辅助角公式的推导
三角恒等变换之辅助角公式
三角恒等变换之辅助角公式-CAL-FENGHAI.-(YICAI)-Company One1辅助角公式sin cos )a b θθθϕ+=+在三角函数中,有一种常见而重要的题型,即化sin cos a b θθ+为一个角的一个三角函数的形式,进而求原函数的周期、值域、单调区间等.为了帮助学生记忆和掌握这种题型的解答方法,教师们总结出公式sin cos a b θθ+=)θϕ+或sin cos a b θθ+cos()θϕ-,让学生在大量的训练和考试中加以记忆和活用.但事与愿违,半个学期不到,大部分学生都忘了,教师不得不重推一遍.到了高三一轮复习,再次忘记,教师还得重推!本文旨在通过辅助角公式的另一种自然的推导,体现一种解决问题的过程与方法,减轻学生的记忆负担;同时说明“辅助角”的范围和常见的取角方法,帮助学生澄清一些认识;另外通过例子说明辅助角公式的灵活应用,优化解题过程与方法;最后通过例子说明辅助公式在实际中的应用,让学生把握辅助角与原生角的范围关系,以更好地掌握和使用公式. 一.教学中常见的的推导方法教学中常见的推导过程与方法如下 1.引例 例1α+cos α=2sin (α+6π)=2cos (α-3π). 其证法是从右往左展开证明,也可以从左往右“凑”,使等式得到证明,并得出结论: 可见α+cos α可以化为一个角的三角函数形式.一般地,asin θ+bcos θ 是否可以化为一个角的三角函数形式呢 2.辅助角公式的推导 例2 化sin cos a b θθ+为一个角的一个三角函数的形式.解: asin θ+bcos θθcos θ),①=cos ϕ=sin ϕ,则asin θ+bcos θθcos ϕ+cos θsin ϕ)=θ+ϕ),(其中tan ϕ=b a)②=sin ϕ=cos ϕ,则asin θ+bcos θθsin ϕ+cos θcos ϕθ-ϕ),(其中tan ϕ=a b) 其中ϕ的大小可以由sin ϕ、cos ϕ的符号确定ϕ的象限,再由tan ϕ的值求出.或由tan ϕ=ba和(a,b)所在的象限来确定. 推导之后,是配套的例题和大量的练习.但是这种推导方法有两个问题:一是为什么要令=cos ϕ=sin ϕ让学生费解.二是这种 “规定”式的推导,学生难记易忘、易错! 二.让辅助角公式sin cos a b θθ+)θϕ+来得更自然能否让让辅助角公式来得更自然些这是我多少年来一直思考的问题.2009年春.我又一次代2008级学生时,终于想出一种与三角函数的定义衔接又通俗易懂的教学推导方法.首先要说明,若a=0或b=0时,sin cos a b θθ+已经是一个角的一个三角函数的形式,无需化简.故有ab ≠0.1.在平面直角坐标系中,以a 为横坐标,b 为纵坐标描一点P(a,b)如图1所示,则总有一个角ϕ,它的终边经过点P.设由三角函数的定义知 sin ϕ=b r,cos ϕ=a r=.所以asin θ+bcos θϕ sin θϕcos θ=)θϕ+.(其中tan ϕ=ba)2.若在平面直角坐标系中,以b 为横坐标,以a 为纵坐标可以描点P(b,a),如图2所示,则总有一个角ϕ的终边经过点P(b,a),设OP=r,则由三角函数的定义知sin ϕ=ar,cos ϕ=br=.asin θ+bcos θsin cos ϕθϕθ+s()θϕ-. (其中tan ϕ=a b)例3cos θθ+为一个角的一个三角函数的形式.解:在坐标系中描点设角ϕ的终边过点P,则OPϕ=12,cos ϕ=2.cos θθ+=2cos ϕsin θ+2sin ϕcos θ=2sin(θϕ+).tan ϕ=3.26k πϕπ=+,cos θθ+=2sin(6πθ+).经过多次的运用,同学们可以在教师的指导下,总结出辅助角公式 asinθ+bcos θθcos θ)=)θϕ+,(其中tan ϕ=ba).或者asinθ+bcos θθcos θ)=)θϕ-,(其中tan ϕ=ab)我想这样的推导,学生理解起来会容易得多,而且也更容易理解asinθ+bcosθθcosθ)的道理,以及为什么只有两种形式的结果.例4化sin cosαα-为一个角的一个三角函数的形式.解法一:点在第四象限.OP=2.设角ϕ过P点.则sin2ϕ=-,1cos2ϕ=.满足条件的最小正角为53π,52,.3k k Zϕππ=+∈1sin2(sin cos)2(sin cos cos sin)22552sin()2sin(2)2sin().33kαααααϕαϕαϕαππαπ∴-=-=+=+=++=+解法二:点在第二象限,OP=2,设角ϕ过P点.则1sin2ϕ=,cos2ϕ=-.满足条件的最小正角为56π,52,.6k k Zϕππ=+∈1sin2(sin cos)2(sin sin cos cos)22552cos()2cos(2)2cos().66kαααααϕαϕαϕαππαπ∴-=-=+=-=--=-三.关于辅助角的范围问题由sin cos)a bθθθϕ+=+中,点P(a,b)的位置可知,终边过点P(a,b)的角可能有四种情况(第一象限、第二象限、第三象限、第四象限).设满足条件的最小正角为1ϕ,则12kϕϕπ=+.