 与x 轴垂直,可得N(x 1,−y 1).由AM →⋅AN →=0得(x 1−2)(x 1−2)+(y 1−1)(−y 1−1)=0. 又x 126+y 123=1,可得3x 12−8x 1+4=0,解得x 1=2(舍去),x 1=23,此时直线MN 过点P(23,−13).令Q 为AP 的中点,即Q(43,13).若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ|=12|AP|=2√23. 若D 与P 重合,则|DQ|=12|AP|. 综上,存在点Q(43,13),使得|DQ|为定值. 【考点】圆锥曲线中的定点与定值问题 椭圆的标准方程 【解析】(1)根据椭圆方程的离心率、a ,b ,c 的关系及椭圆上一点列出关系式,解得a 2,b 2即可得椭圆方程; (2)①当直线斜率存在时,设直线方程并与椭圆方程联立,写出韦达定理,结合AM →⋅AN →=0可得 m =1−2k 或m =−2k +13,由点A 不在直线MN 上可判断m ≠1−2k ,进而根据m =−2k+13可求解直线MN 的方程,从而判断直线MN 过定点P ;②若直线MN 与x 轴垂直,结合和椭圆方程,求得点M 的横坐标x 1 ,由此可知直线MN 过点P ;由上述分类讨论可知|AP|为定值,根据直角三角形中线的性质确定定点Q ,最后分两小类讨论D 与P 重合或者不重合最终确定|DQ|为定值. 【解答】(1)解:由题设得4a 2+1b 2=1,a 2−b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明:设M(x 1,y 1),N(x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m , 代入x 26+y 23=1得(1+2k 2)x 2+4kmx +2m 2−6=0.于是x 1+x 2=−4km1+2k 2,x 1x 2=2m 2−61+2k 2. ①由AM ⊥AN 知AM →⋅AN →=0,故(x 1−2)(x 2−2)+(y 1−1)(y 2−1)=0,可得(k 2+1)x 1x 2+(km −k −2)(x 1+x 2)+(m −1)2+4=0,将①代入上式可得(k 2+1)2m 2−61+2k 2−(km −k −2)4km1+2k 2+(m −1)2+4=0, 整理得(2k +3m +1)(2k +m −1)=0. 因为A(2,1)不在直线MN 上, 所以2k +m −1≠0,故2k +3m +1=0,k ≠1,于是MN 的方程为y =k(x −23)−13(k ≠1),所以直线MN 过点P(23,−13).若直线MN 与x 轴垂直,可得N(x 1,−y 1).由AM →⋅AN →=0得(x 1−2)(x 1−2)+(y 1−1)(−y 1−1)=0. 又x 126+y 123=1,可得3x 12−8x 1+4=0,解得x 1=2(舍去),x 1=23,此时直线MN 过点P(23,−13). 令Q 为AP 的中点,即Q(43,13).若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ|=12|AP|=2√23. 若D 与P 重合,则|DQ|=12|AP|. 综上,存在点Q(43,13),使得|DQ|为定值.。

2020年全国新高考Ⅰ卷高考数学(山东卷)-含详细解析

2020年全国新高考Ⅰ卷高考数学(山东卷)-含详细解析
名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()
A.120种B.90种C.60种D.30种
4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来
测定时间.把地球看成一个球(球心记为),地球上一点A的纬度是指OA与地球赤
道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置
2020年全国新高考Ⅰ卷高考数学(山东卷)
副标题
题号
一二三四0.0分)
1.设集合={|1x3},={|2<<4},则A=()
A.{|2<3}B.{|2x3}C.{|1<4}D.{|1<<4.}
2.=()
A.1B.−1C.iD.−
3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1
一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬,则晷针与点A
处的水平面所成角为()
A.B.C.D.
5.某中学的学生积极参加体育锻炼,其中有96%的学
生喜欢足球或游泳,60%的学生喜欢足球,82%的
学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的
学生数占该校学生总数的比例时()
A.62%
6.基本再生数
出=3.28,=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需
要的时间约为(20.69)()
A.1.2天B.1.8天C.2.5天D.3.5天
7.已知P是边长为2的正六边形ABCDEF内的一点,则
的取值范围是()
B.56%C.46%D.42%
与世代间隔T是新冠肺炎流行病学基本参数.基本再生数指一个感染
者传染的平均人数,世代间隔指两代间传染所需的平均时间在新冠肺炎疫情初始

2020年全国统一高考数学试卷(新课标Ⅰ)(解析版)

2020年全国统一高考数学试卷(新课标Ⅰ)(解析版)

2020年普通高等学校招生全国统一考试数学+答案一、选择题:(本题共10小题,每小题6分,共60分)1.若z=1+i ,则|z 2–2z |=( )A. 0B. 1C.D. 2 【答案】D【解析】【分析】由题意首先求得22z z -的值,然后计算其模即可.【详解】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-. 故2222z z -=-=.故选:D.【点睛】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题.2.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( )A. –4B. –2C. 2D. 4 【答案】B【解析】【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤, 求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-. 故选:B.【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力. 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A. 514-B. 512-C. 514+D. 512+【答案】C【解析】【分析】设,CD a PE b ==,利用212PO CD PE =⋅得到关于,a b 的方程,解方程即可得到答案.【详解】如图,设,CD a PE b ==,则22224aPO PE OE b =-=-,由题意212PO ab =,即22142a b ab -=,化简得24()210b ba a -⋅-=,解得15b a +=(负值舍去).故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题. 4.已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( )A. 2B. 3C. 6D. 9【答案】C【解析】【分析】 利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p =+,解得6p .故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题. 5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A. y a bx =+B. 2y a bx =+C. e x y a b =+D. ln y a b x =+【答案】D【解析】【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+.故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.6.函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A. 21y x =--B. 21y x =-+C. 23y x =-D. 21y x =+ 【答案】B【解析】【分析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简即可.【详解】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+.故选:B.【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题7.设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A.10π9B. 7π6C. 4π3D. 3π2 【答案】C【解析】【分析】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即可得解. 【详解】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭ 又4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω= 所以函数()f x 的最小正周期为224332T πππω=== 故选:C 【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题. 8.25()()x x y xy ++的展开式中x 3y 3的系数为( ) A. 5B. 10C. 15D. 20 【答案】C【解析】【分析】求得5()x y +展开式的通项公式为515rr rr T C x y -+=(r N ∈且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积为65r r r C x y -或425r r r C x y -+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.【详解】5()x y +展开式的通项公式为515r r r r T C x y -+=(r N ∈且5r ≤) 所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为: 56155r r r r r r r xT xC xy C x y --+==和22542155r r r r r r r T C x y x C y y y x x --++== 在615r r r r xT C x y -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x xy =,该项中33x y 的系数为5 所以33x y 的系数为10515+=故选:C【点睛】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及分析能力,属于中档题.9.已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=( )A. 3B. 23C. 13D.9 【答案】A【解析】【分析】用二倍角的余弦公式,将已知方程转化为关于cos α的一元二次方程,求解得出cos α,再用同角间的三角函数关系,即可得出结论.【详解】3cos28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去), 又(0,),sin απα∈∴==故选:A.【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.10.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π【答案】A【解析】【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形, 由正弦定理可得2sin 6023AB r=︒=,123OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,222211111,4OO O A R OA OO O A OO r ∴⊥==+=+=,∴球O 的表面积2464S R ππ==.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。

2020高考数学试卷分析(全国1卷)

2020高考数学试卷分析(全国1卷)

