2014年二元一次方程组中考题含解析

合集下载

2014年中考高效复习 自主测评09 二元一次方程组(含答案)

2014年中考高效复习 自主测评09 二元一次方程组(含答案)

第9讲 二元一次方程组(时间:45分钟 满分:60分)一、选择题(本大题共4小题,每小题5分,共20分)1.二元一次方程组⎩⎪⎨⎪⎧2x +y =82x -y =0的解是( ) A.⎩⎪⎨⎪⎧x =2y =-4 B.⎩⎪⎨⎪⎧x =2y =4 C.⎩⎪⎨⎪⎧x =-2y =4 D.⎩⎪⎨⎪⎧x =-2y =-42.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +3y =4-a x -y =3a ,其中-3≤a ≤1,给出下列结论: ①⎩⎪⎨⎪⎧x =5y =-1是方程组的解;②当a =-2时,x ,y 的值互为相反数; ③当a =1时,方程组的解也是方程x +y =4-a 的解;④若x ≤1,则1≤y ≤4. 其中正确的是( )A .①②B .②③C .②③④D .①③④3.关于x 、y 的方程组⎩⎪⎨⎪⎧3x -y =m x +my =n ,的解是⎩⎪⎨⎪⎧x =1y =1,则|m -n |的值是( ) A .5 B .3 C .2 D .14.已知⎩⎪⎨⎪⎧a +2b =43a +2b =8,则a +b 等于( ) A .3 B.83C .2D .1 二、填空题(本大题共2小题,每小题5分,共10分)5.请写出一个二元一次方程组______,使它的解是⎩⎪⎨⎪⎧x =2y =-1. 6.方程组⎩⎪⎨⎪⎧x +y =32x -y =6的解为________.三、解答题(本大题共3小题,共30分)7.(8分)已知x ,y 满足方程组⎩⎪⎨⎪⎧x +2y =122x +y =-15,求(x +y )-2 012的值.8.(12分)已知⎩⎪⎨⎪⎧x =a y =b ,是方程组⎩⎪⎨⎪⎧2x +y =32x +y =1的解,求代数式4a (a -b )+b (4a -b )+5的值.9.(10分)解方程组:⎩⎪⎨⎪⎧x -y =8,3x +y =12.参考答案1. B 解析:由题意知7x +9y =40,将四个选项中的x ,y 的值代入二元一次方程,A 选项余6 mm ;B 选项余1 mm ;C 选项余3 mm ;D 选项不存在,所以余数最小的是B ,此题选B.2. C 解析:易求得题目中方程的组的解为⎩⎪⎨⎪⎧x =1+2a ,y =1-a 若结论①正确,则a =2,而-3≤a ≤1,故①不正确;当a =-2时,⎩⎪⎨⎪⎧x =1+2a =-3,y =1-a =3.故②正确;当a =1时,方程组的解为⎩⎪⎨⎪⎧x =1+2a =3,y =1-a =0.也是方程x +y =4-a =3的解,故③正确;当x ≤1时,1+2a ≤1,解得a ≤0,又因为-3≤a ≤1,所以-3≤a ≤0,所以1≤1-a ≤4,即1≤y ≤4,故④正确.3. D 解析:由题意,得⎩⎪⎨⎪⎧3-1=m ,1+m =n ,所以⎩⎪⎨⎪⎧m =2,n =3,所以|m -n |=1. 4. A 解析:⎩⎪⎨⎪⎧a +2b =4①3a +2b =8②,∵①+②得:4a +4b =12,∴a +b =3.故选A. 5. ⎩⎪⎨⎪⎧x +y =1x -y =3(答案不唯一) 解析:本题写出的二元一次方程组的解满足题意即可,注意方程组的次数是1.6. ⎩⎪⎨⎪⎧x =3y =0 7. 解:⎩⎪⎨⎪⎧x +2y =12, ①2x +y =-15 ②由①+②,得3(x +y )=-3, 所以x +y =-1,(5分)所以(x +y )-2 012=1.(8分)8. 解:解法一:∵⎩⎪⎨⎪⎧x =a y =b 是方程组⎩⎪⎨⎪⎧2x +y =3,2x -y =1.的解, ∴⎩⎪⎨⎪⎧2a +b =3,2a -b =1.(4分) 解得⎩⎪⎨⎪⎧a =1,b =1.(8分) ∴4a (a -b )+b (4a -b )+5=4×1×(1-1)+1×(4×1-1)+5=8.(12分)解法二:∵⎩⎪⎨⎪⎧x =a y =b 是方程组⎩⎪⎨⎪⎧2x +y =3,2x -y =1.的解, ∴⎩⎪⎨⎪⎧2a +b =3,2a -b =1.(4分) 原式=4a 2-4ab +4ab -b 2+5=4a 2-b 2+5 =(2a +b )(2a -b )+5,(8分)将2a +b =3,2a -b =1代入上式,得原式=(2a +b )(2a -b )+5=3×1+5=8.(12分)9. ⎩⎪⎨⎪⎧x =5y =-3 解析:⎩⎪⎨⎪⎧x -y =8 ①,3x +y =12 ②.①+②,得4x =20,解得x =5.(3分)将x =5代入①,得5-y =8,解得y =-3.(3分)所以方程组的解得⎩⎪⎨⎪⎧x =5,y =-3.(4分)。

中考数学第八章 二元一次方程组知识点-+典型题含答案

中考数学第八章 二元一次方程组知识点-+典型题含答案

中考数学第八章 二元一次方程组知识点-+典型题含答案一、选择题1.某校运动员分组训练,若每组7人,则余3人:若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则可列方程为( )A .7385y x y x =+⎧⎨=+⎩B .7385y x y x =+⎧⎨+=⎩C .7385y x y x =-⎧⎨+=⎩D .7385y x y x =-⎧⎨=+⎩2.已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y -=-3.某小区准备新建 50 个停车位,已知新建 1 个地上停车位和 1 个地下停车位共需 0.6万元;新建 3 个地上停车位和 2 个地下停车位共需 1.3 万元,求该小区新建 1 个地上停车位和1个地下停车位各需多少万元?设新建 1 个地上停车位需要 x 万元,新建 1 个地下停车位需 y 万元,列二元一次方程组得( )A .632 1.3x y x y +=⎧⎨+=⎩B .623 1.3x y x y +=⎧⎨+=⎩C .0.632 1.3x y x y +=⎧⎨+=⎩D .63213x y x y +=⎧⎨+=⎩4.若45x y =-⎧⎨=-⎩是方程27x ky +=的解,则k 是( ).A .3B .5C .-3D .以上都不对5.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么( )A .甲比乙大5岁B .甲比乙大10岁C .乙比甲大10岁D .乙比甲大5岁6.解方程组时,第一次消去未知数的最佳方法是( )A .加减法消去x ,将①-③×3与②-③×2B .加减法消去y ,将①+③与①×3+②C .加减法消去z ,将①+②与③+②D .代入法消去x ,y ,z 中的任何一个 7.已知实数a 、m 满足a >m ,若方程组325x y a x y a -=+⎧⎨+=⎩的解x 、y 满足x >y 时,有a >-3,则m 的取值范围是( ) A .m >-3 B .m≥-3C .m≤-3D .m <-38.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则+a b 的值是( )A .﹣1B .1C .﹣5D .59.下列方程组的解为31x y =⎧⎨=⎩的是( )A.224x yx y-=⎧⎨+=⎩B.253x yx y-=⎧⎨+=⎩C.32x yx y+=⎧⎨-=⎩D.2536x yx y-=⎧⎨+=⎩10.已知关于x,y的方程组232x y ax y a-=-⎧⎨+=⎩,其中﹣2≤a≤0.下列结论:①当a=0时,x,y的值互为相反数;②2xy=⎧⎨=⎩是方程组的解;③当a=﹣1时,方程组的解也是方程2x﹣y=1﹣a的解;其中正确的是()A.①②B.①③C.②③D.①②③二、填空题11.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是_____.12.某公园的门票价格如表:现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a和b(a≥b).若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则共需支付门票费为990元,那么这两个部门的人数a=_____;b=_____.13.蜂蜜具有消食、润肺、安神、美颜之功效,是天然的健康保健佳品.秋天即将来临时,雪宝山土特产公司抓住商机购进甲、乙、丙三种蜂蜜,已知销售每瓶甲蜂蜜的利润率为10%,每瓶乙蜂蜜的利润率为20%,每瓶丙蜂蜜的利润率为30%.当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,商人得到的总利润率为20%.那么当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,该公司得到的总利润率为_____.14.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.15.若方程组2232x y kx y k+=-⎧⎨+=⎩的解适合x+y=2,则k的值为_____.16.已知|x﹣z+4|+|z﹣2y+1|+|x+y﹣z+1|=0,则x+y+z=________.17.对于有理数,规定新运算:x※y=ax+by+xy,其中a、b是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 18.若方程123x y -=的解中,x 、y 互为相反数,则32x y -=_________ 19.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有____个苹果. 20.已知方程组1122a x y c a x y c +=⎧⎨+=⎩解为510x y =⎧⎨=⎩,则关于x ,y 的方程组1112223232a x y a c a x y a c +=+⎧⎨+=+⎩的解是_______.三、解答题21.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元. (1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由. 22.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元. (1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案. 23.先阅读材料再回答问题. 对三个数x ,y ,z ,规定{},,3x y zM x y z ++=;{}min ,,x y z 表示x,y,z 这三个数中最小的数,如{}12341,2,333M -++-==,{}min 1,2,31-=- 请用以上材料解决下列问题:(1)若{}min 2,22,422x x +-=,求x 的取值范围; (2)①若{}{}21,2min 2,1,2M x x x x ,+=+,求x 的值;②猜想:若{}{},,min ,,M a b c a b c =,那么a ,b ,c 大小关系如何?请直接写出结论; ③问:是否存在非负整数a ,b ,c 使{}{}27,321,41min 27,321,41M a b a b c a b a b c -++++=-++++等式成立?若存在,请求出a ,b ,c 的值;若不存在,请说明理由.24.已知:平面直角坐标系中,A (a ,3)、B (b ,6)、C (c ,1),a 、b 、c 都为实数,并且满足3b -5c =-2a -18,4b -c =3a +10 (1) 请直接用含a 的代数式表示b 和c(2) 当实数a 变化时,判断△ABC 的面积是否发生变化?若不变,求其值;若变化,求其变化范围(3) 当实数a 变化时,若线段AB 与y 轴相交,线段OB 与线段AC 交于点P ,且S △PAB >S △PBC ,求实数a 的取值范围.25.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其 正整数解.例:由2312x y +=,得:1222433x xy -==-,(x 、y 为正整数) ∴01220x x >⎧⎨->⎩,则有06x <<.又243x y =-为正整数,则23x为正整数.由2与3互质,可知:x 为3的倍数,从而x=3,代入2423xy =-=∴2x+3y=12的正整数解为32x y =⎧⎨=⎩问题:(1)请你写出方程25x y +=的一组正整数解: . (2)若62x -为自然数,则满足条件的x 值为 . (3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?26.下图是小欣在“A 超市”买了一些食品的发票.后来不小心发票被弄烂了,有几个数据看不清.(1)根据发票中的信息,请求出小欣在这次采购中,“雀巢巧克力”与“趣多多小饼干”各买了多少包;(2)“五一”期间,小欣发现,A 、B 两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A 超市累计购物超过50元后,超过50元的部分打九折;在B 超市累计购物超过100元后,超过100元的部分打八折. 请问:①“五一”期间,小欣去哪家超市购物更划算?②“五一”期间,小欣又到“B 超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据关键语句“若每组7人,余3人”可得方程7y +3−x ;“若每组8人,则缺5人.”可得方程8y−5=x ,联立两个方程可得方程组. 【详解】解:设运动员人数为x 人,组数为y 组,由题意得: 列方程组为7385y x y x -⎧⎨+⎩== 故选D . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.2.C【分析】由方程组消去m ,得到一个关于x ,y 的方程,化简这个方程即可. 【详解】解:将5m y =-代入4x m +=,得54x y +-=,所以9x y +=. 故选C. 【点睛】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核.3.C解析:C 【分析】根据“新建1个地上停车位和1个地下停车位共需0.6万元”以及“新建3个地上停车位和2个地下停车位共需1.3万元”分别列出等式,由此进一步即可得出相应的方程组. 【详解】由题意得:新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元, ∵新建1个地上停车位和1个地下停车位共需0.6万元, ∴0.6xy,又∵新建3个地上停车位和2个地下停车位共需1.3万元, ∴32 1.3x y +=, ∴可列方程组为:0.632 1.3x y x y +=⎧⎨+=⎩,故选:C . 【点睛】本题主要考查了二元一次方程组的实际应用,根据题意正确找出相应的等量关系是解题关键.4.C解析:C 【分析】根据题意,将45x y =-⎧⎨=-⎩代入方程27x ky +=,通过计算即可得到答案.【详解】∵45x y =-⎧⎨=-⎩是方程27x ky +=的解 ∴把45x y =-⎧⎨=-⎩代入方程27x ky +=,得: ()()2457k ⨯-+-=故选:C . 【点睛】本题考查了二元一次方程和一元一次方程的知识;求解的关键是熟练掌握二元一次方程和一元一次方程的性质,从而完成求解.5.A解析:A 【分析】设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据已知甲是乙现在的年龄时,乙10岁.乙是甲现在的年龄时,甲25岁,可列方程求解. 【详解】解:甲现在的年龄是x 岁,乙现在的年龄是y 岁,由题意可得:1025x y y x y x -=-⎧⎨-=-⎩即210225x y x y -=-⎧⎨-=⎩由此可得,3()15x y -=,∴5x y -=,即甲比乙大5岁. 故选:A . 【点睛】本题考查了二元一次方程组的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.6.C解析:C 【解析】 【分析】根据加减消元的方法,当未知数的系数相等或互为相反数时即可进行加减消元.据此即可解题. 【详解】解:∵三个方程中z 的系数已经相等或互为相反数,∴第一次消去未知数的最佳方法是加减法消去z ,将①+②与③+② 故选C. 【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉加减消元法的应用条件是解题关键.7.C解析:C 【解析】 解:325x y a x y a -=+⎧⎨+=⎩①②,①+②得,3x =6a +3,得到:x =2a +1③,把③代入①得,2a +1-y =a +3,解得y =a ﹣2,所以,方程组的解是212x a y a =+⎧⎨=-⎩,∵x >y ,∴2a +1>a ﹣2,解得a >﹣3.∵a >-3,a >m ,∴m ≤-3,故选C .点睛:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.8.A解析:A 【分析】 把32x y =⎧⎨=-⎩代入方程组,可得关于a 、b 的方程组,继而根据二元一次方程组的解法即可求出答案. 【详解】将32x y =⎧⎨=-⎩代入23ax by bx ay +=⎧⎨+=-⎩,可得:322323a b b a -=⎧⎨-=-⎩,两式相加:1a b +=-, 故选A . 【点睛】本题考查二元一次方程组的解,解题的关键是熟练运用二元一次方程组的解法.9.D解析:D 【解析】把31x y =⎧⎨=⎩代入选项A 第2个方程24x y +=不成立,故错误;把31x y =⎧⎨=⎩代入选项B 第2个方程3x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项C 第1个方程3x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项D 两个方程均成立,故正确; 故选D.10.B解析:B 【分析】把a =0代入方程组,可求得方程组的解,把20x y =⎧⎨=⎩代入方程组,可得a =1,可判断②;把a =﹣1代入方程可求得a 的值为2,可判断③;可得出答案. 【详解】解:①当a =0时,原方程组为230x y x y -=⎧⎨+=⎩,解得11x y =-⎧⎨=⎩,②把20x y =⎧⎨=⎩代入方程组得到a =1,不符合题意.③当a =﹣1时,原方程组为242x y x y -=⎧⎨+=-⎩,解得02x y =⎧⎨=-⎩,当02x y =⎧⎨=-⎩时,代入方程组可求得a =﹣1, 把02x y =⎧⎨=-⎩与a =﹣1代入方程2x ﹣y =1﹣a 得,方程的左右两边成立, 综上可知正确的为①③. 故选:B . 【点睛】本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.二、填空题 11.95 【详解】设十位数字为x ,个位数字为y ,根据题意所述的等量关系可得出方程组,求解即可得,即这个两位数为95. 故答案为95. 【点睛】本题考查了二元一次方程组的应用,解答本题的关键是设出未知解析:95 【详解】设十位数字为x ,个位数字为y ,根据题意所述的等量关系可得出方程组14101036x y x y y x +=⎧⎨+--=⎩,求解即可得95x y =⎧⎨=⎩,即这个两位数为95. 故答案为95. 【点睛】本题考查了二元一次方程组的应用,解答本题的关键是设出未知数,注意掌握二位数的表示方法.12.40【分析】根据题中a、b的求知范围,可得a+b的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解.【详解】解:∵ ,,∴1≤b≤50,51<a≤100,若a+解析:40【分析】根据题中a、b的求知范围,可得a+b的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解.【详解】解:∵12903991313=,129031171111=,∴1≤b≤50,51<a≤100,若a+b≤100时,由题意可得:13111290 11()990b aa b+=⎧⎨+=⎩,∴60150ab=-⎧⎨=⎩(不合题意舍去),若a+b>100时,由题意可得13111290 9(990b aa b+=⎧⎨+=⎩),∴7040 ab=⎧⎨=⎩,故可70,40.【点睛】本题主要考查二元一次方程组的应用,根据题意找到等量关系式是解题的关键.13.19%【分析】设甲种蜂蜜每瓶x元,乙种蜂蜜每瓶y元,丙种蜂蜜每瓶z元,首先根据题中所给的两种情况分别列式求出4z=3y+6x①和z=3x②,然后可得y=2x,最后列式求售出的甲、乙、丙蜂蜜瓶数之解析:19%【分析】设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,首先根据题中所给的两种情况分别列式求出4z=3y+6x ①和z=3x ②,然后可得y=2x ,最后列式求售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时获得的总利润即可.【详解】解:设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,设甲种蜂蜜卖出a 瓶, 则:10%320%30%22%3ax ay az ax ay az ,整理得:4z=3y+6x ①,当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,设丙种蜂蜜卖出b 瓶, 则:310%220%30%20%32bx by bz bx by bz,整理得:z=3x ②,由①②可得:y=2x , ∴当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,设丙种蜂蜜卖出c 瓶, 则该公司得到的总利润率为:510%620%30%0.5 1.20.30.5 2.40.9100%19%56565123cx cy cz x y z x x x cx cy czx y z x x x ,故答案为:19%.【点睛】本题考查了三元一次方程组的应用,利用利润、成本与利润率之间的关系列式计算是解题的关键. 14.3:20【解析】【分析】设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为(x+y ),川香已种植面积x 、贝母已种植面积x 、黄连已种植面积x ,依题意列出方程组,用y 的代数解析:3:20【解析】【分析】设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为(x+y ),川香已种植面积13x 、贝母已种植面积14x 、黄连已种植面积512x ,依题意列出方程组,用y 的代数式分别表示x 、y ,然后进行计算即可. 【详解】解:设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为(x+y ),川香已种植面积13x 、贝母已种植面积14x 、黄连已种植面积512x依题意可得,5919()121640191:3:4 3164x y x yx y y z x z⎧+=+⎪⎪⎨⎡⎤⎛⎫⎛⎫⎪+--+=⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎩①②由①得32x y =③将③代入②得38 z y =∴贝母的面积与该村种植这三种中药材的总面积之比=3383202yzx y y y==++故答案为3:20.【点睛】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键15.3【解析】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得3k-3=6,计算得出k=3,故答案为:3.解析:3【解析】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得3k-3=6,计算得出k=3,故答案为:3.点睛:本题考查了二元一次方程组的解,利用等式的性质得出3(x+y)=3k-3是解答本题的关键.16.9【解析】由题意得,解得,所以x+y+z=9.解析:9【解析】由题意得4021010x zz yx y z-+=⎧⎪-+=⎨⎪+-+=⎩,解得135xyz=⎧⎪=⎨⎪=⎩,所以x+y+z=9.17.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合解析:61 3【解析】由题意得:227{3393 a ba b++=-+-=,解得:a=13,b=133,则13※b=13a+b²+13=116913619993++=,故答案为61 3.点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a、b的值.18.【解析】试题分析:根据x、y互为相反数,可得x+y=0,然后和方程构成方程组,解得,所以3x-2y=.19.【分析】可设甲堆原来有x个苹果,乙堆原来有y个苹果,丙堆原来有z个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙解析:【分析】可设甲堆原来有x个苹果,乙堆原来有y个苹果,丙堆原来有z个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,列出方程即可求解.【详解】解:设甲堆原来有x个苹果,乙堆原来有y个苹果,丙堆原来有z个苹果,依题意有()432x y z x y x y y y z z z x y ++=⎧⎨-+-=+-=+--⎩, 解得19812688x y z =⎧⎪=⎨⎪=⎩.故甲堆原来有198个苹果.故答案为:198.【点睛】考查了三元一次方程组的应用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.20.【分析】根据方程组解的定义,把x =5,y =10代入即可得出a1,a2,c1,c2的关系,再代入计算即可.【详解】解:∵方程组∵解为:x =5,y =10,∴,∴∵,∴,①−②,得3a解析:25x y ⎧⎨⎩== 【分析】根据方程组解的定义,把x =5,y =10代入即可得出a 1,a 2,c 1,c 2的关系,再代入计算即可.【详解】解:∵方程组1122==a x y c a x y c +⎧⎨+⎩ ∵解为:x =5,y =10,∴1122510=510=a c a c +⎧⎨+⎩, ∴()12125a a c c -=-∵11122232=32=a x y a c a x y a c ++⎧⎨++⎩,∴112232=61032=610a x y a a x y a ++⎧⎨++⎩①②, ①−②,得3a 1x−3a 2x =6a 1−6a 2,∴x =2,把x =2代入①得,y =5,∴方程组11122232=32a x y a c a x y a c ++⎧⎨+=+⎩的解是=2=5x y ⎧⎨⎩, 故答案为:=2=5x y ⎧⎨⎩. 【点睛】本题考查了解二元一次方程组,掌握方程组的解法是解题的关键. 三、解答题21.(1)1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)当购买A 型号节能灯150只,B 型号节能灯50只时最省钱,见解析.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到费用与购买A 型号节能灯的关系式,然后根据一次函数的性质即可解答本题.【详解】解:(1)设1只A 型节能灯的售价是x 元,1只B 型节能灯的售价是y 元,35502331x y x y +=⎧⎨+=⎩,解得,57x y =⎧⎨=⎩, 答:1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)设购买A 型号的节能灯a 只,则购买B 型号的节能灯200a (﹣)只,费用为w 元, 5720021400w a a a +-+=()=-,3200a a ≤-(),150a ∴≤,∴当150a =时,w 取得最小值,此时110020050w a =,﹣=答:当购买A 型号节能灯150只,B 型号节能灯50只时最省钱.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.22.(1)七(1)班有47人,七(2)班有51人;(2) 如果两个班联合起来买票,不可以买单价为9 元的票, 省钱的方法,可以买101张票,多余的作废即可【解析】【分析】(1)由两个班联合起来,作为一个团体购票,则需付 1078 元可知:710879=1209÷可得票价不是9元,所以两个班的总人数没有超过100人,设七(1)班有x 人,七(2)班有y 人,可列方程组,解方程组即可得答案;(2)如果两班联合起来作为一个团体购票,则每张票11元,省钱的方法,可以买101张票,多余的作废即可。

