河南省安阳市2016届九年级数学上册期中考试题

合集下载

河南省安阳市九年级上学期数学期中考试试卷

河南省安阳市九年级上学期数学期中考试试卷

河南省安阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·阳新模拟) 下列4个图案中,既是轴对称图形又是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个2. (2分) (2016九上·路南期中) 在平面直角坐标系中,把点P(﹣2,1)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A . (2,﹣1)B . (﹣2,1)C . (2,1)D . (﹣2,﹣1)3. (2分)用配方法解方程,下列配方正确的是()A .B .C .D .4. (2分) (2018九上·拱墅期末) 关于二次函数y=3x2-6,下列叙述正确的是()A . 当时,y有最大值B . 当时,y有最小值C . 当时,y有最大值D . 当时,y有最小值5. (2分) (2019八上·通化期末) 如图,在△ABC中,AB=AC,∠A=1200 , BC=6cm,AB的垂直平分线交BC 于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A . 1.5cmB . 2cmC . 2.5cmD . 3cm6. (2分)(2017·桥西模拟) 关于x的方程mx2﹣4x﹣m+5=0,有以下说法:①当m=0时,方程只有一个实数根;②当m=1时,方程有两个相等的实数根;③当m=﹣1时,方程没有实数根.则其中正确的是()A . ①②B . ①③C . ②③D . ①②③7. (2分)一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A . 100(1+x)=121B . 100(1-x)=121C . 100(1+x)2=121D . 100(1-x)2=1218. (2分)(2020·镇平模拟) 已知函数,其中,,此函数的图象可以是()A .B .C .D .9. (2分)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为A .B .C .D .10. (2分)(2017·番禺模拟) 抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列4个结论::①b2﹣4ac<0;②2a﹣b=0;③a+b+c <0;④点M(x1 , y1)、N(x2 , y2)在抛物线上,若x1<x2 ,则y1≤y2 ,其中正确结论的个数是()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共9分)11. (1分) (2020九上·东台期末) 一元二次方程(x﹣1)(x+2)=0的根是________.12. (1分)如图,在Rt△OBC中,OB与x轴正半轴重合,∠OBC=90°,且OC=2,BC=,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,得到△OB1C1 ,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB2=OC,得到△OB2C2 ,…,如此继续下去,得到△OB2016C2016 ,则点C2016的坐标为________13. (2分)有一个抛物线形拱桥,其最大高度为16m,跨度为40m,现把它的示意图放在平面直角坐标系中如图,求抛物线的解析式是________.14. (1分) (2019九下·成都开学考) 已知m,是方程的两个根,那么________.15. (2分) (2016八上·灌阳期中) 广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n(n>1)盆花,设这个花坛边上的花盆的总数为S,请观察图中的规律:按上规律推断,S与n的关系是________.16. (2分)(2020·宜兴模拟) 如图,已知⊙O的半径是2,点A,B在⊙O上,且∠AOB=90°,动点C在⊙O 上运动(不与A,B重合),点D为线段BC的中点,连接AD,则线段AD的长度最大值是________.三、解答题 (共8题;共69分)17. (10分)(2020·平谷模拟) 已知关于x的一元二次方程.(1)求证:方程总有两个实数根;(2)任意写出一个k值代入方程,并求出此时方程的解.18. (10分)已知二次函数y=ax2的图象经过A(2,﹣3)(1)求这个二次函数的解析式;(2)请写出这个二次函数图象的顶点坐标、对称轴和开口方向.19. (10分) (2018八上·洛阳期中) 如图,在△ABC中,BC边上的垂直平分线DE与∠BAC的平分线交于点E,EF⊥AB交AB的延长线于点F,EG⊥AC于点G.求证:(1) BF=CG;(2) AB+AC=2AF.20. (2分) (2017九上·青龙期末) 如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,点P从点A开始,沿AB边以1cm/s的速度向点B运动:点Q从点B开始,沿BC边以2cm/s的速度向点C运动,当点P运动到点B时,运动停止,如果P,Q分别从A,B两点同时出发.(1)几秒后△PBQ的面积等于8cm2?(2)几秒后以P,B,Q为顶点的三角形与△ABC相似?21. (10分)如图AB是半径为R的⊙O的直径,AC是⊙O的切线,其中A为切点.直线OC与⊙O相交于D,E两点,直线BD与AC相交于点F.(1)求证:AD•AC=DC•EA(2)若sin∠CDF=,求线段AC的长.22. (10分)(2014·南京) 已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?23. (2分) (2020八下·北京期中) 如图,矩形ABCD中,AB=8,AD=10.(1) E是CD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处.求DE的长;(2)点P是线段CB延长线上的点,连接PA,若△PAF是等腰三角形,求PB的长;(3) M是AD上的动点,在DC 上存在点N,使△MDN沿折痕MN折叠,点D落在BC边上点T处,请直接写出线段CT长度的最大值与最小值.24. (15分) (2018九上·肇庆期中) 如图,直线l:y=﹣ x+1与x轴、y轴分别交于点B、C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A.(1)求该抛物线的解析式;(2)若点P在直线l下方的抛物线上,过点P作PD∥x轴交l于点D,PE∥y轴交l于点E,求PD+PE的最大值;(3)设F为直线l上的点,以A、B、P、F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共69分)17-1、答案:略17-2、答案:略18-1、答案:略18-2、19-1、19-2、20-1、答案:略20-2、21-1、答案:略21-2、答案:略22-1、22-2、23-1、23-2、答案:略23-3、24-1、答案:略24-2、答案:略24-3、答案:略。