2020高考数学试卷分析(全国1卷)实用文档系列文档编号:YL-SY-2020年高考数学试题体现了高考数学的科学选拔和育人导向作用。

试题紧密联系社会实际,设计真实的问题情境,体现了基础性、综合性、应用性和创新性的考查要求,很好把握了稳定与创新,对引导中学数学教学将起到积极的作用。

一、整体保持稳定试题所考查的题型是近几年高考考过的、学生平时见过的类型,没有学生感觉很不熟系的题目。

例如2019年的XXX身高估算,学生上手比较容易;如理科第5题与2015年全国I 卷19题第一问类型基本一致,通过散点图判断变量间的关系类型;理科压轴题第12题与2012年浙江第9题类似。

同时,回归原来的数学高考模式,没有在概率统计题上进行再创新,各种题型的顺序与2017年及之前的高考题基本保持一致,没有像2018、2019年那样进行较大幅度的改革。

二、加强数学核心素养的考查试题难度分布明显,考生能够清晰地感受到每道题的难度,能不能很好的完成试卷主要取决于个人的数学核心素养。

试题加强了运算求解能力的考查,17、18、19题运算量都比以前略大,第20题解析几何运算能力要求比往年高,但是像19题可以通过分析避免复杂的讨论,所以也不是单纯地考查运算能力,还要求具有很强的分析问题的能力。

压轴题重视能力考查,如理科第12题不仅考查考生运用所学知识分析、解决问题的能力,同时也考查学生的观察能力、运算能力、推理判断能力与灵活运用知识的综合能力;如理科第21题考查利用导数判断函数单调性的方法、导数公式和导数运算法则,综合考查考生的逻辑推理能力、运算求解能力、推理论证能力、分类与整合的能力以及数学语言表达能力。

今年的高考数学试题充分体现了“五育并举”的教育方针和数学的实际应用价值。

例如,文科和理科的第三题都以世界建筑奇迹古埃及胡夫金字塔为背景,设计了正四棱锥的计算问题,将立体几何的基本知识与世界文化遗产有机结合。

另外,理科的第19题以三人的羽毛球比赛为背景,将概率问题融入常见的羽毛球比赛中,考查考生的逻辑思维能力和对概率的基础知识掌握程度。

重视结构不良新题型 培养数学思维灵活性——对2020年全国新高考试卷中的结构不良型试题的分析与反思

重视结构不良新题型 培养数学思维灵活性——对2020年全国新高考试卷中的结构不良型试题的分析与反思

2020年山东省高考数学是第一次以不分文、理科的形式出现,试卷坚持对数学学科基础性、综合性、应用性和创新性的高考考查要求,作为第一年文理合卷,贯彻了“低起点,多层次,高落差”的调控策略,发挥了高考数学的选拔功能和良好的导向作用.笔者就全国新高考Ⅰ卷(Ⅱ卷)第17题进行分析,谈谈自己的体会与反思.一、试题分析题目在①ac =3,②c sin A =3,③c =3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =3sin B ,C =π6,?注:如果选择多个条件分别解答,按第一个解答计分.命题立意分析:该题为解答题,分值10分,命题立足于正弦定理和余弦定理等必备知识,考查学生的数学理解能力和数学探究能力.此题在题型上进行了调整,设计了开放性的结构不良型的新考试题型.它的引入既能增强试题条件的开放性,又能引导学生更加注重思维的灵活性及策略的选择,体现了对学生理性思维、数学探究能力等的考查.该题设计了三个开放性的可选择条件,并且问题的结论同样是开放的.学生容易初步确定问题解决方案,题目中所给的条件涉及正弦函数值,要考虑正弦定理,将角的关系转化为边的关系,代入余弦定理表达式中,得到边的关系b =c ,再结合所选条件进行求解.选条件①,将所得到的边的关系进行联立,解方程,就可以确定各边长;选条件②,根据边的关系,确定∠A =2π3,求出sin A ,进而确定各边长;选条件③,求出三边或者三角,与条件矛盾,得出结论.解:由C =π6和余弦定理,得a 2+b 2-c 22ab =.由sin A =3sin B 及正弦定理,得a=3b .所以3b 2+b 2-c 223b 2.所以b =c .选条件①时,由ac =3,得a =3,b =c =1.因此,选条件①时,问题中的三角形存在,此时c =1.收稿日期:2020-08-01作者简介:于莺彬(1979—),女,中学一级教师,青岛市教学能手,青岛市中小学学科带头人,青岛市名师,青岛市优秀教师,主要从事高中数学教学与实践研究.重视结构不良新题型培养数学思维灵活性——对2020年全国新高考试卷中的结构不良型试题的分析与反思于莺彬摘要:结构不良型试题是2020年高考数学全国新高考试卷中出现的新题型.对一道结构不良型试题进行分析与反思,提出针对高考复习的合理建议.关键词:结构不良;数学思维;新高考;高中数学··58选条件②时,由b=c,得B=C=π6,A=2π3.由c sin A=3,得c=b=23,a=6.因此,选条件②时,问题中的三角形存在,此时c=23.选条件③时,因为c=3b与b=c矛盾.所以,选条件③时,问题中的三角形不存在.由以上分析可以看出解答该题有三个关键点:由已知条件sin A=3sin B及正弦定理,得a=3b;由选择的方案结合正余弦定理得到一个正确结论;继续求出c值或者分析出矛盾.