中考数学压轴题因动点产生的等腰三角形问题专项练习
中考数学压轴题精练:因动点产生的等腰三角形问题
上海中考自招备战 QQ 群 561732764
③如图 5,当 CM=CA 时,CM2=CA2.解方程 1+(m-3)2=10,得 m=0 或 6. 当 M(1, 6)时,M、A、C 三点共线,所以此时符合条件的点 M 的坐标为(1,0).
图3
得 1(3+7 − t) × 4 − 1 × 4× (4 − t) − 1 × t(7 − t) = 8 .整理,得 t2 − 8t +12 = 0 .解得 t=2 或 t=6
2
2
2
(舍去).如图 3,当 P 在 CA 上运动时,△APR 的最大面积为 6.
因此,当 t=2 时,以 A、P、R 为顶点的三角形的面积为 8.
在 Rt△OBC 中,∠BOC=30°,OB=4,所以 BC=2, OC = 2 3 .
所以点 B 的坐标为 (−2, −2 3) .
(2)因为抛物线与 x 轴交于 O、A(4, 0),设抛物线的解析式为 y=ax(x-4),
代入点 B (−2, −2 3) , −2 3 = −2a × (−6) .解得 a = − 3 . 6
满分解答
(1)因为抛物线与 x 轴交于 A(-1,0)、B(3, 0)两点,设 y=a(x+1)(x-3), 代入点 C(0 ,3),得-3a=3.解得 a=-1.
所以抛物线的函数关系式是 y=-(x+1)(x-3)=-x2+2x+3. (2)如图 2,抛物线的对称轴是直线 x=1. 当点 P 落在线段 BC 上时,PA+PC 最小,△PAC 的周长最小. 设抛物线的对称轴与 x 轴的交点为 H. 由 BH = PH ,BO=CO,得 PH=BH=2.
因此△PDM∽△QDN.
中考数学压轴题因动点产生的等腰三角形问题[含答案]
因动点产生的等腰三角形问题例1(20XX 年湖州市中考第24题)如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示); (2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2满分解答(1)因为PC //DB ,所以1CP PM MCBD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-.①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3).②当P A =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H 5.考点伸展第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单:①如图3,当AP =AD 时,AM 垂直平分PD ,那么△PCM ∽△MBA .所以12PC MB CM BA ==.因此12PC =,32m =.②如图4,当P A =PD 时,P 在AD 的垂直平分线上.所以DA =2PO .因此42m m -=.解得43m =.第(2)题的思路是这样的:如图6,在Rt △OHM 中,斜边OM 为定值,因此以OM 为直径的⊙G 经过点H ,也就是说点H 在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P 与O 重合时,是点H 运动的起点,∠COH =45°,∠CGH =90°.图6 图7例2(20XX年盐城市中考第28题)如图1,已知一次函数y=-x+7与正比例函数43 y x =的图象交于点A,且与x轴交于点B.(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A 的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA 或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.图1满分解答(1)解方程组7,4,3y xy x=-+⎧⎪⎨=⎪⎩得3,4.xy=⎧⎨=⎩所以点A的坐标是(3,4).令70y x=-+=,得7x=.所以点B的坐标是(7,0).(2)①如图2,当P在OC上运动时,0≤t<4.由8APR ACP PORCORAS S S S=--=△△△梯形,得1113+7)44(4)(7)8222t t t t-⨯-⨯⨯--⨯-=(.整理,得28120t t-+=.解得t=2或t=6(舍去).如图3,当P在CA上运动时,△APR的最大面积为6.因此,当t=2时,以A、P、R为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P在OC上运动时的情形,0≤t<4.如图1,在△AOB中,∠B=45°,∠AOB>45°,OB=7,42AB=,所以OB>AB.因此∠OAB>∠AOB>∠B.如图4,点P由O向C运动的过程中,OP=BR=RQ,所以PQ//x轴.因此∠AQP=45°保持不变,∠P AQ越来越大,所以只存在∠APQ=∠AQP的情况.此时点A在PQ的垂直平分线上,OR=2CA=6.所以BR=1,t=1.我们再来讨论P在CA上运动时的情形,4≤t<7.在△APQ中,3cos5A∠=为定值,7AP t=-,5520333AQ OA OQ OA OR t=-=-=-.如图5,当AP=AQ时,解方程520733t t-=-,得418t=.如图6,当QP=QA时,点Q在P A的垂直平分线上,AP=2(OR-OP).解方程72[(7)(4)]t t t-=---,得5t=.如7,当P A=PQ时,那么12cosAQAAP∠=.因此2cosAQ AP A=⋅∠.解方程52032(7)335t t-=-⨯,得22643t=.综上所述,t=1或418或5或22643时,△APQ是等腰三角形.图5 图6 图7考点伸展当P在CA上,QP=QA时,也可以用2cosAP AQ A=⋅∠来求解.例3(20XX年上海市闸北区中考模拟第25题)如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.图1满分解答(1)如图2,图3,作NQ⊥x轴,垂足为Q.设点M、N的运动时间为t秒.在Rt△ANQ中,AN=5t,NQ=4t,AQ=3t.在图2中,QO=6-3t,MQ=10-5t,所以MN∶NP=MQ∶QO=5∶3.在图3中,QO =3t -6,MQ =5t -10,所以MN ∶NP =MQ ∶QO =5∶3.(2)因为△BNP 与△MNA 有一组邻补角,因此这两个三角形要么是一个锐角三角形和一个钝角三角形,要么是两个直角三角形.只有当这两个三角形都是直角三角形时才可能相似.如图4,△BNP ∽△MNA ,在Rt △AMN 中,35AN AM =,所以531025t t =-.解得3031t =.此时CM 6031=.图2 图3 图4(3)如图5,图6,图7中,OP MP QN MN =,即245OP t =.所以85OP t =. ①当N 在AB 上时,在△BNP 中,∠B 是确定的,885BP t =-,105BN t =-. (Ⅰ)如图5,当BP =BN 时,解方程881055t t -=-,得1017t =.此时CM 2017=.(Ⅱ)如图6,当NB =NP 时,45BE BN =.解方程()1848105255t t ⎛⎫-=- ⎪⎝⎭,得54t =.此时CM 52=.(Ⅲ)当PB =PN 时,1425BN BP =.解方程()1481058255t t ⎛⎫-=- ⎪⎝⎭,得t 的值为负数,因此不存在PB =PN 的情况. ②如图7,当点N 在线段AB 的延长线上时,∠B 是钝角,只存在BP =BN 的可能,此时510BN t =-.解方程885105t t -=-,得3011t =.此时CM 6011=.图5 图6 图7考点伸展如图6,当NB =NP 时,△NMA 是等腰三角形,1425BN BP =,这样计算简便一些.例4(20XX 年南通市中考第27题)如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?图1满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m x x y -=.整理,得y 关于x 的函数关系为218y x x m m=-+.(2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2. (3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m=,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如:由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.例5(20XX 年重庆市中考第26题)已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1 图2满分解答(1)由于OD 平分∠AOC ,所以点D 的坐标为(2,2),因此BC =AD =1. 由于△BCD ≌△ADE ,所以BD =AE =1,因此点E 的坐标为(0,1).设过E 、D 、C 三点的抛物线的解析式为c bx ax y ++=2,那么⎪⎩⎪⎨⎧=++=++=.039,224,1c b a c b a c 解得65-=a ,613=b 1=c .因此过E 、D 、C 三点的抛物线的解析式为1613652++-=x x y . (2)把56=x 代入1613652++-=x x y ,求得512=y .所以点M 的坐标为⎪⎭⎫⎝⎛512,56. 如图2,过点M 作MN ⊥AB ,垂足为N ,那么DA DN FA MN =,即25622512-=-FA .解得1=FA . 因为∠EDC 绕点D 旋转的过程中,△DCG ≌△DEF ,所以CG =EF =2.因此GO =1,EF =2GO . (3)在第(2)中,GC =2.设点Q 的坐标为⎪⎭⎫ ⎝⎛++-161365,2x x x . ①如图3,当CP =CG =2时,点P 与点B (3,2)重合,△PCG 是等腰直角三角形.此时G Q Q x x y -=,因此11613652-=++-x x x 。
中考压轴题汇编因动点产生的等腰三角形问题
因动点产生的等腰三角形问题例1 2017年重庆市中考第25题如图1,在△ABC中, ACB=90°,∠BAC=60°,点E是∠BAC的平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,AC=23,求AB、BD的长;(2)如图1,求证:HF=EF.(3)如图2,连接CF、CE,猜想:△CEF是否是等边三角形若是,请证明;若不是,请说明理由.图1 图2例2 2017年长沙市中考第26题如图1,抛物线y=ax2+bx+c(a、b、c是常数,a≠0)的对称轴为y轴,且经过(0,0)和1(,)a两点,点P在该抛物线上运动,以点P为圆心16的⊙P总经过定点A(0, 2).(1)求a、b、c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1, 0)、N(x2, 0)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.图1例3 2018年上海市虹口区中考模拟第25题如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP 的长.图1 备用图例4 2017年扬州市中考第27题如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P 的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.图1例5 2017年临沂市中考第26题如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形若存在,求点P的坐标;若不存在,请说明理由.图1例6 2017年盐城市中考第28题如图1,已知一次函数y =-x +7与正比例函数43y x 的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8②是否存在以A、P、Q为顶点的三角形是等腰三角形若存在,求t的值;若不存在,请说明理由.图1因动点产生的等腰三角形问题答案例1 2017年重庆市中考第25题如图1,在△ABC中, ACB=90°,∠BAC=60°,点E是∠BAC的平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,AC=23,求AB、BD的长;(2)如图1,求证:HF=EF.(3)如图2,连接CF、CE,猜想:△CEF是否是等边三角形若是,请证明;若不是,请说明理由.图1 图2动感体验请打开几何画板文件名“15重庆25”,拖动点E运动,可以体验到,△FAE与△FDH保持全等,△CMF与△CAE保持全等,△CEF保持等边三角形的形状.思路点拨1.把图形中所有30°的角都标注出来,便于寻找等角和等边.2.中点F有哪些用处呢联想到斜边上的中线和中位线就有思路构造辅助线了.满分解答(1)如图3,在Rt△ABC中,∠BAC=60°,AC=23,所以AB=43.在Rt△ADH中,∠DAH=30°,AH=3,所以DH=1,AD=2.在Rt△ADB中,AD=2,AB=43,由勾股定理,得BD=213.(2)如图4,由∠DAB=90°,∠BAC=60°,AE平分∠BAC,得∠DAE =60°,∠DAH=30°.在Rt△ADE中,AE=12AD.在Rt△ADH中,DH=12AD.所以AE=DH.因为点F是Rt△ABD的斜边上的中线,所以FA=FD,∠FAD=∠FDA.所以∠FAE=∠FDH.所以△FAE≌△FDH.所以EF=HF.图3 图4 图5(3)如图5,作FM⊥AB于M,联结CM.由FM//DA,F是DB的中点,得M是AB的中点.因此FM=1AD,△ACM是等边三角形.2又因为AE=1AD,所以FM=EA.2又因为CM=CA,∠CMF=∠CAE=30°,所以△CMF≌△CAE.所以∠MCF=∠ACE,CF=CE.所以∠ECF=∠ACM=60°.所以△CEF是等边三角形.