由诱导公式(一)知1sin cos ))a b θθθϕθϕ+=+=+.其中1(0,2)ϕπ∈,1tan baϕ=,1ϕ的具体位置由1sin ϕ与1cos ϕ决定,1ϕ的大小由1tan baϕ=决定.类似地,sin cos )a b θθθϕ+=-,ϕ的终边过点P(b,a),设满足条件的最小正角为2ϕ,则22.k ϕϕπ=+由诱导公式有2sin cos cos())a b θθθϕθϕ+=-=-,其中2(0,2)ϕπ∈,2tan abϕ=,2ϕ的位置由2sin ϕ和2cos ϕ确定,2ϕ的大小由2tan abϕ=确定. 注意:①一般地,12ϕϕ≠;②以后没有特别说明时,角1ϕ(或2ϕ)是所求的辅助角.四.关于辅助角公式的灵活应用引入辅助角公式的主要目的是化简三角函数式.在实际中结果是化为正弦还是化为余弦要具体问题具体分析,还有一个重要问题是,并不是每次都要化为1sin cos )a b θθθϕ+=+的形式或2sin cos )a b θθθϕ+=-的形式.可以利用两角和与差的正、余弦公式灵活处理.例5 化下列三角函数式为一个角的一个三角函数的形式.cos αα-;(2)sin()cos()6363ππαα-+-. 解:(1)1cos sin cos )222(sin coscos sin )2sin()666ααααπππααα-=-=-=-(2)sin()cos()63631[sin()cos()]32323[sin()cos cos()sin ]333332sin()33ππααππααππππααπα-+-=-+-=-+-=-在本例第(1)小题中,a =1b =-a 、b 中至少有一个是负值时.我们可以取P(a ,b ),或者P(b ,a).这样确定的角1ϕ(或2ϕ)是锐角,就更加方便.例6 已知向量(cos(),1)3ax π=+,1(cos(),)32b x π=+-,(sin(),0)3c x π=+,求函数()h x =2a b b c ⋅-⋅+的最大值及相应的x 的值.解:21()cos()sin()cos()23233h x x x x πππ=+--+++=21cos(2)1233sin(2)2232x x ππ++-++=1212cos(2)sin(2)22323x x ππ+-++=22[cos(2)sin(2)]222323x x ππ+-++=11cos(2)2212x π++max()22h x ∴=+这时111122,.1224x k x k k Z ππππ+==-∈.此处,若转化为两角和与差的正弦公式不仅麻繁,而且易错,请读者一试.五.与辅助角有关的应用题与辅助角有关的应用题在实际中也比较常见,而且涉及辅角的范围,在相应范围内求三角函数的最值往往是个难点.例7 如图3,记扇OAB 的中心角为45︒,半径为1,矩形PQMN 内接于这个扇形,求矩形的对角线l 的最小值.解:连结OM,设∠AOM=θ.则MQ=sin θ,OQ=cos θ,OP=PN=sin θ. PQ=OQ-OP=cos sin θθ-.222l MQ PQ =+=22sin (cos sin )θθθ+-=31(sin 2cos 2)22θθ-+=13sin(2)22θϕ-+,其中11tan 2ϕ=,1(0,)2πϕ∈,11arctan 2ϕ=. 04πθ<<,111arctan2arctan .222πθϕ∴<+<+2min322l∴=-,min 12l -=. 所以当11arctan 422πθ=-时, 矩形的对角线l的最小值为12-.θNBMAQ P O图。
三角函数复习之辅助角公式讲义
三角函数复习之辅助角公式讲义辅助角公式是指在三角函数的计算中,使用一些特定角度的三角函数值来计算其他角度的三角函数值的公式。
这些特定角度被称为辅助角。
在三角函数的求解和计算中,辅助角公式是非常实用的工具。
下面是一些常用的辅助角公式。
1.正弦函数的辅助角公式:sin(A+B) = sinAcosB + cosAsinBsin(A-B) = sinAcosB - cosAsinB这两个公式可以通过将A+B或A-B展开并运用三角函数的和差角公式得到。
这两个公式可用于计算任意两个角度的正弦函数值。
2.余弦函数的辅助角公式:cos(A+B) = cosAcosB - sinAsinBcos(A-B) = cosAcosB + sinAsinB这两个公式可以通过将A+B或A-B展开并运用三角函数的和差角公式得到。
这两个公式可用于计算任意两个角度的余弦函数值。
3.正切函数的辅助角公式:tan(A+B) = (tanA + tanB) / (1 - tanAtanB)tan(A-B) = (tanA - tanB) / (1 + tanAtanB)这两个公式可以通过将A+B或A-B展开并运用三角函数的和差角公式以及两个角度的正切函数值来推导得到。
这两个公式可用于计算任意两个角度的正切函数值。
4.余切函数的辅助角公式:cot(A+B) = (cotAcotB - 1) / (cotA + cotB)cot(A-B) = (cotAcotB + 1) / (cotA - cotB)这两个公式可以通过将A+B或A-B展开并运用三角函数的和差角公式以及两个角度的余切函数值来推导得到。