二、学生答题情况考后对班级学生进行调研,从学生的反馈来看,55%的学生思路清晰,能够由sin A=3sin B及正弦定理得出a=3b,选择正弦定理或者余弦定理来解决问题,求出三边或者三角,根据“两边之和大于第三边”“三角形内角和等于180°”“大边对大角,大角对大边”判断是否存在矛盾;或者求出边、角后研究与已知条件是否存在矛盾,从而判断问题中的三角形是否存在.综观学生反馈的答题情况,除了因为不重视规范性答题造成失分以外,笔者认为主要的失误有以下三个方面.其一,没有掌握正弦定理和余弦定理,不会根据条件恰当选择正弦定理或余弦定理,实现边角互化,达到解三角形的目的.其二,记错、记混特殊角的三角函数值,导致“会而不对”.其三,逻辑思维不完整,不知道从哪些角度判断三角形的存在性,导致“对而不全”.三、教学启示2019年12月,教育部考试中心正式发布了“一核”“四层”“四翼”的高考评价体系,在数学学科核心素养的基础上提出了理性思维、数学应用、数学探究和数学文化.2020年高考是山东、海南实行综合改革后的第一年高考,数学不分文理科,2021年又将有八个省实行高考综合改革,使用新高考试卷.该题的考查很好地诠释了试题注重基础性,通过开放性的题目设置,增强了学生的选择决策能力和数学探究能力,突出了理性思维、数学应用、数学探究的引领作用,坚持了素养导向、能力为重的命题原则,体现了高考数学的科学选拔和育人导向,落实了立德树人的根本目标.根据该题的分析及学生的调研反馈,笔者提出两点建议.1.应对新题型的建议(1)教师要建立对结构不良新题型的认知.综观数学教学现状,在教学中涉及的问题大多是结构良好的.这些问题条件清晰、目标明确,运用特定的数学模型就能解决.在教学中,教师运用大量结构良好的题型进行题海战术,注重总结问题的规律.对定理和概念进行熟练应用,掌握解题的一般模式,学生就可以取得不错的成绩.但是实际生活中的问题比较复杂、情境化强,往往条件不清晰,目标比较模糊,结构不够明朗,解决问题的途径多样,问题的答案不唯一,这其实就是我们所说的结构不良型问题.教师应该重视结构不良型问题在教学中的应用,将学生从被动的信息加工者变成主动的问题提出者和解决者.(2)提高学生解决结构不良新题型能力的教学策略.教师应该在教学中多设计结构不良型问题.笔者认为应该主要从以下三个方面来设计.一是结合真实的问题情境,以项目问题的形式,引导学生成为探索者、研究者、学习者,这种项目化教学可以激发学生的学习热情,使学生在解决真实问题的过程中学会与他人合作、交流,涉及的知识也不局限于数学学科知识,促进知识迁移和学科融合,培养学生的创新素质和实践能力,真正实现“用数学眼光观察世界,用数学思维思考世界,用数学语言表达世界”.二是多设计开放性的课堂问题.例如,在新课讲授的过程中,不直接推导定理或者给出问题,而是给出开放性的问题,引导学生思考、探究,让学生找出新旧知识的内··59在联系,在探究中内化知识,最终转化为数学素养和能力.三是在单元复习中多运用结构不良型问题进行系统、科学的复习.例如,结合全国Ⅰ卷中的问题,重新构造结构不良型开放题.(全国Ⅰ卷·文18)△ABC的内角A,B,C的对边分别为a,b,c.已知B=150°.(1)若a=3c,b=27,求△ABC的面积;(2)若sin A+3sin C,求C.可以尝试将该题的第(2)小题改编为:在①ab= 6+2,②c sin A=3,③c=3a这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c.sin A+3sin C=,且B=5π6,2.在教学中应该坚持三个注重(1)重基础,规范解题过程.2020年的高考数学试题尽管形式灵活多变,但是都以基础知识、基本技能、基本思想、基本活动经验为基础.因此,在教学中,要以《普通高中数学课程标准(2017年版)》(以下简称《标准》)为基础,围绕教材,对重点内容强化复习,夯实基础知识,同时训练学生规范解题过程,尽量避免因步骤不全、审题不细、计算失误造成的失分.(2)重教材,挖掘数学本源.教材既是《标准》具体实施的基础,也是高考命题的源头活水,高三复习应立足教材、善用教材,对教材实施二次开发.首先,要重视教材上一些基础知识的形成过程.例如,借助单位圆建立一般三角函数概念形成的过程,体会引入弧度制的必要性;用几何直观和代数运算的方法研究三角函数的周期性、奇偶性(对称性)、单调性和最值等性质;探索和研究三角函数之间的恒等关系;利用三角函数模型构建数学模型,解决实际问题;借助外接圆和向量证明正弦定理和余弦定理等.高考中的常考题型都源于这些知识的形成过程.其次,要加强对教材例题、习题的研究与创新.通过改编、重组、变式、拓展等方式充分挖掘教材上的典型例题、习题,做到一题多变、一题多解,注重对学生举一反三能力的培养.最后,要充分挖掘中国文化、生活材料与数学知识的联系.近年来,高考命题通过与文化背景的结合,增大了试题的阅读量,体现了对数学文化的重视.(3)重思想,提高数学能力.在对解三角形知识的考查中,我们也看到了对学生数学思想方法和能力的考查,这部分重点考查转化与化归、函数与方程、数形结合等思想,考查学生运算求解的能力和灵活变换的意识.因此,在教学和复习过程中,教师不仅要重知识传授,更要重思想渗透和能力发展,切忌随意拔高、盲目拓展,要让学生综合解决问题的能力在自我感悟中逐渐提高.参考文献:[1]于涵.新时代的高考定位与内容改革实施路径[J].中国考试,2019(1):1-9.[2]任子朝.从能力立意到素养导向[J].中学数学教学参考(上旬),2018(13):1.··60。

