电力电子技术实验指导书
电力电子技术实验指导书16K版.docx
第一章MCL-II型教学实验台简介 (2)§1-1概述 (2)§1-2《电力电子技术》课程实验所用设备 (4)第二章实验内容 (15)§2-1实验一锯齿波同步移相触发电路的研究 (15)§2-2实验二三相桥式全控整流电路的研究 (18)§2-3实验三直流斩波电路的研究 (21)§2-4实验四单相交流调压电路的研究 (25)第一章MCL- II型教学实验台简介§1-1概述MCL- II型教学实验台是自动化系针対《电机及拖动基础》、《电力电子技术》、《电力拖动白动控制系统》等课程实验购置的实验设备,其外观如图1所示。
图1 MCL-II型教学实验台一. MCL-n型教学实验台的特点:1.采用组件式结构,可根据不同内容进行组合,故结构紧凑,使用方便灵活,并口可随着功能的扩展只需增加组件即可,能在一套装置上完成《电力电子技加,《电力拖动自动控制系统》等课程的主要实验。
2.装置布局合理,外形美观,面板示意图明确,直观,学生可通过面板的示意査寻故障,分析工作原理。
电机采用导轨式安装,更换机组简捷,方便,所采用的电机经过特殊设计,其参数特性能模拟3KW左右的通川实验机组,能给学生正确的感性认识。
除实验控制屏外,还设置有实验用台,内可放置机组,实验组件等,并有可活动的抽屉,内可放置导线,工具等,使实验更方便。
3.实验线路典型,配合教学内容,满足教学人纲要求。
控制电路全部采用模拟和数字集成芯片,町靠性高,维修,检测方便。
触发电路采用数字集成电路双窄脉冲。
4.装置具有较完善的过流、过压、RC吸收、熔断器等保护功能,提高了设备的运行可靠性和抗干扰能力。
5.面板上有多只发光二极管指示每一个脉冲的有无和熔断器的通断。
触发脉冲可夕卜加,也可采川内部的脉冲触发晶闸管,并可模拟整流缺相和逆变颠覆等故障现象。
二. MCL- n型教学实验台的技术参数1.输入电源:〜380V±10%; 5OHZ±1HZ2.工作条件:环境温度:・5〜40°C;相对湿度:<75%;海拔:vlOOOm3.装置容量:vlKVA4.电机容量:<200W5.夕卜形尺寸:长1600mm x宽700mm三. MCL-n型教学实验台能开设的实验MCL-II型教学实验台能开设《电机及拖动皋础》、《电力电子技术》、《电力拖动自动控制系统》课程的丄耍实验。
电力电子技术实验指导书
实验一单结晶体管触发电路及示波器使用班级学号姓名同组人员实验任务一.实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用。
2.掌握单结晶体管触发电路的调试步骤和方法。
3.详细学习万用表及示波器的使用方法。
二.实验设备及仪器1.教学实验台主控制屏2.NMCL—33组件3.NMCL—05E组件4.MEL—03A组件5.双踪示波器(自备)6.万用表(自备)7. 电脑、投影仪三.实验线路及原理将NMCL—05E面板左上角的同步电压输入接SMCL-02的U、V输出端,触发电路选择单结晶体管触发电路,如图1所示。
图1单结晶体管触发电路图四.注意事项双踪示波器有两个探头,可以同时测量两个信号,但这两个探头的地线都与示波器的外壳相连接,所以两个探头的地线不能同时接在某一电路的不同两点上,否则将使这两点通过示波器发生电气短路。
为此,在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根地线。
当需要同时观察两个信号时,必须在电路上找到这两个被测信号的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器上同时观察到两个信号,而不致发生意外。
五.实验内容1.实验预习(1)画出晶闸管的电气符号图并标明各个端子的名称。
(2)简述晶闸管导通的条件。
(3)示波器在使用两个探针进行测量时需要注意的问题。
2. 晶闸管特性测试请用万用表测试晶闸管各管脚之间的阻值,填写至下表。
+A K G-AKG3.单结晶体管触发电路调试及各点波形的观察按照实验接线图正确接线,但由单结晶体管触发电路连至晶闸管VT1的脉冲U GK不接(将NMCL—05E面板中G、K接线端悬空),而将触发电路“2”端与脉冲输出“K”端相连,以便观察脉冲的移相范围。
合上主电源,即按下主控制屏绿色“闭合”开关按钮。
这时候NMCL—05E内部的同步变压器原边接有220V,副边输出分别为60V(单结晶触发电路)、30V(正弦波触发电路)、7V(锯齿波触发电路),通过直键开关选择。
《电力电子技术》实验指导书_图文
电力电子技术实验指导书适用专业:卓越自动化李建华编写江苏科技大学电子信息学院2014 年 9月前言《电力电子技术》课程是电气工程及其自动化专业和自动化专业的一门学科基础课,测控技术与仪器专业的专业选修课。
本课程的目的和任务是使学生了解电力电子技术的发展概况、技术动向和新的应用领域。
熟悉各种电力电子器件的特性和选用方法;掌握各种电力电子电路的结构、工作原理、控制方法、设计的基本计算方法及基本实验技能;熟悉各种常用电力电子装置的应用范围及技术经济指标。
同时为《电力传动自动控制系统》等课程打好基础。
实验环节是这门课程的重要组成部份,通过实验可以加深对理论的理解,培养和提高学生独立动手能力和分析、解决问题的能力。
根据教学大纲要求,本课程实验共开出三相全控桥式整流电路、交流单相调压、直流降压斩波电路三个实验,均为综合性实验。
学生通过实验能掌握电力电子变流装置主电路、触发电路和驱动电路等的构成及调试方法及应用;熟悉并掌握基本实验设备、测试仪器的性能及使用方法;能够运用理论知识对实验现象、结果进行分析和处理,解决实验中遇到的问题;能够综合实验数据,解释实验现象,编写实验报告。
实验一:三相桥式全控整流电路的性能研究实验学时:2实验类型:(设计研究实验要求:(必做一、实验目的1、加深对三相桥式整流电路电阻性负载,电阻、电感性负载时工作情况的理解。
2、对实验出现的问题进行分析并排除。
二、实验内容1、三相桥式全控整流电路接电阻性负载。
2、三相桥式全控整流电路接电阻、电感性负载。