这两个公式可用于计算任意两个角度的余切函数值。
辅助角公式在实际问题中有广泛的应用。
例如,在求解三角函数方程或证明三角恒等式时,辅助角公式可以帮助简化计算。
此外,辅助角公式还可以用于求解三角函数的特殊值,如求解sin15°、cos75°等。
辅助角公式的推导
利用三角函数的倍角公式推导
三角函数的倍角公式也是推导辅助角 公式的重要工具,通过将复杂的三角 函数表达式转化为简单的三角函数倍 角形式,可以进一步简化计算。
利用三角函数的倍角公式,可以将形如 $sin(2x)$或$cos(2x)$的表达式转化为 $2sinx*cosx$或$cos^2x-sin^2x$的形式 ,从而将问题简化为已知的三角函数形式 。
在现代数学和工程领域,辅助角公式已经成为解决各种复杂问
题的基本工具之一,其应用范围不断扩大。
02
辅助角公式的推导过程
利用三角函数的和差化积公式推导
三角函数的和差化积公式是推导辅助 角公式的重要基础,通过将复杂的三 角函数表达式转化为简单的三角函数 和差形式,可以进一步简化计算。
VS
利用三角函数的和差化积公式,可以 将形如$sin(x+y)$或$cos(x+y)$的表 达式转化为$sinx*cosy+cosx*siny$ 的形式,从而将问题简化为已知的三 角函数形式。
辅助角公式推导
• 辅助角公式简介 • 辅助角公式的推导过程 • 辅助角公式的应用举例 • 辅助角公式的扩展与推广 • 辅助角公式的注意事项与限制条
件
目录
01
辅助角公式简介
辅助角公式的定义
辅助角公式是三角函数中用于 将一个复杂三角函数式转化为 简单三角函数式的一组公式。
它通过添加或减去一个或多个 角,将给定的角转换到易于处 理的位置,从而简化计算过程。
辅助角公式通常以正弦、余弦、 正切等基本三角函数形式表示。
辅助角公式的应用场景
解决三角函数问题
辅助角公式在解决涉及三角函数 的数学问题中非常有用,例如求 解三角函数的值、化简复杂的三 角函数表达式等。
辅助角公式
辅助角公式Revised on November 25, 2020推导对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形,设点(a,b)为某一角φ(-π/2<φ<π/2)终边上的点,则,因此就是所求辅助角公式。
又因为,且-π/2<φ<π/2,所以,于是上述公式还可以写成该公式也可以用余弦来表示(针对b>0的情况),设点(b,a)为某一角θ(-π/2<θ<π/2)终边上的点,则,因此同理,,上式化成若正弦和余弦的系数都是负数,不妨写成f(x)=-asinx-bcosx,则再根据得记忆很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。
其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,的位置永远是你用来表示函数名称的系数。
例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。
如果用余弦来表示,那反正切就要变成a/b(余弦的系数b在分母)。
疑问为什么在推导辅助角公式的时候要令辅助角的取值范围为(-π/2,π/2)其实是在分类讨论a>0或b>0的时候,已经把辅助角的终边限定在一、四象限内了,此时辅助角的范围是(2kπ-π/2,2kπ+π/2)(k是整数)。
而根据三角函数的周期性可知加上2kπ后函数值不变,况且在(-π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了。
提出者,原名李心兰,字竟芳,号秋纫,别号壬叔。
出身于读书世家,其先祖可上溯至南宋末年汴梁(今)人李伯翼。
生于1811年 1月22日,逝世于1882年12月9日,人,是中国近代着名的数学家、天文学家、力学家和,创立了二次的幂级数展开式。
[1](就是现在的)他研究各种,和对数函数的幂级数展开式,这是李善兰也是19 世纪中国数学界最重大的成就。
[1]在19世纪把西方近代知识翻译为中文的传播工作中﹐李善兰作出了重大贡献。
辅助角公式
辅助角公式集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)推导对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形,设点(a,b)为某一角φ(-π/2<φ<π/2)终边上的点,则,因此就是所求辅助角公式。
又因为,且-π/2<φ<π/2,所以,于是上述公式还可以写成该公式也可以用余弦来表示(针对b>0的情况),设点(b,a)为某一角θ(-π/2<θ<π/2)终边上的点,则,因此同理,,上式化成若正弦和余弦的系数都是负数,不妨写成f(x)=-asinx-bcosx,则再根据得记忆很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。
其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,的位置永远是你用来表示函数名称的系数。