2014年山东省枣庄市中考数学试卷(含解析版)

2014年山东省枣庄市中考数学试卷(含解析版)

2014年东省枣庄市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2014•枣庄)2的算术平方根是()A .±B.C.±4 D.42.(3分)(2014•枣庄)2014年世界杯即将在巴西举行,根据预算巴西将总共花费14000000000美元,用于修建和翻新12个体育场,升级联邦、各州和各市的基础设施,以及为32支队伍和预计约60万名观众提供安保.将14000000000用科学记数法表示为()A .140×108B.14.0×109C.1.4×1010D.1.4×10113.(3分)(2014•枣庄)如图,AB∥CD,AE交CD于C,∠A=34°,∠DEC=90°,则∠D的度数为()A .17°B.34°C.56°D.124°4.(3分)(2014•枣庄)下列说法正确的是()A.“明天降雨的概率是50%”表示明天有半天都在降雨B.数据4,4,5,5,0的中位数和众数都是5C.要了解一批钢化玻璃的最少允许碎片数,应采用普查的方式D.若甲、乙两组数中各有20个数据,平均数=,方差s2甲=1.25,s2乙=0.96,则说明乙组数据比甲组数据稳定5.(3分)(2014•枣庄)⊙O1和⊙O2的直径分别是6cm和8cm,若圆心距O1O2=2cm,则两圆的位置关系是()A .外离B.外切C.相交D.内切6.(3分)(2014•枣庄)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A .350元B.400元C.450元D.500元7.(3分)(2014•枣庄)如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为()A .22 B.18 C.14 D.118.(3分)(2014•枣庄)将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A .x>4 B.x>﹣4 C.x>2 D.x>﹣29.(3分)(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A .a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣210.(3分)(2014•枣庄)x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于311.(3分)(2014•枣庄)已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:x ﹣1 0 1 2 3y 5 1 ﹣1 ﹣1 1则该二次函数图象的对称轴为()A .y轴B.直线x=C.直线x=2 D.直线x=12.(3分)(2014•枣庄)如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()A .B.1C.D.7二、填空题(共6小题,每小题4,满分24分)13.(4分)(2014•枣庄)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.14.(4分)(2014•枣庄)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.15.(4分)(2014•枣庄)有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为.16.(4分)(2014•枣庄)如图,将四个圆两两相切拼接在一起,它们的半径均为1cm,则中间阴影部分的面积为cm2.17.(4分)(2014•枣庄)如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F 处.若AE=BE,则长AD与宽AB的比值是.18.(4分)(2014•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为cm.三、解答题(共7小题,满分60分)19.(8分)(2014•枣庄)(1)计算:(﹣2)3+()﹣1﹣|﹣5|+(﹣2)0(2)化简:(﹣)÷.20.(8分)(2014•枣庄)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.21.(8分)(2014•枣庄)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向想内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D 到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到1cm.参照数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)22.(8分)(2014•枣庄)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC 的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.23.(8分)(2014•枣庄)如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB 于E,交⊙O于点D,连接OD.若AB=12,AC=8.(1)求OD的长;(2)求CD的长.24.(10分)(2014•枣庄)如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD.(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.25.(10分)(2014•枣庄)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x 轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.2014年东省枣庄市中考数学试卷参照解答与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2014•枣庄)2的算术平方根是()A .±B.C.±4 D.4考点:算术平方根.解析:根据开方运算,可得算术平方根.解答:解:2的算术平方根是,故选;B.点评:本题考查了算术平方根,开方运算是解题关键.2.(3分)(2014•枣庄)2014年世界杯即将在巴西举行,根据预算巴西将总共花费14000000000美元,用于修建和翻新12个体育场,升级联邦、各州和各市的基础设施,以及为32支队伍和预计约60万名观众提供安保.将14000000000用科学记数法表示为()A .140×108B.14.0×109C.1.4×1010D.1.4×1011考点:科学记数法—表示较大的数解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:14 000 000 000=1.4×1010,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2014•枣庄)如图,AB∥CD,AE交CD于C,∠A=34°,∠DEC=90°,则∠D的度数为()A .17°B.34°C.56°D.124°考点:平行线的性质;直角三角形的性质解析:根据两直线平行,同位角相等可得∠DCE=∠A,再根据直角三角形两锐角互余列式计算即可得解.解答:解:∵AB∥CD,∴∠DCE=∠A=34°,∵∠DEC=90°,∴∠D=90°﹣∠DCE=90°﹣34°=56°.故选C.点评:本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.4.(3分)(2014•枣庄)下列说法正确的是()A.“明天降雨的概率是50%”表示明天有半天都在降雨B.数据4,4,5,5,0的中位数和众数都是5C.要了解一批钢化玻璃的最少允许碎片数,应采用普查的方式D.若甲、乙两组数中各有20个数据,平均数=,方差s2甲=1.25,s2乙=0.96,则说明乙组数据比甲组数据稳定考点:概率的意义;全面调查与抽样调查;中位数;众数;方差解析:根据概率的意义,众数、中位数的定义,以及全面调查与抽样调查的选择,方差的意义对各选项解析判断利用排除法求解.解答:解:A、“明天降雨的概率是50%”表示明天降雨和不降雨的可能性相等,不表示半天都在降雨,故本选项错误;B、数据4,4,5,5,0的中位数是4,众数是4和5,故本选项错误;C、要了解一批钢化玻璃的最少允许碎片数,应采用抽样调查的方式,故本选项错误;D、∵方差s2甲>s2乙,∴乙组数据比甲组数据稳定正确,故本选项正确.故选D.点评:本题解决的关键是理解概率的意义以及必然事件的概念;用到的知识点为:不太容易做到的事要采用抽样调查;反映数据波动情况的量有极差、方差和标准差等.5.(3分)(2014•枣庄)⊙O1和⊙O2的直径分别是6cm和8cm,若圆心距O1O2=2cm,则A .外离B.外切C.相交D.内切考点:圆与圆的位置关系解析:由⊙O1、⊙O2的直径分别为8和6,圆心距O1O2=2,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得两圆位置关系.解答:解:∵⊙O1、⊙O2的直径分别为6cm和8cm,∴⊙O1、⊙O2的半径分别为3cm和4cm,∴1<d<7,∵圆心距O1O2=2,∴⊙O1与⊙O2的位置关系是相交.故选C.点评:此题考查了圆与圆的位置关系.此题比较简单,注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.6.(3分)(2014•枣庄)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A .350元B.400元C.450元D.500元考点:一元一次方程的应用解析:设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.解答:解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.答:该服装标价为400元.故选B.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.7.(3分)(2014•枣庄)如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为()A .22 B.18 C.14 D.11考点:菱形的性质解析:根据菱形的对角线平分一组对角可得∠BAC=∠BCA,再根据等角的余角相等求出∠BAE=∠E,根据等角对等边可得BE=AB,然后求出EC,同理可得AF,然后判断出四边形AECF是平行四边形,再根据周长的定义列式计算即可得解.解答:解:在菱形ABCD中,∠BAC=∠BCA,∵AE⊥AC,∴∠BAC+∠BAE=∠BCA+∠E=90°,∴∠BAE=∠E,∴BE=AB=4,∴EC=BE+BC=4+4=8,同理可得AF=8,∵AD∥BC,∴四边形AECF是平行四边形,∴四边形AECF的周长=2(AE+EC)=2(3+8)=22.故选A.点评:本题考查了菱形的对角线平分一组对角的性质,等角的余角相等的性质,平行四边形的判定与性质,熟记性质并求出EC的长度是解题的关键.8.(3分)(2014•枣庄)将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A .x>4 B.x>﹣4 C.x>2 D.x>﹣2考点:一次函数图象与几何变换解析:利用一次函数平移规律得出平移后解析式,进而得出图象与坐标轴交点坐标,进而利用图象判断y>0时,x的取值范围.解答:解:∵将一次函数y=x的图象向上平移2个单位,∴平移后解析式为:y=x+2,当y=0,则x=﹣4,x=0时,y=2,如图:∴y>0,则x的取值范围是:x>﹣4,故选:B.点评:此题主要考查了一次函数图象与几何变换以及图象画法,得出函数图象进而判断x的取值范围是解题关键.9.(3分)(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A .a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣2考点:平方差公式的几何背景解析:根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.解答:解:(2a)2﹣(a+2)2=4a2﹣a2﹣4a﹣4=3a2﹣4a﹣4,故选:C.点评:本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.10.(3分)(2014•枣庄)x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A .x1小于﹣1,x2大于3B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于3考点:解一元二次方程-直接开平方法;估算无理数的大小解析:利用直接开平方法解方程得出两根进而估计无理数的大小得出解答.解答:解:∵x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,∴(x﹣1)2=5,∴x﹣1=±,∴x1=1+>3,x2=1﹣<﹣1,故选:A.点评:此题主要考查了直接开平方法解方程以及估计无理数的大小,求出两根是解题关键.11.(3分)(2014•枣庄)已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:x ﹣1 0 1 2 3y 5 1 ﹣1 ﹣1 1则该二次函数图象的对称轴为()A .y轴B.直线x=C.直线x=2 D.直线x=考点:二次函数的性质解析:由于x=1、2时的函数值相等,然后根据二次函数的对称性列式计算即可得解.解答:解:∵x=1和2时的函数值都是﹣1,∴对称轴为直线x==.故选D.点评:本题考查了二次函数的性质,主要利用了二次函数的对称性,比较简单.12.(3分)(2014•枣庄)如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()A .B.1C.D.7考点:三角形中位线定理;等腰三角形的判定与性质解析:由等腰三角形的判定方法可知三角形AGC是等腰三角形,所以F 为GC中点,再由已知条件可得EF为△CBG的中位线,利用中位线的性质即可求出线段EF的长.解答:解:∵AD是其角平分线,CG⊥AD于F,∴△AGC是等腰三角形,∴AG=AC,∵AB=4,AC=3,∴BG=1,∵AE是中线,∴BD=CD,∴EF为△CBG的中位线,∴EF=BG=,故选A.点评:本题考查了等腰三角形的判定和性质、三角形的中位线性质定理:三角形的中位线平行于第三边,并且等于第三边的一半.二、填空题(共6小题,每小题4,满分24分)13.(4分)(2014•枣庄)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有3种.考点:利用轴对称设计图案解析:根据轴对称图形的概念:把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合及正方形的对称轴是两条对角线所在的直线和两组对边的垂直平分线,得出结果.解答:解:在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故解答为:3.点评:考查了利用轴对称设计图案,此题要首先找到大正方形的对称轴,然后根据对称轴,进一步确定可以涂黑的正方形.14.(4分)(2014•枣庄)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.考点:二元一次方程组的解;因式分解-运用公式法解析:根据解二元一次方程组的方法,可得二元一次方程组的解,根据代数式求值的方法,可得解答.解答:解:,①×2﹣②得﹣8y=1,y=﹣,把y=﹣代入②得2x﹣=5,x=,x2﹣4y2=()=,故解答为:.点评:本题考查了二元一次方程组的解,先求出二元一次方程组的解,再求代数式的值.15.(4分)(2014•枣庄)有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为.考点:列表法与树状图法专题:计算题.解析:列表得出所有等可能的情况数,找出差为负数的情况数,即可求出所求的概率.解答:解:列表得:2 3 43 (2,3)(3,3)(4,3)4 (2,4)(3,4)(4,4)5 (2,5)(3,5)(4,5)所有等可能的情况有9种,其中差为负数的情况有5种,则P=.故解答为:点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.16.(4分)(2014•枣庄)如图,将四个圆两两相切拼接在一起,它们的半径均为1cm,则中间阴影部分的面积为4﹣πcm2.考点:扇形面积的计算;相切两圆的性质解析:根据题意可知图中阴影部分的面积=边长为2的正方形面积﹣一个圆的面积.解答:解:∵半径为1cm的四个圆两两相切,∴四边形是边长为2cm的正方形,圆的面积为πcm2,阴影部分的面积=2×2﹣π=4﹣π(cm2),故解答为:4﹣π.点评:此题主要考查了圆与圆的位置关系和扇形的面积公式.本题的解题关键是能看出阴影部分的面积为边长为2的正方形面积减去4个扇形的面积(一个圆的面积).17.(4分)(2014•枣庄)如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F 处.若AE=BE,则长AD与宽AB的比值是.考点:翻折变换(折叠问题)解析:由AE=BE,可设AE=2k,则BE=3k,AB=5k.由四边形ABCD是矩形,可得∠A=∠ABC=∠D=90°,CD=AB=5k,AD=BC.由折叠的性质可得∠EFC=∠B=90°,EF=EB=3k,CF=BC,由同角的余角相等,即可得∠DCF=∠AFE.在Rt△AEF中,根据勾股定理求出AF==k,由cos∠AFE=cos∠DCF得出CF=3k,即AD=3k,进而求解即可.解答:解:∵AE=BE,∴设AE=2k,则BE=3k,AB=5k.∵四边形ABCD是矩形,∴∠A=∠ABC=∠D=90°,CD=AB=5k,AD=BC.∵将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处,∴∠EFC=∠B=90°,EF=EB=3k,CF=BC,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∴cos∠AFE=cos∠DCF.在Rt△AEF中,∵∠A=90°,AE=2k,EF=3k,∴AF==k,∴=,即=,∴CF=3k,∴AD=BC=CF=3k,∴长AD与宽AB的比值是=.故解答为.点评:此题考查了折叠的性质,矩形的性质,勾股定理以及三角函数的定义.解此题的关键是数形结合思想与转化思想的应用.18.(4分)(2014•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3+3)cm.考点:平面展开-最短路径问题;截一个几何体解析:要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果.解答:解:如图所示:△BCD是等腰直角三角形,△ACD是等边三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴从顶点A爬行到顶点B的最短距离为(3+3)cm.故解答为:(3+3).点评:考查了平面展开﹣最短路径问题,本题就是把图②的几何体表面展开成平面图形,根据等腰直角三角形的性质和等边三角形的性质解决问题.三、解答题(共7小题,满分60分)19.(8分)(2014•枣庄)(1)计算:(﹣2)3+()﹣1﹣|﹣5|+(﹣2)0(2)化简:(﹣)÷.考点:实数的运算;分式的混合运算;零指数幂;负整数指数幂专题:计算题.解析:(1)原式第一项利用乘方的意义化简,第二项利用负指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(1)原式=﹣8+3﹣5+1=﹣9;(2)原式=•(x﹣1)=•(x﹣1)=﹣.点评:此题考查了实数的运算,以及分式的混合运算,熟练掌握运算法则解本题的关键.20.(8分)(2014•枣庄)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.考点:条形统计图;扇形统计图;模拟实验解析:(1)用摸到红色球的次数除以占的百分比即是实验总次数,用总次数减去红黄绿球的次数即为摸蓝球的次数,再补全条形统计图即可;(2)用摸到黄色小球次数除以实验总次数,再乘以360°即可得摸到黄色小球次数所在扇形的圆心角度数;(3)先得出摸到绿色小球次数所占的百分比,再用口袋中有10个红球除以红球所占的百分比得出口袋中小球的总数,最后乘以绿色小球所占的百分比即可.解答:解:(1)50÷25%=200(次),所以实验总次数为200次,条形统计图如下:(2)=144°;(3)10÷25%×=2(个),答:口袋中绿球有2个.点评:本题主要考查了条形统计图,用样本估计总体,弄清题意是解本题的关键.21.(8分)(2014•枣庄)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向想内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D 到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到1cm.参照数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)考点:解直角三角形的应用解析:(1)根据三角函数分别表示出OE和DE,再根据点D到点O的距离为30cm可列方程求解;(2)在Rt△BDE中,根据三角函数即可得到滑动支架的长.解答:解:(1)在Rt△BOE中,OE=,在Rt△BDE中,DE=,则+=30,解得BE≈10.6cm.故B点到OP的距离大约为10.6cm;(2)在Rt△BDE中,BD=≈25.3cm.故滑动支架的长25.3cm.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是运用数学知识解决实际问题.22.(8分)(2014•枣庄)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC 的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.考点:全等三角形的判定与性质;平行四边形的判定与性质;矩形的判定专题:计算题.解析:(1)由DF与BE平行,得到两对内错角相等,再由O为AC的中点,得到OA=OC,又AE=CF,得到OE=OF,利用AAS即可得证;(2)若OD=AC,则四边形ABCD为矩形,理由为:由OD=AC,得到OB=AC,即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得证.解答:(1)证明:∵DF∥BE,∴∠FDO=∠EBO,∠DFO=∠BEO,∵O为AC的中点,即OA=OC,AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(AAS);(2)若OD=AC,则四边形ABCD是矩形,理由为:证明:∵△BOE≌△DOF,∴OB=OD,∴OA=OB=OC=OD,即BD=AC,∴四边形ABCD为矩形.点评:此题考查了全等三角形的判定与性质,矩形的判定与性质,以及平行线的性质,熟练掌握全等三角形的判定与性质是解本题的关键.23.(8分)(2014•枣庄)如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB 于E,交⊙O于点D,连接OD.若AB=12,AC=8.(1)求OD的长;(2)求CD的长.考点:切线的性质专题:计算题.解析:(1)设⊙O的半径为R,根据切线定理得OB⊥AB,则在Rt△ABO中,利用勾股定理得到R2+122=(R+8)2,解得R=5,即OD的长为5;(2)根据垂径定理由CD⊥OB得DE=CE,再证明△OEC∽△OBA,利用相似比可计算出CE=,所以CD=2CE=.解答:解:(1)设⊙O的半径为R,∵AB切⊙O于点B,∴OB⊥AB,在Rt△ABO中,OB=R,AO=OC+AC=R+8,AB=12,∵OB2+AB2=OA2,∴R2+122=(R+8)2,解得R=5,∴OD的长为5;(2)∵CD⊥OB,∴DE=CE,而OB⊥AB,∴CE∥AB,∴△OEC∽△OBA,∴=,即=,∴CE=,∴CD=2CE=.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、垂径定理和相似三角形的判定与性质.24.(10分)(2014•枣庄)如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD.(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.考点:反比例函数与一次函数的交点问题解析:(10根据正切值,可得OE的长,可得A点坐标,根据待定系数法,可得反比例函数解析式,根据点的坐标满足函数解析式,可得B点坐标,根据待定系数法,可得一次函数解析式;(2)根据面积的和差,可得解答.解答:解:(1)如图:,tan∠AOE=,OE=6,A(6,2),y=的图象过A(6,2),∴,k=12,反比例函数的解析式为y=,B(﹣4,n)在y=的图象上,n==﹣3,B(﹣4,﹣3),一次函数y=ax+b过A、B点,,解得,一次函数解析式为y=﹣1;(2)当x=0时,y=﹣1,C(0,﹣1),当y=﹣1时,﹣1=,x=﹣12,D(﹣12,﹣1),s OCDB=S△ODC+S△BDC=+|﹣12|×|﹣2|=6+12=18.点评:本题考查了反比例函数与一次函数的交点问题,待定系数法求解析式的关键,利用面积的和差求解四边形的面积.25.(10分)(2014•枣庄)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x 轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.考点:二次函数综合题解析:(1)由抛物线已知,则可求三角形OBC的各个顶点,易知三角形形状及内角.(2)因为抛物线已固定,则S四边形OCDB固定,对于坐标系中的不规则图形常用分割求和、填补求差等方法求面积,本图形过顶点作x轴的垂线及可将其分为直角梯形及直角三角形,面积易得.由此可得E点坐标,进而可求ED直线方程,与抛物线解析式联立求解即得P点坐标.(3)PF的长度即为y F﹣y P.由P、F的横坐标相同,则可直接利用解析式作差.由所得函数为二次函数,则可用二次函数性质讨论最值,解法常规.解答:解:(1)∵y=x2﹣2x﹣3=(x﹣3)(x+2),∴由题意得,A(﹣1,0),B(3,0),C(0,﹣3),D(1,﹣4).在Rt△OBC中,∵OC=OB=3,∴△OBC为等腰直角三角形,∴∠OBC=45°.(2)如图1,过点D作DH⊥x轴于H,此时S四边形OCDB=S梯形OCDH+S△HBD,∵OH=1,OC=3,HD=4,HB=2,∴S梯形OCDH=•(OC+HD)•OH=,S△HBD=•HD•HB=4,∴S四边形OCDB=.∴S△OCE=S四边形OCDB==,∴OE=5,∴E(5,0).设l DE:y=kx+b,∵D(1,﹣4),E(5,0),∴,解得,∴l DE:y=x﹣5.∵DE交抛物线于P,设P(x,y),∴x2﹣2x﹣3=x﹣5,解得x=2 或x=1(D点,舍去),∴x P=2,代入l DE:y=x﹣5,∴P(2,﹣3).(3)如图2,设l BC:y=kx+b,∵B(3,0),C(0,﹣3),∴,解得,∴l BC:y=x﹣3.∵F在BC上,∴y F=x F﹣3,∵P在抛物线上,∴y P=x P2﹣2x P﹣3,∴线段PF长度=y F﹣y P=x F﹣3﹣(x P2﹣2x P﹣3),∵x P=x F,∴线段PF长度=﹣x P2+3x P=﹣(x P﹣)2+,(1<x P≤3),∴当x P=时,线段PF长度最大为.点评:本题考查了抛物线图象性质、已知两点求直线解析式、直角三角形性质及二次函数最值等基础知识点,题目难度适中,适合学生加强练习.。

