2018年秋人教版八年级数学上册第13章【轴对称】单元试卷一及答案

合集下载

【人教版】2018-2019年秋八年级上册数学:第13章轴对称单元测试(含答案)

【人教版】2018-2019年秋八年级上册数学:第13章轴对称单元测试(含答案)

第十三章轴对称单元测试一、单选题(共10题;共30分)1、下列图形中一定是轴对称图形的是()A、梯形B、直角三角形C、角D、平行四边形2、如图所示几何图形中,一定是轴对称图形的有几个()A、2B、3C、4D、53、点A(3,4)关于x轴对称的点B的坐标为().A、(6,4)B、(-3,5)C、(-3,-4)D、(3,-4)4、已知两角及夹边作三角形,所用的基本作图方法是()A、作已知角的平分线B、作已知线段的垂直平分线C、过一点作已知直线的高D、作一个角等于已知角和作一条线段等于已知线段5、已知等腰三角形的一边长为5,另两边的长是方程x2﹣6x+m=0的两根,则此等腰三角形的周长为()A、10B、11C、10或11D、11或126、如图,直线l:y=﹣x+b,点M(3,2)关于直线l的对称点M1落在y轴上,则b的值等于()A、3B、2C、1或2D、2或37、把经过点(﹣1,1)和(1,3)的直线向右移动2个单位后过点(3,a),则a的值为()A、1B、2C、3D、48、点N(a,﹣b)关于y轴的对称点是坐标是()A、(﹣a,b)B、(﹣a,﹣b)C、(a,b)D、(﹣b,a)9、若等腰三角形的两边长分别是3和6,则这个三角形的周长是()A、12B、15C、12或15D、910、下列几何图形中,既是轴对称图形,又是中心对称图形的是()A、等腰三角形B、正三角形C、平行四边形D、正方形二、填空题(共8题;共24分)11、一个大的等腰三角形能被分割为两个小等腰三角形,则该大等腰三角形顶角的度数是________.12、已知等腰三角形的一边长等于4cm,另一边长等于9cm,则此三角形的周长为________cm.13、如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连接CE,则CE的长为________14、如图,在△ABC中,AB的垂直平分线分别交AB,AC于D,E两点,若AC=9cm,BC=5cm,则△BCE的周长为________cm.15、如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则△ABP周长的最小值是________.。

人教版八年级数学上册单元测试题及答案:第13章 轴对称

人教版八年级数学上册单元测试题及答案:第13章 轴对称

数学人教版八年级上第十三章轴对称单元检测一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.下列由数字组成的图形中,是轴对称图形的是().2.下列语句中正确的个数是().①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.43.已知等腰△ABC的周长为18 cm,BC=8 cm,若△ABC与△A′B′C′全等,则△A′B′C′的腰长等于().A.8 cm B.2 cm或8 cmC.5 cm D.8 cm或5 cm4.已知等腰三角形的一个角等于42°,则它的底角为().A.42°B.69°C.69°或84°D.42°或69°5.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论中正确的有().①A、B关于x轴对称;②A、B关于y轴对称;③A、B不轴对称;④A、B之间的距离为4.A.1个B.2个C.3个D.4个6.如图所示,Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中一定不相等的线段有().A.AC=AE=BE B.AD=BDC.CD=DE D.AC=BD7.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是().8.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是().A.1号袋B.2号袋C.3号袋D.4号袋二、填空题(本大题共8小题,每小题3分,共24分.把正确答案填在题中横线上)9.观察规律并填空:10.点E(a,-5)与点F(-2,b)关于y轴对称,则a=__________,b=__________.11.如图,在等边△ABC中,AD⊥BC,AB=5 cm,则DC的长为__________.(第11题图)(第12题图)12.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,若BD=10,则CD=__________.13.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠P AQ的度数是__________.14.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=__________.(第13题图) (第14题图)15.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为__________.16.如图,是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=8 m,∠A=30°,则DE长为__________.三、解答题(本大题共5小题,共52分)17.(本题满分10分)如图,在△ABC中,AB=AC,△ABC的两条中线BD、CE交于O 点,求证:OB=OC.18.(本题满分10分)△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的三角形△A1B1C1;(2)将△ABC向下平移3个单位长度,画出平移后的△A2B2C2.19.(本题满分10分)如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,求∠B的度数.20.(本题满分10分)如图,E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G).21.(本题满分12分)如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BC相交于点P,BE与CD相交于点Q,连接PQ.求证:△PCQ为等边三角形.参考答案1.A点拨:数字图案一般是沿中间竖直线或水平线折叠,看是否是轴对称图形,只有A选项是轴对称图形.2.B点拨:①③正确,②④不正确,其中④对应点还可能在对称轴上.3.D点拨:因为BC是腰是底不确定,因而有两种可能,当BC是底时,△ABC的腰长是5 cm,当BC是腰时,腰长就是8 cm,且均能构成三角形,因为△A′B′C′与△ABC 全等,所以△A′B′C′的腰长也有两种相同的情况:8 cm或5 cm.4.D点拨:在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.①42°的角为等腰三角形底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角存在两种情况,∴42°或69°.5.B点拨:①③不正确,②④正确.6.D点拨:DE垂直平分AB,∠B=30°,所以AD平分∠CAB,由角平分线性质和线段垂直平分线性质可知A、B、C都正确,且AC≠AD=BD,故D错误.7.C点拨:经过三次轴对称折叠,再剪切,得到的图案是C图(也可将各选项图案按原步骤折叠复原).8.B点拨:本题中的台球经过多次反射,每一次的反射就是一次轴对称变换,直到最后落入球袋,可用轴对称作图(如图),该球最后将落入2号袋.9.点拨:观察可知本题图案是两个数字相同,且轴对称,由排列可知是相同的偶数数字构成的,故此题答案为6组成的轴对称图形.10.2-5点拨:点E、F关于y轴对称,横坐标互为相反数,纵坐标不变.11.2.5 cm点拨:△ABC为等边三角形,AB=BC=CA,AD⊥BC,所以点D平分BC.所以DC=12BC=2.5 cm.12.5点拨:∠C=90°,∠A=30°,则∠ABC=60°,BD是∠ABC的平分线,则∠CBD=30°,所以CD=12BD=5.13.40°点拨:因为MP、NQ分别垂直平分AB和AC,所以P A=PB,QA=QC,∠P AB=∠B,∠QAC=∠C,∠P AB+∠QAC=∠C+∠B=180°-110°=70°,所以∠P AQ的度数是40°.14.25°点拨:设∠C=x,那么∠ADB=∠B=2x,因为∠ADB+∠B+∠BAD=180°,代入解得x=25°.15.60°或120°点拨:有两种可能,如下图(1)和图(2),AB=AC,CD为一腰上的高,过A点作底边BC的垂线,图(1)中,∠BAC=60°,图(2)中,∠BAC=120°.16.2 m点拨:根据30°角所对的直角边是斜边的一半,可知DE=12AD=14AB=2m.17.证明:∵BD、CE分别是AC、AB边上的中线,∴BE=12AB,CD=12AC.又∵AB=AC,∴BE=CD.在△BCE和△CBD中,,,,BE CDABC ACB BC CB=⎧⎪∠=∠⎨⎪=⎩∴△BCE≌△CBD(SAS).∴∠ECB=∠DBC.∴OB=OC.18.解:(1)如图所示的△A1B1C1.(2)如图所示的△A2B2C2.19. 解:如图,在CH上截取DH=BH,连接AD,∵AH⊥BC,∴AH垂直平分BD.∴AB=AD.∴∠B=∠ADB.∵AB+BH=HC,∴AD+DH=HC=DH+CD.∴AD=CD.∴∠C=∠DAC=35°.∴∠B=∠ADB=∠C+∠DAC=70°.20. 证明:如图,过D作DG∥AC交BC于G,则∠GDF=∠E,∠DGB=∠ACB,在△DFG 和△EFC 中,∴△DFG ≌△EFC(ASA).∴CE=GD ,∵BD=CE.∴BD=GD. ∴∠B=∠DGB.∴∠B=∠ACB. ∴△ABC 为等腰三角形. 21. 证明:如图,∵△ABC 和△CDE 为等边三角形,∴AC =BC ,CE =CD ,∠ACB =∠ECD =60°. ∴∠ACB +∠3=∠ECD +∠3, 即∠ACD =∠BCE . 又∵C 在线段AE 上, ∴∠3=60°.在△ACD 和△BCE 中,,,,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE .∴∠1=∠2. 在△APC 和△BQC 中,,12,360,AC BC ACB =⎧⎪∠=∠⎨⎪∠=∠=︒⎩∴△APC ≌△BQC .∴CP =CQ .∴△PCQ 为等边三角形(有一个角是60°的等腰三角形是等边三角形).。

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)一、单选题1.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列黑体字中,属于轴对称图形的是( )A .善B .勤C .健D .朴4.如图,在已知的ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD .若4AC =,10AB =,则ACD 的周长为( )A .8B .9C .10D .145.图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A .A 点B .B 点C .C 点D .D 点6.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AED '=50°,则∠EFC 等于( )A .65°B .110°C .115°D .130°7.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .188.如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒9.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形10.如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .811.如图,在△ABC 中,AD 是BC 边上的高,∠BAF =∠CAG =90°,AB =AF ,AC =AG ,连接FG ,交DA 的延长线于点E ,连接BG ,CF , 则下列结论:①BG =CF ;②BG ⊥CF ;③∠EAF =∠ABC ;④EF =EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④ 12.如图,在ABC 中,45,ABC AD BE ∠=︒,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC ∠=∠;③CF AB ⊥;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④二、填空题13.已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.14.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.15.如图,△ABC 的边CB 关于CA 的对称线段是CB ',边CA 关于CB 的对称线段是CA ',连结BB ',若点A '落在BB '所在的直线上,∠ABB '=56°,则∠ACB =___度.16.如图,在ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC △是等边三角形,则B ∠=_________°.17.如图,在等边△ABC 中,点E 是边AC 上一点,AD 为BC 边上的中线,AD 、BE 相交于点F ,若∠AEB =100°,则∠AFB 的度数为_____.18.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=________°.三、解答题19.已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.20.如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)当点D 在AC 上时,如图①,线段BD ,CE 有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的ADE 绕点A 顺时针旋转()090αα︒<<︒,如图②,线段BD ,CE 有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边ABC 和等边ADE 如图③所示,求线段BD 的延长线和线段CE 所夹锐角的度数.21.如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 、BE ,BE AE ⊥,延长AE 交BC 的延长线于点F .(1)请判断FC 与AD 的数量关系,并说明理由;(2)若AB =6,AD =2,求BC 的长度.22.已知△ABC 和△DEF 为等腰三角形,AB =AC ,DE =DF ,∠BAC =∠EDF ,点E 在AB 上,点F 在射线AC 上.(1)如图1,若∠BAC =60°,点F 与点C 重合,求证:AF =AE +AD ;(2)如图2,若AD =AB ,求证:AF =AE +BC .23.(1)如图1,在等边三角形ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 相交于点O .求证:OA =2DO ;(2)如图2,若点G 是线段AD 上一点,CG 平分∠BCE ,∠BGF =60°,GF 交CE 所在直线于点F .求证:GB =GF .(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作∠BGF =60°边GF 交CE 所在直线于点F .猜想:OG 、OF 、OA 三条线段之间的数量关系,并证明.24.如图,在ABC 中,AD BC ⊥,AD BD =;点F 在AD 上,DF DC =.连接BF 并延长交AC 于E .(1)求证:BF AC =;(2)求证:BE AC ⊥;(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.25.如图,在Rt ABC 中,9030C A ∠=︒∠=︒,.点D 是AB 中点,点E 为边AC 上一点,连接CD DE ,,以DE 为边在DE 的左侧作等边三角形DEF ,连接BF .△的形状为______;(1)BCD(2)随着点E位置的变化,DBF∠的度数是否变化?并结合图说明你的理由;AC=,请直接写出DE的长.(3)当点F落在边AC上时,若626.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=30°,求∠ACF度数.27.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.28.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)若BQ⊥AD于Q,PQ=6,PE=2,求AD的长。

八年级数学上册《第十三章轴对称》单元试题(人教版含答案)

八年级数学上册《第十三章轴对称》单元试题(人教版含答案)

第十三章《轴对称》单元练习题一、选择题1.如果一个三角形的外角平分线与这个三角形一边平行,则这个三角形一定是()A.锐角三角形B.等腰三角形C.等边三角形D.等腰直角三角形2.如图,在△ABC中,AB=AC,∠ABC=70°,顶点B在直线DE上,且DE∥AC,则∠CBE等于()A. 40°B. 50°C. 70°D. 80°3.若A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),则P(a,b)关于x轴对称点P1的坐标是()A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(2,1)4.如图,在△ABC中,AB=AC=8,BC=5,AB的垂直平分线交AC于D,则△BCD的周长为()A. 13B. 15C. 18D. 215.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ 时,连接PQ交AC于点D,下列结论中不一定正确的是()A.PD=DQB.DE=ACC.AE=CQD.PQ⊥AB6.已知a,b,c是三角形的三边长,如果满足(a﹣b)2++|c2﹣64|=0,则三角形的形状是()A.底和腰不相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形7.以下列各组数据为边长,可以构成等腰三角形的是()A. 2,3,4B. 5,5,10C. 2,2,1D. 1,2,38.要使得△ABC是等腰三角形,则需要满足下列条件中的()A.∠A=50°,∠B=60°B.∠A=50°,∠B=100°C.∠A+∠B=90°D.∠A+∠B=90°二、填空题(9.如图,等边△ABC周长是12,AD是∠BAC的平分线,则BD=.10.如图的4×4的正方形网格中,有A、B、C、D四点,直线a上求一点P,使PA+PB最短,则点P应选点(C或D).11.在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若三角形ABC 的边长为1,AE=2,则CD的长为.12.如图,△ABC与△A′B′C′关于直线l对称,则∠C′的度数为.13.如图,在△ABC中,D为AB上的一点,且DE垂直平分AC,∠B=115°,且∠ACD:∠BCD=5:3,则∠ACB=__________度.14.如图,在△ABC中,AB=AC,BC=8,AD平分∠BAC,则BD=____________.15.如图,△ABC是等边三角形,则∠ABD=度.16.如图将边长为5cm的等边△ABC,沿BC向右平移3cm,得到△DEF,DE交AC于M,则△MEC是三角形,DM=cm.三、解答题17.如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点M.(1)在给出图上画出一个格点△MB1C1,并使它与△ABC全等且A与M是对应点;(2)画出点B关于直线AC的对称点D.19.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(2,3),B(3,1),C(-2,-2).(1)请在图中作出△ABC关于y轴的轴对称图形△A′B′C′(A,B,C的对称点分别是A′,B′,C′),并直接写出A′,B′,C′的坐标.(2)求△A′B′C′的面积.20.如图,已知五边形ABCDE是轴对称图形,点B,E是一对对称点,请用无刻度的直尺画出该图形的对称轴.(保留作图痕迹,不要求写作法)21.在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角形的三边长.第十三章《轴对称》单元练习题答案解析1.【答案】B【解析】可依据题意线作出简单的图形,结合图形可得∠B=∠A,进而可得其为等腰三角形.解:如图,DC平分∠ACE,且AB∥CD,∴∠ACD=∠DCE,∠A=∠ACD,∠B=∠DCE∴∠B=∠A,∴△ABC为等腰三角形.故选B2.【答案】C【解析】由已知AB=AC,∠ABC=70°,根据等腰三角形的性质,得出∠C的度数,再利用DE∥AC,可得∠CBE=70°,答案可得.解:∵AB=AC(已知),∴∠C=∠ABC=70°(等边对等角),又∵DE∥AC(已知),∴∠CBE=∠C=70°(两直线平行,内错角相等)故选C.3.【答案】C【解析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得方程组,根据解方程组,可得P点坐标,根据关于关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.解:由A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),得2a-b=-3,a+b=-3,所以a=-2,b=-1,∴P(﹣2,﹣1).P(a,b)关于x轴对称点P1的坐标是(﹣2,1),故选:C.4.【答案】A【解析】根据线段垂直平分线的性质得出AD=BD,进而得出△BCD的周长为:CD+BD+BC=AC+BC求出即可.解:∵AB=AC=8,BC=5,AB的垂直平分线交AC于D,∴AD=BD,∴△BCD的周长为:CD+BD+BC=AC+BC=8+5=13.故选A.5.【答案】D【解析】过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ中,∠FPD=∠Q,∠FDE=∠CDQ,PF=CQ∴△PFD≌△QCD,∴PD=DQ,DF=CE,∴A选项正确,∵AE=EF,∴DE=AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=AP=CQ,∴C选项正确,故选D.6.【答案】B【解析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,再根据勾股定理的逆定理判断其形状是直角三角形.解:由(a﹣b)2++|c2﹣64|=0得:a﹣b=0,b﹣8=0,c2﹣64=0,又a,b,c是三角形的三边长,∴a=8,b=8,c=8,所以三角形的形状是等边三角形,故选:B.7.【答案】C【解析】根据三角形的三边关系对以下选项进行一一分析、判断.解:A.∵2≠3≠4,∴本组数据不可以构成等腰三角形;故本选项错误;B.∵5+5=10,∴本组数据不可以构成三角形;故本选项错误;C.∵1+2>2,∴本组数据可以构成等腰三角形;故本选项正确;D.∵1+2=3,∴本组数据不可以构成三角形;故本选项错误.故选C.8.【答案】D【解析】等腰三角形有两个底角相等,根据三角形的内角和是180°,进行判断即可.解:A、若∠A是顶角时,则50°+120°<180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在50°+50°+160°<180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;B、若∠A是顶角时,则50°+200°>180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在100°+100°>180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;C、当∠A+∠B=90°时,∠C=90°;但∠A=10°,∠B=80°时,三角形ABC的三个内角没有那两个相等,所以构不成等腰三角形;故本选项错误;D、当∠B是顶角时,则2∠A+∠B=180°,∴∠A+∠B=90°;故本选项正确;故选D.9.【答案】2【解析】根据等边三角形的性质求得BD=CD,并且求得边BC的长度,进而即可求得BD的长.解:∵△ABC是等边三角形,AD是∠BAC的平分线,∴AB=BC=CA,BD=CD,∵等边△ABC周长是12,∴BC=4,∴BD=2.故答案为2.10.【答案】C【解析】首先求得点A关于直线a的对称点A′,连接A′B,即可求得答案.解:如图,点A′是点A关于直线a的对称点,连接A′B,则A′B与直线a的交点,即为点P,此时PA+PB最短,∵A′B与直线a交于点C,∴点P应选C点.故答案为:C.11.【答案】1或3【解析】当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF﹣BC求出CF的长,即可得到CD的长;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=∠EBF=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF+BC求出CF的长,即可得到CD的长.解:当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,可得∠EFB=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=60°,∴∠BEF=30°,∵BE=AB+AE=1+2=3,∴FB=12EB=32,∴CF=FB﹣BC=12,则CD=2CF=1;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,可得∠EFC=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=∠EBF=60°,∴∠BEF=30°,∵BE=AE﹣AB=2﹣1=1,∴FB=12BE=12,∴CF=BC+FB=32,则CD=2CF=3,综上,CD的值为1或3.故答案为:1或3.12.【答案】20°【解析】根据轴对称的性质求出∠A′,再利用三角形的内角和等于180°列式计算即可得解.解:∵△ABC与△A′B′C′关于直线l对称,∴∠A′=∠A=50°,在△A′B′C′中,∠C′=180°﹣∠A′﹣∠B′=180°﹣50°﹣110°=20°.故答案为:20°.13.【答案】40【解析】根据垂直平分线的性质与三角形的全等可以得出∠A=∠ACD,再根据三角形的内角和和角的比计算.解:∵DE垂直平分AC,∴EA=EC,AD=CD,∠ADE=∠CDE=90°∴Rt△ADE≌Rt△CDE∴∠A=∠ACD又∵∠ACD:∠BCD=5:3,∴∠ACD:∠ACB=5:8∴∠A:∠ACB=5:8又∵∠B=115°∴∠A+∠ACB=65°∴∠ACB=(65×8)÷13=40°.14.【答案】4【解析】根据三线合一定理即可求解.解:∵AB=AC,AD平分∠BAC,∴BD=BC=4.故答案是:4.15.【答案】120【解析】根据△ABC是等边三角形,得出∠ABC的度数,进而求出∠ABD的度数即可.解:∵△ABC是等边三角形,∴∠ABC=60°,则∠ABD=120°.故答案为:120.16.【答案】等边 3【解析】本题考查平移的性质,经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等.解:∵AB∥DE,∴∠MEC=∠B,∠CME=∠A,∵△ABC是等边三角形,∴∠MEC=∠EMC=∠ACB,∴△MEC是等边三角形,沿BC向右平移3cm,∴BE=3cm,EC=2cm,∴DM=DE﹣EM=5﹣2=3cm.17.【答案】证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).【解析】根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.18.【答案】解:(1)△MB1C1即为所求;(2)如图所示,点D即为所求点.【解析】(1)把△ABC向右平移,使点A与点M重合即可;(2)画出点B关于直线AC的对称点D即可.19.【答案】解:(1)如图:(2)△A′B′C′的面积=5×5-×5×3-=6.5.【解析】(1)分别作出点A,B,C的对称点A′,B′,C′,然后顺次连接各点即可,根据图形然后直接写出A′,B′,C′的坐标;(2)利用图形的面积的和差关系可计算出△A′B′C′的面积.20.【答案】如图所示,直线AK即为所求的一条对称轴(解答不唯一).【解析】方法不唯一,至少可以有以上两种方法.如左图所示,因为五边形ABCDE是轴对称图形,点B,E是一对对称点,则C,D为一对对称点,故连接BD,CE,可以利用三角形全等说明K即为所求.第二幅图,因为五边形ABCDE是轴对称图形,点B,E是一对对称点,故延长BC,延长ED,则两线的交点必然为对称轴上一点,故连接AK即可.21.【答案】解:设三角形的腰AB=AC=x cm若AB+AD=24cm,则:x+x=24∴x=16三角形的周长为24+30=54(cm)所以三边长分别为16cm,16cm,22cm;若AB+AD=30cm,则:x+x=30∴x=20∵三角形的周长为24+30=54(cm)∴三边长分别为20cm,20cm,14cm;因此,三角形的三边长为16cm,16cm,22cm或20cm,20cm,14cm.【解析】两种情况讨论:当AB+AD=30 cm,BC+DC=24 cm或AB+AD=24 cm,BC+DC=30 cm,所以根据等腰三角形的两腰相等和中线的性质可求得,三边长为16cm,16cm,22cm或20cm,20cm,14cm.。