例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。
如果用余弦来表示,那反正切就要变成a/b(余弦的系数b 在分母)。
疑问为什么在推导辅助角公式的时候要令辅助角的取值范围为(-π/2,π/2)?其实是在分类讨论a>0或b>0的时候,已经把辅助角的终边限定在一、四象限内了,此时辅助角的范围是(2kπ-π/2,2kπ+π/2)(k是整数)。
而根据三角函数的周期性可知加上2kπ后函数值不变,况且在(-π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了。
提出者,原名李心兰,字竟芳,号秋纫,别号壬叔。
出身于读书世家,其先祖可上溯至南宋末年汴梁(今)人李伯翼。
生于1811年 1月22日,逝世于1882年12月9日,人,是中国近代着名的数学家、天文学家、力学家和,创立了二次的幂级数展开式。
[1](就是现在的)他研究各种,和对数函数的幂级数展开式,这是李善兰也是19 世纪中国数学界最重大的成就。
辅助角公式
辅助角公式
辅助角公式是三角函数中的一个重要概念,它用于求解具有特殊关系的角的正弦、余弦和正切值。
辅助角公式是数学的基础知识之一,它在解决三角函数相关问题时非常有用。
辅助角公式的基本形式为:
对于任意角x,有以下关系成立:
1. 正弦公式:sin(x + 2πk) = sin(x)
2. 余弦公式:cos(x + 2πk) = cos(x)
3. 正切公式:tan(x + πk) = tan(x)
在这些公式中,k为任意整数。
辅助角公式的作用是将求解角的问题转化为求解其辅助角的问题,从而简化计算步骤。
除了基本的辅助角公式,还有一些相关的扩展公式可以用于更复杂的三角函数计算。
例如,可以通过辅助角公式推导出双角公式、半角公式等,进一步扩展了辅助角公式的应用范围。
辅助角公式在数学和物理等学科中有广泛的应用。
通过利用这些公式,可以简化复杂的三角函数计算,解决各种与角度相关的问题。
例如,在几何学中,可以利用辅助角公式计算平面图形中的角度关系;在物理学中,可以利用辅助角公式计算物体在斜面上的运动。
总结起来,辅助角公式是解决三角函数相关问题的重要工具。
它能够简化计算步骤,提高解题效率,并有广泛的应用领域。
掌握辅助角公式对于学习和理解三角函数的性质和应用非常重要。
三角函数辅助角公式 推导过程是什么
三角函数辅助角公式推导过程是什么辅助角公式是一种高等三角函数公式,下面小编整理了三角函数辅助角公式公式及推导过程,供大家参考!1 三角函数辅助角公式是什幺辅助角公式是一种高等三角函数公式,使用代数式表达为asinx+bcosx=√(a²+b²)sin[x+\arctan(b/a)](a>0)。
虽然该公式已经被写入中学课本,但其几何意义却鲜为人知。
设要证明的公式为asinA+bcosA=√(a +b )sin(A+M) (tanM=b/a)以下是证明过程:设asinA+bcosA=xsin(A+M)∴asinA+bcosA=x((a/x)sinA+(b/x)cosA)由题,(a/x) +(b/x) =1,sinM=a/x,cosM=b/x∴x=√(a +b )∴asinA+bcosA=√(a +b )sin(A+M) ,tanM=sinM/cosM=b/a1 三角函数辅助角公式推导过程三角函数辅助角公式推导:asinx+bcosx=√(a²+b²)[asinx/√(a²+b²)+bcosx/√(a²+b²)]令a/√(a²+b²)=cosφ,b/√(a²+b²)=sinφasinx+bcosx=√(a²+b²)(sinxcosφ+cosxsinφ)=√(a²+b²)sin(x+φ)其中,tanφ=sinφ/cosφ=b/a,φ的终边所在象限与点(a,b)所在象限相同. 简单例题:(1)化简5sina-12cosa5sina-12cosa=13(5/13sina-12/13cosa)。
常用的辅助角公式6个
常用的辅助角公式6个
1、正弦定理:a/sinA=b/sinB=c/sinC,它指出在任一三角形中,每条边长除以它对应的内角的正弦值,所得结果相等。
2、余弦定理:a^2=b^2+c^2-2bc·cosA,它表明在任一三角形中,每条边的平方和减去它们的两倍乘以夹角的余弦值,所得结果相等。
3、勾股定理:a^2+b^2=c^2,它指的是在直角三角形中,两条直角边的平方和等于斜边的平方。
4、比例定理:a/b=c/d,它指出在三角形内,四边按照比例分割,前两边之比等于后两边之比。
5、正多边形内角和定理:多边形内角和=(n-2)·180°,其中n表示多边形的边数。
6、垂直平分线定理:三角形的内角一定可以被其对应的垂直平分线切分为两个相等的角。
辅助角公式的推导
辅助角公式的推导我们首先考虑任意一个非负实数θ。
我们可以通过将θ逐步缩小,来将θ转化为介于0到90度之间的一个辅助角。
1.如果θ不是一个锐角,则我们需要转化为其补角α=90-θ。
这是由于锐角和钝角的三角函数值是相等的,只有对于锐角有意义的三角函数公式适用。
2.现在,我们可以定义辅助角β=α的余角。
辅助角β和α的终边重合,但是方向相反。
3.如果α是一个锐角,则β=π/2-α。