2014年云南省昆明市中考数学试卷及答案【解析版】

2014年云南省昆明市中考数学试卷及答案【解析版】
分析:
根据反比例函数的图象,可知 ,结合一次函数的图象性质进行判断即可.
解答:
解:根据反比例函数的图象经过一、三象限,可知 ,由一次函数 ,可知: 时,图象从左至右呈上升趋势, 是图象与 轴的交点,
所以交点在 轴负半轴上.故选B.
点评:
本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质才能灵活解题.
昆明市2014年初中学业水平考试数学
考生注意:1、本考试试卷共三道大题,满分120分。考试时量120分钟。
一、选择题(每小题3分,满分24分,在每小题给出的四个选项中,只有一项是正确的)
1、 的相反数是()
A. B. C. 2 D.
考点:
相反数.Βιβλιοθήκη 分析:根据相反数的定义,即只有符号不同的两个数互为相反数,进行求解.
点评:
本题考查了实数的运算,涉及了绝对值、零指数幂、负整数指数幂及特殊角的三角函数值,属于基础题.
16、(本小题5分)已知:如图,点A、B、C、D在同一条直线上,AB=CD,AE∥CF,且AE=CF.
求证:∠E=∠F
考点:
全等三角形的判定与性质.
分析:
首先根据AE∥CF,可得∠A=∠C,,结合AB=CD,AE=CF.可知证明出△ABE≌△CDF,即可得到∠E=∠F
故填12
点评:
本题考查了折叠的性质,勾股定理的运用及三角形相似问题..
三、解答题(共9题,满分58分)
15、(本小题5分)计算:
考点:
实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.
分析:
分别进行绝对值、零指数幂、负整数指数幂的运算,再代入特殊角的三角函数值,合并即可得出答案.
解答:

广西柳州市2014年中考数学试卷及答案(word解析版)

广西柳州市2014年中考数学试卷及答案(word解析版)

2014 年广西柳州市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3 分,满分36分)1.(3 分)(2014?柳州)如图,李师傅做了一个零件,请你告诉他这个零件的主视图是()解答:解:从正面看,左边是个正方形,右边是个矩形,故选:A .点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.2.(3分)(2014?柳州)在所给的,0,﹣1,3 这四个数中,最小的数是()A.B.0C.﹣1 D.3考点:有理数大小比较.分析:要解答本题可根据正数大于0,0 大于负数,可得答案.解答:解:﹣1<0< < 3.故选:C.点评:本题考查了有理数比较大小,正数大于0,0 大于负数是解题关键.3.(3 分)(2014?柳州)下列选项中,属于无理数的是()A.2 B.πC.D.﹣2考点:无理数.分析:根据无理数是无限不循环小数,可得答案.解答:解:π是无限不循环小数,故选:B .点评:本题考查了无理数,无理数是无限不循环小数.4.(3分)(2014?柳州)如图,直线l∥OB,则∠ 1的度数是(5.(3 分)(2014?柳州)下列计算正确的选项是( )A . ﹣1=B . ( ) 2=5 C . 2a ﹣ b=abD .=:分式的加减法;实数的运算;合并同类项. :计算题.:A 、原式利用平方根定义化简,计算即可得到结果;B 、原式利用平方根定义化简, 计算即可得到结果;C 、原式不能合并,错误;D 、原式利用同分母分式的加法法则计算得到结果,即可做出判断. 解答:解:A 、原式 =2﹣1=1;故选项错误;B 、原式 =5,故选项正确;C 、原式不能合并,故选项错误;D 、原式 = ,故选项错误.故选 B .点评:此题考查了分式的加减法,以及实数的运算,熟练掌握运算法则是解本题的关键.考点 :平行线的性质.分析: 根 据两直线平行,同位角相等解答. 解答:解 :∵直线 l ∥OB ,∴∠ 1=60°.故选 D .点评:本题考查平行线的性质,熟记性质是解题的关键.A . 120°B . 30C . 40°D .60°6.( 3分)( 2014?柳州)如图,直角坐标系中的五角星关于 y 轴对称的图形在( ) 考点 :轴对称的性质. 分析:根据轴对称的性质作出选择.解答:解:如图所示,直角坐标系中的五角星关于 y 轴对称的图形在第一象限.点评:本 题考查了轴对称的性质.此题难度不大,采用了 “数形结合 ”的数学思想.7.(3 分)(2014?柳州)学校 “清洁校园 ”环境爱护志愿者的年龄分布如图,那么这些志愿者 年龄的众数是( )A .12岁B .13 岁C .14岁D .15 岁 考点 :条形统计图;众数. 分析:根据众数的定义,就是出现次数最多的数,据此即可判断. 解答:解:众数是 14 岁.故选 C .点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解 决问题的关键.条形统计图能清楚地表示出每个项目的数据.8.( 3分)( 2014?柳州)如图,当半径分别是 5和 r 的两圆⊙ O 1和⊙O 2 外切时,它们的圆 心距 O 1O 2=8,则⊙ O 2 的半径 r 为( )B . 第二象限C . 第三象限D .第四象限A .第一象限A.12 B.8 C.5 D.3考点 :圆与圆的位置关系.分析:根 据两圆外切时,圆心距 =两圆半径的和求解.解答:解 :根据两圆外切,圆心距等于两圆半径之和,得该圆的半径是 8﹣ 5=3.故选 D .点评:本题考查了圆与圆的位置关系,注意:两圆外切,圆心距等于两圆半径之和.考点 :多 边形.分析:根据菱形的对角线互相垂直即可判断.解答: 解 :菱形的对角线互相垂直,而长方形、平行四边形、直角梯形的对角线不一定互相 垂直.故选 C .点评: 本题考查了长方形、平行四边形、菱形、直角梯形的性质.常见四边形中,菱形与正 方形的对角线互相垂直.10.(3 分)(2014?柳州)如图,正六边形的每一个内角都相等,则其中一个内角 α的度数考点 :多边形内角与外角.分析:多 边形的内角和可以表示成( n ﹣2)?180°,因为所给多边形的每个内角均相等,可设这个正六边形的每一个内角的度数为 x ,故又可表示成 6x ,列方程可求解. 解答:解 :设这个正六边形的每一个内角的度数为 x ,则 6x= ( 6﹣ 2)?180°, 解得 x=120 °.故这个正六边形的每一个内角的度数为 120 °. 故答案选: B .点评:本 题考查根据多边形的内角和计算公式求多边形的内角的度数, 解答时要会根据公式进行正确运算、变形和数据处理.2211.( 3分)( 2014?柳州)小兰画了一个函数 y=x +ax+b 的图象如图,则关于 x 的方程 x +ax+b=0 的解是( )9. B . 120°C .60°D .30°A .考点:抛物线与 x 轴的交点. 考点 :列表法与树状图法. 专题 :计算题.分析:根据题意列出表格,得出所有等可能的情况数,找出至少有一个灯泡发光的情况数, 即可求出所求的概率. 解答:解 :列表如下:灯泡 1 发光 灯泡 1 不发光A .无解 C .x=﹣4 D . x=﹣ 1 或 x=40.5,当合上开关时,至B . 0.5C .0.75D .0.95B . x A . 0.灯泡2 发光(发光,发光)(不发光,发光)灯泡2 不发光(发光,不发光)(不发光,不发光)所有等可能的情况有4 种,其中至少有一个灯泡发光的情况有 3 种,则P= =0.75 .故选C.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(共6小题,每小题3分,满分18 分)13.(3分)(2014?柳州)3的相反数是﹣3 .考点:相反数.分析:此题依据相反数的概念求值.相反数的定义:只有符号不同的两个数互为相反数,0 的相反数是0.解答:解:3 的相反数就是﹣3.点评:此题主要考查相反数的概念.14.(3分)(2014?柳州)如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x < y(用“> 或“<”填空).考点:不等式的定义.分析:由图知1号同学比2 号同学矮,据此可解答.解答:解:如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y,故答案为:<.点评:本题主要考查了不等式的定义,仔细看图是解题的关键.如图,等腰梯形ABCD 的周长为16,BC=4 ,CD=3 ,则AB= 5考点:等腰梯形的性质.∴ AD=BC ,∵ BC=4 ,∴ AD=4 ,∵ CD=3 ,等腰梯形ABCD 的周长为16,∴ AB=16 ﹣3﹣4﹣4=5,故答案为5.点评:本题考查了等腰梯形的性质,是基础知识要熟练掌握.16.(3 分)(2014?柳州)方程﹣1=0 的解是x= 2考点:解分式方程.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解答:解:去分母得:2﹣x=0 ,解得:x=2 ,经检验x=2 是分式方程的解.故答案为:2.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.(3 分)(2014?柳州)将直线y= x 向上平移7 个单位后得到直线y= x+7.考点:一次函数图象与几何变换.分析:直接根据“上加下减”的原则进行解答.解答:解:由“上加下减”的原则可知,将直线y= x 向上平移7 个单位所得直线的解析式为:= x+7 .故答案为:7.点评:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.18.(3 分)(2014?柳州)如图,在△ABC 中,分别以AC,BC 为边作等边△ACD 和等边△BCE .设△ ACD 、△BCE、△ABC 的面积分别是S1、S2、S3,现有如下结论:22①S1:S2=AC 2:BC2;②连接AE ,BD ,则△ BCD ≌△ ECA;2③若AC ⊥BC ,则S1?S2= S3 .其中结论正确的序号是①②③ .考点:全等三角形的判定与性质;等边三角形的性质.分析:① 根据相似三角形面积的比等于相似比的平方判断;② 根据SAS 即可求得全等;③ 根据面积公式即可判断.解答:① S1:S2=AC 2:BC2正确,解:∵△ ADC 与△ BCE 是等边三角形,∴△ ADC∽△ BCE,22∴ S1:S2=AC 2:BC2.② △BCD ≌△ ECA 正确,证明:∵△ ADC 与△ BCE 是等边三角形,∴∠ ACD= ∠BCE=60 °∴∠ ACD+ ∠ACB= ∠BCE+∠ACD ,即∠ ACE= ∠DCB,在△ ACE 与△ DCB 中,,∴△ BCD≌△ ECA (SAS).2③ 若AC ⊥BC ,则S1?S2= S3 正确,解:设等边三角形ADC 的边长=a,等边三角形BCE 边长=b,则△ADC 的高= a,S32= a2b2,∴ S1?S2= S32.点评:本题考查了三角形全等的判定,等边三角形的性质,面积公式以及相似三角形面积的比等于相似比的平方.三、解答题(共8 小题,满分66分)19.(6 分)(2014?柳州)计算:2×(﹣5)+3.考点:有理数的乘法;有理数的加法.分析:根据异号两数相乘得负,并把绝对值相乘,可得积,再根据有理数的加法,可得答案.解答:解:原式=﹣10+3=﹣7.点评:本题考查了有理数的乘法,先算有理数的乘法,再算有理数的加法,注意运算符号.20.(6 分)(2014?柳州)一位射击运动员在10次射击训练中,命中靶的环数如图.请你根据图表,完成下列问题:)补充完成下面成绩表单的填写:2)求该运动员这10 次射击训练的平均成绩.考点:折线统计图;统计表;算术平均数.分析:根据折线统计图中提供的信息,补全统计表;(2)求出该运动员射击总环数除以10 即可.解答:解:(1)由折线统计图得出第一次射击环数为:8,第二次射击环数为:9,第三次射击环数为:7,故答案为:8,9,7.点评:本题主要考查了折线统计图及统计表和平均数,解题的关键是能从折线统计图中正确找出数据.21.(6 分)(2014?柳州)小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少g?考点 : 二元一次方程组的应用.分析: 设 大苹果的重量为 xg ,小苹果的重量为 yg ,根据图示可得:大苹果的重量 =小苹果 50g ,大苹果 +小苹果 =300g+50g ,据此列方程组求解.解答: 解 :设大苹果的重量为 xg ,小苹果的重量为 yg , 由题意得, ,解得: .答:大苹果的重量为 200g ,小苹果的重量为 150g .点评:本题考查了二元一次方程组的应用,解答本题的关键是根据图形,找出等量关系,列 方程组求解.22.(8分)(2014?柳州)如图,在 △ABC 中, BD ⊥ AC ,AB=6 ,AC=5 ,∠A=30 °.① 求 BD 和 AD 的长;② 求 tan ∠ C 的值.考点 :解直角三角形;勾股定理.专题 : 计算题.分析:(1)由 BD ⊥AC 得到∠ ADB= ∠ADC=90 °,在 Rt △ADB 中,根据含 30 度的直角三 角形三边的关系先得到 BD= AB=3 ,再得到 AD= BD=3 ;( 2)先计算出 CD=2 ,然后在 Rt △ADC 中,利用正切的定义求解. 解答: 解:(1)∵BD ⊥AC ,∴∠ ADB= ∠ ADC=90 °,在 Rt △ADB 中, AB=6 ,∠ A=30 °,∴ BD= AB=3 ,∴ AD= BD=3 ;(2)CD=AC ﹣AD=5 ﹣3 =2 ,在Rt△ADC 中,tan∠C= = = .点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了含30 度的直角三角形三边的关系.23.(8 分)(2014?柳州)如图,函数y= 的图象过点A(1,2).(1)求该函数的解析式;(2)过点A 分别向x 轴和y 轴作垂线,垂足为B 和C,求四边形ABOC 的面积;(3)求证:过此函数图象上任意一点分别向x 轴和y 轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.考点:待定系数法求反比例函数解析式;反比例函数系数k 的几何意义.分析: (1)将点A 的坐标代入反比例函数解析式,即可求出k 值;(2)由于点A 是反比例函数上一点,矩形ABOC 的面积S=|k| .(3)设图象上任一点的坐标(x ,y),根据矩形的面积公式,可得出结论.解答:解:(1)∵函数y= 的图象过点A (1,2),∴将点A 的坐标代入反比例函数解析式,得2= ,解得:k=2 ,∴反比例函数的解析式为y= ;(2)∵点A 是反比例函数上一点,∴矩形ABO C 的面积S=AC ?AB=|xy|=|k|=2 .(3)设图象上任一点的坐标(x,y),∴过这点分别向x 轴和y 轴作垂线,矩形面积为|xy|=|k|=2 ,∴矩形的面积为定值.点评:点评:本题主要考查了待定系数法求反比例函数解析式和反比例函数y= 中k 的几何意义,注意掌握过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.24.(10分)(2014?柳州)如图,在△ABC 中,∠BAC 的角平分线AD 交BC 于E,交△ABC 的外接圆⊙ O 于D.(1)求证:△ABE ∽△ ADC ;(2)请连接BD ,OB ,OC ,OD ,且OD 交BC于点F,若点F恰好是OD 的中点.求证:四边形OBDC 是菱形.考点:相似三角形的判定与性质;菱形的判定;圆周角定理.专题:证明题.分析:(1)根据圆周角定理求出∠ B=∠D,根据相似三角形的判定推出即可;(2)根据垂径定理求出OD⊥BC,根据线段垂直平分线性质得出OB=BD ,OC=CD ,根据菱形的判定推出即可.解答:证明:(1)∵∠ BAC 的角平分线AD ,∴∠ BAE= ∠CAD ,∵∠ B=∠ D,∴△ ABE ∽△ ADC ;(2)∵∠ BAD= ∠CAD ,∴弧BD=弧CD,∵ OD 为半径,∴ DO⊥ BC ,∵F为OD 的中点,∴ OB=BD ,OC=CD ,∵ OB=OC ,∴ OB=BD=CD=OC ,∴四边形OBDC 是菱形.点评:本题考查了相似三角形的判定,圆周角定理,垂径定理,菱形的判定,线段垂直平分线性质的应用,主要考查学生的推理能力.25.(10 分)(2014?柳州)如图,正方形ABCD 的边长为l,AB 边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ ⊥AB 的延长线于点Q.1)求线段PQ 的长;2)问:点P 在何处时,△PFD∽△ BFP,并说明理由.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.分析:(1)由题意得:PD=PE ,∠ DPE=90 °,又由正方形ABCD 的边长为l,易证得△ ADP ≌△ QPE ,然后由全等三角形的性质,求得线段PQ 的长;(2)易证得△DAP ∽△ PBF,又由△ PFD∽△ BFP,根据相似三角形的对应边成比例,可得证得PA=PB ,则可求得答案.解答:解:(1)根据题意得:PD=PE,∠ DPE=90°,∴∠ APD+ ∠QPE=90°,∵四边形ABCD 是正方形,∴∠ A=90 °,∴∠ ADP+ ∠ APD=90 °,∴∠ ADP= ∠QPE,∵EQ⊥AB ,∴∠ A= ∠Q=90°,在△ADP 和△QPE 中,,∴△ ADP≌△ QPE(AAS ),∴ PQ=AD=1 ;(2)∵△ PFD ∽△ BFP,∴,∴,∵∠ ADP= ∠EPB,∠CBP=∠A,∴△ DAP∽△ PBF,∴,∴,∴,∴,∴ PA=PB ,∴ PA= AB =∴当PA= 时,△ PFD∽△ BFP.点评:此题考查了相似三角形的判定与性质、正方形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.26.(12 分)(2014?柳州)已知二次函数图象的顶点坐标为(0,1),且过点(﹣1,),直线y=kx+2 与y 轴相交于点P,与二次函数图象交于不同的两点A (x1,y1),B (x2,y2).(1)求该二次函数的解析式.(2)对(1)中的二次函数,当自变量x 取值范围在﹣1< x<3 时,请写出其函数值y 的取值范围;(不必说明理由)(3)求证:在此二次函数图象下方的y 轴上,必存在定点G,使△ABG 的内切圆的圆心落在y 轴上,并求△ GAB 面积的最小值.(注:在解题过程中,你也可以阅读后面的材料)附:阅读材料任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.2即:设一元二次方程ax +bx+c=0 的两根为x1,x2,则:x1+x2=﹣,x1?x2=能灵活运用这种关系,有时可以使解题更为简单.2例:不解方程,求方程x2﹣3x=15 两根的和与积.2解:原方程变为:x2﹣3x ﹣15=0元二次方程的根与系数有关系:x1+x2=﹣,x1?x2==﹣15.考点:二次函数综合题;完全平方公式;根与系数的关系;待定系数法求一次函数解析式;二次函数的图象;待定系数法求二次函数解析式;三角形的内切圆与内心.专题:压轴题.分析:(1)设二次函数解析式为y=ax2+1,由于点(﹣1,)在二次函数图象上,把该点2的坐标代入y=ax2+1,即可求出a,从而求出二次函数的解析式.(2)先分别求出x= ﹣1,x=0 ,x=3 时y的值,然后结合图象就可得到y 的取值范围.(3)由于△ABG 的内切圆的圆心落在y轴上,因此GP平分∠ AGB .过点A 作GP的对称点A ′,则点A ′必在BG 上.由于点A(x1,y1)、B(x2,y2)在直线y=kx+2 上,从而可以得到点A 的坐标为(x1,kx1+2)、A′的坐标为(﹣x1,kx1+2)、B 的坐标为(x2,kx 2+2).设直线BG 的解析式为y=mx+n ,则点G 的坐标为(0,n).由于点A′(﹣x1,kx1+2)、B(x2,kx2+2)在直线BG 上,可用含有k、x1、x2 的代数式表示n.由于A、B 是直线y=kx+2 与抛物线y= x1 2 3 4+1的交点,由根与系数的关系可得:x1+x2=4k,x1?x2=﹣4.从而求出n=0,即可证出:在此二次函数图象下方的y轴上,存在定点G(0,0),使△ABG 的内切圆的圆心落在y 轴上.由S△ABG=S△APG+S△BPG,可以得到5△ABG =x 2﹣解答:(1)解:由于二次函数图象的顶点坐标为(0,1),2因此二次函数的解析式可设为y=ax 2+1 .2∵抛物线y=ax 2+1过点(﹣1,),∴ =a+1 .解得:a= .∴二次函数的解析式为:y= x2+1.(2)解:当x=﹣1时,y= ,当x=0 时,y=1 ,当x=3 时,y= ×32+1= ,结合图1可得:当﹣1<x<3 时,y的取值范围是1≤y< .(3)① 证明:∵△ ABG 的内切圆的圆心落在y 轴上,∴ GP 平分∠ AGB .∴直线GP 是∠ AGB 的对称轴.过点A 作GP 的对称点A′,如图2,则点A ′一定在BG 上.∵点A 的坐标为(x1,y1),∴点A ′的坐标为(﹣x1,y1).∵点A (x1,y1)、B (x2,y2)在直线y=kx+2 上,∴ y1=kx1+2,y2=kx 2+2.∴点A′的坐标为(﹣x1,kx1+2)、点B 的坐标为(x2,kx2+2).设直线BG 的解析式为y=mx+n ,则点G 的坐标为(0,n).∵点A ′(﹣x1,kx1+2)、B(x2,kx2+2)在直线BG 上,x1= =4 ,所以当k=0 时,S△ABG 最小,最小值为4.解得:2∵ A(x1,y1),B(x2,y2)是直线y=kx+2 与抛物线y= x2+1 的交点,∴x1、x2是方程kx+2= x2+1即x2﹣4kx﹣4=0 的两个实数根.∴由根与系数的关系可得;x1+x2=4k ,x1?x 2= ﹣4.∴ n= =﹣2+2=0.∴点G 的坐标为(0,0).∴在此二次函数图象下方的y轴上,存在定点G(0,0),使△ABG 的内切圆的圆心落在y 轴上.② 解:过点A 作AC ⊥ OP,垂足为C,过点B 作BD ⊥OP,垂足为D,如图2,∵直线y=kx+2 与y 轴相交于点P,∴点P 的坐标为(0,2).∴ PG=2 .∴ S△ABG=S△APG+S△ BPG= PG?AC+ PG?BD= PG?(AC+BD )= ×2 ×(﹣x1+x2)12=x2﹣x1==4 .∴当k=0 时,S△ ABG最小,最小值为4.∴△ GAB 面积的最小值为4.≡1点评:本题考查了用待定系数法求二次函数及一次函数的解析式、二次函数的图象、三角形的内切圆、根与系数的关系、完全平方公式等知识,综合性比较强,有一定的难度.分析:关于x 的方程x* 2+ax+b=0 的解是抛物线y=x 2+ax+b 与x 轴交点的横坐标.解答:解:如图,∵函数y=x 2+ax+b的图象与x 轴交点坐标分别是(﹣1,0),(4,0),2∴关于x 的方程x +ax+b=0 的解是x= ﹣1 或x=4.2y=ax +bx+c (a,b,c 是常数,a≠0)2与x 轴的交点坐标,令y=0 ,即ax2+bx+c=0 ,解关于x 的一元二次方程即可求得交点横坐标.12.(3 分)(2014?柳州)如图,每个灯泡能否通电发光的概率都是少有一个灯泡发光的概率是()分析:根据等腰梯形的性质可得出AD=BC ,再由BC=4 ,CD=3 ,得出AB 的长.解答:解:∵四边形ABCD 为等腰梯形,=4 .。