2020年山东省春季高考数学试卷真题及答案详解(精编打印版)

2020年山东省春季高考数学试卷真题及答案详解(精编打印版)

山东省2020年普通高校招生(春季)考试数学试题一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于()A .∅B .{},a c C .{},b d D .{},,,a b c d 2.函数()1lg f x x=的定义域是()A .()0,∞+B .()()0,11,+∞ C .[)()0,11,+∞U D .()1,+∞3.已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是()A .奇函数B .偶函数C .增函数D .减函数4.已知平行四边形ABCD ,点E ,F 分别是AB ,BC 的中点(如图所示),设AB a =,AD b =,则EF等于()A .()12a b+ B .()12a b- C .()12b a- D .12a b+ 5.在等比数列{}n a 中,11a =,22a =-,则9a 等于()A .256B .-256C .512D .-5126.已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角7.已知圆心为()2,1-的圆与y 轴相切,则该圆的标准方程是()A .()()22211x y ++-=B .()()22214x y ++-=C .()()22211x y -++=D .()()22214x y -++=8.现从4名男生和3名女生中,任选3名男生和2名女生,分别担任5门不同学科的课代表,则不同安排方法的种数是()A .12B .120C .1440D .172809.在821x x ⎛⎫- ⎪⎝⎭的二项展开式中,第4项的二项式系数是()A .56B .56-C .70D .70-10.直线2360x y +-=关于点()1,2-对称的直线方程是()A .32100x y --=B .32230x y --=C .2340x y +-=D .2320x y +-=11.已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.已知二次函数2y ax bx c =++的图像如图所示,则不等式20ax bx c ++>的解集是()A .()2,1-B .()(),21,-∞-⋃+∞C .[]2,1-D .(][),21,-∞-+∞ 13.已知函数()y f x =是偶函数,当(0,)x ∈+∞时,()01xy a a =<<,则该函数在(,0)-∞上的图像大致是()A .B .C .D .14.下列命题为真命题的是()A .10>且34>B .12>或45>C .x R ∃∈,cos 1x >D .x ∀∈R ,20x ≥15.已知点()4,3A ,()4,2B -,点P 在函数243y x x =--图象的对称轴上,若PA PB ⊥,则点P 的坐标是()A .()2,6-或()2,1B .()2,6--或()2,1-C .()2,6或()2,1-D .()2,6-或()2,1--16.现有5位老师,若每人随机进入两间教室中的任意一间听课,则恰好全都进入同一间教室的概率是()A .225B .116C .125D .13217.已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于()A .3B .6C .8D .1218.已知变量x ,y 满足某约束条件,其可行域(阴影部分)如图所示,则目标函数23z x y =+的取值范围是()A .[]0,6B .[]4,6C .[]4,10D .[]6,1019.已知正方体1111ABCD A B C D -(如图所示),则下列结论正确的是()A .11//BD A AB .11//BD A DC .11BD A C ⊥D .111BD AC ⊥20.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C sin cos 2c B A b =,则tan A 等于()A .3B .13-C .3或13-D .-3或13二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上)21.已知ππ,22α⎡⎤∈-⎢⎥⎣⎦,若sin 0.8α=,则α=______rad .22.若212log log 40x -=,则实数x 的值是______.23.已知球的直径为2,则该球的体积是______.24.某创新企业为了解新研发的一种产品的销售情况,从编号为001,002,…480的480个专卖店销售数据中,采用系统抽样的方法抽取一个样本,若样本中的个体编号依次为005,021,…则样本中的最后一个个体编号是______.25.已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______.三、解答题(本大题5个小题,共40分)26.已知函数()225,02,0x x f x x x x -≥⎧=⎨+<⎩.(1)求()1f f ⎡⎤⎣⎦的值;(2)求()13f a -<,求实数a 的取值范围.27.某男子擅长走路,9天共走了1260里,其中第1天、第4天、第7天所走的路程之和为390里.若从第2天起,每天比前一天多走的路程相同,问该男子第5天走多少里.这是我国古代数学专著《九章算术》中的一个问题,请尝试解决.28.小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图象时,列表如下:x6π-12π3π712π56πx ωϕ+02ππ32π2πsin()A x ωϕ+03-3根据表中数据,求:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎣⎦上的最大值和最小值.29.已知点E ,F 分别是正方形ABCD 的边AD ,BC 的中点.现将四边形EFCD 沿EF 折起,使二面角C EF B --为直二面角,如图所示.(1)若点G ,H 分别是AC ,BF 的中点,求证://GH 平面EFCD ;(2)求直线AC 与平面ABFE 所成角的正弦值.30.已知抛物线的顶点在坐标原点O ,椭圆2214x y +=的顶点分别为1A ,2A ,1B ,2B ,其中点2A 为抛物线的焦点,如图所示.(1)求抛物线的标准方程;(2)若过点1A 的直线l 与抛物线交于M ,N 两点,且()12//OM ON B A + ,求直线l 的方程.1.C 【分析】利用补集概念求解即可.【详解】{},U M b d =ð.故选:C 2.B 【分析】根据题意得到0lg 0x x >⎧⎨≠⎩,再解不等式组即可.【详解】由题知:0lg 0x x >⎧⎨≠⎩,解得0x >且1x ≠.所以函数定义域为()()0,11,+∞ .故选:B 3.C 【分析】利用函数单调性定义即可得到答案.【详解】对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,等价于对于任意两个不相等的实数12x x <,总有()()12f x f x <.所以函数()f x 一定是增函数.故选:C 4.A 【分析】利用向量的线性运算,即可得到答案;【详解】连结AC ,则AC 为ABC 的中位线,∴111222EF AC a b ==+ ,故选:A 5.A 【分析】求出等比数列的公比,再由等比数列的通项公式即可求解.【详解】设等比数列{}n a 的公比为q ,因为11a =,22a =-,所以212a q a ==-,所以()198812256a q a ==⨯-=,故选:A.6.D 【分析】本题可根据直线的斜率和截距得出sin 0θ<、cos 0θ>,即可得出结果.【详解】结合图像易知,sin 0θ<,cos 0θ>,则角θ是第四象限角,故选:D.7.B 【分析】圆的圆心为(2,1)-,半径为2,得到圆方程.【详解】根据题意知圆心为(2,1)-,半径为2,故圆方程为:22(2)(1)4x y ++-=.故选:B.8.C 【分析】首先选3名男生和2名女生,再全排列,共有3254351440C C A =种不同安排方法.【详解】首先从4名男生和3名女生中,任选3名男生和2名女生,共有3243C C 种情况,再分别担任5门不同学科的课代表,共有55A 种情况.所以共有3254351440C C A =种不同安排方法.故选:C 9.A 【分析】本题可通过二项式系数的定义得出结果.【详解】第4项的二项式系数为388765632C ⨯⨯==⨯,故选:A.10.D 【分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,代入已知直线即可求得结果.【详解】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,因为点(2,4)x y ---在直线2360x y +-=上,所以()()223460x y --+--=即2320x y +-=.故选:D.11.A 【分析】根据充分条件和必要条件的定义即可求解.【详解】当0a =时,集合{}1,0M =,{}1,0,1N =-,可得M N ⊆,满足充分性,若M N ⊆,则0a =或1a =-,不满足必要性,所以“0a =”是“M N ⊆”的充分不必要条件,故选:A.12.A 【分析】本题可根据图像得出结果.【详解】结合图像易知,不等式20ax bx c ++>的解集()2,1-,故选:A.13.B 【分析】根据偶函数,指数函数的知识确定正确选项.【详解】当(0,)x ∈+∞时,()01xy a a =<<,所以()f x 在()0,∞+上递减,()f x 是偶函数,所以()f x 在(),0∞-上递增.注意到01a =,所以B 选项符合.故选:B 14.D 【分析】本题可通过43>、12<、45<、cos 1≤x 、20x ≥得出结果.