如果α是一个钝角,则β=α-π/24. 将β转化为一个锐角,我们需要考虑β和π的关系。
如果β小于π,那么无需转化。
如果β大于等于π,则我们需要转化为对应的锐角。
令γ = β mod π。
5.现在,我们得到一个介于0到π之间的锐角γ。
我们可以根据需要继续缩小这个角,直到其变为一个介于0到90度之间的锐角。
通过以上推导,我们可以得到辅助角公式的表达式。
设θ为任意实数,α为θ的补角,β为α的余角,γ为β mod π,且α和γ都是锐角,则有以下辅助角公式:sin(θ) = sin(α) = sin(β) = sin(γ)cos(θ) = cos(α) = -cos(β) = cos(γ)tan(θ) = tan(α) = -tan(β) = tan(γ)cot(θ) = cot(α) = -cot(β) = cot(γ)辅助角公式的推导过程相当简单,但它提供了一种计算三角函数的替代方法。
这样,我们就可以将原问题的角转化为一个更容易计算的辅助角,从而简化计算过程。
然而,需要注意的是,辅助角公式在三角方程的解中可能引入一些额外的解,因此在使用时需要谨慎。
辅助角公式
对f(x)=asinx+bcosx(a>0)型函数, 我们可以如此变形, 设点(a,b)为某一角φ(-π/2<φ<π/2)终边上的点, 则, 因此就是所求辅助角公式.又因为, 且-π/2<φ<π/2, 所以, 于是上述公式还可以写成该公式也可以用余弦来暗示(针对b>0的情况), 设点(b,a)为某一角θ(-π/2<θ<π/2)终边上的点, 则, 因此同理,, 上式化成若正弦和余弦的系数都是负数, 无妨写成f(x)=-asinx-bcosx, 则再根据诱导公式得记忆很多人在利用辅助角公式时, 经常忘记反正切究竟是b/a还是a/b, 招致做题犯错.其实有一个很方便的记忆技巧, 就是不论用正弦还是余弦来暗示asinx+bcosx, 分母的位置永远是你用来暗示函数名称的系数.例如用正弦来暗示asinx+bcosx, 则反正切就是b/a(即正弦的系数a在分母).如果用余弦来暗示,那反正切就要酿成a/b (余弦的系数b在分母).疑问为什么在推导辅助角公式的时候要令辅助角的取值范围为(-π/2,π/2)?其实是在分类讨论a>0或b>0的时候, 已经把辅助角的终边限定在一、四象限内了, 此时辅助角的范围是(2kπ-π/2,2kπ+π/2)(k是整数).而根据三角函数的周期性可知加上2kπ后函数值不变, 况且在(-π/2,π/2)内辅助角可以利用反正切暗示, 使得公式更加简洁明了.李善兰, 原名李心兰, 字竟芳, 号秋纫, 别名壬叔.出生于念书世家, 其先祖可上溯至南宋末年京都汴梁(今河南开封)人李伯翼.生于1811年 1月22日, 逝世于1882年12月9日, 浙江海宁人, 是中国近代著名的数学家、天文学家、力学家和植物学家, 创建了二次平方根的幂级数展开式.[1](就是现在的自然数幂求和公式)他研究各种三角函数, 反三角函数和对数函数的幂级数展开式, 这是李善兰也是19 世纪中国数学界最重年夜的成绩.[1]在19世纪把西方近代物理学知识翻译为中文的传布工作中﹐李善兰作出了重年夜贡献.他的译书也为中国近代物理学的发展起了启蒙作用.同治七年, 李善兰到北京担负同文馆天文﹑算学部长﹐执教达13年之久﹐为造就中国近代第一代科学人才作出了贡献. 李善兰为近代科学在中国的传布和发展作出了开创性的贡献.继梅文鼎之后, 李善兰成为清代数学史上的又一杰出代表.他一生翻译西方科技书籍甚多, 将近代科学最主要的几门知识从天文学到植物细胞学的最新功效介绍传入中国, 对增进近代科学的发展作出卓越贡献.[1]例1求sinθ/(2cosθ+√5)的最年夜值解:设sinθ/(2cosθ+√5)=k 则sinθ-2kcosθ=√5k ∴√[1+(-2k)²]sin(θ+α)=√5k平方得k²=sin²(θ+α)/[5-4sin²(θ+α)]令t=sin²(θ+α) t∈[0,1]则k²=t/(5-4t)=1/(5/t-4)当t=1时有kmax=1辅助角公式可以解决一些sin与cos角之间的转化例2化简5sina-12cosa解:5sina-12cosa=13(5/13*sina-12/13*cosa)=13(cosbsina-sinbcosa)=13sin(a-b)其中, cosb=5/13,sinb=12/13例3π/6≤a≤π/4 ,求sin²a+2sinacosa+3cos²a的最小值解:令f(a)=sin²a+2sinacosa+3cos²a=1+sin2a+2cos²a=1+sin2a+(1+cos2a)(降次公式)=2+(sin2a+cos2a)=2+(√2)sin(2a+π/4)(辅助角公式)因为7π/12≤2a+π/4≤3π/4所以f(a)min=f(3π/4)=2+(√2)sin(3π/4)=3。
辅助角公式及应用课件
复数方法是一种有效的推导辅助角公式的方法。通过将三角函数表示为复数形式,我们 可以利用复数的基本运算规则和三角函数的性质来推导辅助角公式。这种方法能够直观 地揭示辅助角公式的内在逻辑和数学结构,有助于深入理解辅助角公式的应用和推广。
CHAPTER 03
辅助角公式的应用
在三角函数化简中的应用
详细描述