中考二元一次方程组易错题50题(含答案解析)

中考二元一次方程组易错题50题(含答案解析)

中考二元一次方程组易错题50题含答案解析一、单选题1.方程2x +y =5与下列方程构成的方程组的解为31x y =⎧⎨=-⎩的是( )A .x ﹣y =4B .x +y =4C .3x ﹣y =8D .x +2y =﹣12.下列方程是二元一次方程的是( ) A .24x x -=B .26x y -=C .23x y+= D .5xy =3.方程组25328x y x y -=⎧⎨-=⎩消去y 后得到的方程是 ( )A .5313x y -=B .()32258x x --=C .()35282y y +-= D .83252xx --= 4.已知:21x y =⎧⎨=⎩是方程5kx y -=的解,则k 的值是( )A .2B .2-C .3-D .35.已知x ,y 满足2245240x xy y y -++-=,则下面关于x ,y 描述正确地是( ) A .满足条件的整数x ,y 有2对 B .满足条件的整数x ,y 有4对 C .满足条件的整数x ,y 有8对D .满足条件的整数x ,y 有无数对6.下面各组x 、y 的值满足二元一次方程35x y +=的是( ) A .2x =-,1y = B .0x =,5y = C .2x =,1y =D .5x =,0y =7.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A . 4.521y x x y -=⎧⎨-=⎩B . 4.521x y x y -=⎧⎨-=⎩C . 4.512x y y x -=⎧⎪⎨-=⎪⎩D . 4.512y x yx -=⎧⎪⎨-=⎪⎩8.已知关于x、y的二元一次方程ax+b=y,下表列出了当x分别取值时对应的y 值.则关于x的不等式ax+b<0的解集为()A.x<1B.x>1C.x<0D.x>09.现用100张铁皮做盒子,每张铁皮可做8个盒身或9个盒底,且一个盒身与两个盒底配成一个盒子.设用x张铁皮做盒身,y张铁皮做盒底,则可得方程组()A.100289x yx y+=⎧⎨⨯=⎩B.100829x yx y+=⎧⎨=⨯⎩C.891002x yx y+=⎧⎨=⎩D.891002x yx y+=⎧⎨=⎩10.下列选项不是..方程25x y-=的解的是()A.43xy=⎧⎨=⎩B.21xy=⎧⎨=-⎩C.31xy=⎧⎨=-⎩D.31xy=⎧⎨=⎩11.与方程组+23020x yx y-=⎧⎨+=⎩有完全相同的解的是().A.x+2y-3=0B.2x+y=0C.(x+2y-3)(2x+y)=0D.|x+2y-3|+(2x+y)2=012.230a b ca b c-+=⎧⎨-+=⎩,则=a cb-()A.1B.2C.3D.4 13.下列各组数值是二元一次方程2x﹣y=5的解是()A.21xy=-⎧⎨=⎩B.5xy=⎧⎨=⎩C.15xy=⎧⎨=⎩D.31xy=⎧⎨=⎩14.如图,正方形ABCD由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成,其中四个大长方形的长和宽分别是小长方形长和宽的2倍,若中间小正方形的面积为1,则大正方形ABCD的面积是()A.16B.20C.25D.2615.关于x,y的方程组38x ayx y b-=⎧⎨+=⎩的解是21xy=⎧⎨=⎩,则a﹣b的值是()A.1B.﹣5C.5D.﹣116.我国明代数学读本《算法统宗》一书有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托如果1托为5尺,那么索长和竿子长分别为多少尺?设索长为x尺,竿子长为y尺,可列方程组为()A.525x yx y-=⎧⎨-=⎩B.552x yxy-=⎧⎪⎨-=⎪⎩C.552x yyx-=⎧⎪⎨-=⎪⎩D.552y xyx-=⎧⎪⎨-=⎪⎩17.三元一次方程组354x yy zz x+=⎧⎪+=⎨⎪+=⎩的解为()A.23xyz=⎧⎪=⎨⎪=⎩B.123xyz=⎧⎪=⎨⎪=⎩C.13xyz=⎧⎪=⎨⎪=⎩D.311xyz=⎧⎪=⎨⎪=⎩18.二元一次方程2x+y=5的正整数解有()A.1个B.2个C.3个D.4个19.从4-,3-,1,3,4这五个数中,随机抽取一个数,记为m,若m使得关于x,y的二元一次方程组2223x ymx y+=⎧⎨-=-⎩有解,且使关于x的分式方程12111mx x--=--有正数解,那么这五个数中所有满足条件的m的值之和是()A.1B.2C.1-D.2-二、填空题20.已知12xy=⎧⎨=⎩是方程ax-y=3的解,则a的值为________.21.由方程y ﹣3x =4可得到用x 表示y 的式子是y =______.22.若方程组234,3223x y x y m +=⎧⎨+=-⎩的解满足1x y -=,则m =_______.23.某同学解方程组223x y x y +=⎧⎨-=⎩●的解为1x y =⎧⎨=⎩★,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回这个数,=●______.24.若关于x ,y 的二元一次方程组2123x y k x y k +=-⎧⎨+=⎩的解也是二元一次方程5x y +=的解,则k 的值为____________.25.如果22m x -+y=0是二元一次方程,则m =________.26.给出下列程序:已知当输入的x 值为1时,输出值为1;当输入的x 值为﹣1时,输出值为5,则当输入的x 值为12时,输出值为_______.27.已知x ay b =⎧⎨=⎩是方程组352158213537x y x y +=⎧⎨+=⎩的解,则a ﹣b =_____.28.已知点()36,415A x y -+,点()5,B y x 关于x 轴对称,则x y +的值是____. 29.已知2728x y x y +=⎧⎨+=⎩,则x y x y +=-___. 30.若方程组5{25x y x y =+-=的解满足方程0x y a ++=,则a 的值为_____.31.已知21x y =⎧⎨=⎩是二元一次方程组54ax by bx ay +=⎧⎨+=⎩的解,则a ba b +=-______. 32.x y 2y z 4z x 6+=⎧⎪+=⎨⎪+=⎩的解为______ .33.方程组28x y kx y k+=⎧⎨-=⎩的解满足x +2y >14,则k 的取值范围为___________34.如图,已知ABC 中,2AD CD =,AE BE =,BD 、CE 相交于点O .若ABC 的面积为30,则四边形ADOE 的面积为______.35.已知21x y =⎧⎨=⎩是二元一次方程组45ax by bx ay +=⎧⎨+=⎩的解,则=a ______,b =__________.36.若537y x a b +与3x y a b --是同类项,则x y +=__________.37.若x ay b =⎧⎨=⎩是方程22x y +=的解,则42a b +=________ .38.买2只签字笔,3只圆珠笔,1个笔记本,共需32元;买3只签字笔,5只圆珠笔,1个笔记本,共需45元.那么签字笔、圆珠笔、笔记本各买一件共需_____元.39.若关于x ,y 的方程组2x y m x my n -=⎧⎨+=⎩的解是13x y =⎧⎨=⎩,则|m +n |的值是________.三、解答题 40.解方程组 (1)134342x yx y ⎧-=⎪⎨⎪-=⎩ (2)3(1)55(1)3(5)x y y x -=+⎧⎨-=+⎩41.如图,已知AB CD ∥,E ,F 分别是射线CD ,AB 上的点,AE 平分BAC ∠,EF 平分AED ∠.(1)试说明23∠∠=;(2)若230AFE ∠-∠=︒,求AFE ∠的度数.42.某天小明和小华同时求解关于x ,y 的二元一次方程组161? ax by bx ay +=⎧⎨+=⎩①②,小明把方程★抄错,求得的解为13xy=-⎧⎨=⎩,小华把方程★抄错,求得的解为32xy=⎧⎨=⎩,求a,b的值.43.长沙县为加快新农村建设,建设美丽乡村,对A,B两类村庄进行了全面改建.根据预算,改建一个A类美丽宜居村庄和一个B类美丽宜居村庄共需资金600万元;改建2个A类美丽宜居村庄和5个B类美丽宜居村庄共需资金1950万元.(1)改建一个A类美丽宜居村庄和一个B类美丽宜居村庄所需资金分别是多少万元?(2)黄兴镇拟改建A类、B类美丽宜居村庄共10个,投入资金不超过2960万元,最多改建A类美丽宜居村庄多少个?44.已知关于x、y的二元一次方程组的解x、y是一对相反数,试求m 的值.45.一家服装店老板到厂家选购A,B两种型号的服装,若购进A种型号服装9件,B 种型号服装10件,需要1810元;若购进A种型号服装12件,B种型号服装8件,需要1880元(1)A,B两种型号的服装每件分别为多少元?.(2)已知A种型号服装每件的售价为108元,B种型号服装每件的售价为130元.根据市场需求,服装店老板决定,购进A种型号服装的数量要比购进B种型号服装的数量的2倍还多4件,且A种型号服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元.则有哪几种进货方案?46.南山植物园中现有A,B两个园区.已知A园区为长方形,长为(x+y)米,宽为(x -y)米;B园区为正方形,边长为(x+3y)米.(1)请用代数式表示A,B两园区的面积之和并化简.(2)现根据实际需要对A园区进行整改,长增加(11x-y)米,宽减少(x-2y)米,整改后A 园区的长比宽多350米,且整改后两园区的周长之和为980米.★求x,y的值;★若A园区全部种植C种花,B园区全部种植D种花,且C,D两种花投入的费用与吸引游客的收益如下表:求整改后A,B两园区旅游的净收益之和.(净收益=收益-投入)47.某手机店卖出甲型号手机10台和乙型号手机12台后的销售额为3.18万元;卖出甲型号手机6台和乙型号手机9台后的销售额为2.16万元.(1)请问甲型号手机和乙型号手机每台售价为多少元?(2)若甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?若所有购进的手机都可以售出,请求出所有方案中的最大利润.参考答案:1.A【分析】将31x y =⎧⎨=-⎩分别代入四个方程进行检验即可得到结果.【详解】解:A 、将31x y =⎧⎨=-⎩代入x ﹣y =4,得左边=3+1=4,右边=4,左边=右边,所以本选项正确;B 、将31x y =⎧⎨=-⎩代入x +y =4 ,得左边=3−1=2,右边=4,左边≠右边,所以本选项错误;C 、将31x y =⎧⎨=-⎩代入3x ﹣y =8,得左边=3×3+1=10,右边=8,左边≠右边,所以本选项错误;D 、将31x y =⎧⎨=-⎩代入x +2y =﹣1 ,得左边=3−2=1,右边=-1,左边≠右边,所以本选项错误;故选A .【点睛】本题考查了二元一次方程组的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 2.B【分析】根据二元一次方程的定义即可判断. 【详解】24x x -=是一元一次方程,故A 错误.26x y -= 含有两个未知数,且未知数的次数为1,是二元一次方程,故B 正确.23x y+= 是分式方程,故C 错误. 5xy = 是二元二次方程,故D 错误.故选B【点睛】本题考查的是二元一次方程的概念,关键是熟记二元一次方程要含有两个未知数,且未知数的次数为1. 3.B【分析】利用代入消元法即可求出消去y 后得到的方程 .【详解】解:25328x y x y -=⎧⎨-=⎩①②,由★得:25y x =-★,将★代入★得:32(25)8x x --=, 故选:B .【点睛】本题考查了解二元一次方程组,利用消元法是解题的关键. 4.D【分析】把方程的解代入方程转化为k 的一元一次方程求解即可.【详解】★21x y =⎧⎨=⎩是方程5kx y -=的解,★2k -1=5, 解得k =3, 故选D .【点睛】本题考查了二元一次方程的解,灵活运用方程解的定义转化为一元一次方程求解是解题的关键. 5.C【分析】将已知等式利用因式分解变形为()()22215x y y +-+=,令A =x -2y ,B =y +1,可得不同的方程组,解之可得满足条件的x 和y 的取值. 【详解】解:★2245240x xy y y -++-=, ★222442150x xy y y y -+++-=+, ★()()22215x y y +-+=, 令A =x -2y ,B =y +1, ★x ,y 均为整数,★2205A B ⎧=⎨=⎩(舍去),2214A B ⎧=⎨=⎩,2223A B ⎧=⎨=⎩(舍去),2232A B ⎧=⎨=⎩(舍去),2241A B ⎧=⎨=⎩,2250A B ⎧=⎨=⎩(舍去),★2112x y y -=±⎧⎨+=±⎩或2211x y y -=±⎧⎨+=±⎩,解得:31x y =⎧⎨=⎩或53x y =-⎧⎨=-⎩或11x y =⎧⎨=⎩或43x y =⎧⎨=-⎩或20x y =⎧⎨=⎩或22x y =-⎧⎨=-⎩或20x y =-⎧⎨=⎩或62x y =-⎧⎨=-⎩共8对,故选C .【点睛】本题考查了因式分解的应用,二元一次方程组,解题的关键是将已知等式合理变形. 6.B【分析】把选项中的x 、y 的值代入方程进行验证即可.【详解】解:A 、当x =-2,y =1时,3x +y =3×(-2)+1=-5≠5,所以2x =-,1y =不是方程的解;B 、当x =0,y =5时,3x +y =3×0+5=5,所以0x =,5y =是方程的解;C 、当2x =,1y =时,3x +y =3×2+1=7≠5,所以2x =,1y =不是方程的解;D 、当5x =,0y =时,3x +y =3×5+0=15≠5,所以5x =,0y =不是方程的解; 故选:B .【点睛】本题主要考查方程解的概念,掌握方程的解满足方程是解题的关键. 7.D【分析】设木头长为x 尺,绳子长为y 尺,根据“用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】解:设木头长为x 尺,绳子长为y 尺, 由题意可得 4.512y x yx -=⎧⎪⎨-=⎪⎩. 故选:D .【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组. 8.B【分析】根据表格选取两对值代入二元一次方程组成方程组,解方程组得不等式,解不等式即可.【详解】解:由题意得出232a b a b -+=⎧⎨-+=⎩,解得11a b =-⎧⎨=⎩,则不等式为﹣x +1<0,解得x>1,故选:B.【点睛】本题考查表格信息,会利用表格信息确定方程组,会解方程组,会解一元一次不等式是解题关键.9.A【分析】设用x张铁皮做盒身,y张铁皮做盒底,根据共有100张铁皮,一个盒身与两个盒底配成一个盒子,列方程组即可.【详解】解:用x张铁皮做盒身,y张铁皮做盒底,由题意得,100 289x yx y+=⎧⎨⨯=⎩.故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.10.C【分析】根据二元一次方程的解得定义把x,y代入方程检验即可.【详解】A. x=4、y=3时,左边=8-3=5,此选项不符合题意;B. x=2、y=-1时,左边=4+1=5,不符合题意;C. x=3、y=-1时,左边=6+1=7≠5,符合题意;D. x=3、y=1时,左边=6−1=5,不符合题意;故选C.【点睛】此题考查二元一次方程的解,解题关键在于把x,y代入方程检验.11.D【分析】根据二元一次方程的解的概念可对A、B、C选项进行判断,根据非负数的性质,可得关于x、y的方程组,由此可判断D选项.【详解】解:根据二元一次方程解的定义可知A,B,C选项的解有无数组,故A,B,C选项都错误,D选项根据非负数的性质可得方程组+23020x yx y-=⎧⎨+=⎩,与所给方程组完全相同,故它们的解也相同.【点睛】本题考查了二元一次方程(组)的解的概念,几个非负数的和为0,则每个数都为0.掌握二元一次方程及方程组解的概念是解题的关键.12.C【分析】先用★-★得到2a b =,再将2a b =代入★得到c b =-,最后代入a c b-求值即可. 【详解】解:0230a b c a b c -+=⎧⎨-+=⎩①②, ★-★得,20a b -=,解得,2a b =,把2a b =代入★得,c b =-, 则2()3a c b b b b---==, 故选:C .【点睛】本题考查了加减消元法,求出a 、b 、c 之间的关系是解题的关键.13.D【分析】将选项中的解分别代入方程2x ﹣y =5,使方程成立的即为所求.【详解】解:A. 把21x y =-⎧⎨=⎩代入方程2x ﹣y =5,-4-1=-5≠5,不满足题意; B. 把05x y =⎧⎨=⎩代入方程2x ﹣y =5,0-5=-5≠5,不满足题意; C. 把15x y =⎧⎨=⎩代入方程2x ﹣y =5,2-5=-3≠5,不满足题意; D. 把31x y =⎧⎨=⎩代入方程2x ﹣y =5,6-1=5,满足题意; 故选:D .【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.能正确掌握方程的解得概念是解答此题的关键.14.A【分析】设小长方形的长为a ,宽为b ,则大长方形的长为2a ,宽为2b ,根据图形中大小长方形长与宽之间的关系,可得出关于a 、b 的二元一次方程组,解之即可得出a 、b 的值,在利用正方形面积公式可求出结论.【详解】解:设小长方形的长为a ,宽为b ,则大长方形的长为2a ,宽为2b ,依题意,得:122a b a b a b=+⎧⎨=++⎩, 解得:3212a b ⎧=⎪⎪⎨⎪=⎪⎩, 2231(22)(22)1622a b ∴+=⨯+⨯=, 故选:A .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.15.B【分析】把方程组的解代入原方程可求出a 和b 的值,即得答案.【详解】解:把21x y =⎧⎨=⎩代入原方程得6821a b -=⎧⎨+=⎩, 解得23a b =-⎧⎨=⎩, 5a b ∴-=-.故选:B .【点睛】本题考查了方程组的解的概念,数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.16.B【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.【详解】解:设索长为x 尺,竿子长为y 尺, 根据题意,可列方程组为552x y x y -=⎧⎪⎨-=⎪⎩, 故选:B .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题关键.17.B【详解】在方程组354x y y z z x ⎧+=⎪+=⎨⎪+=⎩①②③中,★+★+★得6x y z ++=④,由★-★得3z =,由★-★得1x =,由★-★得2y =,所以方程组的解为123x y z =⎧⎪=⎨⎪=⎩,所以选择B .18.B【详解】试题分析:方程的正整数解为:13x y 和21x y =⎧⎨=⎩. 考点:二元一次方程的正整数解.19.D【分析】分别解出二元一次方程组,分式方程,根据题意得到满足条件的m 的值,计算即可. 【详解】解:解方程组2223x y mx y +=⎧⎨-=-⎩, 解得:14264x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩, 当方程组有解时,4m ≠-, 解分式方程12111m x x--=--,得4x m =-, ★关于x 的分式方程12111m x x --=--有正数解, ★40m ->,解得,4m <,当1x =,即3m =时,分式方程无解,★3m ≠,★3m =-或1,★满足条件的m 的值之和为:312-+=-.故选:D .【点睛】本题考查分式方程的解法、二 元一次方程组的解法, 正确解出分式方程、二元一次方程组是解题的关键.20.5【详解】解:将12x y =⎧⎨=⎩代入方程可得: a -2=3解得a =5,故答案为5.21.4+3x【分析】根据等式的性质,通过移项得43y x +=.【详解】解:34y x -=移项,得43y x +=.故答案为43x +.【点睛】本题考查了解二元一次方程,能灵活运用等式的性质进行变形是解决本题的关键. 22.4【分析】利用两式相减,直接得到x y -即可解答.【详解】解:2343223x y x y m +=⎧⎨+=-⎩①② -②①可得:27x y m -=-,1x y -=,271m ∴-=,解得:4m =.故答案为4.【点睛】本题考查的是解二元一次方程组,熟练掌握加减消元法和代入消元法是解题的关键.23.-1【分析】两个数●和★分别用a 、b 表示,把1x y =⎧⎨=⎩★代入即可得到一个关于a 、b 的式子,即可求解.【详解】解:两个数●和★分别用a 、b 表示.根据题意得:12123b a b +=⎧⎨-=⎩,两式相加得:2=3+a ,解得:a =-1.故答案是:-1.【点睛】本题考查了方程组的解的定义,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.解题的关键是要知道两个方程组之间解的关系.24.4 【分析】把两个方程相加即可求出413-+=k x y ,再利用5x y +=,从而可得4153-=k ,然后进行计算即可解答. 【详解】解:2123x y k x y k +=-⎧⎨+=⎩①②, ★+★得:3341+=-x y k , ★413-+=k x y , ★5x y +=, ★4153-=k , ★4k =,故答案为:4【点睛】本题考查了二元一次方程组的解,二元一次方程的解,运用整体思想是解题的关键.25.3【分析】根据二元一次方程的定义即可求解.【详解】依题意可得m-2=1解得m=3故答案为:3.【点睛】此题主要考查二元一次方程的定义,解题的关键是熟知二元一次方程的特点. 26.2【分析】根据程序,输入的x 值为1时,输出值为1,当输入的x 值为﹣1时,输出值为5,可列出方程15k b k b +=⎧⎨-+=⎩,解出k 和b 的值,当12x =时,即可确定出所求. 【详解】★输入的x 值为1时,输出值为1;当输入的x 值为﹣1时,输出值为5★15k b k b +=⎧⎨-+=⎩ 解得2{3k b =-= ★当12x =时,()12322kx b +=⨯-+= ★输出值为:2故答案为:2.【点睛】本题考查二元一次方程的知识,解题的关键是掌握解二元一次的方法:代入法和加减消元法.27.32【分析】把x a y b =⎧⎨=⎩代入方程组,★-★可以直接求出a -b 的值. 【详解】解:把x a y b =⎧⎨=⎩代入方程组得352158213537a b a b +=⎧⎨+=⎩①②, ★-★得14a -14b =21,★14(a -b )=21,★a -b =32, 故答案为:32. 【点睛】本题考查了二元一次方程组的解,把a -b 看作整体,直接求出来是解题的关键. 28.-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x ,y 的二元一次方程组,解值即可.【详解】解:★点()36,415A x y -+,点()5,B y x 关于x 轴对称,★3654150x y y x -=⎧⎨++=⎩; 解得:33x y =-⎧⎨=-⎩, ★=-6+x y ,故答案为-6.【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数.29.-5【分析】利用加减法分别求得x+y,x-y的值,然后整体代入求解.【详解】解:2728x yx y+=⎧⎨+=⎩①②,★+★,得:3x+3y=15,★x+y=5,★-★,得:x-y=-1,★51x yx y+=--=-5,故答案为:-5.【点睛】本题考查求分式的值,解二元一次方程组,掌握解二元一次方程组的步骤,利用整体思想解答是关键.30.5【分析】首先解方程组求得x、y的值,然后代入方程中即可求出a的值.【详解】解:解525x yx y=+⎧⎨-=⎩得5xy=⎧⎨=-⎩把5xy=⎧⎨=-⎩代入0x y a++=得:5a=故答案为5.31.3【分析】直接把21xy=⎧⎨=⎩代入方程组,得到关于a、b的方程组,然后求出3a b+=,1a b-=,即可得到答案.【详解】解:★21xy=⎧⎨=⎩是二元一次方程组54ax bybx ay+=⎧⎨+=⎩的解,★25 24a bb a+=⎧⎨+=⎩,由两式相加,得339a b +=,★3a b +=;由两式相减,得1a b -=; ★331a b a b +==-; 故答案为:3.【点睛】本题考查了解二元一次方程组,以及二元一次方程组的解,解题的关键是掌握解二元一次方程组的方法,正确的求出3a b +=,1a b -=.32.x 2y 0z 4=⎧⎪=⎨⎪=⎩【分析】先消元求出z ,再依次求解.【详解】246x y y z z x ⎧⎪⎨⎪⎩+=①+=②+=③,★-★得:z -x =2 ★,★+★得:2z =8,解得:z =4,把z =4代入★得:y =0,把y =0代入★得:x =2,则原方程组的解是:20.4x y z ⎧⎪⎨⎪⎩=== 【点睛】本题考查的是三元一次方程组,熟练掌握三元一次方程组是解题的关键. 33.k <﹣2##﹣2>k【分析】解方程组求得x 、y 的值,进而求得x +2y =﹣7k ,根据已知得出不等式﹣7k >14,求出即可.【详解】解:28x y k x y k +=⎧⎨-=⎩①②,★+★得:3x=9k,解得:x=3k,把x=3k代入★得:3k-y=8k,解得:y=﹣5k,★x+2y=﹣7k,★x+2y>14,★﹣7k>14.★k<﹣2,故答案为:k<﹣2.【点睛】本题考查了二元一次方程组的解和解一元一次不等式组的应用,关键是能得出关于k的不等式.34.12.5【分析】连接AO,依据同高三角形的面积等于对应底边的关系,所以根据AE=BE可得:S△ACE=S△BEC,S△AOE=S△BOE,根据AD=2CD可得:S△ABD=23S△ABC=20,S△AOD=2S△ODC,设S△COD=x,S△AOE=a,列方程组可得结论.【详解】解:连接AO,★★ABC的面积为30,AE=BE,★S△ACE=S△BEC=12S△ABC=12×30=15,S△AOE=S△BOE,★AD=2CD,★S△ABD=23S△ABC=23×30=20,S△AOD=2S△ODC,设S△COD=x,S△AOE=a,★S△BOE=a,S△AOD=2x,★3152220x aa x+=⎧⎨+=⎩,解得:7.52.5ax=⎧⎨=⎩,★四边形ADOE 的面积=S △AOE +S △AOD =a +2x =7.5+5=12.5.故答案为:12.5.【点睛】本题主要考查了三角形面积和三角形中线的性质的运用,解决问题的关键是设S △COD =x ,S △AOE =a ,结合方程组解决问题.35. 1 2【分析】将21x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩可得关于a 、b 的方程组,继而再利用加减消元法进行求解即可.【详解】解:将21x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得 2425a b b a +=⎧⎨+=⎩①②, ★×2-★得:3a =3,解得:a =1,把a =1代入★得2+b =4,解得:b =2,故答案为:1;2.【点睛】本题考查了二元一次方程组的解,解二元一次方程组,熟练掌握加减消元法是解本题的关键.36.-1【分析】根据同类项定义得到533y x x y +=⎧⎨=-⎩,求解即可得到答案. 【详解】解:★537y x a b +与3x y a b --是同类项,★533y x x y +=⎧⎨=-⎩,解得23x y =⎧⎨=-⎩, ★x +y =2-3=-1,故答案为:-1.【点睛】此题考查了利用同类项求参数,解二元一次方程组,正确理解同类项定义得到二元一次方程组是解题的关键.37.4【分析】先代入求出22a b +=,再变形,最后整体代入求出即可.【详解】★x a y b =⎧⎨=⎩是方程22x y +=的解, ★22a b +=,★()4222224a b a b +=+=⨯=.【点睛】本题考查了二元一次方程的解和求代数式的值的应用,用了整体代入思想. 38.19【分析】设买1只签字笔需要x 元,买1只圆珠笔需要y 元,买1个笔记本需要z 元,由“买2只签字笔,3只圆珠笔,1个笔记本,共需32元;买3只签字笔,5只圆珠笔,1个笔记本,共需45元”,可得出关于x ,y ,z 的三元一次方程组,由2×★-★,可得出x+y+z 的值,此题得解.【详解】设买1只签字笔需要x 元,买1只圆珠笔需要y 元,买1个笔记本需要z 元, 根据题意得:23323545x y z x y z ++⎧⎨++⎩=①=②, 2×★-★,得:x+y+z=19.故答案为19.【点睛】本题考查了三元一次方程组,找准等量关系,正确列出三元一次方程组是解题的关键.39.3【详解】将x=1,y=3代入方程组得:23{13m m n-=+=, 解得: 1{2m n =-=-, 则|m+n|=|−1−2|=|−3|=3.故答案为340.(1)64x y =⎧⎨=⎩ ;(2)57x y =⎧⎨=⎩. 【分析】(1)方程组整理后利用加减消元法求出解即可;(2)方程组整理后利用加减消元法求出解即可.【详解】解:(1)原方程组整理得:4312342x y x y -=⎧⎨-=⎩①②★×3-★×4得: 7y=28,解得:y=4,把y=4代入★得:x=6,则原方程组的解是64x y =⎧⎨=⎩; (2)原方程组整理得:383520x y x y -⎧⎨--⎩=①=② , ★-★得:4y=28,解得:y=7,把y=7代入★得:3x-7=8,解得:x=5,则原方程组的解是57x y =⎧⎨=⎩ . 故答案为(1)64x y =⎧⎨=⎩ ;(2)57x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.41.(1)见详解;(2)70AFE ∠=︒【分析】(1)由平行线的性质(两直线平行,内错角相等)和角平分线的性质(平分所在的角)求证即可;(2)根据平行线的性质和角平分线的性质,由已知230AFE ∠-∠=︒和平角的定义,设★1=x ,AFE ∠=y 建立二元一次方程组求解即可;(1)解:★AB CD ∥★13∠=∠.又★AE 平分BAC ∠,★12∠=∠,★23∠∠=.(2)解:★AB CD ∥,★AFE DEF ∠=∠.又★EF 平分AED ∠,★AEF DEF ∠=∠,★AFE AEF DEF ∠=∠=∠.设123x ∠=∠=∠=︒,AFE AEF DEF y ∠=∠=∠=︒,则302180y x x y -=⎧⎨+=⎩,解得4070x y =⎧⎨=⎩, ★70AFE ∠=︒.【点睛】本题考查平行线的性质,角平分线的性质,利用二元一次方程组求角度,熟记其性质是解题关键.42.25a b ⎧⎨⎩==. 【分析】根据小明的算法方程★的x 、y 值,根据小颖的算法,可得方程★的x 、y 值,把方程x 、y 的值代入,可得关于a 、b 方程组,解方程组,可得a 、b 的值【详解】由161?ax by bx ay +=⎧⎨+=⎩①②小明把方程★抄错,求得的解为13x y =-⎧⎨=⎩,得-b+3a=1★, 小颖把方程★抄错,求得的解为32x y =⎧⎨=⎩,得3a+2b=16★, 联立★★,313216b a a b -+⎧⎨+⎩==,解得25a b ⎧⎨⎩==. 【点睛】此题考查了二元一次方程组的解,二元一次方程组的解必须同时满足方程组中的两个方程.43.(1)改建一个A 类美丽村庄需要资金350万元,改建一个B 类美丽村庄需要资金250万元.(2)最多改建A 类美丽宜居村庄4个【分析】(1)设改建一个A类美丽宜居村庄需要资金x万元,改建一个B类美丽宜居村庄需要资金y万元,根据“改建一个A类美丽宜居村庄和一个B类美丽宜居村庄共需资金600万元;改建2个A类美丽宜居村庄和5个B类美丽宜居村庄共需资金1950万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设改建A类美丽宜居村庄a个,则改建B类美丽宜居村庄(10-a)个,利用总价=单价×数量,结合总价不超过2960元,即可得出关于a的一元一次不等式,解之即可得出a 的取值范围,再取其中的最大整数值即可得出结论.【详解】(1)设改建一个A类美丽宜居村庄需要资金x万元,改建一个B类美丽宜居村庄需要资金y万元,依题意得:600 251950x yx y+=⎧⎨+=⎩解得:350250xy=⎧⎨=⎩.答:改建一个A类美丽村庄需要资金350万元,改建一个B类美丽村庄需要资金250万元.(2)设改建A类美丽宜居村庄a个,则改建B类美丽宜居村庄(10-a)个,依题意得:350a+250(10-a)≤2960解得a≤4.6,a是正整数,∴a的最大值是4.答:最多改建A类美丽宜居村庄4个.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.44.7 5【详解】试题分析:把x=﹣y代入方程组可得到关于y、m的方程组,解此方程组可求得m的值.试题解析:解:由题意可知x=﹣y,代入方程组可得34{223y y my y m--=-+=+,整理可得7{23m yy m=-=+,把y=2m+3代入m=﹣7y可得m=﹣14m﹣21,解得m=﹣75,即m的值为﹣75.考点:二元一次方程组的解45.(1)A种型号服装每件90元,B种型号服装每件100元.(2)有三种进货方案:B型服装购进10件,A型服装购进24件;B型服装购进11件,A型服装购进26件;B型服装购进12件,A型服装购进28件.【分析】(1)根据题意可知,本题中的相等关系是“A种型号服装9件,B种型号服装10件,需要1810元”和“A种型号服装12件,B种型号服装8件,需要1880元”,列方程组求解即可.(2)利用两个不等关系列不等式组,结合实际意义求解.【详解】(1)解:设A种型号服装每件x元,B种型号服装每件y元.依题意可得9101810 1281880 x yx y+=⎧⎨+=⎩解得90100 xy=⎧⎨=⎩答:A种型号服装每件90元,B种型号服装每件100元.(2)解:设B型服装购进m件,则A型服装购进(24)m+件.根据题意得()()() 1089024130100699 2428m mm⎧-++-≥⎨+≤⎩,解不等式得19122m≤≤,因为m是正整数,所以10m=,11,12,2424m+=,26,28,答:有三种进货方案:B型服装购进10件,A型服装购进24件;B型服装购进11件,A 型服装购进26件;B型服装购进12件,A型服装购进28件.【点睛】利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确地找到等量关系并用方程组表示出来是解题的关键.像这种利用不等式组解决方案设计问题时,往往是在解不等式组的解后,再利用实际问题中的正整数解,且这些正整数解的个数就是可行的方案个数.46.(1)2x 2+6xy +8y 2;(2)★3010x y =⎧⎨=⎩★57600元; 【分析】(1)根据长方形的面积公式和正方形的面积公式分别计算A 、B 两园区的面积,再相加即可求解;(2)★根据等量关系:整改后A 区的长比宽多350米;整改后两园区的周长之和为980米;列出方程组求出x ,y 的值;★代入数值得到整改后A 、B 两园区的面积之和,再根据净收益=收益﹣投入,列式计算即可求解.【详解】解:(1)A ,B 两园区的面积之和:(x +y )(x ﹣y )+(x +3y )(x +3y )=x 2﹣y 2+x 2+6xy +9y 2=2x 2+6xy +8y 2(平方米)答:A 、B 两园区的面积之和为(2x 2+6xy )平方米;(2)★整改后的长为:(x +y )+(11x ﹣y )=x +y +11x ﹣y=12x (米),整改后的宽为:(x ﹣y )﹣(x ﹣2y )=x ﹣y ﹣x +2y=y (米),依题意有:123502(12)4(3)980x y x y x y -=⎧⎨+++=⎩, 解得3010x y =⎧⎨=⎩. ★由题意得:12xy =12×30×10=3600(平方米),(x +3y )(x +3y )=x 2+6xy +9y 2=900+1800+900=3600(平方米),(18﹣12)×3600+(26﹣16)×3600=6×3600+10×3600=57600(元).答:整改后A 、B 两园区旅游的净收益之和为57600元.【点睛】考点:整式的混合运算.47.(1)甲型号手机每台售价为1500元,乙型号手机每台售价为1400元;(2)一共有五种进货方案,所有方案中最大利润为11200元.【分析】(1)设甲型号手机每台售价为x 元,乙型号手机每台售价为y 元,根据题意建立二元一次方程组求解即可;(2)设甲型号手机购进a 台,则乙型号手机购进(20-a )台,根据预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机建立不等式组求出整数解即可,设利润为W ,根据题意得出相应的函数关系,判断出增减性,从而求算最大利润.【详解】解:(1)设甲型号手机每台售价为x 元,乙型号手机每台售价为y 元,根据题意得:1012318006921600x y x y +=⎧⎨+=⎩①② 由★得:336002x y =-★ 将★代入★得:310360012318002y y ⎛⎫-+= ⎪⎝⎭ ,解得:1400y = 将1400y =代入★得:1500x =★15001400x y =⎧⎨=⎩答:甲型号手机每台售价为1500元,乙型号手机每台售价为1400元;(2)设甲型号手机购进a 台,则乙型号手机购进(20-a )台,根据题意得:()()1000800201840010008002017600a a a a ⎧+-≤⎪⎨+-≥⎪⎩①② 由★得:12a ≤由★得:8a ≥★不等式组的解集为:812x ≤≤。