【详解】A 项:因为43>,所以10>且34>是假命题,A 错误;B 项:根据12<、45<易知B 错误;C 项:由余弦函数性质易知cos 1≤x ,C 错误;D 项:2x 恒大于等于0,D 正确,故选:D.15.C【分析】由二次函数对称轴设出P 点坐标,再由向量垂直的坐标表示计算可得.【详解】由题意函数243y x x =--图象的对称轴是2x =,设(2,)P y ,因为PA PB ⊥ ,所以(2,3)(6,2)12(3)(2)0PA PB y y y y ⋅=-⋅--=-+--= ,解得6y =或1y =-,所以(2,6)P 或(2,1)P -,故选:C .16.B【分析】利用古典概型概率公式,结合分步计数原理,计算结果.【详解】5位老师,每人随机进入两间教室中的任意一间听课,共有5232=种方法,其中恰好全都进入同一间教室,共有2种方法,所以213216P ==.故选:B17.B【分析】根据椭圆中,,a b c 的关系即可求解.【详解】椭圆的长轴长为10,焦距为8,所以210a =,28c =,可得5a =,4c =,所以22225169b a c =-=-=,可得3b =,所以该椭圆的短轴长26b =,故选:B.18.C【分析】作出目标函数对应的直线,平移该直线可得最大值和最小值,从而得范围.【详解】如图,作出直线:230l x y +=,向上平移直线l ,l 最先过可行域中的点A ,此时2204z =⨯+=,最后过可行域中的点(2,2)B ,此时223210=⨯+⨯=,所以z 的取值范围是[4,10].故选:C .19.D【分析】根据异面直线的定义,垂直关系的转化,判断选项.【详解】A.11//AA BB ,1BB 与1BD 相交,所以1BD 与1AA 异面,故A 错误;B.1BD 与平面11ADD A 相交,且11D A D ∉,所以1BD 与1A D 异面,故B 错误;C.四边形11A BCD 是矩形,不是菱形,所以对角线1BD 与1AC 不垂直,故C 错误;D.连结11B D ,1111B D A C ⊥,111BB A C ⊥,1111B D BB B ⋂=,所以11A C ⊥平面11BB D ,所以111A C BD ⊥,故D 正确.故选:D20.A【分析】利用余弦定理求出tan 2C =,并进一步判断4C π>,由正弦定理可得sin()sin 22A CB +=⇒,最后利用两角和的正切公式,即可得到答案;【详解】 222sin cos tan 222a b c C C C ab +-==⇒=,4C π∴>,2sin sin sin a b c R A B C=== ,sin sin cos sin sin cos sin 2A B C C B A B ∴⋅⋅+⋅⋅=,sin()sin 22A CB ∴+=⇒=,4B π∴=,tan 1B ∴=,∴tan tan tan tan()31tan tan B C A B C B C+=-+=-=-⋅,故选:A.21.53π180【分析】根据反三角函数的定义即可求解.【详解】因为sin 0.8α=,ππ,22α⎡⎤∈-⎢⎥⎣⎦,所以453πarcsin 53rad 5180α=== ,故答案为:53π180.22.14【分析】根据对数运算化简为2log 2x =-,求解x 的值.【详解】21222log log 40log log 40x x -=⇔+=,即2log 2x =-,解得:14x =.故答案为:1423.43π【分析】根据公式即可求解.【详解】解:球的体积为:344133V ππ=⨯⨯=,故答案为:43π24.469【分析】先求得编号间隔为16以及样本容量,再由样本中所有数据编号为()005+161k -求解.【详解】间隔为021-005=16,则样本容量为480=3016,样本中所有数据编号为()005+161k -,所以样本中的最后一个个体的编号为()005+16301469-=,故答案为:469251+【分析】利用抛物线的性质,得到M 的坐标,再带入到双曲线方程中,即可求解.【详解】由题意知:,2,2p c p c -=-∴=∴抛物线方程为:224,y px cx =-=-M 在抛物线上,所以(,2),M c c -M 在双曲线上,222241,c c a b∴-=2224224,60c a c a c a b =-∴-+= 23e ∴=±,又()1,e ∈+∞, 1.e ∴+126.(1)3;(2)35a -<<.【分析】(1)根据分段函数的解析式,代入计算即可;(2)先判断1a -的取值范围,再代入分段函数解析式,得到()13f a -<的具体不等式写法,解不等式即可.【详解】解:(1)因为10>,所以()12153f =⨯-=-,因为30-<,所以()()()()2133233f f f =-=-+⨯⎤⎦-⎣=⎡.(2)因为10a -≥,则()1215f a a -=--,因为()13f a -<,所以2153a --<,即14a -<,解得35a -<<.27.140里.【分析】由条件确定,该男子这9天中每天走的路程数构成等差数列,根据等差数列的通项公式,和前n 项和公式,列式求解.【详解】解:因为从第2天起,每天比前一天多走的路程相同,所以该男子这9天中每天走的路程数构成等差数列,设该数列为{}n a ,第1天走的路程数为首项1a ,公差为d ,则91260S =,147390a a a ++=.因为1(1)2n n n S na d -=+,1(1)n a a n d =+-,所以11119(91)91260236390a d a a d a d ⨯-⎧+=⎪⎨⎪++++=⎩,解得110010a d =⎧⎨=⎩,则514100410140a a d =+=+⨯=,所以该男子第5天走140里.28.(1)3A =,2ω=,3πϕ=;(2)最大值是3,最小值是32-.【分析】(1)利用三角函数五点作图法求解A ,ω,ϕ的值即可.(2)首先根据(1)知:3sin 23y x π⎛⎫=+ ⎪⎝⎭,根据题意得到11172636x πππ≤+≤,从而得到函数的最值.【详解】(1)由表可知max 3y =,则3A =,因为566T πππ⎛⎫=--= ⎪⎝⎭,2T πω=,所以2ππω=,解得2ω=,即3sin(2)y x ϕ=+,因为函数图象过点,312π⎛⎫ ⎪⎝⎭,则33sin 212πϕ⎛⎫=⨯+ ⎪⎝⎭,即πsin φ16骣琪+=琪桫,所以262k ππϕπ+=+,k ∈Z ,解得23k πϕπ=+,k ∈Z ,又因为2πϕ<,所以3πϕ=.(2)由(1)可知3sin 23y x π⎛⎫=+ ⎪⎝⎭.因为3544x ππ≤≤,所以11172636x πππ≤+≤,因此,当11236x ππ+=时,即34x π=时,32y =-,当5232x ππ+=时,即1312x π=时,3y =.所以该函数在区间35,44ππ⎡⎤⎢⎣⎦上的最大值是3,最小值是32-.29.(1)证明见解析;(2【分析】(1)要证明线面平行,可转化为证明面面平行;(2)根据面面垂直的性质定理,可知CF ⊥平面ABFE ,再结合线面角的定义,可得得到直线AC 与平面ABFE 所成角的正弦值.【详解】证明:(1)连接AF ,设点O 为AF 的中点,连接GO ,OH ,在ACF △中,又因为点G 为AC 中点,所以//OG CF .同理可证得//OH AB ,又因为E ,F 分别为正方形ABCD 的边AD ,BC 的中点,故//EF AB ,所以//OH EF .又因为OH OG O ⋂=,所以平面//GOH 平面EFCD .又因为GH Ì平面GOH ,所以//GH 平面EFCD .(2)因为ABCD 为正方形,E ,F 分别是AD ,BC 的中点,所以四边形EFCD 为矩形,则CF EF ⊥.又因为二面角C EF B --为直二面角,平面EFCD 平面ABFE EF =,CF ⊂平面EFCD ,所以CF ⊥平面ABFE ,则AF 为直线AC 在平面ABFE 内的射影,因为CAF ∠为直线AC 与平面ABFE 所成的角.不妨设正方形边长为a ,则2a CF BF ==,在Rt ABF 中,AF ===因为CF ⊥平面ABFE ,AF ⊂平面ABFE ,所以CF AF ⊥,在Rt AFC △中,AC =2sin a CF CAF AC ∠==即为直线AC 与平面ABFE 所成角的正弦值.30.(1)28y x =;(2))240x y --+.【分析】(1)根据抛物线的焦点,求抛物线方程;(2)首先设出直线l 的方程为()2y k x =+,与抛物线方程联立,并利用韦达定理表示OM ON + ,并利用()12//OM ON B A + ,求直线的斜率,验证后,即可得到直线方程.【详解】解:(1)由椭圆2214x y +=可知24a =,21b =,所以2a =,1b =,则()22,0A ,因为抛物线的焦点为2A ,可设抛物线方程为22(0)y px p =>,所以22p =,即4p =.所以抛物线的标准方程为28y x =.(2)由椭圆2214x y +=可知()12,0A -,()20,1B -,若直线l 无斜率,则其方程为2x =-,经检验,不符合要求.所以直线l 的斜率存在,设为k ,直线l 过点()12,0A -,则直线l 的方程为()2y k x =+,设点()11,M x y ,()22,N x y ,联立方程组2(2)8y k x y x=+⎧⎨=⎩,消去y ,得()22224840k x k x k +-+=.①因为直线l 与抛物线有两个交点,所以200k ⎧≠⎨∆>⎩,即()2222048440k k k k ≠⎧⎪⎨--⨯>⎪⎩,解得11k -<<,且0k ≠.由①可知212284k x x k -+=,所以()()()21212128482244k y y k x k x k x x k k k k-+=+++=++=+=,则()212122848,,k OM ON x x y y k k ⎛⎫-+=++= ⎪⎝⎭ ,因为()12//OM ON B A + ,且12(2,0)(0,1)(2,1)B A =--= ,所以2284820k k k--⨯=,解得2k =-2k =--因为11k -<<,且0k ≠,所以2k =-所以直线l的方程为(2(2)y x =-++,即)240x y --+.。