2018年秋人教版八年级数学上册第十三章轴对称检测卷-精选学习文档

2018年秋人教版八年级数学上册第十三章轴对称检测卷-精选学习文档

第十三章检测卷时间:120分钟满分:150分一、选择题(本大题共10小题,每小题4分,满分40分)1.下列瑜伽动作中,可以看成轴对称图形的是()2.平面直角坐标系中,点(-2,4)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,△ABC是等边三角形,则∠1+∠2的度数为()A.60°B.90°C.120°D.180°4.如图,如果直线MC是多边形ABCDE的对称轴,其中∠A=∠B=110°,那么∠BCD 的度数为()A.110°B.100°C.70°D.50°5.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里6.如图,在等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13 B.14 C.15 D.167.等腰三角形的一个角为50°,则这个等腰三角形的顶角可能为()A.50°B.65°C.80°D.50°或80°8.如图,在△ABC中,∠B=30°,AB=4,BC=5,则△ABC的面积为()A.5 B.10 C.15 D.209.如图,在△ABC中,AB=AC,以AB、AC为边在△ABC的外侧作两个等边三角形△ABE和△ACD,且∠EDC=45°,则∠ABC的度数为()A.75°B.80°C.70°D.85°10.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF的度数为()A.90°B.75°C.70°D.60°二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,在等边△ABC中,AD为BC边上的高.若AB=6,则CD的长为________.12.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为________.13.如图,点P是∠AOB外一点,点M、N分别是∠AOB两边上的点,点P关于OA 的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在线段MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为________.14.如图,在等边△ABC中,AB=2,D为△ABC内一点,且DA=DB,E为△ABC外一点,BE=AB,且∠EBD=∠CBD,连接AE,DE,CE.下列结论:①∠DAC=∠DBC;②BE⊥AC;③∠DEB=30°;④若EC∥AD,则S△EBC=1.其中正确的结论有________(填序号).三、(本大题共2小题,每小题8分,满分16分)15.下列图形中,哪些是轴对称图形?是轴对称图形的,画出它的所有对称轴.16.如图,AB =AC ,AE 平分△ABC 的外角∠DAC ,那么AE ∥BC 吗?为什么?四、(本大题共2小题,每小题8分,满分16分)17.如图,AB =AC ,AC 的垂直平分线DE 交AB 于D ,交AC 于E ,BC =6,△BDC 的周长为15,求AC 的长.18.如图,在△ABC 中,AC =BC ,AD 平分∠BAC ,∠ADC =60°,求∠C 的度数.五、(本大题共2小题,每小题10分,满分20分)19.如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB ,过O 作DE ∥BC ,分别交AB 、AC 于点D 、E ,若BD +CE =5,求线段DE 的长.20.如图,在平面直角坐标系xOy 中,A (-1,5),B (-1,0),C (-4,3).(1)求出△ABC 的面积;(2)在图中作出△ABC 关于y 轴对称的图形△A 1B 1C 1;(3)写出点A 1,B 1,C 1的坐标.六、(本题满分12分)21.如图,在四边形ADBC 中,AC =AD ,∠ACB =90°,∠CAD =60°,连接AB ,CD 交于点O ,∠BAC =30°.(1)求证:AB 垂直平分CD ;(2)若AB =6,求BD 的长.七、(本题满分12分)22.如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在边AB 、BC 、AC 上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.八、(本题满分14分)23.如图,△ABC 是边长为6的等边三角形,P 是AC 边上一动点,由A 向C 运动(与A 、C 不重合),Q 是CB 延长线上一点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B 重合),过点P 作PE ⊥AB 于点E ,连接PQ 交AB 于点D .(1)当∠BQD =30°时,求AP 的长;(2)求证:在运动过程中,点D 是线段PQ 的中点;(3)在运动过程中线段ED 的长是否发生变化?如果不变,求出线段ED 的长;如果变化,请说明理由.参考答案与解析1.A 2.C 3.C 4.B 5.D 6.A 7.D 8.A 9.A10.D 解析:∵∠A =15°,AB =BC ,CB =CD ,∴∠CDB =∠CBD =2∠A =30°.∵CE =CD ,∴∠DEA =∠ECD =∠A +∠CDB =45°,∴∠EDF =∠A +∠AED =60°.∵ED =EF ,∴△EDF 为等边三角形,∴∠DEF =60°.11.3 12.-10 13.4.5cm14.①③④ 解析:连接DC .∵△ABC 是等边三角形,∴AB =BC =AC ,∠ACB =60°.在△ACD 与△BCD 中,⎩⎪⎨⎪⎧AC =BC ,DA =DB ,DC =DC ,∴△ACD ≌△BCD (SSS),∴∠ACD =∠BCD =12∠ACB =30°,∠DAC =∠DBC ,∴结论①正确;∵BE =AB ,∴BE =BC .在△BED 与△BCD 中,⎩⎪⎨⎪⎧BE =BC ,∠EBD =∠CBD ,BD =BD ,∴△BED ≌△BCD (SAS),∴∠DEB =∠DCB =30°,∴结论③正确;∵EC ∥AD ,∴∠DAC =∠ECA .∵∠DBE =∠DBC ,∠DAC =∠DBC ,∴设∠ECA =∠DBC =∠DBE =∠1.∵BE =BC ,∴∠BCE =∠BEC =60°+∠1.在△BCE 中,∠CBE +∠BCE +∠BEC =180°,∴2∠1+2(60°+∠1)=180°,∴∠1=15°,∴∠CBE =30°.又∵∠ACB =60°,∴AC 和BE 的夹角为90°,∴BE ⊥AC ,∴当EC ∥AD 时,结论②才正确;BE 边上的高为12BC =1.又∵BE =AB =2,∴S △EBC =12×2×1=1,∴结论④正确.综上所述,正确的结论为①③④. 15.解:①②③④都是轴对称图形.(4分)作图略.(8分)16.解:AE ∥BC .(1分)理由如下:∵AB =AC ,∴∠B =∠C .(3分)由三角形外角的性质得∠DAC =∠B +∠C =2∠B .(5分)∵AE 平分∠DAC ,∴∠DAC =2∠DAE ,∴∠B =∠DAE ,∴AE ∥BC .(8分)17.解:∵DE 垂直平分AC ,∴AD =CD ,∴△BDC 的周长为BC +BD +CD =BC +BD +AD =BC +AB =15.(5分)又∵BC =6,∴AB =9.(7分)∵AB =AC ,∴AC =9.(8分)18.解:设∠BAD =x .∵AD 平分∠BAC ,∴∠CAD =∠BAD =x ,∠BAC =2∠BAD =2x .(2分)∵AC =BC ,∴∠B =∠BAC =2x .(3分)∵∠ADC =∠B +∠BAD =60°,∴2x +x =60°,∴x =20°,∴∠B =∠BAC =40°,(6分)∴∠C =180°-∠B -∠BAC =100°.(8分)19.解:∵在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB ,∴∠DBO =∠OBC ,∠ECO =∠OCB .(4分)∵DE ∥BC ,∴∠DOB =∠OBC =∠DBO ,∠EOC =∠OCB =∠ECO ,∴DB =DO ,OE =EC .(8分)∵DE =DO +OE ,∴DE =BD +CE =5.(10分)20.解:(1)S △ABC =12×5×3=152.(4分) (2)△A 1B 1C 1如图所示.(7分)(3)A 1(1,5),B 1(1,0),C 1(4,3).(10分)21.(1)证明:∵AD =AC ,∠CAD =60°,∴△ACD 是等边三角形.(2分)∵∠BAC =30°,∴∠DAB =30°,∴∠BAC =∠DAB ,(4分)∴AO ⊥CD ,CO =DO ,∴AB 垂直平分CD .(6分)(2)解:由(1)可知AB 垂直平分CD ,∴BD =CB .又∵∠ACB =90°,∠BAC =30°,∴BC =12AB =12×6=3,∴BD =3.(12分) 22.(1)证明:∵AB =AC ,∴∠B =∠C .(1分)在△DBE 和△ECF 中,⎩⎪⎨⎪⎧BE =CF ,∠B =∠C ,BD =CE ,∴△DBE ≌△ECF ,(4分)∴DE =EF ,∴△DEF 是等腰三角形.(6分)(2)解:如图,由(1)可知△DBE ≌△ECF ,∴∠1=∠3.∵∠A +∠B +∠C =180°,∠A =40°,∠B =∠C ,∴∠B =12(180°-40°)=70°,∴∠1+∠2=110°,(10分)∴∠3+∠2=110°,∴∠DEF =70°.(12分)23.(1)解:设AP =x ,则BQ =x .∵△ABC 是边长为6的等边三角形,∴AC =BC =6,∠C =60°,∴QC =x +6,PC =6-x .又∵∠BQD =30°,∴∠QPC =90°,∴QC =2PC ,即x+6=2(6-x ),解得x =2,即AP =2.(4分)(2)证明:过点P 作PF ∥BC ,交AB 于点F .(5分)∵△ABC 是等边三角形,∴∠A =∠ABC =∠C =60°.∵PF ∥BC ,∴∠DBQ =∠DFP ,∠PF A =∠ABC =60°,∠FPA =∠C =60°,∴∠PF A =∠FP A =∠A =60°,∴PF =AP =AF ,∴PF =BQ .又∵∠BDQ =∠FDP ,∠DBQ =∠DFP ,∴△DQB ≌△DPF ,∴DQ =DP ,即点D 为线段PQ 的中点.(9分)(3)解:在运动过程中线段ED 的长不发生变化,是定值,ED 的长为3.(10分)理由如下:由(2)可知PF =AP =AF ,∴△AFP 为等边三角形.又∵PE ⊥AF ,∴EF =12AF .由(2)可知△DQB ≌△DPF ,∴DF =DB ,即DF =12BF ,∴ED =EF +DF =12(AF +BF )=12AB =3.(14分)。

人教版八年级上册数学第十三章 轴对称 含答案

人教版八年级上册数学第十三章 轴对称 含答案

人教版八年级上册数学第十三章轴对称含答案一、单选题(共15题,共计45分)1、以下各命题中,正确的命题是()(1)等腰三角形的一边长4 cm,一边长9 cm,则它的周长为17 cm或22 cm;(2)三角形的一个外角,等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等;(4)等边三角形是轴对称图形;(5)三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形.A.(1)(2)(3)B.(1)(3)(5)C.(2)(4)(5) D.(4)(5)2、如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB 于点D,交AC于点E,那么下列结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长等于AB与AC的和;④BF=CF.其中正确的有()A.①②③B.①②③④C.①②D.①3、如图所示的标志中,是轴对称图形的有()A.1个B.2个C.3个D.4个4、如图,在正方形ABCD的外侧,作等边△ADE,BE、CE分别交AD于G、H,设△CDH、△GHE的面积分别为S1、S2,则()A.3S1=2S2B.2S1=3S2C.2S1= S2D. S1=2S25、下列图形中,是中心对称图形,但不是轴对称图形的是()A.平行四边形B.线段C.等边三角形D.抛物线6、弦AB把⊙O分成两条弧,它们的度数比为4:5,M为AB的中点,则∠AOM 的度数为()A.50°B.80°C.100°D.160°7、如图所示,在△ABC中,AB=AC,DE垂直平分腰AB,若AC=CD,AB∥CD,则∠A的度数为()A.36°B.72°C.120°D.44°8、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.9、如图,矩形中,与相交于点,,将沿折叠,点的对应点为,连接交于点,且,在边上有一点,使得的值最小,此时()A. B. C. D.10、下列图案中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.11、下列图形中,既是中心对称图形,又是轴对称图形的个数是()A.1B.2C.3D.412、如图,在菱形中,与相交于点,图中等腰三角形的个数为()A.1B.2C.3D.413、下列四个图形中,是轴对称图形的有()A. 个B. 个C. 个D. 个14、在平面直角坐标系中,点M(6,﹣3)关于x轴对称的点在()A.第一象限B.第二象限C.第三象限D.第四象限15、如下图,在△ABC中,AB=AC,∠A=40°,则∠B的度数为()A.80°B.70°C.60°D.40°二、填空题(共10题,共计30分)16、如图,等腰中,,边的垂直平分线交于点D,交于点E.若的周长为,则的长为________.17、若与点关于轴对称,则的值是________;18、如图,E是正方形ABCD外一点,作BF ⊥BE ,BF交AE于点F,若CE=4,BE=BF= ,则AB=________19、如图,在边长为2的菱形ABCD中, ∠ABC=120°, E,F分别为AD,CD上的动点,且AE+CF=2,则线段EF长的最小值是________.20、将一副三角尺如图所示叠放在一起,若=14cm,则阴影部分的面积是________cm221、如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是________.22、如图,在ABC中,∠ACB=60°,点D,E分别是AB,AC的中点,点F在线段DE上,连接AF,CF.若CF恰好平分∠ACB ,则∠FAC的度数为________.23、△ABC中,AB=AC,∠A=30°,以B为圆心,BC长为半径画弧,分别交AC,AB于D,E两点,并连结BD,DE.则∠BDE的度数为________.24、如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点C顺时针方向旋转一定角度后得到△A′B′C.若点A′恰好落在BC的延长线上,则点B′到BA′的距离为________.25、已知如图,在△ABC中,BE平分∠ABC,过点E作DE∥BC交AB于点D,若AE=3cm,△ADE的周长为10cm,则AB= ________三、解答题(共5题,共计25分)26、如图,在中,,点在边上,且,连接,若,求的度数.27、已知:如图,在△ABC中,AB=AC,点D为BC中点,AN是△ABC外角∠CAM 的平分线,CE⊥AN,垂足为点E.求证:四边形ADCE为矩形.28、如图,在中,,,分别以、为边在的外侧作等边和等边,连接与交于点F,若,求的长是多少?29、如图,在▱ABCD中,对角线AC⊥BC,∠BAC=30°,BC=2 ,在AB边的下方作射线AG,使得∠BAG=30°,E为线段DC上一个动点,在射线AG上取一点P,连接BP,使得∠EBP=60°,连接EP交AC于点F,在点E的运动过程中,当∠BPE=60°时,求 AF长。

初中八年级数学第十三章轴对称单元检测试卷习题一(含答案) (100)

初中八年级数学第十三章轴对称单元检测试卷习题一(含答案) (100)

初中八年级数学第十三章轴对称单元检测试卷习题一(含答案)、、是三个格点(网格线的交点叫做格点) .如图,在方格纸中,A B P()1过点P画AB的垂线,垂足为点C,画出三角形PBC绕点P旋转后180︒的图形;()2平移线段AB,使点B与点P重合,请画出平移后的线段PD.【答案】(1)画图见解析;(2) 画图见解析;【解析】【分析】(1)根据旋转的特征,三角形绕点旋转后后,点P不变,其他各部分均绕点P按照相同的方向旋转相同度数即可得到新图形;(2)根据平移的性质,点B 到点P移动方向为向右平移一个单位后,向上平移三个单位,将点A向右平移一个单位后,再向上平移三个单位得到点D,连接PD即可;【详解】解:(1)(2)如图:【点睛】本题主要考查了作旋转一定角度后的图形,作平移后的图形,掌握作旋转一定角度后的图形,作平移后的图形是解题的关键.92.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,△C=45°,sinB=1,AD=1.3(1)求BC的长;(2)求tan△DAE的值.【答案】(1)1;(212【解析】【分析】(1)先由三角形的高的定义得出∠ADB=∠ADC=90°,再解Rt∠ADC,得出DC=1;解Rt∠ADB,得出AB=3,根据勾股定理求出BD=BC=BD+DC即可求解.(2)先由三角形的中线的定义求出CE的值,则DE=CE﹣CD,然后在Rt ∠ADE 中根据正切函数的定义即可求解.【详解】解:(1)在∠ABC 中,∵AD 是BC 边上的高,∴∠ADB=∠ADC=90°.在∠ADC 中,∠∠ADC=90°,∠C=45°,AD=1,∴DC=AD=1.在∠ADB 中,∵∠ADB=90°,sinB=13,AD=1, ∴AD 1AB 31sinB 3===.∴BD ===∠BC BD DC 1=+=.(2)∠AE 是BC 边上的中线,∠CE=1212. ∠DE=CE ﹣12.∠DE 1tan DAE AD 2∠==. 【点睛】本题考查了三角形的高、中线的定义,勾股定理,解直角三角形,难度中等,分别解Rt △ADC 与Rt △ADB ,得出DC=1,AB=3是解题的关键.93.如图,在平面直角坐标系xoy 中,点,点,将绕着点旋转后得到.(I)在图中画出; (II)点A ,点B 的对应点A ’和B ’的坐标分别是A ’ 和B ’ ; (III)请直接写出AB 和A ’B ’的数量关系和位置关系。

人教版八年级数学上册 第13章 《轴对称》 练习题含答案

人教版八年级数学上册  第13章 《轴对称》 练习题含答案

人教版数学八年级上册第13章轴对称第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.(2018·湘西州)下列四个图形中,是轴对称图形的是( )2.如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B′,AB′与DC相交于点E,则下列结论正确的是( )A.∠DAB′=∠CAB′ B.∠ACD=∠B′CDC.AD=AE D.AE=CE3.如图,已知AD所在直线是△ABC的对称轴,点E,F是AD上的两点.若BC=4,AD=3,则图中阴影部分的面积是( )A.3 B.4C.6 D.84.如图,已知点A(2,3)和点B(4,1),在坐标轴上有一点P,且点P到点A和点B的距离相等,则点P的坐标为( )A.(1,0)B.(0,-1)C.(1,0)或(0,-1)D.(2,0)或(0,1)5.如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( ) A.A点B.B点C.C点D.D点6. 如图,已知DE∥BC,AB=AC,∠1=125°,则∠C的度数是( )A.55°B.45°C.35°D.65°7.等边三角形的三条对称轴中任意两条夹角(锐角)的度数为( )A.30°B.45°C.60°D.75°8.如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是( )A.70°B.110°C.140°D.150°9.如图,等腰△ABC中,AB=AC,∠A=24°.线段AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE等于( )A.78°B.60°C.54°D.50°10.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F分别为垂足,则下列四个结论:①∠DEF=∠DFE;②AE=AF;③AD平分∠EDF;④AD垂直平分EF.其中正确的有( ) A.1个B.2个C.3个D.4个二.填空题(共8小题,3*8=24)11.点M关于x轴对称的点的坐标是(-1,3),则点M的坐标是_________.12.如图,A,B,C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为D,则∠EBC的度数为_______.13.在4×4的网格中有五个同样大小的正方形阴影如图所示摆放,移动其中一个阴影正方形到空白方格中,与其余四个阴影正方形组成的新图形是一个轴对称图形,这样的移法共有_____种.14.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为____.15. 如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在C′处,连接BC′,则BC′的长为________.16.如图,在△ADC中,B是AC上一点,AD=BD=BC,若∠C=25°,则∠ADB=________.17. 如图所示,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔4海里的A处,该海轮沿南偏东30°方向航行________海里后,到达位于灯塔P的正东方向的B处.18.在平面直角坐标系中,将A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点的坐标是_______________.三.解答题(共7小题,66分)19.(8分) 如图,点D是△ABC中BC边上的一点,且AB=AC=CD,AD=BD,求∠BAC的度数.20.(8分) 如图,某校两个班的学生分别在C,D两处参加植树活动,现要在道路AO,OB的交叉区域内设一个茶水供应点M,使点M到两条路的距离相等,且MD=MC,这个茶水供应点应建在何处?21.(8分) 如图,在△ABD中,AB=AD,AC平分∠BAD,交BD于点E.(1)求证:△BCD是等腰三角形;(2)若∠ABD=50°,∠BCD=130°,求∠ABC的度数.22.(10分) 如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.若∠CAB =∠CBA=∠CDE=∠CED=50°.(1)求证:AD=BE;(2)求∠AEB的度数.23.(10分) 如图,已知AB=AC,∠A=108°,BD平分∠ABC交AC于点D.求证:BC=AB+CD.24.(10分) 如图,△ABC是边长为3 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速移动,它们的速度都是1 cm/s,当点P到达点B时,P,Q两点停止运动,设点P 的运动时间为t s,则当t为何值时,△PBQ是直角三角形?25.(12分) 如图所示,点P在∠AOB的内部,点M,N分别是点P关于直线OA,OB的对称点,线段MN交OA,OB于点E,F.(1)若MN=20 cm,求△PEF的周长;(2)若∠AOB=35°,求∠EPF的度数.参考答案:1-5DDACB 6-10ACDCD 11. (-1,-3) 12. 100° 13. 13 14. 6 15. 3 16. 80° 17. 4 18.(2,-2)19. 解:∵AD =BD ,∴设∠BAD =∠DBA =x°,∵AB =AC =CD ,∴∠CAD =∠CDA =∠BAD +∠DBA =2x°,∠DBA =∠C =x°. ∴∠BAC =∠CAD +∠BAD =3x°. ∵∠ABC +∠BAC +∠C =180°, ∴5x =180.∴x =36,∴∠BAC =108°20. 解:作法:①连接CD ,作CD 的垂直平分线EF ;②作∠AOB 的平分线OP ,OP 与EF 相交于点M ,则点M 就是所求作的点21. 解:(1)证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC. 在△ABC 和△ADC 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAC ,AC =AC ,∴△ABC ≌△ADC(SAS). ∴BC =DC.∴△BCD 是等腰三角形 (2)∵BC =DC ,∠BCD =130°, ∴∠CBD =∠CDB =12(180°-∠BCD)=12×(180°-130°) =25°.∴∠ABC =∠ABD +∠CBD =50°+25°=75°22. 解:(1)证明:∵△ACB 和△DCE 均为等腰三角形,∠CAB =∠CBA =∠CDE =∠CED , ∴AC =BC ,CD =CE ,∠ACB =∠DCE , ∴∠ACD =∠BCE ,∴△ACD ≌△BCE(SAS), ∴AD =BE(2)由(1)可知∵△ACD ≌△BCE(SAS),∴∠CAD=∠EBC ,∠CAD+∠EAB =∠EBC+∠EAB=50º ∴∠AEB=180º-(∠EAB+∠EBA) = 180º-(∠EAB+∠EBC+∠CBA) = 180º-(∠EAB+∠CAD+∠CBA) =180º-100º=80°23. 解:在线段BC 上截取BE =BA ,连接DE.∵BD 平分∠ABC , ∴∠ABD =∠EBD =12∠ABC.又∵BD =BD ,∴△ABD ≌△EBD(SAS), ∴∠BED =∠A =108°,∠ADB =∠EDB , ∴∠DEC =180°-108°=72°.又∵AB =AC ,∠A =108°,∴∠ACB =∠ABC =12×(180°-108°)=36°,∠CDE =180°-∠DEC -∠ACB =180°-72°-36°=72°, ∴∠CDE =∠DEC ,∴CD =CE , ∴BC =BE +EC =AB +CD24. 解:根据题意:AP =t cm ,BQ =t cm. 在△ABC 中,AB =BC =3 cm ,∠B =60°, ∴BP =(3-t)cm.在△PBQ 中,BP =3-t ,BQ =t ,若△PBQ 是直角三角形,则∠BQP =90°或∠BPQ =90°. 当∠BQP =90°时,BQ =12BP ,即t =12(3-t),解得t =1;当∠BPQ =90°时,BP =12BQ ,即3-t =12t ,解得t =2.答:当t =1 s 或t =2 s 时,△PBQ 是直角三角形25. 解:(1)∵点M 与点P 关于OA 对称,∴OA 垂直平分MP.∴EM =EP.又∵点N与点P关于OB对称,∴OB垂直平分PN.∴FP=FN.∴△PEF的周长为PE+PF+EF=ME+FN+EF=MN=20 cm(2)连接OM,ON,OP.∵OA垂直平分MP,∴OM=OP.又∵OB垂直平分PN,∴ON=OP.又∵ME=PE,OE=OE,PF=NF,OF=OF,∴△MOE≌△POE(SSS),△POF≌△NOF(SSS).∴∠MOE=∠POE,∠OME=∠OPE,∠POF=∠NOF,∠OPF=∠ONF.∴∠MON=2∠AOB=70°.∴∠EPF=∠OPE+∠OPF=∠OME+∠ONF=180°-∠MON=110°。

人教版八年级数学上测第十三章《轴对称》检测题(含答案)

人教版八年级数学上测第十三章《轴对称》检测题(含答案)