2014届中考二轮精品复习试卷:二元一次方程组含详细解析

2014届中考二轮精品复习试卷:二元一次方程组含详细解析

2013-2014学年度数学中考二轮复习专题卷-二元一次方程组一、选择题1.下列方程是二元一次方程的是( ) A .B .C . 3x ﹣8y=11D . 7x+2=2.方程组⎩⎨⎧=-=+02y x y x 的解是 ( )A.⎩⎨⎧==20y xB.⎩⎨⎧==02y xC.11x y =⎧⎨=⎩ D.⎩⎨⎧-=-=11y x 3.下列方程中,其中二元一次方程的个数是( ) ① 4x+5=1;② 3x —2y=1;③313yx +=;④ xy+y=14 A.1 B.2 C.3 D.4 4.下列方程中,二元一次方程的个数是( ) ① 3x+y1=4; ② 2x+y=3; ③ 2x+3y=1; ④ xy+5y=8.A.1个B.2个C.3个D.4个5.下列等式中不是方程的是A .x 2+2x-3=0 B.x+2y=12 C.x+1=3x D. 5+8=136.成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x 千米/小时和y 千米/小时,则下列方程组正确的是【 】A .x y 2077x y 17066+=⎧⎪⎨+=⎪⎩B .x y 2077x y 17066-=⎧⎪⎨+=⎪⎩C .x y 2077x y 17066+=⎧⎪⎨-=⎪⎩ D .77x y 1706677x y 2066⎧+=⎪⎪⎨⎪-=⎪⎩ 7.已知方程组2x y 4x 2y 5+=⎧⎨+=⎩,则x y +的值为【 】A .1-B .0C .2D .38.已知x 2y 4k2x y 2k 1+=⎧⎨+=+⎩,且1x y 0<<--,则k 的取值范围为A .11k 2<<--B .10k 2<<C .0k 1<<D .1k 12<<9.目前,我国大约有1.3亿高血压病患者,占15岁以上总人口数的10%﹣15%,预防高血压不容忽视.“千帕kpa”和“毫米汞柱mmHg”都是表示血压的单位,前者是法定的国际计量单位,而后者则是过去一直广泛使用的惯用单位.请你根据下表所提供的信息,判断下列各组换算正确的是 千帕kpa 10 12 16 … 毫米汞柱mmHg 75 90 120 … A .13kpa=100mmHg B .21kpa=150mmHg C .8kpa=60mmHg D .22kpa=160mmHg10.)已知()2x y 32x y 0-+++=,则x+y 的值为【 】A .0B .﹣1C .1D .511.(2013年四川广安3分)如果3x y 1a b 2与﹣a 2y b x+1是同类项,则【 】A .x 2y 3=-⎧⎨=⎩B .x 2y 3=⎧⎨=-⎩C .x 2y 3=-⎧⎨=-⎩D .x 2y 3=⎧⎨=⎩12.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A .x y 50x y 180=-⎧⎨+=⎩B .x y 50x y 180=+⎧⎨+=⎩C .x y 50x y 90=+⎧⎨+=⎩D .x y 50x y 90=-⎧⎨+=⎩13.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为A 、19B 、18C 、16D 、15 14.已知方程组中x ,y 的互为相反数,则m 的值为( )A . 2B . ﹣2C . 0D . 415.将方程中的x 的系数化为整数,则下列结果正确的是( ) A. B. C. D.16.如果12x y =-⎧⎨=⎩是方程组01ax by bx cy +=⎧⎨-=⎩的解,那么,下列各式中成立的是( )A .a +4c =2B .4a +c =2C .a +4c +2=0D .4a +c +2=017.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )A .不赔不赚B .赚了10元C .赔了10元D .赚了50元18.已知是二元一次方程组的解,则2m-n 的算术平方根为( )A .±2B .C .2D .419.若是下列某二元一次方程组的解,则这个方程组为( )A .B .C .D .20.根据以下对话,可以求得嫒嫒所买的笔和笔记本的价格分别是( )A .0.8元/支,2.6元/本B .0.8元/支,3.6元/本C .1.2元/支,2.6元/本D .1.2元/支,3.6元/本二、填空题21.已知二元一次方程2x+3y+1=0,用含x 的代数式表示y ,则y= . 22.已知方程4x+5y=8,用含x 的代数式表示y 为__________________。