考点伸展我们再看几个特殊位置时的效果图,看看有没有熟悉的感觉.如图6,如图7,当点F落在BC边上时,点H与点C重合.图6 图7如图8,图9,点E落在BC边上.如图10,图11,等腰梯形ABEC.图8 图9 图10 图11例2 2017年长沙市中考第26题如图1,抛物线y=ax2+bx+c(a、b、c是常数,a≠0)的对称轴为y轴,且经过(0,0)和1a两点,点P在该抛物线上运动,以点P为圆心(,)16的⊙P总经过定点A(0, 2).(1)求a、b、c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1, 0)、N(x2, 0)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.图1动感体验请打开几何画板文件名“14长沙26”,拖动圆心P 在抛物线上运动,可以体验到,圆与x 轴总是相交的,等腰三角形AMN 存在三种情况.思路点拨1.不算不知道,一算真奇妙,原来⊙P 在x 轴上截得的弦长MN =4是定值.2.等腰三角形AMN 存在三种情况,其中MA =MN 和NA =NM 两种情况时,点P 的纵坐标是相等的.满分解答(1)已知抛物线的顶点为(0,0),所以y =ax 2.所以b =0,c =0. 将1(,)16a 代入y =ax 2,得2116a =.解得14a =(舍去了负值).(2)抛物线的解析式为214y x =,设点P 的坐标为21(,)4x x .已知A (0, 2),所以222411(2)4416PA x x x =+-=+>214x . 而圆心P 到x 轴的距离为214x ,所以半径PA >圆心P 到x 轴的距离.所以在点P 运动的过程中,⊙P 始终与x 轴相交. (3)如图2,设MN 的中点为H ,那么PH 垂直平分MN .在Rt △PMH 中,2241416PM PA x ==+,22411()416PH x x ==,所以MH 2=4.所以MH =2.因此MN =4,为定值. 等腰△AMN 存在三种情况:①如图3,当AM =AN 时,点P 为原点O 重合,此时点P 的纵坐标为0.图2 图3②如图4,当MA =MN 时,在Rt △AOM 中,OA =2,AM =4,所以OM =3此时x =OH =232.所以点P 的纵坐标为22211(232)(31)42344x =+=+=+. ③如图5,当NA =NM 时,点P 的纵坐标为也为423+.图4 图5考点伸展如果点P 在抛物线214y x =上运动,以点P 为圆心的⊙P 总经过定点B (0,1),那么在点P 运动的过程中,⊙P 始终与直线y =-1相切.这是因为:设点P 的坐标为21(,)4x x .已知B (0, 1),所以222222111(1)(1)1444PB x x x x +-=+=+.而圆心P 到直线y =-1的距离也为2114x +,所以半径PB =圆心P 到直线y =-1的距离.所以在点P 运动的过程中,⊙P 始终与直线y =-1相切.例3 2018年上海市虹口区中考模拟第25题如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP 的长.图1 备用图动感体验请打开几何画板文件名“13虹口25”,拖动点P在射线AB上运动,可以体验到,△PDM与△QDN保持相似.观察△PDF,可以看到,P、F可以落在对边的垂直平分线上,不存在DF=DP的情况.请打开超级画板文件名“13虹口25”,拖动点P在射线AB上运动,可以体验到,△PDM与△QDN保持相似.观察△PDF,可以看到,P、F可以落在对边的垂直平分线上,不存在DF=DP的情况.思路点拨1.第(2)题BP =2分两种情况.2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.3.第(3)题探求等腰三角形PDF 时,根据相似三角形的传递性,转化为探求等腰三角形CDQ . 满分解答(1)在Rt △ABC 中, AB =6,AC =8,所以BC =10. 在Rt △CDE 中,CD =5,所以315tan 544ED CD C =⋅∠=⨯=,254EC =. (2)如图2,过点D 作DM ⊥AB ,DN ⊥AC ,垂足分别为M 、N ,那么DM 、DN 是△ABC 的两条中位线,DM =4,DN =3.由∠PDQ =90°,∠MDN =90°,可得∠PDM =∠QDN . 因此△PDM ∽△QDN .所以43PM DM QNDN==.所以34QN PM =,43PM QN =.图2 图 3图4①如图3,当BP =2,P 在BM 上时,PM =1. 此时3344QN PM ==.所以319444CQ CN QN =+=+=. ②如图4,当BP =2,P 在MB 的延长线上时,PM =5. 此时31544QN PM ==.所以1531444CQ CN QN =+=+=. (3)如图5,如图2,在Rt △PDQ 中,3tan 4QD DN QPD PD DM ∠===. 在Rt △ABC 中,3tan 4BA C CA ∠==.所以∠QPD =∠C . 由∠PDQ =90°,∠CDE =90°,可得∠PDF =∠CDQ . 因此△PDF ∽△CDQ .当△PDF 是等腰三角形时,△CDQ 也是等腰三角形.①如图5,当CQ =CD =5时,QN =CQ -CN =5-4=1(如图3所示). 此时4433PM QN ==.所以45333BP BM PM =-=-=.②如图6,当QC =QD 时,由cos CH C CQ =,可得5425258CQ =÷=. 所以QN =CN -CQ =257488-=(如图2所示). 此时4736PM QN ==.所以725366BP BM PM =+=+=. ③不存在DP =DF 的情况.这是因为∠DFP ≥∠DQP >∠DPQ (如图5,图6所示).图5 图6考点伸展如图6,当△CDQ 是等腰三角形时,根据等角的余角相等,可以得到△BDP 也是等腰三角形,PB =PD .在△BDP 中可以直接求解256BP =.例4 2017年扬州市中考第27题如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P 的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“12扬州27”,拖动点P在抛物线的对称轴上运动,可以体验到,当点P落在线段BC上时,PA+PC最小,△PAC的周长最小.拖动点M在抛物线的对称轴上运动,观察△MAC的三个顶点与对边的垂直平分线的位置关系,可以看到,点M有1次机会落在AC的垂直平分线上;点A有2次机会落在MC的垂直平分线上;点C有2次机会落在MA的垂直平分线上,但是有1次M、A、C三点共线.思路点拨1.第(2)题是典型的“牛喝水”问题,点P在线段BC上时△PAC的周长最小.2.第(3)题分三种情况列方程讨论等腰三角形的存在性.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3, 0)两点,设y=a(x+1)(x-3),代入点C(0 ,3),得-3a=3.解得a=-1.所以抛物线的函数关系式是y=-(x+1)(x-3)=-x2+2x+3.(2)如图2,抛物线的对称轴是直线x=1.当点P落在线段BC上时,PA+PC最小,△PAC的周长最小.设抛物线的对称轴与x轴的交点为H.由BH PH,BO=CO,得PH=BH=2.BO CO所以点P的坐标为(1, 2).图2、(1,)或(1,0).(3)点M的坐标为(1, 1)、考点伸展第(3)题的解题过程是这样的:设点M的坐标为(1,m).在△MAC中,AC2=10,MC2=1+(m-3)2,MA2=4+m2.①如图3,当MA=MC时,MA2=MC2.解方程4+m2=1+(m-3)2,得m=1.此时点M的坐标为(1, 1).②如图4,当AM=AC时,AM2=AC2.解方程4+m2=10,得m=)或(1,.此时点M的坐标为③如图5,当CM=CA时,CM2=CA2.解方程1+(m-3)2=10,得m=0或6.当M(1, 6)时,M、A、C三点共线,所以此时符合条件的点M的坐标为(1,0).图3 图4 图5例5 2017年临沂市中考第26题如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形若存在,求点P的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“12临沂26”,拖动点P在抛物线的对称轴上运动,可以体验到,⊙O和⊙B以及OB的垂直平分线与抛物线的对称轴有一个共同的交点,当点P运动到⊙O与对称轴的另一个交点时,B、O、P 三点共线.请打开超级画板文件名“12临沂26”,拖动点P,发现存在点P,使得以点P、O、B为顶点的三角形是等腰三角形思路点拨1.用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验.2.本题中等腰三角形的角度特殊,三种情况的点P重合在一起.满分解答(1)如图2,过点B作BC⊥y轴,垂足为C.在Rt△OBC中,∠BOC=30°,OB=4,所以BC=2,OC=所以点B的坐标为--.(2,(2)因为抛物线与x轴交于O、A(4, 0),设抛物线的解析式为y=ax(x-4),代入点B-=-⨯-.解得a=.a(2,--,2(6)所以抛物线的解析式为2(4)=-=.y x x(3)抛物线的对称轴是直线x=2,设点P的坐标为(2, y).①当OP=OB=4时,OP2=16.所以4+y2=16.解得y=±当P在(2,时,B、O、P三点共线(如图2).②当BP=BO=4时,BP2=16.所以22++=.解得124(16y==-y y③当PB=PO时,PB2=PO2.所以2222++=+.解得y=-.4(2y y综合①、②、③,点P 的坐标为(2,23)-,如图2所示.图2 图3考点伸展如图3,在本题中,设抛物线的顶点为D ,那么△DOA 与△OAB 是两个相似的等腰三角形. 由23323(4)2)y x x =-=-23D . 因此23tan DOA ∠=DOA =30°,∠ODA =120°.例6 2017年盐城市中考第28题如图1,已知一次函数y =-x +7与正比例函数43y x 的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形若存在,求t 的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“11盐城28”,拖动点R由B向O运动,从图象中可以看到,△APR的面积有一个时刻等于8.观察△APQ,可以体验到,P在OC上时,只存在AP=AQ的情况;P在CA上时,有三个时刻,△APQ 是等腰三角形.思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR的面积等于8,按照点P的位置分两种情况讨论.事实上,P在CA上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ,按照点P的位置分两种情况讨论,点P的每一种位置又要讨论三种情况.满分解答(1)解方程组7,4,3y xy x=-+⎧⎪⎨=⎪⎩得3,4.xy=⎧⎨=⎩所以点A的坐标是(3,4).令70y x=-+=,得7x=.所以点B的坐标是(7,0).(2)①如图2,当P在OC上运动时,0≤t<4.由8APR ACP POR CORA S S S S =--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6. 因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图 2 图 3图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,42AB =所以OB >AB .因此∠OAB >∠AOB >∠B .如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴. 因此∠AQP =45°保持不变,∠PAQ 越来越大,所以只存在∠APQ =∠AQP 的情况.此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1. 我们再来讨论P 在CA 上运动时的情形,4≤t <7.在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-. 如图5,当AP =AQ 时,解方程520733t t -=-,得418t =. 如图6,当QP =QA 时,点Q 在PA 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.如7,当PA =PQ时,那么12cos AQ A AP ∠=.因此2cos AQ AP A =⋅∠.解方程52032(7)335t t -=-⨯,得22643t =. 综上所述,t =1或418或5或22643时,△APQ 是等腰三角形.图5 图6 图7考点伸展当P 在CA 上,QP =QA 时,也可以用2cos AP AQ A =⋅∠来求解.。
中考压轴专题,2.因动点产生的等腰三角形问题-教师