2020年全国统一高考数学试卷2(新课标Ⅲ)(解析版) (1)

2020年全国统一高考数学试卷2(新课标Ⅲ)(解析版) (1)

2020年全国统一考试数学一、选择题:(本题共10小题,每小题6分,共60分)1.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 5【答案】B 【解析】 【分析】采用列举法列举出AB 中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 2.若()11+=-z i i ,则z =( ) A. 1–i B. 1+iC. –iD. i【答案】D 【解析】 【分析】先利用除法运算求得z ,再利用共轭复数的概念得到z 即可.【详解】因为21(1)21(1)(1)2i i iz i i i i ---====-++-,所以z i . 故选:D【点晴】本题主要考查复数的除法运算,涉及到共轭复数的概念,是一道基础题.3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( ) A. 0.01 B. 0.1C. 1D. 10【答案】C 【解析】 【分析】根据新数据与原数据关系确定方差关系,即得结果.【详解】因为数据(1,2,,)i ax b i n +=,的方差是数据(1,2,,)i x i n =,的方差的2a 倍,所以所求数据方差为2100.01=1⨯ 故选:C【点睛】本题考查方差,考查基本分析求解能力,属基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A. 60 B. 63C. 66D. 69【答案】C 【解析】 【分析】将t t *=代入函数()()0.23531t KI t e--=+结合()0.95I t K *=求得t*即可得解.【详解】()()0.23531t K I t e--=+,所以()()0.23530.951t K I t K e**--==+,则()0.235319t e*-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈. 故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5.已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭( )A.12B.C.23D.【答案】B 【解析】 【分析】将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值.详解】由题意可得:1sin sin cos 122θθθ++=,则:3sin 12θθ+=1cos 2θθ+=从而有:3sin coscos sin663ππθθ+=, 即3sin 63πθ⎛⎫+= ⎪⎝⎭. 故选:B.【点睛】本题主要考查两角和与差的正余弦公式及其应用,属于中等题.6.在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为( ) A. 圆 B. 椭圆C. 抛物线D. 直线【答案】A 【解析】 【分析】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可.【详解】设()20AB a a =>,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则:()(),0,,0A a B a -,设(),C x y ,可得:()(),,,AC x a y BC x a y →→=+=-,从而:()()2AC BC x a x a y →→⋅=+-+,结合题意可得:()()21x a x a y +-+=, 整理可得:2221x y a +=+,即点C 的轨迹是以AB 21a +为半径的圆. 故选:A.【点睛】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.7.设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A. 1,04⎛⎫⎪⎝⎭B. 1,02⎛⎫ ⎪⎝⎭C. (1,0)D. (2,0)【答案】B 【解析】 【分析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目. 8.点(0,﹣1)到直线()1y k x =+距离的最大值为( )A. 1B.C.D. 2【答案】B 【解析】 【分析】首先根据直线方程判断出直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即可求得结果.【详解】由(1)y k x =+可知直线过定点(1,0)P -,设(0,1)A -, 当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即为||AP =故选:B.【点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.9.下图为某几何体的三视图,则该几何体的表面积是( )A. 6+42B. 4+42C. 6+23D. 4+23【答案】C 【解析】 【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积. 【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△ 根据勾股定理可得:22AB AD DB ===∴ADB △是边长为22根据三角形面积公式可得:2113sin 60(22)23222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:2362332=⨯++故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.10.设3log 2a =,5log 3b =,23c =,则( ) A. a c b << B. a b c <<C. b c a <<D. c a b <<【答案】A 【解析】 【分析】分别将a ,b 改写为331log 23a =,351log 33b =,再利用单调性比较即可. 【详解】因为333112log 2log 9333a c =<==,355112log 3log 25333b c =>==,所以a c b <<. 故选:A .【点晴】本题考查对数式大小的比较,考查学生转化与化归的思想,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分.11.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩, ,则z =3x +2y 的最大值为_________.【答案】7 【解析】 【分析】作出可行域,利用截距的几何意义解决. 【详解】不等式组所表示的可行域如图 因为32z x y =+,所以322x zy =-+,易知截距2z 越大,则z 越大, 平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大, 由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A , 所以max 31227z =⨯+⨯=. 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.12.设双曲线C :22221x y a b-= (a >0,b >0)的一条渐近线为y 2x ,则C 的离心率为_________.3 【解析】 【分析】 根据已知可得2ba=,,a b c 的关系,即可求解. 【详解】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为2y x =,所以2b a =2213c b e a a==+=3【点睛】本题考查的是有关双曲线性质,利用渐近线方程与离心率关系是解题的关键,要注意判断焦点所在位置,属于基础题.13.设函数e ()xf x x a =+.若(1)4e f '=,则a =_________.【答案】1 【解析】 【分析】由题意首先求得导函数的解析式,然后得到关于实数a 的方程,解方程即可确定实数a 的值【详解】由函数的解析式可得:()()()()()221x xx e x a e e x a f x x a x a +-+-'==++,则:()()()()12211111e a aef a a ⨯+-'==++,据此可得:()241aee a =+, 整理可得:2210a a -+=,解得:1a =. 故答案为:1.【点睛】本题主要考查导数的运算法则,导数的计算,方程的数学思想等知识,属于中等题. 14.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________. 【答案】2π 【解析】 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于223122AM =-=1222222S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()1332222r =⨯++⨯= 解得:22r,其体积:34233V r π==.. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第15~19题为必考题,每个试题考生都必须作答.第20、21题为选考题,考生根据要求作答. (一)必考题:共60分.15.设等比数列{a n }满足124a a +=,318a a -=. (1)求{a n }的通项公式;(2)记n S 为数列{log 3a n }的前n 项和.若13m m m S S S +++=,求m . 【答案】(1)13-=n n a ;(2)6m =. 【解析】 【分析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式; (2)由(1)求出3{log }n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果.【详解】(1)设等比数列{}n a 的公比为q , 根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩, 所以13-=n n a ;(2)令313log log 31n n n b a n -===-,所以(01)(1)22n n n n n S +--==,根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=, 整理得2560m m --=,因为0m >,所以6m =,【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.16.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,.【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析. 【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率; (2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论. 【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤人次400>空气质量不好 33 37空气质量好 228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.17.如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内.【答案】(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)根据正方形性质得AC BD ⊥,根据长方体性质得1AC BB ⊥,进而可证AC ⊥平面11BB D D ,即得结果; (2)只需证明1//EC AF 即可,在1CC 上取点M 使得12CM MC =,再通过平行四边形性质进行证明即可.【详解】(1)因为长方体1111ABCD A B C D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥ 因为11,BB BD B BB BD =⊂、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;(2)在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC = 所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以M F A D 、、、四点共面,所以四边形MFAD 为平行四边形,1//,//DM AF EC AF ∴∴,所以1E C A F 、、、四点共面,因此1C 在平面AEF 内【点睛】本题考查线面垂直判定定理、线线平行判定,考查基本分析论证能力,属中档题. 18.已知函数32()f x x kx k =-+.(1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围. 【答案】(1)详见解析;(2)4(0,)27. 【解析】 【分析】(1)'2()3f x x k =-,对k 分0k ≤和0k >两种情况讨论即可;(2)()f x 有三个零点,由(1)知0k >,且(00f f ⎧>⎪⎪⎨⎪<⎪⎩,解不等式组得到k 的范围,再利用零点存在性定理加以说明即可.【详解】(1)由题,'2()3f x x k =-,当0k ≤时,'()0f x ≥恒成立,所以()f x 在(,)-∞+∞上单调递增;当0k >时,令'()0f x =,得x ='()0f x <,得x << 令'()0f x >,得x <x >()f x在(上单调递减,在(,-∞,)+∞上单调递增. (2)由(1)知,()f x 有三个零点,则0k >,且(00f f ⎧>⎪⎪⎨⎪<⎪⎩即22203203k k ⎧+>⎪⎪⎨⎪-<⎪⎩,解得4027k <<, 当4027k <<>20f k =>, 所以()f x在上有唯一一个零点,同理1k --<32(1)(1)0f k k k --=--+<,所以()f x 在(1,k --上有唯一一个零点,又()f x 在(上有唯一一个零点,所以()f x 有三个零点, 综上可知k 的取值范围为4(0,)27. 【点晴】本题主要考查利用导数研究函数的单调性以及已知零点个数求参数的范围问题,考查学生逻辑推理能力、数学运算能力,是一道中档题.19.已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】 【分析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案; (2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】(1)222:1(05)25x y C m m +=<< ∴5a =,b m =,根据离心率4c e a ====, 解得54m =或54m =-(舍),∴C的方程为:22214255x y⎛⎫⎪⎝⎭+=,即221612525xy+=;(2)不妨设P,Q在x轴上方点P在C上,点Q在直线6x=上,且||||BP BQ=,BP BQ⊥,过点P作x轴垂线,交点为M,设6x=与x轴交点为N根据题意画出图形,如图||||BP BQ=,BP BQ⊥,90PMB QNB∠=∠=︒,又90PBM QBN∠+∠=︒,90BQN QBN∠+∠=︒,∴PBM BQN∠=∠,根据三角形全等条件“AAS”,可得:PMB BNQ≅△△,221612525x y+=,∴(5,0)B,∴651PM BN==-=,设P点为(,)P Px y,可得P点纵坐标为1Py=,将其代入221612525x y+=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:22231111055125211d ⨯-⨯+===+, 根据两点间距离公式可得:()()22652055AQ =++-=,∴APQ 面积为:1555252⨯=;②当P 点为(3,1)-时, 故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8), 画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:()2283111405185185811d ⨯--⨯+===+, 根据两点间距离公式可得:()()226580185AQ =++-=∴APQ 面积为:1518522185=, 综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.(二)选考题:共10分.请考生在第20、21题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]20.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t⎧=--⎨=-+⎩,(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点. (1)求|AB |:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程. 【答案】(1)4102)3cos sin 120ρθρθ-+= 【解析】【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值; (2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A . 令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4-5:不等式选讲]21.设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c . 【答案】(1)证明见解析(2)证明见解析. 【解析】 【分析】(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc+++=⋅==,结合基本不等式,即可得出证明. 【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<;(2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.。