人教版八年级数学上测第十三章《轴对称》检测题(含答案)一、选择题(每小题3分,共30分)1. 现实世界中,对称现象无处不在,下列汉字是轴对称图形的是()A. 爱B. 我C. 中D. 华【答案】C.2.点M(1,2)关于x轴对称点的坐标为()A.(-1,2)B.(-1,-2)C.(1,-2)D.(2,-1)【答案】C.3. 如图,△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B度数为()A. 25°B. 30°C. 35°D. 40°【答案】B.4.下列每个网格中均有两个图形,其中一个图形可由另一个轴对称变换得到的是()A. B. C. D.【答案】B.5. 如图,∠MON内有一点P,点P关于OM、ON的对称点分别是G、H,连GH分别交OM、ON于A、B点,若GH=10cm,则△P AB的周长为()A. 5cmB.10cmC. 20cmD.15cm【答案】B. 提示:根据对称性,AG=AP,BH=GP,∴AP+AB+BP=AG+AB+BH=GH=10.6.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A. 55° ,55°B. 70°,40或70°,55°C.70°,40°D. 55°,55°或70°,40°【答案】D.7. 如图,在正方形ABCD的外侧,作等边△CDE,连接AE交CD于点F,则∠DF A的度数为()A. 45°B. 55°C. 60°D. 75°【答案】D. 提示:∠ADE=90°+60°=150°,∠DAF=∠DEA=15°,则∠DF A=75°.8. 如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长度为()A. 5cmB. 5.4cmC. 2.4cmD. 3cm【答案】C. 提示:作DF⊥BC于F,∵BD平分∠ABC,故设DE=DF=h,由S△ABD+S△CBD=S△ABC,得:12(AB+BC)h=36,代入数值,解得h=2.4,故选C.9. 如图,在△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A.2ba+B.2ba-C. a-b D. b-a【答案】C. 提示:AD=BD=BC=b,CD=AC-AD=a-b.10. 如图OE是等边△AOB的中线,OB=4,C是直线OE上一动点,以AC为边在直线AC下方作等边△ACD,连接ED,下列说法正确的是()A. ED的最小值是2B. ED的最小值是1C. ED有最大值D. ED没有最大值也没有最小值【答案】B. 提示:连BD,则易得△AOC≌△ABD(SAS),∴∠ABD=∠AOC=30°,当∠BDE=90°时,ED最小,此时ED=12BE=1,故选B.二、填空题(每小题3分,共18分)11. 点P(m,n)和点Q(n-1,2m)关于x轴对称,则m+n的值为__________.【答案】13. 提示:m=n-1,2m+n=0,联立解得m=-13,n=23,∴m+n=13.12. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC,若DE=1,则BC的长是__________.【答案】3. 提示:由条件得AD=BD,∠CAD=∠BAD,∴∠CAD=∠BAD=∠B=30°,CD=DE=1,BD=2DE=2,∴BC=CD+BD=3.13. 如图,在△ABC中,DE垂直平分AC,若AE=3,△ABD周长为13,则△ABC周长为________.【答案】19. 提示:由题知AC=2AE=6,AD=CD,∴BC=BD+AD,∵AB+BD+AD=13,∴AB+BC=13,∴AB+BC+AC=13+6=19.14. 如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的力向被击出(球可以经过多次反射),那么该球最后将落入的球袋是________.【答案】1号袋. 提示:如图所示.15. 如图,在△ABC中,∠C=46°,将△ABC沿直线l折叠,点C落在点D的位置,则∠1-∠2的度数是___________ .【答案】92°. 提示:由飞镖模型,∠DNC=∠C+∠D+∠DMC,即:180°-∠2=46°+46°+(180°-∠1),∴∠1-∠2=92°.16 .已知A(1,2)、B(7,4),点M、N是x轴上的动点(M在N左边),MN=3,当AM+MN+NB最小时,直接写出点M的坐标为___________.【答案】(2,0). 提示:作点A关于x轴的对称点A′,将点B向左平移3个单位得点B′,连接A′B′,交x轴于点M.三、解答题(共8小题,共72分)17. (8分)如图,已知点M、N和∠AOB,用尺规作图作一点P,使P到点M、N的距离相等,且到∠AOB两边的距离相等.(保留作图痕迹,不写作法)【答案】1.作∠AOB的平分线OC;2.连MN,作MN的垂直平分线EF;则射线OC与直线EF的交点P即为所求.18. (8分)如图,在△ABC中,∠B=30°,∠C=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数;(3)若△DAF的周长为20,求BC的长.【答案】(1)∠BAC=100°;(2)∵DE、FG分别垂直平分AB、AC,∴AD=BD,AF=CF,∴∠BAD=∠B=30°,∠CAF=∠C=50°,∴∠DAF=∠BAC-∠BAD-∠CAF=100°-30°-50°=20°;(3) ∵△DAF的周长为20,∴AD+DF+AF=20,∴BC=BD+DF+CF=AD+DF+AF=20.19. (8分)(1)如图,已知△ABC,请画出△ABC关于y轴对称的△A'B'C'(其中A'、B'、C'分别是A、B、C的对应点);(2)直接写出点A'、B'、C'点的坐标;(3)求△ABC的面积是多少?(4)用无刻度的直尺在y轴上找一点Q,使得QA+QB之和最小.(用虚线表示画图过程)【答案】(1) A'(2,3)、B'(3,1)、C'(-1,-2);(2)S△ABC=5×4-12×1×2-12×3×4-12×3×5=5.5;(3) 连接A′B(或AB′)交y轴于Q,即可.20. (8分)如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB于E,DF⊥AC于F,请添加一个条件,使DE=DF,并说明理由.【答案】添加的条件是:D为BC的中点. 理由如下:方法1:连接AD.∵AB=AC,D为BC中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.方法2:∵AB=AC,∴∠B=∠C.∵D为BC中点,∴BD=CD.在△BDE与△CDF中,∵∠B=∠C,∠BED=∠CFD=90°,BD=CD,∴△BDE≌△CDF(AAS),∴DE=DF.21. (8分)如图,△ABC 是等边三角形,点D 在BC 延长线上,DE ⊥AB 于点E ,交AC 于G ,EF ⊥BC 于点F ,若CD =3AE ,CF =6,求AC 的长. 【答案】设AE =x ,则CD =3x .在等边△ABC 中,∠A =∠B =∠ACB =60°, 又DE ⊥AB ,∴∠D =∠AGE =∠CGD =30°. ∴AG =2AE =2x ,CG =CD =3x , ∴AB =BC =AC =2x +3x =5x . 则BE =5x -x =4x ,又∵EF ⊥BC ,∠B =60°,∴BF =12BE =2x ,∴BC =BF +CF =2x +6.∵BC =AC ,∴2x +6=5x ,∴x =2. ∴AC =5x =10.22. (10分)如图,在△ABC 中,∠ABC =∠ACB ,E 为BC 边上一点,以E 为顶点作∠AEF ,∠AEF 的边交AC 于点F ,使∠AEF =∠B . (1)如果∠ABC =40°,则∠BAC =________; (2)判断∠BAE 与∠CEF 的大小关系,并说明理由;(3)当△AEF 为直角三角形时,求∠AEF 与∠BAE 的数量关系.【答案】(1)100°; …………… 2分 (2)∠BAE =∠CEF ,理由如下: ∵∠AEC 是△ABE 的外角, ∴∠AEF +∠CEF =∠B +∠BAE . 又∵∠AEF =∠B ,∴∠CEF =∠BAE . …………… 5分(3)由(2),设∠CEF =∠BAE =α,设∠AEF =∠B =∠C =β.则∠AFE =∠CEF +∠C =α+β.∵∠AEF =∠B <90°,故分两种情况考虑:1°当∠EAF 为直角时,如图1,由∠AEF +∠AFE =90°,CBAFECBA备用图1CBA备用图2得β+(α+β)=90°,∴α+2β=90°,故有:∠BAE+2∠AEF=90°.2°当∠AFE为直角时,如图2,得α+β=90°,即:∠BAE+∠AEF=90°.综上,当△AEF为直角三角形时,∠BAE+2∠AEF=90°或∠BAE+∠AEF=90°. …………… 10分23. (10分)已知Rt△ABC中,AB=AC,∠ABC=∠ACB=45°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边在AD的右侧作Rt△ADE,AD=AE,∠ADE=∠AED =45°,连接CE.(1)〖发现问题〗如图1,当点D在边BC上时,①请写出BD和CE之间的数量关系为_____________,位置关系为____________;②求证:CE+CD=BC;(2)尝试探究:如图2,当点D在边BC的延长线上且其他条件不变时,(1)中BC、CE、CD 之间存在的数量关系是否成立? 若成立,请证明;若不成立,请写出新的数量关系(不必证明);(3)拓展延伸:如图3,当点D在CB的延长线上且其他条件不变时,若BC=6,CE=2,求线段CD的长.【答案】(1)①BD=CE,BD⊥CE,…………… 2分②由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE,∠ACE=∠ABD=45°,∴CE+CD=BD+CD=BC. …………… 5分(2) 不成立,此时关系式为BC+CD=CE. …………… 7分提示:同上,证明△BAD≌△CAE(SAS),得BD=CE,即BC+CD=CE.(3) 由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE. ∵BD+BC=CD,∴CD =CE +BC =2+6=8. …………… 10分24. (12分)等腰Rt △ACB 中,∠ACB =90°,AC =BC ,点A 在x 轴正半轴上,C 在y 轴负半轴上.(1)如图1,求证:∠BCO =∠CAO ;(2)如图2,若OA =4,OC =2,M 是AB 与y 轴交点,求△AOM 的面积;(3)如图3,点C (0,2),点Q 、A 均在x 轴上,且S △ACQ =6a (a 为已知数). 分别以AC 、CQ 为腰在第一、第二象限作等腰Rt △CAN 、等腰Rt △QCM ,连接MN 交y 轴于P 点,间:S △MON 是否发生改变?若不变,求出S △MON 的值;若变化,求S △MON 的取值范围.【答案】(1) ∵∠ACB =90°,∴∠BCO +∠ACO =90°. 又∵∠AOC =90°,∴∠CAO +∠ACO =90°. ∴ ∠BCO =∠CAO . …………… 3分(2) 过B 作BD ⊥y 轴于D ,则△BCD ≌△CAO (AAS ), ∴BD =CO =2,CD =AO =4,OD =CD -OC =2,∴B (-2,2). 又∵A (4,0),C (0,-2),由割补法,得S △ABC =4×6-12×2×4-12×2×4-12×2×6=10, 又2142△△BCM ACM S BD S OA ===,∴S △ACM =23S △ABC =203. ∵S △AOC =12×2×4=4,∴S △AOM =S △ACM -S △AOC =203-4=83. (3) 过N 作NE ∥CM 交y 轴于E ,则∠CNE +∠MCN =180°,∵∠MCQ +∠ACN =90°+90°=180°, ∴∠ACQ +∠MCN =180°, ∴∠CNE =∠ACQ . 又∵∠ECN +∠ACO =90°,∠QAC +∠ACO =90°, ∴∠ECN =∠QAC . 在△ECN 和△QAC 中,∵∠CNE =∠ACQ ,CN =AC ,∠ECN =∠QAC , ∴△ECN ≌△QAC (ASA ),∴CE=AQ,EN=QC=MC.又NE∥CM,∴△PEN≌△PCM(ASA),∴PE=PC.∵点C(0,2),S△ACQ=6a,∴AQ=6a.∴CE=AQ=6a,∴CP=PE=3a.∴OP=OC+CP=2+3a.过M作MF⊥y轴于F,过N作NG⊥y轴于G,∵△MCQ为等腰直角三角形,∴△MCF≌△CQO(AAS),∴MF=CO=2,同理,NG=OC=2.则S△MON=S△MOP+S△NOP=12OP·MF+12OP·NG=2OP=6a+4.。

RJ人教版八年级上册第十三章《轴对称》单元测试卷内有答案与解析

RJ人教版八年级上册第十三章《轴对称》单元测试卷内有答案与解析

第十三章《轴对称》单元测试卷(时间:120 分钟满分:120 分)第Ⅰ卷选择题(共42 分)一、选择题(本大题共16个小题,1~6小题,每小题2 分;7~16 小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填入后面的括号里)1.下列图形中,不是轴对称图形的是【】2.点(3,-2)关与x 轴的对称点的坐标为【】A.(-3,-2)B.(3,2)C.(-3,-2)D.(3,-2)3.等腰三角形的一个外角为60°,则底角为【】A.120°B.30°C.30°或120°D.30°或60°4.如图,直角三角形ABC 中,∠C=90°,AB 的垂直平分线交AC于D,则AD与BC 的大小关系是【】A.AD<BCB.AD=BCC.AD>BCD.不能确定第4题图第6题图5.等腰三角形的周长为13,其中一边的长为5,则其他两边的长可能是【】A.5 和3B.4 和4C.5和3 或4 和4D.不能确定6.如图,梯形ABCD 与梯形EFGH 成轴对称,则它们组成的图形的对称轴有【】A.1 条B.2 条C.3 条D.4条7.如图,公路BC 所在的直线恰为书店与学校连线AD 的垂直平分线,小花家与小梅家住在公路边,则下列说法中正确的是【】①小梅从家到书店与小花从家到书店的距离一样远;②小梅从家到书店与从家到学校一样远;③小花从家到书店与从家到学校一样远;④小梅从家到学校与小花从家到学校一样远.A.①②B.②③C.③④D.①④第7题图第8题图第9题图8.如图,在△ABC 中,CD⊥AB,∠A=30°,AB=6,△ACB 的面积为6,则AC的长为【】A.2B.4C.12D.169.如图,四边形ABCD 中,AC 垂直平分BD,垂足为E,下列结论不一定成立的是【】A.AB=ADB.AC平分∠BCDC.AB=BDD.△BEC≌△DEC10.如图,在△ABC中,边AB的垂直平分线分别交AB,BC点于D,E,边AC的垂直平分线分别交AC,BC于点F,G,若BC=4,则△AEG的周长为【】A.12 B.10 C.8 D.4第10题图第11 题图11.如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO 的大小为【】A.70°B.110°C.140°D.150°12.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,过点D 作DE∥AB交AC于点E,则△CDE 的周长为【】A.20 B.12 C.14 D.13第12 题图第13题图13.如图,小华把长方形纸片ABCD沿对角线折叠,重叠部分为△EBD,那么以下四种说法:①△EBD 是等腰三角形,EB=ED;②折叠后∠ABE 和∠CBD 一定相等;③折叠后得到的图形是轴对称图形;④△EBA 和△EDC 一定是全等三角形.其中正确的有【】A.1 个B.2 个C.3个D.4 个14.将一张等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是【】15.如图,在网格中有一个直角三角形(网格中的每一个小正方形的边长均为1个单位长度),若以该三角形一边为公共边画一个新三角形与原来的直角三角形一起组成一个等腰三角形,要求新三角形与原来的直角三角形除了有一条公共边外,没有其他的公共点,新三角形的顶点不一定在格点上,那么符合要求的新三角形有【】A.4 个 B.6 个 C.7个 D.9 个第15题图第16 题图16.如图,在直角坐标系中,点A、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A、B、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是【】A.(0,0)B.(0,1)C.(0,2)D.(0,3)第Ⅱ卷非选择题(共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填入题内的横线上)17.在十二地支“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”这12 个字中,可以看作接近于轴对称图形的有个.18.等腰三角形的对称轴有条.19.将一张长方形纸片ABCD按如图所示的方式折叠,EF、EG 是折痕,且使AE与BE 折叠后所对应的边EA´和EB´重合在同一条直线上.如果∠CFE=110°,那么∠AEG=°.第19题图第20题图20.在三角形纸片ABC 中,AB=10 cm,BC=7 cm,AC=6 cm,沿过点B的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD(如图),则△AED 的周长为__________.三、解答题(本大题共6个小题,共66 分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9 分)如图,∠A =90°,BD 是△ABC 的角平分线,DE 是BC 的垂直平分线,请分别求∠CDE 和∠ABC 的度数.22.(本小题满分10 分)找出下图中的轴对称图形,并画出它们的对称轴.23.(本小题满分10 分)如图,在游艺室的水平地面上,沿着地面AB边放一行球,参赛者从起点C 起步,跑向边AB任取一球,再折向D点跑去,将球放入D 点的纸箱内便完成任务,完成任务的时间最短者获得胜利.如果邀请你参加,你将跑去选取什么位置上的球?为什么?24.(本小题满分11 分)将一个等腰三角形沿对称轴对折后,剪掉一个60°的角,展开后得到如图所示形状.若∠B=15°,求∠A 的度数.25.(本小题满分12 分)如图,△ABC 是等腰直角三角形,∠BAC=90°,BE 是∠ABC 的平分线,DE⊥BC,垂足为D.(1)请写出图中所有等腰三角形;(2)请判断AD与BE 是否垂直?为什么?(3)请比较AB垣AE与BC 的大小,并说明理由.26.(本小题满分14 分)如图,△ABC 是边长为6 的等边三角形,P是AC 边上一动点,由A 向C 运动(与A、C 不重合),Q 是CB 延长线上一动点,与点P 同时以相同的速度由B 沿CB 延长线方向运动(Q 不与B重合),过P 作PE⊥AB于E,连接PQ 交AB于D.(1)当∠BQD=30°时,求AP的长;(2)在运动过程中线段DE的长是否发生变化?如果不变,求出线段DE 的长;如果发生改变,请说明理由答案第十三章《轴对称》达标检测一、1.A 点拨:判断是否为轴对称图形关键是找对称轴,选项A 无对称轴,故不是轴对称图形.2.B 点拨:点(x,y)关于x 轴对称的点的坐标为(x,-y),关于y 轴对称的点的坐标为(-x,y).3.B 点拨:60°的外角只能是顶角的外角,故底角=12×60°=30°.4.C 点拨:连接BD,则BD=AD,又在直角三角形BDC 中,BD>BC,故AD>BC.5.C 点拨:本题应分情况讨论:当长为5 的边为腰时,另两条边的长为5 和3;当长为5的边为底边时,另两条边的长为4 和4.6.A7.B 点拨:∵BC 垂直平分AD,∴AB=BD,AC=CD,但AB 不一定等于AC,BD不一定等于CD.8.B 点拨:∵∠A =30°,∠CDA =90°,∴AC=2CD. 又∵S△ACB=12CD·AB=6,AB=6,∴CD=2.∴AC=2CD=2×2=4.9.C 点拨:由中垂线定理,知AB=AD,故A 正确,由三线合一知B正确,且有BC=CD,故D也正确,只有C 不一定成立.10.D 点拨:本题主要考查线段垂直平分线的性质,△AEG 的周长等于BC的长.11.D 点拨:因为OA=OB=OC,∴∠BAO=∠ABO,∠CBO=∠BCO,∴∠BAO+∠BCO=∠ABO+∠CBO=∠ABC=70°,∴∠DAO+∠DCO=360°-∠ABC-(∠BAO+∠BCO)-∠ADC=150°.12.C 点拨:由AB=AC及AD 平分∠BAC得BD=CD= 12BC=4.由DE∥AB及AD平分∠BAC得∠ADE=∠EAD,∴AE=DE.故△CDE 的周长=CE+DE+CD=CE+AE+CD=AC+CD=14.13.C 点拨:①③④正确,②中两角不一定相等.14.A 点拨:通过两次对折后,得到的三角形仍是等腰直角三角形.对于这个题目,可以通过动手操作解决问题,也可以利用轴对称的性质进行分析.15.C 点拨:解:如图所示,∵根据题意可知:以4 为腰的等腰三角形有2 个,以5 为腰的三角形有4 个,以5 为底边的等腰三角形有1个,∴符合要求的新三角形有2+4+1=7 个.第15 题图16.D 点拨:本题考查最短路线问题. 作B 点关于y 轴对称点B´点,连接AB´,交y 轴于点C,此时△ABC 的周长最小,∵点A、B 的坐标分别为(1,4)和(3,0),∴B´点坐标为:(-3,0),点C 的坐标是(0,3),故选D.二、17.4 点拨:“寅、未、申、酉”可以看作接近于轴对称图形.18.1 或3 点拨:本题应分类讨论,当等腰三角形底与腰不相等时,其对称轴只有1 条;当等腰三角形底与腰相等,即为等边三角形时,其对称轴有3 条.考虑问题不全面时,易漏掉其中的一种情况.19.20 点拨:由折叠易知∠GEF=90°,∠FEB=180°-110°=70°,∴∠AEG=90°-70°=20°.20.9 cm 点拨:由折叠易知BE=BC=7,DE=CD.故△AED 的周长=AD+DE+AE=AC+(AB-BE)=AC+(AB-BC)=6+(10-7)=9(cm).三、21.解:因为DE 垂直平分BC,所以DB=DC.所以∠C=∠DBC.又因为BD 平分∠ABC,所以∠ABD=∠DBC. 所以∠C=∠ABD=∠DBC=13×(180°-90°)=30°.所以∠CDE=90°-30°=60°,∠ABC=2∠ABD=2×30°=60°.22.解:第1个和第4个为轴对称图形.图略.23.解:作点D 关于AB 的对称点M,连接CM交AB于点P,则点P所在的球就是选取的球.利用了轴对称的知识.24.解:∠A=30°.25.解:(1)△ABC,△ABD,△ADE,△CDE都是等腰三角形;(2)AD与BE互相垂直.理由是:因为BE 平分∠ABC,DE⊥BC,AE ⊥AB,所以AE=DE(角平分线上的点到这个角两边的距离相等),所以∠DAE=∠ADE,从而∠BAD=∠BDA,所以AB=BD,所以BE⊥AD(“三线合一”);(3)AB+AE=BC.理由如下:因为△ABC 是等腰直角三角形,所以∠C=45°,因为∠CDE=90°,所以∠DEC =45°,所以CD=DE(等角对等边),由(2)知AB=BD,BE⊥AD.所以AF=DF,∠AFE=∠DFE=90°.又EF=EF.所以△AFE≌△DFE.所以AE=DE.所以AE=CD,所以AB+AE=BD+DC=BC.26.解:(1)过P 作PF∥QC 交AB 于点F,则△AFP是等边三角形.因为P,Q 同时出发,速度相同,即BQ=AP,所以BQ=PF,所以△DBQ≌△DFP,所以BD=DF.因为∠BQD=∠BDQ=∠FDP=∠FPD=30°,所以BD=DF=FP=AF=13AB=13×6=2,所以AP=2.(2)由(1)知BD=DF,而△APF是等边三角形,PE⊥AF,因为AE=EF,又DE+(BD+AE)=AB=6,所以DE+(DF+EF)=6,即DE+DE=6,所以DE=3 为定值,即DE 的长不变.。

人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)

人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)
【答案】C
【解析】
【分析】
首先要进行分析题意,“等腰三角形的一个内角”没明确是顶角还是底角,所以要分两种情况进行讨论.
【详解】本题可分两种情况:
①当70°角为底角时,顶角为180°−2×70°=40°;
②70°角为等腰三角形的顶角;
因此这个等腰三角形的顶角为40°或70°.
故选C
【点睛】考查等腰三角形的性质,注意分类讨论,不要漏解.
∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,
∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,
∵BC=9cm,∴MN=3cm.
故答案为3cm.
考点:1.线段垂直平分线的性质;2.等腰三角形的性质;
【点睛】考查等边三角形 性质,熟练掌握等边三角形的性质是解题的关键.
4.等腰三角形的周长为16,其一边长为6,则另两边为_____.
【答案】6和4或5和5.
【解析】
当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;
当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理.
故该等腰三角形的另两边为6和4或5和5.
A. B. C. D. 7
【答案】A
【解析】
【分析】
根据轴对称性质可得出PM=MQ,PN=RN,因此先求出QN的长度,然后根据QR=QN+NR进一步计算即可.
【详解】由轴对称性质可得:PM=MQ=2.5cm,PN=RN=3cm,
∴QN=MN−MQ=1.5cm,
∴QR=QN+RN=4.5cm,

人教版八年级数学上《第13章轴对称》单元测试题(含答案解析)

人教版八年级数学上《第13章轴对称》单元测试题(含答案解析)