三角函数的和差化积公式是推导辅助角公式的关键工具之一。通过利用这些公式,我们可以将两个或多个三角函 数的和或差转化为单一的三角函数形式,从而简化问题。例如,我们可以将正弦函数和余弦函数的和或差转化为 正切函数或余切函数,进一步推导出辅助角公式。
利用三角函数的倍角公式推导
总结词
通过三角函数的倍角公式,我们可以将一个角的三角函数值转化为两个角之和或差的三角函数值,从 而推导出辅助角公式。
辅助角公式及应用课件
CONTENTS 目录
• 辅助角公式简介 • 辅助角公式的推导 • 辅助角公式的应用 • 辅助角公式的扩展 • 辅助角公式的注意事项
CHAPTER 01
辅助角公式简介
辅助角公式的定义
01
辅助角公式是三角函数中用于将 一个复杂的三角函数式转化为简 单三角函数式的一组公式。
02
误差大小
误差的大小取决于角度、参数的选择 以及使用的近似方法。
THANKS
[ 感谢观看 ]
辅助角公式的局限性
近似性
辅助角公式通常基于近似 计算,因此结果的精度可 能受到限制。
适用性
辅助角公式可能不适用于 某些特定问题或复杂情况 。
计算复杂性
对于一些复杂问题,辅助 角公式的计算可能较为繁 琐。
辅助角公式的误差分析
误差来源
误差控制
辅助角公式
推导对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形,设点(a,b)为某一角φ(-π/2<φ〈π/2)终边上得点,则,因此就就是所求辅助角公式。
又因为,且-π/2〈φ<π/2,所以,于就是上述公式还可以写成该公式也可以用余弦来表示(针对b>0得情况),设点(b,a)为某一角θ(-π/2〈θ<π/2)终边上得点,则,因此同理,,上式化成若正弦与余弦得系数都就是负数,不妨写成f(x)=—asinx-bcosx,则再根据诱导公式得记忆很多人在利用辅助角公式时,经常忘记反正切到底就是b/a还就是a/b,导致做题出错、其实有一个很方便得记忆技巧,就就是不管用正弦还就是余弦来表示asinx+bcosx,分母得位置永远就是您用来表示函数名称得系数、例如用正弦来表示asinx+bcosx,则反正切就就是b/a(即正弦得系数a在分母)。
如果用余弦来表示,那反正切就要变成a/b(余弦得系数b在分母)。
疑问为什么在推导辅助角公式得时候要令辅助角得取值范围为(-π/2,π/2)?其实就是在分类讨论a>0或b>0得时候,已经把辅助角得终边限定在一、四象限内了,此时辅助角得范围就是(2kπ—π/2,2kπ+π/2)(k就是整数)。
而根据三角函数得周期性可知加上2kπ后函数值不变,况且在(—π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了、提出者李善兰,原名李心兰,字竟芳,号秋纫,别号壬叔。
出身于读书世家,其先祖可上溯至南宋末年京都汴梁(今河南开封)人李伯翼。
生于1811年 1月22日,逝世于1882年12月9日,浙江海宁人,就是中国近代著名得数学家、天文学家、力学家与植物学家,创立了二次平方根得幂级数展开式、[1] (就就是现在得自然数幂求与公式)她研究各种三角函数,反三角函数与对数函数得幂级数展开式,这就是李善兰也就是19世纪中国数学界最重大得成就、[1]在19世纪把西方近代物理学知识翻译为中文得传播工作中﹐李善兰作出了重大贡献。
必修4辅助角公式
02 辅助角公式的推导过程
利用三角函数的和差化积公式推导
总结词
通过三角函数的和差化积公式,我们可以将复杂的三角函数式转化为单一的三角函数形式,从而简化计算。
详细描述
利用三角函数的和差化积公式,我们可以将两个或多个三角函数的和差形式转化为单一的三角函数形式。例如, 利用正弦和差化积公式,我们可以将表达式$sin(x+alpha)-sin(x)$转化为 $2cos(x+frac{alpha}{2})sin(frac{alpha}{2})$,从而简化计算。
算精度来减小。
近似误差
由于辅助角公式是利用近似值进 行计算的,因此存在近似误差。 这种误差的大小取决于公式的近
似程度和角度的范围。
范围限制误差
由于辅助角公式适用于特定范围 内的角度,因此当角度超出这个 范围时,公式可能不准确,导致
误差。
辅助角公式的适用范围与局限性
适用范围
辅助角公式适用于解决一些特定类型 的三角函数问题,如求三角函数的值、 化简三角函数表达式等。
利用三角函数的倍角公式推导
总结词
通过三角函数的倍角公式,我们可以将一个角的三角函数转化为两个角相等的三 角函数形式,从而简化计算。
详细描述
利用三角函数的倍角公式,我们可以将一个角的三角函数转化为两个角相等的三角 函数形式。例如,利用正弦的倍角公式,我们可以将表达式$sin(2x)$转化为 $2sin(x)cos(x)$,从而简化计算。
03 辅助角公式的应用实例
三角函数图像的变换
辅助角公式在三角函数图像变换中的应用,可以将正弦、余 弦、正切函数等三角函数图像进行平移、伸缩、翻转等变换 ,从而得到新的三角函数图像。
例如,利用辅助角公式可以将正弦函数图像向右平移,得到 余弦函数图像;也可以将正弦函数图像进行伸缩变换,得到 周期不同的三角函数图像。
辅助角公式通用课件
随着数学与其他学科的交叉融合 ,辅助角公式将会在更多领域发