三、实验原理、方法和手段三相桥式全控整流电路实验原理框图如图1-1所示。
控制电路直流电源单元提供+15V、-15V电源给正给定单元、三相脉冲移向电路单元(LY105。
正给定单元输出1作为LY105单元移向控制电压(Uct。
Ub1f接地,输出正桥触发脉冲。
LY121-1主电源输出(A2、B2、C2作为正组桥晶闸管主电路输入电源。
图1-1 三相桥式全控整流电路实验原理框图四、实验组织运行根据本实验的特点、要求和具体条件,采用集中授课形式。
电力电子技术实验指导书
实验一单相半波可控整流电路实验一、实验目的(1)掌握单结晶体管触发电路的调试步骤和方法。
(2)掌握单相半波可控整流电路在电阻负载时的工作。
二、实验所需挂件及附件三、实验线路及原理将DJK03-1挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用D42三相可调电阻,将两个900Ω接成并联形式。
二极管VD1和开关S1均在DJK06挂件上,电感Ld在DJK02面板上,有100mH、200mH、700mH三档可供选择,本实验中选用700mH。
直流电压表及直流电流表从DJK02挂件上得到。
四、实验内容(1)单结晶体管触发电路的调试。
(2)单结晶体管触发电路各点电压波形的观察并记录。
(3)单相半波整流电路带电阻性负载时Ud/U2= f(α)特性的测定。
五、预习要求(1)阅读电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。
(2)复习单相半波可控整流电路的有关内容,掌握单相半波可控整流电路接电阻性负载时的工作波形。
(3)掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。
六、思考题(1)单结晶体管触发电路的振荡频率与电路中电容C1 的数值有什么关系?(2)单相半波可控整流电路接电感性负载时会出现什么现象?如何解决?七、实验方法(1)单结晶体管触发电路的调试将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。
调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相范围能否在30°~170范围内移动?图1-1 单相半波可控整流电路(2)单相半波可控整流电路接电阻性负载触发电路调试正常后,按图1-1电路图接线。
电力电子技术实训指导书
实验一单结晶体管触发电路实验一、实验目的1 熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。
2 掌握单结晶体管触发电路的调试步骤和方法。
二、实验所需挂件及附件利用单结晶体管(又称双基极二极管)的负阻特性和RC的充放电特性,可组成频率可调的自激振荡电路,如图3-1所示。
图中V6为单结晶体管,其常用的型号有BT33和BT35两种,由等效电阻V5和C1组成组成RC充电回路,由C1-V6-脉冲变压器组成电容放电回路,调节RP1即可改变C1充电回路中的等效电阻。
图3-1 单结晶体管触发电路原理图工作原理简述如下:由同步变压器副边输出60V的交流同步电压,经VD1半波整流,再由稳压管V1、V2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7及等效可变电阻V5向电容C1充电,当充电电压达到单结晶体管的峰值电压UP时,单结晶体管V6导通,电容通过脉冲变压器原边放电,脉冲变压器副边输出脉冲。
同时由于放电时间常数很小,C1两端的电压很快下降到单结晶体管的谷点电压Uv,使V6关断,C1再次充电,周而复始,在电容C1两端呈现锯齿波形,在脉冲变压器副边输出尖脉冲。
在一个梯形波周期内,V6可能导通、关断多次,但只有输出的第一个触发脉冲对晶闸管的触发时刻起作用。
充电时间常数由电容C1和等效电阻等决定,调节RP1改变C1的充电的时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。
单结晶体管触发电路的各点波形如图3-2所示。
电位器RP1已装在面板上,同步信号已在内部接好,所有的测试信号都在面板上引出。
图3-2 单结晶体管触发电路各点的电压波形(α=90º)四、实验内容1 单结晶体管触发电路的调试。
2 单结晶体管触发电路各点电压波形的观察。
五、预习要求阅读本教材1-3节及电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。
六、思考题1 单结晶体管触发电路的振荡频率与电路中C1的数值有什么关系?2 单结晶体管触发电路的移相范围能否达到180°?七、实验方法1 单结晶体管触发电路的观测。
电力电子技术实验指导书
同学们:这是我们电力电子技术实验指导参考书,请同学们结合实验内容和要求参考实验参考书完成预习报告和实验2021~2021学年第一学期电力电子技术实验指导参考书实验1 三相桥式全控整流电路的性能研究实验目的1、熟悉三相全控桥式整流电路的结构特点,以及整流变压器、同步变压器的连接;2、掌握KC785集成触发电路的应用;3、掌握三相晶闸管集成触发电路的工作原理与调试〔包括各点电压波形的测试与分析〕。
4、研究三相全控桥式整流供电电路〔电阻负载时〕,在不同导通角下的电压与电流波形。
二、实验电路与工作原理〔一〕三相全控桥式整流电路如图7-1所示。
图7-1三相晶闸管全控桥式整流电路〔单元7〕1、图中6个晶闸管的导通顺序如图7-2所示。
它的特点是:①它们导通的起始点〔即自然换流点〕;对共阴极的VT1、VT3、VT5,为uΑ、uB、uC 三个正半波的交点;而对共阳极的VT4、VT6、VT2,那么为三相电压负半波的交点。
②在共阳极和共阴极的管子中,只有各有一个导通,才能构成通路,如6-1、1-2、2-3、3-4、4-5、5-6、6-1等,参见图7-2。
这样触发脉冲和管子导通的顺序为1→2→3→4→5→6,间隔为60°。