2018年秋人教版八年级上册数学《第13章轴对称》单元测试题一.选择题(共10小题)1.下列图形中为轴对称图形的是()A.B.C.D.2.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°3.如图,在△ABC中,边AB的垂直平分线DE交AB于点E,交BC于点D,若BC =10,AC=6,则△ACD的周长是()A.14B.16C.18D.204.在平面直角坐标系中,点P(2,1)向右平移3个单位得到点P1,点P1关于x轴的对称点是点P2,则点P2的坐标是()A.(5,1)B.(5,﹣1)C.(﹣5,1)D.(﹣5,﹣1)5.已知等腰三角形两边长分别为6cm、2cm,则这个三角形的周长是()A.14cm B.10cm C.14cm或10cm D.12cm6.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条7.在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E,∠AEB =80°,那么∠EBC等于()A.15°B.25°C.15°或75°D.25°或85°8.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°9.下列三角形,不一定是等边三角形的是()A.有两个角等于60°的三角形B.有一个外角等于120°的等腰三角形C.三个角都相等的三角形D.边上的高也是这边的中线的三角形10.如图:等腰△ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.9D.10二.填空题(共8小题)11.如图,DE是△ABC边AC的垂直平分线,若BC=9,AD=4,则BD=12.如图,△ABC中,∠C=90°,DE是AB的垂直平分线,且BC=8,AC=6,则△ACD的周长为.13.已知点P关于y轴的对称点P1的坐标是(﹣1,2),则点P的坐标是.14.等腰三角形ABC中,∠A=110°,则∠B=°.15.等腰三角形的一个底角比顶角大30°,那么顶角度数为.16.如图:∠EAF=15°,AB=BC=CD,则∠ECD等于°.17.如图,在△ABC中,AB=AC,DE垂直平分AB.若BE⊥AC,AF⊥BC,垂足分别为点E,F,连接EF,则∠EFC=.18.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是.三.解答题(共7小题)19.如图,直线MN和直线DE分别是线段AB,BC的垂直平分线,它们交于P点,请问PA和PC相等吗?请说明理由.20.如图,在△ABC中,∠C=90,DE是AB的垂直平分线,∠CAE=∠B+30°,求∠AEB的度数.21.如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.22.已知等腰三角形△ABC的一边长为5,周长为22.求△ABC另两边的长.23.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.24.如图,△ABC中,点O是∠BCA与∠ABC的平分线的交点,过O作与BC平行的直线分别交AB、AC于D、E.已知△ABC的周长为15,BC的长为6,求△ADE的周长.25.如图,在△ABC中,AB=AC,CD垂直AB于D,P为BC上的任意一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F.①若P为BC边中点,则PE,PF,CD三条线段有何数量关系(写出推理过程)?②若P为线段BC上任意一点,则①中关系还成立吗?③若P为直线BC上任意一点,则PE,PF,CD三条线段间有何数量关系(请直接写出).2018年秋人教版八年级上册数学《第13章轴对称》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列图形中为轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°【分析】首先根据对称的两个图形全等求得∠C的度数,然后在△ABC中利用三角形内角和求解.【解答】解:∠C=∠C'=30°,则△ABC中,∠B=180°﹣105°﹣30°=45°.故选:B.【点评】本题考查了轴对称的性质,理解轴对称的两个图形全等是关键.3.如图,在△ABC中,边AB的垂直平分线DE交AB于点E,交BC于点D,若BC =10,AC=6,则△ACD的周长是()A.14B.16C.18D.20【分析】由AB的垂直平分线DE交AB于E,交BC于D,根据线段垂直平分线的性质,可得AD=BD,继而可得△ACD的周长为:AC+BC,则可求得答案.【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∵AC=6,BC=10,∴△ACD的周长为:AC+CD+AD=AC+CD+BD=AC+BC=6+10=16.故选:B.【点评】此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想与转化思想的应用.4.在平面直角坐标系中,点P(2,1)向右平移3个单位得到点P1,点P1关于x轴的对称点是点P2,则点P2的坐标是()A.(5,1)B.(5,﹣1)C.(﹣5,1)D.(﹣5,﹣1)【分析】先根据向右平移3个单位,横坐标加3,纵坐标不变,求出点P1的坐标,再根据关于x轴对称的点,横坐标相同,纵坐标互为相反数解答.【解答】解:∵将点P(2,1)向右平移3个单位得到点P1,∴点P1的坐标是(5,1),∴点P1关于x轴的对称点P2的坐标是(5,﹣1).故选:B.【点评】本题考查了坐标与图形变化﹣平移,以及关于x轴、y轴对称点的坐标的关系,熟练掌握并灵活运用是解题的关键.5.已知等腰三角形两边长分别为6cm、2cm,则这个三角形的周长是()A.14cm B.10cm C.14cm或10cm D.12cm【分析】题目给出等腰三角形有两条边长为6cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①6cm为腰,2cm为底,此时周长为14cm;②6cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.∴其周长是14cm.故选:A.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条【分析】根据等腰三角形的性质分别利用AB为底以及AB为腰得出符合题意的图形即可.【解答】解:如图所示,当AB=AF=3,BA=BD=3,AB=AE=3,BG=AG时,都能得到符合题意的等腰三角形.故选:C.【点评】此题主要考查了等腰三角形的判定等知识,正确利用图形分类讨论得出等腰三角形是解题关键.7.在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E,∠AEB =80°,那么∠EBC等于()A.15°B.25°C.15°或75°D.25°或85°【分析】分两种情况:∠BAC为锐角,∠BAC为钝角,根据线段垂直平分线的性质可求出AE=BE,然后根据三角形内角和定理即可解答.【解答】解:如图1,∵DE垂直平分AB,∴AE=BE,∴∠BAC=∠ABE,∵∠AEB=80°,∴∠BAC=∠ABE=50°,∵AB=AC,∴∠ABC==65°,∴∠EBC=∠ABC﹣∠ABE=15°如图2,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠ABE,∵∠AEB=80°,∴∠BAE=∠EBA=50°,∴∠BAC=130°∵AB=AC,∴∠ABC==25°∴∠EBC=∠EBA+∠ABC=75°故选:C.【点评】此题主要考查线段的垂直平分线及等腰三角形的判定和性质.线段的垂直平分线上的点到线段的两个端点的距离相等.8.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.【点评】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.9.下列三角形,不一定是等边三角形的是()A.有两个角等于60°的三角形B.有一个外角等于120°的等腰三角形C.三个角都相等的三角形D.边上的高也是这边的中线的三角形【分析】分别利用等边三角形的判定方法分析得出即可.【解答】解:A、根据有两个角等于60°的三角形是等边三角形,不合题意,故此选项错误;B、有一个外角等于120°的等腰三角形,则内角为60°的等腰三角形,此三角形是等边三角形,不合题意,故此选项错误;C、三个角都相等的三角形,内角一定为60°是等边三角形,不合题意,故此选项错误;D、边上的高也是这边的中线的三角形,也可能是等腰三角形,故此选项正确.故选:D.【点评】此题主要考查了等边三角形的判定,注意熟练掌握:由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.10.如图:等腰△ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.9D.10【分析】连接AD,AM,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,MA=MC,推出MC+DM=MA+DM≥AD,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,MA.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×6×AD=18,解得AD=6,∴S△ABC∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC,∴MC+DM=MA+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=6+×6=6+3=9.故选:C.【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.二.填空题(共8小题)11.如图,DE是△ABC边AC的垂直平分线,若BC=9,AD=4,则BD=5【分析】根据垂直平分线的性质可得AD=CD,进而求出BD的长度.【解答】解:∵DE是△ABC边AC的垂直平分线,∴AD=CD,∵BC=9,AD=4,∴BD=BC﹣CD=BC﹣AD=9﹣4=5,故答案为:5.【点评】本题考查的是线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.12.如图,△ABC中,∠C=90°,DE是AB的垂直平分线,且BC=8,AC=6,则△ACD的周长为14.【分析】根据线段的垂直平分线的性质得到DA=DB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴DA=DB,∴△ACD的周长=AC+CD+AD=AC+CD+DB=AC+BC=14,故答案为:14.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.13.已知点P关于y轴的对称点P1的坐标是(﹣1,2),则点P的坐标是(1,2).【分析】直接利用关于y轴对称点的性质得出点P坐标.【解答】解:∵P关于y轴的对称点P1的坐标是(﹣1,2),∴点P坐标是(1,2).故答案是:(1,2).【点评】此题主要.考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.14.等腰三角形ABC中,∠A=110°,则∠B=35°.【分析】根据钝角只能是顶角和等腰三角形的性质求得两个底角即可确定答案.【解答】解:∵等腰三角形中,∠A=110°>90°,∴∠B==35°,故答案为:35.【点评】本题考查了等腰三角形的性质,解题的关键是了解钝角只能是等腰三角形的顶角.15.等腰三角形的一个底角比顶角大30°,那么顶角度数为40°.【分析】设顶角的度数为x,表示出底角的度数.根据三角形内角和定理列方程求解.【解答】解:设顶角的度数为x°,则底角的度数为(x+30)°.根据题意,得x+2(x+30)=180,解得x=40.故答案为:40°.【点评】此题考查等腰三角形性质和三角形内角和定理,属基础题.16.如图:∠EAF=15°,AB=BC=CD,则∠ECD等于45°.【分析】根据等腰三角形的性质以及三角形的外角的性质即可解决问题;【解答】解:∵AB=BC,∴∠BAC=∠BCA=15°,∴∠CBD=∠A+∠BCA=30°,∵CB=CD,∴∠CBD=∠CDB=30°,∴∠ECD=∠A+∠CDB=15°+30°=45°,故答案为45.【点评】本题考查等腰三角形的性质、三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.如图,在△ABC中,AB=AC,DE垂直平分AB.若BE⊥AC,AF⊥BC,垂足分别为点E,F,连接EF,则∠EFC=45°.【分析】先根据线段垂直平分线的性质及BE⊥AC得出△ABE是等腰直角三角形,再由等腰三角形的性质得出∠ABC的度数,由AB=AC,AF⊥BC,可知BF=CF,BF =EF;根据三角形外角的性质即可得出结论.【解答】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAC=∠ABE=45°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣45°)=67.5°,∴∠CBE=∠ABC﹣∠ABE=67.5°﹣45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∴BF=EF;∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故答案为:45°.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键,同时要熟悉直角三角形中,斜边的中线等于斜边的一半.18.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是9.6.【分析】由等腰三角形的三线合一可得出AD垂直平分BC,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,在△ABC中,利用面积法可求出BQ的长度,此题得解.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD垂直平分BC,∴BP=CP.过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ 的长,如图所示.=BC•AD=AC•BQ,∵S△ABC∴BQ===9.6.故答案为:9.6.【点评】本题考查了轴对称﹣最短路线问题、等腰三角形的性质以及三角形的面积,利用点到直线垂直线段最短找出PC+PQ的最小值为BQ是解题的关键.三.解答题(共7小题)19.如图,直线MN和直线DE分别是线段AB,BC的垂直平分线,它们交于P点,请问PA和PC相等吗?请说明理由.【分析】连接PB,根据线段垂直平分线的性质即可得出结论.【解答】解:PA=PC.理由:∵直线MN和直线DE分别是线段AB,BC的垂直平分线,∴PA=PB,PC=PB,∴PA=PC.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上的点到线段两端的距离相等是解答此题的关键.20.如图,在△ABC中,∠C=90,DE是AB的垂直平分线,∠CAE=∠B+30°,求∠AEB的度数.【分析】利用线段垂直平分线的性质计算.【解答】解:已知DE垂直且平分AB⇒AE=BE⇒∠EAB=∠B又因为∠CAE=∠B+30°故∠CAE=∠B+30°=90°﹣2∠B⇒∠B=20°∴∠AEB=180°﹣20°×2=140°.【点评】本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识,注意角与角之间的转换.21.如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.【分析】(1)、(2)利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(3)用一个矩形的面积减去三个三角形的面积计算△ABC的面积.【解答】解:(1)如图,△A1B1C1为所作;(2)点C1的坐标为(4,3);(3)△ABC的面积=3×5﹣×3×1﹣×3×2﹣×5×2=.【点评】本题考查了作图﹣对称性变换:在画一个图形的轴对称图形时,先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.22.已知等腰三角形△ABC的一边长为5,周长为22.求△ABC另两边的长.【分析】分两种情况:①设AB=AC=5,②设BC=5,根据等腰三角形的性质和三角形的三边关系即可得到结论.【解答】解:∵△ABC是等腰三角形,∴不妨设AB=AC,又∵一边长为5,①设AB=AC=5,∵△ABC的周长为22,∴BC=22﹣5﹣5=12;∵5+5<12,∴不成立(舍);②设BC=5,∵△ABC的周长为22,∴AB=AC=(22﹣5)÷2=8.5,∵8.5+5>8.5,符合题意,∴△ABC另两边长分别为8.5,8.5.【点评】本题考查了等腰三角形的性质,三角形的三边关系,熟练掌握等腰三角形的性质是解题的关键.23.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.【分析】根据角平分线的定义和余角的性质即可得到结论.【解答】解:∵BF平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.【点评】此题考查了等腰三角形的判定、直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键.24.如图,△ABC中,点O是∠BCA与∠ABC的平分线的交点,过O作与BC平行的直线分别交AB、AC于D、E.已知△ABC的周长为15,BC的长为6,求△ADE的周长.【分析】先利用角平分线的定义和平行线的性质得到∠1=∠2,所以DB=DO,同理可得EO=CE,利用等线段代换得到△ADE的周长=AB+AC,然后利用△ABC的周长为15得到AB+AC=9,从而得到△ADE的周长.【解答】解:∵点O是∠BCA与∠ABC的平分线的交点,∴∠1=∠3,∵DE∥BC,∴∠2=∠3,∴∠1=∠2,∴DB=DO,同理可得EO=CE,∴△ADE的周长=AD+AE+DE=AD+DO+AE+OE=AD+BD+AE+CE=AB+AC,∵△ABC的周长为15,∴AB+AC+BC=15,而BC的长为6,∴AB+AC=9,∴△ADE的周长为9.【点评】本题考查了等腰三角形的判定与性质:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.也考查了平行线的性质.25.如图,在△ABC中,AB=AC,CD垂直AB于D,P为BC上的任意一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F.①若P为BC边中点,则PE,PF,CD三条线段有何数量关系(写出推理过程)?②若P为线段BC上任意一点,则①中关系还成立吗?③若P为直线BC上任意一点,则PE,PF,CD三条线段间有何数量关系(请直接写出).【分析】①如图1,连接PA,根据三角形的面积公式列方程即可得到结论;②连接PA ,根据三角形的面积公式即可得到结论;(3)如图2,连接PA ,根据三角形的面积列方程即可得到结论;如图3,过点C 作CG ⊥PE 于G ,根据矩形的性质和全等三角形的性质即可得到结论.【解答】解:(1)CD =PE +PF ,理由:如图1,连接PA ,∵CD ⊥AB 于D ,PE ⊥AB 于E ,PF ⊥AC 于F∵S △ABC =AB ×CD ,S △PAB =AB ×PE ,S △PAC =AC ×PF ,又∵S △ABC =S △PAB +S △PAC∴AB ×CD =AB ×PE +AC ×PF ,∵AB =AC∴CD =PE +PF ;(2)①中关系还成立,理由:连接PA ,∵CD ⊥AB 于D ,PE ⊥AB 于E ,PF ⊥AC 于F∵S △ABC =AB ×CD ,S △PAB =AB ×PE ,S △PAC =AC ×PF ,又∵S △ABC =S △PAB +S △PAC∴AB ×CD =AB ×PE +AC ×PF ,∵AB =AC∴CD =PE +PF ;(3)结论:PE ﹣PF =CD 或PF ﹣PE =CD ,如图2,连接PA ,∵CD ⊥AB 于D ,PE ⊥AB 于E ,PF ⊥AC 于F∵S △ABC =AB ×CD ,S △PAB =AB ×PE ,S △PAC =AC ×PF ,又∵S △ABC =S △PAC ﹣S △PAB∴AB ×CD =AC ×PF +AB ×PE ,∵AB =AC ,∴CD =PF ﹣PE ;如图3,过点C 作CG ⊥PE 于G ,∵PE ⊥AB ,CD ⊥AB ,∴∠CDE=∠DEG=∠EGC=90°.∴四边形CGED为矩形.∴CD=GE,GC∥AB.∴∠GCP=∠B.∵AB=AC,∴∠B=∠ACB.∴∠FCP=∠ACB=∠B=∠GCP.在△PFC和△PGC中,,∴△PFC≌△PGC(AAS),∴PF=PG.∴PE﹣PF=PE﹣PG=GE=CD;【点评】本题考查了等腰三角形的性质;在解决一题多变的时候,基本思路是相同的;注意通过不同的方法计算同一个图形的面积,来进行证明结论的方法,是非常独特的,也是一种很好的方法,注意掌握应用.。

八年级数学上册第十三章《轴对称》测试-人教版(含答案)

八年级数学上册第十三章《轴对称》测试-人教版(含答案)

八年级数学上册第十三章《轴对称》测试-人教版(含答案)题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3 C.2,2,1 D.2,2,52如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD3如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10 B.12 C.14 D.164.如图,直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=110°,那么∠BCD的度数为( )A.50° B.60° C.70° D.80°5.如图,在等腰△ABO中,∠ABO=90°,腰长为2,则A点关于y轴的对称点的坐标为()A.(﹣2,2)B.(﹣2,﹣2)C.(2,2)D.(2,﹣2)6.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等7.如图①,在边长为4cm的正方形ABCD中,点P从点A出发,沿AB→BC的路径匀速运动,当点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数关系图象如图②所示,当点P运动2.5s时,PQ的长是()cm.A.B.C.D.8.如图13-5,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q 恰好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为()A.4.5 cmB.5.5 cmC.6.5 cmD.7 cm图13-5 图13-69.如图13-6,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E分别为垂足,下列结论中正确的是()A.AC=2ABB.AC=8ECC.CE=12BDD.BC=2BD10. 如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为______.18.如图,△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P,若∠BAC =84°,则∠BDC=______.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)直接写出B1和B2点坐标.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.21.如图,△ABC中,AB=AC,DE是腰AB的垂直平分线.(1)若∠A=40°,求∠DBC的度数;(2)若AB=9,BC=5,求△BDC的周长.22.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.23.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.24.已知等腰ABC,AC AB⊥交BA延长线于点D,点P在直线AC上=,30ABC∠=︒,CD AB运动,连接BP,以BP为边,并在BP的左侧作等边三角形BPE,连接AE.(1)如图1,当BP AC≌△△;⊥时,求证:ABP ACD(2)如图2,当点D与点E在直线CP同侧时,求证:AP AB AE=+;(3)在点P运动过程中,是否存在定直线,使得线段BE、CE始终关于这条直线对称,若存在,指出这一条直线,并加以证明:若不存在,请说明理由.参考答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 C D C D C C D B D B二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.【考点】轴对称图形.【答案】见试题解答内容【分析】应根据各图形组成特征找出对应关系.【解答】解:A剪开后是三个三角形,B和C剪开后是两个直角梯形和一个三角形,D剪开后是两个三角形和一个四边形,因而,A与G对应,B与E对应,C与F对应,D与H对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.【考点】线段垂直平分线的性质.【专题】三角形.【答案】见试题解答内容【分析】先根据题意得到AB垂直平分CD,然后根据线段垂直平分线的性质可判断C,D到B的距离相等.【解答】解:∵AB⊥CD,AC=AD,∴AB垂直平分CD,∴BC=BD,即C,D到B的距离相等.故答案为:垂直平分线上的点到线段两端点的距离相等.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.【考点】等边三角形的性质;含30度角的直角三角形.【专题】推理填空题.【答案】见试题解答内容【分析】根据等边三角形的性质得到AD=4,AC=8,∠A=∠C=60°,根据直角三角形的性质得到AE=AD=2,计算即可.【解答】解:等边△ABC中,D是AB的中点,AB=8,∴AD=4,BC=AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故答案为:5.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.【考点】解一元一次不等式组;一元一次不等式组的整数解;关于x轴、y轴对称的点的坐标.【专题】平面直角坐标系;数感;运算能力.【答案】2.【分析】由于点P关于y轴的对称点在第二象限,则点P在第一象限,再根据点的坐标特征,即可得出整数m的值.【解答】解:由于点P关于y轴的对称点在第二象限,则点P在第一象限.依题意有解得<m<3.因为m为整数,所以m=2,故答案为:2.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.【考点】等边三角形的性质;轴对称﹣最短路线问题.【专题】平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】根据等边三角形的性质得到AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,根据直角三角形的性质得到BG=2BF=14,求得EG=8,于是得到结论.【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故答案为:10.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【答案】见试题解答内容【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或17.21°解析:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°.依题意可知BC=EC,∴∠BEC =∠EBC=53°,∴∠ABE=∠ABC-∠EBC=74°-53°=21°.18.96°解析:如图,过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于点F.∵AD是∠BAC的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt△DEB 和Rt△DFC 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DEB ≌Rt△DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DFA =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1和△A 2B 2C 2;(2)直接写出B 1和B 2点坐标.【分析】(1)分别作出点A 、B 、C 关于x 轴、y 轴对称的点,然后顺次连接;(2)根据坐标系的特点,写出点B 1和B 2的坐标.【解答】解:(1)所作图形如图所示:;(2)B1(2,2),B2(﹣2,﹣4).20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.【分析】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形,首先证明△EBO≌△DCO,可得BO=CO,根据等边对等角可得∠OBC =∠OCB,进而得到∠ABC=∠ACB,根据等角对等边可得AB=AC,即可得到△ABC是等腰三角形.【解答】①③;②③;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形;证明:∵在△EBO和△DCO中,∵,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.21.解:(1)∵△ABC中,AB=AC,∠A=40°,∴∠ABC==70°.∵DE是腰AB的垂直平分线,∴AD=BD,∠DBA=∠A=40°,∴∠DBC=70°﹣40°=30°;(2)由(1)得:AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC=AB+BC=9+5=14.答:△BDC的周长是14.22.证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC,∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.23.【答案】(1)解:∵EF∥AB.∴∠FEC=∠A=30°.∠EFC=∠B=30°∴EC=CF.又∵AC=BC∴AE=BFD是AB中点.∴DB=AD∴△ADE≌△BDF.∴DE=DF(2)解:过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.∵AC=BC,∴∠A=∠B,又∵∠ACB=120°,∴∠A=∠B=(180°﹣∠ACB)÷2=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.∵AC=BC、AD=BD,∴∠ACD=∠BCD,∴DM=DN.由∠MDN=60°、∠EDF=60°,可知:一当M 与E 重合时,N 就一定与F 重合.此时:DM=DE 、DN=DF ,结合证得的DM=DN ,得:DE=DF .二当M 落在C 、E 之间时,N 就一定落在B 、F 之间.此时:∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.三当M 落在A 、E 之间时,N 就一定落在C 、F 之间.此时:∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.综上一、二、三所述,得:DE=DF .24. (1)证明∶如图1,∵CD ⊥AB , BP ⊥AC ,∴∠ADC =∠APB =90°,∵在△ABP 和△ACD 中,ADC APB CAD BAP AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABP ≌△ACD ;(2)证明:如图3,在PA 上取一点M ,使得PM =AB ,∵△BPE是等边三角形,∴BE=PE,∠BEP=60°,∵AB=AC,∠ABC=30°,∴∠ACB=∠ABC=30°,∴∠BAP=∠ABC+∠ACB=60*,∴∠BEP=∠BAP,∴∠EPM=∠EBA,∴△PEM≌△BEA,∴EM=AE,∠PEM=∠BEA,∴∠AEM=∠AEB+∠BEM=∠PEM+∠MEB=∠BEP=60°,∴△AEM是等边三角形,∵AE=AM,∴AP=AM+PM=AE+AB;(3)解∶存在定直线,使得线段BE、CE始终关于这条直线对称,理由如下:①当点D与点E在直线CP同侧时,连接CE,如图4,∵△AEM是等边三角形,∴∠EAM=60°,∵∠BAP =60°,∴∠DAE =180°-∠DAE -∠EAM =60°,∴∠CAE =CAD +∠DAE =120°,∠BAE =∠BAP +∠AEM =120°,∴∠CAE =∠BAE ,∵在△CAE 和△BAE 中AE AE CAE BAE AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△CAE ≌△BAE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;②当点D 与点E 在直线CP 两侧时,在PC 上取一点M ,使得PM = BA ,如图5,∵△BPE 是等边三角形,∴BE =PE ,∠BEP =60°,∵AB =AC ,∠ABC =30°,∴∠ACB =∠ABC =30°,∴∠BAP =∠ABC +∠ACB =60°,∴∠BEP =∠BAP ,∴∠EPM =∠EBA ,∴△PEM ≌△BEA ,∴∠PME =∠BAE , EM =AE ,∴∠PME =∠MAE ,∴∠MAE =∠BAE ,∵△ACE 和△ABE 中,CA AB MAE BAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△ABE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;即∶在点P 运动过程中,存在定直线(线段BC 的垂直平分线),使得线段BE 、CE 始终关于这条直线对称.。

人教版八年级上册《第13章轴对称》单元测试卷(含答案解析)

人教版八年级上册《第13章轴对称》单元测试卷(含答案解析)