挥其重要的作用。
未来研究的方向与展望
对于辅助角公式的深入研究,可以进一步探索其与其他数学知识的联系 和区别,促进数学知识的系统化。
可以尝试推广辅助角公式,将其应用于更广泛的数学问题中,以拓展数 学的应用领域。
可以结合现代数学技术和方法,研究辅助角公式的计算方法和算法,提 高其计算效率和精度。
角)的三角函数值。
辅助角公式在解决三角函数问题 时具有广泛的应用,可以简化计
算过程,提高解题效率。Fra bibliotek辅助角公式的推导过程涉及到三 角函数的诱导公式和和差公式等 基础知识,需要学生熟练掌握。
辅助角公式的应用前景展望
随着数学教育的普及和提高,辅 助角公式将会被更广泛地应用于
解决实际问题中。
在物理、工程、经济等领域,辅 助角公式也有着广泛的应用前景 ,可以用于解决各种涉及三角函
实际应用案例
通过实际应用案例,可以深入理解辅助角公式的应用场景和优势,如物理、工 程、经济等领域的问题解决。
05 辅助角公式的习题与解答
辅助角公式的常见习题
习题1
01
已知角α的终边在第二象限,求α的集合。
习题2
02
已知sinα=-√3/2,求α在哪个象限。
习题3
03
已知cosα=1/2,求α的值。
02 辅助角公式的推导与证明
三角函数的和差化积公式
三角函数的和差化积公式是三角函数 中非常重要的公式之一,它可以将两 个三角函数的和差形式转化为积的形 式,从而简化计算。
这个公式在解决三角函数问题时非常 有用,可以大大简化计算过程。
具体来说,对于任意两个角度α和β, 三角函数的和差化积公式为: sin(α±β)=sinαcosβ±cosαsinβ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辅助角公式sin cos )a b θθθϕ+=+的推导在三角函数中,有一种常见而重要的题型,即化sin cos a b θθ+为一个角的一个三角函数的形式,进而求原函数的周期、值域、单调区间等.为了帮助学生记忆和掌握这种题型的解答方法,教师们总结出公式sin cos a b θθ+)θϕ+或sin cos a b θθ+cos()θϕ-,让学生在大量的训练和考试中加以记忆和活用.但事与愿违,半个学期不到,大部分学生都忘了,教师不得不重推一遍.到了高三一轮复习,再次忘记,教师还得重推!本文旨在通过辅助角公式的另一种自然的推导,体现一种解决问题的过程与方法,减轻学生的记忆负担;同时说明“辅助角”的范围和常见的取角方法,帮助学生澄清一些认识;另外通过例子说明辅助角公式的灵活应用,优化解题过程与方法;最后通过例子说明辅助公式在实际中的应用,让学生把握辅助角与原生角的范围关系,以更好地掌握和使用公式. 一.教学中常见的的推导方法教学中常见的推导过程与方法如下 1.引例 例1α+cos α=2sin (α+6π)=2cos (α-3π). 其证法是从右往左展开证明,也可以从左往右“凑”,使等式得到证明,并得出结论: 可见α+cos α可以化为一个角的三角函数形式.一般地,asin θ+bcos θ 是否可以化为一个角的三角函数形式呢? 2.辅助角公式的推导 例2 化sin cos a b θθ+为一个角的一个三角函数的形式.解: asin θ+bcos θsin θcos θ),①=cos ϕ=sin ϕ,则asin θ+bcos θθcos ϕ+cos θsin ϕ)θ+ϕ),(其中tan ϕ=ba)②=sin ϕ=cos ϕ,则asin θ+bcos θθsin ϕ+cos θcos ϕθ-ϕ),(其中tan ϕ=a b) 其中ϕ的大小可以由sin ϕ、cos ϕ的符号确定ϕ的象限,再由tan ϕ的值求出.或由tan ϕ=ba和(a,b)所在的象限来确定. 推导之后,是配套的例题和大量的练习.但是这种推导方法有两个问题:一是为什么要令=cos ϕ=sin ϕ?让学生费解.二是这种 “规定”式的推导,学生难记易忘、易错! 二.让辅助角公式sin cos a b θθ+)θϕ+来得更自然能否让让辅助角公式来得更自然些?这是我多少年来一直思考的问题.2009年春.我又一次代2008级学生时,终于想出一种与三角函数的定义衔接又通俗易懂的教学推导方法.首先要说明,若a=0或b=0时,sin cos a b θθ+已经是一个角的一个三角函数的形式,无需化简.故有ab ≠0. 1.在平面直角坐标系中,以a 为横坐标,b 为纵坐标描一点P(a,b)如图1所示,则总有一个角ϕ,它的终边经过点P.设由三角函数的定义知sin ϕ=b rcos ϕ=a r =.所以asin θ+bcos θϕ sin θϕcos θ)θϕ+.(其中tan ϕ=ba)2.若在平面直角坐标系中,以b为横坐标,以a为纵坐标可以描点P(b,a),如图2所示,则总有一个角ϕ的终边经过点P(b,a),设OP=r,则由三角函数的定义知sinϕ=ar,cosϕ=b rasinθ+bcosθsin cos ϕθϕθ+s()θϕ-. (其中tanϕ=ab)例3cosθθ+为一个角的一个三角函数的形式.解:在坐标系中描点P(,1),设角ϕ的终边过点P,则OPϕ=12,cosϕ=2.