③为了保证电路能启动和电流断续后能再触发导通,必须给对应的两个管子同时加上触发脉冲,例如在6-1时,先前已给VT1发了触发脉冲,但到1-2时,还得给VT1再补发一个脉冲〔在下面介绍的触发电路中,集成电路KC41C的作用,就是产生补脉冲的〕,所以对每个管子触发,都是相隔60°的双脉冲,见图7-2b〔当然用脉宽大于60°的宽脉冲也可以,但功耗大〕。
2、在图7-1中,TA为电流互感器〔三相共3个〕,〔HG1型,5Α╱2.5mΑ,负载电阻<100Ω〕,由于电流互感器二次侧不可开路〔开路会产生很高电压〕,所以二次侧均并有一个负载电阻。
〔二〕整流变压器与同步变压器的接线如图7-3所示。
(整理)电力电子实验指导书完全版
电力电子技术实验指导书目录实验一单相半波可控整流电路实验 (1)实验二三相桥式全控整流电路实验 (4)实验三单相交流调压电路实验 (7)实验四三相交流调压电路实验 (9)实验装置及控制组件介绍 (11)实验一单相半波可控整流电路实验一、实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用;2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全面分析;3.了解续流二极管的作用;二、实验线路及原理熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。
将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极,即构成如图1-1所示的实验线路。
图1-1 单结晶体管触发的单相半波可控整流电路三、实验内容1.单结晶体管触发电路的调试;2.单结晶体管触发电路各点电压波形的观察;=f(α)特性的测定;3.单相半波整流电路带电阻性负载时Ud/U24.单相半波整流电路带电阻电感性负载时续流二极管作用的观察;四、实验设备1.电力电子实验台2.RTDL09实验箱3.RTDL08实验箱4.RTDL11实验箱5.RTDJ37实验箱6.示波器;7.万用表;五、预习要求1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱;2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻感性负载时,电路各部分的电压和电流波形;3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。
六、思考题1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何解决?七、实验方法1.单相半波可控整流电路接纯阻性负载调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形U VT,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、U VT,记录于下表1-1中。
波形,并测定直流输出电压Ud和电源电压U22.单结晶体管触发电路的调试RTDL09的电源由电源电压提供(下同),打开实验箱电源开关,按图1-1电路图接线,负载为RTDJ37实验箱,选择最大的电阻值,调节移相可变电位器RP1,用示波器观察单结晶体管触发电路的输出电压波形(即用于单相半波可控整流的触发脉冲)。
电力电子技术实验指导书7页
电力电子技术实验指导书中国矿业大学信电学院2009年4月学生实验守则一、学生进入实验室必须服从管理,遵守实验室的规章制度。
保持实验室的安静和整洁,爱护实验室的一切设施,不做与实验无关的事情。
二、实验课前要按照教师要求认真预习实验指导书,复习教材中于实验有关的内容,熟悉与本次实验相关的在理论知识,同时写出实验预习报告,并经教师批阅后方可进行实验。
三、实验课上要遵守操作规程,线路连接好后,先自行检查,后须经指导教师检查后,才可接通电源进行实验。
如果需更改线路,也要经过教师检查后才能接通电源继续实验。
四、学生实验前对实验所用仪器设备要了解其操作规程和使用方法,实验过程中按照要求记录实验数据。
实验中有仪器损坏情况,应立即报告指导教师检查处理。
凡因不预习或不按照使用方法误操作而造成设备损坏后,除书面检查外,还要按照规定进行赔偿。
五、注意实验安全,不要带电连接、更改或拆除线路。
实验中遇到事故应立即关断电源并报告教师处理。
六、实验完成后,实验数据必须经教师签阅后,方可拆除实验线路。
并将仪器、设备、凳子等按照规定放好,经教师同意后方可离开实验室。
七、实验室仪器设备不能擅自搬动、调换,更不能擅自带出实验室。
八、因故缺课的同学可以向实验室申请一次补做机会。
无故缺课、无故迟到十五分钟以上或者早退的不予补做,该实验无成绩。
实验一 整流电路仿真实验1、 单相半波可控整流电路(输出端有续流二极管)要求电源电压t u ωsin 1002=,频率50Hz ,控制角︒=30α,负载为阻感负载,Ω=3.0R 。
试通过仿真分析0=L H ,5.0=L mH ,1.0=L H 对电路输出的影响 附:该电路仿真所用模块:电源模块AC Voltage Source1:位于SimPowerSystems/Electrical Sources中;器件模块g m akr:位于SimPowerSystems/PowerElectronics 中,器件参数设置如图1所示: 图1脉冲发生器Generator:位于Simulink/Sources 中;阻感负载:位于SimPowerSystems/Elements 中,其中电容参数设置为:inf ;电压/电流测量模块:v +-V o l e M e a i +-C u r t M e:位于SimPowerSystems/Measurements 中;示波器:位于Simulink/Sinks 中。
电力电子实验指导书完全