安阳市九年级上册期中试卷检测题

安阳市九年级上册期中试卷检测题

安阳市九年级上册期中试卷检测题一、初三数学一元二次方程易错题压轴题(难)1.Rt△ABC中,∠ACB=90°,AC=BC=6,动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动,到达点C停止运动.设运动时间为t秒(1)如图1,过点P作PD⊥AC,交AB于D,若△PBC与△PAD的面积和是△ABC的面积的79,求t的值;(2)点Q在射线PC上,且PQ=2AP,以线段PQ为边向上作正方形PQNM.在运动过程中,若设正方形PQNM与△ABC重叠部分的面积为8,求t的值.【答案】(1)t1=2,t2=4;(2)t 47758.【解析】【分析】(1)先求出△ABC的面积,然后根据题意可得AP=t,CP=6﹣t,然后再△PBC与△PAD的面积和是△ABC的面积的79,列出方程、解方程即可解答;(2)根据不同时间段分三种情况进行解答即可.【详解】(1)∵Rt△ABC中,∠ACB=90°,AC=BC=6,∴S△ABC=12×6×6=18,∵AP=t,CP=6﹣t,∴△PBC与△PAD的面积和=12t2+12×6×(6﹣t),∵△PBC与△PAD的面积和是△ABC的面积的79,∴12t2+12×6×(6﹣t)=18×79,解之,得t1=2,t2=4;(2)∵AP=t,PQ=2AP,∴PQ=2t,①如图1,当0≤t≤2时,S=(2t)2﹣12t2=72t2=8,解得:t1=477,t2=﹣477(不合题意,舍去),②如图2,当2≤t≤3时,S=12×6×6﹣12t2﹣12(6﹣2t)2=12t﹣25t2=8,解得:t1=4(不合题意,舍去),t2=45(不合题意,舍去),③如图3,当3≤t≤6时,S=126×6﹣12t2=8,解得:t1=25,t2=﹣25(不合题意,舍去),综上,t的值为477或25时,重叠面积为8.【点睛】本题考查了三角形和矩形上的动点问题,根据题意列出方程和分情况讨论是解答本题的关键.2.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从去年年底至今年3月20日,猪肉价格不断走高,3月20日比去年年底价格上涨了60%.某市民在今年3月20日购买2.5千克猪肉至少要花200元钱,那么去年年底猪肉的最低价格为每千克多少元?(2)3月20日,猪肉价格为每千克60元,3月21日,某市决定投入储备猪肉并规定其销售价在每千克60元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克60元的情况下,该天的两种猪肉总销量比3月20日增加了a%,且储备猪肉的销量占总销量的34,两种猪肉销售的总金额比3月20日提高了1%10a,求a的值.【答案】(1)去年年底猪肉的最低价格为每千克50元;(2)a的值为20.【解析】【分析】(1)设去年年底猪肉价格为每千克x元;根据题意列出一元一次不等式,解不等式即可;(2)设3月20日两种猪肉总销量为1;根据题意列出方程,解方程即可.【详解】解:(1)设去年年底猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥200,解得:x≥50.答:去年年底猪肉的最低价格为每千克50元;(2)设3月20日的总销量为1;根据题意得:60(1﹣a%)×34(1+a%)+60×14(1+a%)=60(1+110a%),令a%=y,原方程化为:60(1﹣y)×34(1+y)+60×14(1+y)=60(1+110y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.【点睛】本题考查了一元一次不等式的应用、一元二次方程的应用;根据题意列出不等式和方程是解决问题的关键.3.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨52m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了920m元,购买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总额增加了152m%,求出m的值.【答案】(1)120;(2)20.【解析】试题分析:(1)本题介绍两种解法:解法一:设标价为x元,列不等式为0.8x•80≤7680,解出即可;解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评”网上的购买实际消费总额:120a(1﹣25%)(1+52m%),在“美团”网上的购买实际消费总额:a[120(1﹣25%)﹣920m](1+15m%);根据“在两个网站的实际消费总额比原计划的预算总额增加了152m%”列方程解出即可.试题解析:(1)解:解法一:设标价为x元,列不等式为0.8x•80≤7680,x≤120;解法二:7680÷80÷0.8=96÷0.8=120(元).答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,由题意得:120×0.8a(1﹣25%)(1+52m%)+a[120×0.8(1﹣25%)﹣920m](1+15m%)=120×0.8a(1﹣25%)×2(1+ 152m%),即72a(1+52m%)+a(72﹣920m)(1+15m%)=144a(1+152m%),整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0(舍),m2=20.答:m的值是20.点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际消费总额是解题关键.4.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭.据某市交通部门统计,2008年底该市汽车拥有量为75万辆,而截止到2010年底,该市的汽车拥有量已达108万辆.(1)求2008年底至2010年底该市汽车拥有量的年平均增长率;(2)为了保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2012年底全市汽车拥有量不超过125.48万辆;另据统计,从2011年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%假设每年新增汽车数量相同,请你估算出该市从2011年初起每年新增汽车数量最多不超过多少万辆.【答案】解:(1)2008年底至2010年底该市汽车拥有量的年平均增长率是20%(2)从2011年初起每年新增汽车数量最多不超过20万辆【解析】【分析】(1)设年平均增长率x,根据等量关系“2008年底汽车拥有量×(1+年平均增长率)×(1+年平均增长率)”列出一元二次方程求得.(2)设从2011年初起每年新增汽车的数量y,根据已知得出2011年报废的车辆是2010年底拥有量×10%,推出2011年底汽车拥有量是2010年底拥有量-2011年报废的车辆=2010年拥有量×(1-10%),得出等量关系是: 2010年拥有量×(1-10%)+新增汽车数量]×(1-10%)+新增汽车数量”,列出一元一次不等式求得.【详解】解:(1)设该市汽车拥有量的年平均增长率为x .根据题意,得75(1+x )2=108,则1+x=±1.2解得x 1=0.2=20%,x 2=﹣2.2(不合题意,舍去).答:该市汽车拥有量的年平均增长率为20%.(2)设全市每年新增汽车数量为y 万辆,则2010年底全市的汽车拥有量为(108×90%+y )万辆,2011年底全市的汽车拥有量为[(108×90%+y )×90%+y]万辆. 根据题意得(108×90%+y )×90%+y≤125.48,解得y≤20.答:该市每年新增汽车数量最多不能超过20万辆.5.已知关于x 的一元二次方程x 2﹣x +a ﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值.【答案】(1)123,4x x =-=(2)54a ≤(3)-4 【解析】【分析】(1)根据一元二次方程的解法即可求出答案;(2)根据判别式即可求出a 的范围;(3)根据根与系数的关系即可求出答案.【详解】(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0, 解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,. ∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-,代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.二、初三数学 二次函数易错题压轴题(难)6.已知,抛物线y =-12x 2 +bx+c 交y 轴于点C (0,2),经过点Q (2,2).直线y =x+4分别交x 轴、y 轴于点B 、A .(1)直接填写抛物线的解析式________; (2)如图1,点P 为抛物线上一动点(不与点C 重合),PO 交抛物线于M ,PC 交AB 于N ,连MN.求证:MN∥y 轴;(3)如图,2,过点A 的直线交抛物线于D 、E ,QD 、QE 分别交y 轴于G 、H.求证:CG •CH 为定值.【答案】(1)2122y x x =-++;(2)见详解;(3)见详解. 【解析】【分析】 (1)把点C 、D 代入y =-12x 2 +bx+c 求解即可; (2)分别设PM 、PC 的解析式,由于PM 、PC 与抛物线的交点分别为:M 、N.,分别求出M 、N 的代数式即可求解;(3)先设G 、H 的坐标,列出QG 、GH 的解析式,得出与抛物线的交点D 、E 的横坐标,再列出直线AE 的解析式,算出它与抛物线横坐标的交点方程.运用韦达定理即可求证.【详解】详解:(1)∵y =-12x 2 +bx+c 过点C (0,2),点Q (2,2),∴2122222b c c ⎧-⨯++⎪⎨⎪=⎩=, 解得:12b c =⎧⎨=⎩. ∴y=-12x 2+x+2; (2) 设直线PM 的解析式为:y=mx ,直线PC 的解析式为:y=kx+2 由22122y kx y x x =+⎧⎪⎨=-++⎪⎩得12x 2+(k-1)x=0, 解得:120,22x x k ==-,x p =22p x k =- 由21=22y mx y x x =⎧⎪⎨-++⎪⎩得12x 2+(m-1)x-2=0, ∴124b x x a⋅=-=- 即x p•x m =-4,∴x m =4p x -=21k -. 由24y kx y x =+⎧⎨=+⎩得x N =21k -=x M , ∴MN ∥y 轴.(3)设G (0,m ),H (0,n ).设直线QG 的解析式为y kx m =+,将点()2,2Q 代入y kx m =+得22k m =+22m k -∴= ∴直线QG 的解析式为22m y x m -=+ 同理可求直线QH 的解析式为22n y x n -=+; 由222122m y x m y x x -⎧=+⎪⎪⎨⎪=-++⎪⎩得221=222m x m x x -+-++ 解得:122,2x x m ==-2D x m ∴=-同理,2E x n =-设直线AE 的解析式为:y=kx+4, 由24122y kx y x x =+⎧⎪⎨=-++⎪⎩, 得12x 2-(k-1)x+2=0 124b x x a∴⋅=-= 即x D x E =4, 即(m-2)•(n-2)=4∴CG•CH=(2-m )•(2-n )=4.7.如图,抛物线()250y ax bx a =+-≠经过x 轴上的点1,0A 和点B 及y 轴上的点C ,经过B C 、两点的直线为y x n =+.(1)求抛物线的解析式.(2)点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE △的面积最大并求出最大值. (3)过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B C 、重合)作直线AM 的平行线交直线BC 于点Q .若点A M N Q 、、、为顶点的四边形是平行四边形,求点N 的横坐标.【答案】(1)265y x x =-+- (2)2t =;2(3)5412或4或5412【解析】【分析】(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d 为()24542d BP sin t =⋅︒=-,则12PBE S BE d =⨯⨯)()122244222t t t =⨯⨯-=-,再根据二次函数的性质即可确定最大值; (3)先求出2454222AM AB sin =⋅︒=⨯=N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ 是平行四边形,得到22NQ AM ==;再过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角形,求得22884NH NQ HQ =+=+=;设()2,65N m m m -+-,则(),0G m , (),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况解答即可.【详解】解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -∴抛物线25y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,∴250505a b an bn n +-=⎧⎪--=⎨⎪-=⎩,解得51,6n a b =-⎧⎪=-⎨⎪=⎩所以抛物线的解析式为265y x x =-+-.()2∵()()()1,05,0,0,,5,A B C -∴4,AB BC BOC ==为等腰直角三角形,∴45,ABC ∠=由题意得4,2,02BP t BE t t =-=<≤点P 到BE的距离()4542d BP sin t =⋅︒=- 所以12PBE S BE d =⨯⨯)()1244222t t t t =⨯⨯-=-; ∵二次函数()()42f t t =-的函数图象开口向下,零点为0和4, ∴0422t +==时, ∴()()()22422maxf t f ==⨯⨯-=即2t =时,PBE △的面积最大,且最大值为()3由题意得454AM AB sin =⋅︒== 过点N 作直线AM 的平行线交直线BC 于点,Q 则,NQ BC ⊥ ∵点,A M N Q 、、为顶点的四边形是平行四边形,∴NQ AM ==过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H∵:5BC l y x =-,∴NQH 为等腰直角三角形,∴22884,NH NQ HQ =+=+=设()2,65N m m m -+-, 则(),0G m ,(),5H m m -,①点N 在x 轴上方时,此时()()2655,NH m m m =-+---∴()()26554m m m -+---=,即()()140,m m --=解得1m =(舍,因为此时点N 与点A 重合)或4m =;②点N 在x 轴下方且5m >时,此时()()2565,NH m m m =---+- ∴()()25654m m m ---+-=,即2540,m m --=解得54152m -=<(舍)或5412m +=③点N 在x 轴下方且1m <时,此时()()2565,NH m m m =---+- ∴()()25654m m m ---+-=,即2540,m m --=解得5412m -=或5412m +=(舍)综上所述,5414,2m m +==,5412m -=符合题意, 即若点,A M N Q 、、为顶点的四边形是平行四边形, 点N 的横坐标为541-或4或541+.【点睛】本题主要考查了二次函数的性质、平行四边形的判定与性质,掌握二次函数的性质以及分类讨论思想是解答本题的关键8.已知抛物线2(0)y ax bx c a =++≠过点(0,2)A -. (1)若点(2,0)-也在该抛物线上,请用含a 的关系式表示b ;(2)若该抛物线上任意不同两点()11,M x y 、()22,N x y 都满足:当120x x <<时,()()12120x x y y --<;当120x x <<时,()()12120x x y y -->;若以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B 、C (点B 在点C 左侧),且ABC ∆有一个内角为60,求抛物线的解析式;(3)在(2)的条件下,若点P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:PA 平分MPN ∠.【答案】(1)21b a =-;(2)22y x =-;(3)见解析.【解析】 【分析】(1)把点()0,2-、()2,0-代入抛物线解析式,然后整理函数式即可得到答案. (2)根据二次函数的性质可得出抛物线的对称轴为y 轴、开口向上,进而可得出0b =,由抛物线的对称性可得出ABC ∆为等腰三角形,结合其有一个60︒的内角可得出ABC ∆为等边三角形,设线段BC 与y 轴交于点D ,根据等边三角形的性质可得出点C 的坐标,再利用待定系数法可求出a 值,此题得解;(3)由(1)的结论可得出点M 的坐标为1(x ,212)x -+、点N 的坐标为2(x ,222)x -+,由O 、M 、N 三点共线可得出212x x =-,进而可得出点N 及点'N 的坐标,由点A 、M 的坐标利用待定系数法可求出直线AM 的解析式,利用一次函数图象上点的坐标特征可得出点'N 在直线PM 上,进而即可证出PA 平分MPN ∠. 【详解】解:(1)把点()0,2-、()2,0-分别代入,得2420c a b c =-⎧⎨-+=⎩. 所以21b a =-.(2),如图1,当120x x <<时,()()12120x x y y --<,120x x ∴-<,120y y ->, ∴当0x <时,y 随x 的增大而减小;同理:当0x >时,y 随x 的增大而增大,∴抛物线的对称轴为y 轴,开口向上,0b ∴=.OA 为半径的圆与拋物线的另两个交点为B 、C , ABC ∴∆为等腰三角形,又ABC ∆有一个内角为60︒, ABC ∴∆为等边三角形.设线段BC 与y 轴交于点D ,则BD CD =,且30OCD ∠=︒, 又2OB OC OA ===,·303CD OC cos ∴=︒=,·301OD OC sin =︒=. 不妨设点C 在y 轴右侧,则点C 的坐标为31). 点C 在抛物线上,且2c =-,0b =,321a ∴-=,1a ∴=,∴抛物线的解析式为22y x =-.(3)证明:由(1)可知,点M 的坐标为1(x ,212)x -,点N 的坐标为2(x ,222)x -.如图2,直线OM 的解析式为()110y k x k =≠.O 、M 、N 三点共线,10x ∴≠,20x ≠,且22121222x x x x --=,121222x x x x ∴-=-, ()1212122x x x x x x -∴-=-,122x x ∴=-,即212x x =-, ∴点N 的坐标为12(x -,2142)x -. 设点N 关于y 轴的对称点为点'N ,则点'N 的坐标为12(x ,2142)x -. 点P 是点O 关于点A 的对称点,24OP OA ∴==,∴点P 的坐标为()0,4-.设直线PM 的解析式为24y k x =-,点M 的坐标为1(x ,212)x -,212124x k x ∴-=-,21212x k x +∴=,∴直线PM 的解析式为21124x y x x +=-.()222111221111224224·42x x x x x x x +-+-==-,∴点'N在直线PM上,PA∴平分MPN∠.【点睛】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、等边三角形的性质以及一次(二次)函数图象上点的坐标特征,解题的关键是:(1)利用二次函数图象上点的坐标特征求出a、b满足的关系式;(2)①利用等边三角形的性质找出点C的坐标;②利用一次函数图象上点的坐标特征找出点'N在直线PM上.9.如图,在平面直角坐标系x O y中,抛物线y = ax2+ bx + c经过A、B、C三点,已知点A (-3,0),B(0,3),C(1,0).(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;(3)在直线x = -2上是否存在点M,使得∠MAC = 2∠MCA,若存在,求出M点坐标.若不存在,说明理由.【答案】(1)y=-x2-2x+3;(2)点(-32,154),△PDE的周长最大;(3)点M(-2,3)或(-2,3【解析】【分析】(1)将A、B、C三点代入,利用待定系数法求解析式;(2)根据坐标发现,△AOB是等腰直角三角形,故只需使得PD越大,则△PDE的周长越大.联立直线AB与抛物线的解析式可得交点P坐标;(3)作点A关于直线x=-2的对称点D,利用∠MAC = 2∠MCA可推导得MD=CD,进而求得ME的长度,从而得出M坐标【详解】解:(1)∵抛物线y=ax2+bx+c经过点A(-3,0),B(0,3),C(1,0),∴9303a b cca b c-+=⎧⎪=⎨⎪++=⎩,解得:123abc=-⎧⎪=-⎨⎪=⎩,所以,抛物线的解析式为y=-x2-2x+3;(2)∵A (-3,0),B (0,3),∴OA=OB=3,∴△AOB 是等腰直角三角形,∴∠BAO=45°, ∵PF ⊥x 轴,∴∠AEF=90°-45°=45°, 又∵PD ⊥AB ,∴△PDE 是等腰直角三角形,∴PD 越大,△PDE 的周长越大,易得直线AB 的解析式为y=x+3, 设与AB 平行的直线解析式为y=x+m ,联立223y x m y x x =+⎧⎨=--+⎩,消掉y 得,x 2+3x+m-3=0, 当△=9-4(m-3)=0,即m=214时,直线与抛物线只有一个交点,PD 最长, 此时x=-32,y=154,∴点(-32,154),△PDE 的周长最大;(3)设直线x=-2与x 轴交于点E ,作点A 关于直线x=-2的对称点D ,则D (-1,0),连接MA ,MD ,MC .∴MA=MD ,∠MAC=∠MDA=2∠MCA , ∴∠CMD=∠DCM∴MD=CD=2 , ∴3∴点M (-23)或(-2,3 【点睛】本题是动点和最值的考查,在解决动点问题时,寻找出不变量来分析是解题关键,最值问题,通常利用对称来简化分析10.在平面直角坐标系xOy 中(如图),已知二次函数2y ax bx c =++(其中a 、b 、c 是常数,且a ≠0)的图像经过点A (0,-3)、B (1,0)、C (3,0),联结AB 、AC . (1)求这个二次函数的解析式;(2)点D 是线段AC 上的一点,联结BD ,如果:3:2ABD BCD S S ∆∆=,求tan ∠DBC 的值; (3)如果点E 在该二次函数图像的对称轴上,当AC 平分∠BAE 时,求点E 的坐标.【答案】(1)243y x x =-+-;(2)32;(3)E (2,73-) 【解析】 【分析】(1)直接利用待定系数法,把A 、B 、C 三点代入解析式,即可得到答案; (2)过点D 作DH ⊥BC 于H ,在△ABC 中,设AC 边上的高为h ,利用面积的比得到32AD DC =,然后求出DH 和BH ,即可得到答案; (3)延长AE 至x 轴,与x 轴交于点F ,先证明△OAB ∽△OFA ,求出点F 的坐标,然后求出直线AF 的方程,即可求出点E 的坐标. 【详解】解:(1)将A (0,-3)、B (1,0)、C (3,0)代入20y ax bx c a =++≠()得,03,0934,300a b a b c =+-⎧⎪=+-⎨⎪-=++⎩解得143a b c =-⎧⎪=⎨⎪=-⎩,∴此抛物线的表达式是:243y x x =-+-. (2)过点D 作DH ⊥BC 于H ,在△ABC 中,设AC 边上的高为h ,则11:():():3:222ABD BCD S S AD h DC h AD DC ∆∆=⋅⋅==,又∵DH//y 轴,∴25CH DC DH OC AC OA ===. ∵OA=OC=3,则∠ACO=45°, ∴△CDH 为等腰直角三角形, ∴26355CH DH ==⨯=. ∴64255BH BC CH =-=-=. ∴tan ∠DBC=32DH BH =. (3)延长AE 至x 轴,与x 轴交于点F ,∵OA=OC=3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC -∠BAC=45°-∠BAC ,∠OFA=∠OCA -∠FAC=45°-∠FAC , ∵∠BAC=∠FAC , ∴∠OAB=∠OFA .∴△OAB∽△OFA,∴13OB OAOA OF==.∴OF=9,即F(9,0);设直线AF的解析式为y=kx+b(k≠0),可得093k bb=+⎧⎨-=⎩,解得133kb⎧=⎪⎨⎪=-⎩,∴直线AF的解析式为:133y x=-,将x=2代入直线AF的解析式得:73y=-,∴E(2,73-).【点睛】本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.三、初三数学旋转易错题压轴题(难)11.探究:如图①和②,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在BC、CD 上,∠EAF=45°.(1)如图①,若∠B、∠ADC都是直角,把ABE△绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能得EF=BE+DF,请写出推理过程;(2)如图②,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有EF=BE+DF;(3)拓展:如图③,在ABC中,∠BAC=90°,AB=AC=22,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.【答案】(1)见解析;(2)∠B+∠D=180°;(3)53【解析】【分析】(1)根据已知条件证明△EAF≌△GAF,进而得到EF=FG,即可得到答案;(2)先作辅助线,把△ABE绕A点旋转到△ADG,使AB和AD重合,根据(1),要使EF=BE+DF,需证明△EAF≌△GAF,因此需证明F、D、G在一条直线上,即180ADG ADF∠+∠=︒,即180B D∠+∠=︒;(3)先作辅助线,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,根据已知条件证明△FAD≌△EAD,设DE=x,则DF=x,BF=CE=3﹣x,然后再Rt BDF中根据勾股定理即可求出x的值,即DE的长.【详解】(1)解:如图,∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∠B+∠D=180°,理由是:如图,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG ,∠B=∠ADG ,∠BAE=∠DAG ,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴F 、D 、G 在一条直线上,和(1)类似,∠EAF=∠GAF=45°,在△EAF 和△GAF 中AF AF EAF GAF AE AG =⎧⎪∠=∠⎨⎪=⎩∴△EAF ≌△GAF (SAS ),∴EF=GF ,∵BE=DG ,∴EF=GF=BE+DF ;故答案为:∠B+∠D=180°;(3)解:∵△ABC 中,AB=AC=22,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC=22AB AC +=4,如图,把△AEC 绕A 点旋转到△AFB ,使AB 和AC 重合,连接DF .则AF=AE ,∠FBA=∠C=45°,∠BAF=∠CAE ,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC ﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD 和△EAD 中AD AD FAD EAD AF AE =⎧⎪∠=∠⎨⎪=⎩∴△FAD ≌△EAD ,∴DF=DE ,设DE=x ,则DF=x ,∵BD=1,∴BF=CE=4﹣1﹣x=3﹣x ,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:222DF BF BD=+,22(3)1x x=-+,解得:x=53,即DE=53.【点睛】本题综合考查三角形的性质和判定、正方形的性质应用、全等三角形的性质和判定、勾股定理等知识,解题关键在于正确做出辅助线得出全等三角形.12.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.【答案】(1)证明见解析;(2)45°或135°;(3).【解析】试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.(3)根据和求解即可.试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.∴∠BAE=∠DAG..∴△ABE≌△ADG(SAS).∴BE=DG..(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.(3)如图3,连接GB、GE.由已知α=45°,可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵,∴GE =8.∴.过点B作BH⊥AE于点H.∵AB=2,∴. ∴..设点G到BE的距离为h.∴.∴.∴点G到BE的距离为.考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.13.综合与实践问题情境在综合与实践课上,老师让同学们以“三角形的旋转”为主题开展教学活动老师给每个小组发了两个等模直角三角形ABC 和DEC ,其中90,2,2ACB DCE AC CD ︒∠=∠===.观案发现(1)将两个等腰直角三角形如图①摆放,设DE 的中点是,F AE 的中点是,H BD 的中点是G ,则HFG ∠=______度;操作证明(2)将图①中的DEC 绕点C 顺时针(逆时针)旋转,使点A C E 、、三点在一条直线上,如图②,其余条件不变,小明通过测量发现,此时FH FG =,请你帮助小明证明这个结论.探究发现(3)将图①中的DEC 绕点C 顺时针(逆时针)旋转,旋转角为()0180αα︒︒<<,DEC 在旋转的过程中,当直线FH 经过点C 时,如图③,请求出线段FG 的长.(4)在旋转过程中,在Rt ABC 和Rt CDE △中,始终有由,AC BC CE CD ⊥⊥,你在图③中还能发现哪两条线段在旋转过程中始终互相垂直?请找出并直接写出这两条线段.【答案】(1)90;(2)证明见解析;(3)31BD =;(4)AD BE ⊥【解析】【分析】(1)根据题意,运用中点的性质找到线段之间的位置关系即可求解;(2)根据旋转的性质及等腰三角形ABC 可知()ACD BCE SAS ∆≅∆,进而通过中位线定理即可得到FH FG =;(3)根据旋转的性质及勾股定理,先求出BF 的长,再由BD BF DF =-即可求出BD 的长;(4)根据旋转的性质及垂直的判定可知AD BE ⊥.【详解】(1),,90CE CD AC BC ECA DCB ==∠=∠=︒,BE AD ∴=,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点,//,//HF AD FG BE ∴,AD BE ⊥,HF GF ∴⊥,90HFG ∴∠=︒;(2)证明:如下图,连接AD BE ,,由旋转可知CE CD =,90ECD ACD ∠=∠=︒,又∵AC=BC ,()ACD BCE SAS ∴∆≅∆,AD BE ∴=,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点,11,22FH AD FG BE ∴==, FH FG ∴=;(3)解:由题意可得CF DE CFD CFE ⊥∆∆,,都是等腰直角三角形, 2CD =1CF DF ∴==,2BC AC ==,223BF BC CF ∴=-=31BD BF DF ∴=-=,G 是BD 的中点,312DG ∴=, 31BD BF DF ∴=-=;(4)AD BE ⊥. 连接AD ,由(3)知,CF DE ⊥,∵ECD ∆是等腰直角三角形,∴F 是ED 中点,又∵H 是AE 中点,∴AD ∥HF ,∵HF ⊥ED ,∴AD BE ⊥.【点睛】本题主要考查了中的的性质,中位线定理,三角形全等,勾股定理等三角形综合证明,熟练掌握三角形的相关知识点是解决本题的关键.错因分析:(1)不能熟练运用重点的性质找到线段之间的关系;(2)未掌握旋转的性质;(3)不能将题目探究中的发现进行推广.14.如图1,矩形ABCD 中,E 是AD 的中点,以点E 直角顶点的直角三角形EFG 的两边EF ,EG 分别过点B ,C ,∠F=30°.(1)求证:BE =CE(2)将△EFG 绕点E 按顺时针方向旋转,当旋转到EF 与AD 重合时停止转动.若EF ,EG 分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(2)①详见解析;②2;③62.【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.∴3(3m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)m m+3+3m,在Rt△EBH中,sin∠EBH=3+36226EHEB m+==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,15.如图,△ABC和△DEC都是等腰三角形,点C为它们的公共直角顶点,连接AD、BE,F 为线段AD的中点,连接CF.(1)如图1,当D点在BC上时,BE与CF的数量关系是__________;(2)如图2,把△DEC绕C点顺时针旋转90°,其他条件不变,问(1)中的关系是否仍然成立?请说明理由;(3)如图3,把△DEC绕C点顺时针旋转一个钝角,其他条件不变,问(1)中的关系是否仍然成立?如成立,请证明;如果不成立,请写出相应的正确的结论并加以证明.【答案】(1)BE=2CF;(2)(1)中的关系是仍然成立,理由见解析;(3)(1)中的关系是仍然成立,理由见解析.【解析】试题分析:(1)根据“SAS”证明△ACD≌△BCE,可得AD=BE,又因为AD=2CF,从而BE=2CF;(2)由点F是AD中点,可得AD=2DF,从而AC= 2DF+CD,又由△ABC和△CDE是等腰直角三角形,可知BC=2DF+CE,所以BE= 2(DF+CE),CF= DF+CD,从而BE=2CF;(3)延长CF至G使FG=CF,即:CG=2CF,可证△CDF≌△GAF,再证明△BCE≌△ACG,从而BE=CG=2CF成立.解:(1)∵△ABC是等腰直角三角形,∴AC=BC,∵△CDE是等腰直角三角形,∴CD=CE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,在Rt△ACD中,点F是AD中点,∴AD=2CF,∴BE=2CF,故答案为BE=2CF;(2)(1)中的关系是仍然成立,理由:∵点F是AD中点,∴AD=2DF,∴AC=AD+CD=2DF+CD,∵△ABC和△CDE是等腰直角三角形,∴AC=BC,CD=CE,∴BC=2DF+CE,∴BE=BC+CE=2DF+CE+CE=2(DF+CE),∵CF=DF+CD=DF+CD,∴BE=2CF;(3)(1)中的关系是仍然成立,理由:如图3,延长CF至G使FG=CF,即:CG=2CF,∵点F是AD中点,∴AF=DF,在△CDF和△GAF中,,∴△CDF≌△GAF,∴AG=CD=CE,∠CDF=∠GAF,∴∠CAG=∠CAD+∠GAF=∠CAD+∠ADC=180°﹣∠ACD,∵∠ACB=∠DCE=90°,∴∠BCE=360°﹣∠ACB﹣∠DCE﹣∠ACD=180°﹣∠ACD,∴∠CAG=∠BCE,连接BE,在△BCE和△ACG中,,∴△BCE≌△ACG,∴BE=CG=2CF,即:BE=2CF.点睛:本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质和旋转的性质,考查了学生综合运用知识的能力,熟练掌握旋转的性质、全等三角形的判定与性质是解答本题的关键.四、初三数学圆易错题压轴题(难)16.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.【答案】(1)见解析;(2)①见解析;②AE=1【解析】【分析】(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得∠MAC+∠CAB=90°,则结论得证;(2)①证明∠BDE=∠DGF即可.∠BDE=90°﹣∠ABD;∠DGF=∠CGB=90°﹣∠CBD.因为D是弧AC的中点,所以∠ABD=∠CBD.则问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.【详解】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,。