因动点产生的等腰三角形问题例1 如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1 备用图思路点拨1.第(2)题BP=2分两种情况.2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ.满分解答(1)在Rt△ABC中,AB=6,AC=8,所以BC=10.在Rt△CDE中,CD=5,所以315tan544ED CD C=⋅∠=⨯=,254EC=.(2)如图2,过点D作DM⊥AB,DN⊥AC,垂足分别为M、N,那么DM、DN是△ABC的两条中位线,DM=4,DN=3.由∠PDQ=90°,∠MDN=90°,可得∠PDM=∠QDN.因此△PDM∽△QDN.所以43PM DMQN DN==.所以34QN PM=,43PM QN=.图2 图3 图4①如图3,当BP=2,P在BM上时,PM=1.此时3344QN PM==.所以319444CQ CN QN=+=+=.②如图4,当BP=2,P在MB的延长线上时,PM=5.此时31544QN PM==.所以1531444CQ CN QN=+=+=.(3)如图5,如图2,在Rt△PDQ中,3 tan4QD DNQPDPD DM∠===.在Rt△ABC中,3tan4BACCA∠==.所以∠QPD=∠C.由∠PDQ =90°,∠CDE =90°,可得∠PDF =∠CDQ . 因此△PDF ∽△CDQ .当△PDF 是等腰三角形时,△CDQ 也是等腰三角形.①如图5,当CQ =CD =5时,QN =CQ -CN =5-4=1(如图3所示). 此时4433PM QN ==.所以45333BP BM PM =-=-=. ②如图6,当QC =QD 时,由cos CHC CQ=,可得5425258CQ =÷=.所以QN =CN -CQ =257488-=(如图2所示). 此时4736PM QN ==.所以725366BP BM PM =+=+=. ③不存在DP =DF 的情况.这是因为∠DFP ≥∠DQP >∠DPQ (如图5,图6所示).图5 图6考点伸展如图6,当△CDQ 是等腰三角形时,根据等角的余角相等,可以得到△BDP 也是等腰三角形,PB =PD .在△BDP 中可以直接求解256BP =.例2 如图1,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3, 0)、C (0 ,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△P AC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.图1思路点拨1.第(2)题是典型的“牛喝水”问题,点P 在线段BC 上时△P AC 的周长最小. 2.第(3)题分三种情况列方程讨论等腰三角形的存在性.满分解答(1)因为抛物线与x 轴交于A (-1,0)、B (3, 0)两点,设y =a (x +1)(x -3), 代入点C (0 ,3),得-3a =3.解得a =-1.所以抛物线的函数关系式是y =-(x +1)(x -3)=-x 2+2x +3. (2)如图2,抛物线的对称轴是直线x =1.当点P 落在线段BC 上时,P A +PC 最小,△P AC 的周长最小. 设抛物线的对称轴与x 轴的交点为H . 由BH PH BO CO =,BO =CO ,得PH =BH =2. 图2 所以点P 的坐标为(1, 2).(3)点M 的坐标为(1, 1)、(1,6)、(1,6-)或(1,0).考点伸展第(3)题的解题过程是这样的: 设点M 的坐标为(1,m ).在△MAC 中,AC 2=10,MC 2=1+(m -3)2,MA 2=4+m 2.①如图3,当MA =MC 时,MA 2=MC 2.解方程4+m 2=1+(m -3)2,得m =1. 此时点M 的坐标为(1, 1).②如图4,当AM =AC 时,AM 2=AC 2.解方程4+m 2=10,得6m =±. 此时点M 的坐标为(1,6)或(1,6-).③如图5,当CM =CA 时,CM 2=CA 2.解方程1+(m -3)2=10,得m =0或6. 当M (1, 6)时,M 、A 、C 三点共线,所以此时符合条件的点M 的坐标为(1,0).图3 图4 图5例3 如图1,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.(1)求点B 的坐标;(2)求经过A 、O 、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.图1思路点拨1.用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验.2.本题中等腰三角形的角度特殊,三种情况的点P 重合在一起.满分解答(1)如图2,过点B 作BC ⊥y 轴,垂足为C .在Rt △OBC 中,∠BOC =30°,OB =4,所以BC =2,23OC =. 所以点B 的坐标为(2,23)--.(2)因为抛物线与x 轴交于O 、A (4, 0),设抛物线的解析式为y =ax (x -4), 代入点B (2,23)--,232(6)a -=-⨯-.解得36a =-. 所以抛物线的解析式为23323(4)663y x x x x =--=-+.(3)抛物线的对称轴是直线x =2,设点P 的坐标为(2, y ).①当OP =OB =4时,OP 2=16.所以4+y 2=16.解得23y =±. 当P 在(2,23)时,B 、O 、P 三点共线(如图2).②当BP =BO =4时,BP 2=16.所以224(23)16y ++=.解得1223y y ==-. ③当PB =PO 时,PB 2=PO 2.所以22224(23)2y y ++=+.解得23y =-. 综合①、②、③,点P 的坐标为(2,23)-,如图2所示.图2 图3考点伸展如图3,在本题中,设抛物线的顶点为D ,那么△DOA 与△OAB 是两个相似的等腰三角形.由23323(4)(2)663y x x x =--=--+,得抛物线的顶点为23(2,)3D .因此23tan 3DOA ∠=.所以∠DOA =30°,∠ODA =120°.例4 如图1,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR 的面积等于8,按照点P 的位置分两种情况讨论.事实上,P 在CA 上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ ,按照点P 的位置分两种情况讨论,点P 的每一种位置又要讨论三种情况.满分解答(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4). 令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8A P R A C P P O RC O R AS S S S=--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,42AB =,所以OB >AB .因此∠OAB >∠AOB >∠B .如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠P AQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1. 我们再来讨论P 在CA 上运动时的情形,4≤t <7.在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-.如图5,当AP=AQ时,解方程520733t t-=-,得418t=.如图6,当QP=QA时,点Q在P A的垂直平分线上,AP=2(OR-OP).解方程72[(7)(4)]t t t-=---,得5t=.如7,当P A=PQ时,那么12cosAQAAP∠=.因此2cosAQ AP A=⋅∠.解方程52032(7)335t t-=-⨯,得22643t=.综上所述,t=1或418或5或22643时,△APQ是等腰三角形.图5 图6 图7考点伸展当P在CA上,QP=QA时,也可以用2cosAP AQ A=⋅∠来求解.例5 如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?图1思路点拨1.证明△DCE ∽△EBF ,根据相似三角形的对应边成比例可以得到y 关于x 的函数关系式. 2.第(2)题的本质是先代入,再配方求二次函数的最值.3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF 为等腰三角形,那么得到x =y ;一段是计算,化简消去m ,得到关于x 的一元二次方程,解出x 的值;第三段是把前两段结合,代入求出对应的m 的值.满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m xx y-=.整理,得y 关于x 的函数关系为218y x x m m =-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2. (3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m=,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如: 由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.例 6 如图1,在等腰梯形ABCD 中,AD //BC ,E 是AB 的中点,过点E 作EF //BC 交CD 于点F ,AB =4,BC =6,∠B =60°.(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过点P 作PM ⊥EF 交BC 于M ,过M 作MN //AB 交折线ADC 于N ,连结PN ,设EP =x .①当点N 在线段AD 上时(如图2),△PMN 的形状是否发生改变?若不变,求出△PMN 的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使△PMN 为等腰三角形?若存在,请求出所有满足条件的x 的值;若不存在,请说明理由.图1 图2 图3思路点拨1.先解读这个题目的背景图,等腰梯形ABCD 的中位线EF =4,这是x 的变化范围.平行线间的距离处处相等,AD 与EF 、EF 与BC 间的距离相等.2.当点N 在线段AD 上时,△PMN 中PM 和MN 的长保持不变是显然的,求证PN 的长是关键.图形中包含了许多的对边平行且相等,理顺线条的关系很重要.3.分三种情况讨论等腰三角形PMN ,三种情况各具特殊性,灵活运用几何性质解题.满分解答(1)如图4,过点E 作EG ⊥BC 于G .在Rt △BEG 中,221==AB BE ,∠B =60°, 所以160cos =︒⋅=BE BG ,360sin =︒⋅=BE EG .所以点E 到BC 的距离为3.(2)因为AD //EF //BC ,E 是AB 的中点,所以F 是D C 的中点.因此EF 是梯形ABCD 的中位线,EF =4.①如图4,当点N 在线段AD 上时,△PMN 的形状不是否发生改变.过点N 作NH ⊥EF 于H ,设PH 与NM 交于点Q .在矩形EGMP 中,EP =GM =x ,PM =EG =3.在平行四边形BMQE 中,BM =EQ =1+x .所以BG =PQ =1.因为PM 与NH 平行且相等,所以PH 与NM 互相平分,PH =2PQ =2.在Rt △PNH 中,NH =3,PH =2,所以PN =7.在平行四边形ABMN 中,MN =AB =4.因此△PMN 的周长为3+7+4.图4 图5②当点N 在线段DC 上时,△CMN 恒为等边三角形.如图5,当PM =PN 时,△PMC 与△PNC 关于直线PC 对称,点P 在∠DCB 的平分线上.在Rt △PCM 中,PM =3,∠PCM =30°,所以MC =3.此时M 、P 分别为BC 、EF 的中点,x =2.如图6,当MP =MN 时,MP =MN =MC =3,x =GM =GC -MC =5-3.如图7,当NP =NM 时,∠NMP =∠NPM =30°,所以∠PNM =120°.又因为∠FNM =120°,所以P 与F 重合.此时x =4.综上所述,当x =2或4或5-3时,△PMN 为等腰三角形.图6 图7 图8 考点伸展第(2)②题求等腰三角形PMN 可以这样解:如图8,以B 为原点,直线BC 为x 轴建立坐标系,设点M 的坐标为(m ,0),那么点P 的坐标为(m ,3),MN =MC =6-m ,点N 的坐标为(26+m ,2)6(3m -). 由两点间的距离公式,得21922+-=m m PN .当PM =PN 时,92192=+-m m ,解得3=m 或6=m .此时2=x .当MP =MN 时,36=-m ,解得36-=m ,此时35-=x .当NP =NM 时,22)6(219m m m -=+-,解得5=m ,此时4=x .。
中考数学--动点产生等腰三角形专题
二动点产生等腰三角形专项等腰三角形的分类讨论题多见于初三各级各类模拟考试甚至中考压轴题中,由于这类题目都与运动有关,需要具有一定的想象、分析和运算能力,二者正是很多学生最缺乏的. 理清这类题目的解题思路和解题策略将会是中考中获得高分的重要砝码. 等腰三角形分类讨论的解题思路分有两种,第一种是用含有字母的代数式分别表示等腰三角形的三条边,后用三条线段依次相等建立方程后求解;第二种是分别作为三种等腰三角形条件下的图形,利用等腰三角形的有关性质和题目中的条件进展合理的转化后建立方程求解.例题1:如图,在Rt△ABC中,∠C=90°,sinB=,AC=4;D是BC的延长线上的一个动点,∠EDA=∠B,AE//BC.(1)找出图中的相似三角形,并加以证明;(2)设CD=*,AE=y,求y关于*的函数解析式,并写出函数的定义域;(3)当△ADE为等腰三角形时,求AE的长例题2:如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR//BA交AC于R,当点Q与点C重合时,点P停顿运动.设BQ=*,QR=y.(1)求点D到BC的距离DH的长;(2)求y关于*的函数关系式,写出自变量的取值范围;(3)是否存在点P,使△PQR为等腰三角形.假设存在,请写出所有满足要求的*的值;假设不存在,请说明理由.例题3:如图,在直角梯形ABCD中,AD//BC,DC⊥BC,P是边AB上一动点,PE⊥CD,垂足为点E,PM⊥AB,交边CD于点M,AD=1,AB=5,CD=4.(1)求证:∠PME=∠B;(2)设A,P两点的距离为*,EM=y,求y关于*的函数解析式,并写出它的定义域;(3)联接PD,当△PDM是以PM为腰的等腰三角形时,求AP的长.例题4:如图,在矩形ABCD中,AB=4,BC=3,点E是边CD上任意一点〔点E与点C,D不重合〕,过点A作AF⊥AE,交边CB的延长线于点F,联接EF,交边AB与点G. 设DE=*,BF=y.(1)求y关于*的函数解析式,并写出函数的定义域;(2)如果AD=BF,求证:△AEF∽△DEA;(3)当点E在边CD上移动时,△AEG能否成为等腰三角形?如果能,请求出线段DE的长;如果不能,请说明理由.