2014年中考数学汇编--二元一次方程组

2014年中考数学汇编--二元一次方程组

二元一次方程组(2014丹东市)小明和小丽到文化用品商店帮助同学们买文具.小明买了3支笔和2个圆规共花19元;小丽买了5支笔和4个圆规共花35元.设每支笔x元,每个圆规y元.请列出满足题意的方程组 .(2014抚州市)已知a、b满足方程组2226a ba b-=⎧⎨+=⎩,则3a b+的值为A. 8B. 4C. -4D. -8 解析:选A. ∵方程(1)+方程(2)即可得a b+=38.(2014•贺州)已知关于x、y的方程组的解为,求m、n的值.考点:二元一次方程组的解.专题:计算题.分析:将x与y的值代入方程组计算即可求出m与n的值.解答:解:将x=2,y=3代入方程组得:,②﹣①得:n=,即n=1,将n=1代入②得:m=1,则m=1,n=1.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.(2014•海南)海南五月瓜果飘香,某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元,李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?,.(2014•杭州)设实数x、y满足方程组,则x+y=8.x=6,(201菏泽市)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共1OO瓶,问A、B两种饮料各生产了多少瓶?考点:一元一次方程的应用、二元一次方程组的应用.分析:根据题意设出未知数,再根据题目中“700克该添加剂恰好生产了A,B两种饮料共500瓶”得出等量关系列出方程(组),求出结果即可解答:设A种饮料生产了x瓶,则B种饮料生产了(500-x)瓶,根据题意得出:x+2(500-x)=700,解得:x=300,所以500-300=200,答:A种饮料生产了300瓶,则B种饮料生产了200瓶.点评:本题主要考查了一元一次方程的应用,在解题时要能根据题意得出等量关系,列出方程是本题的关键.(2014•呼和浩特)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?由题意得,,(2014•襄阳)若方程mx+ny=6的两个解是,,则m,n的值为()解:将分别代入中,得:(2014•淮安)解方程组:.,.机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元? .(2014济南市)2014年世界杯足球赛在巴西举行,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元.其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?【解析】设小李预定了小组赛球票x 张,淘汰赛球票y 张,由题意有⎩⎨⎧=+=+580070055010y x y x ,解之⎩⎨⎧==28y x .所以,小李预定了小组赛球票8张,淘汰赛球票2张.(2014•连云港)小林在某商店购买商品A 、B 共三次,只有一次购买时,商品A 、B 同时是第 三 次购物;(2)求出商品A 、B 的标价;(3)若商品A 、B 的折扣相同,问商店是打几折出售这两种商品的?,.×元,橡皮每块1元,那么中性笔能买1或2或3(每答对1个给1分,多答或含有错误答案不得分)支.考点:二元一次方程的应用.分析:根据小明所带的总钱数以及中性笔与橡皮的价格,分别得出符合题意的答案.解答:解:∵小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,∴当买中性笔1只,则可以买橡皮5只,当买中性笔2只,则可以买橡皮3只,当买中性笔3只,则可以买橡皮1只,故答案为:1或2或3.点评:此题主要考查了二次元一次方程的应用,正确分类讨论是解题关键.(2014•娄底)方程组的解是()B,∴原方程组的解(2014•南昌)小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.设每支中性笔x元和每盒笔芯.(2014•攀枝花)已知x,y满足方程组,则x﹣y的值是﹣1.,(2014齐齐哈尔)将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( )A.6种B.7种C.8种D.9种(2014•黔南州)二元一次方程组的解是()A.B.C.D.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:,①+②得:2x=2,即x=1,①﹣②得:2y=4,即y=2,则方程组的解为.故选B点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(2014•泉州)方程组的解是.,.故答案为:(2014年福建厦门)解方程组.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:①×2﹣②得:4x﹣1=8﹣5x,解得:x=1,将x=1代入①得:y=2,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(2014年山东省滨州市)某公园“6•1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣.张凯、李利都随他们的家人参加了本次活动.王斌也想去,就去打听张凯、李利买门票花了多少钱.张凯说他家去了3个大人和4个小孩,共花了38元钱;李利说他家去了4个大人和2个小孩,共花了44元钱,王斌家计划去3个大人和2个小孩,请你帮他计算一下,需准备元钱买门票.分析:设大人门票为x,小孩门票为y,根据题目给出的等量关系建立方程组,然后解出x、y的值,再代入计算即可.解:设大人门票为x,小孩门票为y,由题意,得:,解得:,则3x+2y=34.即王斌家计划去3个大人和2个小孩,需要34元的门票.故答案为:34.点评:本题考查了二元一次方程组的应用,解答本题的关键是仔细审题,将实际问题转化为方程思想求解.(2014•苏州)某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为20..(2014•泰州)今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.由题意得,,(2014•威海)解方程组:.解:方程组整理得:9.(4分)(2014•温州)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,人,女生有yB(2014•孝感)已知是二元一次方程组的解,则m﹣n的值是()代入方程组得:(2014•新疆兵团)“六•一”儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装x套,B型童装y套,由题意得,.(2014•宜昌)在“文化宜昌•全民阅读”活动中,某中学社团“精一读书社”对全校学生的人数及纸质图书阅读量(单位:本)进行了调查,2012年全校有1000名学生,2013年全校学生人数比2012年增加10%,2014年全校学生人数比2013年增加100人.(1)求2014年全校学生人数;(2)2013年全校学生人均阅读量比2012年多1本,阅读总量比2012年增加1700本(注:阅读总量=人均阅读量×人数)①求2012年全校学生人均阅读量;②2012年读书社人均阅读量是全校学生人均阅读量的2.5倍,如果2012年、2014年这两年读书社人均阅读量都比前一年增长一个相同的百分数a,2014年全校学生人均阅读量比2012年增加的百分数也是a,那么2014年读书社全部80名成员的阅读总量将达到全校学生阅读总量的25%,求a的值.)(2014•永州)解方程组:..(2014•枣庄)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.,,﹣=5,()=故答案为:.(2014•张家界)已知一组数据4,13,24的权数分别是,,,则这组数据的加权平均数是17.4×+13×+24×=17(2014年福建漳州)水仙花是漳州市花,如图,在长为14m,宽为10m的长方形展厅,划出三个形状、大小完全一样的小长方形摆放水仙花,则每个小长方形的周长为16m.考点:二元一次方程组的应用.专题:几何图形问题.分析:设小长方形的长为xm,宽为ym,由图可知,长方形展厅的长是(2x+y)m,宽为(x+2y)m,由此列出方程组求得长、宽,进一步解决问题.解答:解:设小长方形的长为xm,宽为ym,由图可得解得x+y=8,∴每个小长方形的周长为8×2=16m.故答案为:16.点评:此题考查二元一次方程组的运用,看清图意,正确利用图意列出方程组解决问题.(2014•湖州)解方程组.分析:方程组利用加减消元法求出解即可.解:,①+②得:5x=10,即x=2,将x=2代入①得:y=1,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.(2014年重庆市)方程组的解是.考点:解二元一次方程组.专题:计算题.分析:方程组利用代入消元法求出解即可.解答:解:,将①代入②得:y=2,则方程组的解为,故答案为:.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(2014年山东淄博)为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:档次每户每月用电数(度)执行电价(元/度)第一档小于等于200 0.55第二档大于200小于400 0.6第三档大于等于400 0.85例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各月电多少度?考点:二元一次方程组的应用.分析:某户居民五、六月份共用电500度,就可以得出每月用电量不可能都在第一档,分情况讨论,当5月份用电量为x度≤200度,6月份用电(500﹣x)度,当5月份用电量为x 度>200度,六月份用电量为(500﹣x)度>x度,分别建立方程求出其解即可.解答:解:当5月份用电量为x度≤200度,6月份用电(500﹣x)度,由题意,得0.55x+0.6(500﹣x)=290.5,解得:x=190,∴6月份用电500﹣x=310度.当5月份用电量为x度>200度,六月份用电量为(500﹣x)度,由题意,得0.6x+0.6(500﹣x)=290.5,300=290.5,原方程无解.∴5月份用电量为190度,6月份用电310度.点评:本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,分类讨论思想的运用,解答时由总价=单价×数量是关键.。

2014中考全国100份试卷分类汇编:二元一次方程组

2014中考全国100份试卷分类汇编:二元一次方程组

2014中考全国100份试卷分类汇编二元一次方程组1、(2013杭州)若a+b=3,a﹣b=7,则ab=()A.﹣10 B.﹣40 C.10 D.40考点:完全平方公式.专题:计算题.分析:联立已知两方程求出a与b的值,即可求出ab的值.解答:解:联立得:,解得:a=5,b=﹣2,则ab=﹣10.故选A.点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.2、(2013凉山州)已知方程组,则x+y的值为()A.﹣1 B.0 C.2 D.3考点:解二元一次方程组.专题:计算题.分析:把第二个方程乘以2,然后利用加减消元法求解得到x、y的值,再相加即可.解答:解:,②×2得,2x+6y=10③,③﹣①得,5y=5,解得y=1,把y=1代入①得,2x+1=5,解得x=2,所以,方程组的解是,所以,x+y=2+1=3.故选D.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.3、(2013•广安)如果a3x b y与﹣a2y b x+1是同类项,则()A.B.C.D.考点:解二元一次方程组;同类项.专题:计算题分析:根据同类项的定义列出方程组,然后利用代入消元法求解即可.解答:解:∵a3x b y与﹣a2y b x+1是同类项,∴,②代入①得,3x=2(x+1),解得x=2,把x=2代入②得,y=2+1=3,所以,方程组的解是.故选D.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单,根据同类项的“两同”列出方程组是解题的关键.4、(2013年广州市)已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()A1032x yy x+=⎧⎨=+⎩B1032x yy x+=⎧⎨=-⎩C1032x yx y+=⎧⎨=+⎩D1032x yx y+=⎧⎨=-⎩分析:根据等量关系为:两数x,y之和是10;x比y的3倍大2,列出方程组即可解:根据题意列方程组,得:.故选:C.点评:此题主要考查了由实际问题抽象出二元一次方程组,要注意抓住题目中的一些关键性词语“x比y的3倍大2”,找出等量关系,列出方程组是解题关键.5、(2013鞍山)若方程组,则3(x+y)﹣(3x﹣5y)的值是.考点:解二元一次方程组.专题:整体思想.分析:把(x+y)、(3x﹣5y)分别看作一个整体,代入进行计算即可得解.解答:解:∵,∴3(x+y)﹣(3x﹣5y)=3×7﹣(﹣3)=21+3=24.故答案为:24.点评:本题考查了解二元一次方程组,计算时不要盲目求解,利用整体思想代入计算更加简单.6、(2013•咸宁)已知是二元一次方程组的解,则m+3n的立方根为2.考点:二元一次方程组的解;立方根.分析:将代入方程组,可得关于m、n的二元一次方程组,解出m、n的值,代入代数式即可得出m+3n的值,再根据立方根的定义即可求解.解答:解:把代入方程组,得:,解得,则m+3n=+3×=8,所以==2.故答案为2.点评:本题考查了二元一次方程组的解,解二元一次方程组及立方根的定义等知识,属于基础题,注意“消元法”的运用.7、(2013•毕节地区)二元一次方程组的解是.考点:解二元一次方程组.专题:计算题.分析:根据y的系数互为相反数,利用加减消元法求解即可.解答:解:,①+②得,4x=12,解得x=3,把x=3代入①得,3+2y=1,解得y=﹣1,所以,方程组的解是.故答案为:.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.8、(2013安顺)4x a+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b= .考点:二元一次方程的定义;解二元一次方程组.分析:根据二元一次方程的定义即可得到x、y的次数都是1,则得到关于a,b的方程组求得a,b的值,则代数式的值即可求得.解答:解:根据题意得:,解得:.则a﹣b=0.故答案是:0.点评:主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.9、(2013•遵义)解方程组.考点:解二元一次方程组.专题:计算题.分析:由第一个方程得到x=2y+4,然后利用代入消元法其解即可.解答:解:,由①得,x=2y+4③,③代入②得2(2y+4)+y﹣3=0,解得y=﹣1,把y=﹣1代入③得,x=2×(﹣1)+4=2,所以,方程组的解是.点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.10、(2013•湘西州)解方程组:.考点:解二元一次方程组.分析:先由①得出x=1﹣2y,再把x的值代入求出y的值,再把y的值代入x=1﹣2y,即可求出x的值,从而求出方程组的解.解答:解:,由①得:x=1﹣2y ③,把③代入②得:y=﹣1,把y=﹣1代入③得:x=3, 则原方程组的解为:.点评:此题考查了解二元一次方程组,解二元一次方程组常用的方法是加减法和代入法两种,般选用加减法解二元一次方程组较简单.11、(2013成都市)解方程组:x+y=1 2x-y=5⎧⎨⎩. 解析:x+y=1 2x-y=5 ⎧⎨⎩(1)(2) ①式+②式有3x=6⇒x=2 代入①得y=-1 ∴方程解为x=2 y=-1 ⎧⎨⎩12、(2013•黄冈)解方程组:.考点: 解二元一次方程组.专题: 计算题.分析: 把方程组整理成一般形式,然后利用代入消元法其求即可.解答: 解:方程组可化为,由②得,x=5y ﹣3③,③代入①得,5(5y ﹣3)﹣11y=﹣1,解得y=1,把y=1代入③得,x=5﹣3=2, 所以,原方程组的解是.点评: 本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.13、(13年山东青岛、16)(1)解方程组:⎩⎨⎧=-=+032y x y x 解析:(1)两式相加,得:x =1,把x =1代入第2式,得y =1,所以原方程组的解:11x y =⎧⎨=⎩ 14、(2013年广东省5分、17)解方程组⎩⎨⎧=++=821y x y x 答案:⎩⎨⎧==23y x 解析:用代入消元法可求解。

2014年重庆市中考数学试卷(附答案与解析)

2014年重庆市中考数学试卷(附答案与解析)

数学试卷 第1页(共30页) 数学试卷 第2页(共30页)绝密★启用前重庆市2014年初中毕业暨高中招生考试数 学本试卷满分150分,考试时间120分钟.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a --,对称轴为2b x a=-第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.实数17-的相反数是( ) A .17B .117C .17-D .117- 2.计算642x x ÷的结果是( ) A .2xB .22xC .42x D .102x 3.中,a 的取值范围是( ) A .0a ≥ B .0a ≤C .0a >D .0a < 4.五边形的内角和是( ) A .°180B .°360C .°540D .°6005.2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是4568--℃,℃,℃,℃,当时这四个城市中,气温最低的是( ) A .北京B .上海C .重庆D .宁夏 6.关于x 的方程211x =-的解是( )A .4x =B .3x =C .2x =D .1x =7.2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,它们的平均成绩都是13.2秒,甲、乙、丙、丁成绩的方差分别是0.110.030.050.02,,,,则当天这四位运动员“110米跨栏”的训练成绩最稳定的是( ) A .甲B .乙C .丙D .丁8.如图,直线AB CD ∥,直线EF 分别交直线,AB CD 于点,E F ,过点F 作FG FE ⊥,交直线AB 于点G .若142∠=,则2∠的大小是( )A .56B .48C .46D .409.如图,ABC △的顶点,,A B C 均在O 上,若90AOC ∠=,则AOC ∠的大小是( )A .30B .45C .60D .7010.2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文章,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是( )ABCD11.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共30页) 数学试卷 第4页(共30页)积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律,则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .4012.如图,反比例函数6y x=-在第二象限的图象上有两点,A B ,它们的横坐标分别为1,3--,直线AB 与x 轴交于点C ,则AOC △的面积为( ) A .8B .10C .12D .24第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在题中的横线上) 13.方程组3,5x x y =⎧⎨+=⎩的解是 .14.据有关部门统计,截止到2014年5月1日,重庆市私家小轿车已达到563000辆,将563000这个数用科学记数法表示为 .15.如图,菱形ABCD 中,60A ∠=,7BD =,则菱形ABCD 的周长为 .16.如图,OAB △中,4,30,OA OB A AB ==∠=与O 相切于点C ,则图中阴影部分的面积为 (结果保留π).17.从1,1,2-这三个数字中,随机抽取一个数,记为a .那么,使关于x 的一次函数2y x a =+的图象与x 轴、y 轴围成的三角形面积为14,且使关于x 的不等式组212x a x a +⎧⎨-⎩≤,≤有解的概率为 . 18.如图,正方形ABCD 的边长为6,点O 是对角线,AC BD 的交点,点E 在CD 上,且2DE CE =,连接BE .过点C 作CF BE ⊥,垂足为F ,连接OF ,则OF 的长为 .三、解答题(本大题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分7分)2011(3)2014|4|()6---⨯-+.20.(本小题满分7分)如图,ABC △中,AD BC ⊥,垂足为D ,若314,12,tan 4BC AD BAD ==∠=,求sin C 的值.数学试卷 第5页(共30页) 数学试卷 第6页(共30页)21.(本小题满分10分)先化简,再求值:221121()11x x x x x x +÷-+-++,其中x 的值为方程251x x =-的解.22.(本小题满分10分)为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇2014年1-5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇2014年1-5月新注册小型企业一共有 家,请将折线统计图补充完整; (2)该镇2014年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.23.(本小题满分10分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a %(其中0a >),则每户平均集资的资金在150元的基础上减少了109a %,求a 的值.24.(本小题满分10分)如图,ABC △中,90,,BAC AB AC AD BC ∠==⊥,垂足是,D AE 平分BAD ∠,交BC 于点E .在ABC △外有一点F ,使,FA AE FC BC ⊥⊥.(1)求证:BE CF =;(2)在AB 上取一点M ,使2BM DE =,连接MC ,交AD 于点N ,连接ME .求证: ①ME BC ⊥; ②DE DN =.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共30页) 数学试卷 第8页(共30页)25.(本小题满分12分)如图,抛物线223y x x =--+的图象与x 轴交于,A B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求,,A B C 的坐标;(2)点M 为线段AB 上一点(点M 不与点,A B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ AB ∥交抛物线于点Q ,过点Q 作QN x ⊥轴于点N ,若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FC =,求点F 的坐标.26.(本小题满分12分)已知:如图1,在矩形ABCD 中,205,,3AB AD AE BD ==⊥,垂足是E .点F 是点E 关于AB 的对称点,连接,AF BF .(1)求AE 和BE 的长;(2)若将ABF △沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度),当点F 分别平移到线段AB AD ,上时,直接写出相应的m 值;(3)如图2,将ABF △绕点B 顺时针旋转一个角α(0180α<<),记旋转中的ABF △为A BF ''△,在旋转过程中,设A F ''所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P ,Q 两点,使DPQ △为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.5 / 15重庆市2014年初中毕业暨高中招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据相反数的定义:只有符号不同的两个数是互为相反数,可知17-的相反数是17,故选A . 【考点】相反数的定义 2.【答案】B【解析】根据同底数幂的除法法则:底数不变,指数相减得64642222x x x x -÷==,故选B . 【考点】同底数幂的除法运算 3.【答案】A【解析】因为二次根式中被开方数是非负数,即0a ≥,故选A 【考点】二次根式中被开方数的取值范围 4.【答案】C【解析】n 边形的内角和是(2)180n -⨯︒,将5n =代人即得五边形的内角和是540,故选C . 【考点】多边形的内角和 5.【答案】D【解析】气温最低即数值最小,8-在这四个数中处在数轴的最左边,故8-最小,故选D 【考点】有理数的大小比较 6.【答案】B【解析】将方程的两边向时乘最简公分母1x -得整式方程21x =-,解得3x =.经检验,3x =是原分式方程的解,故选B . 【考点】分式方程的解法 7.【答案】D【解析】根据方差越小越稳定,而0.020.03 0.050.11<<<,故丁的成绩最稳定,故选D 【考点】方差的意义 8.【答案】B【解析】因为//AB CD ,根据“两直线平行,同位角相等”得142EFD ∠=∠=︒,又因为FG FE ⊥,所以2180904248∠=︒-︒-︒=︒,故选B .【考点】平行线的性质及垂直的定义数学试卷第11页(共30页)数学试卷第12页(共30页)7 / 15,OA OB =43=,43S AB OC ∴=242=3π.所以,DC BC =62210BC CE CF BE ⨯==CF BE ⊥45OCB ∠=OBM CBF ∠+∠△≌△O B M O C F数学试卷 第15页(共30页)数学试卷 第16页(共30页)【解析】解:AD BC ⊥3tan 4BAD ∠=,12AD =9BD ∴=2(1)(x 1)x x -+-11+补图如下:(2)用1A,2A表示餐饮企业,1B,2B表示非餐饮企业,画树状图如下:9 / 15数学试卷 第19页(共30页)数学试卷 第20页(共30页)10%)150(19-则3(1)(1x +24.【答案】证明:如图) BAC ∠=1EAC ∴∠+∠12∴∠=∠,AB AC =B FCA ∠=∠ABF ∴≅△BE CF ∴=45B ∠=︒BG EG ∴=AD BC ⊥2BM ED =⊥②AD BC ∠=∠,∴∠15=MC MC∴∠=∠78∠=BAC∴∠=ACB∴∠=∠57∠=ADE∴=DE DN 【解析】1ME=⨯12x=-,(3)由(2)知,当矩形PMNQ的周长最大时,2)5AB =,2BD AB =+1122ABD AB AD S BD AE ==△ 解得4AE =若点Q 在线段BD 的延长线上时,如图1,34∠=∠4+Q ∴∠∠'A Q A ∴=若点Q 在线段BD 上,如图2:1=3∠∠,3=5+∠∠35∴∠=∠4A ∴∠=∠'1A ∠=∠4A ∴∠=∠设QB QA =③当PD PQ =时,如图4,有1=2=3∠∠∠1A ∠=∠BQ A ∴=253DQ ∴=。

2014年中考数学总复习提高测试题《二元一次方程组》提高测试

2014年中考数学总复习提高测试题《二元一次方程组》提高测试

2014年中考数学总复习提高测试题《二元一次方程组》提高测试(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____. 【提示】要满足“二元”“一次”两个条件,必须a -2≠0,且b ≠0,及| a |-1=1. 【答案】a =-2,b ≠0.2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______.【提示】由“互为相反数”,得|2a +3 b -7|+(2a +5b -1)2=0,再解方程组⎩⎨⎧=-+=-+01520732b a b a【答案】a =8,b =-3.3.二元一次方程3x +2y =15的正整数解为_______________.【提示】将方程化为y =2315x-,由y >0、x >0易知x 比0大但比5小,且x 、y 均为整数. 【答案】⎩⎨⎧==61y x ,⎩⎨⎧==.33y x4.2x -3y =4x -y =5的解为_______________.【提示】解方程组⎩⎨⎧=-=-54532y x y x .【答案】⎩⎨⎧-==.11y x 5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.【提示】把⎩⎨⎧==12y x -代入方程组,求m ,n 的值.【答案】-438.6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.【提示】作y =x 的代换,先求出x 、y 的值.【答案】k =65. 7.已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______.【提示】即作方程组⎪⎪⎩⎪⎪⎨⎧=-+==121432c b a cb a ,故可设a =2 k ,b =3 k ,c = 4 k ,代入另一个方程求k 的值. 【答案】a =61,b =41,c =31.【点评】设“比例系数”是解有关数量比的问题的常用方法. 8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.【提示】根据方程组的特征,可将三个方程左、右两边分别相加,得2 x +3 y +z =6,再与3 y +z =4相减,可得x .【答案】x =1,y =31,z =3. (二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………()(A )8 (B )9 (C )10 (D )11【提示】将y =-x 代入方程2 x -y =3,得x =1,y =-1,再代入含字母k 的方程求解.【答案】D .10.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( )(A )4 (B )-10 (C )4或-10 (D )-4或10【提示】将x 、y 对应值代入,得关于| a |,b 的方程组⎪⎩⎪⎨⎧=+=-.631||62b a b 【答案】C .【点评】解有关绝对值的方程,要分类讨论.11.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………( )(A )y =2x +3 (B )y =2x -3 (C )y =2x +1 (D )y =-2x +1【提示】将x 、y 的两对数值代入ax +b =y ,求得关于a 、b 的方程组,求得a 、b 再代入已知方程. 【答案】B .【点评】通过列方程组求待定字母系数是常用的解题方法. 12.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A )1∶2∶1 (B )1∶(-2)∶(-1)(C )1∶(-2)∶1 (D )1∶2∶(-1)【提示】解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解. 【答案】A .【点评】当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组,是可行的方法.13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( )(A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=0 【提示】将⎩⎨⎧=-=21y x 代入方程组,消去b ,可得关于a 、c 的等式.【答案】C .14.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )0【提示】只要满足m ∶2=3∶(-1)的条件,求m 的值. 【答案】B . 【点评】对于方程组⎩⎨⎧=+=+222111c y b x a c y b x a ,仅当21a a =21b b ≠21c c 时方程组无解.15.若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,2【提示】由题意,有“相同的解”,可得方程组⎩⎨⎧=-=+52243y x y x ,解之并代入方程组⎪⎪⎩⎪⎪⎨⎧=-=-4352by x a y b ax ,求a 、b .【答案】B . 【点评】对方程组“解”的含义的正确理解是建立可解方程组的关键.16.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B )1 (C )2 (D )-1【提示】把c 看作已知数,解方程组⎩⎨⎧=-+=++0730452c b a c b a 用关于c 的代数式表示a 、b ,再代入a +b -c .【答案】A .【点评】本题还可采用整体代换(即把a +b -c 看作一个整体)的求解方法. (三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x【提示】将方程组化为一般形式,再求解.【答案】⎪⎩⎪⎨⎧-==.232y x18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x 【提示】将方程组化为整系数方程的一般形式,再用加减法消元. 【答案】⎩⎨⎧==.30500y x19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x y x y x 【提示】用换元法,设x -y =A ,x +y =B ,解关于A 、B 的方程组⎪⎩⎪⎨⎧=+=-623152B A BA , 进而求得x ,y .【答案】⎩⎨⎧-==.11y x20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x 【提示】 将三个方程左,右两边分别相加,得4x -4y +4z =8,故 x -y +z =2 ④,把④分别与第一、二个方程联立,然后用加、减消元法即可求得x 、z 的值.【答案】⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.15451z y x (四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+0254034z y x z y x ,xyz ≠0,求222223y x z xy x +++的值.【提示】把z 看作已知数,用z 的代数式表示x 、y ,可求得x ∶y ∶z =1∶2∶3.设x =k , y =2 k ,z =3 k ,代入代数式. 【答案】516. 【点评】本题考查了方程组解法的灵活运用及比例的性质.若采用分别消去三个元可得方程21 y -14 z =0,21 x -7 z =0,14 x -7 y =0,仍不能由此求得x 、y 、z 的确定解,因为这三个方程不是互相独立的.22.甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值.【提示】可从题意的反面入手,即没看错什么入手.如甲看错a ,即没看错b ,所求得的解应满足4 x -by =-1;而乙写错了一个方程中的b ,则要分析才能确定,经判断是将第二方程中的b 写错. 【答案】a =1,b =3.23.已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m 的值. 【提示】由题意可先解方程组⎩⎨⎧-=+-=-8332432m y x m y x 用m 的代数式表示x ,y再代入3 x +4 y =m +5.【答案】m =5.24.当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:(1)a 、b 、c 的值;(2)当x=-2时,ax 2+bx +c 的值.【提示】由题得关于a 、b 、c 的三元一次方程组,求出a 、b 、c 再代入这个代数式. 【答案】a =1,b =-5,c =6;20.【点评】本例若不设第一问,原则上也应在求出a 、b 、c 后先写出这个代数式,再利用它求值.用待定系数法求a 、b 、c ,是解这类问题常用的方法.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.【提示】设百位上的数为x ,由十位上的数与个位上的数组成的两位数为y ,根据题意,得⎩⎨⎧=++=-+.y x xy y x 391045100 【答案】x =4,y =39,三位数是439.【点评】本例分别设十位上的数和个位上的数为不同的未知数,无论从列方程组还是解方程组都更加简捷易行.26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少? 【提示】若设一年期、二年期的融资券各买x 元,y 元,由题意,得⎪⎩⎪⎨⎧=⋅+=+78010012210090004y x y x【答案】x =1 200,y =2 800.【点评】本题列方程组时,易将二年期的融资券的利息误认为是10012y 元,应弄清题设给出的是年利率,故几年到期的利息应该乘几.27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间.【提示】设原计划用x 小时,AB 两地距离的一半为y 千米,根据题意,得⎪⎪⎩⎪⎪⎨⎧-=++-=⋅+⋅21554040402250240x y y y x x 【答案】x =8,2y =360.【点评】 与本例中设AB 两地距离的一半为y 千米一样,也可设原计划的一半时间为x 小时.恰当地设未知数,可以使列方程组和解方程组都更加简便.。