河南省安阳市九年级上学期数学期中考试试卷

河南省安阳市九年级上学期数学期中考试试卷

河南省安阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·武汉开学考) 将下列一元二次方程化成一般形式后,其中二次项系数是1,一次项系数是-2,常数项是-3的方程是()A . 2x=x2+3B . x2-2x=3C . 2x+3=-x2D . x2+2x=32. (2分) (2018八下·江都月考) 如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG ﹥60⁰,现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为()A . 4个B . 3个C . 2个D . 1个3. (2分)(2017·潍城模拟) 已知a,b是关于x的一元二次方程x2+nx﹣1=0的两实数根,则式子的值是()A . n2+2B . ﹣n2+2C . n2﹣2D . ﹣n2﹣24. (2分) (2019九上·东港月考) 如图,点O是矩形ABCD的对角线AC的中点,交AD于点M,若,,则OB的长为A . 4B . 5C . 6D .5. (2分)用配方法解一元二次方程x2+3=4x,下列配方正确的是()A . (x+2)2=2B . (x-2)2=7C . (x+2)2=1D . (x-2)2=16. (2分)不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A .B .C .D .7. (2分)已知关于x的方程x2-kx-3=0的一个根为3,则k的值为()A . 1B . -1C . 2D . -28. (2分)(2018·庐阳模拟) 某企业因春节放假,二月份产值比一月份下降20%,春节后生产呈现良好上升势头,四月份比一月份增长15%,设三、四月份的月平均增长率为x,则下列方程正确的是()A . (1﹣20%)(1+x)2=1+15%B . (1+15%%)(1+x)2=1﹣20%C . 2(1﹣20%)(1+x)=1+15%D . 2(1+15%)(1+x)=1﹣20%9. (2分)如图,的直径垂直弦于,且是半径的中点,,则直径的长是().A .B .C .D .10. (2分)如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是()A . 四边形AEDF是平行四边形B . 如果∠BAC=90°,那么四边形AEDF是矩形C . 如果AD平分∠BAC,那么四边形AEDF是矩形D . 如果AD⊥BC且AB=AC,那么四边形AEDF是菱形二、填空题 (共4题;共4分)11. (1分) (2018九上·武汉期中) 一元二次方程x2-x-2=0的两根分别为x1、x2 ,则x1+x2的值为________.12. (1分)在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此大量摸球实验后,小明发现其中摸出的红球的频率稳定于20%,由此可以估计布袋中的黑色小球有________个.13. (1分) (2017七上·绍兴期中) 如果规定符号“※”的意义是:a※b= ,那么3※(-3)的值为________。