例题5:如图,点E在正方形ABCD的边AB上,AE=1,BE=2. 点F在边BC的延长线上,且CF=BC;P是边BC上的动点〔与点B不重合〕,PQ⊥BC,垂足为H.(1)求证:△QPH∽△FEB;(2)设BP=*,EQ=y,求y关于*的函数解析式,并写出它的定义域;(3)试探索△PEQ是否可能成为等腰三角形?如果可能,请求出*的值;如果不可能,请说明理由.例题6:如图,等腰梯形ABCD中,AD//BC,AB=DC=5,AD=2,BC=8,∠MEN=∠B. ∠MEN的顶点E在边BC上移动,一条边始终经过点A,另一边与CD交于点F,联接AF.(1)设BE=*,DF=y,试建立y关于*的函数关系式,并写出函数定义域;(2)假设△AEF为等腰三角形,求出BE的长.例题7:,在AC⊥AB,AB=15,AC=20,点P为射线BC上一动点,AP⊥PM〔点M与点B分别在直线AP的两侧〕,且∠CAD,联接MD.〔1〕当点M在内时,如图1,设BP=*,AP=y,求y关于*的函数关系式,并写出函数的定义域;〔2〕请在如图AMD相似的三角形,假设存在,请写出并证明;假设不存在,请说明理由;〔3〕当△AMD为等腰三角形时,求BP的长.例题8:如图,在半径为6,圆心角为90°的扇形OAB的AB弧上,有一个动点P,PH⊥OA,垂足为H,△OPH的重心为G.(1)当点P在AB弧上运动时,线段GO,GP,GH中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度;(2)设PH=*,GP=y,求y关于*的函数解析式,并写出自变量的取值范围;M A B C DH〔图11〕(3) 如果△PGH 是等腰三角形,试求出线段PH 的长.例题9、在△ABC 中,∠ACB =︒90,AC =BC =2,M 是边AC 的中点,CH ⊥BM 于H . 〔1〕试求sin ∠MCH 的值; 〔2〕求证:∠ABM =∠CAH ;〔3〕假设D 是边AB 上的点,且使△AHD 为等腰三角形,请直接写出AD 的长为________.例题10、如图,在Rt △ABC 中,∠BAC = 90°,AB =3,AC =4,AD 是BC 边上的高,点E 、F 分别是AB 边和AC 边上的动点,且∠EDF = 90°.〔1〕求DE ︰DF 的值;〔2〕联结EF ,设点B 与点E 间的距离为x ,△DEF 的面积为y ,求y 关于x 的函数解析式,并写出x 的取值范围; 〔3〕设直线DF 与直线AB 相交于点G ,△EFG 能否成为等腰三角形?假设能,请直接写出线段BE 的长;假设不能,请说明理由.拓展练习题1、在梯形ABCD 中,AD//BC ,AB ⊥AD ,AB=4,AD=5,CD=5.E 为底边BC 上一点,以点E 为圆心,BE 为半径画⊙E 交直线DE 于点F .(1) 如图,当点F 在线段DE 上时,设BE x =,DF y =,试建立y 关于x 的函数关系式, 并写出自变量x 的取值范围;(2) 当以CD 直径的⊙O 与⊙E 与相切时,求x 的值;(3) 联接AF 、BF ,当△ABF 是以AF 为腰的等腰三角形时,求x 的值。
中考数学总复习《等腰三角形》专项提升练习题(附答案)
中考数学总复习《等腰三角形》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.若一个等腰三角形的两边长分别是2和5,则它的周长为( )A.12B.9C.12或9D.9或72.若等腰三角形的顶角为40°,则它的底角度数为( )A.40°B.50°C.60°D.70°3.如图,在等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为( )A.36°B.60°C.72°D.108°4.如图,在△ABC中,D为BC的中点,AD⊥BC,E为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=( )A.10°B.15°C.20°D.25°5.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为( )A.BD=CEB.AD=AEC.DA=DED.BE=CD6.等腰三角形补充下列条件后,仍不一定成为等边三角形的是( )A.有一个内角是60°B.有一个外角是120°C.有两个角相等D.腰与底边相等7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为( )A.60°B.90°C.120°D.150°8.如图,等边△OAB的边长为2,则点B的坐标为( )A.(1,1)B.(3,1)C.(3,3)D.(1,3)9.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B为( )A.75°B.76°C.77°D.78°10.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6 cm,DE=2 cm,则BC的长为( )A.4 cmB.6 cmC.8 cmD.12 cm二、填空题11.等腰三角形的一个内角为100°,则顶角的度数是________.12.如图,已知△ABC的角平分线CD交AB于D,DE∥BC交AC于E,若DE=3,AE=4,则AC=.13.如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为.14.如图所示,△ABC为等边三角形,AD⊥BC,AE=AD,则∠ADE=________.15.已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为.16.《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(蜨,同“蝶”),如图为某蝶几设计图,其中△ABD和△CBD为“大三斜”组件(大三斜组件为两个全等的等腰直角三角形),已知某人位于点P处,点P与点A关于直线DQ对称,连接CP、DP.若∠ADQ=25°,则∠DCP的度数为.三、解答题17.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.18.如图,△ABC中,AC=BC,点D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分线CF于点F.(1)求证:CF∥AB;(2)若∠CAD=20°,求∠CFD的度数.19.如图,等边△ABC中,AD是∠BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边△BEF,连接CF.(1)求证:AE=CF;(2)求∠ACF的度数.20.如图,△ABC是等边三角形,D、E、F分别是AB、BC、AC上一点,且∠DEF=60°.(1)若∠1=50°,求∠2;(2)连接DF,若DF∥BC,求证:∠1=∠3.21.如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD,BE平分∠ABC,点H是BC 边的中点,连接DH,交BE于点G,连接CG.(1)求证:△ADC≌△FDB;(2)求证:CE=12BF;(3)判断△ECG的形状,并证明你的结论;22.如图,已知在等边三角形ABC中,点D、E分别在直线AB、直线AC上,且AE=BD.(1)当点D、E分别在边AC、边AB上时,如图1所示,EB与CD相交于点G,求∠CGE 的度数;(2)当点D、E分别在边CA、边AB的延长线上时,如图2所示,∠CGE的度数是否变化?如不变,请说明理由.如变化,请求出∠CGE的度数.答案1.A2.D3.C4.C.5.C6.C7.A8.D9.D10.C.11.答案为:100°.12.答案为:7.13.答案为:40°.14.答案为:75°15.答案为:72°.16.答案为:20°.17.解:∵AC=DC=DB,∠ACD=100°∴∠CAD=(180°﹣100°)÷2=40°∵∠CDB是△ACD的外角∴∠CDB=∠A+∠ACD=100°=40°+100°=140°∵DC=DB∴∠B=(180°﹣140°)÷2=20°.18.(1)证明:∵AC=BC∴∠B=∠BAC∵∠ACE=∠B+∠BAC∴∠BAC=12∠ACE∵CF平分∠ACE∴∠ACF=∠ECF=12∠ACE∴∠BAC =∠ACF∴CF ∥AB ;(2)解:∵∠BAC =∠ACF ,∠B =∠BAC ,∠ADF =∠B ∴∠ACF =∠ADF∵∠ADF+∠CAD+∠AGD =180°,∠ACF+∠F+∠CGF =180° 又∵∠AGD =∠CGF∴∠F =∠CAD =20°.19.证明:(1)∵△ABC 是等边三角形∴AB =BC ,∠ABE +∠EBC =60°.∵△BEF 是等边三角形∴EB =BF ,∠CBF +∠EBC =60°.∴∠ABE =∠CBF.在△ABE 和△CBF 中⎩⎨⎧AB =BC ,∠ABE =∠CBF EB =BF ,∴△ABE ≌△CBF(SAS).∴AE =CF.(2)∵等边△ABC 中,AD 是∠BAC 的角平分线∴∠BAE =30°,∠ACB =60°.∵△ABE ≌△CBF∴∠BCF =∠BAE =30°.∴∠ACF =∠BCF +∠ACB =30°+60°=90°.20.解:(1)∵△ABC 是等边三角形∴∠B =∠A =∠C =60°∵∠B +∠1+∠DEB =180°∠DEB +∠DEF +∠2=180°∵∠DEF =60°∴∠1+∠DEB =∠2+∠DEB∴∠2=∠1=50°;(2)连接DF∵DF∥BC∴∠FDE=∠DEB∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°∵∠B=60°,∠DEF=60°∴∠1=∠3.21.证明:(1)∵AB=BC,BE平分∠ABC∴BE⊥AC,CE=AE∵CD⊥AB∴∠ACD=∠DBF在△ADC和△FDB中∴△ADC≌△FDB(ASA);(2)∵△ADC≌△FDB∴AC=BF又∵CE=AE∴CE=12BF;(3)△ECG为等腰直角三角形.∵点H是BC边的中点∴GH垂直平分BC∴GC=GB∵∠DBF=∠GBC=∠GCB=∠ECF,得∠ECG=45°又∵BE⊥AC∴△ECG为等腰直角三角形.22.(1)证明:∵△ABC为等边三角形∴AB=BC,∠A=∠ABC=60°在△ABE和△BCD中AE=BD,∠A=∠DBC,AB=BC∴△ABE≌△BCD∴∠ABE=∠BCD∵∠ABE+∠CBG=60°∴∠BDG+∠CBG=60°∵∠CGE=∠BCG+∠CBG∴∠CGE=60°;(2)证明:∵△ABC为等边三角形∴AB=BC,∠CAB=∠ABC=60°∴∠EAB=∠CBD=120°在△ABE和△BCD中AB=BC,∠EAB=∠CBD,AE=BD∴△ABE≌△BCD(SAS)∴∠D=∠E∵∠ABE=∠DBG,∠CAB=∠E+ABE=60°∴∠CGE=∠D+∠DBG=60°.。
中考数学复习考点知识专题训练21--- 因动点产生的等腰三角形问题(提高篇)
中考数学复习考点知识专题训练21 因动点产生的等腰三角形问题(提优篇)1.如图,在平面直角坐标系中,点A,B分别是y轴正半轴,x轴正半轴上两动点,OA=2k,OB=2k+3,以AO,BO为邻边构造矩形AOBC,抛物线y=−34x2+3x+k交y轴于点D,P为顶点,PM⊥x轴于点M.(1)求OD,PM的长(结果均用含k的代数式表示).(2)当PM=BM时,求该抛物线的表达式.(3)在点A在整个运动过程中,若存在△ADP是等腰三角形,请求出所有满足条件的k的值.2.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠CDE=°,∠AED=°,当点D从点B向点C运动时,∠CDE逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,是否存在△ADE是等腰三角形?若存在,请求出此时∠BDA的度数;若不存在,请说明理由.3.如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有点E(0,﹣2),连接AE.(1)求二次函数的解析式;(2)若点D为抛物线在x轴负半轴上方的一个动点,设点D的横坐标为m,△ADE的面积为S,求S关于m的函数解析式,并写出m的取值范围;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在,请说明理由.4.直线AB:y=﹣x+b分别与x,y轴交于A(8,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=4:3.(1)写出点B,C的坐标:B(,),C(,);(2)求直线BC的解析式;(3)在x轴上是否存在点M,使△BCM为等腰三角形?若存在,请求出M点坐标;若不存在,请说明理由.5.如图所示,在平面直角坐标系中,点A坐标为(2,0),点B坐标为(3,1),将直线AB沿x轴向左平移经过点C(1,1).(1)求平移后直线L的解析式;(2)若点P从点C出发,沿(1)中的直线L以每秒1个单位长度的速度向直线L与x轴的交点运动,点Q从原点O出发沿x轴以每秒2个单位长度的速度向点A运动,两点中有任意一点到达终点运动即停止,设运动时间为t.是否存在t,使得△OPQ为等腰三角形?若存在,直接写出此时t的值;若不存在,请说明理由.6.如图,在矩形ABCD中,点P是BC边上任意一点(点P不与B、C重合),连接AP,作PQ⊥AP,交CD于点Q,若AB=6,BC=8.(1)试证明:△ABP∽△PCQ;(2)当BP为多少时,CQ最长,最长是多少?(3)试探究,是否存在一点P,使△APQ是等腰直角三角形?7.综合与实践:如图1,△ABC中,AB=AC,BD⊥AC于点D,BD=8cm且CD:AD=2:3;如图2,在图1的基础上,动点P从点A出发以每秒2cm的速度沿线段AB向点B运动,同时动点Q 从点C出发以相同速度沿线段CA向点A运动,当其中一点到达终点时另外一点也随之停止运动,设点P运动的时间为t秒.(1)请直接写出AB的长:AB=cm;(2)当△PDQ的其中一边与BC平行时(Q与D不重合),求t的值;(3)点P在线段AB上运动的过程中,是否存在以AD为腰的△P AD是等腰三角形?若存在,请直接写出t的值;若不存在,请说明理由.8.