电力电子技术实验指导书目录实验一单相半波可控整流电路实验 (1)实验二三相桥式全控整流电路实验 (4)实验三单相交流调压电路实验 (7)实验四三相交流调压电路实验 (9)实验装置及控制组件介绍 (11)实验一单相半波可控整流电路实验一、实验目的1.熟悉单结晶体管触发电路的工作原理及各元件的作用;2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全面分析;3.了解续流二极管的作用;二、实验线路及原理熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。
将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极,即构成如图1-1所示的实验线路。
图1-1 单结晶体管触发的单相半波可控整流电路三、实验内容1.单结晶体管触发电路的调试;2.单结晶体管触发电路各点电压波形的观察;=f(α)特性的测定;3.单相半波整流电路带电阻性负载时Ud/U24.单相半波整流电路带电阻电感性负载时续流二极管作用的观察;四、实验设备1.电力电子实验台2.RTDL09实验箱3.RTDL08实验箱4.RTDL11实验箱5.RTDJ37实验箱6.示波器;7.万用表;五、预习要求1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱;2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻感性负载时,电路各部分的电压和电流波形;3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。
六、思考题1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何解决?七、实验方法1.单相半波可控整流电路接纯阻性负载调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形UVT ,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、UVT波形,并测定直流输出电压Ud和电源电压U2,记录于下表1-1中。
2.单结晶体管触发电路的调试RTDL09的电源由电源电压提供(下同),打开实验箱电源开关,按图1-1电路图接线,负载为RTDJ37实验箱,选择最大的电阻值,调节移相可变电位器RP1,用示波器观察单结晶体管触发电路的输出电压波形(即用于单相半波可控整流的触发脉冲)。
电力电子技术实验指导书最新版
电力电子技术实验指导书第一章概述一、电力电子技术实验内容与基本实验方法电力电子技术是20世纪后半叶诞生和发展的一门新技术,广泛应用于工业领域、交通运输、电力系统、通讯系统、计算机系统、能源系统及家电、科研领域。
电力电子技术课程既是一门技术基础课程,也是一门实用性很强的应用型课程,因此实验在教学中占有十分重要的位置。
电力电子技术实验课的主要内容为:电力电子器件的特性研究,重点是开关特性的研究;电力电子变换电路的研究,包括:三相桥式全控整流电路(AC/DC 变换)、SPWM逆变电路(DC/AC变换)、直流斩波电路(DC/DC变换)、单相交流调压电路(AC/AC变换)四大类基本变流电路。
电力电子技术实验借助于现代化的测试仪器与仪表,使学生在实验的同时熟悉各种仪器的使用,以进一步提高实验技能。
波形测试方法是电力电子技术实验中基本的、常用的实验方法,电力电子器件的开关特性依据波形测试而确定器件的工作状态及相应的参数;电力电子变换电路依据波形测试来分析电路中各种物理量的关系,确定电路的工作状态,判断各个器件的正常与否。
因此,掌握不同器件、不同电路的波形测试方法,可以使学生进一步掌握电力电子电路的工作原理以及工程实践的方法。
本讲义参考理论课的内容顺序编排而成,按照学生掌握知识的规律循序渐进,旨在加强学生实验基本技能的训练、实现方法的掌握;培养和提高学生的工程设计与应用能力。
由于编者水平有限,难免有疏漏之处,恳请各位读者提出批评与改进意见。
二、实验挂箱介绍与使用方法(一)MCL—07挂箱电力电子器件的特性及驱动电路MCL—07挂箱由GTR驱动电路、MOSFET驱动电路、IGBT驱动电路、PWM 发生器、主电路等部分组成。
1、GTR驱动电路:内含光电耦合器、比较器、贝克箝位电路、GTR功率器件、串并联缓冲电路、保护电路等。
可对光耦特性(延迟时间、上升时间、下降时间),贝克电路对GTR导通关断特性的影响,不同的串、并联电路对GTR开关特性的影响以及保护电路的工作原理进行分析和研究。
电力电子技术实验指导书
实验一 功率场效应晶体管(MOSFET)特性与驱动电路研究一.实验目的:1.熟悉MOSFET 主要参数的测量方法 2.掌握MOSEET 对驱动电路的要求3.掌握一个实用驱动电路的工作原理与调试方法三.实验设备和仪器1. NMCL-07电力电子实验箱中的MOSFET 与PWM 波形发生器部分 2.双踪示波器3.安培表(实验箱自带)4.电压表(使用万用表的直流电压档)图2-2 MOSFET实验电路五.实验方法1.MOSFET主要参数测试(1)开启阀值电压V GS(th)测试开启阀值电压简称开启电压,是指器件流过一定量的漏极电流时(通常取漏极电流I D=1mA)的最小栅源极电压。
在主回路的“1”端与MOS 管的“25”端之间串入毫安表(箱上自带的数字安培表表头),测量漏极电流I D,将主回路的“3”与“4”端分别与MOS管的“24”与“23”相连,再在“24”与“23”端间接入电压表, 测量MOS管的栅源电压Vgs,并将主回路电位器RP左旋到底,使Vgs=0。
将电位器RP逐渐向右旋转,边旋转边监视毫安表的读数,当漏极电流I D=1mA时的栅源电压值即为开启阀值电压V GS(th)。
读取6—7组I D、Vgs,其中I D=1mA必测,填入下表中。
★注意mosfet刚开启时的漏极电流距离完全开通时的漏极电流相差很远,因此在1mA之后的四个点之间的距离需要取大一些,这样才能测量出较为完整的特性曲线。
此步骤所测得的特性曲线又称为mosfet的转移特性曲线,完整的转移特性曲线示意图如下所示(2)跨导g FS测试双极型晶体管(GTR)通常用h FE(β)表示其增益,功率MOSFET器件以跨导g FS表示其增益。