2018年秋人教版八年级上册第13章轴对称单元测试卷数学试卷考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)若点(a,﹣3)与点(2,b)关于y轴对称,则a,b的值为()A.a=2,b=3 B.a=2,b=﹣3 C.a=﹣2,b=﹣3 D.a=﹣2,b=32.(4分)如图,在等腰△ABC中,∠A=36°,∠ABC=∠ACB,∠1=∠2,∠3=∠4,BD 与CE交于点O,则图中等腰三角形有()A.6个B.7个C.8个D.9个3.(4分)如图,若D是直角△ABC斜边上的中点,DE⊥AB,如果∠EAC:∠BAE=2:5,那么∠BAC=()A.60°B.52°30′C.45°D.37.5°4.(4分)等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是()A.9cm B.12cm C.9cm或12cm D.在9cm或12cm之间5.(4分)观察下列各组图形,其中两个图形成轴对称的有()组.A.1 B.2 C.3 D.46.(4分)△ABC中,边AB、AC的中垂线交于点O,则有()A.O在△ABC内部B.O在△ABC的外部C.O在BC边上D.OA=OB=OC7.(4分)等腰三角形的底边BC=8cm,且|AC﹣BC|=2cm,则腰长AC的长为()A.10cm或6cm B.10cm C.6cm D.8cm或6cm8.(4分)△ABC中,AD,BE分别是边BC,AC上的高,若∠EBC=∠BAD,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形9.(4分)△ABC和△ABD是有公共边的三角形,如果可以判定两个三角形全等,那么点D的位置是()A.是唯一确定的B.有且只有两种可能C.有且只有三种可能D.有无数种可能10.(4分)如图,△AOB关于x轴对称图形△A′OB,若△AOB内任意一点P的坐标是(a,b),则△A′OB中的对应点Q的坐标是()A.(a,b)B.(﹣a,b)C.(﹣a,﹣b)D.(a,﹣b)二.填空题(共4小题,满分20分,每小题5分)11.(5分)26个大写英文字母中,有些字母可以看成轴对称图形,共有个是轴对称图形.12.(5分)如图,一条船从A处出发,以15里/小时的速度向正北方向航行,10个小时到达B处,从A、B望灯塔,得∠NAC=37°,∠NBC=74°,则B到灯塔C的距离是里.13.(5分)如图所示,△ABC、△ADE与△EFG都是等边三角形,D和G分别为AC和AE的中点,若AB=4时,则图形ABCDEFG外围的周长是.14.(5分)如下图,在Rt△ABC中,∠C=90°,DE垂直平分AB,垂足为E,D在BC上,已知∠CAD=32°,则∠B=度.三.解答题(共9小题,满分90分)15.(8分)如图,在Rt△ABC中,∠C=90°,∠A=30°.(1)以直角边AC所在的直线为对称轴,将Rt△ABC作轴对称变换,请在原图上作出变换所得的像;(2)Rt△ABC和它的像组成了什么图形?最准确的判断是();(3)利用上面的图形,你能找出直角边BC与斜边AB的数量关系吗?并请说明理由.16.(8分)已知点A (2,m ),B (n ,﹣5),根据下列条件求m ,n 的值.(1)A ,B 两点关于y 轴对称;(2)AB ∥y 轴.17.(8分)如图,已知等边△ABC 的边长为a ,B ,C 在x 轴上,A 在y 轴上.(1)作△ABC 关于x 轴的对称图形△A′B′C′;(2)求△ABC 各顶点坐标和△A′B′C′各顶点坐标.18.(8分)已知等腰三角形的周长为28cm ,其中的一边长是另一边长的23倍,求这个等腰三角形各边的长. 19.(10分)如图所示,已知点D 是等边三角形ABC 的边BC 延长线上的一点,∠EBC=∠DAC ,CE ∥AB .求证:△CDE 是等边三角形.20.(10分)如图,在等腰△ABC 中,∠A=80°,∠B 和∠C 的平分线相交于点O(1)连接OA ,求∠OAC 的度数;(2)求:∠BOC .21.(12分)如图所示,在△ABC中,AB=AC,∠A=60°,BD⊥AC于点D,DG∥AB,DG 交BC于点G,点E在BC的延长线上,且CE=CD.(1)求∠ABD和∠BDE的度数;(2)写出图中的等腰三角形(写出3个即可).22.(12分)如图,已知∠AOB=a外有一点P,画点P关于直线OA的对称点P′,再作点P′关于直线OB的对称点P″.(1)试猜想∠POP″与a的大小关系,并说出你的理由.(2)当P为∠AOB 内一点或∠AOB边上一点时,上述结论是否成立?23.(14分)如图,已知坐标系中点A(2,﹣1),B(7,﹣1),C(3,﹣3).(1)判定△ABC的形状;(2)设△ABC关于x轴的对称图形是△A1B1C1,若把△A1B1C1的各顶点的横坐标都加2.纵坐标不变,则△A1B1C1的位置发生什么变化?若最终位置是△A2B2C2,求C2点的坐标;(3)试问在x轴上是否存在一点P,使PC﹣PB最大,若存在,求出PC﹣PB的最大值及P点坐标;若不存在,说明理由.2018年秋人教版八年级上册 第13章 轴对称 单元测试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a 、b 的值.【解答】解:∵点(a ,﹣3)与点(2,6)关于y 轴对称,∴a=﹣2,b=﹣3,故选:C .【点评】此题主要考查了关于y 轴对称点的坐标特点,关键是掌握点的坐标的变化规律.2.【分析】由已知条件,根据三角形内角和等于180、角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行找寻,注意做到由易到难,不重不漏.【解答】解:∵在等腰△ABC 中,∠A=36°,∴∠ABC=∠ACB=236180=72°, ∵∠1=∠2,∠3=∠4,∴∠1=∠2=∠3=∠4=∠A=36°,∴AD=BD ,AE=EC ,OB=OC ,即△ADB ,△AEC ,△OBC 是等腰三角形,∵∠BDC=∠CEB=180°﹣36°﹣72°=72°,∴BC=CE=AD ,即△BCE ,△BCD 是等腰三角形,∵∠1=∠4=36°,∴∠BOE=∠COD=180°﹣36°﹣72°,∴CD=CD ,BO=BE ,即△BOE ,△COD 是等腰三角形,∴共有8个等腰三角形.故选:C .【点评】本题考查了等腰三角形的性质和判定、角的平分线的性质及三角形内角和定理;由已知条件利用相关的性质求得各个角的度数是正确解答本题的关键.3.【分析】由于D是直角△ABC斜边上的中点,DE⊥AB,可以得到AE=BE,进一步得到∠EAB=∠B,又∠EAC:∠BAE=2:5,再利用直角三角形的两个锐角互余即可求出∠BAC.【解答】解:∵D是直角△ABC斜边上的中点,DE⊥AB,∴AE=BE,∴∠EAB=∠B,∵∠EAC:∠BAE=2:5,∴∠EAC:∠B=2:5,∴∠BAC:B=7:5,∵∠BAC+∠B=90°,∴∠BAC=52°30′,故选:B.【点评】此题考查了直角三角形的性质,还考查了线段垂直平分线的性质,解题时要注意数形结合思想的应用.4.【分析】题目给出等腰三角形有两条边长为2cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰长是2cm时,因为2+2<5,不符合三角形的三边关系,应排除;当腰长是5cm时,因为5+5>2,符合三角形三边关系,此时周长是12cm.故选:B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.【分析】根据成轴对称的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做成轴对称,这条直线叫做对称轴;据此判断即可.【解答】解:根据两个图形成轴对称的性质得出:(1)(2)(4)成轴对称图形,故选:C.【点评】此题主要考查了成轴对称图形的定义,掌握成轴对称的意义,判断是不是成轴对称的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.6.【分析】从已知开始,分别根据线段垂直平分线上的点到线段两边的距离相等解答即可得到答案.【解答】解:∵△ABC中,边AB、AC的中垂线交于点O,∴OA=OB,OA=OC,∴OA=OB=OC.故选:D.【点评】考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.本题比较简单,属于基础题.7.【分析】根据绝对值的性质求出AC的长即可.【解答】解:∵|AC﹣BC|=2cm,∴AC﹣BC=2cm或﹣AC+BC=2cm,∵BC=8cm,∴AC=(2+8)cm或AC=(8﹣2)cm,即10cm或6cm.故选:A.【点评】本题考查的是等腰三角形的性质,熟知“等腰三角形的两腰相等”是解答此题的关键.8.【分析】发现∠ABC与∠C分别是∠BAD与∠EBC的余角,得到二角相等,根据等腰三角形的判定可得答案.【解答】解:∵∠EBC+∠C=90°,∠C+∠CAD=90°,∴∠CAD=∠EBC,∵∠EBC=∠BAD∴∠BAD=∠CAD,∠CAD+∠C=90°∠BAD+∠ABC=90°∴∠ABC=∠C∴AB=AC∴为等腰三角形.故选:A.【点评】本题考查了等腰三角形的判定;由∠EBC=∠BAD利用等角的余角相等得到∠ABC=∠ACB是正确解答本题的关键.9.【分析】根据三角形全等的判定和已知,可确定公共边为AB,故点D的位置也有两种情况.【解答】解:以AB为公共边可得两个点D的位置.故选:B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等.10.【分析】根据关于x轴对称的点的横坐标相同,纵坐标互为相反数解答即可.【解答】解:∵△AOB与△A'OB关于x轴对称,∴点P(a,b)关于x轴的对称点为(a,﹣b),∴点P的对应点Q的坐标是(a,﹣b).故选:D.【点评】本题考查了坐标与图形变化﹣对称,熟记关于x轴对称的点的横坐标相同,纵坐标互为相反数是解题的关键.二.填空题(共4小题,满分20分,每小题5分)11.【分析】根据轴对称图形的概念,分析出可以看成轴对称图形的字母.【解答】解:26个大写英文字母中,A、B、C、D、E、H、I、K、M、O、T、U、V、W、X、Y可以看成轴对称图形.故共有16个是轴对称图形.故答案为:16.【点评】此题的关键是熟悉轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.12.【分析】根据已知及等角对等边的性质得到BC=AB,根据路程公式可求得AB的长,从而也就得到了BC的长.【解答】解:∵∠NAC=37°,∠NBC=74°∴∠C=37°∴BC=AB=10×15=150里.故填150.【点评】此题考查等腰三角形的性质及三角形外角的性质;利用三角形外角的性质求得∠C=37°是正确解答本题的关键.13.【分析】先搞清图形ABCDEFG外围的周长的组成,再来计算,即易解.【解答】解:∵△ABC、△ADE与△EFG都是等边三角形∴AD=DE,EF=EG∵D和G分别为AC和AE的中点,AB=4∴DE=EA=2,GF=EF=1,∴图形ABCDEFG外围的周长是4×3+2+1=15.【点评】本题考查了等边三角形的性质;解决本题的关键是得到图形ABCDEFG外围的周长的组成.14.【分析】利用中垂线和三角形外角性质计算.【解答】解:∠C=90°,∠CAD=32°⇒∠ADC=58°,DE为AB的中垂线⇒∠BAD=∠B又∠BAD+∠B=58°⇒∠B=29°故填29°【点评】本题涉及中垂线和三角形外角性质,难度中等.三.解答题(共9小题,满分90分)15.【分析】(1)延长BC到D,使CD=BC,连接AD即可;(2)根据三角形内角和定理可得∠B=60°,根据作图可得∠BAD=60°,三个角都是60°,那么是等边三角形;(3)BC=BD的一半,也就是AB的一半.【解答】解:(1)作图如右图:.(2分)(2)Rt△ABC和它的像组成了什么图形最准备的判断是(等边三角形)(2分)(3)AB=2BC.(2分)∵∠C=90°,∠A=30°,∴∠B=60°.∵△ABC≌△ADC,∴∠DAC=∠BAC=30°.∴∠BAD=60°.∴△ABD 是等边三角形.∴AB=DB .∵CD=BC ,∴BC=21BD . ∴BC=21BA .(4分) 【点评】关于轴对称的两个图形是全等形;各对应点的连线被对称轴垂直平分.16.【分析】(1)平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点的坐标是(﹣x ,y );(2)AB ∥y 轴就是说明A ,B 两点的横坐标相同.【解答】解:(1)根据轴对称的性质,得m=﹣5,n=﹣2;(2)根据平行线的性质,得m ≠﹣5,n=2.【点评】本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点.这一类题目是需要识记的基础题.解决的关键是对知识点的正确记忆.注意:平行于x 轴的直线的所有点的纵坐标相等;平行于y 轴的所有点的横坐标相等.17.【分析】因为x 轴为对称轴,B 、C 在x 轴上,则其对称点为本身,A 的对称点A′在y 轴上,距离x 轴OA 个单位长度.【解答】解:(1)如图.(2)A ,A′两点横坐标相等,纵坐标互为相反数,其它两点因为重合,坐标相等; A (0,23a ),B (﹣2a ,0),C (2a ,0),A′(0,﹣23a ),B′(﹣2a ,0),C′(2a ,0).【点评】解答此题要明确轴对称的性质:1.对称轴是一条直线;2.垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线.线段垂直平分线上的点到线段两端的距离相等;3.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等;4.在轴对称图形中,对称轴把图形分成完全相等的两份;5.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.18.【分析】本题已知了等腰三角形的两边间的比例关系,但是没有明确这两边哪边是底,哪边是腰,因此要分两种情况讨论.【解答】解:设等腰三角形的一边长为xcm ,则另一边长为23xcm , 则等腰三角形的三边有两种情况:xcm ,xcm ,23xcm 或xcm ,23xcm ,23xcm , 则有:①x +x +23x=28,得x=8cm , 所以三边为:8cm 、8cm 、12cm ;②x +23x +23x=28,得x=7cm , 所以三边为7cm 、10.5cm 、10.5cm .因此等腰三角形的三边的长为:8cm ,8cm ,12cm 或7cm ,10.5cm ,10.5cm .【点评】本题考查了等腰三角形的性质和三角形的三边关系;本题从边的方面考查三角形,利用分情况讨论的思想方法求解是解题的关键.19.【分析】可先证明△BCE ≌△ACD ,得到CE=CD 及∠ECD=60°,即可求解.【解答】证明:∵∠ABE +∠CBE=60°,∠CAD +∠ADC=60°,∠EBC=∠DAC ,∴∠ABE=∠ADC .又CE ∥AB ,∴∠BEC=∠ABE .∴∠BEC=∠ADC .又BC=AC ,∠EBC=∠DAC ,∴△BCE ≌△ACD .∴CE=CD ,∠BCE=∠ACD ,即∠ECD=∠ACB=60°.∴△CDE 是等边三角形.【点评】本题主要考查等边三角形的判定,熟练掌握等边三角形的性质是解答的关键.20.【分析】(1)连接AO ,利用等腰三角形的对称性即可求得∠OAC 的度数;(2)利用三角形的内角和定理以及角平分线的定义求∠BOC 与∠A 的关系,再把∠A 代入即可求∠BOC 的度数.【解答】解:(1)连接AO ,∵在等腰△ABC 中,∠B 和∠C 的平分线相交于点O ,∴等腰△ABC 关于线段AO 所在的直线对称,∵∠A=80°,∴∠OAC=40°(2)∵BO 、CO 分别平分∠ABC 和∠ACB ,∴∠OBC=21∠ABC ,∠OCB=21∠ACB , ∴∠BOC=180°﹣(∠OBC +∠OCB ) =180°﹣(21∠ABC +21∠ACB ) =180°﹣21(∠ABC +∠ACB )=180°﹣21(180°﹣∠A ) =90°+21∠A . ∴当∠A=80°时,() 130219021180=∠+=∠+∠-=∠A C B BOC . 【点评】本题考查了等腰三角形的性质,也可以作辅助线,构造三角形的外角,利用三角形外角的性质求解.21.【分析】(1)△ABC 为等边三角形,所以△ABD 为直角三角形,可求∠ABD ,再利用线段相等,角的转化,求出∠BDE ;(2)只要两边相等或两个角相等,就是等腰三角形,在图形中找相等的角即可.【解答】解:(1)∵AB=AC ,∠A=60°,∴△ABC 是等边三角形,∵BD ⊥AC ,∴∠ABD=30°,∵CD=CE ,∠ACB=60°∴∠CDE=30°∴∠BDE=120°.(2)∵AB=AC ,∴△ABC 是等腰三角形∵DG ∥AB ,∴∠DGC=∠ABC ,∴△CDG 为等腰三角形.∵CD=CE ,∴△CDE 是等腰三角形.【点评】本题考查了等腰三角形的性质和判定及平行线的性质;找着相等的角是正确解答本题的关键.22.【分析】(1)根据轴对称的性质画出图形,再由HL 定理得出△DOP′≌△DOP ,△EOP″≌△EOP′根据全等三角形的性质即可得出结论;(2)根据题意画出图形,同(1)可得出结论.【解答】解:(1)猜想:∠POP″=2α.理由:如图1,在△DOP′与△DOP 中∵⎩⎨⎧='=ODOD P O OP ,∴△DOP′≌△DOP .同理可得,△EOP″≌△EOP′∴∠POP″=2α;(2)成立.如图2,当点P 在∠AOB 内时,∵同(1)可得,△DOP′≌△DOP ,EOP″≌△EOP′,∴∠POD=∠P′OD ,∠EOP″=∠EOP′,∴∠POP″=∠P′OP″﹣∠POP′=3α﹣α=2α.如图3,当点P 在∠AOB 的边上时,∵同(1)可得△EOP″≌△EOP ,∴∠POP″=2α.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.23.【分析】(1)计算出AC 2,BC 2,AB 2,比较数量关系即可;(2)把△A 1B 1C 1的各顶点的横坐标都加2.纵坐标不变,则图形向右移动两个单位;(3)连接CB 1,与x 轴的交点即为P ,进而解答即可.【解答】解:(1)∵AC 2=22+12=5,BC 2=42+22=20,AB 2=52∴AC 2+BC 2=AB 2∴△ABC 是直角三角形;(2)图象向右平移2个单位,C 2坐标为(5,2);(3)存在.连接CB 1,与x 轴的交点即为P ,理由:设BC 对应一次函数为y=kx +b∵C (3,﹣3)B (7,﹣1)∴⎩⎨⎧-=+-=+1733b k b k ∴⎪⎪⎩⎪⎪⎨⎧-==2921b k ∴y=21x ﹣29, 令y=0得x=9∴P (9,0).此时,PC ﹣PB 最大值为BC=25【点评】本题考查了作图﹣﹣轴对称变换和最短路径问题,熟悉轴对称的性质和勾股定理是解题的关键.。

八年级上册数学第十三章 轴对称 测试卷(含答案)

八年级上册数学第十三章 轴对称 测试卷(含答案)

八年级上册数学第十三章轴对称测试卷一、选择题。

(每小题3分,共24分)1.以下四个图形中,对称轴条数最多的是()A B C D2.如图所示是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击中(球可以经过多次反弹),那么该球最后将落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋第2题图第3题图3.如图所示,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A. 30°B.36°C.45°D.70°4.小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00的是()A B C D5.下列说法正确的是()A.等腰三角形的高、中线、角平分线互相重合B.顶角相等的两个等腰三角形全等C.等腰三角形一边不可以是另一边的二倍D.等腰三角形的两个底角相等6.小朋友文文把一张长方形的纸对折了两次(如图所示),使A,B都落在DC上,折痕分别是DE,DF,则∠EDF的度数为()A. 60 °B.75°C.90°D.120°第6题图第8题图7.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数是()A. 60°B. 120°C. 60°或150°D.60°或120°8.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A. 3B. 2.5C. 2D. 1二、填空题(每小题3分,共24分)1.仔细观察如图所示的图案,并按规律在横线上画出合适的图形.______2,则该汽车的车牌号是______.3.已知么MON= 45°,其内部有一点P,它关于OM的对称点是A,关于ON的对称点是B,且OP =2cm,则S△AOB=______4.如图所示,DE是AB的垂直平分线,D是垂足,DE交BC于E,若BC=32cm,AC=18cm,则△AEC的周长为______cm.第4题图第6题图第7题图5.在直角坐标系中,点A,B,C,D的坐标分别为(-1,3),(-2,-4),(1,3),(2,-4),则线段AB与CD的位置关系是______.6.如图,在△ABC中,∠ACB = 90°,AB=10,AC=8,P是AB边上的动点(不与点B重合),点B关于直线CP的对称点B',连接B'A,则B’A长度的最小值是______.7.如图所示,△ABD、△ACE是正三角形,BE和CD交于O点,则∠BOC =______.8.如图所示,有一块形状为等边△ABC的空地,DE,EF为空地中的两条路,且D为AB的中点,DE⊥AC于E,EF∥AB,现已知AE=5m,则地块△EFC的周长为______.三、解答题(共72分)1.如图所示,已知在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.2.用围棋棋子可以在棋盘中摆出许多有趣的图案,如图甲,在棋盘上建立平面直角坐标系,以直线y=x为对称轴,我们可以摆出一个轴对称图形(其中A与A’是对称点),你看它像不像一条美丽的鱼?(1)请你在图乙中,也用10枚以上的棋子摆出一个以直线y=x为对称轴的轴对称图案,并在所摆的图形中找出两组对称点,分别标为B—B',C—C'(注意棋子要摆在格点上).(2)在给定的平面直角坐标系中,你标出的B,B',C,C'的坐标分别是:B( ),B'( ),C( ),C'( ).根据以上对称点的坐标规律,写出点P(a,b)关于对称轴y=x对称点p’的坐标是( ).甲乙3.如图所示,△ABC和△A’B’C’关于直线MN对称,△A’B’C'和△A’’B’’C’’关于直线EF对称.(1)画出直线EF;(2)直线MN与EF相交于点O,试探究∠BOB’’与直线MN, EF所夹锐角α的数量关系.4.如图所示,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB +BD与DE的长度有什么关系?并加以证明.5.如图所示,在等边三角形ABC中,∠B,∠C的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.6.元旦联欢会上,同学们在礼堂四周摆了一圈条桌,其中北边条桌上摆满了苹果,东边条桌上摆满了香蕉,礼堂中间放一把椅子B.游戏规则是这样的:甲、乙二人从A 处同时出发,先去拿苹果再去拿香蕉,然后回到B处,谁先坐到椅子上谁赢.小张和小李比赛,比赛一开始,只见小张直奔东北两张条桌的交点处,左手抓苹果,右手拿香蕉,回头直奔B处,可是还未跑到B处,只见小李已经手捧苹果和香蕉稳稳地坐在B处的椅子上了,如果小李不比小张跑得快,那他是不是有捷径呢?如果有,请把捷径画出来,并说明理由.参考答案一、1.B 2.B 3.B 4.D 5.D 6.C 7.D 8.C 二、1. 2.M645379 3.2cm ² 4. 50 5.关于y 轴对称 6.2 7. 120° 8. 45m三、1.连接AF. ∵AB=AC,∴∠B= ∠C=︒=︒-︒=∠-︒3021201802A 180.又∵EF 垂直平分AC ,∴AF = CF ∴∠CAF =∠C= 30°. ∴∠BAF= ∠BAC- ∠CAF=120°-30°=90°.在Rt △BAF 中,∵∠B=30°,∴BF =2AF.叉∵AF= CF,∴BF=2CF .2.(1)按要求摆出图形并标出两组对称点B-B ’,C-C';(2)答案不唯一,只要满足点B 的横坐标等于点B ’的纵坐标,点B 的纵坐标等于点B ’的横坐标,点C 的横坐标等于点C ’的纵坐标,点C 的纵坐标等于点C ’的横坐标即可;根据以上对称点坐标的规律,可以发现P(a ,b)关于对称轴y=x 的对称点P ’的坐标为(b ,a).3.(1)如图所示,连接B'B ’’,作线段B'B ’’的垂直平分线EF,则直线EF 是△A ’B ’C ’和△A ’’B ’’C ’’的对称轴.(2)连接BO .因为△ABC 和△A'B'C'关于MN 对称,所以∠BOM=∠B 'OM.又因为△A ’B ’C ’和△A ’’B ’’C ’’关于EF 对称,所以∠B 'OE= ∠B ''OE.所以∠BOB''=∠BOM+ ∠B 'OM+∠B'OE+ ∠B ‘’OE =2(∠B'OM+∠B 'OE) =2a .即∠BOB ’’= 2a.4. AB+BD= DE ,证明略.5.同意,连接OE ,OF.由题意可知:BE= OE,CF= OF,∠OBC=∠OCB= 30°, ∴∠BOE=∠OBC=30°,∠COF=∠OCB=30°,∴∠BOC=120°,∴∠EOF=60°, ∠OEF=60°, ∠OFE=60°.∴△OEF 是等边三角形,∴OE = OF= EF= BE=CF.∴E ,F 是BC 的三等分点.6.分别以北条桌和东条桌为对称轴,作A ,B 的对称点A ’,B ’,连接A'B ’,交两长条桌于C ,D 两点,则折线ACDB 就是捷径.连接A'M 和B'M 因为A ,A ’于CM 对称,B ,B ’关于DM 对称,所以AC=A'C ,AM=A'M ,BD=B'D,BM=B'M.所以折线ACDB 的长=AC+CD+DB=A'C+CD+DB'=A'CDB'=A'B ’,而AM+BM=A'M+B'M> A'B',所以拆线ACDB 是捷径.。

人教版八年级数学上册第13章 轴对称 综合训练(含答案)

人教版八年级数学上册第13章 轴对称 综合训练(含答案)