【人教版】2016届九年级上期中数学试卷及答案解析

【人教版】2016届九年级上期中数学试卷及答案解析

九年级上学期期中数学试卷一、选择题(本大题共8个小题,每小题3分,共24分。

在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项选出来并填在该题相应的括号内)1.如果两个相似三角形的相似比是1:2,那么它们的面积比是()A.1:2 B.1:4 C.1: D.2:12.在△ABC中,∠C=90°,sinA=,则sinB的值是()A.B.C.D.3.如图,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.15°B.30°C.60°D.75°4.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD •AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.45.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.如图,每个小正方形边长均为1,则下列图中的三角形与左图中△ABC相似的是()A.B.C.D.7.如图,BC是⊙O的直径,P是CB延长线上一点,PA切⊙O于点A,如果PA=4,PB=2,那么线段BC的长等于()A.3 B.4 C.5 D.68.如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④ C.②③④D.①③④二、填空题(本大题共6个小题,每小题3分,共18分,只要求填写最后结果,每小题填对得3分)9.等腰三角形底边长10cm,周长为36cm,则一底角的正切值为.10.弧长为6π的弧所对的圆心角为60°,则该弧所在圆的半径是.11.将一副三角尺如图所示叠放在一起,则的值是.12.如图,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,则= .13.如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC= 度.14.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为.三、解答题(本大题共7个小题,共78分)解答应写出必要的证明过程或演算步骤15.计算:tan30°•sin60°+cos230°﹣sin245°•tan45°.16.如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,求BC的长.17.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD ⊥AB交AB于D.已知cos∠ACD=,BC=4,求AC的长.18.如图,△ABC的三顶点分别为A(4,4),B(﹣2,2),C(3,0).请画出一个以原点O为位似中心,且与△ABC相似比为的位似图形△A1B1C1,并写出△A1B1C1各顶点的坐标.(只需画出一种情况,A1B1:AB=)19.如图1表示一个时钟的钟面垂直固定与水平桌面上,其中分针上有一点A,且当钟面显示3点30分时,分针垂直与桌面,A点距桌面的高度为10公分.如图2,若此钟面显示3点45分时,A点距离桌面的高度为16公分,则钟面显示3点50分时,A点距桌面的高度为多少公分?20.如图,小明为测量某铁塔AB的高度,他在离塔底B的10米C处测得塔顶的仰角α=43°,已知小明的测角仪高CD=1.5米,求铁塔AB的高.(精确到0.1米)(参考数据:sin43°=0.6820,cos43°=0.7314,tan43°=0.9325)21.如图,以线段AB为直径的⊙O交线段AC于点E,点M是的中点,OM交AC于点D,∠BOE=60°,cosC=,BC=2.(1)求∠A的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.22.钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)23.在矩形ABCD中,DC=2,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.24.如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点.(1)求证:AE⊥DE;(2)计算:AC•AF的值.九年级上学期期中数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分。

河南省初中名校2016届九年级上期中数学试卷含答案解析

河南省初中名校2016届九年级上期中数学试卷含答案解析

d 应满足的条件是(
)
A.d=3 B.d≤3 C.d<3 D.d>3
14.如图,已知 CD 相切圆 O 于点 C,BD=OB,则∠A 的度数是( )
(2)小浩在广场边(如图 2)选取 A、B、C 三根石柱,量得 A、B 之间的距离与 A、C 之间的距离相等,并测得 BC 长为 240 米,A 到 BC 的距离为 5 米.请你帮他求出广场的 半径(结果精确到米). (3)请你解决下面的问题:如图 3,⊙O 的直径为 10cm,弦 AB=8cm,P 是弦 AB 上的一 个动点,求出 OP 的长度范围是多少?
10.如图所示,在平面直角坐标系中,二次函数 y=ax2+bx+c 的图象顶点为 A(﹣ 2,﹣ 2), 且过点 B(0,2),则 y 与 x 的函数关系式为( )
A.y=x2+2 B.y=(x﹣ 2)2+2 C.y=(x﹣ 2)2﹣ 2 D.y=(x+2)2﹣ 2
11.在如图 4×4 的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M1 N1 P1 ,则其旋
24.如图,在△ABC 中,∠C=90°,∠ABC 的平分线交 AC 于点 E,过点 E 作 BE 的垂线交
AB 于点 F,⊙O 是△BEF 的外接圆. (1)求证:AC 是⊙O 的切线. (2)过点 E 作 EH⊥AB 于点 H,求证:CD=HF.
25.如图,某足球运动员站在点 O 处练习射门,将足球从离地面 0.5m 的 A 处正对球门踢 出(点 A 在 y 轴上),足球的飞行高度 y(单位:m)与飞行时间 t(单位:s)之间满足函 数关系 y=at2+5t+c,已知足球飞行 0.8s 时,离地面的高度为 3.5m.
2015-2016 学年河南省初中名校九年级(上)期中数学试卷

河南省2016届九年级上期中数学试卷含答案解析

河南省2016届九年级上期中数学试卷含答案解析
河南省 2016 届九年级上学期期中数学试卷
一、选择题(每小题 3 分,共 24 分) 1.下列计算正确的是( )
A.
=0 B.
C.
=﹣ 2 D.4+ =2
2.关于 x 的一元二次方程(m﹣ 1)x2+5x+m2﹣ 3m+2=0 的常数项为 0,则 m 等于( ) A.1 B.2 C.1 或 2 D.0
A. B. C. D. 5.下列四个三角形中,与图中的三角形相似的是( )
A.
B.
C.
D.
6.如图,在正△ABC 中,D、E 分别在 AC、AB 上,且 ,AE=BE,则有( )
A.△AED∽△ABC B.ADB∽△BEDC.△BCD∽△ABCD.△AED∽△CBD
3.某养殖户的养殖成本逐年增长,已知第 1 年的养殖成本为 13 万元,第 3 年的养殖成本为 20 万 元.设每年平均增长的百分率为 x,则下面所列方程中正确的是( ) A.13(1﹣ x)2=20 B.20(1﹣ x)2=13 C.20(1+x)2=13 D.13(1+x)2=20
4.如图,一个正六边形转盘被分成 6 个全等三角形,任意转动这个转盘 1 次,当转盘停止时,指 针指向阴影区域的概率是( )

河南省安阳市九年级上学期数学期中考试试卷

河南省安阳市九年级上学期数学期中考试试卷

河南省安阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、一、选择题(本题有10小题,每小题4分,共40分.) (共10题;共40分)1. (4分)下列四个数中,最大的一个数是()A . 2B .C . 0D . -22. (4分) (2017·焦作模拟) 下列计算正确的是()A . 2a+3b=5abB . (﹣a2)3=a6C . (a+b)2=a2+b2D .3. (4分) (2017八下·仁寿期中) 若分式的值为0,则x的值为()A . 0B . 2C . -2D . 2或-24. (4分)(2018·和平模拟) 已知 ,化简的结果是()A .B .C .D .5. (4分)一个直角三角形的模具,量得其中两边长分别为4cm、3cm,则第三条边长为()A . 5cmB . 4cmC . cmD . 5cm或cm6. (4分)如图,把其中的一个小正方形看作基本图形,这个图形中不含的变换是()A . 相似(相似比不为1)B . 平移C . 对称D . 旋转7. (4分) (2016九上·仙游期末) 已知二次函数的图象如图所示,有下列4个结论,其中正确的结论是()A .B .C .D .8. (4分)(2019·安阳模拟) 甲乙两位赛车手同时从起点出发,行驶20千米到达终点.已知甲车手每小时比乙车手多行驶1千米,甲比乙早到达12分钟.若设乙每小时走x千米,则所列方程式为()A .B .C .D .9. (4分)如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A . AE=DFB . ∠A=∠DC . ∠B=∠CD . AB=DC10. (4分)如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x 轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A . (,0)B . (1,0)C . (,0)D . (,0)二、填空题(本题有6题,每小题5分,共30分) (共6题;共30分)11. (5分) (2017九上·乐清期中) 分解因式:x2-2x=________.12. (5分)(2017·兴化模拟) 一只不透明袋子中装有2个红球、1个黄球,这些球除颜色外都相同.小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球.则两次摸出的球都是黄球的概率是________.13. (5分)(2014·贵港) 如图所示,AB∥CD,∠D=27°,∠E=36°,则∠ABE的度数是________.14. (5分)(2017·都匀模拟) 如图,正方形ABCD,AB=6,点E在边CD上,CE=2DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FCA=3.6,其中正确结论是________.15. (5分) (2017八下·宁波期中) 如图,将n个边长都为1cm的正方形按如图所示摆放,点A1, A2,…,An分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为 ________16. (5分)(2017·十堰模拟) 如图,正方形ABCD中,AB=6,点E在边AB上,且BE=2AE.将△ADE沿ED 对折至△FDE,延长EF交边BC于点G,连结DG,BF.下列结论:①△DCG≌△DFG;②BG=GC;③DG∥BF;④S△BFG=3.其中正确的结论是________(填写序号)三、解答题(本题有8小题,共80分) (共8题;共68分)17. (10分)计算:(1)﹣10﹣2﹣1×3﹣1×[2﹣(﹣3)2](2)(﹣)2÷(﹣2)3×(﹣2)﹣2.18. (8分)(2016·衢州) 如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)垂美四边形两组对边的平方和相等写出证明过程(先画出图形,写出已知、求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.19. (8分) (2017八下·西华期末) 某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分满分均为100分,前六名选手的得分如下:(1)这6名选手笔试成绩的平均数是________分,面试成绩的中位数是________分;(2)现得知一号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;(3)求出其余5名选手的综合成绩,并以综合成绩排序确定前两名人选.20. (8分)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上.画出△ABC关于y轴对称的△A1B1C1 ,并分别写出点A1、B1、C1的坐标.21. (10分)如图,已知二次函数 y=(x+2)2 的图象与x轴交于点A,与y轴交于点B.(1)求点A、点B 的坐标;(2)求S△AOB ;(3)求对称轴;(4)在对称轴上是否存在一点P,使以 P、A、O、B 为顶点的四边形为平行四边形? 若存在,求出 P 点的坐标;若不存在,请说明理由.22. (8分)(2018·兴化模拟) 如图,点C在⊙O上,连接CO并延长交弦AB于点D,弧AC=弧BC,连接AC、OB,若CD=8,AC= .(1)求弦AB的长;(1)根据垂径定理得出CD⊥AB,AB=2AD=2BD,根据勾股定理算出AD的长,从而得出答案;(2)求sin∠ABO的值.23. (8分)(2017·寿光模拟) 某文具零售店准备从批发市场选购A、B两种文具,批发价A种为12元/件,B种为8元/件.若该店零售A、B两种文具的日销售量y(件)与零售价x(元/件)均成一次函数关系.(如图)(1)求y与x的函数关系式;(2)该店计划这次选购A、B两种文具的数量共100件,所花资金不超过1000元,并希望全部售完获利不低于296元,若按A种文具每件可获利4元和B种文具每件可获利2元计算,则该店这次有哪几种进货方案?(3)若A种文具的零售价比B种文具的零售价高2元/件,求两种文具每天的销售利润W(元)与A种文具零售价x(元/件)之间的函数关系式,并说明A、B两种文具零售价分别为多少时,每天销售的利润最大?24. (8分)(2020·南通模拟) 我们把“有两条边和其中一边的对角对应相等的两个三角形”叫做“同族三角形”,如图1,在△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,则△ABC和△ABD是“同族三角形”.(1)如图2,四边形ABCD内接于圆,点C是弧BD的中点,求证:△ABC和△ACD是同族三角形;(2)如图3,△ABC内接于⊙O,⊙O的半径为,AB=6,∠BAC=30°,求AC的长;(3)如图3,在(2)的条件下,若点D在⊙O上,△ADC与△ABC是非全等的同族三角形,AD>CD,求的值.参考答案一、一、选择题(本题有10小题,每小题4分,共40分.) (共10题;共40分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(本题有6题,每小题5分,共30分) (共6题;共30分)11-1、12-1、13-1、14-1、15-1、16-1、答案:略三、解答题(本题有8小题,共80分) (共8题;共68分)17-1、17-2、18-1、18-2、答案:略18-3、19-1、19-2、答案:略19-3、20-1、答案:略21-1、21-2、答案:略21-3、21-4、答案:略22-1、答案:略22-2、答案:略23-1、23-2、答案:略23-3、答案:略24-1、24-2、24-3、。