2020年山东高考数学试卷(word版+详细解析版)

2020年山东高考数学试卷(word版+详细解析版)

2020年普通高等学校招生全国统一考试新高考全国一卷(山东卷)数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{|13}A x x =≤≤,{|24}B x x =<<,则A B =A .{|23}x x <≤B .{|23}x x ≤≤C .{|14}x x ≤<D .{|14}x x <<答案:C解析:利用并集的定义可得{|14}AB x x =≤<,故选C.2.2i 12i -=+ A .1 B .−1C .iD .−i答案:D 解析:222i (2i)(12i)(22)(41)i i 12i 125----+--===-++,故选D3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A .120种B .90种C .60种D .30种答案:C解析:不同的安排方法有123653C C C 60⋅⋅=4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°答案:B解析:因为晷面与赤道所在平面平行,晷针垂直晷面,所以晷针垂直赤道所在平面,如图所示,设AB 表示晷针所在直线,且AB OB ⊥,AC 为AB 在点A 处的水平面上的射影,则晷针与点A 处的水平面所成角为BAC ∠,因为OA AC ⊥,AB OB ⊥,所以BAC AOB ∠=∠,由已知40AOB ∠=︒,所以40BAC ∠=︒,故选BCBO赤道A5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是A .62%B .56%C .46%D .42%答案:C解析:既喜欢足球又喜欢游泳的学生数占该校学生总数的比例=60%+82%-96%=46%,故选C6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天答案:B 解析:设从1t 到2t 累计感染数增加1倍,即21()2()I t I t =,因为(e )rt I t =,所以21e 2ert rt =,所以21()e 2r t t -=,所以21()ln 2r t t -=.因为R 0 =1+rT ,所以01R r T-=,所以210ln 2ln 260.69 1.81 2.28T t t r R ⨯-==≈≈- 7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是A .()2,6-B .()6,2-C .()2,4-D .()4,6-答案:A解析:如图,过P 作PG AB ⊥,G 为垂足,则()||||cos ,AP AB AG GP AB AG AB AG AB AG AB ⋅=+⋅=⋅=⋅〈〉,当G 点落在AB 的反向延长线上时,cos ,1AG AB 〈〉=-,这时0||||cos 60AG AF <<︒,即0||1AG <<,所以这时20AP AB -<⋅<;当G 点落在AB 上或AB 的延长线上时,cos ,1AG AB 〈〉=,这时0||||cos 60AG AB BC ≤<+︒,即0||3AG ≤<,所以06AP AB ≤⋅<.综上所述,AP AB ⋅的取值范围是()2,6-,故选A。

2020年高考数学试题分析报告(国家教育部考试中心,全国各套试卷)

2020年高考数学试题分析报告(国家教育部考试中心,全国各套试卷)

2020年普通高等学校招生全国统一考试数学试题评价报告教育部考试中心━━━━━━━━━━━★━━━━━━━━━━━四川省凉山州教育科学研究所中小学教育研究室整理目录· 2020年普通高等学校招生全国统一考试数学试题总体评价· 2020年普通高等学校招生全国统一考试数学试题评价报告(四川卷)· 2020年普通高等学校招生全国统一考试数学试题评价报告(全国卷Ⅰ)· 2020年普通高等学校招生全国统一考试数学试题评价报告(全国卷Ⅱ)· 2020年普通高等学校招生全国统一考试数学试题评价报告(重庆卷)· 2020年普通高等学校招生全国统一考试数学试题评价报告(浙江卷)· 2020年普通高等学校招生全国统一考试数学试题评价报告(天津卷)· 2020年普通高等学校招生全国统一考试数学试题评价报告(上海卷)· 2020年普通高等学校招生全国统一考试数学试题评价报告(陕西卷)· 2020年普通高等学校招生全国统一考试数学试题评价报告(山东卷)· 2020年普通高等学校招生全国统一考试数学试题评价报告(辽宁卷)· 2020年普通高等学校招生全国统一考试数学试题评价报告(江西卷)· 2020年普通高等学校招生全国统一考试数学试题评价报告(江苏卷)· 2020年普通高等学校招生全国统一考试数学试题评价报告(湖南卷)· 2020年普通高等学校招生全国统一考试数学试题评价报告(湖北卷)· 2020年普通高等学校招生全国统一考试数学试题评价报告(海南、宁夏卷)· 2020年普通高等学校招生全国统一考试数学试题评价报告(广东卷)· 2020年普通高等学校招生全国统一考试数学试题评价报告(福建卷)· 2020年普通高等学校招生全国统一考试数学试题评价报告(北京卷)· 2020年普通高等学校招生全国统一考试数学试题评价报告(安徽卷)2020年普通高等学校招生全国统一考试数学试题总体评价今年全国共有16个省市是自主命题,其中广东、山东是实施新课程的第一年高考,是课标卷,其余的省市是大纲卷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.提供源动力 对于基础知识的考查,主要体现在选择题与填空题的前几题,在试题设计 上,单个试题涉及的知识点相对较少,思维相对简单,易于作答。
1(2020 年山东卷 1).设集合 A={x|1≤x≤3},B={x|2<x<4},则 A∪B=( )
A. {x|2<x≤3}
B. {x|2≤x≤3}
C. {x|1≤x<4} 2(2020 年山东卷 2). 2 i ( )
2019
0.556
0.462
二、知识点分布及其考试要求
序号
知识点
题量
题号
分值
1
集合
2 ⑴⑸
10
2
复数
1⑵
5
3
向量
1⑺
5
4
数列
1+1 ⒁ ⒅
17
5
三角
1+1 ⒃ ⒇
22
7
概率与统计
1+1 ⑵ ⒆
17
8
解析几何
3+1 ⑼ ⒀ ⒂(22)
27
9
导数与函数
3+1 ⑹ ⑻ ⑿(21)
D. a b 2
3(2020 年山东卷 12).信息熵是信息论中的一个重要概念.设随机变量 X 所有可
n
能的取值为1, 2, , n ,且 P(X i) pi 0(i 1, 2, , n), pi 1 ,定义 X 的信息熵 i 1
n
H (X ) pi log2 pi .( ) i 1
5 为 7 cm,圆孔半径为 1 cm,则图中阴影部分的面积为________cm2.
4(2020 年山东卷 16).已知直四棱柱 ABCD–A1B1C1D1 的棱长均为 2, ∠BAD=60°.以 D1 为球心, 5 为半径的球面与侧面 BCC1B1的交线长为________. 5(2020 年山东卷 20).如图,四棱锥 P-ABCD 的底面为正方形,PD⊥底面 ABCD.设 平面 PAD 与平面 PBC 的交线为 l.
{an},则{an}的前 n 项和为________. (二).强调数学知识的应用,设制情境真实的试题,综合考查应用能力。
2020 年高考数学山东卷的一大亮点是体现了数学结论确定性和应用广泛性 的特点。数学来源于实际,应用于实际,问题来源广,应用领域多,许多数学试 题的设计具有较强的综合性,体现了数学与其他学科及现实社会的广泛联系,反 映了数学的应用价值和工具性。 1(2020 年山东卷 4).日晷是中国古代用来测定时间的仪器,利用与晷面垂直的
7(2020 年山东卷 22).已知椭圆 C: x2 y2 1(a b 0) 的离心率为 2 ,且过
a2 b2
2
点 A(2,1).
(1)求 C 的方程:
(2)点 M,N 在 C 上,且 AM⊥AN,AD⊥MN,D 为垂足.证明:存在定点 Q,
使得|DQ|为定值.
(四).强调数学创新思维能力考查
(3)数学建模(数学应用)
数学建模在山东卷中考查点比其它的全国卷中考查量都要多,主要涉及集合运算、
立体几何、函数、解析几何、概率与统计。
注意事项:
(1)新课标卷(山东卷)中,文科生与理科生考查内容一致。其中直方图的识 别与使用,正态分布知识的应用,线性回归直线方程与非线性回归,概率与统计, 独立性检验等知识点均可以出现在解答题中,需要引起老师和学生的足够重视。
A. 若 n=1,则 H(X)=0
B. 若 n=2,则 H(X)随着 p1 的增大而增大
C.