已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),点C的坐标为(﹣2,﹣3),且在抛物线上.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在动点M,使△MAC是等腰三角形?若存在,请求出M点的坐标,若不存在,请说明理由.9.已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标以及这个最小周长;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.10.如图,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A,B分别在x轴与y轴上,已知OA=2,OB=4,点D为y轴上一点,其坐标为(0,1),点P从点A出发以每秒1个单位的速度沿线段AC﹣CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)①求△OPD的面积S关于t的函数解析式;②当点D关于OP的对称点落在x轴上时,求点P的坐标;(3)点P在运动过程中,是否存在某时刻使△BDP为等腰三角形?若存在,请求出所有点P的坐标,若不存在,请说明理由.11.如图,把矩形OABC放入平面直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,对角线AC所在直线解析式为y=−53x+15,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.(1)求点E的坐标;(2)在y轴上是否存在点P,使△PBE为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.12.如图,已知抛物线y=−13x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).(1)求抛物线的解析式;(2)求线段BC所在直线的解析式;(3)在抛物线的对称轴上是否存在点P,使△ACP为等腰三角形?若存在,求出符合条件的P点坐标;若不存在,请说明理由.13.如图,平面直角坐标系中,点A、点B在x轴上(点A在点B的左侧),点C在第一象限,满足∠ACB为直角,且恰使△OCA∽△OBC,抛物线y=ax2﹣8ax+12a(a<0)经过A、B、C三点.(1)求线段OB、OC的长.(2)求点C的坐标及该抛物线的函数关系式;(3)在x轴上是否存在点P,使△BCP为等腰三角形?若存在,求出所有符合条件的P点的坐标:若不存在,请说明理由.14.如图,在△ABC中,AB=AC=3,∠B=50°,点D在线段BC上运动(不与B、C重合),连接AD,作∠ADE=50°,DE交线段AC于E.(1)当∠BDA=105°时,∠BAD=°,∠DEC=°;(2)若DC=AB,求证:△ABD≌△DCE;(3)在点D的运动过程中,是否存在△ADE是等腰三角形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.15.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2).(1)求直线AB的函数表达式;(2)若在y轴上存在一点M,使MA+MB的值最小,请求出点M的坐标;(3)在x轴上是否存在点N,使△AON是等腰三角形?如果存在,直接写出点N的坐标;如果不存在,说明理由.16.如图,已知抛物线y=13x2+bx+c与y=x+1交于A(﹣1,0)、C(n,9)两点.(1)求点C的坐标及抛物线的解析式;(2)若点P是y轴上一个动点,是否存在点P,使△ABP为等腰三角形,若存在,求点P的坐标;若不存在,请说明理由;(3)抛物线对称轴上存在一点D,使|CD﹣AD|最大,求作点D并直接写出点D的坐标.17.已知抛物线y=﹣(x﹣m)2+1与x轴的交点为点A,B(B位于A的右侧),与y轴的交点为点C.(1)若m=3,求点A、B、C的坐标;(2)当点B在原点的右边,点C在原点的下方时,是否存在△BOC为等腰三角形的情形?若存在,求出m的值;若不存在,请说明理由;(3)已知一次函数y=kx+b,点P(n,0)是x轴上一个动点,在(2)的条件下,过点P作垂直于x轴的直线交这个一次函数的图象于点M,交抛物线y=﹣x2+2mx﹣m2+1于点N,若只有当1<n<4时,点M位于点N的下方,求这个一次函数的解析式.18.如图所示,已知△ABC中,∠B=90°,AB=16cm,AC=20cm,P、Q是△ABC的边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A 方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为ts.根据以上信息,回答下面问题:(1)求BC的长度;(2)当t为何值时,点P在边AC的垂直平分线上?(3)当点Q在边CA上运动时,是否存在t的值,使△BCQ为等腰三角形,若存在,请求出t的值;若不存在,请说明理由.19.如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,顶点C,D都在第一象限内,OA、OB的长分别为4和3.(1)求点D的坐标;(2)求直线BC的解析式;(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.20.如图,抛物线y=﹣x2+bx+c与x轴相交于A,B两点(点A位于点B的左侧),与y轴相交于点C,M是抛物线的顶点,直线x=1是抛物线的对称轴,且点C的坐标为(0,3).(1)求抛物线的解析式;(2)已知P为线段MB上一个动点,过点P作PD⊥x轴于点D.若PD=m,△PCD的面积为S.求S与m之间的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,在线段MB上是否存在点P,使△PCD为等腰三角形?如果存在,请写出点P的坐标;如果不存在,请说明理由.。
最新整理近几年(2018-2020)精选全国部分地区中考数学压轴题专题一:因动点产生的等腰三角形问题
挑战中考压轴题---中考冲刺系列2021版专题一:因动点产生的等腰三角形问题【例1】(2020年上海市中考第25题)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【例2】(2020年黑龙江省龙东地区中考第28题)如图,在平面直角坐标系中,矩形ABCD 的边AB长是x2﹣3x﹣18=0的根,连接BD,∠DBC=30°,并过点C作CN⊥BD,垂足为N,动点P从B点以每秒2个单位长度的速度沿BD方向匀速运动到D点为止;点M沿线段DA以每秒个单位长度的速度由点D向点A匀速运动,到点A为止,点P与点M 同时出发,设运动时间为t秒(t>0).(1)线段CN=;(2)连接PM和MN,求△PMN的面积s与运动时间t的函数关系式;(3)在整个运动过程中,当△PMN是以PN为腰的等腰三角形时,直接写出点P的坐标.因动点产生的等腰三角形问题-核心方法总结一、如何找?两圆一线1、已知腰长画等腰三角形,用圆规画圆,圆上除了两个点以外,都是顶点C;2、已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外.二、如何解?几何法和代数法在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC 是等腰三角形,那么存在:①AB=AC;②BA=BC;③CA=CB 三种情况.1、几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC 的∠A (的余弦值)是确定的,夹∠A 的两边AB 和AC 可以用含x 的式子表示出来,那么就用几何法。
①如图,如果AB=AC,直接列方程②如图2,如果BA=BC,那么A AB AC cos 21=③如图,如果CA=CB,那么A AC AB cos 21=2、代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x 的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来。
2020年中考数学压轴题训练 等腰三角形的存在性问题
2020年中考数学压轴题训练等腰三角形的存在性问题针对训练1、如图在平面直角坐标系x()中,已知点D的坐标为(3,4),点P是x轴正半轴上的一个动点,如果△DOP是等腰三角形,求点P的坐标2、如图,在矩形ABCD中,AB=6,BC=8,动点P以2个单位/秒的速度从点A出发,沿AC向点C移动同时动点Q以1个单位/秒的速度从点C出发,沿CB向点B移动,当P、Q两点中其中一点到达终点时停止运动在P、Q两点移动过程中,当△PQC为等腰三角形时,求时间t3、如图,直线y=2x+2与x轴交于点A,与y轴交于点B,点P是x轴正半轴上的一个动点直线PQ与直线AB垂直,交y轴于点Q,如果△APQ是等腰三角形,求点P的坐标4、如图,在△ABC中,AB=AC=10,BC=16,DE=4.动线段DE(端点D从点B开始)沿BC以每秒1个单位长度的速度向点C运动,当端点E到达点C时运动停止过点E作EF∥AC交AB于点F(当点E与点C重合时,EF与CA重合),连结DF,设运动的时间为t秒(t≥0)(1)直接写出线段BE、EF的长(用含t的代数式表示)(2)在整个运动过程中,△DEF能否为等腰三角形?若能,请求出t的值;若不能,请说明理由5、如图,已知四边形ABCD 是矩形,AB=16,BC=12.点E 在射线BC 上,点F 在线段BD 上且∠DEF=∠ADB.设EE=x ,当△DEF 为等腰三角形时,求x 的值6、如图,在等腰直角三角形BCE 中,斜边BC=4②.P 是BE 延长线上一点,连结PC ,以FC 为直角边向下方作等腰直角三角形PCD ,(D 交线段BE 于点F.若PE=x ,当△BDF 为等腰三角形时,求x 的值真题演练7、(19攀枝花24)如图,在平面直角坐标系xOy 中,已知A (0,2),动点P 在y=32x 的图象上运动(不与O 重合),连结AP .过点P 作RQ ⊥AP ,交x 轴于点Q ,连结AQ(1)求线段AP 长度的取值范围(2)试问:点P 运动的过程中,∠QAP 是否为定值?如果是,求出该值;如果不是,请说明理由(3)当△OPQ 为等腰三角形时,求点Q 的坐标作图区爾区8、(18重庆卷2)抛物线y=263663y x x =--+与x 轴交于点A 、B 点A 在点B 的左边与y 轴交于点C ,点D 是该拋物线的顶点(1)如图1,连结CD 求线段CD 的长(2)如图2,点P 是直线AC 上方抛物线上一点,PF ⊥x 轴于点F,PF 与线段AC 交于点E 将线段OB 沿x 轴左右平移,线段OB 的对应线段是O 1B 1,当PE+12EC 的值最大时,求四边形POB 1C 的周长的最小值,并求出对应的点O 的坐标(3)如图3,点H 是线段AB 的中点,连结CH ,将△OBC 沿直线CH 翻折至△OB 2C 的位置,再将△OBC 绕点B 2旋转一周,在旋转的过程中,点O 、C 的对应点分别是点O 、C ,直线C 1分别与直线AC 、x 轴交于点M 、N.那么,在△OB 2C 的整个旋转过程中,是否存在恰当的位置,使△AMN 是以MN 为腰的等腰三角形?若存在,请直按写出所有符合条件的线段OM的长;若不存在,请说明理由9、(19湖州23)已知在平面直角坐标系xOy中,直线l分别交x轴和y轴于点A(-3,0)B(0,3)(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长(2)如图2,已知直线l1:y=3x-3分别交x轴和y轴于点C和点D,点Q是直线l2上的个动点,以Q为圆心,22为半径画圆①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M、N两点,连结QM、QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由10、(17广东25)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A、C的坐标分别是A(0,2)和C(23),点D是对角线AC上一动点(不与A、C重合),连结BD.作DE⊥DB,交x轴于点E,以线段DE、DB为邻边作矩形BDEF (1)填空:点B的坐标为(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由(3)①求证:3DE DB = ②设AD=x ,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用①的结论),并求的最小值模拟训练11、(2018年陕西省中考模拟第24题)如图所示,抛物线C 1:y=x 2+bx+c 经过原点,与x 轴的另一个交点为(2,0),将抛物线C 1向右平移m (m>0)个单位得到抛物线C 2,C 2交x 轴于A B 两点(点A 在点B 的左侧)交y 轴于点C(1)求抛物线C 1的解析式及顶点坐标;(2)以AC 为斜边向上作等腰直角三角形ACD ,当点D 落在抛物线C 2的对称轴上时。
中考数学复习压轴题冲刺 代几综合题 第一讲 动点产生的等腰三角形
6
Байду номын сангаас
例 1.已知:抛物线 y x2 (a 2)x 2a ( a 为常数,且 a 0 ).
2021年
7
【解析】(1)令 y 0 ,则 x2 (a 2)x 2a 0 .△= (a 2)2 8a (a 2)2 . ∵ a 0,∴ a 2 0.∴ △ 0 . ∴ 抛物线与 x 轴有两个交点.
动点产生的等腰三角形
讲师:苏海涛
2021年
1
真题展示
2021年
2
动点产生的等腰三角形
2021年
3
动点产生的等腰三角形
2021年
4
冲刺满分
2021年
5
如何解决运动产生的等腰三角形问题:
假设形成了 等腰三角形
利用等腰三角形 的性质解决
常用知识:等角 对等边,等腰三 角形“三线合一” 等等
2021年
在 Rt△ AOC 中, AO2 CO2 (2 5 )2 , a2 (2a)2 20 .可得 a 2 . ∵ a 0,∴ a 2.∴ 抛物线的解析式为 y x2 4 .