安阳市九年级上学期期中数学试卷

安阳市九年级上学期期中数学试卷

安阳市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分)(2011·百色) 下列图形中,不是轴对称图形的是()A .B .C .D .2. (2分)方程有两个实数根,则k的取值范围是().A . k≥1B . k≤1C . k>1D . k<13. (2分)下列说法正确的是()A . 若一元二次方程的常数项为0,则0必是它的一个根B . 方程3x2=4的常数项是4C . 方程ax2+bx+c=0是关于x的一元二次方程D . 当一次项系数为0时,一元二次方程总有非零解4. (2分)一元二次方程x2+kx-3=0的一个根是x=1,则另一个根是()A . 3B . -1C . -3D . -25. (2分) (2011九上·四川竞赛) 设方程的两根是c、d,则方程的根是()A . a,bB . -a,-bC . c,dD . -c,-d6. (2分) (2016九上·牡丹江期中) 抛物线y=x2+bx+c图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣2x﹣3,则b、c的值为()A . b=2,c=2B . b=2,c=0C . b=﹣2,c=﹣1D . b=﹣3,c=27. (2分)抛物线y=﹣(x﹣2)2+2的对称轴是()A . 直线x=1B . 直线x=﹣1C . 直线x=2D . 直线x=﹣28. (2分) (2019九上·荆门期中) 已知y=ax2+k的图象上有三点A(-3,y1),B(1,y2),C(2,y3),且y2<y3<y1,则a的取值范围是()A . a>0B . a<0C . a≥0D . a≤09. (2分)关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A . k>﹣1B . k>﹣1且k≠0C . k≠0D . k≥﹣110. (2分)如图,在平面直角坐标系中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为()A . (0,1)B . (1,﹣1)C . (0,﹣1)D . (1,0)11. (2分)下列说法正确的是:① 对角线互相垂直且相等的平行四边形是正方形② 平行四边形、矩形、等边三角形、正方形既是中心对称图形,也是轴对称图形。

河南省安阳市九年级上学期数学期中考试试卷(A)附答案解析

河南省安阳市九年级上学期数学期中考试试卷(A)附答案解析

,与 x 轴一个交点在

抛物线与 x 轴的另一个交点在〔-1,0〕和〔0,0〕之间,
抛物线与 y 轴的交点在 y 轴的下方,
,故②正确;
③当
时,



那么
,故③正确;
④当
时,
,故④错误;
之间,
⑤ 抛物线的对称轴
=-2,


又 抛物线的开口向下,点
到对称轴的距离比点
近,点
到对称轴的距
离比点
近, ,故⑤错误;
∴点 A 的坐标为〔﹣3,0〕, 如下列图,
将 Rt△ABC 先绕点 C 顺时针旋转 90°,那么点 A′的坐标为〔﹣1,2〕, 再向右平移 3 个单位长度,那么变换后点 A′的对应点坐标为〔2,2〕,故答案为:A. 【分析】将 Rt△ABC 先绕点 C 顺时针旋转 90°,画出图形,根据点 C 的坐标为〔﹣1,0〕,AC=2,就可得 出点 A 的坐标及点 A′的坐标,再根据平移的性质求出结果。 二、填空题
11.【答案】 x=1 【解析】【解答】解:由抛物线 y=ax2+bx+c 经过〔-2,-3〕、〔4,-3〕,得 〔-2,-3〕、〔4,-3〕关于对称轴对称, 即对称轴过〔-2,-3〕、〔4,-3〕的中点,
x=

故答案为:x=1. 【分析】根据抛物线的性质得出〔-2,-3〕、〔4,-3〕关于对称轴对称,得出抛物线的对称轴为 x=
23..在 Rt△OAB 中,∠OAB=90°,∠BOA=30°,OA=2 ,假设以 O 为坐标原点,OA 所在直线为 x 轴,建 立如下列图的平面直角坐标系,点 B 在第一象限内,将 Rt△OAB 沿 OB 折叠后,点 A 落在第一象限内的点 C 处.

【人教版】2016届九年级上期中数学试卷及答案

【人教版】2016届九年级上期中数学试卷及答案

九年级(上)期中数学试卷一、选择题:每小题4分,共40分.1.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.C.3(x+1)2=2(x+1)D.2x2+3x=2x2﹣22.用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=253.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<1 B.m<﹣1 C.m>1 D.m>﹣14.一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=25.下列标志中,可以看作是轴对称图形的是()A.B.C.D.6.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B 的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32°B.64°C.77°D.87°7.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.4个8.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.39.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35°B.45°C.55°D.65°10.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B.C.D.二、填空题:每小题3分,共18分.11.已知方程x2+mx+3=0的一个根是1,则它的另一个根是.12.若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=.13.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.14.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为.15.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.16.观察下列图形规律:当n=时,图形“●”的个数和“△”的个数相等.三、解答题:8题,共92分.17.计算:﹣(2015+π)0.18.解方程:2x2﹣7x+6=0.19.已知方程x2+3x﹣1=0的两个实数根为α、β,不解方程求下列程式的值.(1)α2+β2(2).20.在平面直角坐标系xOy中,A点的坐标为(3,4),将OA绕原点O顺时针旋转90°得到OA′,求点A′的坐标.21.如图,AB,DE是⊙O的直径,C是⊙O上的一点,且=.(1)求证:BE=CE;(2)若∠B=50°,求∠AOC的度数.22.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP 沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.23.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?24.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=分别与x轴、y轴相交于B、C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M、A的坐标.(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积.九年级(上)期中数学试卷参考答案与试题解析一、选择题:每小题4分,共40分.1.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.C.3(x+1)2=2(x+1)D.2x2+3x=2x2﹣2【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、a=0,ax2+bx+c=0是一元一次方程,故A错误;B、()2+﹣2=0是分式方程,故B错误;C、3(x+1)2=2(x+1)是一元二次方程,故C正确;D、2x2+3x=2x2﹣2是一元一次方程,故D错误;故选:C.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=25【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程移项后,利用完全平方公式配方即可得到结果.【解答】解:方程x2+8x+9=0,整理得:x2+8x=﹣9,配方得:x2+8x+16=7,即(x+4)2=7,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<1 B.m<﹣1 C.m>1 D.m>﹣1【考点】根的判别式.【专题】计算题.【分析】根据根的判别式,令△>0即可求出根的判别式.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×m>0,∴4﹣4m>0,解得m<1.故选A.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=2【考点】解一元二次方程-因式分解法.【专题】因式分解.【分析】直接利用十字相乘法分解因式,进而得出方程的根【解答】解:x2﹣x﹣2=0(x﹣2)(x+1)=0,解得:x1=﹣1,x2=2.故选:D.【点评】此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.5.下列标志中,可以看作是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.6.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B 的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32°B.64°C.77°D.87°【考点】旋转的性质.【分析】旋转中心为点A,C、C′为对应点,可知AC=AC′,又因为∠CAC′=90°,根据三角形外角的性质求出∠C′B′A的度数,进而求出∠B的度数.【解答】解:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.【点评】本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等.也考查了等腰直角三角形的性质.7.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系;抛物线与x轴的交点.【专题】数形结合.【分析】由抛物线与x轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=﹣1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(﹣1,2)得a﹣b+c=2,由抛物线的对称轴为直线x=﹣=﹣1得b=2a,所以c﹣a=2;根据二次函数的最大值问题,当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,所以说方程ax2+bx+c﹣2=0有两个相等的实数根.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,所以①错误;∵顶点为D(﹣1,2),∴抛物线的对称轴为直线x=﹣1,∵抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的顶点为D(﹣1,2),∴a﹣b+c=2,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,∴a﹣2a+c=2,即c﹣a=2,所以③正确;∵当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,∴方程ax2+bx+c﹣2=0有两个相等的实数根,所以④正确.故选:C.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.8.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3【考点】垂径定理;勾股定理.【分析】过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可.【解答】解:过O作OC⊥AB于C,∵OC过O,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5.故选:B.【点评】本题考查了垂径定理和勾股定理的应用,关键是求出OC的长.9.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35°B.45°C.55°D.65°【考点】圆周角定理.【专题】几何图形问题.【分析】由AB是△ABC外接圆的直径,根据直径所对的圆周角是直角,可求得∠ACB=90°,又由∠A=35°,即可求得∠B的度数.【解答】解:∵AB是△ABC外接圆的直径,∴∠C=90°,∵∠A=35°,∴∠B=90°﹣∠A=55°.故选:C.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.10.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由一次函数y=﹣mx+n2图象得到字母系数的正负,再与二次函数y=x2+m的图象相比较看是否一致.【解答】解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m<0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.【点评】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法,难度适中.二、填空题:每小题3分,共18分.11.已知方程x2+mx+3=0的一个根是1,则它的另一个根是3.【考点】根与系数的关系.【分析】利用一元二次方程的根与系数的关系,两个根的积是3,即可求解.【解答】解:设方程的另一个解是a,则1×a=3,解得:a=3.故答案是:3.【点评】本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.12.若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=﹣或1.【考点】换元法解一元二次方程.【分析】设a+b=x,则原方程转化为关于x的一元二次方程,通过解该一元二次方程来求x即(a+b)的值.【解答】解:设a+b=x,则由原方程,得4x(4x﹣2)﹣8=0,整理,得16x2﹣8x﹣8=0,即2x2﹣x﹣1=0,分解得:(2x+1)(x﹣1)=0,解得:x1=﹣,x2=1.则a+b的值是﹣或1.故答案是:﹣或1.【点评】本题主要考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.13.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为y=2(x+1)2﹣2.【考点】二次函数图象与几何变换.【分析】直接根据“上加下减,左加右减”的原则进行解答.【解答】解:由“左加右减”的原则可知,将二次函数y=2x2的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2,即y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,即y=2(x+1)2﹣2.故答案为:y=2(x+1)2﹣2.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为(4,2).【考点】坐标与图形变化-旋转.【专题】几何变换.【分析】画出旋转后的图形位置,根据图形求解.【解答】解:AB旋转后位置如图所示.B′(4,2).【点评】本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心A,旋转方向逆时针,旋转角度90°,通过画图得B′坐标.15.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为6.【考点】轴对称-最短路线问题;正方形的性质.【专题】计算题.【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE 的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.【点评】本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.16.观察下列图形规律:当n=5时,图形“●”的个数和“△”的个数相等.【考点】规律型:图形的变化类.【专题】规律型.【分析】首先根据n=1、2、3、4时,“●”的个数分别是3、6、9、12,判断出第n个图形中“●”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“●”的个数和“△”的个数相等,求出n的值是多少即可.【解答】解:∵n=1时,“●”的个数是3=3×1;n=2时,“●”的个数是6=3×2;n=3时,“●”的个数是9=3×3;n=4时,“●”的个数是12=3×4;∴第n个图形中“●”的个数是3n;又∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;由3n=,可得n2﹣5n=0,解得n=5或n=0(舍去),∴当n=5时,图形“●”的个数和“△”的个数相等.故答案为:5.【点评】此题主要考查了规律型:图形的变化类问题,要熟练掌握,解答此类问题的关键是:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、解答题:8题,共92分.17.计算:﹣(2015+π)0.【考点】实数的运算;零指数幂;负整数指数幂.【分析】本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:﹣(2015+π)0=2+3﹣2﹣3﹣1=﹣1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.解方程:2x2﹣7x+6=0.【考点】解一元二次方程-因式分解法.【分析】利用十字相乘法因式分解得到(2x﹣3)(x﹣2)=0,推出2x﹣3=0,x﹣2=0,求出方程的解即可.【解答】解:2x2﹣7x+6=0,(2x﹣3)(x﹣2)=0,∴2x﹣3=0,x﹣2=0,x1=,x2=2,【点评】此题主要考查了解一元二次方程,因式分解等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.19.已知方程x2+3x﹣1=0的两个实数根为α、β,不解方程求下列程式的值.(1)α2+β2(2).【考点】根与系数的关系.【分析】(1)根据根与系数的关系得出α+β和αβ,再把α2+β2变形(α+β)2﹣2αβ,代入计算即可;(2)把化为,再代入计算即可.【解答】解:(1)∵方程x2+3x﹣1=0的两个实数根为α、β,∴α+β=﹣3,αβ=﹣1,∴α2+β2=(α+β)2﹣2αβ=9+2=11;(2)∵α+β=﹣3,αβ=﹣1,∴===﹣11.【点评】本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.20.在平面直角坐标系xOy中,A点的坐标为(3,4),将OA绕原点O顺时针旋转90°得到OA′,求点A′的坐标.【考点】坐标与图形变化-旋转.【专题】数形结合.【分析】根据A点坐标得到OB=4,AB=3,OA绕原点O顺时针旋转90°得到OA′可看作是Rt△OAB 绕原点O顺时针旋转90°得到RtOA′C,根据旋转的性质得到A′C=AB=3,OC=OB=4,再写出A′点的坐标.【解答】解:AB⊥y轴于B,A′C⊥x轴于C,如图,OB=4,AB=3,OA绕原点O顺时针旋转90°得到OA′可看作是Rt△OAB绕原点O顺时针旋转90°得到RtOA′C,则A′C=AB=3,OC=OB=4,所以点A′的坐标为(4,﹣3).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.21.如图,AB,DE是⊙O的直径,C是⊙O上的一点,且=.(1)求证:BE=CE;(2)若∠B=50°,求∠AOC的度数.【考点】圆心角、弧、弦的关系;圆周角定理.【分析】(1)根据∠AOD=∠BOE可知=,再由=即可得出结论;(2)先根据等腰三角形的性质求出∠BOE的度数,再由BE=CE可得出∠BOE=∠COE,根据补角的定义即可得出结论.【解答】(1)证明:∵∠AOD=∠BOE,∴=.∵=,∴=,∴BE=CE;(2)解:∵∠B=50°,OB=OE,∴∠BOE=180°﹣50°﹣50°=80°.∵由(1)知,BE=CE,∴∠COE=∠BOE=80°,∴∠AOC=180°﹣80°﹣80°=20°.【点评】本题考查的是圆心角、弧、弦的关系,熟知在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等是解答此题的关键.22.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP 沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.【考点】旋转的性质;等腰直角三角形;正方形的性质.【专题】证明题.【分析】(1)根据正方形的性质得AB=AD,∠BAD=90°,再利用旋转的性质得AP=AP′,∠PAP′=∠DAB=90°,于是可判断△APP′是等腰直角三角形;(2)根据等腰直角三角形的性质得PP′=PA=,∠APP′=45°,再利用旋转的性质得PD=P′B=,接着根据勾股定理的逆定理可证明△PP′B为直角三角形,∠P′PB=90°,然后利用平角定义计算∠BPQ的度数.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵△ADP沿点A旋转至△ABP′,∴AP=AP′,∠PAP′=∠DAB=90°,∴△APP′是等腰直角三角形;(2)解:∵△APP′是等腰直角三角形,∴PP′=PA=,∠APP′=45°,∵△ADP沿点A旋转至△ABP′,∴PD=P′B=,在△PP′B中,PP′=,PB=2,P′B=,∵()2+(2)2=()2,∴PP′2+PB2=P′B2,∴△PP′B为直角三角形,∠P′PB=90°,∴∠BPQ=180°﹣∠APP′﹣∠P′PB=180°﹣45°﹣90°=45°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质和勾股定理的逆定理.23.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设每年市政府投资的增长率为x,由3(1+x)2=2015年的投资,列出方程,解方程即可;(2)2015年的廉租房=12(1+50%)2,即可得出结果.【解答】解:(1)设每年市政府投资的增长率为x,根据题意得:3(1+x)2=6.75,解得:x=0.5,或x=﹣2.5(不合题意,舍去),∴x=0.5=50%,即每年市政府投资的增长率为50%;(2)∵12(1+50%)2=27,∴2015年建设了27万平方米廉租房.【点评】本题考查了一元一次方程的应用;熟练掌握列一元一次方程解应用题的方法,根据题意找出等量关系列出方程是解决问题的关键.24.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)【考点】抛物线与x轴的交点;根的判别式.【分析】(1)根据根的判别式,可得答案;(2)根据根与系数的关系,可得A、B间的距离,根据二次函数的性质,可得答案.【解答】解:(1)△=[﹣(m﹣3)]2﹣4(﹣m)=m2﹣2m+9=(m﹣1)2+8,∵(m﹣1)2≥0,∴△=(m﹣1)2+8>0,∴原方程有两个不等实数根;(2)存在,由题意知x1,x2是原方程的两根,∴x1+x2=m﹣3,x1•x2=﹣m.∵AB=|x1﹣x2|,∴A B2=(x1﹣x2)2=(x1+x2)2﹣4x1x2=(m﹣3)2﹣4(﹣m)=(m﹣1)2+8,∴当m=1时,AB2有最小值8,∴AB有最小值,即AB==2【点评】本题考查了抛物线与x轴的交点,利用了根的判别式,根据根与系数的关系,利用完全平方公式得出二次函数是解题关键,又利用了二次函数的性质.25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=分别与x轴、y轴相交于B、C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M、A的坐标.(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积.【考点】二次函数综合题.【分析】(1)根据题意联立抛物线和直线的解析式,化为一元二次方程,运用△>0即可求出a的取值范围和交点的坐标;(2)根据轴对称性质表示出点P的坐标并代入抛物线,求出a的值,用△ACP的面积减去△ADC 的面积即可求出△PCD的面积.【解答】解:(1)由题意联立,整理得:2x2+5x﹣4a=0,由△=25+32a>0,解得:,∵a≠0,∴且a≠0,当x=0时,y=a,∴A(0,a),∵y=﹣x2﹣2x+a=﹣(x+1)2+a+1,∴M(﹣1,a+1).(2)设直线MA为:y=kx+b,代入A(0,a),M(﹣1,a+1)得,,解得:,所以直线MA为y=﹣x+a,联立,解得,所以:N(,),∵点P是N关于y轴的对称点,∴P(﹣,),代入y=﹣x2﹣2x+a,得,解得:a=,或a=0(舍去),∴抛物线为y=﹣x2﹣2x+,直线BC为y=﹣,当x=0时,y=﹣,∴C(0,﹣),A(0,),M(﹣1,),∴|AC|=,∴S△PCD=S△PAC﹣S△DAC=|AC|×|x p|﹣|AC|×|x D|=××3﹣××1=.【点评】此题主要考查二次函数的综合问题,会运用待定系数法求函数解析式,会求函数图象的交点和三角形的面积是解题的关键.。

