2020年高三总复习之电磁感应基础经典讲解精编版

合集下载

高考物理新电磁学知识点之电磁感应知识点总复习附解析

高考物理新电磁学知识点之电磁感应知识点总复习附解析

高考物理新电磁学知识点之电磁感应知识点总复习附解析一、选择题1.在水平桌面上,一个圆形金属框置于匀强磁场中,线框平面与磁场垂直,磁感应强度B1随时间t的变化关系如图甲所示,0~1 s内磁场方向垂直线框平面向下,圆形金属框与两根水平的平行金属导轨相连接,导轨上放置一根导体棒,且与导轨接触良好,导体棒处于另一匀强磁场B2中,如图乙所示,导体棒始终保持静止,则其所受的摩擦力F f随时间变化的图像是下图中的(设向右的方向为摩擦力的正方向) ( )A.B.C.D.2.如图所示,铁芯P上绕着两个线圈A和B, B与水平光滑导轨相连,导体棒放在水平导轨上。

A中通入电流i(俯视线圈A,顺时针电流为正),观察到导体棒向右加速运动,则A中通入的电流可能是()A.B.C.D.3.如图所示,使一个水平铜盘绕过其圆心的竖直轴OO 转动,且假设摩擦等阻力不计,转动是匀速的.现把一个蹄形磁铁水平向左移近铜盘,则A .铜盘转动将变快B .铜盘转动将变慢C .铜盘仍以原来的转速转动D .因磁极方向未知,无法确定4.如图所示的电路中,电源的电动势为E ,内阻为r ,电感L 的电阻不计,电阻R 的阻值大于灯泡D 的阻值,在0t =时刻闭合开关S ,经过一段时间后,在1t t =时刻断开S ,下列表示灯D 中的电流(规定电流方向A B →为正)随时间t 变化的图像中,正确的是( )A .B .C .D .5.如图所示,abcd 是边长为L ,每边电阻均相同的正方形导体框,今维持线框以恒定的速度v 沿x 轴运动,并穿过倾角为45°的三角形匀强磁场区域,磁场的磁感应强度为B ,方向垂直纸面向里。

线框b 点在O 位置时开始计时,则在2L t v=时间内,a 、b 两点的电势差U 随时间t 的变化图线为( )A .B .C.D.6.如图甲所示,矩形线圈位于一变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面)向里,磁感应强度B随时间t的变化规律如图乙所示.用I表示线圈中的感应电流,取顺时针方向的电流为正.则下图中的I-t图像正确的是 ( )A.B.C.D.7.一个简易的电磁弹射玩具如图所示,线圈、铁芯组合充当炮筒,硬币充当子弹。

高中物理必修三 讲解讲义 18 A电磁感应现象及应用 基础版

高中物理必修三 讲解讲义 18 A电磁感应现象及应用 基础版

电磁感应现象及应用知识点:电磁感应现象及应用一、划时代的发现1.丹麦物理学家奥斯特发现载流导体能使小磁针转动,这种作用称为电流的磁效应,揭示了电现象与磁现象之间存在密切联系.2.英国物理学家法拉第发现了电磁感应现象,即“磁生电”现象,他把这种现象命名为电磁感应.产生的电流叫作感应电流.二、感应电流的产生条件当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就产生感应电流.技巧点拨一、磁通量的变化磁通量的变化大致可分为以下几种情况:(1)磁感应强度B不变,有效面积S发生变化.如图(a)所示.(2)有效面积S不变,磁感应强度B发生变化.如图(b)所示.(3)磁感应强度B和有效面积S都不变,它们之间的夹角发生变化.如图(c)所示.二、感应电流产生的条件1.实验:探究感应电流产生的条件(1)如下图所示,导体AB做切割磁感线运动时,线路中________电流产生,而导体AB顺着磁感线运动时,线路中________电流产生.(均选填“有”或“无”)(2)如下图所示,当条形磁铁插入或拔出线圈时,线圈中________电流产生,但条形磁铁在线圈中静止不动时,线圈中________电流产生.(均选填“有”或“无”)(3)如下图所示,将小螺线管A插入大螺线管B中不动,当开关S闭合或断开时,电流表中________电流通过;若开关S一直闭合,当改变滑动变阻器的阻值时,电流表中________电流通过;而开关一直闭合,滑动变阻器的滑动触头不动时,电流表中________电流通过.(均选填“有”或“无”)(4)归纳总结:实验一中:导体棒切割磁感线运动,回路面积发生变化,从而引起了磁通量的变化,产生了感应电流.实验二中:磁铁插入或拔出线圈时,线圈中的磁场发生变化,从而引起了磁通量的变化,产生了感应电流.实验三中:开关闭合、断开、滑动变阻器的滑动触头移动时,A线圈中电流变化,从而引起穿过B的磁通量变化,产生了感应电流.三个实验共同特点是:产生感应电流时闭合回路的磁通量都发生了变化.答案(1)有无(2)有无(3)有有无2.感应电流产生条件的理解不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,且穿过该电路的磁通量也一定发生了变化.例题精练1.(舟山期末)随着智能手机的发展,电池低容量和手机高耗能之间的矛盾越来越突出,手机无线充电技术间接解决了智能手机电池不耐用的问题.在不久的将来各大公共场所都会装有这种设备,用户可以随时进行无线充电,十分便捷.如图所示,电磁感应式无线充电的原理与变压器类似,通过分别安装在充电基座和接收装置上的线圈,利用产生的磁场传递能量.当充电基座上的送电线圈通入正弦式交变电流后,就会在邻近的受电线圈中感应出电流,最终实现为手机电池充电.在充电过程中()A.受电线圈中感应电流产生的磁场恒定不变B.送电线圈中电流产生的磁场呈周期性变化C.送电线圈和受电线圈无法通过互感实现能量传递D.由于手机和基座没有导线连接,所以传递能量没有损失【分析】明确无线充电原理,根据麦克斯韦电磁场理论分析磁场是否变化;无线充电器是通过线圈进行能量耦合实现能量的传递,无线充电器的优点之一是不用传统的充电线连接到需要充电的终端设备上的充电器,但充电过程中有电能量损失。