人教版 八年级数学 第13章 轴对称 综合训练一、选择题1. 下列轴对称图形中,只有一条对称轴的图形是()2. 如图,DE是△ABC 的边AB 的垂直平分线,D 为垂足,DE 交AC 于点E ,且AC =8,BC =5,则△BEC 的周长是( )A .12B .13C .14D .153. (2019•广西)如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为A .40︒B .45︒C .50︒D .60︒4. 在数学课上,老师提出如下问题:如图,已知△ABC 中,AB<BC ,用尺规作图的方法在BC 上取一点P ,使得P A+PB=BC.下面是四名同学的作法,其中正确的是 ( )5. (2019•梧州)如图,DE 是ABC △的边AB 的垂直平分线,D 为垂足,DE 交AC于点E ,且85AC BC ==,,则BEC △的周长是A.12 B.13C.14 D.156. 如图,点P在直线l外,以点P为圆心,大于点P到直线l的距离为半径画弧,交直线l于点A,B;保持半径不变,分别以点A,B为圆心画弧,两弧相交于点Q,则PQ⊥l.上述尺规作图的依据是()A.一条直线与两平行线中的一条垂直,必然与另一条直线也垂直B.线段垂直平分线上的点与这条线段两个端点的距离相等,两点确定一条直线C.与线段两个端点距离相等的点在这条线段的垂直平分线上,两点确定一条直线D.角的内部到角的两边的距离相等的点在角的平分线上7. 如图,等腰三角形ABC的底边BC的长为4,面积为24,腰AC的垂直平分线EF分别交边AC,AB于点E,F,若D为BC边的中点,M为线段EF上一动点,则△CDM的周长的最小值为()A.8B.10C.12D.148. 把一张长方形纸片按图2①②所示的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是图3中的()9. 如图,在△ABC中,AB=BC,点D在AC上,BD=6 cm,E,F分别是AB,BC边上的动点,△DEF周长的最小值为6 cm,则∠ABC的度数为()A.20°B.25°C.30°D.35°10. 如图,在四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小,则此时∠AMN+∠ANM的度数为()A.80°B.90°C.100°D.130°二、填空题11. 如图,等腰三角形ABC中,AB=AC=12,∠A=30°,则△ABC的面积等于________.12. 如图所示的4组图形中,左右两个图形成轴对称的是第________组(填序号).13. 已知直线AB和△DEF,如图,作△DEF关于直线AB的对称图形,将作图步骤补充完整:(1)分别过点D,E,F作直线AB的垂线,垂足分别是____________;(2)分别延长DM,EP,FN至点____________,使__________,__________,__________;(3)顺次连接________,________,________,得△DEF关于直线AB的对称图形△GHI.14. 如图K-16-10,四边形ABCD是轴对称图形,BD所在的直线是它的对称轴,AB=5 cm,CD=3.5 cm,则四边形ABCD的周长为________ cm.15. 在△ABC中,若∠A=100°,∠B=40°,AC=5,则AB=________.16. 如图,∠AOB=40°,C为OB上的定点,M,N分别为OA,OB上的动点,当CM+MN的值最小时,∠OCM的度数为________.17. 如图,在小正三角形组成的网格中,已有6个小正三角形被涂黑,还需涂黑n个小正三角形,使它们与原来被涂黑的小正三角形组成的新图案恰有3条对称轴,则n的最小值是________.18. 如图所示,在△ABC中,DE是AC的垂直平分线,AE=5 cm,△ABD的周长为18 cm,则△ABC的周长为.三、解答题19. 已知:如图,AB=AC,DB=DC,点E在直线AD上.求证:EB=EC.20. 如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交AC于点E,若△ABC与△EBC的周长分别是26 cm和16 cm,求AC的长.21. 如图1,△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.22. 已知:如图,∠BAC的平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:BE=CF;(2)若AF=6,BC=7,求△ABC的周长.23. 如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如①,△ABC 是等腰锐角三角形,AB =AC(AB >BC),若∠ABC 的平分线BD 交AC 于点D ,且BD 是△ABC 的一条特异线,则∠BDC =________度; (2)如图②,在△ABC 中,∠B =2∠C ,线段AC 的垂直平分线交AC 于点D ,交BC 于点E.求证:AE 是△ABC 的一条特异线;(3)如图③,已知△ABC 是特异三角形,且∠A =30°,∠B 为钝角,求出所有可能的∠B 的度数.人教版 八年级数学 第13章 轴对称 综合训练-答案一、选择题1. 【答案】C [解析] 选项A 有三条对称轴,选项B 有五条对称轴,选项D 有两条对称轴,只有选项C 仅有一条对称轴.2. 【答案】B[解析] ∵DE 是△ABC 的边AB 的垂直平分线,∴AE =BE.∵AC=8,BC =5,∴△BEC 的周长=BE +EC +BC =AE +EC +BC =AC +BC =13.3. 【答案】C【解析】由作法得CG AB ⊥,∵AB AC =,∴CG 平分ACB ∠,A B ∠=∠,∵1804040100ACB ∠=︒-︒-︒=︒,∴1502BCG ACB ∠=∠=︒.故选C .4. 【答案】C[解析] ∵P A+PB=BC ,而PC+PB=BC ,∴P A=PC.∴点P 为线段AC的垂直平分线与BC的交点.显然只有选项C符合题意.5. 【答案】B【解析】∵DE是ABC△的边AB的垂直平分线,∴AE BE=,∵,,∴BEC==AC BC85△的周长是:++=++=+=.故选B.13BE EC BC AE EC BC AC BC6. 【答案】C7. 【答案】D[解析] 如图,连接AD,MA.∵△ABC是等腰三角形,D是底边BC的中点,∴AD⊥BC.∴S=BC·AD=×4AD=24,△ABC解得AD=12.∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC.∴MC+DM=MA+DM≥AD.∴AD的长为MC+MD的最小值.∴△CDM的周长的最小值为(MC+MD)+CD=AD+BC=12+×4=14.故选D.8. 【答案】C9. 【答案】C[解析] 如图,将△ABD和△DBC分别沿着AB和BC向外翻折,得△ABG和△HBC,连接GH,分别交AB,BC于点E,F,此时△DEF的周长最小,即为GH的长,∴GH=6 cm.∵BD=6 cm,∴BG=BH=BD=6 cm=GH.∴△BGH是等边三角形.∴∠GBH=60°.∴2∠ABD+2∠DBC=60°.∴∠ABD+∠DBC=30°.∴∠ABC=30°.故选C.10. 【答案】C[解析] 如图,延长AB到点A',使得BA'=BA,延长AD到点A″,使得DA″=AD,连接A'A″与BC,CD分别交于点M,N.∵∠ABC=∠ADC=90°,∴点A,A'关于BC对称,点A,A″关于CD对称,此时△AMN的周长最小.∵BA=BA',MB⊥AB,∴MA=MA'.同理NA=NA″.∴∠A'=∠MAB,∠A″=∠NAD.∵∠AMN=∠A'+∠MAB=2∠A',∠ANM=∠A″+∠NAD=2∠A″,∴∠AMN+∠ANM=2(∠A'+∠A″).∵∠BAD=130°,∴∠A'+∠A″=180°-∠BAD=50°.∴∠AMN+∠ANM=2×50°=100°.二、填空题11. 【答案】36[解析] 过点B作BD⊥AC于点D.∵∠A=30°,AB=12,∴在Rt△ABD中,BD=12AB=12×12=6.∴S △ABC =12AC·BD =12×12×6=36.12. 【答案】(3)(4)13. 【答案】(1)M ,P ,N(2)G ,H ,I MG =DM PH =EP NI =FN (3)GH HI IG14. 【答案】1715. 【答案】516. 【答案】10°[解析] 作点C 关于OA 的对称点D ,过点D 作DN ⊥OB 于点N ,交OA 于点M ,则此时CM +MN 的值最小.∵∠OEC =∠DNC =90°,∠DME =∠OMN , ∴∠D =∠AOB =40°.∵MD =MC ,∴∠DCM =∠D =40°,∠DCN =90°-∠D =50°. ∴∠OCM =10°.17. 【答案】3[解析] 如图所示,n 的最小值为3.18. 【答案】28 cm三、解答题19. 【答案】证明:连接BC.∵AB=AC,DB=DC,∴直线AD是线段BC的垂直平分线.又∵点E在直线AD上,∴EB=EC.20. 【答案】解:∵DE是AB的垂直平分线,∴AE=BE. ∵△EBC的周长是16 cm,∴BC+BE+EC=16 cm,即BC+AE+EC=AC+BC=16 cm.∵△ABC的周长是26 cm,∴AB+AC+BC=26 cm,∴AC=AB=10 cm.21. 【答案】解:(1)∵∠BAC=50°,AD平分∠BAC,∴∠EAD=∠BAC=25°.∵DE⊥AB,∴∠AED=90°.∴∠EDA=90°-25°=65°.(2)证明:∵DE⊥AB,∴∠AED=90°=∠ACB.∵AD平分∠BAC,∴∠DAE=∠DAC.又∵AD=AD,∴△AED≌△ACD.∴AE=AC,DE=DC.∴点A,D都在线段CE的垂直平分线上.∴直线AD是线段CE的垂直平分线.22. 【答案】(1)证明:如图,连接CD.∵点D 在BC 的垂直平分线上,∴BD =CD.∵DE ⊥AB ,DF ⊥AC ,AD 平分∠BAC ,∴DE =DF ,∠BED =∠CFD =90°.在Rt △BDE 和Rt △CDF 中,⎩⎨⎧DE =DF ,BD =CD ,∴Rt △BDE ≌Rt △CDF(HL).∴BE =CF.(2)在Rt △ADE 和Rt △ADF 中,⎩⎨⎧DE =DF ,AD =AD ,∴Rt △ADE ≌Rt △ADF. ∴AE =AF =6.∴△ABC 的周长=AB +BC +AC =(AE +BE)+BC +(AF -CF)=6+7+6=19.23. 【答案】解:(1)72 [解析] ∵AB =AC ,∴∠ABC =∠C.∵BD 平分∠ABC ,∴∠ABD =∠CBD =12∠ABC.∵BD 是△ABC 的一条特异线,∴△ABD 和△BCD 都是等腰三角形,∴AD =BD =BC.∴∠A =∠ABD ,∠C =∠BDC.∴∠ABC =∠C =∠BDC.∵∠BDC =∠A +∠ABD =2∠A ,设∠A =x ,则∠C =∠ABC =∠BDC =2x.在△ABC 中,∠A +∠ABC +∠C =180°,即x +2x +2x =180°,解得x=36°.∴∠BDC=72°.(2)证明:∵DE是线段AC的垂直平分线,∴EA=EC,即△EAC是等腰三角形.∴∠EAC=∠C.∴∠AEB=∠EAC+∠C=2∠C.∵∠B=2∠C,∴∠AEB=∠B.∴AE=AB,即△EAB是等腰三角形,∴AE是△ABC是一条特异线.(3)如图ⓐ,①当BD是特异线时,如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°+15°=135°;②如果AD=AB,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°;③如果AD=DB,DC=CB,则∠ABC=∠ABD+∠DBC=30°+60°=90°(不合题意,舍去).④如图ⓑ,当AD是特异线时,AB=BD,AD=DC,则∠ABC=180°-20°-20°=140°.⑤当CD为特异线时,不合题意.综上所述,符合条件的∠ABC的度数为135°或112.5°或140°.。

人教版八年级数学上册 第13章 轴对称 2018年秋人教版八年级数学上单元检测题(含答案解析)

人教版八年级数学上册 第13章 轴对称 2018年秋人教版八年级数学上单元检测题(含答案解析)

第十三章 轴对称检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1. (2016·重庆A 中考) 下列图形中是轴对称图形的是()A B CD2.(山东泰安中考)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是( ) A. 1 B.2C.3D.43.如图所示,在△中,,∠,的垂直平分线交于,交于,下列结论错误的是( ) A.平分∠ B.△的周长等于 C.D.点是线段的中点第5题图第3题图第2题图第4题图4.(2016·四川南充中考)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是( )A.AM=BMB.AP=BNC.∠MAP=∠MBPD.∠ANM=∠BNM5.如图所示,在2×2的方格纸中有一个以格点为顶点的△ABC, 则与△ABC成轴对称且以格点为顶点的三角形共有( )A.3个B.4个C.5个D.6个6.以下命题中,正确的是( )(1)等腰三角形的一边长为4 cm,另一边长为9 cm,则它的周长为17 cm 或22 cm;(2)三角形的一个外角等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等;(4)等边三角形是轴对称图形;(5)如果三角形的一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.A.(1)(2)(3)B.(1)(3)(5)C.(2)(4)(5)D.(4)(5)7.如图所示,△与△关于直线对称,则∠等于( )A. B.C. D.8.(2015·河北中考)一张四边形纸片按图①,图②依次对折后,再按图③打出一个圆形小孔,则展开铺平后的图案是()①②③第8题图A. B.C. D.9.如图所示,已知△ABC(AC<AB<BC),用尺规在线段BC上确定一点P,使得PA+PC=BC,则符合要求的作图痕迹是()第10题图第11题图10.如图所示,在△ABC 中,AB +BC =10,AC 的垂直平分线分别交AB 、AC 于点D 和点E ,则△BCD 的周长是( )A.6B.8C.10D.无法确定二、填空题(每小题3分,共24分)11.国际奥委会会旗上的图案由5个圆环组成.每两个圆环相交的部分叫做曲边四边形,如图所示,从左至右共有8个曲边四边形,分别给它们标上序号.观察图形,我们发现标号为2的曲边四边形(下简称“2”)经过平移能与“6”重合,2还与______成轴对称.(请把能成轴对称的曲边四边形标号都填上)12.光线以如图所示的角度照射到平面镜上,然后在平面镜Ⅰ、Ⅱ间来回反射,已知=60°,β=50°,则=________.13.(2015·湖南株洲中考)在平面直角坐标系中,点(-3,2)关于y 轴的对称点的坐标是 .14.工艺美术中,常需设计对称图案.在如图所示的正方形网格中,点A ,D 的坐标分别为第14题图(1,0),(9,-4).请在图中再找一个格点P ,使它与已知的4个格点组成轴对称图形,则点P 的坐标为_________(如果满足条件的点P 不止一个,请将它们的坐标都写出来).15.如图所示,是∠的平分线,于点,于,则关于直线对称的三角形共有_______对.16.如图,在Rt △ABC 中,∠ACB =90°,点D 在AB 边上,将△CBD 沿CD 折叠,使点B 恰好落在AC 边上的点E 处.若∠A =26°,则∠CDE =________..17.如图所示,在△中,是的垂直平分线,,△的周长为,则△的周长为______.18.三角形的三边长分别为,且,则这个三角形(按边分类)一定是第15题图第17题图第16题图_________.三、解答题(共46分)19.(6分)(2016·江西中考)如图,Rt△ABC中,∠ACB=90°,将Rt△ABC 向下翻折,使点A与点C重合,折痕为DE.求证:DE∥B C.第19题图20.(6分)如图,∠内有一点,在射线上找出一点,在射线上找出一点,使最短.第20题图21.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC 关于y 轴对称的△A ′B ′C ′; (3)写出点B ′的坐标.22.(8分)如图所示,在△中,分别平分∠和△的外角∠,∥交于点,求证:.23.(10分)如图所示,∥∠的平分线与∠的平分线交于点,过点的直线垂直于,垂足为,交于点.试问:点是线段的中点吗?为什么?第22题图D CBE F GA第21题图24.(8分)已知:如图所示,等边三角形ABC中,D为AC边的中点,E为BC延长线上一点,CE=CD,DM⊥BC于M,求Array证:M是BE的中点.第24题图参考答案1.D解析:根据轴对称图形的概念,轴对称图形沿某对称轴折叠后的两部分可完全重合.因此,只有D是轴对称图形.2.C解析:第一个是轴对称图形,有2条对称轴;第二个是轴对称图形,有2条对称轴;第三个是轴对称图形,有2条对称轴;第四个是轴对称图形,有3条对称轴.故选C.3.D解析:因为在△中,,∠,所以∠∠.因为的垂直平分线是,所以,所以∠∠,所以∠∠∠∠,所以平分∠,故正确.△的周长为,故正确.因为∠,∠,所以∠∠∠,所以∠∠,所以,所以,故正确.因为,所以,所以点不是线段的中点,故错误.故选.4.B解析:∵直线MN是四边形AMBN的对称轴,∴四边形AMBN被直线MN分成能够重合的两部分,∴AM=BM,∠AMP=∠BMP,∠ANM=∠BNM.又∵P是直线MN上的点,∴AP=BP,∴△AMP≌△BMP,∴第5题答图∠MAP =∠MBP ,只有选项B 错误,故选B.5.C 解析:与△ABC 成轴对称且以格点为顶点的三角形有△ABG 、△CDF 、△AEF 、△DBH 、△BCG 共5个,故选C .6.D 解析:(1)等腰三角形的一边长为 4 cm ,另一边长为9 cm , 则三边长可能为9 cm ,9 cm ,4 cm ,或4 cm ,4 cm ,9 cm .因为4+4<9, 所以它的周长只能是22 cm ,故此命题错误;(2)三角形的一个外角等于与它不相邻的两个内角的和,故此命题错误; (3)有两边和一角对应相等的两个三角形不一定全等,角必须是两边夹角;(4)等边三角形是轴对称图形,此命题正确; (5)如果三角形的一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形,正确. 如图所示,∵ AD ∥BC ,∴ ∠1=∠B ,∠2=∠C. ∵ AD 是角平分线,∴ ∠1=∠2,∴ ∠B =∠C , ∴ AB =AC ,即△ABC 是等腰三角形.故选D . 7.D 解析:因为△与△关于直线对称, 所以 所以.8.C 解析:按照题意,动手操作一下,可知展开后的图案是选项C. 9.D 解析:假设点P 在BC 上存在,由PA +PC =BC ,可得PA =PB ,于是点P 在AB 垂直平分线上,故选D .10.C 解析:∵ DE 是AC 的垂直平分线,∴ AD =DC ,第6题答图∴△BCD的周长=BC+BD+DC=BC+BD+AD=10,故选C.11.1,3,7 解析:根据轴对称图形的定义可知:标号为2的曲边四边形与标号为1,3,7的曲边四边形成轴对称.12.40°解析:=180°-[60°+(180°-100°)]=40°.13.(3,2) 解析:根据点对称的特点,一个点关于y轴对称,则两个点的横坐标互为相反数,纵坐标相同,∴ (-3,2)关于y轴的对称点的坐标是(3,2).14.(9,-6),(2,-3)解析:∵点A的坐标为(1,0),∴坐标原点是点A左边一个单位的格点.∵点C在线段AB的垂直平分线上,∴对称轴是线段AB的垂直平分线,第14题答图∴点P是点D关于对称轴的对称点.∵点D的坐标是(9,-4),∴P(9,-6).AB=BD,以AD的垂直平分线为对称轴,P′与C关于AD的垂直平分线对称,∵C点的坐标为(6,-5),∴P′(2,-3).15. 解析:△和△,△和△△和△△和△共4对.16.71°解析:∵在Rt△ABC中,∠ACB=90°,∠A=26°,∴∠B=64°.∵将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,∠ACB=90°,∴∠BCD=∠ECD=45°,∠CED=∠B=64°,∴∠CDE=180°-∠ECD-∠CED=71°.17.19 解析:因为是的垂直平分线,所以,所以因为△的周长为,所以所以.所以△的周长为18.等腰三角形解析:∵∴,∴.∵ +≠0,∴=0,∴,则三角形一定是等腰三角形.19.证法1:∵△ADE与△CDE关于直线DE对称,点A与点C是对称点,∴DE⊥AC,∴∠AED=90°(或∠CED=90°).(1分)又∵∠ACB=90°,∴∠AED=∠ACB(或∠CED+∠ACB=180°),∴DE∥B C.(3分)证法2:翻折后,∠AED与∠CED重合,∴∠AED=∠CE D.又∵∠AED+∠CED=180°,∴ ∠AED =∠CED =×180°=90°.(1分)∵ ∠ACB =90°,∴ ∠AED =∠ACB (或∠CED +∠ACB =180°),∴ DE ∥B C.(3分)解析:证法1:由轴对称的性质得到∠AED =90°,再结合平行线的判定方法进行证明;证法2:由折叠的性质得到角相等,进而得到∠AED =90°,再结合平行线的判定方法进行证明.20.解:如图,分别以直线、为对称轴,作点的对应点和,连接,交于点,交于点,则此时最短.21.分析:(1)易得y 轴在C 的右边1个单位,轴在C 的下方3个单位; (2)作出A ,B ,C 三点关于y 轴对称的三点,顺次连接即可; (3)根据点B ′所在象限及其与坐标轴的距离可得相应坐标.解:(1)(2)如图所示;(3)点B ′的坐标为(2,1).22.证明:因为分别平分∠和∠,第21题答图 O 错误!未找到引用源。

人教版初中八年级数学上册第十三章《轴对称》经典测试题(含答案解析)

人教版初中八年级数学上册第十三章《轴对称》经典测试题(含答案解析)