河南省安阳市九年级上学期数学期中考试试卷

河南省安阳市九年级上学期数学期中考试试卷

河南省安阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列图形中,中心对称图形有().A . 1个B . 2个C . 3个D . 4个2. (2分)(2017·鄞州模拟) 如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是()A . (,1)B . (1,﹣)C . (2 ,﹣2)D . (2,﹣2 )3. (2分)用配方法解方程x2﹣x﹣1=0时,应将其变形为()A . (x﹣)2=B . (x+)2=C . (x﹣)2=0D . (x﹣)2=4. (2分) (2019九上·綦江月考) 已知抛物线y=x2-x-1与x轴的一个交点的坐标为(m,0),则代数式m2-m+2019的值为()A . 2015B . 2016C . 2019D . 20205. (2分) (2016九上·临沭期中) 如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=4,则AD的长为()A . 2B . 3C . 3D . 26. (2分)方程x2﹣2x﹣3=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 有且只有一个实数根D . 没有实数根7. (2分)(2017·安徽模拟) 近几年,我国经济高速发展,但退休人员待遇持续偏低,为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2012年月退休金为1500元,2014年达到2160元.设李师傅的月退休金从2012年到2014年年平均增长率为x,则可列方程为()A . 1500(1+x)2=2160B . 1500(1+x)2=2060C . 1500+1500(1+x)+1500(1+x)2=2160D . 1500(1+x)=21608. (2分) (2015九上·宜昌期中) 在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A .B .C .D .9. (2分)(2017·淄博) 如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A .B .C .D .10. (2分) (2016九上·溧水期末) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0;⑤a+b+c=0.A . 1B . 2C . 3D . 4二、填空题 (共6题;共9分)11. (1分) (2019九上·东台期中) 一元二次方程4x2= 3x 的解是________.12. (1分)已知点P坐标为(1,1),将点P绕原点逆时针旋转45°得点P1 ,则点P1的坐标为________.13. (2分) (2018九上·瑞安月考) 廊桥是我国古老的文化遗产,如图是某座抛物线形的廊桥示意图.已知抛物线的函数表达式为y=- x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是________米.14. (1分)(2018·建邺模拟) 若关于x的一元二次方程x2-kx-2=0有一个根是1,则另一个根是________.15. (2分)点A(﹣3,y1),B(2,y2),C(3,y3)在抛物线y=2x2﹣4x+c上,则y1 , y2 , y3的大小关系是________.16. (2分) (2016八上·景德镇期中) Rt△ABC中,∠BAC=90°,AB=AC=2.以AC为一边,在△ABC外部作等腰直角三角形ACD,则线段BD的长为________.三、解答题 (共8题;共69分)17. (10分) (2019九下·盐都月考) 关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的一个根为2,求另一个根.18. (10分) (2019九上·慈溪期中) 已知二次函数的图象经过点(0,3),顶点坐标为(1,4).(1)求这个二次函数的解析式;(2)若将该抛物线绕原点旋转180°,请直接写出旋转后的抛物线函数表达式。

河南省安阳市2016届九年级上期中考试数学试题含答案

河南省安阳市2016届九年级上期中考试数学试题含答案
(2)(x+3)2=25(x﹣1)2.
17.(9 分)如图所示,每一个小方格都是边长为 1 的单 位正方形,△ABC 的三个顶点都在格点上,以点 O 为坐标 原点建立平面直角坐标系.
第 2 页(共 6 页)
参考答案:
一、选择题(每题3分,共24分)
1
2
3
4
5
6
7
8
C
C
C
C
B
B
C
C
二、填空题(每题3分,共21分)
即:E、B、D 三点共线.
∵AD=AE,
∴在△ADE中,AE+AD>ED,即 BD+DC<2AD.
23、(1)(3 分) y 12
x2

1 2
x

3
(2)①△ABP为直角三角形(判断 1 分,过程 3 分)②-1<m<2(1 分)
(3)(3 分)点 E 的坐标为 E1(4,2)、E2(6,3)、E (3 1

第 1 页(共 6 页)
A、 7 4

B、3或 3
C、2或 3
D、2或 3或 7 4
二、填空题(3*7=21 分)
9.一条弦把圆分为 2:3 两部分,那么这条弦所对的圆周角的度数为

10.某体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划要安排 28场,应邀请
支球队参加比赛.
即:BD+DC>2 AD;
2 AD;
(2)(2 分)BD+DC≥ (3)(4 分)猜想:BD+DC<2AD
证明:把△ACD绕点 A 顺时针旋转α,得到△ABE则有△ACD≌△ABE,DC=EB,∠ACD=∠ABE