跨导的定义为漏极电流的小变化与相应的栅源电压小变化量之比,即g FS=△I D/△V GS。
★注意典型的跨导额定值是在1/2额定漏极电流和V DS=15V下测得,受条件限制,实验中只能测到1/5额定漏极电流值,因此重点是掌握跨导的测量及计算方法。
电力电子技术实验指导书Word
电力电子技术实验指导书宁夏大学物理电气信息学院自动化系编目录第一章DJDK-1型电力电子技术及电机控制实验装置简介 (1)1.1 控制屏介绍及操作说明 (1)1.2 DJK01电源控制屏 (2)1.3 各挂件功能介绍 (3)第二章电力电子技术实验的基本要求和安全操作说明 (40)1.1 实验的特点和要求 (40)1.2 实验前的准备 (40)1.3 实验实施 (40)1.4 实验总结 (41)1.5 实验安全操作规程 (41)第三章电力电子技术实验 (43)实验一正弦波同步移相触发电路实验 (43)实验二单相桥式半控整流电路实验 (45)实验三单相桥式全控整流及有源逆变电路实验 (48)实验四三相桥式半控整流电路实验 (51)实验五三相桥式全控整流及有源逆变电路实验 (54)实验六单相交流调压电路实验 (58)实验七三相交流调压电路实验 (61)附录 (63)电源控制屏常见故障的诊断 (63)可供配置的电机参数 (63)DJK04过流保护的调试方法 (64)KC系列集成块原理说明 (65)DJK02和DJK02-1插座使用说明 (68)DJK01电源控制屏十芯、十二芯插座接线说明 (69)第一章 DJDK-1型电力电子技术及电机控制实验装置简介1.1 控制屏介绍及操作说明一、特点(1)实验装置采用挂件结构,可根据不同实验内容进行自由组合,故结构紧凑、使用方便、功能齐全、综合性能好,能在一套装置上完成《电力电子技术》、《自动控制系统》、《直流调速系统》、《交流调速系统》、《电机控制》及《控制理论》等课程所开设的主要实验项目。
(2)实验装置占地面积小,节约实验室用地,无需设置电源控制屏、电缆沟、水泥墩等,可减少基建投资;实验装置只需三相四线的电源即可投入使用,实验室建设周期短、见效快。
(3)实验机组容量小,耗电小,配置齐全;装置使用的电机经过特殊设计,其参数特性能模拟3KW左右的通用实验机组。
(4)装置布局合理,外形美观,面板示意图明确、清晰、直观;实验连接线采用强、弱电分开的手枪式插头,两者不能互插,避免强电接入弱电设备,造成该设备损坏;电路连接方式安全、可靠、迅速、简便;除电源控制屏和挂件外,还设置有实验桌,桌面上可放置机组、示波器等实验仪器,操作舒适、方便。
电力电子技术实验指导书(12课时)
电力电子技术实验指导书兰勇青岛大学自动化工程学院电气工程系实验室2012.9实验一三相半波可控整流电路的研究实验一.实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻—电感性负载时的工作。
二.实验线路及原理三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。
不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。
实验线路见图1-1。
图1-1 三相半波可控整流实验电路三.实验内容1.研究三相半波可控整流电路供电给电阻性负载时的工作。
2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作。
四.实验设备及仪表1.MCL系列教学实验台主控制屏。
2.MCL—51组件3.MCL—52组件4.MCL—53组件5.MCL—54组件6.双踪示波器。
7.万用电表。
五.注意事项1.整流电路与三相电源连接时,一定要注意相序。
2.整流电路的负载电阻不宜过小,应使Id不超过0.8A,同时负载电阻不宜过大,保证Id超过0.1A,避免晶闸管时断时续。
3.正确使用示波器,避免示波器的两根地线接在非等电位的端点上,造成短路事故。
六.实验方法1.研究三相半波可控整流电路供电给电阻性负载时的工作接上电阻性负载,合上主电源:(a)改变控制电压Uct,观察在不同触发移相角α时,可控整流电路的输出电压Ud=f(t)与输出电流波形id=f(t),并记录相应的Ud、Id、Uct值。
(b)记录不同α时的Ud=f(t)及id =f(t)的波形图。
2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作接入MCL—54的电抗器L=700mH,,可把原负载电阻Rd调小,监视电流,不宜超过0.8A观察不同移相角α时的输出Ud=f(t)、id=f(t),并记录相应的Ud、Id值,记录不同α时的Ud=f(t)、id=f(t),Uvt=f(t)波形图。
七.实验报告1.画出三相半波可控整流电路的主电路原理图。
电力电子技术实验指导书
实验一单相桥式全控整流电路实验一.实验目的1.了解单相桥式全控整流电路的工作原理。
2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电势负载时的工作。
3.熟悉MCL—05锯齿波触发电路的工作。
二.实验线路及原理参见图4-7。
三.实验内容1.单相桥式全控整流电路供电给电阻负载。
2.单相桥式全控整流电路供电给电阻—电感性负载。
3.单相桥式全控整流电路供电给反电势负载。
四.实验设备及仪器1.MCL系列教学实验台主控制屏。
2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。
3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)4.MCL—05组件或MCL—05A组件5.MEL—03三相可调电阻器或自配滑线变阻器。
6.MEL—02三相芯式变压器。
7.双踪示波器8.万用表五.注意事项1.本实验中触发可控硅的脉冲来自MCL-05挂箱,故MCL-33(或MCL-53,以下同)的内部脉冲需断X1插座相连的扁平带需拆除,以免造成误触发。
2.电阻RP的调节需注意。
若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。