2021年
8
例 2.(兰州)如图,抛物线 y=﹣ 1 x2 + mx + n 与 x 轴交于 A、B 两点,与 y 轴交于点 C,抛物线的对称轴交 x 轴 2
在 Rt△OCD 中,由勾股定理,得 CD = 5 . 2
2019年中考数学压轴题精练:因动点产生的等腰三角形问题(含2013试题,含详解)
数学精品复习资料因动点产生的等腰三角形问题例1 2013年上海市虹口区中考模拟第25题如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC 交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1 备用图动感体验请打开几何画板文件名“13虹口25”,拖动点P在射线AB上运动,可以体验到,△PDM 与△QDN保持相似.观察△PDF,可以看到,P、F可以落在对边的垂直平分线上,不存在DF=DP的情况.请打开超级画板文件名“13虹口25”,拖动点P在射线AB上运动,可以体验到,△PDM与△QDN保持相似.观察△PDF,可以看到,P、F可以落在对边的垂直平分线上,不存在DF=DP的情况.思路点拨1.第(2)题BP=2分两种情况.2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ.满分解答(1)在Rt△ABC中,AB=6,AC=8,所以BC=10.在Rt△CDE中,CD=5,所以315tan544ED CD C=⋅∠=⨯=,254EC=.(2)如图2,过点D作DM⊥AB,DN⊥AC,垂足分别为M、N,那么DM、DN是△ABC的两条中位线,DM=4,DN=3.由∠PDQ=90°,∠MDN=90°,可得∠PDM=∠QDN.因此△PDM∽△QDN.所以43PM DMQN DN==.所以34QN PM=,43PM QN=.图2 图3 图4①如图3,当BP=2,P在BM上时,PM=1.此时3344QN PM==.所以319444CQ CN QN=+=+=.②如图4,当BP=2,P在MB的延长线上时,PM=5.此时31544QN PM==.所以1531444CQ CN QN=+=+=.(3)如图5,如图2,在Rt△PDQ中,3 tan4QD DNQPDPD DM∠===.在Rt△ABC中,3tan4BACCA∠==.所以∠QPD=∠C.由∠PDQ=90°,∠CDE=90°,可得∠PDF=∠CDQ.因此△PDF∽△CDQ.当△PDF是等腰三角形时,△CDQ也是等腰三角形.①如图5,当CQ=CD=5时,QN=CQ-CN=5-4=1(如图3所示).此时4433PM QN==.所以45333BP BM PM=-=-=.②如图6,当QC=QD时,由cosCHCCQ=,可得5425258CQ=÷=.所以QN=CN-CQ=257488-=(如图2所示).此时4736PM QN==.所以725366BP BM PM=+=+=.③不存在DP=DF的情况.这是因为∠DFP≥∠DQP>∠DPQ(如图5,图6所示).图5 图6考点伸展如图6,当△CDQ是等腰三角形时,根据等角的余角相等,可以得到△BDP也是等腰三角形,PB=PD.在△BDP中可以直接求解256 BP=.例2 2012年扬州市中考第27题如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“12扬州27”,拖动点P在抛物线的对称轴上运动,可以体验到,当点P落在线段BC上时,P A+PC最小,△P AC的周长最小.拖动点M在抛物线的对称轴上运动,观察△MAC的三个顶点与对边的垂直平分线的位置关系,可以看到,点M有1次机会落在AC的垂直平分线上;点A有2次机会落在MC的垂直平分线上;点C有2次机会落在MA的垂直平分线上,但是有1次M、A、C三点共线.思路点拨1.第(2)题是典型的“牛喝水”问题,点P在线段BC上时△P AC的周长最小.2.第(3)题分三种情况列方程讨论等腰三角形的存在性.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3, 0)两点,设y=a(x+1)(x-3),代入点C(0 ,3),得-3a=3.解得a=-1.所以抛物线的函数关系式是y=-(x+1)(x-3)=-x2+2x+3.(2)如图2,抛物线的对称轴是直线x=1.当点P落在线段BC上时,P A+PC最小,△P AC的周长最小.设抛物线的对称轴与x轴的交点为H.由BH PHBO CO=,BO=CO,得PH=BH=2.所以点P的坐标为(1, 2).图2 (3)点M的坐标为(1, 1)、(1,6)、(1,6-)或(1,0).考点伸展第(3)题的解题过程是这样的:设点M的坐标为(1,m).在△MAC中,AC2=10,MC2=1+(m-3)2,MA2=4+m2.①如图3,当MA=MC时,MA2=MC2.解方程4+m2=1+(m-3)2,得m=1.此时点M的坐标为(1, 1).②如图4,当AM=AC时,AM2=AC2.解方程4+m2=10,得6m=±.此时点M的坐标为(1,6)或(1,6-).③如图5,当CM=CA时,CM2=CA2.解方程1+(m-3)2=10,得m=0或6.当M(1, 6)时,M、A、C三点共线,所以此时符合条件的点M的坐标为(1,0).图3 图4 图5例3 2012年临沂市中考第26题如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“12临沂26”,拖动点P在抛物线的对称轴上运动,可以体验到,⊙O和⊙B以及OB的垂直平分线与抛物线的对称轴有一个共同的交点,当点P运动到⊙O与对称轴的另一个交点时,B、O、P三点共线.请打开超级画板文件名“12临沂26”,拖动点P,发现存在点P,使得以点P、O、B 为顶点的三角形是等腰三角形思路点拨1.用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验.2.本题中等腰三角形的角度特殊,三种情况的点P重合在一起.满分解答(1)如图2,过点B作BC⊥y轴,垂足为C.OC=在Rt△OBC中,∠BOC=30°,OB=4,所以BC=2,23所以点B的坐标为(2,23)--.(2)因为抛物线与x轴交于O、A(4, 0),设抛物线的解析式为y=ax(x-4),代入点B (2,23)--,232(6)a -=-⨯-.解得36a =-. 所以抛物线的解析式为23323(4)663y x x x x =--=-+. (3)抛物线的对称轴是直线x =2,设点P 的坐标为(2, y ).①当OP =OB =4时,OP 2=16.所以4+y 2=16.解得23y =±.当P 在(2,23)时,B 、O 、P 三点共线(如图2).②当BP =BO =4时,BP 2=16.所以224(23)16y ++=.解得1223y y ==-. ③当PB =PO 时,PB 2=PO 2.所以22224(23)2y y ++=+.解得23y =-.综合①、②、③,点P 的坐标为(2,23)-,如图2所示.图2 图3考点伸展如图3,在本题中,设抛物线的顶点为D ,那么△DOA 与△OAB 是两个相似的等腰三角形.由23323(4)2)y x x =-=-23D . 因此23tan DOA ∠=DOA =30°,∠ODA =120°.例4 2011年盐城市中考第28题如图1,已知一次函数y=-x+7与正比例函数43y x=的图象交于点A,且与x轴交于点B.(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“11盐城28”,拖动点R由B向O运动,从图象中可以看到,△APR的面积有一个时刻等于8.观察△APQ,可以体验到,P在OC上时,只存在AP=AQ的情况;P在CA上时,有三个时刻,△APQ是等腰三角形.思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR的面积等于8,按照点P的位置分两种情况讨论.事实上,P在CA上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ,按照点P的位置分两种情况讨论,点P的每一种位置又要讨论三种情况.满分解答(1)解方程组7,4,3y xy x=-+⎧⎪⎨=⎪⎩得3,4.xy=⎧⎨=⎩所以点A的坐标是(3,4).令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8APR ACP POR CORA S S S S =--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,42AB =,所以OB >AB .因此∠OAB >∠AOB >∠B .如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠P AQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1.我们再来讨论P 在CA 上运动时的情形,4≤t <7.在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-. 如图5,当AP =AQ 时,解方程520733t t -=-,得418t =. 如图6,当QP =QA 时,点Q 在P A 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.如7,当P A =PQ 时,那么12cos AQ A AP∠=.因此2cos AQ AP A =⋅∠.解方程52032(7)335t t -=-⨯,得22643t =. 综上所述,t =1或418或5或22643时,△APQ 是等腰三角形.图5 图6 图7考点伸展当P在CA上,QP=QA时,也可以用2cosAP AQ A=⋅∠来求解.例5 2010年南通市中考第27题如图1,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12ym=,要使△DEF为等腰三角形,m的值应为多少?图1动感体验请打开几何画板文件名“10南通27”,拖动点E在BC上运动,观察y随x变化的函数图象,可以体验到,y是x的二次函数,抛物线的开口向下.对照图形和图象,可以看到,当E是BC的中点时,y取得最大值.双击按钮“m=8”,拖动E到BC的中点,可以体验到,点F是AB的四等分点.拖动点A可以改变m的值,再拖动图象中标签为“y随x”的点到射线y=x上,从图形中可以看到,此时△DC E≌△EBF.思路点拨1.证明△DCE∽△EBF,根据相似三角形的对应边成比例可以得到y关于x的函数关系式.2.第(2)题的本质是先代入,再配方求二次函数的最值.3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF为等腰三角形,那么得到x =y ;一段是计算,化简消去m ,得到关于x 的一元二次方程,解出x 的值;第三段是把前两段结合,代入求出对应的m 的值.满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m x x y -=.整理,得y 关于x 的函数关系为218y x x m m =-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2. (3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m =,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如:由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程 218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.例 6 2009年江西省中考第25题如图1,在等腰梯形ABCD中,AD//BC,E是AB的中点,过点E作EF//BC交CD于点F,AB=4,BC=6,∠B=60°.(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过点P作PM⊥EF交BC于M,过M作MN//AB 交折线ADC于N,连结PN,设EP=x.①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN 的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.图1 图2 图3动感体验请打开几何画板文件名“09江西25”,拖动点P在EF上运动,可以体验到,当N在AD上时,△PMN的形状不发生改变,四边形EGMP是矩形,四边形BMQE、四边形ABMN 是平行四边形,PH与NM互相平分.当N在DC上时,△PMN的形状发生变化,但是△CMN恒为等边三角形,分别双击按钮“PM=PN”、“MP=M N”和“NP=NM”,可以显示△PMN为等腰三角形.思路点拨1.先解读这个题目的背景图,等腰梯形ABCD的中位线EF=4,这是x的变化范围.平行线间的距离处处相等,AD与EF、EF与BC间的距离相等.2.当点N在线段AD上时,△P MN中PM和MN的长保持不变是显然的,求证PN的长是关键.图形中包含了许多的对边平行且相等,理顺线条的关系很重要.3.分三种情况讨论等腰三角形PMN,三种情况各具特殊性,灵活运用几何性质解题.满分解答(1)如图4,过点E作EG⊥BC于G.在Rt △BEG 中,221==AB BE ,∠B =60°, 所以160cos =︒⋅=BE BG ,360sin =︒⋅=BE EG . 所以点E 到BC 的距离为3.(2)因为AD //EF //BC ,E 是AB 的中点,所以F 是D C 的中点.因此EF 是梯形ABCD 的中位线,EF =4.①如图4,当点N 在线段AD 上时,△PMN 的形状不是否发生改变.过点N 作NH ⊥EF 于H ,设PH 与NM 交于点Q .在矩形EGMP 中,EP =G M =x ,PM =EG =3.在平行四边形BMQE 中,BM =EQ =1+x .所以BG =PQ =1.因为PM 与NH 平行且相等,所以PH 与NM 互相平分,PH =2PQ =2.在Rt △PNH 中,NH =3,PH =2,所以PN =7.在平行四边形ABMN 中,MN =AB =4.因此△PMN 的周长为3+7+4.图4 图5②当点N 在线段DC 上时,△CMN 恒为等边三角形.如图5,当PM =PN 时,△PMC 与△PNC 关于直线PC 对称,点P 在∠DCB 的平分线上.在Rt △PCM 中,PM =3,∠PCM =30°,所以MC =3.此时M 、P 分别为BC 、EF 的中点,x =2.如图6,当MP =MN 时,MP =MN =MC =3,x =GM =GC -MC =5-3. 如图7,当NP =NM 时,∠NMP =∠NPM =30°,所以∠PNM =120°.又因为∠FNM =120°,所以P 与F 重合.此时x =4.综上所述,当x =2或4或5-3时,△PMN 为等腰三角形.图6 图7 图8 考点伸展第(2)②题求等腰三角形PMN 可以这样解:如图8,以B 为原点,直线BC 为x 轴建立坐标系,设点M 的坐标为(m ,0),那么点P 的坐标为(m ,3),MN =MC =6-m ,点N 的坐标为(26+m ,2)6(3m -). 由两点间的距离公式,得21922+-=m m PN .当PM =PN 时,92192=+-m m ,解得3=m 或6=m .此时2=x .当MP =MN 时,36=-m ,解得36-=m ,此时35-=x . 当NP =NM 时,22)6(219m m m -=+-,解得5=m ,此时4=x .。
专题37 动态几何之动点形成的等腰三角形存在性问题(压轴题)