一、选择题1.如图,在△ABD 中,分别以点A 和点D 为圆心,大于12AD 的长为半径画弧,两弧相交于点M 、N ,作直线MN 分别交BD 、AD 于点C 、E .若AE=5cm ,△ABC 的周长=15cm ,则△ABD 的周长是( )A .35cmB .30cmC .25cmD .20cm C解析:C【分析】 利用线段的垂直平分线的性质即可解决问题.【详解】解:∵MN 垂直平分线段AD ,∴AC=DC ,AE+ED=AD=10cm ,∵AB+BC+AC=15cm , ∴AB+BC+DC=15cm ,∴△ABD 的周长=AB+BC+DC+AD=15+10=25cm ,故选:C .【点睛】本题考查了作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.2.已知123n A A A A 、、中,1A 与2A 关于x 轴对称,2A 与3A 关于y 轴对称,3A 与4A 关于x 轴对称,4A 与5A 关于y 轴对称……,如果1A 在第二象限,那么100A 在( ) A .第一象限B .第二象限C .第三象限D .第四象限A解析:A【分析】根据关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数,以及循环的规律就可以得到.【详解】解:A 1与A 2关于x 轴对称,A 2与A 3关于y 轴对称,A 3与A 4关于x 轴对称,A 4与A 5关于y 轴对称,A 1与A 5是同一个点,四次一循环,100÷4=25,A 100与A 4重合,即第一象限,故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3.如图,在ABC ∆中,90,30C B ︒︒∠=∠= ,以A 为圆心,任意长为半径画弧分别交AB AC 、于点M 和N ,再分别以M N 、为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP ,并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是BAC ∠的平分线;②60ADC ︒∠=;③点D 在AB 的垂直平分线上﹔④若2AD =,则点D 到AB 的距离是1,:1:2DAC ABC S S ∆∆=A .2B .3C .4D .5B 解析:B【分析】先根据三角形内角和计算出∠BAC=60°,再利用基本作图对①进行判断;利用∠BAD=∠CAD=30°得到∠ADC=60°,则可对②进行判断;利用∠B=∠BAD 得到DA=DB ,根据线段垂直平分线的性质定理的逆定理可对③进行判断.利用30度角所对的直角边是斜边的一半、三角形的面积计算公式即可得出两个三角形的面积之比.【详解】解:由作法得,AD 平分∠BAC ,所以①正确;∵∠C=90°,∠B=30°,∴∠BAC=60°,∴∠BAD=∠CAD=12×60°=30°, ∴∠ADC=90°-∠CAD=60°,所以②正确;∵∠B=∠BAD ,∴DA=DB ,∴点D 在AB 的垂直平分线上,所以③正确;在直角△ACD 中,∠CAD=30°,∴CD=12AD ,∴BC=CD+BD=12AD+AD=32AD ,1124DAC S AC CD AC AD ∆=⋅=⋅. ∴11332224ABC S AC BC AC AD AC AD ∆=⋅=⋅=⋅, ∴13::1:344DAC ABC S S AC AD AC AD ∆∆=⋅⋅=,故④错误. 所以,正确的结论有3个故选:B .【点睛】 本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时需要熟悉等腰三角形的判定与性质.4.三个等边三角形的摆放位置如图所示,若12100︒∠+∠=,则3∠的度数为( )A .80︒B .70︒C .45︒D .30︒A解析:A【分析】 由平角的性质可得∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,可得∠1+∠2+∠3+∠4+∠5+∠6=540°−180°,将∠1+∠2=100°代入可求解.【详解】∵∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=540°−180°=360°,∵∠4+∠5+∠6=180°,∴∠1+∠2+∠3=360°-180°=180°,∴∠3=180°−(∠1+∠2)=80°,故选:A .【点睛】本题考查了等边三角形的性质,平角的性质,三角形内角和定理,熟练运用这些性质进行推理是本题的关键.5.如图,C 是线段AB 上的一点,ACD △和BCE 都是等边三角形,AE 交CD 于M ,BD 交CE 于N ,交AE 于O ,则①DB AE =;②AMC DNC ∠=∠;③60AOB ∠=︒;④DN AM =;⑤CMN △是等边三角形.其中,正确的有( )A .2个B .3个C .4个D .5个C解析:C【分析】 易证△ACE ≌△DCB ,可得①正确;即可求得∠AOB =120°,可得③错误;再证明△ACM ≌△DCN ,可得②④正确和CM =CN ,即可证明⑤正确;即可解题.【详解】解:∵ACD △和BCE 都是等边三角形∵∠ACD =∠BCE =60°,∴∠DCE =60°,在△ACE 和△DCB 中,AC DC ACE DCB CB CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△DCB (SAS ),∴∠BDC =∠EAC ,DB =AE ,①正确;∠CBD =∠AEC ,∵∠AOB =180°−∠OAB−∠DBC ,∴∠AOB =180°−∠AEC−∠OAB =120°,③错误;在△ACM 和△DCN 中,60BDC EAC DC ACACD DCN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ACM ≌△DCN (ASA ),∴AM =DN ,④正确;∠AMC =∠DNC ,②正确;CM =CN ,∵∠ACD =∠BCE =60°,∴∠MCN =180°-∠ACD-∠BCE =60°,∴△CMN 是等边三角形,⑤正确;故有①②④⑤正确.故选:C .【点睛】本题考查了全等三角形的判定和全等三角形对应边、对应角相等的性质,本题中求证△ACE≌△DCB和△ACM≌△DCN是解题的关键.6.若海岛N位于海岛M北偏东30°的方向上,则从海岛N出发到海岛M的航线可能是()A.B.C.D. D解析:D【分析】根据题意画出图形,再利用“上北下南”求出方向角即可.【详解】解:如图:∵海岛N位于海岛M的北偏东30°方向上,∴海岛N在海岛M上方,故排除A、B选项,根据直角三角形中30°角所对的边等于斜边的一半,排除选项C,故选D.【点睛】本题考查了方向角,解题的关键是熟练掌握方向角的概念.7.如图,ABC中,AC AD BD==,80∠=,则B等于()CAD︒A.25︒B.30︒C.35︒D.40︒A解析:A【分析】利用AD=AC ,求出∠ADC=∠C=50︒,利用AD=AB ,即可求得∠B=∠BAD 1252ADC ==∠︒. 【详解】∵AD=AC ,∴∠ADC=∠C ,∵80CAD ︒∠=,∴∠ADC=∠C=50︒,∵AD=AB ,∴∠B=∠BAD 1252ADC ==∠︒, 故选:A .【点睛】此题考查等边对等角的性质,三角形的内角和定理,三角形的外角性质,熟练掌握等腰三角形的性质是解题的关键.8.如图,在ABC 中,DE 是AC 的垂直平分线,交AC 边于E ,交BC 边于D ,连接AD ,若3AE =,ABD △的周长为13,则ABC 的周长( )A .16B .19C .20D .24B解析:B【分析】 根据线段垂直平分线性质得出 AD = DC ,求出和 AB + BC 的长,即可求出答案.【详解】DE 是 AC 的垂直平分线,AE=3cm,.∴ AC=2AE=6cm ,AD = DC ,△ ABD 的周长为13cm ,∴ AB + BD +AD=13cm ,∴AB + BD + DC = AB +BC=13cm∴ △ ABC 的周长为 AB + BC +AC=13cm+6cm=19cm ,故选 B .【点睛】本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.9.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm D解析:D【分析】 延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,根据等腰三角形的性质得出AN BC ⊥,BN CN =,根据60EBC E ∠=∠=,得出EBM △是等边三角形,进而得到6EB EM BM cm ===,通过//DF BC ,证明EFD △是等边三角形,进而得到2EF FD ED cm ===,所以求出4DM cm =,根据直角三角形的性质得到MN 的长度,从而得出BN 的长度,最后求出BC 的长度.【详解】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,如图,AB AC =,AD 平分BAC ∠,∴AN BC ⊥,BN CN =,∴90ANB ANC ∠=∠=,60EBC E ∠=∠=,∴EBM △是等边三角形,6BE cm =,∴6EB EM BM cm ===,//DF BC ,∴60EFD EBM ∠=∠=,∴EFD △是等边三角形,2DE cm =,∴2EF FD ED cm ===,∴4DM cm =,EBM △是等边三角形,∴60EMB∠=,∴30NDM∠=,∴2NM cm=,∴4BN BM NM cm=-=,∴28BC BN cm==.故选:D.【点睛】本题考查了等腰三角形的性质和等边三角形的性质,直角三角形中30角所对的直角边是斜边长的一半,求出MN的长度是解决问题的关键.10.等腰三角形腰上的高与另一腰的夹角为30,则底角度数是()A.30B.60︒C.40︒或50︒D.30或60︒D解析:D【分析】由三角形的高可在三角形的内部,也可在三角形的外部,所以分锐角三角形和钝角三角形两种情况作出符合题意的图形,再结合等腰三角形的性质与三角形的内角和定理求解即可.【详解】解:如图,分两种情况:①如图,当三角形的高在三角形的内部时,AB=AC,BD⊥AC,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=1802A︒-∠=60°;②如图,当三角形的高在三角形的外部时,AB=AC,BD⊥AC,∠ABD=30°,∴∠DAB=60°,∠BAC=120°,∴∠C=∠ABC= 180302BAC︒-∠=︒.故选:D.【点睛】本题考查了等腰三角形的性质和直角三角形的两锐角互余,三角形的内角和定理的应用,三角形的高的含义,分类讨论的数学思想,掌握分类讨论解决问题是解题的关键.二、填空题11.如图,点CD在线段AB的同侧,CA=6,AB=14,BD=12,M为AB中点,∠CMD=120°.则CD的最大值为____.25【分析】作点A关于CM的对称点A作点B关于DM的对称点B证明△AMB 为等边三角形在根据两点之间线段最短即可解决问题【详解】解:作点A关于CM的对称点A作点B关于DM的对称点B如下图所示:∴∠1=解析:25【分析】作点A关于CM的对称点A’,作点B关于DM的对称点B’,证明△A’MB’为等边三角形,在根据两点之间线段最短即可解决问题.【详解】解:作点A关于CM的对称点A’,作点B关于DM的对称点B’,如下图所示:∴∠1=∠2,∠3=∠4,∵∠CMD=120°,∴∠2+∠3=60°,即∠A’MB’=120°-60°=60°,又M为AB的中点,∴AM=MA’=MB’=MB,∴△A’MB’为等边三角形,∴A’B’=AM=7,由两点之间线段最短可知:CD≤CA’+A’B’+B’D=CA+AM+BD=6+7+12=25,故答案为:25.【点睛】本题主要考查了几何变换之折叠,等边三角形的判定和性质,两点之间线段最短等知识点,解题的关键是作点A 关于CM 的对称点A’,作点B 关于DM 的对称点B’,学会利用两点之间线段最短解决最值问题.12.如图,ABC 中,AB BC =,点D 在线段BC 上(不与点,B C 重合). 作法如下:①连接AD ,作AD 的垂直平分线分别交直线,AB AC 于点,P Q ,连接,DP DQ ,则APQ DPQ △≌△;②过点D 作AC 的平行线交AB 于点P ,在线段AC 上截取AQ ,使AQ DP =,连接,PQ DQ ,则APQ DQP △≌△;③过点D 作AC 的平行线交AB 于点P ,过点D 作AB 的平行线交AC 于点Q ,连接PQ ,则APQ DQP △≌△;④过点D 作AB 的平行线交AC 于点Q ,在直线AB 上取一点P ,连接DP ,使DP AQ =,连接PQ ,则APQ DPQ △≌△.以上说法一定成立的是__________.(填写正确的序号)①②③【分析】根据题意画出图形再根据垂直平分线的性质平行线的性质和三角形全等的判定可以得证【详解】解:①如图∵PQ 为AD 的垂直平分线∴PA=PDQA=QD ∴在△APQ 和△DPQ 中∴△APQ ≌△DPQ解析:①②③【分析】根据题意画出图形,再根据垂直平分线的性质,平行线的性质和三角形全等的判定可以得证.【详解】解:①如图,∵PQ 为AD 的垂直平分线,∴PA=PD ,QA=QD ,∴ 在△APQ 和△DPQ 中,PA PD PQ PQ QA QD =⎧⎪=⎨⎪=⎩,∴△APQ ≌△DPQ (SSS ),①正确;②如图,∵PD ∥AC ,∴∠DPQ=∠AQP ,∴在△APQ 和△DQP 中,AQ DP AQP DPQ QP PQ =⎧⎪∠=∠⎨⎪=⎩,∴△APQ ≌△DQP (SAS ),②正确 ;③如图,∵PD ∥AC ,∴∠DPQ=∠AQP ,同理∠DQP=∠APQ ,∴在△APQ 和△DQP 中,DPQ AQP PQ PQDQP APQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△APQ ≌△DQP (ASA ),③正确 ;④如图,△APQ ≌△DPQ 不成立,④错误;故答案为①②③.【点睛】本题考查三角形与平行线的综合应用,熟练掌握垂直平分线的性质,平行线的性质和三角形全等的判定是解题关键.13.如图,在ABC 中,AB 的垂直平分线DE 分别与,AB BC 交于点,D E ,AC 的垂直平分线FG 分别与,BC AC 交于点,F G ,10,3BC EF ==,则AEF 的周长是________.16【分析】根据线段的垂直平分线的性质得到EB =EAAF =FC 根据三角形的周长公式计算得到答案【详解】解:∵DE 是AB 边的垂直平分线∴EB =EA ∵FG 是AC 边的垂直平分线∴AF =FC ∴△AEF 的周长 解析:16【分析】根据线段的垂直平分线的性质得到EB =EA 、AF =FC ,根据三角形的周长公式计算,得到答案.【详解】解:∵DE 是AB 边的垂直平分线,∴EB =EA ,∵FG是AC边的垂直平分线,∴AF=FC,∴△AEF的周长=AF+AE+EF=FC+BE+EF=EC+EF+BE+EF=BC+2EF=10+6=16,故答案为:16.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.如图,在△ABC中,AB=AC,∠BAC=120°,P是BC上一点,且∠BAP=90°,CP=4cm.则BP的长=________.8cm【分析】先根据已知条件求得PA=PC再含30度直角三角形的性质求得BP的长即可【详解】解:∵AB=AC∠BAC=120°∴∠B=∠C=30°∵∠BAC=120°∠BAP=90°∴∠PAC=30解析:8cm【分析】先根据已知条件求得PA=PC,再含30度直角三角形的性质求得BP的长即可.【详解】解:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵∠BAC=120°,∠BAP=90°,∴∠PAC=30°,∴∠C=∠PAC,∴PA=PC=4cm,∵∠BAP=90°,∠B=30°,∴BP=2AP=8cm.故答案为:8cm【点睛】本题考查了含30度直角三角形的性质,等腰三角形的性质,解题关键是根据已知条件求得PA=PC=4cm,再根据含30度直角三角形的性质求得BP的长.15.如图,等边△ABC的边长为4,点D在边AC上,AD=1.(1)△ABC的周长等于_____;(2)线段PQ在边BA上运动,PQ=1,BQ>BP,连接QD,PC,当四边形PCDQ的周长取得最小值时,请在如图所示的矩形区域内,用无刻度的直尺和圆规,画出线段PC,QD,并简要说明点P 和点Q 的位置是如何找到的(保留作图痕迹,不要求证明)_____.见解析过点C 作CE ∥AB 且CE=1作点D 关于AB 的对称点F 连接EF 交AB 于一点为Q 在AB 上BQ 之间截取PQ=1连接CPDQ 则四边形PCDQ 为所求的周长最小的四边形【分析】(1)根据三角形周长公式计算解析:见解析,过点C 作CE ∥AB ,且CE=1,作点D 关于AB 的对称点F ,连接EF 交AB 于一点为Q ,在AB 上BQ 之间截取PQ=1,连接CP 、DQ ,则四边形PCDQ 为所求的周长最小的四边形【分析】(1)根据三角形周长公式计算;(2)过点C 作CE ∥AB ,且CE=1,作点D 关于AB 的对称点F ,连接EF 交AB 于一点为Q ,在AB 上BQ 之间截取PQ=1,连接CP 、DQ ,则四边形PCDQ 为所求的周长最小的四边形.【详解】(1)△ABC 的周长等于4312⨯=,故答案为:12;(2)如图:故答案为:过点C 作CE ∥AB ,且CE=1,作点D 关于AB 的对称点F ,连接EF 交AB 于一点为Q ,在AB 上BQ 之间截取PQ=1,连接CP 、DQ ,则四边形PCDQ 为所求的周长最小的四边形..【点睛】此题考查等边三角形的性质,三角形周长计算公式,轴对称的性质,综合掌握各知识点是解题的关键.16.如图,E 是腰长为2的等腰直角ABC 斜边上一点,且BE BC P =,为CE 上任意一点,PQ BC ⊥于点Q PR BE ⊥,于点R ,则PQ PR +的值是___________.【分析】连接BP 过点E 作EF ⊥BC 根据可得PQ+PR=EF 结合等腰直角三角形三边长的关系即可求解【详解】连接BP 过点E 作EF ⊥BC ∵∴=BC×PQ+BE×PR=BC×(PQ+PR)=BC×EF ∴PQ 解析:2【分析】连接BP ,过点E 作EF ⊥BC ,根据BCE BPE BPC S S S =+,BE BC =,可得PQ+PR=EF ,结合等腰直角三角形三边长的关系,即可求解.【详解】连接BP ,过点E 作EF ⊥BC ,∵BE BC =,∴BCE BPE BPC SS S =+ =12BC×PQ+12BE×PR =12BC×(PQ+PR) =12BC×EF , ∴PQ+PR=EF ,∵ABC 是等腰直角三角形,∴∠B=45°,∴EFB △是等腰直角三角形,且BE=BC=2,∴EF=BE÷2=2÷2=2,∴PQ PR+=2,故答案是:2.【点睛】本题主要考查等腰直角三角形的性质,掌握“等积法”是解题的关键.17.在△ABC中,按以下步骤作图:①分别以A,C为圆心,以大于12AC的同样长为半径画弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD.请回答:若BC=DC,∠B=100°,则∠ACB的度数为____.30°【分析】依据等腰三角形的性质即可得到∠BDC的度数再根据线段垂直平分线的性质即可得出∠A的度数进而得到∠ACB的度数【详解】解:根据题意如图:∵BC=DC∠ABC=100°∴∠BDC=∠CBD解析:30°【分析】依据等腰三角形的性质,即可得到∠BDC的度数,再根据线段垂直平分线的性质,即可得出∠A的度数,进而得到∠ACB的度数.【详解】解:根据题意,如图:∵BC=DC,∠ABC=100°,∴∠BDC=∠CBD=180°-100°=80°,根据题意得:MN是AC的垂直平分线,∴CD=AD,∴∠ACD=∠A,∴∠A=1(18080)502⨯︒-︒=︒,∴∠ACB=∠CBD-∠A=80°-50°=30°.故答案为:30°.【点睛】此题主要考查了线段垂直平分线的性质以及等腰三角形的性质.解题时注意线段垂直平分线上任意一点,到线段两端点的距离相等.18.如图,已知∠AOB=60°,点P在边OA上,OP=24,点M,N在边OB上,PM=PN,若NM=6,则OM=______________.9【分析】过P作PD⊥OB交OB于点D在直角三角形POD中求出OD的长再由PM=PN利用三线合一得到D为MN中点根据MN 求出MD的长由OD-MD即可求出OM的长【详解】解:过P作PD⊥OB交OB 于点解析:9【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD-MD即可求出OM的长.【详解】解:过P作PD⊥OB,交OB于点D,∵∠AOB=60°,∴∠OPD=30°,∴OD=1OP=12.2∵PM=PN,PD⊥MN,∴MD=ND=1MN=3,2∴OM=OD﹣MD=12﹣3=9.故答案为:9.【点睛】本题考查的是含30度直角三角形的性质,等腰三角形的性质等知识,根据题意添加适当辅助线是解本题的关键.19.如图,在22的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的ABC为格点三角形,在图中最多能画出______个不同的格点三角形与ABC成轴对称.5【分析】画出所有与成轴对称的三角形【详解】解:如图所示:和对称和对称和对称和对称和对称故答案是:5【点睛】本题考查轴对称图形解题的关键是掌握画轴对称图形的方法解析:5【分析】画出所有与ABC成轴对称的三角形.【详解】解:如图所示:ABC和ADC对称,ABC和EBD△对称,ABC和DEF对称,ABC和DCB对称,ABC和CDA对称,故答案是:5.【点睛】本题考查轴对称图形,解题的关键是掌握画轴对称图形的方法.20.如图,△ABC中,AB=AC,点D、E、F分别在AB、BC、CA边上,且BE=CF,BD=CE,如果∠A=44°,则∠EDF的度数为__.56°【分析】根据可求出根据△DBE≌△ECF利用三角形内角和定理即可求出的度数【详解】解:∵AB=AC∴∠ABC=∠ACB在△DBE和△CEF 中∴△DBE≌△ECF(SAS)∴DE=EF∴△DEF解析:56°【分析】根据44A ∠=︒可求出68ABC ACB ∠=∠=︒,根据△DBE ≌△ECF ,利用三角形内角和定理即可求出 EDF ∠的度数.【详解】解:∵AB =AC ,∴∠ABC =∠ACB ,在△DBE 和△CEF 中BE CF ABC ACB BD CE =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△ECF (SAS ),∴DE =EF ,∴△DEF 是等腰三角形,∵△DBE ≌△ECF ,∴∠1=∠3,∠2=∠4,∵∠A +∠B +∠C =180°, ∴()118044682B ∠=︒-︒=︒, ∴1218068∠+∠=︒-︒,∴3218068∠+∠=︒-︒,∴∠DEF =68°, ∴18068562EDF ︒-︒∠==︒. 故答案为:56°.【点睛】 此题主要考查全等三角形的判定与性质的理解和掌握,主要应用了三角形内角和定理和平角是180︒,根据等腰三角形的性质得出B C ∠=∠是解题的关键.三、解答题21.如图,网格中小正方形的边长为1,(1)画出△ABC 关于x 轴对称的△A 1B 1C 1(其中A 1、B 1、C 1分别为A 、B 、C 的对应点); (2)△ABC 的面积为 ;点B 到边AC 的距离为 ;(3)在x轴上是否存在一点M,使得MA+MB最小,若存在,请直接写出MA+MB的最小值;若不存在,请说明原因解析:(1)见解析;(2)112,113434;(3)存在,17【分析】(1)根据对称点的坐标规律,关于x轴对称的点,横坐标相同,纵坐标互为相反数,找出对称点,顺次连接即可;(2)利用△ABC所在矩形面积减去周围三角形面积,计算后即可得出答案,点B到边AC 的距离即为△ABC的AC边上的高,利用勾股定理求得AC的长,再根据已求得的△ABC的面积从而求解结果;(3)根据两点之间线段最短,利用轴对称的性质先作点A关于x轴的对称点A',连接A'B与x轴相交于点M,此时MA+MB最小,且最小值为线段A'B的长度,利用勾股定理计算即可.【详解】解:(1)如图所示,△A1B1C1即为所求.(2)S△ABC=11111 451235342222⨯-⨯⨯-⨯⨯-⨯⨯=.设点B到边AC的距离为h,∵网格中小正方形的边长为1,∴AC223534+=∵11122ABC S h AC ==, 即1113422h =, 解得113434h =. 故答案为:112,113434. (3)如图,在x 轴上存在一点M ,使得MA +MB 最小,作点A 关于x 轴的对称点A ',连接A 'B 与x 轴相交于一点,此交点即为点M ,由两点之间线段最短可得,此时MA +MB 最小.根据轴对称的性质可得:MA =MA ',∴22'4117MA MB A B +==+=.【点睛】此题考查了轴对称变换、三角形面积的计算等知识,掌握轴对称与坐标变换并根据题意得出对应点位置是解题关键.22.如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC ∆经过一次轴对称变换后得到'''A B C ∆,图中标出了点C 的对应点'C()1在给定方格纸中画出变换后的'''A B C ∆;()2画出AC 边上的中线BD 和BC 边上的高线AE ;()3求'''A B C ∆的面积.解析:(1)见解析;(2)见解析;(3)152【分析】 (1)连接CC′,作CC′的垂直平分线l ,然后分别找A 、B 关于直线l 的对称点A′、B′,连接A′、B′、C′,即可得到A B C ''';(2)作AC 的垂直平分线找到中点D ,连接BD ,BD 就是所求的中线;从A 点向BC 的延长线作垂线,垂足为点E ,AE 即为BC 边上的高;(3)根据三角形面积公式即可求出A B C '''的面积.【详解】解:(1)如图,A B C '''即为所求;(2)如图,线段BD 和线段AE 即为所求;(3)111553222A B C ABC S S BC AE '''∆∆==⋅⋅=⨯⨯=. 【点睛】 本题主要考查几何变换作图,作已知图形关于某直线的对称图形的一般步骤:(1)找:在原图形上找特殊点(如线段的端点、线与线的交点等);(2)作:作各个特殊点关于已知直线的对称点;(3)连:按原图对应连接各对称点.熟练掌握作图步骤是解题的关键. 23.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A B C ,,的坐标分别为()()()4,5,2,1,1,3--- (1)作出ABC ∆关于y 轴对称的A B C ∆''',并写出点'B 的坐标(2)点P 是x 轴上的动点,当A BP ∆'周长最小时,找出点P ,并直接写出点P 的坐标解析:(1)见解析,()'2,1B ;(2)见解析,()1,0P -【分析】(1)分别作出A ,B ,C 关于y 轴对称的对应点A′,B′,C′,即可得到答案.(2)作点B 关于x 轴的对称点B″,连接A′B″交x 轴于P ,点P 即为所求.【详解】解:()1如图'''A B C ∆即为所求,由图可知,()'2,1B ;()2如图所示,点()1,0P -即为所求点.【点睛】本题考查作图——轴对称变换,轴对称——最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.在平面直角坐标系中,点A 在x 轴正半轴上,以OA 为边在x 轴上方作等边OAC . (1)如图1,在AC 的右上方作线段AD ,点D 在y 轴正半轴上,10DAC ∠=︒,以AD 为边在AD 右侧作等边ADE ,则AEC ∠=______.(2)如图2,点P 是x 轴正半轴上且在点A 右侧的一动点,PAM △为等边三角形,OM 与PC 交于点F .求证:AF MF PF +=.(3)如图3,点P 是x 轴正半轴上且在点A 右侧的一动点,CPM △为等边三角形,MA 的延长线交y 轴于点N ,请直接写出线段AM 、AP 、AN 的数量关系______.解析:(1)20°;(2)证明见解析;(3)12AM AN AP =+. 【分析】 (1)借助等边三角形的性质可证明△CAE ≌△OAD ,再利用直角三角形两锐角互余即可得出结论;(2)在OM 上截取EM=PF ,证明△FAP ≌△EAM ,得出AE=AF ,∠EAM=∠FAP ,再利用角的和差可得∠EAF=∠MAP=60°,即△AEF 为等边三角形,继而得出结论;(3)证明△CAM ≌△COP 可得AM=OP=OA+AP ,利用三角形内角和定理和对顶角相等可得∠OAN=60°,∠ONA=30°,根据直角三角形30°角所对边是斜边的一半可得12OA AN =,继而可得12AM AN AP =+. 【详解】解:(1)∵△AOC 和△DAE 是等边三角形,∴AC=AO ,AE=AD ,∠OAC=∠EAD=60°,∵10DAC ∠=︒, 6070CAE DAO DAC ∴∠=∠=︒+∠=︒,在△CAE 和△OAD 中∵AC AO CAE OAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴△CAE ≌△OAD (SAS ),∴∠AEC=∠ADO ,∵∠ADO=90°-∠DAO=20°,∴∠AEC=20°,∴故答案为:20°;(2)与(1)同理可证,△OAM ≌△CAP ,∴∠OMA=∠CPA ,AM=AP ,如下图,在OM 上截取EM=PF ,在△FAP 和△EAM 中,∵PF ME OMA CPA AP AM =⎧⎪∠=∠⎨⎪=⎩,∴△FAP ≌△EAM (SAS ),∴∠EAM=∠FAP ,EA=FA ,∵∠EAF=∠EAM-∠FAM ,∠MAP=∠FAP-∠FAM ,∴∠EAF=∠MAP=60°,∴△AEF 为等边三角形,EF=AF ,∴AF MF EF MF EM PF +=+==,即AF MFPF +=;(3)与(1)同理可证△CAM ≌△COP ,∠MCP=60°,∴AM=OP=OA+AP ,∠AMC=∠OPC ,∵OP=OA+AP ,∴AM=OA+AP ,∵∠CEM=∠AEP ,∠AMC=∠OPC ,∴∠PAM=∠MCP=60°,∴∠OAN=60°,∠ONA=30°, ∴12OA AN =, ∴12AM AN AP =+,故答案为:12AM AN AP =+. 【点睛】 本题考查全等三角形的性质和判定,等边三角形的性质和判定.(1)中理解等边三角形三边相等,三角都等于60°是解题关键;(2)能根据“截长补短”作出辅助线构造全等三角形是解题关键;(3)中根据三角形内角和定理和对顶角相等得出∠OAN=60°是解题关键. 25.如图,90BAD CAE ∠=∠=︒,AB AD =,AE AC =,AF CB ⊥,垂足为F .(1)求证:ABC ADE △≌△;(2)求FAE ∠的度数.解析:(1)见解析;(2)135FAE ∠=︒.【分析】(1)根据题意和题目中的条件可以找出△ABC ≌△ADE 的条件;(2)根据(1)中的结论和等腰直角三角形的定义可以得到∠FAE 的度数.【详解】证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°.【点睛】本题考查全等三角形的判定与性质及等腰三角形的性质,解答本题的关键是明确题意,找出全等所需要的条件.26.如图,△ABC为等边三角形,直线l经过点C,在l上位于C点右侧的点D满足∠BDC =60°.(1)如图1,在l上位于C点左侧取一点E,使∠AEC= 60°,求证:△AEC≌△CDB;(2)如图2,点F、G在直线l上,连AF,在l上方作∠AFH =120°,且AF=HF,∠HGF =120°,求证:HG+BD=CF;(3)在(2)的条件下,当A、B位于直线l两侧,其余条件不变时(如图3),线段HG、CF、BD的数量关系为.解析:(1)证明见解析;(2)证明见解析;(3)HG=CF+BD.【分析】(1)先利用角的和差证明∠BCD=∠EAC,然后利用AAS即可证明△AEC≌△CDB;(2)在l上C点左侧取一点E,使∠AEC=60°,连接AE,依次证明△AEC≌△CDB和△HGF≌△FEA即可得出结论;(3)在l上位于C点右侧取一点E,使∠AED=60°,连接AE,在l上取一点M,使BM=BD,依次证明△ACE≌△CBM和△HGF≌△FEA即可得出结论.【详解】解:(1)证明:∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠BCD+∠ACE=120°,∵∠AEC=60°,∴∠ACE+∠EAC=120°,∴∠BCD=∠EAC,在△AEC和△CDB中∵60 AEC BDCBCD EACAC BC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△AEC≌△CDB(AAS);(2)证明:如图2,在l上C点左侧取一点E,使∠AEC=60°,连接AE,由(1)知:△AEC≌△CDB,∴BD=CE,∵∠AEC=60°,∴∠AEF =120°,∵∠AFH =120°,∴∠AFE+∠FAE=∠AFE+∠GFH=60°,∴∠FAE=∠GFH,∵∠HGF=∠AEF=120°,AF=FH,∴△HGF≌△FEA(AAS),∴GH=EF,∴CF=EF+CE=HG+BD;(3)解:HG=CF+BD,理由是:如图3,在l上位于C点右侧取一点E,使∠AED=60°,连接AE,在l上取一点M,使BM=BD,∵∠BDC=60°,∴△BDM是等边三角形,∴∠BMD=60°,∵∠AED=60°,∴∠AEC=∠CMB=120°,∵∠ACB=60°,∴∠ACE+∠BCE=∠ACE+∠CAE=60°,∴∠CAE=∠BCE,∵AC=BC,∴△ACE ≌△CBM (AAS ),∴CE=BM=BD ,由(2)可证△HGF ≌△FEA (AAS ),∴GH=FE ,∵EF=CF+CE∴HG=CF+BD .故答案为:HG=CF+BD .【点睛】本题考查等边三角形的性质和判定,全等三角形的性质和判断,三角形外角的性质等.掌握一线三等角的模型,能借助一线三等角证明对应角相等是解题关键.27.已知:如图,//AC BD ,AE ,BE 分别平分CAB ∠和ABD ∠,点E 在CD 上.用等式表示线段AB 、AC 、BD 三者之间的数量关系,并证明.解析:AB=AC+BD ,证明见详解.【分析】延长AE ,交BD 的延长线于点F ,先证明AB=BF ,进而证明△ACE ≌△FDE ,得到AC=DF ,问题得证.【详解】解:延长AE ,交BD 的延长线于点F ,∵//AC BD ,∴∠F=∠CAF ,∵AE 平分CAB ∠,∴∠CAF=∠BAF ,∴∠F=∠BAF ,∴AB=BF ,∵BE 平分ABF ∠,∴AE=EF ,∵∠F=∠CAF ,∠AEC=∠FED ,∴△ACE ≌△FDE ,∴AC=DF ,∴AB=BF=BD+DF=BD+AC .【点睛】本题考查了等腰三角形的判断与性质,全等三角形的判定与性质,根据题意添加辅助线构造等腰三角形和全等三角形是解题关键.28.如图,ABC 中,AD 平分BAC ∠,BC 的垂直平分线DG 交AD 于D ,DE AB ⊥于E ,DF AC ⊥于F .求证:(1)BE CF =.(2)2AB AC CF -=.解析:(1)证明见解析;(2)证明见解析【分析】(1)连接DB 、DC ,先由角平分线的性质就可以得出DE=DF ,再证明△BDE ≌△CDF 就可以得出结论;(2)由条件可以得出△DAE ≌△DAF 就可以得出AE=AF ,进而就可以求出结论.【详解】(1)连接DB 、DC ,如图所示,DG 垂直平分BC ,DB DC ∴=,又AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,DE DF ∴=,90DEB DFG ∠=∠=︒,DAE DAF ∠=∠, 在Rt BDE 和Rt CDF 中,DB DC DE DF =⎧⎨=⎩, ()HL Rt BDE Rt CDF ∴≅,BE CF ∴=.(2)在Rt DAE 和Rt DAF △中,DA DA DE DF =⎧⎨=⎩, ()Rt DAE Rt DAF HL ∴≅,AE AF ∴=,AB AE BE -=,AB AF CF ∴-=,()AB AC CF CF -+=,AB AC CF CF --=,2AB AC CF -=.【点睛】本题考查了角平分线的性质的运用,线段垂直平分线的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.。