全国各地2014年中考数学试卷解析版分类汇编 二元一次方程(组)及其应用

全国各地2014年中考数学试卷解析版分类汇编 二元一次方程(组)及其应用

二元一次方程(组)及其应用一、选择题1. (2014•某某某某,第5题3分)按如图的运算程序,能使输出结果为3的x ,y 的值是( )A . x =5,y =﹣2B . x =3,y =﹣3C . x =﹣4,y =2D . x =﹣3,y =﹣9 考点:实数的运算,二元一次方程的解.分析:根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.解答:由题意得,2x ﹣y =3,A 、x =5时,y =7,故本选项错误;B 、x =3时,y =3,故本选项错误;C 、x =﹣4时,y =﹣11,故本选项错误;D 、x =﹣3时,y =﹣9,故本选项正确.故选D .点评:本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.2.(2014•某某抚州,第6题,3分)已知a 、b 满足方程组2226a b a b -=⎧⎨+=⎩ ,则3a b +的值为( ) A. 8 B. 4 C. -4 D. -8 解析:选A . ∵方程(1)+方程(2)即可得a b +=38.3.(2014•某某4.(3分))方程组的解是( ) A . B . C . D . 考点:解二元一次方程组.分析:用加减法解方程组即可.解解:,答:(1)+(2)得,3x=6,x=2,把x=2代入(1)得,y=﹣1,∴原方程组的解.故选D.点此题考查二元一次方程组的解法.评:二、填空题1. (2014•某某枣庄,第14题4分)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.考点:二元一次方程组的解;因式分解-运用公式法分析:根据解二元一次方程组的方法,可得二元一次方程组的解,根据代数式求值的方法,可得答案.解答:解:,①×2﹣②得﹣8y=1,y=﹣,把y=﹣代入②得2x﹣=5,x=,x2﹣4y2=()=,故答案为:.点评:本题考查了二元一次方程组的解,先求出二元一次方程组的解,再求代数式的值.2. (2014•某某某某,第13题,4分)设实数x、y满足方程组,则x+y= 8 .考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解得到x与y的值,即可确定出x+y的值.解答:解:,①+②得: x=6,即x=9;①﹣②得:﹣2y=2,即y=﹣1,∴方程组的解为,则x+y=9﹣1=8.故答案为:8点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.(2014•某某某某,第16题3分)某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为20 .考点:二元一次方程组的应用分析:设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,就有4x+9y=120,8x+3y=120,由此构成方程组求出其解即可.解答:解:设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,由题意,得,解得:.∴x+y=20.故答案为:20.点评:本题考查了列二元一次房产界实际问题的运用,二元一次方程组的解法的运用,工程问题的数量关系的运用,解答时由工程问题的数量关系建立方程组求出其解是关键.4. (2014•年某某东营,第15题4分)如果实数x,y满足方程组,那么代数式(+2)÷的值为 1 .考点:分式的化简求值;解二元一次方程组.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程组的解得到x与y的值,代入计算即可求出值.解答:解:原式=•(x+y)=xy+2x+2y,方程组,解得:,当x=3,y=﹣1时,原式=﹣3+6﹣2=1.故答案为:1点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.5.(2014•某某某某,第11题3分)函数y=2x与y=x+1的图象交点坐标为(1,2).考点:两条直线相交或平行问题.专题:计算题.分析:根据两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解,所以解方程组即可得到两直线的交点坐标.解答:解:解方程组得,所以函数y=2x与y=x+1的图象交点坐标为(1,2).故答案为(1,2).点评:本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.三、解答题1. (2014•某某威海,第19题7分)解方程组:.考点:解二元一次方程组专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:方程组整理得:,②﹣①得:3y=3,即y=1,将y=1代入①得:x=,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.(2014某某某某,第24题,8分)(本小题满分8分)2014年世界杯足球赛在巴西举行,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10X,总价为5800元.其中小组赛球票每X550元,淘汰赛球票每X700元,问小李预定了小组赛和淘汰赛的球票各多少X ?【解析】设小李预定了小组赛球票x X ,淘汰赛球票y X ,由题意有⎩⎨⎧=+=+580070055010y x y x ,解之⎩⎨⎧==28y x . 所以,小李预定了小组赛球票8X ,淘汰赛球票2X .3. (2014•某某聊城,第22题,8分)某服装店用6000元购进A ,B 两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价、标价如表所示: 类型价格A 型B 型进价(元/件)60 100 标价(元/件) 100 160 (1)这两种服装各购进的件数;(2)如果A 中服装按标价的8折出售,B 中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?考点:二元一次方程组的应用 分析: (1)设A 种服装购进x 件,B 种服装购进y 件,由总价=单价×数量和利润=售价﹣进价建立方程组求出其解即可;(2)分别求出打折后的价格,再根据总利润=A 种服装的利润+B 中服装的利润,求出其解即可.解答:解:(1)设A 种服装购进x 件,B 种服装购进y 件,由题意,得 ,解得:. 答:A 种服装购进50件,B 种服装购进30件;(2)由题意,得3800﹣50(100×0.8﹣60)﹣30(160×0.7﹣100)=3800﹣1000﹣360=2440(元).答:服装店比按标价出售少收入2440元.点评:本题考查了销售问题的数量关系的运用,列二元一次方程组解实际问题的运用,解答时由销售问题的数量关系建立二元一次方程组是关键.4.(2014年某某黔东南)黔东南州23.(12分)某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,根据“5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元”列出方程组解决问题;(2)分情况:不大于20件;大于20件;分别列出函数关系式即可;(3)设购进玩具x件(x>20),分别表示出甲种和乙种玩具消费,建立不等式解决问题.解答:解:(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,由题意得,解得,答:件甲种玩具的进价是30元,每件乙种玩具的进价是27元;(2)当0<x≤20时,y=30x;当x>20时,y=20×30+(x﹣20)×30×0.7=21x+180;(3)设购进玩具x件(x>20),则乙种玩具消费27x元;当27x=21x+180,则x=30所以当购进玩具正好30件,选择购其中一种即可;当27x>21x+180,则x>30所以当购进玩具超过30件,选择购甲种玩具省钱;当27x<21x+180,则x<30所以当购进玩具少于30件,选择购乙种玩具省钱.点评:此题考查二元一次方程组,一次函数,一元一次不等式的运用,理解题意,正确劣势解决问题.5.( (2014年某某)21,10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。

2014年全国中考数学真题分类解析汇编(二元一次方程(组)及其应用)

2014年全国中考数学真题分类解析汇编(二元一次方程(组)及其应用)

2014年全国中考数学真题分类解析汇编(二元一次方程(组)及
其应用)
一、选择题1.(2014 新疆,第8题5分)六o一儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装x套,B型童装y套,依题意列方程组正确的是()A.B.C.D.考点由实际问题抽象出二元一次方程组分析设购买A型童装x套,B型童装y套,根据超市用3360元购进A,B两种童装共120套,列方程组求解.解答解设购买A型童装x套,B型童装y套,由题意得,.故选B.点评本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.2.(2014 温州,第9题4分)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.考点由实际问题抽象出二元一次方程组.。

2014厦门中考数学试题(解析版)

2014厦门中考数学试题(解析版)

2014年福建省厦门市中考数学试卷一、选择题(本大题共7小题,每小题3分,共21分)1.(3分)(2014年福建厦门)sin30°的值是()A.B. C. D. 1分析:直接根据特殊角的三角函数值进行计算即可.解答:解:sin30°=.故选A.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.2.(3分)(2014年福建厦门)4的算术平方根是()A.16 B. 2 C.﹣2 D.±2考点:算术平方根.分析:根据算术平方根定义求出即可.解答:解:4的算术平方根是2,故选B.点评:本题考查了对算术平方根的定义的应用,主要考查学生的计算能力.3.(3分)(2014年福建厦门)3x2可以表示为()A.9x B.x2•x2•x2C.3x•3x D.x2+x2+x2考点:单项式乘单项式;合并同类项;同底数幂的乘法.专题:计算题.分析:各项计算得到结果,即可做出判断.解答:解:3x2可以表示为x2+x2+x2,故选D点评:此题考查了单项式乘以单项式,合并同类项,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.4.(3分)(2014年福建厦门)已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A.B.C.D.考点:垂线.分析:根据题意画出图形即可.解答:解:根据题意可得图形,故选:C.点评:此题主要考查了垂线,关键是掌握垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.5.(3分)(2014年福建厦门)已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2k B.15 C.24 D.42考点:命题与定理.分析:证明命题为假命题,通常用反例说明,此反例满足命题的题设,但不满足命题的结论.解答:解:42是偶数,但42不是8的倍数.故选D.点评:本题考查了命题:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.(3分)(2014年福建厦门)如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF考点:全等三角形的判定与性质.分析:根据全等三角形的判定与性质,可得∠ACB与∠DBE的关系,根据三角形外角的性质,可得答案.解答:解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DEB.∵∠AFB是△BCF的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.点评:本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质.7.(3分)(2014年福建厦门)已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=13考点:中位数;算术平均数.分析:根据平均数的计算公式求出正确的平均数,再与原来的平均数进行比较,得出a的值,根据中位数的定义得出最中间的数还是13岁,从而选出正确答案.解答:解:∵原来的平均数是13岁,∴13×23=299(岁),∴正确的平均数a=≈12.97<13,∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b=13;故选D.点评:此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.二、填空题(本大题共10小题,每小题4分,共40分)8.(4分)(2014年福建厦门)一个圆形转盘被平均分成红、黄、蓝、白4个扇形区域,向其投掷一枚飞镖,飞镖落在转盘上,则落在黄色区域的概率是.考点:几何概率.分析:根据概率公式,求出红色区域的面积与总面积的比即可解答.解答:解:∵圆形转盘平均分成红、黄、蓝、白4个扇形区域,其中黄色区域占1份,∴飞镖落在黄色区域的概率是;故答案为:.点评:本题考查了几何概率的运用,用到的知识点是概率公式,在解答时根据概率=相应的面积与总面积之比是解答此类问题关键.9.(4分)(2014年福建厦门)若在实数范围内有意义,则x的取值范围是x≥1.考点:二次根式有意义的条件.分析:先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解答:解:∵在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0.10.(4分)(2014年福建厦门)四边形的内角和是360°.考点:多边形内角与外角.专题:计算题.分析:根据n边形的内角和是(n﹣2)•180°,代入公式就可以求出内角和.解答:解:(4﹣2)•180°=360°.故答案为360°.点评:本题主要考查了多边形的内角和公式,是需要识记的内容,比较简单.11.(4分)(2014年福建厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是(3,0),A1的坐标是(4,3).考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:解:∵点O(0,0),A(1,3),线段OA向右平移3个单位,∴点O1的坐标是(3,0),A1的坐标是(4,3).故答案为:(3,0),(4,3).点评:本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.12.(4分)(2014年福建厦门)已知一组数据:6,6,6,6,6,6,则这组数据的方差为0.【注:计算方差的公式是S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]】考点:方差.分析:根据题意得出这组数据的平均数是6,再根据方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],列式计算即可.解答:解:∵这组数据的平均数是6,∴这组数据的方差=[6×(6﹣6)2]=0.故答案为:0.点评:本题考查了方差:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13.(4分)(2014年福建厦门)方程x+5=(x+3)的解是x=﹣7.考点:解一元一次方程.专题:计算题.分析:方程去分母,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:2x+10=x+3,解得:x=﹣7.故答案为:x=﹣7点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.14.(4分)(2014年福建厦门)如图,在等腰梯形ABCD中,AD∥BC,若AD=2,BC=8,梯形的高是3,则∠B的度数是45°.考点:等腰梯形的性质.分析:首先过点A作AE⊥BC交BC于E,过点D作DF⊥BC交BC于F,易得四边形AEFD 是长方形,易证得△ABE是等腰直角三角形,即可得∠B的度数.解答:解:过点A作AE⊥BC交BC于E,过点D作DF⊥BC交BC于F,∵AD∥BC,∴四边形AEFD是长方形,∴EF=AD=2,∵四边形ABCD是等腰梯形,∴BE=(8﹣2)÷2=3,∵梯形的高是3,∴△ABE是等腰直角三角形,∴∠B=45°.故答案为:45°.点评:此题考查了等腰梯形的性质以及等腰直角三角形的判定与性质.此题注意掌握辅助线的作法,注意掌握数形结合思想的应用.15.(4分)(2014年福建厦门)设a=192×918,b=8882﹣302,c=10532﹣7472,则数a,b,c 按从小到大的顺序排列,结果是a<c<b.考点:因式分解的应用.分析:运用平方差公式进行变形,把其中一个因数化为918,再比较另一个因数,另一个因数大的这个数就大.解答:解:a=192×918=361×918,b=8882﹣302=(888﹣30)(888+30)=858×918,c=10532﹣7472=(1053+747)(1053﹣747)=1800×306=600×918,所以a<c<b.故答案为:a<c<b.点评:本题主要考查了因式分解的应用,解题的关键是运用平方差公式进行化简得出一个因数为918.16.(4分)(2014年福建厦门)某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产60个零件比8个工人生产这些零件少用2小时,则这台机器每小时生产15个零件.考点:分式方程的应用.分析:设一个工人每小时生产零件x个,则机器一个小时生产零件12x个,根据这台机器生产60个零件比8个工人生产这些零件少用2小时,列方程求解,继而可求得机器每小时生产的零件.解答:解:设一个工人每小时生产零件x个,则机器一个小时生产零件12x个,由题意得,﹣=2,解得:x=1.25,经检验:x=1.25是原分式方程的解,且符合题意,则12x=12×1.25=15.即这台机器每小时生产15个零件.故答案为:15.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.17.(4分)(2014年福建厦门)如图,正六边形ABCDEF的边长为2,延长BA,EF交于点O.以O为原点,以边AB所在的直线为x轴建立平面直角坐标系,则直线DF与直线AE的交点坐标是(2,4).考点:正多边形和圆;两条直线相交或平行问题.分析:首先得出△AOF是等边三角形,利用建立的坐标系,得出D,F点坐标,进而求出直线DF的解析式,进而求出横坐标为2时,其纵坐标即可得出答案.解答:解:连接AE,DF,∵正六边形ABCDEF的边长为2,延长BA,EF交于点O,∴可得:△AOF是等边三角形,则AO=FO=FA=2,∵以O为原点,以边AB所在的直线为x轴建立平面直角坐标系,∠EOA=60°,EO=FO+EF=4,∴∠EAO=90°,∠OEA=30°,故AE=4cos30°=6,∴F(,3),D(4,6),设直线DF的解析式为:y=kx+b,则,解得:,故直线DF的解析式为:y=x+2,当x=2时,y=2×+2=4,∴直线DF与直线AE的交点坐标是:(2,4).故答案为:2,4.点评:此题主要考查了正多边形和圆以及待定系数法求一次函数解析式等知识,得出F,D点坐标是解题关键.三、解答题(共13小题,共89分)18.(7分)(2014年福建厦门)计算:(﹣1)×(﹣3)+(﹣)0﹣(8﹣2)考点:实数的运算;零指数幂.分析:先根据0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=3+1﹣6=﹣2.点评:本题考查的是实数的运算,熟知0指数幂的运算法则是解答此题的关键.19.(7分)(2014年福建厦门)在平面直角坐标系中,已知点A(﹣3,1),B(﹣1,0),C(﹣2,﹣1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.考点:作图-轴对称变换.分析:根据关于y轴对称点的性质得出A,B,C关于y轴对称点的坐标,进而得出答案.解答:解:如图所示:△DEF与△ABC关于y轴对称的图形.点评:此题主要考查了轴对称变换,得出对应点坐标是解题关键.20.(7分)(2014年福建厦门)甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有两个小球,分别标有号码1,2;这些球除数字外完全相同,从甲、乙两口袋中分别随机摸出一个小球,求这两个小球的号码都是1的概率.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两个小球的号码都是1的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有6种等可能的结果,这两个小球的号码都是1的只有1种情况,∴这两个小球的号码都是1的概率为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(6分)(2014年福建厦门)如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,DE=2,BC=3,求的值.考点:相似三角形的判定与性质.分析:由DE∥BC,可证得△ADE∽△ABC,然后由相似三角形的对应边成比例,求得的值.解答:解:∵DE∥BC,∴△ADE∽△ABC,∵DE=2,BC=3,∴==.点评:此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.22.(6分)(2014年福建厦门)先化简下式,再求值:(﹣x2+3﹣7x)+(5x﹣7+2x2),其中x=+1.考点:二次根式的化简求值;整式的加减.分析:根据去括号、合并同类项,可化简代数式,根据代数式的求值,可得答案.解答:解;原式=x2﹣2x﹣4=(x﹣1)2﹣5,把x=+1代入原式,=(+1﹣1)2﹣5=﹣3.点评:本题考查了二次根式的化简求值,先去括号、合并同类项,再求值.23.(6分)(2014年福建厦门)解方程组.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:①×2﹣②得:4x﹣1=8﹣5x,解得:x=1,将x=1代入①得:y=2,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.(6分)(2014年福建厦门)如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形.考点:菱形的判定.专题:证明题.分析:首先证明∠B=∠D,可得四边形ABCD是平行四边形,然后再证明△ABM≌△ADN可得AB=AD,再根据菱形的判定定理可得结论.解答:证明:∵AD∥BC,∴∠B+∠BAD=180°,∠D+∠C=180°,∵∠BAD=∠BCD,∴∠B=∠D,∴四边形ABCD是平行四边形,∵AM⊥BC,AN⊥DC,∴∠AMB=∠AND=90°,在△ABM和△ADN中,,∴△ABM≌△ADN(AAS),∴AB=AD,∴四边形ABCD是菱形.点评:此题主要考查了菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.25.(6分)(2014年福建厦门)已知A(x1,y1),B(x2,y2)是反比例函数y=图象上的两点,且x1﹣x2=﹣2,x1•x2=3,y1﹣y2=﹣,当﹣3<x<﹣1时,求y的取值范围.考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特征得到y1=,y2=,利用y1﹣y2=﹣,得到﹣=﹣,再通分得•k=﹣,然后把x1﹣x2=﹣2,x1•x2=3代入可计算出k=﹣2,则反比例函数解析式为y=﹣,再分别计算出自变量为﹣3和﹣1所对应的函数值,然后根据反比例函数的性质得到当﹣3<x<﹣1时,y的取值范围.解答:解:把A(x1,y1),B(x2,y2)代入y=得y1=,y2=,∵y1﹣y2=﹣,∴﹣=﹣,∴•k=﹣,∵x1﹣x2=﹣2,x1•x2=3,∴k=﹣,解得k=﹣2,∴反比例函数解析式为y=﹣,当x=﹣3时,y=;当x=﹣1时,y=2,∴当﹣3<x<﹣1时,y的取值范围为<y<2.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.26.(6分)(2014年福建厦门)A,B,C,D四支足球队分在同一小组进行单循环足球比赛,争夺出线权,比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中积分最高的两个队(有且只有两个队)出线,小组赛结束后,如果A队没有全胜,那么A队的积分至少要几分才能保证一定出线?请说明理由.[注:单循环比赛就是小组内的每一个队都要和其他队赛一场].考点:推理与论证.分析:根据题意每队都进行3场比赛,本组进行6场比赛,根据规则每场比赛,两队得分的和是3分或2分,据此对A队的胜负情况进行讨论,从而确定.解答:解:每队都进行3场比赛,本组进行6场比赛.若A队两胜一平,则积7分.因此其它队的积分不可能是9分,依据规则,不可能有球队积8分,每场比赛,两队得分的和是3分或2分.6场比赛两队的得分之和最少是12分,最多是18分,∴最多只有两个队得7分.所以积7分保证一定出线.若A队两胜一负,积6分.如表格所示,根据规则,这种情况下,A队不一定出线.同理,当A队积分是5分、4分、3分、2分时不一定出线.总之,至少7分才能保证一定出线.点评:本题考查了正确进行推理论证,在本题中正确确定A队可能的得分情况是关键.27.(6分)(2014年福建厦门)已知锐角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC=,根据题意画出示意图,并求tanD的值.考点:解直角三角形.分析:首先根据题意画出示意图,根据三角形外角的性质得出∠ACB=∠D+∠CAD,而∠ACB=2∠D,那么∠CAD=∠D,由等角对等边得到CA=CD,再根据等角的余角相等得出∠B=∠BAC,则AC=CB,BD=2AC=2×=3.然后解Rt△ABD,运用勾股定理求出AB==,利用正切函数的定义求出tanD==.解答:解:如图,∵∠ACB=∠D+∠CAD,∠ACB=2∠D,∴∠CAD=∠D,∴CA=CD.∵∠DAB=90°,∴∠B+∠D=90°,∠BAC+∠CAD=90°,∴∠B=∠BAC,∴AC=CB,∴BD=2AC=2×=3.在Rt△ABD中,∵∠DAB=90°,AD=2,∴AB==,∴tanD==.点评:本题考查了三角形外角的性质,等腰三角形的判定,余角的性质,解直角三角形,勾股定理,正切函数的定义,难度适中.求出BD的值是解题的关键.28.(6分)(2014年福建厦门)当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”,已知点A(0,5)与点M都在直线y=﹣x+b上,点B,C是“完美点”,且点B 在线段AM上,若MC=,AM=4,求△MBC的面积.考点:一次函数综合题.分析:由m+n=mn变式为=m﹣1,可知P(m,m﹣1),所以在直线y=x﹣1上,点A(0,5)在直线y=﹣x+b上,求得直线AM:y=﹣x+5,进而求得B(3,2),根据直线平行的性质从而证得直线AM与直线y=x﹣1垂直,然后根据勾股定理求得BC的长,从而求得三角形的面积.解答:解:∵m+n=mn且m,n是正实数,∴+1=m,即=m﹣1,∴P(m,m﹣1),即“完美点”P在直线y=x﹣1上,∵点A(0,5)在直线y=﹣x+b上,∴b=5,∴直线AM:y=﹣x+5,∵“完美点”B在直线AM上,∴由解得,∴B(3,2),∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=﹣x,而直线y=x﹣1与直线y=x平行,直线y=﹣x+5与直线y=﹣x平行,∴直线AM与直线y=x﹣1垂直,∵点B是直线y=x﹣1与直线AM的交点,∴垂足是点B,∵点C是“完美点”,∴点C在直线y=x﹣1上,∴△MBC是直角三角形,∵B(3,2),A(0,5),∴AB=3,∵AM=4,∴BM=,又∵CM=,∴BC=1,∴S△MBC=BM•BC=.点评:本题考查了一次函数的性质,直角三角形的判定,勾股定理的应用以及三角形面积的计算等,判断直线垂直,借助正比例函数是本题的关键.29.(10分)(2014年福建厦门)已知A,B,C,D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.考点:垂径定理;勾股定理;圆周角定理.分析:(1)根据题意不难证明四边形ABCD是正方形,结论可以得到证明;(2)作直径DE,连接CE、BE.根据直径所对的圆周角是直角,得∠DCE=∠DBE=90°,则BE∥AC,根据平行弦所夹的弧相等,得弧CE=弧AB,则CE=AB.根据勾股定理即可求解.解答:解:(1)∵∠ADC=∠BCD=90°,∴AC、BD是⊙O的直径,∴∠DAB=∠ABC=90°,∴四边形ABCD是矩形,∵AD=CD,∴四边形ABCD是正方形,∴AC⊥BD;(2)作直径DE,连接CE、BE.∵DE是直径,∴∠DCE=∠DBE=90°,∴EB⊥DB,又∵AC⊥BD,∴BE∥AC,∴弧CE=弧AB,∴CE=AB.根据勾股定理,得CE2+DC2=AB2+DC2=DE2=20,∴DE=,∴OD=,即⊙O的半径为.点评:此题综合运用了圆周角定理的推论、垂径定理的推论、等弧对等弦以及勾股定理.学会作辅助线是解题的关键.30.(10分)(2014年福建厦门)如图,已知c<0,抛物线y=x2+bx+c与x轴交于A(x1,0),B(x2,0)两点(x2>x1),与y轴交于点C.(1)若x2=1,BC=,求函数y=x2+bx+c的最小值;(2)过点A作AP⊥BC,垂足为P(点P在线段BC上),AP交y轴于点M.若=2,求抛物线y=x2+bx+c顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围.考点:二次函数综合题.分析:(1)根据勾股定理求得C点的坐标,把B、C点坐标代入y=x2+bx+c即可求得解析式,转化成顶点式即可.(2)根据△AOM∽△COB,得到OC=2OB,即:﹣c=2x2;利用x22+bx2+c=0,求得c=2b﹣4;将此关系式代入抛物线的顶点坐标,即可求得所求之关系式.解答:解:(1)∵x2=1,BC=,∴OC==2,∴C(0,﹣2),把B(1,0),C(0,﹣2)代入y=x2+bx+c,得:0=1+b﹣2,解得:b=1,∴抛物线的解析式为:y=x2+x+﹣2.转化为y=(x+)2﹣;∴函数y=x2+bx+c的最小值为﹣.(2)∵∠OAM+∠OBC=90°,∠OCB+∠OBC=90°,∴∠OAM=∠OCB,又∵∠AOM=∠BOC=90°,∴△AOM∽△COB,∴,∴OC=•OB=2OB,∴﹣c=2x2,即x2=﹣.∵x22+bx2+c=0,将x2=﹣代入化简得:c=2b﹣4.抛物线的解析式为:y=x2+bx+c,其顶点坐标为(﹣,).令x=﹣,则b=﹣2x.y==c﹣=2b﹣4﹣=﹣4x﹣4﹣x2,∴顶点的纵坐标随横坐标变化的函数解析式为:y=﹣x2﹣4x﹣4(x>﹣).点评:本题考查了勾股定理、待定系数法求解析式、三角形相似的判定及性质以及抛物线的顶点坐标的求法等.。