3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。
4.MCL-05面板的锯齿波触发脉冲需导线连到MCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。
同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。
5.逆变变压器采用MEL-02三相芯式变压器,原边为220V,中压绕组为110V,低压绕组不用。
6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。
7.带反电势负载时,需要注意直流电动机必须先加励磁。
六.实验方法1.将MCL—05(或MCL—05A,以下均同)面板左上角的同步电压输入接MCL—18的U、V输出端(如您选购的产品为MCL—Ⅲ、Ⅴ,则同步电压输入直接与主控制屏的U、V输出端相连),“触发电路选择”拨向“锯齿波”。
电力电子技术实验指导书
注意事项目录目录 (1)电力电子技术实验注意事项 (1)实验一SCR(单向和双向)特性与触发实验 (3)实验二、单相桥式全控整流电路 (6)实验三、三相桥式全控整流电路 (9)实验四、Buck变换电路研究 (12)实验五、Boost变换电路研究 (14)实验六、单相SPWM电压型逆变电路研究 (16)实验七、单相交流调压电路 (18)附录 (20)附图1 锯齿波移相触发的单相桥式全控整流电路 (21)附图2 锯齿波移相触发的三相桥式全控整流电路 (22)附图3Buck变换电路实验研究 (23)附图4Boost变换电路实验研究 (24)附图5单相SPWM逆变电路实验研究 (25)附图6 单相交流调压电路 (26)电力电子技术实验注意事项(一)“综合实验台”及其挂箱初次使用或较长时间未用时,实验前应首先对“实验台”及其相关挂箱进行全面检查和单元环节调试,确保主电源、保护电路和相关触发电路单元工作正常。
(二)每次实验前,务必设置“状态”开关,并检查其它开关和旋钮的位置。
实验接线,必须经教师审核无误后方可开始实验。
(三)负载和电源的选用要严格参考有关挂件的使用说明,电力电子实验除需要电动机作负载的综合实验项目外,一律采用“DP01”单元提供的低压电源和“DSM08”单元提供的小功率负载。
(四)除非特定的实验操作要求(必要的实验方法),任何需要改接线时,必须先切除系统工作电源:首先使系统的给定为零,然后依次断开主电路总电·1·注意事项源、断开控制电路电源。
(五)双踪示波器的两个探头,其地线已通过示波器机壳短接。
使用时务必使两个探头的地线等电位(或只用一根地线即可),以免测试时系统经示波器机壳短路。
(六)每个挂箱都有独立电源,使用时要打开上面的电源开关才能工作,同时在不同挂件上的单元电路配合使用时需要共信号地。
(七)本实验注意事项,适用于电力电子所有典型实验,敬请注意。
·2·实验三·3·实验一 SCR (单向和双向)特性与触发实验一、实验目的1、了解晶闸管的基本特性。
电力电子技术实验指导书
试验一单相半波可控整流电路试验一、试验目旳(1) 加深理解锯齿波同步移相触发电路旳工作原理及各元件旳作用。
(2) 掌握锯齿波同步移相触发电路旳调试措施。
(2) 掌握单相半波可控整流电路在电阻负载及电阻电感性负载时旳工作。
(3) 理解续流二极管旳作用。
二、试验所需设备(1) DJDK-1型电力电子技术及电机控制试验装置。
其所需挂件如下:① DJK01 电源控制屏② DJK02 晶闸管主电路③ DJK03 晶闸管触发电路④ DJK06 给定及试验器件⑤ D42三相可调电阻(2) 双踪示波器三、试验内容(1) 锯齿波同步移相触发电路各点波形旳观测和分析。
(2) 单相半波整流电路带电阻性负载时U d/U2=f(α)特性旳测定。
(3) 单相半波整流电路带电阻电感性负载时U d/U2=f(α)特性旳测定。
(4) 续流二极管作用旳观测。
四、预习规定(1) 阅读本教材电力电子技术教材中有关锯齿波同步移相触发电路旳内容,弄清锯齿波同步移相触发电路旳工作原理。
(2) 复习单相半波可控整流电路旳有关内容,掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时旳工作波形。
(3) 掌握单相半波可控整流电路接不一样负载时U d、I d旳计算措施。
五、思索题(1) 锯齿波同步移相触发电路有哪些特点?(2) 锯齿波同步移相触发电路旳移相范围与哪些参数有关?(3) 单相半波可控整流电路接电感性负载时会出现什么现象?怎样处理?六、试验措施1. 锯齿波同步移相触发电路调试(1)将DJK01上旳钥匙式三相“电源总开关”置于“开”旳位置,操作控制屏左上角切换开关观测输入旳三相电网电压与否平衡。
(2) 将DJK01上旳电源选择开关打到“直流调速”侧(不能打到“交流调速”侧)。
用两根导线将DJK01旳A、B(200V)交流电压接到DJK03旳“外接220V”端,按下“启动”按钮。
(3) 打开DJK03电源开关,用双踪示波器观测锯齿波同步触发电路各观测孔旳电压波形。
《电力电子技术》试验指导书
2.研究三相半波可控整流电路供电给电阻性负载时的工作 合上主电源,接上电阻性负载,调节主控制屏输出电压 Uuv、Uvw、Uwv,从 0V 调至 110V: (a)改变控制电压 Uct,观察在不同触发移相角α时,可控整流电路的输出电压 Ud=f
(t)与输出电流波形 id=f(t),并记录相应的 Ud、Id、Uct 值。
硅时断时续。 3.NMCL-05 面板的锯齿波触发脉冲需导线连到 NMCL-33 面板,应注意连线不可接 错,否则易造成损坏可控硅。同时,需要注意同步电压的相位,若出现可控硅移相范围太 小(正常范围约 30°~180°),可尝试改变同步电压极性。 4.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。
八.思考
1. 能否用双踪示波器同时观察触发电路与整流电路的波形?