2015-2016年河南省安阳市滑县九年级(上)期中数学试卷和答案

2015-2016年河南省安阳市滑县九年级(上)期中数学试卷和答案

2015-2016学年河南省安阳市滑县九年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.(3分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)用配方法解关于x的一元二次方程x2﹣2x﹣m=0,配方后得到的方程为()A.(x﹣1)2=m﹣1 B.(x﹣1)2=m+1 C.(x﹣1)2=1﹣m D.(x﹣1)2=m2﹣1 3.(3分)如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为()A.3 B.4 C.D.54.(3分)已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A.6 B.5 C.4 D.35.(3分)关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=﹣3,x2=2,则方程m(x+h﹣3)2+k=0的解是()A.x1=﹣6,x2=﹣1 B.x1=0,x2=5 C.x1=﹣3,x2=5 D.x1=﹣6,x2=2 6.(3分)如图,在等边△ABC中,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=1,那么△ABC的面积为()A.3 B.C.4 D.7.(3分)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4 C.3 D.38.(3分)已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(﹣1,0).下列结论:①a﹣b+c=0;②b2>4ac;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=﹣.其中结论正确的个数有()A.4个 B.3个 C.2个 D.1个二、填空题(每小题3分,共21分)9.(3分)若一个三角形的三边长均满足方程x2﹣6x+8=0,则此三角形的周长为.10.(3分)如图,在直角坐标系中,点A的坐标为(﹣1,2),点C的坐标为(﹣3,0),将点C绕点A逆时针旋转90°,再向下平移3个单位,此时点C的对应点的坐标为.11.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:则当y<5时,x的取值范围是.12.(3分)如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.13.(3分)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.14.(3分)如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于.15.(3分)如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在上,若PA长为2,则△PEF的周长是.三、解答题(共75分)16.(8分)解方程:(1)x2﹣2x﹣63=0;(2)(2x﹣1)2=x(3x+2)﹣7.17.(8分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?18.(8分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.19.(8分)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值;(2)在(1)的条下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.20.(10分)如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x 轴于点C.(1)证明PA是⊙O的切线;(2)求点B的坐标;(3)求直线AB的解析式.21.(10分)某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图1(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2﹣8mx+n,其变化趋势如图2所示.(1)求y2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?22.(11分)(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.23.(12分)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;=S四边形OCDB,求(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE此时P点的坐标;(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.2015-2016学年河南省安阳市滑县九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.2.(3分)用配方法解关于x的一元二次方程x2﹣2x﹣m=0,配方后得到的方程为()A.(x﹣1)2=m﹣1 B.(x﹣1)2=m+1 C.(x﹣1)2=1﹣m D.(x﹣1)2=m2﹣1【解答】解:把方程x2﹣2x﹣m=0的常数项移到等号的右边,得到x2﹣2x=m,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=m+1,配方得(x﹣1)2=m+1.故选:B.3.(3分)如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为()A.3 B.4 C.D.5【解答】解:连接AC,∵在⊙O中,AB是直径,∴∠C=90°,∵AB=5,BC=3,∴AC==4,∵点P是上任意一点.∴4≤AP≤5.故选:A.4.(3分)已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A.6 B.5 C.4 D.3【解答】解:∵抛物线的对称轴为直线x=h,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,∴x=h<4.故选:D.5.(3分)关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=﹣3,x2=2,则方程m(x+h﹣3)2+k=0的解是()A.x1=﹣6,x2=﹣1 B.x1=0,x2=5 C.x1=﹣3,x2=5 D.x1=﹣6,x2=2【解答】解:解方程m(x+h)2+k=0(m,h,k均为常数,m≠0)得x=﹣h±,而关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=﹣3,x2=2,所以﹣h﹣=﹣3,﹣h+=2,方程m(x+h﹣3)2+k=0的解为x=3﹣h±,所以x1=3﹣3=0,x2=3+2=5.故选:B.6.(3分)如图,在等边△ABC中,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=1,那么△ABC的面积为()A.3 B.C.4 D.【解答】解:∵⊙O是等边△ABC的外接圆,OM⊥AB,ON⊥AC,垂足分别为M、N,∴M、N分别是AC、AB的中点,∴MN是等边△ABC的中位线,∵MN=1,∴AB=AC=BC=2MN=2,=×2×2×sin60°=2×=.∴S△ABC故选:B.7.(3分)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4 C.3 D.3【解答】解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.8.(3分)已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(﹣1,0).下列结论:①a﹣b+c=0;②b2>4ac;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=﹣.其中结论正确的个数有()A.4个 B.3个 C.2个 D.1个【解答】解:①∵抛物线y=ax2+bx+c(a≠0)经过点(﹣1,0),∴a﹣b+c=0,故①正确;②∵抛物线y=ax2+bx+c(a≠0)经过点(1,1),∴a+b+c=1,又a﹣b+c=0,两式相加,得2(a+c)=1,a+c=,两式相减,得2b=1,b=.∵b2﹣4ac=﹣4a(﹣a)=﹣2a+4a2=(2a﹣)2,当2a﹣=0,即a=时,b2﹣4ac=0,故②错误;③当a<0时,∵b2﹣4ac=(2a﹣)2>0,∴抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,则﹣1•x===﹣1,即x=1﹣,∵a<0,∴﹣>0,∴x=1﹣>1,即抛物线与x轴必有一个交点在点(1,0)的右侧,故③正确;④抛物线的对称轴为x=﹣=﹣,故④正确.故选:B.二、填空题(每小题3分,共21分)9.(3分)若一个三角形的三边长均满足方程x2﹣6x+8=0,则此三角形的周长为6,10,12.【解答】解:解方程x2﹣6x+8=0得x1=4,x2=2;当4为腰,2为底时,4﹣2<4<4+2,能构成等腰三角形,周长为4+2+4=10;当2为腰,4为底时4﹣2=2<4+2不能构成三角形,当等腰三角形的三边分别都为4,或者都为2时,构成等边三角形,周长分别为6,12,故△ABC的周长是6或10或12.10.(3分)如图,在直角坐标系中,点A的坐标为(﹣1,2),点C的坐标为(﹣3,0),将点C绕点A逆时针旋转90°,再向下平移3个单位,此时点C的对应点的坐标为(1,﹣3).【解答】解:如图,将点C绕点A逆时针旋转90°后,对应点的坐标为(1,0),再将(1,0)向下平移3个单位,此时点C的对应点的坐标为(1,﹣3).故答案为:(1,﹣3).11.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:则当y<5时,x的取值范围是0<x<4.【解答】解:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.12.(3分)如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=,所以水面宽度增加到米,故答案为:.13.(3分)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.【解答】解:由题意知,方程x2+2mx+m2+3m﹣2=0有两个实数根,则△=b2﹣4ac=4m2﹣4(m2+3m﹣2)=8﹣12m≥0,∴m≤,∵x1(x2+x1)+x22=(x2+x1)2﹣x1x2=(﹣2m)2﹣(m2+3m﹣2)=3m2﹣3m+2=3(m2﹣m+﹣)+2=3(m﹣)2 +;∴当m=时,有最小值;∵<,∴m=成立;∴最小值为;故答案为:.14.(3分)如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.【解答】解:∵△ABC绕点A顺时针旋转45°得到△AB′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=sin45°AC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.15.(3分)如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在上,若PA长为2,则△PEF的周长是4.【解答】解:∵PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在上,∴AE=CE,FB=CF,PA=PB=2,∴△PEF的周长=PE+EF+PF=PA+PB=4.故填空答案:4.三、解答题(共75分)16.(8分)解方程:(1)x2﹣2x﹣63=0;(2)(2x﹣1)2=x(3x+2)﹣7.【解答】解:(1)x2﹣2x﹣63=0,(x+7)(x﹣9)=0,x+7=0或x﹣9=0,x1=﹣7,x2=9,(2)(2x﹣1)2=x(3x+2)﹣7,4x2﹣4x+1=3x2+2x﹣7,x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0或x﹣4=0,x1=2,x2=4.17.(8分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?【解答】解:设每千克水果应涨价x元,依题意得方程:(500﹣20x)(10+x)=6000,整理,得x2﹣15x+50=0,解这个方程,得x1=5,x2=10.要使顾客得到实惠,应取x=5.答:每千克水果应涨价5元.18.(8分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.【解答】(1)证明:连接OD,OE,BD,∵AB为圆O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,E为斜边BC的中点,∴DE=BE,在△OBE和△ODE中,,∴△OBE≌△ODE(SSS),∴∠ODE=∠ABC=90°,则DE为圆O的切线;(2)在Rt△ABC中,∠BAC=30°,∴BC=AC,∵BC=2DE=4,∴AC=8,又∵∠C=60°,DE=CE,∴△DEC为等边三角形,即DC=DE=2,则AD=AC﹣DC=6.19.(8分)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值;(2)在(1)的条下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.【解答】解:∵一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=8﹣4m>0,解得m<2,故整数m的最大值为1;(2)∵m=1,∴此一元二次方程为:x2﹣2x+1=0,∴x1+x2=2,x1x2=1,∴x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=8﹣3=5.20.(10分)如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x 轴于点C.(1)证明PA是⊙O的切线;(2)求点B的坐标;(3)求直线AB的解析式.【解答】(1)证明:∵以点O为圆心,半径为2的圆与y轴交点A,∴OA=2,∵P(4,2),∴AP∥x轴,∵y轴⊥x轴,∴AP⊥OA,∵OA为半径,∴PA是⊙O的切线;(2)解:设B(x,y),∵OB=2,∴x2+y2=22,①∵P(4,2),PA和PB都是⊙O切线,∴PA=PB=4,∴42=(x﹣4)2+(y﹣2)2②,解由①②组成的方程组得:x=0,y=2(舍去)或x=,y=﹣,∴B的坐标是(,﹣);(3)解:∵OA=2,∴A(0,2),∴设直线AB的解析式是y=kx+2,把B的坐标代入得:﹣=k+2,k=﹣2,即直线AB的解析式是y=﹣2x+2.21.(10分)某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图1(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2﹣8mx+n,其变化趋势如图2所示.(1)求y2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?【解答】解:(1)由图可知,y2=mx2﹣8mx+n经过点(3,6),(7,7),∴,解得.∴y2=x2﹣x+(1≤x≤12);(2)设y1=kx+b(k≠0),由图可知,函数图象经过点(4,11),(8,10),则,解得,∴y1=﹣x+12(1≤x≤12),∴每千克所获得利润=(﹣x+12)﹣(x2﹣x+)=﹣x+12﹣x2+x﹣=﹣x2+x+=﹣(x2﹣6x+9)++=﹣(x﹣3)2+,∵﹣<0,∴当x=3时,所获得利润最大,最大为元.答:第3月销售这种水果,每千克所获得利润最大,最大利润是元.22.(11分)(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=23.(12分)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S=S四边形OCDB,求△OCE此时P点的坐标;(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.【解答】解:(1)∵y=x2﹣2x﹣3=(x﹣3)(x+1),∴由题意得,A(﹣1,0),B(3,0),C(0,﹣3),D(1,﹣4).在Rt△OBC中,∵OC=OB=3,∴△OBC为等腰直角三角形,∴∠OBC=45°.(2)如图1,过点D作DH⊥x轴于H,=S梯形OCDH+S△HBD,此时S四边形OCDB∵OH=1,OC=3,HD=4,HB=2,=•(OC+HD)•OH=,∴S梯形OCDHS△HBD=•HD•HB=4,=.∴S四边形OCDB=S四边形OCDB==,∴S△OCE∴OE=5,∴E(5,0).设l DE:y=kx+b,∵D(1,﹣4),E(5,0),∴,解得,∴l DE:y=x﹣5.∵DE交抛物线于P,设P(x,y),∴x2﹣2x﹣3=x﹣5,解得x=2 或x=1(D点,舍去),∴x P=2,代入l DE:y=x﹣5,∴P(2,﹣3).(3)如图2,设l BC:y=ax+t(a≠0),∵B(3,0),C(0,﹣3),∴,解得,∴l BC:y=x﹣3.∵F在BC上,∴y F=x F﹣3,∵P在抛物线上,∴y P=x P2﹣2x P﹣3,∴线段PF长度=y F﹣y P=x F﹣3﹣(x P2﹣2x P﹣3),∵x P=x F,∴线段PF长度=﹣x P2+3x P=﹣(x P﹣)2+,(1<x P<3),∴当x P=时,线段PF长度最大为.。

安阳市九年级上学期数学期中考试试卷

安阳市九年级上学期数学期中考试试卷

安阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列式子:中,一定是二次根式的是()A . 3个B . 4个C . 5个D . 6个2. (2分)下列方程中,不是整式方程的是()A .B .C . x2﹣7=0D . x5﹣ x2=03. (2分)三角形两边的长分别是8和6,第三边的长是一元二次方程x2﹣16x+60=0的一个实数根,则该三角形的面积是()A . 24B . 24或8C . 48D . 84. (2分) (2017九上·恩阳期中) 下列计算中,正确的是()A .B .C .D .5. (2分) (2017九上·恩阳期中) 化简的结果为()A .B . -C . -D .6. (2分) (2017九上·恩阳期中) 如图,F是平行四边形ABCD对角线BD上的点,BF∶FD=1∶3,则BE∶EC=()A .B .C .D .7. (2分) (2017九上·恩阳期中) “学在恩阳、生态教育”恩阳区自成区以来一直把教育放在优先发展的地位,教育教学质量得到了空前的提升,特别是近两年高考更是捷报频频,得到了社会各界和老百姓的好评。

2015年高考重本上线50人,到2017年重本上线218人,设每年增长的百分率为,则列出方程正确的是()A .B .C .D .8. (2分) (2017九上·恩阳期中) 关于x的方程ax2+bx+c=0,若满足a-b+c=0,。

则方程().A . 必有一根为1B . 必有两相等实根C . 必有一根为-1D . 没有实数根。

9. (2分) (2017九上·恩阳期中) 下列四个三角形,与左图中的三角形相似的是()A .B .C .D .10. (2分) (2017九上·恩阳期中) 如图,已知AD是△ABC的中线,AE=EF=FC,下面给出三个关系式:①AG:AD=1:2;②GE:BE=1:3③BE:BG=4:3,其中正确的是()A . ①②③B . ①②C . ②③D . ①③二、填空题 (共10题;共10分)11. (1分)(2017·官渡模拟) 函数的自变量的取值范围是________.12. (1分)(2020·浙江模拟) 若在实数范围内有意义,则x的取值范围为________.13. (1分) (2017九上·恩阳期中) 已知(x2+y2+1)2=81,则x2+y2=________14. (1分) (2017九上·恩阳期中) 若实数a、b满足a2—7a+2=0和b2—7b+2=0,则式子的值是________.15. (1分)(2018·吉林模拟) 若实数a、b满足|a+2|+ =0,则 =________.16. (1分) (2017九上·恩阳期中) 最简二次根式与的被开方数相同,则的值为________.17. (1分) (2017九上·恩阳期中) 若 = = =0.5,则=________.18. (1分) (2017九上·恩阳期中) 如果一个三角形的三边长为5、12、13,与其相似的三角形的最长边的长为52,那么此三角形的周长为________,面积为________.19. (1分) (2017九上·恩阳期中) 如图,正方形ABCD中,点N为AB的中点,连接DN并延长交CB的延长线于点P ,连接AC交DN于点M ,若PN=3,则DM的长为________ .20. (1分) (2017九上·恩阳期中) 如图,△ABC中,∠C=90°,AC=BC=2,取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1 ,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1 ,它的面积记作S2 .照此规律作下去,则S2017=________.三、解答题 (共10题;共90分)21. (10分) (2020八下·武川期中) 计算:(1)(2)22. (20分) (2017七下·南通期中) 解方程或方程组:(1)(2)23. (5分) (2017九上·恩阳期中) 先化简,在求值:,其中a= .24. (5分) (2017九上·恩阳期中) 已知是方程组的一组解,求此方程组的另一组解.25. (10分) (2017九上·恩阳期中) 已知:关于x的方程x2-(m-1)x-2m2+m=0(1)求证:无论m为何实数,方程总有实数根;(2)若此方程有两个实数根x1 , x2 ,且 x12+x22=2 ,求m的值.26. (5分) (2017九上·恩阳期中) 阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:= = = = ﹣1.请任用其中一种方法化简:① ;② ;27. (5分) (2017九上·恩阳期中) 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元,请问该单位这次共有多少员工去天水湾风景区旅游?28. (5分) (2017九上·恩阳期中) 如图,△ABC中,AD是∠BAC的平分线,AD的垂直平分线交AD于点E,交BC的延长线于点F.求证:△ABF∽△CAF.29. (10分) (2017九上·恩阳期中) 如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2-7x+12=0的两根(OA<OB),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.(1)求A、B两点的坐标.(2)求当t为何值时,△APQ与△AOB相似?30. (15分) (2017九上·恩阳期中) 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM ∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN 的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共10题;共90分)21-1、21-2、22-1、22-2、23-1、24-1、25-1、25-2、26-1、27-1、28-1、29-1、29-2、30-1、30-2、30-3、。