2014年中考数学试卷分类汇编:05二元一次方程组及其应用

2014年中考数学试卷分类汇编:05二元一次方程组及其应用

2014中考数学专项训练: 二元一次方程组及其应用班别 姓名一、选择题(请把答案填在下列表格中)1. (2011山东泰安)某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,则方程组正确的是( )A.⎩⎨⎧x+y=3012x+16y=400 B.⎩⎨⎧x+y=3016x+12y=400 C.⎩⎨⎧12x+16y=30x+y=400 D.⎩⎨⎧16x+12y=30x+y=400 2. (2011台湾台北,30)某鞋店有甲、乙两款鞋各30双,甲鞋一双200元,乙鞋一双5元。

该店促销的方式:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠。

若打烊后得知,此两款鞋共卖得1800元,还剩甲鞋x 双、乙鞋y 双,则依题意可列出下列哪一个方程式? A 1800)30(50)30(200=-+-y x B .1800)30(50)30(200=--+-y x x C. 1800)60(50)30(200=--+-y x x D .1800])30(30[50)30(200=---+-y x x 3. (2011台湾全区,9)在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x 元,包子每颗y 元,则下列哪一个二元一次联立方程式可表示题目中的数量关系?A .⎩⎨⎧⨯=++=+9.09051125035y x y xB .⎩⎨⎧÷=++=+9.09051125035y x y xC .⎩⎨⎧⨯=+-=+9.09051125035y x y xD .⎩⎨⎧÷=+-=+9.09051125035y x y x4. 二元一次方程21-=x y 有无数多个解,下列四组值中不是..该方程的解的是 A .012x y =⎧⎪⎨=-⎪⎩B .11x y =⎧⎨=⎩ C .1x y =⎧⎨=⎩ D .11x y =-⎧⎨=-⎩12xy x y =⎧⎨+=⎩52313x y y x -=⎧⎪⎨+=⎪⎩20135x z x y +=⎧⎪⎨-=⎪⎩5723z x y =⎧⎪⎨+=⎪⎩5. (2011四川绵阳9,3)灾后重建,四川从悲壮走向豪迈.灾民发扬伟大的抗震救灾精神,桂花村派男女村民共15 人到山外采购建房所需的水泥,已知男村民一人挑两包,女村民两人抬一包,共购回15 包.请问这次采购派男女村民各多少人? A .男村民3人,女村民12人 B .男村民5人,女村民10人 C .男村民6人,女村民9人 D .男村民7人,女村民8人6. (2011四川凉山州,3,4分)下列方程组中是二元一次方程组的是( )A .B .C .D . 7. (2011广东肇庆,4,3分)方程组⎩⎨⎧=+=-422y x y x 的解是A .⎩⎨⎧==21y xB .⎩⎨⎧==13y xC .⎩⎨⎧-==20y xD .⎩⎨⎧==02y x8. (2011山东东营,4,3分)方程组31x y x y +=⎧⎨-=-⎩,的解是A .12.x y =⎧⎨=⎩,B .12.x y =⎧⎨=-⎩,C .21.x y =⎧⎨=⎩,D .01.x y =⎧⎨=-⎩,9. (2011山东枣庄)已知2,1x y =⎧⎨=⎩是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( )A .-1B .1C .2D .3 二、填空题1. (2011安徽芜湖,13,5分)方程组237,38.x y x y +=⎧⎨-=⎩的解是 .2.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中 信息可知,则买5束鲜花和5个礼盒的总价为 元.3. (2011江西,12,3分)方程组257x y x y ì+=ïïíï-=ïî的解是.4. (2011福建泉州)已知x 、y 满足方程组⎩⎨⎧=+=+,42,52y x y x 则x -y 的值为.5. (2011山东潍坊,15,3分)方程组524050x y x y --=⎧⎨+-=⎩的解是___________________.6. (2011江西南昌,12,3分)方程组257x y x y ì+=ïïíï-=ïî的解是.7. (2011安徽芜湖,13,5分)方程组237,38.x y x y +=⎧⎨-=⎩的解是 .8.若关于x ,y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.9. (2011河北,19,8分)已知.a y x 3y x 3y 2的解的二元一次方程,是关于+=⎩⎨⎧==x求(a+1)(a-1)+7的值 三、解答题1. (2011湖南怀化,18,6分)解方程组:38.53 4.x y x y +=⎧⎨-=⎩2、(2011上海,20,10分)解方程组:222,230.x y x xy y -=⎧⎨--=⎩3、(2011广东中山,12,6分)解方程组:2360y x x xy =-⎧⎨--=⎩.4、解方程组:⎩⎨⎧=+=②13y 2x ①113y -4x5、(2011湖北宜昌,17,7分)解方程组⎩⎪⎨⎪⎧ x -y =1 2x +y =26、(2011湖北黄石,20,8分)解方程:0)10553(4222=--+--y x y x 。

中考数学真题二元一次方程组(含答案)

中考数学真题二元一次方程组(含答案)

中考真题解析考点汇编解二元一次方程组以及简单的三元一次方程组一、选择题1. 若 a :b :c =2:3:7,且 a -b +3=c -2b ,则 c 值为何?()A .7B .63C .21 D . 2124考点:解三元一次方程组。

专题:计算题。

分析:先设 a =2x ,b =3x ,c =7x ,再由 a -b +3=c -2b 得出 x 的值,最后代入 c =7x 即可. 解答:解:设 a =2x ,b =3x ,c =7x , ∵a -b +3=c -2b ,∴2x -3x +3=7x -6x , 3解得 x = , 2∴c =7× 3 =21 ,22故选C .点评:本题考查了解三元一次方程组,解题的关键是由题意中的比例式设 a =2x ,b =3x ,c=7x ,再求解就容易了.2. 若二元一次联立方程式的解为 x=a ,y=b ,则a+b 之值为何?( )A 、1B 、3C 、4D 、6考点:解二元一次方程组。

分析:将其中一个方程两边乘以一个数,使其与另一方程中 x 的系数互为相反数,再将两方程相加,消去一个未知数,达到降元的目的,求出另一个未知数,再用代入法求另一个未知数. 解答:解:,⎩ ⎩ ⎩ ⎩ ⎩ ⎩ 专题:计算题.分析:解决本题关键是寻找式子间的关系,寻找方法消元,①②相加可消去y ,得到一个关于 x 的一元一次方程,解出 x 的值,再把 x 的值代入方程组中的任意一个式子,都可以求出 y 的值解答:解: ,①﹣2×②得,5y=﹣10,y=﹣2,代入②中得,x+4=7,解得, x=3∴a+b=3+(﹣2)=1, 故选(A )点评:本题主要考查解二元一次方程组:用加减法解二元一次方程组,用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数,把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求得未知数的值,将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⎧x + y = 3 3. 方程组⎨x - y = -1的解是()⎧x = 1A 、⎨y = 2⎧x = 1B 、⎨y = -2⎧x = 2C 、⎨y = 1⎧x = 0 D 、⎨y = -1考点:解二元一次方程组. ①+②得:2x=2,x=1,把 x=1 代入①得:1+y=3, y=2,⎧x = 1∴方程组的解为: ⎨ y = 2故选:A ,⎩⎩⎨点评:此题主要考查了二元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.⎧x + m = 64. 由方程组⎨ y - 3 = m 可得出 x 与y 的关系式是()A.x+y=9B.x+y=3C.x+y=﹣3D.x+y=﹣9考点:解二元一次方程组。

一些关于二元一次方程组的解的题目

一些关于二元一次方程组的解的题目

2014-2015学年度一些关于二元一次方程组的解的题目1.若方程组⎩⎨⎧-=++=+ay x a y x 13313的解满足0=+y x ,则a 的取值是( )A 、1a =-B 、1a =C 、0a =D 、a 不能确定2.甲乙两人解方程组⎩⎨⎧-=-=+,②①24,155by x y ax ,由于甲看错了方程①中的a ,而得到方程组的解为⎩⎨⎧-=-=;1,3y x 乙看错了方程②中的b ,而得到的解为⎩⎨⎧==.4,5y x ,a = ___ b =___ 3.若方程组8,2x y m x y m+=⎧⎨-=⎩的解满足152-=-y x ,则=m _______。

4.二元一次方程组{2527x y k x y k +=-=的解满足方程5231=-y x ,那么k 的值为5.已知11x y =⎧⎨=⎩是方程组23ax by x by +=⎧⎨-=⎩的解,试求,a b 的值。

6.在解方程组515,42ax y x by +=⎧⎨-=-⎩时,由于粗心,甲看错了方程组中的a ,得到的解为3,1x y =-⎧⎨=-⎩;乙看错了方程组中的b ,得到的解为5,4x y =⎧⎨=⎩. (1)求原方程组中a 、b 的值各是多少?(2)求出原方程组中的正确解.7.已知y=x 2+px +q ,当x=1时,y=3;当x=3时,y=7.求当x=-5时,y 的值.8.解方程组⎩⎨⎧=-=+872y cx by ax 时,一同学把c 看错而得到⎩⎨⎧=-=22y x ,而正确的解是⎩⎨⎧-==23y x ,求a 、b 、c 的值。

9.若关于x 、y 的二元一次方程组⎩⎨⎧-=-+=+122323m y x m y x 的解互为相反数,求m 的值。

10.甲、乙两位同学在方程组722ax by ax by +=⎧⎨-=-⎩时,甲看错了第一个方程,解得11x y =⎧⎨=-⎩,乙看错了第二个方程,解得26x y =-⎧⎨=-⎩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年二元一次方程组中考题含解析2014年二元一次方程组中考题含解析一.选择题(共11小题)1.(2014•台湾)如图为某店的宣传单,若小昱拿到后,到此店同时买了一件定价x元的衣服和一件定价y元的裤子,共省500元,则依题意可列出下列哪一个方程式?()3.(2014•龙东地区)今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小4.(2014•宿迁)已知是方程组的解,则a﹣b的值是()5.(2014•孝感)已知是二元一次方程组的解,则m﹣n的值是()6.(2014•泰安)方程5x+2y=﹣9与下列方程构成的方程组的解为的是()7.(2014•阜新)为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗摞起来的高度为15cm,9只饭碗8.(2013•广安)如果a3x b y与﹣a2y b x+1是同类项,则().C D.9.(2013•崇左)一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为().C D.10.(2013•漳州)如图,10块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程组正确的是().C D.11.(2013•南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()二.填空题(共12小题)12.(2014•本溪)关于x,y的方程组的解是,则|m+n|的值是_________.13.(2014•枣庄)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为_________.14.(2014•漳州)水仙花是漳州市花,如图,在长为14m,宽为10m的长方形展厅,划出三个形状、大小完全一样的小长方形摆放水仙花,则每个小长方形的周长为_________m.15.(2014•滨州)某公园“6•1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣.张凯、李利都随他们的家人参加了本次活动.王斌也想去,就去打听张凯、李利买门票花了多少钱.张凯说他家去了3个大人和4个小孩,共花了38元钱;李利说他家去了4个大人和2个小孩,共花了44元钱,王斌家计划去3个大人和2个小孩,请你帮他计算一下,需准备_________元钱买门票.16.(2013•绥化)某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有_________种租车方案.17.(2014•盘锦)在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x 名,二等奖的学生有y名,根据题意可列方程组为_________.18.(2013•赤峰)一艘轮船顺水航行的速度是20海里/小时,逆水航行的速度是16海里/小时,则水流的速度是_________海里/小时.19.(2012•达州)若关于x、y的二元一次方程组的解满足x+y>1,则k的取值范围是_________.20.(2012•淄博)关于x,y的二元一次方程组中,m与方程组的解中的x或y相等,则m的值为_________.21.(2013•鞍山)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,此时木桶中水的深度是_________cm.22.(2012•南宁)如图,已知函数y=x﹣2和y=﹣2x+1的图象交于点P,根据图象可得方程组的解是_________.23.(2012•阜新)如图(1),在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图(2).这个拼成的长方形的长为30,宽为20.则图(2)中Ⅱ部分的面积是_________.三.解答题(共7小题)24.(2014•威海)解方程组:.25.(2014•铜仁)某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?26.(2014•邵阳)小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?27.(2014•呼和浩特)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?28.(2014•柳州)小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少g?29.(2014•济南)2014年世界杯足球赛在巴西举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元,其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?30.(2014•温州)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只(2)最后获知A,B,C,D,E五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).2014年二元一次方程组中考题含解析参考答案与试题解析一.选择题(共11小题)1.(2014•台湾)如图为某店的宣传单,若小昱拿到后,到此店同时买了一件定价x元的衣服和一件定价y元的裤子,共省500元,则依题意可列出下列哪一个方程式?()方程的整数解为:,,,,3.(2014•龙东地区)今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有(),(4.(2014•宿迁)已知是方程组的解,则a﹣b的值是()先根据解的定义将是方程组5.(2014•孝感)已知是二元一次方程组的解,则m﹣n的值是(),6.(2014•泰安)方程5x+2y=﹣9与下列方程构成的方程组的解为的是()7.(2014•阜新)为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗摞起来的高度为15cm,9只饭碗由题意得,只饭碗摞起来的高度为:11+5=238.(2013•广安)如果a3x b y与﹣a2y b x+1是同类项,则().C D.a所以,方程组的解是9.(2013•崇左)一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为().C D.,10.(2013•漳州)如图,10块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程组正确的是().C D.解:根据图示可得11.(2013•南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()二.填空题(共12小题)12.(2014•本溪)关于x,y的方程组的解是,则|m+n|的值是3.代入方程组得:13.(2014•枣庄)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.,,代入②得=5(=故答案为:14.(2014•漳州)水仙花是漳州市花,如图,在长为14m,宽为10m的长方形展厅,划出三个形状、大小完全一样的小长方形摆放水仙花,则每个小长方形的周长为16m.15.(2014•滨州)某公园“6•1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣.张凯、李利都随他们的家人参加了本次活动.王斌也想去,就去打听张凯、李利买门票花了多少钱.张凯说他家去了3个大人和4个小孩,共花了38元钱;李利说他家去了4个大人和2个小孩,共花了44元钱,王斌家计划去3个大人和2个小孩,请你帮他计算一下,需准备34元钱买门票.,,16.(2013•绥化)某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有2种租车方案.17.(2014•盘锦)在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为..故答案为:18.(2013•赤峰)一艘轮船顺水航行的速度是20海里/小时,逆水航行的速度是16海里/小时,则水流的速度是2海里/小时.=219.(2012•达州)若关于x、y的二元一次方程组的解满足x+y>1,则k的取值范围是k>2.,20.(2012•淄博)关于x,y的二元一次方程组中,m与方程组的解中的x或y相等,则m的值为2或.的二元一次方程组,再令的方程组,得﹣.的二元一次方程组21.(2013•鞍山)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,此时木桶中水的深度是80cm.x=y×x=据此可列:,×,22.(2012•南宁)如图,已知函数y=x﹣2和y=﹣2x+1的图象交于点P,根据图象可得方程组的解是.∴方程组的解是故答案为:23.(2012•阜新)如图(1),在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图(2).这个拼成的长方形的长为30,宽为20.则图(2)中Ⅱ部分的面积是100.,三.解答题(共7小题)24.(2014•威海)解方程组:.解:方程组整理得:x=25.(2014•铜仁)某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?,解这个方程组,得26.(2014•邵阳)小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?.27.(2014•呼和浩特)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?由题意得,,28.(2014•柳州)小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少g?由题意得,.29.(2014•济南)2014年世界杯足球赛在巴西举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元,其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?由题意得,.30.(2014•温州)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知A,B,C,D,E五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).)=82.5,。

相关文档
最新文档