《中考压轴题》专题37:动态几何之动点形成的等腰三角形存在性问一、选择题1.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是A.2B.3C.4D.5二、填空题1.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的△是腰长为5的等腰三角形时,点P的坐标为。
中点,点P在BC上运动,当ODP2.如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ 是等腰三角形,则符合条件的Q点有个.3.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD的中点,点P在x 轴上移动.小明同学写出了两个使△POE为等腰三角形的P点坐标为(-5,0)和(5,0).请你写出其余所有符合这个条件的P点的坐标.三、解答题1.如图,抛物线21y x mx n 2=-++与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知A (﹣1,0),C (0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(3)点E 时线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.2.如图,二次函数24y x bx c 3=++的图象与x 轴交于A (3,0),B (﹣1,0),与y 轴交于点C .若点P ,Q 同时从A 点出发,都以每秒1个单位长度的速度分别沿AB ,AC 边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C 的坐标;(2)当点P 运动到B 点时,点Q 停止运动,这时,在x 轴上是否存在点E ,使得以A ,E ,Q 为顶点的三角形为等腰三角形?若存在,请求出E 点坐标;若不存在,请说明理由.(3)当P ,Q 运动到t 秒时,△APQ 沿PQ 翻折,点A 恰好落在抛物线上D 点处,请判定此时四边形APDQ 的形状,并求出D 点坐标.3.已知抛物线经过A (﹣2,0),B (0,2),C (32,0)三点,一动点P 从原点出发以1个单位/秒的速度沿x 轴正方向运动,连接BP ,过点A 作直线BP 的垂线交y 轴于点Q .设点P 的运动时间为t 秒.(1)求抛物线的解析式;(2)当BQ=12AP 时,求t 的值;(3)随着点P 的运动,抛物线上是否存在一点M ,使△MPQ 为等边三角形?若存在,请直接写t 的值及相应点M 的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,O 为坐标原点,抛物线过2y ax bx c(a 0)=++≠过O 、B 、C 三点,B 、C 坐标分别为(10,0)和(185,245-),以OB 为直径的⊙A 经过C 点,直线l 垂直于x 轴于点B.(1)求直线BC 的解析;(2)求抛物线解析式及顶点坐标;(3)点M 是⊙A 上一动点(不同于O ,B ),过点M 作⊙A 的切线,交y 轴于点E ,交直线l 于点F ,设线段ME 长为m ,MF 长为n ,请猜想m n ⋅的值,并证明你的结论;(4)点P 从O 出发,以每秒1个单位速度向点B 作直线运动,点Q 同时从B 出发,以相同速度向点C 作直线运动,经过t(0<t )秒时恰好使△BPQ 为等腰三角形,请求出满足条件的t 值.5.在平面直角坐标系xOy 中,二次函数213y x x 222=-++的图像与x 轴交于点A ,B (点B 在点A 的左侧),与y 轴交于点C ,过动点H (0,m )作平行于x 轴的直线,直线与二次函数213y x x 222=-++的图像相交于点D ,E.(1)写出点A,点B 的坐标;(2)若m >0,以DE 为直径作⊙Q ,当⊙Q 与x 轴相切时,求m 的值;(3)直线上是否存在一点F ,使得△ACF 是等腰直角三角形?若存在,求m 的值;若不存在,请说明理由.6.如图1,抛物线y=ax 2+bx ﹣1经过A (﹣1,0)、B (2,0)两点,交y 轴于点C .点P 为抛物线上的一个动点,过点P 作x 轴的垂线交直线BC 于点D ,交x 轴于点E .(1)请直接写出抛物线表达式和直线BC 的表达式.(2)如图1,当点P 的横坐标为32时,求证:△OBD ∽△ABC .(3)如图2,若点P 在第四象限内,当OE=2PE 时,求△POD 的面积.(4)当以点O 、C 、D 为顶点的三角形是等腰三角形时,请直接写出动点P 的坐标.7.如图,抛物线y=-x 2+bx+c 交x 轴于点A ,交y 轴于点B ,已知经过点A ,B 的直线的表达式为y=x+3.(1)求抛物线的函数表达式及其顶点C 的坐标;(2)如图①,点P (m ,0)是线段AO 上的一个动点,其中-3<m <0,作直线DP ⊥x 轴,交直线AB 于D ,交抛物线于E ,作EF ∥x 轴,交直线AB 于点F ,四边形DEFG 为矩形.设矩形DEFG 的周长为L ,写出L 与m 的函数关系式,并求m 为何值时周长L 最大;(3)如图②,在抛物线的对称轴上是否存在点Q ,使点A ,B ,Q 构成的三角形是以AB 为腰的等腰三角形?若存在,直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由.8.如图,抛物线2y ax bx c =++(a≠0)的图象过点M (2,-,顶点坐标为N 1,3⎛⎫- ⎪ ⎪⎝⎭,且与x 轴交于A 、B 两点,与y 轴交于C 点.(1)求抛物线的解析式;(2)点P 为抛物线对称轴上的动点,当△PBC 为等腰三角形时,求点P 的坐标;(3)在直线AC 上是否存在一点Q ,使△QBM 的周长最小?若存在,求出Q 点坐标;若不存在,请说明理由.称轴的抛物线过A,B,C三点.(1)求该抛物线线的函数解析式.=+,它与x轴的交于点G,在梯形ABCO的一边上取点P.(2)已知直线l的解析式为y x m①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积.=-时,过P点分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F ②当m3为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.对称轴的抛物线过A,B,C三点.(1)求该抛物线线的函数解析式.=+,它与x轴的交于点G,在梯形ABCO的一边上取点P.(2)已知直线l的解析式为y x m①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积.=-时,过P点分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F ②当m3为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.11.已知:在矩形ABCD中,E为边BC上的一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF。
中考数学压轴试题复习第一部分专题二因动点产生的等腰三角形问题
§1.2 因动点产生的等腰三角形问题课前导学我们先回顾两个画图问题:1.已知线段AB=5厘米,以线段AB为腰的等腰三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB=6厘米,以线段AB为底边的等腰三角形ABC有多少个?顶点C的轨迹是什么?已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C.已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外.在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.图1 图2 图3例 9 2014年长沙市中考第26题如图1,抛物线y=ax2+bx+c(a、b、c是常数,a≠0)的对称轴为y轴,且经过(0,0)和两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0, 2).(1)求a、b、c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1, 0)、N(x2, 0)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.图1动感体验请打开几何画板文件名“14长沙26”,拖动圆心P在抛物线上运动,可以体验到,圆与x轴总是相交的,等腰三角形AMN存在五种情况.思路点拨1.不算不知道,一算真奇妙,原来⊙P在x轴上截得的弦长MN=4是定值.2.等腰三角形AMN存在五种情况,点P的纵坐标有三个值,根据对称性,MA=MN和NA =NM时,点P的纵坐标是相等的.图文解析(1)已知抛物线的顶点为(0,0),所以y=ax2.所以b=0,c=0.将代入y=ax2,得.解得(舍去了负值).(2)抛物线的解析式为,设点P的坐标为.已知A(0, 2),所以>.而圆心P到x轴的距离为,所以半径PA>圆心P到x轴的距离.所以在点P运动的过程中,⊙P始终与x轴相交.(3)如图2,设MN的中点为H,那么PH垂直平分MN.在Rt△PMH中,,,所以MH2=4.所以MH=2.因此MN=4,为定值.等腰△AMN存在三种情况:①如图3,当AM=AN时,点P为原点O重合,此时点P的纵坐标为0.图2 图3②如图4,当MA=MN时,在Rt△AOM中,OA=2,AM=4,所以OM=2.。
挑战中考数学压轴题(第九版精选)之欧阳道创编
目录第一部分函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 2015年上海市宝山嘉定区中考模拟第24题例2 2014年武汉市中考第24题例3 2012年苏州市中考第29题例4 2012年黄冈市中考第25题例5 2010年义乌市中考第24题例6 2009年临沂市中考第26题1.2 因动点产生的等腰三角形问题例1 2015年重庆市中考第25题例2 2014年长沙市中考第第26题例3 2013年上海市虹口区中考模拟第25题例42012年扬州市中考第27题例5 2012年临沂市中考第26题例62011年盐城市中考第28题1.3 因动点产生的直角三角形问题例12015年上海市虹口区中考模拟第25题例22014年苏州市中考第29题例3 2013年山西省中考第26题例4 2012年广州市中考第24题例5 2012年杭州市中考第22题例6 2011年浙江省中考第23题例7 2010年北京市中考第24题1.4 因动点产生的平行四边形问题例1 2015年成都市中考第28题例2 2014年陕西省中考第24题例3 2013年上海市松江区中考模拟第24题例42012年福州市中考第21题例5 2012年烟台市中考第26题例6 2011年上海市中考第24题例7 2011年江西省中考第24题1.5 因动点产生的梯形问题例1 2015年上海市徐汇区中考模拟第24题例2 2014年上海市金山区中考模拟第24题例3 2012年上海市松江中考模拟第24题例4 2012年衢州市中考第24题例5 2011年义乌市中考第24题1.6 因动点产生的面积问题例1 2015年河南市中考第23题例22014年昆明市中考第23题例3 2013年苏州市中考第29题例4 2012年菏泽市中考第21题例5 2012年河南省中考第23题例62011年南通市中考第28题例72010年广州市中考第25题1.7因动点产生的相切问题例12015年上海市闵行区中考模拟第24题例22014年上海市徐汇区中考模拟第25题例3 2013年上海市杨浦区中考模拟第25题1.8因动点产生的线段和差问题例1 2015年福州市中考第26题例22014年广州市中考第24题例3 2013年天津市中考第25题例4 2012年滨州市中考第24题第二部分图形运动中的函数关系问题2.1 由比例线段产生的函数关系问题例12015年呼和浩特市中考第25题例22014年上海市徐汇区中考模拟第25题例3 2013年宁波市中考第26题例4 2012年上海市徐汇区中考模拟第25题2.2 由面积公式产生的函数关系问题例12015年上海市徐汇区中考模拟第25题例2 2014年黄冈市中考第25题例3 2013年菏泽市中考第21题例4 2012年广东省中考第22题例5 2012年河北省中考第26题例6 2011年淮安市中考第28题第三部分图形运动中的计算说理问题3.1 代数计算及通过代数计算进行说理问题例12015年北京市中考第29题例2 2014年福州市中考第22题例3 2013年南京市中考第26题3.2几何证明及通过几何计算进行说理问题例12015年杭州市中考第22题例2 2014年安徽省中考第23题例3 2013年上海市黄浦区中考模拟第24题第四部分图形的平移翻折与旋转4.1图形的平移例12015年泰安市中考第15题例2 2014年江西省中考第11题4.2图形的翻折例1 2015年上海市宝山区嘉定区中考模拟第18题例2 2014年上海市中考第18题4.3图形的旋转例12015年扬州市中考第17题例2 2014年上海市黄浦区中考模拟第18题4.4三角形例12015年上海市长宁区中考模拟第18题例2 2014年泰州市中考第16题4.5四边形例12015年安徽省中考第19题例2 2014年广州市中考第8题4.6圆例12015年兰州市中考第15题例22014年温州市中考第16题4.7函数图像的性质例12015年青岛市中考第8题例2 2014年苏州市中考第18题第一部分函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 2015年上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E 的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入ky,得k=8.x(2)将点B(n, 2),代入8y x =,得n =4. 所以点B 的坐标为(4, 2). 设直线BC 为y =x +b ,代入点B(4,2),得b =-2.所以点C 的坐标为(0,-2).由A(2, 4)、B(4, 2)、C (0,-2),可知A 、B 两点间的水平距离和竖直距离都是2,B 、C 两点间的水平距离和竖直距离都是4.所以AB =22,BC =42,∠ABC =90°. 图2所以S △ABC =12BA BC ⋅=122422⨯⨯=8. (3)由A(2, 4)、D(0, 2)、C (0,-2),得AD =22,AC =210. 由于∠DAC +∠ACD =45°,∠ACE +∠ACD =45°,所以∠DAC =∠ACE .所以△ACE 与△ACD 相似,分两种情况:①如图3,当CE AD CA AC =时,CE =AD =22.此时△ACD ≌△CAE ,相似比为1.②如图4,当CE AC CA AD=时,21021022=.解得CE =102.此时C 、E 两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4 考点伸展第(2)题我们在计算△ABC 的面积时,恰好△ABC 是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图5例22014年武汉市中考第24题如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.图1 图2动感体验请打开几何画板文件名“14武汉24”,拖动点P运动,可以体验到,若△BPQ可以两次成为直角三角形,与△ABC相似.当AQ⊥CP时,△ACQ∽△CDP.PQ 的中点H在△ABC的中位线EF上.思路点拨1.△BPQ与△ABC有公共角,按照夹角相等,对应边成比例,分两种情况列方程.2.作PD⊥BC于D,动点P、Q的速度,暗含了BD=CQ.3.PQ的中点H在哪条中位线上?