河南省安阳市九年级上学期数学期中试卷

河南省安阳市九年级上学期数学期中试卷

河南省安阳市九年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·来宾模拟) 二次函数y=ax2+bx+c(a子0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③若点A(-3,0)、B( ,y2)、C( ,y3)在该函数图象上则y1<y3<y2;④若方程a(x+1)(x-5)=-3的两根为x1和x2 ,且x1<x2 ,则x1≤-1<5<x2 ,其中正确的结论有()A . 1个B . 2个C . 3个D . 4个2. (2分)(2019·温州模拟) 如图,△ABC内接于⊙O,∠A=68°,则∠OBC等于()A . 22°B . 26°C . 32°D . 34°3. (2分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形既是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A . 2种B . 3种C . 4种D . 5种4. (2分)(2019·郊区模拟) 如图,已知▱AOBC的顶点O(0,0),A(-1,3),点B在x轴的正半轴上,按以下步骤作图:①以点O为圆心、适当长度为半径作弧,分别交OA、OB于点D , E;②分别以点D , E为圆心、大于 DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF ,交边AC于点G .则点G的坐标为()A .B .C .D .5. (2分)如图是下列四个函数中的某个函数的图象,这个函数是()A .B . y=2x+3C .D .6. (2分)二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0解为()A . x1=﹣3 x2=﹣1B . x1=1 x2=3C . x1=﹣1 x2=3D . x1=﹣3 x2=17. (2分)(2017·桂林) 下面四个图形中,∠1=∠2一定成立的是()A .B .C .D .8. (2分)下列说法正确的是()A . 垂直于弦的直线必经过圆心B . 平分弦的直径垂直于弦C . 平分弧的直径平分弧所对的弦D . 同一平面内,三点确定一个圆9. (2分)如图,把一张长方形纸片ABCD沿对角线BD折叠,使C点落在E处,BE与AD相交于点F,下列结论:①BD=AD2+AB2;②△ABF≌△EDF;③=④AD=BD•cos45°.其中正确的一组是()A . ①②B . ②③C . ①④D . ③④10. (2分)(2016·孝感) “科学用眼,保护视力”是青少年珍爱生命的具体表现.科学证实:近视眼镜的度数y(度)与镜片焦距x(m)成反比例.如果500度近视眼镜片的焦距为0.2m,则表示y与x函数关系的图象大致是()A .B .C .D .二、填空题 (共10题;共11分)11. (1分) (2019九上·北京期中) 点P(﹣1,4)绕原点顺时针旋转180°得到点P',点P'的坐标为________.12. (1分) (2020八下·温州期末) 化简二次根式的结果是________.13. (1分) (2017九上·仲恺期中) 抛物线y=2(x﹣3)2+1的顶点坐标是________14. (1分)(2020·包头) 如图,在平行四边形中,的平分线与的平分线交于点E ,若点E恰好在边上,则的值为________.15. (1分)我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y=﹣的图象上有一些整点,请写出其中一个整点的坐标________.16. (1分)(2020·鹤岗) 一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除了标号外都相同,从中随机摸出一个小球,是偶数的概率为________.17. (1分)(2019·新泰模拟) 如图,一般海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为________(结果保留根号)18. (1分)(2020·凉山模拟) 如图.在Rt△ABC中,∠ACB=90°,AC=BC ,以A为圆心,AD长为半径的弧DF交AC的延长线于F ,若图中两个阴影部分的面积相等,则=________.19. (2分) (2020九上·石城期末) 以AC为对角线的四边形ABCD(它的四个顶点A、B、C、D按顺时针方向排列),已知AB=BC=CD,∠ABC=100°,∠CAD=40°,则∠BCD=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识改变命运满分120分 ,时间 100 分钟一、填空(每题3分)1. 若关于x 的一元二次方程0235)1(22=+-++-m m x x m 有一个根是0,则m 的值得____________。

2. 方程)3()3(2-=-x x 的根为 。

3. 如图,将矩形ABCD 绕点A 顺时针旋转90°后,得到矩形AB′C′D′,如果CD=3DA=3,那么CC′=_________。

4.抛物线228y x x m=++的顶点在第三象限,则m的取值范围值为 。

5.已知二次函数c bx ax y ++=21与一次函数)0(2≠+=k m kx y 的图像相交于点A(-2,4),B(8,2)。

如图所示,则能使21y y >成立的x 的取值范围知识改变命运是 。

6.将抛物线y=2x 2-3向左平移1个单位,再向上平移3个单位得到的抛物线,其表达式为 。

7.已知关于x 的方程x 2+bx+a=0有一个根是﹣a (a≠0),则a ﹣b 的值为 .8.已知二次函数772--=x kx y 的图象和x 轴有交点,则k 的取值范围是 ( )A. k >47- B. k ≥47- C. k ≥47-且k ≠0 D. k >47-且k ≠0 9.下面的图形中,既是轴对称图形又是中心对称图形的是( )ABCD10.二次函数y=ax 2+bx +c (a≠0)中的x 与y 的部分对应值如下表:二、选择(每题3分)知识改变命运给出了结论:(1)二次函数y=ax 2+bx +c 有最小值,最小值为﹣3; (2)当时,y <0;(3)二次函数y=ax 2+bx +c 的图象与x 轴有两个交点,且它们分别在y 轴两侧. 则其中正确结论的个数是()A .1个B .2个C . 3个D .0个11.小明从如图所示的二次函数y=ax 2+bx +c (a ≠0)的图象中,观察得出了下面五条信息:①ab >0;②a +b +c<0;③b +2c>0;④a ﹣2b +4c >0;⑤.你认为其中正确信息的个数有( )(图见下页)A. 2个B. 3个C. 4个D. 5个12.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度, 得到△M 1N 1P 1,则其旋转中心可能是( )A . 点AB . 点BC . 点CD . 点D13.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙),此时AB 与CD 1交于点O ,则线段AD 1的长为( )A .B . 5C . 4D .知识改变命运14.解方程 (每题5分)(1))12(3)12(2+=+x x (2)0122=--x x15.已知抛物线y =x 2-2kx +3k +4.(9分) (1)顶点在y 轴上时,k 的值为_________. (2)顶点在x 轴上时,k 的值为_________. (3)抛物线经过原点时,k 的值为_______16.(10分)如图所示,在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动.(1)如果P 、Q 同时出发,几秒钟后,可使△PCQ 的面积为8平方厘米?(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△PCQ 的面三、解答题(共61分)积达到最大值?.17.(10分)直线y=x-2与抛物线y=ax2+bx+c的图象交于A(2,m)与B(n,3)两点,抛物线的对称轴是x=3.(1)求a、b、c的值;(2)抛物线与y轴交于点C,求ABC△的面积.知识改变命运2经过=5-+xy+x点A(1,0),与y轴交于点B。

(1)求抛物线的解析式;(2)P是y轴上一点,且△PAB是等腰三角形,请直接写出P点坐标。

19.(12分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由知识改变命运知识改变命运四.解答(共20分)ABC 中,∠BAC=90°,AB=AC,点D 和点E 均在边BC 上,且∠DAE=45°,试猜想BD. DE. EC 应满足的数量关系,并写出推理过程。

21.(12分)已知,如图抛物线y =ax 2+3ax +c (a >0)与y 轴交于点C ,与x 轴交于A ,B 两点,点A 在点B 左侧.点B 的坐标为(1,0),OC =3OB .(1)求抛物线的解析式;(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最BACDE大值;(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,写出点P的坐标;若不存在,请说明理由.知识改变命运知识改变命运2014-2015学年第一学期期中考试九年级数学答1. 22. X1=3, X2=43.4. m<85. X<-2或X>86. y=2(x-1)2-2 7. -1二、选择(每题3分)14.解方程 (每题5分)(1))12(3)12(2+=+x x (2)0122=--x x211-=x 12=x211-=x 12=x一.填空、(每题3分)三、解答题(共61分)15(9分)(1)k的值为___0______. (2)k的值为__4和-1_______(3)k的值为_-4/3______(2)设△PCQ的面积为y,则y=(6-x)2X/2知识改变命运知识改变命运利用顶点坐标得到当x=3时,面积的最大值为917.(10分)(1)由y=x-2,且过(2 ,m) (n, 3)两点,得m=0,n=5 则将(2,0),(5.3)带入抛物线解析式,且对称轴为x =3得a=1,b=-6,C=8(2)过B 向y 轴作垂线,垂足为D,则S △ABC = SCODB -S △ACO- S △ADB=1718.(10分)(1)将A(1,0)带入解析式n=-4,y=-x 2+5x-4(2) (0,4) (0, 17-4) (0, -17-4)y=x知识改变命运 19.(12分)(1)由题意得,销售量=250-10(x-25)=-10x+500,则w=(x-20)(-10x+500)=-10x 2+700x-10000;(2)w=-10x 2+700x-10000=-10(x-35)2+2250.∵-10<0,∴函数图象开口向下,w 有最大值,当x=35时,w max =2250,故当单价为35元时,该文具每天的利润最大;(3)A 方案利润高.理由如下:A 方案中:20<x ≤30,故当x=30时,w 有最大值,此时w A =2000;B 方案中:故x 的取值范围为:45≤x ≤49,∵函数w=-10(x-35)2+2250,对称轴为x=35,∴当x=45时,w 有最大值,此时w B =1250,∵w A >w B ,∴A 方案利润更高.四.解答(共20分)20.(10分) ∵AB=AC,∴把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合. ∵△ABC中,∠BAC=90°.∴∠ACB+∠ACG=∠ACB+∠B=90°,即∠ECG=90°∴EC2+CG2=EG2在△AEG与△AED中,∠EAG=∠EAC+∠CAG=∠EAC+∠BAD=90°-∠EAD=45°=∠EAD,又∵AD=AG,AE=AE,∴△AEG≌△AED. ∴DE=EG.又∵CG=BD∴BD2+EC2=DE2.21. (12分)(1)∵OC=3OB,B(1,0),∴C(0,-3).把点B,C的坐标代入y=ax2+3ax+c,得a+3a+c=0,c=-3.解得a=34,c=-3.∴y=34x2+94x-3.(2)如图D86.过点D作DM∥y轴分别交线段AC和x轴于点M,N. S四边形ABCD=S△ABC+S△ACD=152+12×DM×(AN+ON)=152+2DM,∵A(-4,0),C(0,-3),知识改变命运设直线AC的解析式为y=kx+b,代入,求得y=-34x-3.令Dx,34x2+94x-3,Mx,-34x-3,DM=-34x-3-34x2+94x-3=-34(x+2)2+3,当x=-2时,DM有最大值3.此时四边形ABCD面积有最大值为272.(3)讨论:①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,此时四边形ACP1E1为平行四边形.∵C(0,-3),令34x2+94x-3=-3,∴x=0或x=-3.∴P1(-3,-3).②平移直线AC交x轴于点E,交x轴上方的抛物线于点P,当AC =PE时,四边形ACEP为平行四边形,∵C(0,-3),∴可令P(x,3),由34x2+94x-3=3,得x2+3x-8=0.解得x=-3+√41或x=-3-√41.此时存在点P2(-3+√41,3)和P3(-3-√41,3)综上所述,存在3个点符合题意,坐标分别是P1(-3,-3),P2(-3+√41,3),P3(-3-√41,3.)知识改变命运知识改变命运薄雾浓云愁永昼, 瑞脑消金兽。

佳节又重阳, 玉枕纱厨, 半夜凉初透。

东篱把酒黄昏后, 有暗香盈袖。

莫道不消魂, 帘卷西风, 人比黄花瘦。

相关文档
最新文档