实验三
单相桥式全控整流电路
一.实验目的
1.了解单相桥式全控整流电路的工作原理。 2.研究单相桥式全控整流电路在电阻负载时的工作。 3.熟悉 NMCL—05 组件。
二.实验线路及原理
参见图 1-3。
三.实验内容
1.单相桥式全控整流电路供电给电阻负载。
确,确定其输出脉冲可调的移相范围。并调节偏移电阻 RP2,使 Uct=0 时,α=150°。 2.单相桥式晶闸管半控整流电路供电给电阻性负载: 按图 1-2 接线。调节电阻负载 RD(可选择 900Ω电阻并联,最大电流为 0.8A)至最大。 (a)NMCL-31A 的给定电位器 RP1 逆时针调到底,使 Uct=0。 三相调压器逆时针调到底,合上主电路电源,调节主控制屏输出 Uuv=220V。 调节 NMCL-31A 的给定电位器 RP1, 使α=90°, 测取此时整流电路的输出电压 Ud=f (t) 以及晶闸管端电压 UVT=f(t)波形,并测定交流输入电压 U2、整流输出电压 Ud,验证
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录实验一锯齿波同步移相触发电路及单相半波可控实验 (3)实验二单相桥式半控整流电路实验 (6)实验三单相桥式全控整流电路实验 (8)实验四基于SG3525的PWM脉宽调制研究 (10)实验五DC-DC变换路实验 (16)实验六SPWM变换实验 (18)实验七六种直流斩波电路实验 (19)实验八GTR、MOSFET、IGBT的特性与驱动电路研究 (21)实验安全及注意事项本实验箱需双通道示波器配合来完成实验,双踪示波器两个测试通道的地线内部是连通的,并且与示波器的外壳相连接,所以两个通道不能同时观察同一电路中的两个不同电位的波形,否则将使这两点通过示波器发生电气短路。
因此,在实验过程中应将其中一各通道探头的地线取下或不使用,只能使用其中一个通道探头的地线。
需要同时观察两个信号时,应需在电路中找到这两个被测信号的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器上同时观察到两个信号,而不会导致事故意外。
为更好的完成实验,在电路中设置了很多观察点,实验时应严格按照实验操作步骤,否则将无法完成实验,甚至烧坏设备。
在实验过程中应始终遵守先接线并检查电路后再通电的原则,实验过程中不得带电更改接线。
实验发生意外时,应立即切断外部电源,防止造成设备大面积损坏或触电事故。
实验一 锯齿波同步移相触发电路及单相半波可控实验一.实验目的1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。
2.掌握锯齿波同步触发电路的调试方法。
二.实验内容1.锯齿波同步触发电路的调试。
2.锯齿波同步触发电路各点波形观察,分析。
三.实验线路及原理锯齿波同步移相触发电路主要由脉冲形成和放大,锯齿波形成,同步移相等环节组成,其工作原理可参见“电力电子技术”有关教材。
四.实验设备及仪器1.EPE-IIII 实验箱 2.双踪示波器(自备) 3.万用表(自备)五.实验方法1.将插板JMCL-36-05插入实验箱上的插板区,用示波器观察各观察孔的电压波形,示波器的地线接于“7”端。
同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。
观察“3”~“5”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,了解各波形的幅值与宽度。
2.调节脉冲移相范围将实验箱上的“Ug ”输出电压调至0V ,即将控制电压Uct 调至零,用示波器观察U 2电压(即“1”孔)及U 6的波形,调节偏移电压U b (即调RP1),使α=180O 。
调节实验箱上的给定电位器RP ,增加U ct ,观察脉冲的移动情况,要求Uct=0时,α=180O ,Uct=U max 时,α=30O ,以满足移相范围α=30O ~180O 的要求。
调节U ct ,使α=60O ,观察并记录U 1~U 5及输出脉冲电压U G1K1,U G2K2的波形,并标出其幅值与宽度。
用导线连接“K1”和“K3”端,用双踪示波器观察U G1K1和U G3K3的波形,调节电位器RP2,使U G1K1和U G3K3间隔1800。
3.单相半波可控整流电路带电阻性负载按照图1-1接线,调节电位器RP1,分别用示波器观察α=30°、60°、90°、120°时负载电压U d ,晶闸管VT1的阳极、阴极电压波形U Vt 。
并测定U d 及电源电压U 2,验证2cos 1245.0α+=U U dα30°60°90°120°U2,u dU dU24.单相桥式半控整流电路供电给电机负载将主电路两端接至灯泡两端的线断开,接至直流电机两端。
(a)调节U g,使α=90°,测取输出电压U d=f(t),整流电路输出电流i d=f(t)波形,并分析两者的关系。
(b)调节U g,使α分别等于60°、90°时,测取U d,i d,i VD波形。
六.实验报告1.整理,描绘实验中记录的各点波形,并标出幅值与宽度。
2.总结锯齿波同步触发电路移相范围的调试方法,移相范围的大小与哪些参数有关?3.如果要求U ct=0时, =90O,应如何调整?4.画出电阻性负载,α=90°时,U d=f(t),U vt=f(t),i d=f(t)波形。
七.注意事项1.双踪示波器有两个探头,可以同时测量两个信号,但这两个探头的地线都与示波器的外壳相连接,所以两个探头的地线不能同时接在某一电路的不同两点上,否则将使这两点通过示波器发生电气短路。
为此,在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根地线。
当需要同时观察两个信号时,必须在电路上找到这两个被测信号的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器上同时观察到两个信号,而不致发生意外。