pi
1 n
(i
1, 2,
,n) ,则 H(X)随着 n 的增大而增大
D. 若 n=2m,随机变量 Y 所有可能的取值为1,2, ,m ,且
P(Y j) pj p2m1 j ( j 1, 2, , m) ,则 H(X)≤H(Y) 4(2020 年山东卷 15).某中学开展劳动实习,学生加工制作零件,零件的截面 如图所示.O 为圆孔及轮廓圆弧 AB 所在圆的圆心,A 是圆弧 AB 与直线 AG 的切 点,B 是圆弧 AB 与直线 BC 的切点,四边形 DEFG 为矩形,BC⊥DG,垂足为 C, tan∠ODC= 3 , BH∥DG ,EF=12 cm,DE=2 cm,A 到直线 DE 和 EF 的距离均
5(2020 年山东卷 19).为加强环境保护,治理空气污染,环境监测部门对某市 空气质量进行调研,随机抽查了100 天空气中的 PM2.5 和 SO2 浓度(单位:μg/m3 ), 得下表:
SO 2 PM 2.5
[0, 50]
(50,150]
(150, 475]
[0, 35]
32
18
4
(35, 75]
题是平面几何、三角与解析几何相结合,(16)题是立体几何与平面轨迹相结合,
(20)题是立体几何与函数相结合,(22)题是解析几何与平面几何相结合,这
些都考查数学推理、转化、化归及综合运用数学知识探究与解决问题的能力。
1(2020 年山东卷 8).若定义在 R 的奇函数 f(x)在 (,0) 单调递减,且 f(2)=0,
4(2020 年山东卷 9).已知曲线 C : mx2 ny2 1.( )
A. 若 m>n>0,则 C 椭圆,其焦点在 y 轴上 B. 若 m=n>0,则 C 是圆,其半径为 n
C. 若 mn<0,则 C 是双曲线,其渐近线方程为 y m x n
D. 若 m=0,n>0,则 C 是两条直线 5(2020 年山东卷 10).下图是函数 y= sin(ωx+φ)的部分图像,则 sin(ωx+φ)=( )
70 分
与全国 I、II、III 卷相比较山东卷试题增加了多选题,用数列代替了选修内容,
主干知识分布相对是稳定的.
下面介绍近五年全国高考数学 I 卷的难度
年度
全国 I 卷理科
全国 I 卷文科
2015
0.516
0.412
2016
0.527
0.441
2017
0.540
0.417
2018
0.581
0.494
3(2020 年山东卷 6).基本再生数 R0 与世代间隔 T 是新冠肺炎的流行病学基本
参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所
需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t) ert 描述累计感
染病例数 I(t)随时间 t(单位:天)的变化规律,指数增长率 r 与 R0,T 近似满足 R0
则满足 xf (x 1) 0 的 x 的取值范围是( )
A. [1,1] [3, )
B. [3, 1] [0,1]
C. [1,0][1, )
D. [1,0][1,3]
2(2020 年山东卷 11).已知 a>0,b>0,且 a+b=1,则( )
A. a2 b2 1 2
B. 2ab 1
2
C. log2 a log2 b 2
1.(2020 年山东卷 16).已知直四棱柱 ABCD–A1B1C1D1 的棱长均为 2,
∠BAD=60°.以 D1 为球心, 5 为半径的球面与侧面 BCC1B1的交线长为________.
2(2020 年山东卷 18).已知公比大于1的等比数列{an}满足 a2 a4 20,a3 8 .
如图所示.O 为圆孔及轮廓圆弧 AB 所在圆的圆心,A 是圆弧 AB 与直线 AG 的切
点,B 是圆弧 AB 与直线 BC 的切点,四边形 DEFG 为矩形,BC⊥DG,垂足为 C,
tan∠ODC= 3 , BH∥DG ,EF=12 cm,DE=2 cm,A 到直线 DE 和 EF 的距离均 5
为 7 cm,圆孔半径为 1 cm,则图中阴影部分的面积为________cm2.
A. sin(x π)
3
C. cos(2x π)
6
B. sin( π 2x)
3
D. cos( 5π 2x)
6
6(2020 年山东卷 13).斜率为 3 的直线过抛物线 C:y2=4x 的焦点,且与 C 交
于 A,B 两点,则 AB =________.
7(2020 年山东卷 14).将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列
(1)证明:l⊥平面 PDC; (2)已知 PD=AD=1,Q 为 l 上的点,求 PB 与平面 QCD 所成角的正弦值的最大 值. 6(2020 年山东卷 21).已知函数 f (x) aex1 ln x ln a . (1)当 a e 时,求曲线 y=f(x)在点(1,f(1))处的切线与两坐标轴围成的 三角形的面积; (2)若 f(x)≥1,求 a 取值范围.
6
8
12
(75,115]
3
7
10
(1)估计事件“该市一天空气中 PM2.5 浓度不超过 75 ,且 SO2 浓度不超过150 ”的 概率; (2)根据所给数据,完成下面的 2 2 列联表:
SO 2 PM 2.5
[0,150]
(150, 475]
[0, 75]
(75,115] (3)根据(2)中 列联表,判断是否有 99% 的把握认为该市一天空气中 PM2.5 浓度与 SO2 浓度有关?
附: K 2
n(ad bc)2

(a b)(c d)(a c)(b d)
P(K 2 k)
0.050
0.010
0.001
k
3.841
6.635
10.828
(三).强调数学知识的综合应用,多题层层把关,考查学生综合运用数学知识
的能力
一些试题将多个知识点进行结合,比如(12)题是函数与数列相结合,(15)
相关文档
最新文档