画两个不同时刻P、Q、H的位置,一目了然.满分解答(1)Rt△ABC中,AC=6,BC=8,所以AB=10.△BPQ 与△ABC 相似,存在两种情况:① 如果BP BA BQ BC =,那么510848t t =-.解得t =1. ② 如果BP BC BQ BA =,那么588410t t =-.解得3241t =. 图3 图4(2)作PD ⊥BC ,垂足为D .在Rt △BPD 中,BP =5t ,cosB =45,所以BD =BPcosB =4t ,PD =3t .当AQ ⊥CP 时,△ACQ ∽△CDP . 所以AC CD QC PD =,即68443t t t -=.解得78t =.图5 图6(3)如图4,过PQ 的中点H 作BC 的垂线,垂足为F ,交AB 于E .由于H 是PQ 的中点,HF//PD ,所以F 是QD 的中点.又因为BD =CQ =4t ,所以BF =CF .因此F 是BC 的中点,E 是AB 的中点.所以PQ 的中点H 在△ABC 的中位线EF 上.考点伸展本题情景下,如果以PQ 为直径的⊙H 与△ABC 的边相切,求t 的值.如图7,当⊙H 与AB 相切时,QP ⊥AB ,就是BP BC BQ BA=,3241t =. 如图8,当⊙H 与BC 相切时,PQ ⊥BC ,就是BP BA BQ BC =,t =1.如图9,当⊙H 与AC 相切时,直径PQ半径等于FC =48=. 解得12873t =,或t =0(如图10,但是与已知0<t <2矛盾).图7 图 8 图9 图10例3 2012年苏州市中考第29题如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1动感体验请打开几何画板文件名“12苏州29”,拖动点B 在x 轴的正半轴上运动,可以体验到,点P 到两坐标轴的距离相等,存在四边形PCOB 的面积等于2b 的时刻.双击按钮“第(3)题”,拖动点B ,可以体验到,存在∠OQA =∠B 的时刻,也存在∠OQ′A =∠B 的时刻.思路点拨1.第(2)题中,等腰直角三角形PBC 暗示了点P 到两坐标轴的距离相等.2.联结OP ,把四边形PCOB 重新分割为两个等高的三角形,底边可以用含b 的式子表示.3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q 最大的可能在经过点A 与x 轴垂直的直线上.满分解答(1)B 的坐标为(b, 0),点C 的坐标为(0, 4b ). (2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC .因此PD =PE .设点P 的坐标为(x, x).如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b . 解得165x =.所以点P 的坐标为(1616,55). 图2 图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A(1, 0),OA =1.①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA . 当BA QA QA OA=,即2QA BA OA =⋅时,△BQA ∽△QOA . 所以2()14b b =-.解得8b =±Q 为(1,2+.②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。
初中数学中考模拟复习专题37 动态几何之动点形成的等腰三角形存在性问题考试卷及答案.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图,在平面直角坐标系xOy中,A(2,0),B(4,0),动点C在直线上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是【】A.1 B.2 C.3 D.4试题2:如图,已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=8,CD=10.评卷人得分(1)求梯形ABCD的面积;(2)动点P从点B出发,以2个单位/s的速度沿B→A→D→C方向向点C运动;动点Q从点C出发,以2个单位/s的速度沿C→D→A方向向点A运动;过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达终点时另一点也随之停止运动,设运动时间为t秒.问:①当点P在B→A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值,并判断此时PQ是否平分梯形ABCD的面积;若不存在,请说明理由.②在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.试题3:如图,在直角梯形ABCD中,AD∥CB,,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q 从点C出发,在线段CB上以每秒一个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P 随之停止运动.设运动的时间为t(秒).(1)设△BPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,四边形ABQP是平行四边形.(3)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?【试题4:如图,已知抛物线与x轴交于点A,与y轴交于点B,动点Q从点O出发,以每秒2个单位长度的速度在线段OA上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学压轴题因动点产生的等腰三角形问题专项练习我们先回顾两个画图问题:1已知线段 AB =5 厘米,以线段 AB 为腰的等腰三角形 ABC 有多少个?顶点 C 的轨迹是什么?2已知线段 AB =6 厘米,以线段 AB 为底边的等腰三角形 ABC 有多少个?顶点 C 的轨迹是什么? 已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点 C .已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外. 在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC 是等腰三角形,那么存在①AB =AC ,②BA =BC ,③CA =CB 三种情况. 解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC 的∠A (的余弦值)是确定的,夹∠A 的两边 AB 和 AC 可以用含 x 的式子表示出来,那么就用几何法.①如图 1,如果 AB =AC②如图 2,如果 BA =BC ,那么 1 AC③如图 3,如果 CA =CB ,那么 1 AB 2图1图2图3代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含 x 的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.1.如图 1,抛物线 y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的对称轴为 y轴,且经过(0,0)和()1 6两点,点 P在该抛物线上运动,以点 P为圆心的⊙P 总经过定点 A (0, 2).(1)求a 、b、c 的值;(2)求证:在点 P 运动的过程中,⊙P 始终与 x 轴相交;(3)设⊙P 与 x 轴相交于 M (x 1, 0)、N (x 2, 0)两点,当△AMN 为等腰三角形时,求圆心 P 的纵坐标.图1备用图思路点拨1不算不知道,一算真奇妙,原来⊙P 在 x 轴上截得的弦长 MN =4 是定值.2等腰三角形 AMN 存在五种情况,点 P 的纵坐标有三个值,根据对称性,MA =MN 和 NA =NM 时,点 P 的纵坐标是相等的.如果点 P 在抛物线 为圆心的⊙P 总经过定点 B (0, 1),那么在点 P 运动的过程中,⊙P 始终与直线 y =-1 相4切.这是因为:设点 P 的坐标为PB =4=1 2 而圆心 P 到直线 y =-1 PB =圆心 P 到直线 y =-1 的距离.所以在点 P 运动的过程中,⊙P 始终与直4线 y =-1 相切.2.如图 1,在平面直角坐标系中,O 为坐标原点,抛物线 y =ax 2+bx +c(a ≠0)过 O 、B 、C 三点,B 、C 坐标分别为(10, 0)和 18, 24) ,以 OB 为55直径的⊙A 经过 C 点,直线 l 垂直 x 轴于 B 点.(1)求直线 BC 的解析式;(2)求抛物线解析式及顶点坐标;(3)点M 是⊙A 上一动点(不同于O 、B ),过点M 作⊙A 的切线,交y 轴于点 E ,交直线 l 于点 F ,设线段 ME 长为m ,MF 长为 n ,请猜想 mn 的值,并证明你的结论;(4)若点 P 从 O 出发,以每秒 1 个单位的速度向点 B 作直线运动,点 Q 同时从 B 出发,以相同速度向点 C 作直线运动,经过 t (0<t ≤8)秒时恰好使△BPQ 为等腰三角形,请求出满足条件的 t 值.思路点拨1从直线 BC 的解析式可以得到∠OBC 的三角比,为讨论等腰三角形 BPQ 作铺垫.2设交点式求抛物线的解析式比较简便.3第(3)题连结 AE 、AF 容易看到 AM 是直角三角形 EAF 斜边上的高.4第(4)题的△PBQ 中,∠B 是确定的,夹∠B 的两条边可以用含 t 的式子表示.分三种情况讨论等腰三角形.考点伸展在第(3)题条件下,以 EF 为直径的⊙G 与 x 轴相切于点 A .如图 6,这是因为 AG 既是直角三角形 EAF 斜边上的中线,也是直角梯形 EOBF 的中位线,因此圆心 G 到 x 轴的距离等于圆的半径, 所以⊙G 与 x 轴相切于点 A.(3 .如图 1,在△ABC 中,∠ACB =90°,AC =4cm ,BC =3cm .如果点 P 由点 B 出发沿 BA 方向向点 A 匀速运动,同时点 Q 由点 A 出发沿 AC 方向向点C 匀速运动,它们的速度均为1cm/s .连结PQ ,设运动时间为t (s )(0<t<4),解答下列问题:(1)设△APQ 的面积为 S ,当 t 为何值时,S 取得最大值?S 的最大值是多少?(2)如图 2,连结 PC ,将△PQC 沿 Q C 翻折,得到四边形 PQP ′C ,当四边形 PQP ′C 为菱形时,求 t 的值;(3)当 t 为何值时,△APQ是等腰三角形?思路点拨图1图21在△APQ 中,∠A 是确定的,夹∠A 的两条边可以用含 t 的式子表示.2四边形 PQP ′C 的对角线保持垂直,当对角线互相平分时,它是菱形,.4. 如图 1,已知 Rt △ABC 中,∠C =90°,AC =8,BC =6,点 P 以每秒 1 个单位的速度从 A 向 C 运动,同时点 Q 以每秒 2 个单位的速度从 A →B →C 方向运动,它们到 C 点后都停止运动,设点 P 、Q 运动的时间为 t 秒.(1)在运动过程中,求 P 、Q 两点间距离的最大值;(2)经过 t 秒的运动,求△ABC 被直线 PQ 扫过的面积 S 与时间 t 的函数关系式;(3)P ,Q 两点在运动过程中,是否存在时间t ,使得△PQC 为等腰三角形.若存在,求出此时的t 值,若不存在,请说明理由.(一位小数)≈ 2.24 ,结果保留图 1思路点拨1过点 B 作 QP 的平行线交 AC 于 D ,那么 BD 的长就是 PQ 的最大值.2线段 PQ 扫过的面积 S 要分两种情况讨论,点 Q 分别在 AB 、BC 上.3等腰三角形 PQC 分三种情况讨论,先罗列三边长.考点伸展第(1)题求P 、Q 两点间距离的最大值,可以用代数计算说理的方法:①如图8,当点Q 在AB 上时,3 5=t .5当Q 与B 重合时,PQ 最大,此时t =5,PQ 的最大值为②如图9,当点Q 在BC 上时,== 5(8 - t ).当Q 与B 重合时,PQ 最大,此时t =5,PQ 的最大值为3.综上所述,PQ 的最大值为3.图8图9555(2CP20203.6 因动点产生的等腰三角形问题家作1.在平面直角坐标系中,抛物线y=x2-(m+n)x+mn(m>n)与x 轴相交于A、B 两点(点A 位于点B 的右侧),与y 轴相交于点C.(1)若m=2,n=1,求A、B 两点的坐标;(2)若A、B 两点分别位于y 轴的两侧,C 点坐标是(0,-1),求∠ACB 的大小;(3)若m=2,△ABC 是等腰三角形,求n 的值.思路点拨1抛物线的解析式可以化为交点式,用m,n 表示点A、B、C 的坐标.2第(2)题判定直角三角形ABC,可以用勾股定理的逆定理,也可以用锐角的三角比.3第(3)题讨论等腰三角形ABC,先把三边长(的平方)罗列出来,再分类解方程.考点伸展第(2)题常用的方法还有勾股定理的逆定理.由于C(0, mn),当点C 的坐标是(0,-1),mn=-1.由A(m, 0),B(n, 0),C(0,-1),得AB2=(m-n)2=m2-2mn+n2=m2+n2+2,BC2=n2+1,AC2=m2+1.所以AB2=BC2+AC2.于是得到 Rt△ABC,∠ACB=90°.第(3)题在讨论等腰三角形ABC 时,对于CA=CB 的情况,此时A、B 两点关于y 轴对称,可以直接写出B(-2, 0),n =-2.2.如图,已知二次函数y1=-x 2+13x+c的图像与x轴的一个交点为 A(4,0),与y轴的交点为 B,过4A、B 的直线为y2 =kx +b .(1)求二次函数y1 的解析式及点 B 的坐标;(2)由图像写出满足y1 <y2 的自变量x 的取值范围;(3)在两坐标轴上是否存在点 P,使得△ABP 是以 AB 为底边的等腰三角形?若存在,求出点 P 的坐标;若不存在,说明理由.xyBAO3.如图,二次函数y=x2+bx+c 的图象与x 轴交于A(3,0),B(﹣1,0),与y 轴交于点 C.若点P,Q 同时从A 点出发,都以每秒 1 个单位长度的速度分别沿AB,AC 边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C 的坐标;(2)当点P 运动到B 点时,点Q 停止运动,这时,在x 轴上是否存在点E,使得以A,E,Q 为顶点的三角形为等腰三角形?若存在,请求出E 点坐标;若不存在,请说明理由.(3)当P,Q 运动到t 秒时,△APQ 沿P Q 翻折,点A 恰好落在抛物线上D 点处,请判定此时四边形APDQ 的形状,并求出D 点坐标.4.如图,抛物线 y=ax 2+2x﹣3 与 x 轴交于 A 、B 两点,且 B (1,0)(1)求抛物线的解析式和点 A 的坐标;(2)如图 1,点 P 是直线 y=x 上的动点,当直线 y=x 平分∠APB 时,求点 P 的坐标;(3)如图2,已知直线y=x﹣(4)分别与x 轴、y 轴交于C 、F 两点,点Q 是直线CF 下方的抛物线上的一个动点,过点 Q 作 y 轴的平行线,交直线 CF 于点 D ,点 E 在线段 CD 的延长线上,连接 QE .问: 以 QD 为腰的等腰△QDE 的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.10y C·M O A BxF 5.如图,在平面直角坐标系中,点 M 的坐标是(5,4),⊙M 与 y 轴相切于点 C ,与 x 轴相交于 A ,B两点.(1)则点A ,B ,C 的坐标分别是A ( ,,C ( , );(2)设经过 A ,B 两点的抛物线解析式为 y = 1 ( x - F A 与⊙M4相切;(3)在抛物线的对称轴上,是否存在点 P ,且点 P 在 x 轴的上方,使△PBC 是等腰三角形.如果存在,请求出点P 的坐标;如果不存在,请说明理由.(4)。