人教版八年级上册数学第十三章 轴对称 含答案

人教版八年级上册数学第十三章 轴对称 含答案

人教版八年级上册数学第十三章轴对称含答案一、单选题(共15题,共计45分)1、△ABC中AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E,∠AEB=70°,那么∠BAC等于()A.55°或125°B.65°C.55°D.125°2、下列图形中,不是轴对称图形的是()A. B. C. D.3、如图,矩形ABCD中,对角线AC、BD交于点O.若∠AOB=60°,BD=10,则AB的长为()A.5B.5C.4D.34、剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A. B. C. D.5、如图所示,已知△ABC中,∠BAC=90°,AB=AC,∠BAD=30°,AD=AE,则∠EDC的度数为()A.10°B.15°C.20°D.30°6、若点是直线上一点,已知,则的最小值是()A.4B.C.D.27、在等腰中,,中线将这个三角形的周长分成15和18两部分,则这个三角形底边的长为()A.9B.9或13C.10D.10或128、如图,在平面直角坐标系中,点A(1,m)在直线y=﹣2x+3上,点A关于y 轴的对称点恰好落在直线y=kx+2上,则k的值为()A.﹣2B.1C.D.29、如图,点 B,C,D,E 在同一条直线上,△ABC 为等边三角形,AC=CD,AD=DE,若AB=3,AD=m,试用 m 的代数式表示△ABE 的面积( )A. B. m C. m D.3m10、已知等边三角形一边上的高为,则它的边长为A.2B.3C.4D.11、下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.12、下列图形中不是轴对称图形的是()A.等边三角形B.正方形C.平行四边形D.正五边形13、在中,∠B=40°,将△ABC沿直线DE折叠,点B与点B1重合,则∠ADB1+∠CEB1的度数为()A.30°B.80°C.60°D.100°14、如图,在中,将绕点逆时针旋转得到,使点落在边上,连接,则的长度是()A. B. C. D.15、如图,四边形是菱形,,,点是边上的一动点,过点作于点,于点,连接,则的最小值为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小是________度.17、如图,△ABC中,BC=8,AB的中垂线交BC于点D,AC的中垂线交BC于点E,则△ADE的周长等于________.18、如图,≌,,,,则________.19、如图,已知为四边形的外接圆,为圆心,若BCD=120 º,AB=AD=2cm,则的半径长为________ cm.20、如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积是________ cm2.21、如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.点D是BC边上的一动点(不与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,BD的长为________.22、如图,△ABC中,∠ABC与∠ACB的平分线相交于点D,过点D作直线EF‖BC,交AB于点E、交AC于点F若BE=4,EF=7,则FC=________。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册第13章【轴对称】单元试卷【考时120分钟;满分150分】姓名___________考号___________ 一.选择题(共10小题,满分40分,每小题4分)1.(4分)若点(a,﹣3)与点(2,b)关于y轴对称,则a,b的值为()A.a=2,b=3 B.a=2,b=﹣3 C.a=﹣2,b=﹣3 D.a=﹣2,b=32.(4分)如图,在等腰△ABC中,∠A=36°,∠ABC=∠ACB,∠1=∠2,∠3=∠4,BD 与CE交于点O,则图中等腰三角形有()A.6个B.7个C.8个D.9个3.(4分)如图,若D是直角△ABC斜边上的中点,DE⊥AB,如果∠EAC:∠BAE=2:5,那么∠BAC=()A.60°B.52°30′C.45°D.37.5°4.(4分)等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是()A.9cm B.12cm C.9cm或12cm D.在9cm或12cm之间5.(4分)观察下列各组图形,其中两个图形成轴对称的有()组.A.1 B.2 C.3 D.46.(4分)△ABC中,边AB、AC的中垂线交于点O,则有()A.O在△ABC内部B.O在△ABC的外部C.O在BC边上D.OA=OB=OC7.(4分)等腰三角形的底边BC=8cm,且|AC﹣BC|=2cm,则腰长AC的长为()A.10cm或6cm B.10cm C.6cm D.8cm或6cm8.(4分)△ABC中,AD,BE分别是边BC,AC上的高,若∠EBC=∠BAD,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形9.(4分)△ABC和△ABD是有公共边的三角形,如果可以判定两个三角形全等,那么点D的位置是()A.是唯一确定的B.有且只有两种可能C.有且只有三种可能D.有无数种可能10.(4分)如图,△AOB关于x轴对称图形△A′OB,若△AOB内任意一点P的坐标是(a,b),则△A′OB中的对应点Q的坐标是()A.(a,b)B.(﹣a,b)C.(﹣a,﹣b)D.(a,﹣b)二.填空题(共4小题,满分20分,每小题5分)11.(5分)26个大写英文字母中,有些字母可以看成轴对称图形,共有个是轴对称图形.12.(5分)如图,一条船从A处出发,以15里/小时的速度向正北方向航行,10个小时到达B处,从A、B望灯塔,得∠NAC=37°,∠NBC=74°,则B到灯塔C的距离是里.13.(5分)如图所示,△ABC、△ADE与△EFG都是等边三角形,D和G分别为AC和AE的中点,若AB=4时,则图形ABCDEFG外围的周长是.14.(5分)如下图,在Rt△ABC中,∠C=90°,DE垂直平分AB,垂足为E,D在BC上,已知∠CAD=32°,则∠B=度.三.解答题(共9小题,满分90分)15.(8分)如图,在Rt△ABC中,∠C=90°,∠A=30°.(1)以直角边AC所在的直线为对称轴,将Rt△ABC作轴对称变换,请在原图上作出变换所得的像;(2)Rt △ABC 和它的像组成了什么图形?最准确的判断是( );(3)利用上面的图形,你能找出直角边BC 与斜边AB 的数量关系吗?并请说明理由.16.(8分)已知点A (2,m ),B (n ,﹣5),根据下列条件求m ,n 的值.(1)A ,B 两点关于y 轴对称;(2)AB ∥y 轴.17.(8分)如图,已知等边△ABC 的边长为a ,B ,C 在x 轴上,A 在y 轴上.(1)作△ABC 关于x 轴的对称图形△A′B′C′;(2)求△ABC 各顶点坐标和△A′B′C′各顶点坐标.18.(8分)已知等腰三角形的周长为28cm ,其中的一边长是另一边长的23倍,求这个等腰三角形各边的长.19.(10分)如图所示,已知点D 是等边三角形ABC 的边BC 延长线上的一点,∠EBC=∠DAC ,CE ∥AB .求证:△CDE 是等边三角形.20.(10分)如图,在等腰△ABC中,∠A=80°,∠B和∠C的平分线相交于点O(1)连接OA,求∠OAC的度数;(2)求:∠BOC.21.(12分)如图所示,在△ABC中,AB=AC,∠A=60°,BD⊥AC于点D,DG∥AB,DG 交BC于点G,点E在BC的延长线上,且CE=CD.(1)求∠ABD和∠BDE的度数;(2)写出图中的等腰三角形(写出3个即可).22.(12分)如图,已知∠AOB=a外有一点P,画点P关于直线OA的对称点P′,再作点P′关于直线OB的对称点P″.(1)试猜想∠POP″与a的大小关系,并说出你的理由.(2)当P为∠AOB 内一点或∠AOB边上一点时,上述结论是否成立?23.(14分)如图,已知坐标系中点A(2,﹣1),B(7,﹣1),C(3,﹣3).(1)判定△ABC的形状;(2)设△ABC关于x轴的对称图形是△A1B1C1,若把△A1B1C1的各顶点的横坐标都加2.纵坐标不变,则△A1B1C1的位置发生什么变化?若最终位置是△A2B2C2,求C2点的坐标;(3)试问在x轴上是否存在一点P,使PC﹣PB最大,若存在,求出PC﹣PB的最大值及P点坐标;若不存在,说明理由.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a、b 的值.【解答】解:∵点(a ,﹣3)与点(2,6)关于y 轴对称,∴a=﹣2,b=﹣3, 故选:C .【点评】此题主要考查了关于y 轴对称点的坐标特点,关键是掌握点的坐标的变化规律. 2.【分析】由已知条件,根据三角形内角和等于180、角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行找寻,注意做到由易到难,不重不漏.【解答】解:∵在等腰△ABC 中,∠A=36°,∴∠ABC=∠ACB=236180=72°, ∵∠1=∠2,∠3=∠4,∴∠1=∠2=∠3=∠4=∠A=36°,∴AD=BD ,AE=EC ,OB=OC ,即△ADB ,△AEC ,△OBC 是等腰三角形,∵∠BDC=∠CEB=180°﹣36°﹣72°=72°,∴BC=CE=AD ,即△BCE ,△BCD 是等腰三角形,∵∠1=∠4=36°,∴∠BOE=∠COD=180°﹣36°﹣72°,∴CD=CD ,BO=BE ,即△BOE ,△COD 是等腰三角形,∴共有8个等腰三角形.故选:C .【点评】本题考查了等腰三角形的性质和判定、角的平分线的性质及三角形内角和定理;由已知条件利用相关的性质求得各个角的度数是正确解答本题的关键.3.【分析】由于D是直角△ABC斜边上的中点,DE⊥AB,可以得到AE=BE,进一步得到∠EAB=∠B,又∠EAC:∠BAE=2:5,再利用直角三角形的两个锐角互余即可求出∠BAC.【解答】解:∵D是直角△ABC斜边上的中点,DE⊥AB,∴AE=BE,∴∠EAB=∠B,∵∠EAC:∠BAE=2:5,∴∠EAC:∠B=2:5,∴∠BAC:B=7:5,∵∠BAC+∠B=90°,∴∠BAC=52°30′,故选:B.【点评】此题考查了直角三角形的性质,还考查了线段垂直平分线的性质,解题时要注意数形结合思想的应用.4.【分析】题目给出等腰三角形有两条边长为2cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰长是2cm时,因为2+2<5,不符合三角形的三边关系,应排除;当腰长是5cm时,因为5+5>2,符合三角形三边关系,此时周长是12cm.故选:B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.【分析】根据成轴对称的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做成轴对称,这条直线叫做对称轴;据此判断即可.【解答】解:根据两个图形成轴对称的性质得出:(1)(2)(4)成轴对称图形,故选:C.【点评】此题主要考查了成轴对称图形的定义,掌握成轴对称的意义,判断是不是成轴对称的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.6.【分析】从已知开始,分别根据线段垂直平分线上的点到线段两边的距离相等解答即可得到答案.【解答】解:∵△ABC中,边AB、AC的中垂线交于点O,∴OA=OB,OA=OC,∴OA=OB=OC.故选:D.【点评】考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.本题比较简单,属于基础题.7.【分析】根据绝对值的性质求出AC的长即可.【解答】解:∵|AC﹣BC|=2cm,∴AC﹣BC=2cm或﹣AC+BC=2cm,∵BC=8cm,∴AC=(2+8)cm或AC=(8﹣2)cm,即10cm或6cm.故选:A.【点评】本题考查的是等腰三角形的性质,熟知“等腰三角形的两腰相等”是解答此题的关键.8.【分析】发现∠ABC与∠C分别是∠BAD与∠EBC的余角,得到二角相等,根据等腰三角形的判定可得答案.【解答】解:∵∠EBC+∠C=90°,∠C+∠CAD=90°,∴∠CAD=∠EBC,∵∠EBC=∠BAD∴∠BAD=∠CAD,∠CAD+∠C=90°∠BAD+∠ABC=90°∴∠ABC=∠C∴AB=AC∴为等腰三角形.故选:A.【点评】本题考查了等腰三角形的判定;由∠EBC=∠BAD利用等角的余角相等得到∠ABC=∠ACB是正确解答本题的关键.9.【分析】根据三角形全等的判定和已知,可确定公共边为AB,故点D的位置也有两种情况.【解答】解:以AB为公共边可得两个点D的位置.故选:B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等.10.【分析】根据关于x轴对称的点的横坐标相同,纵坐标互为相反数解答即可.【解答】解:∵△AOB与△A'OB关于x轴对称,∴点P(a,b)关于x轴的对称点为(a,﹣b),∴点P的对应点Q的坐标是(a,﹣b).故选:D.【点评】本题考查了坐标与图形变化﹣对称,熟记关于x轴对称的点的横坐标相同,纵坐标互为相反数是解题的关键.二.填空题(共4小题,满分20分,每小题5分)11.【分析】根据轴对称图形的概念,分析出可以看成轴对称图形的字母.【解答】解:26个大写英文字母中,A、B、C、D、E、H、I、K、M、O、T、U、V、W、X、Y可以看成轴对称图形.故共有16个是轴对称图形.故答案为:16.【点评】此题的关键是熟悉轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.12.【分析】根据已知及等角对等边的性质得到BC=AB,根据路程公式可求得AB的长,从而也就得到了BC的长.【解答】解:∵∠NAC=37°,∠NBC=74°∴∠C=37°∴BC=AB=10×15=150里.故填150.【点评】此题考查等腰三角形的性质及三角形外角的性质;利用三角形外角的性质求得∠C=37°是正确解答本题的关键.13.【分析】先搞清图形ABCDEFG外围的周长的组成,再来计算,即易解.【解答】解:∵△ABC、△ADE与△EFG都是等边三角形∴AD=DE,EF=EG∵D和G分别为AC和AE的中点,AB=4∴DE=EA=2,GF=EF=1,∴图形ABCDEFG外围的周长是4×3+2+1=15.【点评】本题考查了等边三角形的性质;解决本题的关键是得到图形ABCDEFG外围的周长的组成.14.【分析】利用中垂线和三角形外角性质计算.【解答】解:∠C=90°,∠CAD=32°⇒∠ADC=58°,DE为AB的中垂线⇒∠BAD=∠B又∠BAD+∠B=58°⇒∠B=29°故填29°【点评】本题涉及中垂线和三角形外角性质,难度中等.三.解答题(共9小题,满分90分)15.【分析】(1)延长BC到D,使CD=BC,连接AD即可;(2)根据三角形内角和定理可得∠B=60°,根据作图可得∠BAD=60°,三个角都是60°,那么是等边三角形;(3)BC=BD 的一半,也就是AB 的一半.【解答】解:(1)作图如右图:.(2分)(2)Rt △ABC 和它的像组成了什么图形最准备的判断是(等边三角形)(2分)(3)AB=2BC .(2分)∵∠C=90°,∠A=30°,∴∠B=60°.∵△ABC ≌△ADC ,∴∠DAC=∠BAC=30°.∴∠BAD=60°.∴△ABD 是等边三角形.∴AB=DB .∵CD=BC ,∴BC=21BD .∴BC=21BA .(4分)【点评】关于轴对称的两个图形是全等形;各对应点的连线被对称轴垂直平分.16.【分析】(1)平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点的坐标是(﹣x ,y );(2)AB ∥y 轴就是说明A ,B 两点的横坐标相同.【解答】解:(1)根据轴对称的性质,得m=﹣5,n=﹣2;(2)根据平行线的性质,得m ≠﹣5,n=2.【点评】本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点.这一类题目是需要识记的基础题.解决的关键是对知识点的正确记忆.注意:平行于x 轴的直线的所有点的纵坐标相等;平行于y 轴的所有点的横坐标相等.17.【分析】因为x 轴为对称轴,B 、C 在x 轴上,则其对称点为本身,A 的对称点A′在y 轴上,距离x 轴OA 个单位长度.【解答】解:(1)如图.(2)A ,A′两点横坐标相等,纵坐标互为相反数,其它两点因为重合,坐标相等; A (0,23a ),B (﹣2a ,0),C (2a ,0), A′(0,﹣23a ),B′(﹣2a ,0),C′(2a ,0).【点评】解答此题要明确轴对称的性质:1.对称轴是一条直线;2.垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线.线段垂直平分线上的点到线段两端的距离相等;3.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等;4.在轴对称图形中,对称轴把图形分成完全相等的两份;5.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.18.【分析】本题已知了等腰三角形的两边间的比例关系,但是没有明确这两边哪边是底,哪边是腰,因此要分两种情况讨论.【解答】解:设等腰三角形的一边长为xcm ,则另一边长为23xcm , 则等腰三角形的三边有两种情况:xcm ,xcm ,23xcm 或xcm ,23xcm ,23xcm , 则有:①x +x +23x=28,得x=8cm , 所以三边为:8cm 、8cm 、12cm ;②x +23x +23x=28,得x=7cm ,所以三边为7cm、10.5cm、10.5cm.因此等腰三角形的三边的长为:8cm,8cm,12cm或7cm,10.5cm,10.5cm.【点评】本题考查了等腰三角形的性质和三角形的三边关系;本题从边的方面考查三角形,利用分情况讨论的思想方法求解是解题的关键.19.【分析】可先证明△BCE≌△ACD,得到CE=CD及∠ECD=60°,即可求解.【解答】证明:∵∠ABE+∠CBE=60°,∠CAD+∠ADC=60°,∠EBC=∠DAC,∴∠ABE=∠ADC.又CE∥AB,∴∠BEC=∠ABE.∴∠BEC=∠ADC.又BC=AC,∠EBC=∠DAC,∴△BCE≌△ACD.∴CE=CD,∠BCE=∠ACD,即∠ECD=∠ACB=60°.∴△CDE是等边三角形.【点评】本题主要考查等边三角形的判定,熟练掌握等边三角形的性质是解答的关键.20.【分析】(1)连接AO,利用等腰三角形的对称性即可求得∠OAC的度数;(2)利用三角形的内角和定理以及角平分线的定义求∠BOC与∠A的关系,再把∠A代入即可求∠BOC的度数.【解答】解:(1)连接AO,∵在等腰△ABC 中,∠B 和∠C 的平分线相交于点O ,∴等腰△ABC 关于线段AO 所在的直线对称,∵∠A=80°,∴∠OAC=40°(2)∵BO 、CO 分别平分∠ABC 和∠ACB ,∴∠OBC=21∠ABC ,∠OCB=21∠ACB , ∴∠BOC=180°﹣(∠OBC +∠OCB )=180°﹣( 21∠ABC +21∠ACB ) =180°﹣21(∠ABC +∠ACB ) =180°﹣21(180°﹣∠A ) =90°+21∠A . ∴当∠A=80°时,() 130219021180=∠+=∠+∠-=∠A C B BOC . 【点评】本题考查了等腰三角形的性质,也可以作辅助线,构造三角形的外角,利用三角形外角的性质求解.21.【分析】(1)△ABC 为等边三角形,所以△ABD 为直角三角形,可求∠ABD ,再利用线段相等,角的转化,求出∠BDE ;(2)只要两边相等或两个角相等,就是等腰三角形,在图形中找相等的角即可.【解答】解:(1)∵AB=AC ,∠A=60°,∴△ABC 是等边三角形,∵BD ⊥AC ,∴∠ABD=30°,∵CD=CE ,∠ACB=60°∴∠CDE=30°∴∠BDE=120°.(2)∵AB=AC ,∴△ABC 是等腰三角形∵DG ∥AB ,∴∠DGC=∠ABC ,∴△CDG 为等腰三角形.∵CD=CE ,∴△CDE 是等腰三角形.【点评】本题考查了等腰三角形的性质和判定及平行线的性质;找着相等的角是正确解答本题的关键.22.【分析】(1)根据轴对称的性质画出图形,再由HL 定理得出△DOP′≌△DOP ,△EOP″≌△EOP′根据全等三角形的性质即可得出结论;(2)根据题意画出图形,同(1)可得出结论.【解答】解:(1)猜想:∠POP″=2α.理由:如图1,在△DOP′与△DOP 中∵⎩⎨⎧='=ODOD P O OP ,∴△DOP′≌△DOP .同理可得,△EOP″≌△EOP′∴∠POP″=2α;(2)成立.如图2,当点P 在∠AOB 内时,∵同(1)可得,△DOP′≌△DOP ,EOP″≌△EOP′,∴∠POD=∠P′OD ,∠EOP″=∠EOP′,∴∠POP″=∠P′OP″﹣∠POP′=3α﹣α=2α. 如图3,当点P 在∠AOB 的边上时,∵同(1)可得△EOP″≌△EOP ,∴∠POP″=2α.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键. 23.【分析】(1)计算出AC 2,BC 2,AB 2,比较数量关系即可;(2)把△A 1B 1C 1的各顶点的横坐标都加2.纵坐标不变,则图形向右移动两个单位;(3)连接CB 1,与x 轴的交点即为P ,进而解答即可.【解答】解:(1)∵AC 2=22+12=5,BC 2=42+22=20,AB 2=52∴AC 2+BC 2=AB 2∴△ABC 是直角三角形;(2)图象向右平移2个单位,C 2坐标为(5,2);(3)存在.连接CB 1,与x 轴的交点即为P ,理由:设BC 对应一次函数为y=kx +b∵C (3,﹣3)B (7,﹣1)∴⎩⎨⎧-=+-=+1733b k b k ∴⎪⎪⎩⎪⎪⎨⎧-==2921b k ∴y=21x ﹣29, 令y=0得x=9∴P (9,0).此时,PC ﹣PB 最大值为BC=252018年秋人教版八年级数学上册第13章【轴对称】单元试卷一及答案【点评】本题考查了作图﹣﹣轴对称变换和最短路径问题,熟悉轴对称的性质和勾股定理是解题的关键.21。

相关文档
最新文档