∴cosθθ+=2cosϕsinθ+2sinϕcosθ=2sin(θϕ+).tanϕ=3.26kπϕπ=+,cosθθ+=2sin(6πθ+).经过多次的运用,同学们可以在教师的指导下,总结出辅助角公式asinθ+bcosθ=(sinθ+cosθ)=)θϕ+,(其中tanϕ=ba).或者asinθ+bcosθ=(sinθ+cosθ)=)θϕ-,(其中tanϕ=ab)我想这样的推导,学生理解起来会容易得多,而且也更容易理解asinθ+bcosθsinθcosθ)的道理,以及为什么只有两种形式的结果.例4化sinαα-为一个角的一个三角函数的形式.解法一:点(1,-)在第四象限.OP=2.设角ϕ过P点.则sin2ϕ=-,1cos2ϕ=.满足条件的最小正角为53π,52,.3k k Zϕππ=+∈1sin2(sin cos)2(sin cos cos sin)22552sin()2sin(2)2sin().33kαααααϕαϕαϕαππαπ∴-=-=+=+=++=+解法二:点P(-,1)在第二象限,OP=2,设角ϕ过P点.则1sin2ϕ=,cos2ϕ=-.满足条件的最小正角为56π,52,.6k k Zϕππ=+∈1sin2(sin cos)2(sin sin cos cos)22552cos()2cos(2)2cos().66kαααααϕαϕαϕαππαπ∴-=-=+=-=--=-三.关于辅助角的范围问题由sin cos)a bθθθϕ+=+中,点P(a,b)的位置可知,终边过点P(a,b)的角可能有四种情况(第一象限、第二象限、第三象限、第四象限).设满足条件的最小正角为1ϕ,则12kϕϕπ=+.由诱导公式(一)知1 sin cos))a bθθθϕθϕ+=+=+.其中1(0,2)ϕπ∈,1tan baϕ=,1ϕ的具体位置由1sin ϕ与1cos ϕ决定,1ϕ的大小由1tan baϕ=决定.类似地,sin cos )a b θθθϕ+=-,ϕ的终边过点P(b,a),设满足条件的最小正角为2ϕ,则22.k ϕϕπ=+由诱导公式有2sin cos ))a b θθθϕθϕ+=-=-,其中2(0,2)ϕπ∈,2tan abϕ=,2ϕ的位置由2sin ϕ和2cos ϕ确定,2ϕ的大小由2tan abϕ=确定.注意:①一般地,12ϕϕ≠;②以后没有特别说明时,角1ϕ(或2ϕ)是所求的辅助角.四.关于辅助角公式的灵活应用引入辅助角公式的主要目的是化简三角函数式.在实际中结果是化为正弦还是化为余弦要具体问题具体分析,还有一个重要问题是,并不是每次都要化为1sin cos )a b θθθϕ+=+的形式或2sin cos )a b θθθϕ+=-的形式.可以利用两角和与差的正、余弦公式灵活处理.例5 化下列三角函数式为一个角的一个三角函数的形式.cos αα-;(2)sin()cos()6363ππαα-+-. 解:(1)1cos sin cos )222(sin coscos sin )2sin()666ααααπππααα-=-=-=-(2)sin()cos()63631sin()cos()]32323)cos cos()sin ]333332sin()33ππααππααππππααπα-+-=-+-=-+-=-在本例第(1)小题中,a =1b =-,-1),而取的是点P1).也就是说,当a 、b 中至少有一个是负值时.我们可以取P(a ,b ),或者P(b ,a ).这样确定的角1ϕ(或2ϕ)是锐角,就更加方便.例6 已知向量(cos(),1)3a x π=+ ,1(cos(),)32b x π=+- ,(sin(),0)3c x π=+ ,求函数()h x =2a b b c ⋅-⋅+ 的最大值及相应的x的值.解:21()cos()sin()cos()23233h x x x x πππ=+--+++=21cos(2)1233sin(2)2232x x ππ++-++ =1212cos(2)sin(2)22323x x ππ+-++=22cos(2)sin(2)]222323x x ππ+-++=11cos(2)2212x π++max()2.2h x ∴=+这时111122,.1224x k x k k Z ππππ+==-∈. 此处,若转化为两角和与差的正弦公式不仅麻繁,而且易错,请读者一试.五.与辅助角有关的应用题与辅助角有关的应用题在实际中也比较常见,而且涉及辅角的范围,在相应范围内求三角函数的最值往往是个难点.例7 如图3,记扇OAB 的中心角为45︒,半径为1,矩形PQMN 内接于这个扇形,求矩形的对角线l 的最小值.解:连结OM,设∠AOM=θ.则MQ=sin θ,OQ=cos θ,OP=PN=sin θ. PQ=OQ-OP=cos sin θθ-.222l MQ PQ =+=22sin(cos sin )θθθ+-=31(sin 2cos 2)22θθ-+=13sin(2)22θϕ-+,其中11tan 2ϕ=,1(0,)2πϕ∈,11arctan 2ϕ=. 04πθ<< ,111arctan 2arctan .222πθϕ∴<+<+2min 322l ∴=-,min 12l -=. 所以当11arctan 422πθ=-时, 矩形的对角线l的最小值为12-.θNBMAPO图3。