2.为保护整流元件不受损坏,需注意实验步骤:(1)在主电路不接通电源时,调试触发电路,使之正常工作。
(2)在控制电压U ct=0时,接通主电路电源,然后逐渐加大U ct,使整流电路投入工作。
(3)正确选择负载电阻或电感,须注意防止过流。
在不能确定的情况下,尽可能选择较大的电阻或电感,然后根据电流值来调整。
(4)晶闸管具有一定的维持电流I H,只有流过晶闸管的电流大于I H,晶闸管才可靠导通。
实验中,若负载电流太小,可能出现晶闸管时通时断,所以实验中,应保持负载电流不小于100mA。
实验二 单相桥式半控整流电路实验一.实验目的1.了解单相桥式全控整流电路的工作原理。
2.单相桥式半控整流电路在灯泡负载和电机负载时的两种工作状态。
二.实验内容1.单相桥式半控整流电路供电给灯泡负载。
2.单相桥式半控整流电路供电给电机负载。
三.实验设备及仪器1.EPE-II 实验箱 2.双踪示波器(自备) 3.万用表(自备)四.实验方法1.在实验箱没有接通电源时,将插板JMCL-36-05插入实验箱的插板区,按图2-1将所有线连接上,并检查线连接是否正确,并且将触发电路的G1、K1及G3、K3接至主电路可控硅的G1、K1及G3、K3。
将锯齿波触发电路中RP1旋钮顺时针调节到底;给定部分的RP 逆时针调到底,开关拨至正给定,然后接通电源。
2.单相桥式半控整流电路供电给灯泡负载调节给定电位器RP ,使α=90°,测取此时整流电路的输出电压(灯泡负载两端)U d =f (t ),输出电流i d =f (t )以及晶闸管端电压U VT =f (t )波形,并测定交流输入电压U 2、整流输出电压U d ,验证 2co s 19.02α+=U U d分别测取α=60°,α=30°时的U d 、i d 、U vt 波形。
3.单相桥式半控整流电路供电给电机负载将主电路两端接至灯泡两端的线断开,接至直流电机两端。
(a )调节U g ,使α=90°,测取输出电压U d =f (t ),整流电路输出电流i d =f (t )波形,并分析两者的关系。
(b )调节U g ,使α分别等于60°、90°时,测取U d , i d ,i VD 波形。
五.实验报告1.绘出单相桥式半控整流电路供电给灯泡负载和电机负载情况下,当α=90°时的U d 、i d 、U VT 、i VD 等波形图并加以分析。
2.作出实验整流电路的输入—输出特性U d =f (U ct ),触发电路特性U ct =f (α)及U d /U 2=f (α)曲线。
实验三单相桥式全控整流电路实验一.实验目的1.了解单相桥式全控整流电路的工作原理。
2.研究单相桥式全控整流电路在灯泡负载、电机负载时的工作状态。
二.实验内容1.单相桥式全控整流电路供电给电阻负载。
2.单相桥式全控整流电路供电给电阻—电感性负载。
三.实验设备及仪器1.EPE-II实验箱2.双踪示波器(自备)3.万用表(自备)四.实验方法1.在实验箱没有接通电源时,将插板JMCL-36-05插入实验箱的插板区,按图3-1将所有线连接上,并检查线连接是否正确,并且将触发电路的G1、K1;G2、K2;G3、K3及G4、K4接至主电路可控硅的G1、K1;G2、K2;G3、K3及G4、K4。
将锯齿波触发电路中RP1旋钮顺时针调节到底;给定部分的RP逆时针调到底,开关拨至正给定,然后接通电源。
2.单相桥式全控整流电路供电给灯泡负载。
调节U g,求取在不同α角(30°、60°、90°)时整流电路的输出电压U d=f(t),晶闸管的端电压U VT=f(t)的波形,并记录相应α时的U ct、U d和交流输入电压U2值。
3.单相桥式全控整流电路供电给电机负载。
在不同控制电压U ct时的输出电压U d=f(t),负载电流i d=f(t)以及晶闸管端电压U VT=f(t)波形并记录相应U ct时的U d、U2值。
五.实验报告1.绘出单相桥式晶闸管全控整流电路供电给灯泡负载情况下,当α=60°,90°时的U d、U VT波形,并加以分析。
2.绘出单相桥式晶闸管全控整流电路供电给电机负载情况下,当α=90°时的U d、i d、U VT波形,并加以分析。
3.作出实验整流电路的输入—输出特性U d=f(U ct),触发电路特性U ct=f(α)及U d/U2=f(α)。
实验四基于SG3525的PWM脉宽调制研究一.实验目的1.了解SG3525芯片的内部结构及外围电路。
2.熟悉SG3525芯片的工作原理。
二.实验内容1.SG3525芯片的工作频率测试。
2.测试SG3525芯片发生PWM波形的占空比变化范围。
三.实验设备及仪表1.EPE-II实验箱2.双踪示波器(自备)3.万用表(自备)四.芯片简介1.SG3525A系列脉宽调制器控制电路可以改进为各种类型的开关电源的控制性能和使用较少的外部零件。
在芯片上的5.1V基准电压调定在±1%,误差放大器有一个输入共模电压范围。
它包括基准电压,这样就不需要外接的分压电阻器了。
一个到振荡器的同步输入可以使多个单元成为从电路或一个单元和外部系统时钟同步。
在C T和放电脚之间用单个电阻器连接即可对死区时间进行大范围的编程。
在这些器件内部还有软起动电路,它只需要一个外部的定时电容器。
一只断路脚同时控制软起动电路和输出级。
只要用脉冲关断,通过PWM(脉宽调制)锁存器瞬时切断和具有较长关断命令的软起动再循环。
当V CC低于标称值时欠电压锁定禁止输出和改变软起动电容器。
输出级是推挽式的可以提供超过200mA的源和漏电流。
SG3525A系列的NOR(或非)逻辑在断开状态时输出为低。
·工作范围为8.0V到35V·5.1V±1.0%调定的基准电压·100Hz到400KHz振荡器频率·分立的振荡器同步脚2.SG3525A内部结构和工作特性(1)基准电压调整器基准电压调整器是输出为5.1V,50mA,有短路电流保护的电压调整器。