高考物理电磁感应知识点梳理-精选教育文档

高考物理电磁感应知识点梳理-精选教育文档

高考物理电磁感应知识点梳理物理是人们对无生命自然界中物质的转变的知识做出规律性的总结的学科。

查字典物理网为大家推荐了高考物理电磁感应知识点,请大家仔细阅读,希望你喜欢。

1.电磁感应现象电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。

(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。

(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。

产生感应电动势的那部分导体相当于电源。

(3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。

2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。

如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb求磁通量时应该是穿过某一面积的磁感线的净条数。

任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。

反之,磁通量为负。

所求磁通量为正、反两面穿入的磁感线的代数和。

3.楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。

楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。

(2)对楞次定律的理解①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。

②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。

③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。

④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。

(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。

高考物理总复习 11专题十一 电磁感应 专题十一 电磁感应(讲解部分)

高考物理总复习 11专题十一 电磁感应 专题十一 电磁感应(讲解部分)

ΔΦ=Φ2-Φ1 ΔΦ=B·ΔS ΔΦ=S·ΔB
ΔΦ ΔS
Δt =B·Δt
ΔΦ ΔB
Δt =S·Δt
注意 穿过某个面有方向相反的磁场,则 开始时和转过180°时平面都 既不表示磁通量的大小,也
不能直接用Φ=B·S求解,应考虑相 与磁场垂直,穿过平面的磁 不表示磁通量变化的多少,
反方向的磁通量抵消后所剩余的 通量是一正一负,ΔΦ=-2BS而 实际它就是单匝线圈上产生
磁通量
不是0
的电动势
附注
ΔΦ
线圈绕垂直于磁场的轴做匀速圆周运动,线圈平面与磁感线平行时,Φ=0,但 Δt 最大;线圈平面
ΔΦ
ΔΦ
与磁感线垂直时,Φ最大,但 Δt =0;Φ、ΔΦ、 Δt 都与线圈匝数无关
考点二 法拉第电磁感应定律
一、法拉第电磁感应定律 1.法拉第电磁感应定律:闭合电路中感应电动势的大小与穿过这一电路的
答案 AD
拓展三 导体棒切割磁感线产生电动势的分析与计算
(1)公式:E=BLv。 (2)关于求解导体切割磁感线的感应电动势公式的两点说明: ①公式中的B、L、v要求两两互相垂直。当L⊥B,L⊥v,而v与B成θ夹角时, 导体切割磁感线的感应电动势大小为 E= BLv sin θ。 ②若导体不是直的,则E=BLv sin θ中的L为切割磁感线的导体的有效长 度。如图中,导体的有效长度为a、b间的距离。
ΔI
的变化率,表示为E=② L Δt 。
(3)自感系数:E=L ΔI 中的比例系数L叫做自感系数,简称自感或电感。线圈
Δt
的长度越长,线圈的横截面积越大,单位长度上匝数越多,线圈的自感系数 越大,线圈有铁芯比无铁芯时自感系数③ 大得多 。 三、涡流 线圈中的电流变化时,在附近导体中产生感应电流,这种电流在导体内形成 闭合回路,很像水的漩涡,因此把它叫做涡电流,简称涡流。在冶炼炉、电 动机、变压器、探雷器等实际应用中都存在着涡流,它是整块导体发生的 电磁感应现象,同样遵守电磁感应定律。

高中物理电磁感应总结(2020年整理).pptx

高中物理电磁感应总结(2020年整理).pptx

将和磁铁转动速度无限接近到可以认为相同;如果考虑摩擦阻力,则导线框的转
O2
速总比条形磁铁转速小些(线框始终受到安培力矩的作用,大小和摩擦力的阻力矩相等)。如果用
“阻碍磁通量变化”来分析,结论是一样的,但是叙述要复杂得多。可见这类定性判断的题要
灵 活运用楞次定律的各种表达方式。
练习 5. 如图所示,水平面上有两根平行导轨,上面放两根金属棒 a、b。 当条形磁铁如图向下移动时(不到达导轨平面),a、b 将如何移动?
解:若按常规用“阻碍磁通量变化”判断,则需要根据下端磁极的极性分别进
行讨论,比较繁琐。而且在判定 a、b 所受磁场力时。应该以磁极对它们的磁场
a
b
2
力为主,不能以a、b 间的磁场力为主(因为它们的移动方向由所受的合磁场的磁场力决定,而磁
铁的磁场显然是起主要作用的)。如果注意到:磁铁向下插,通过闭合回路的磁通量增大,由Φ
bl c
将均匀电阻丝做成的边长为 l 的正方形线圈 abcd 放在匀强磁场中,当磁感应强
度均匀减小时,回路中有感应电动势产生,大小为 E=l 2(ΔB/Δt),这种情况下,每 a
d
条边两端的电压 U=E/4-Ir = 0 均为零。
B
感应电流的电场线是封闭曲线,静电场的电场线是不封闭的,这一点和静电场 b l c
练习 3. 如图所示装置中,cd 杆原来静止。当 ab 杆做
如下那些运动时,cd 杆将向右移动?
c
a
A.向右匀速运动
B.向右加速运动
L2
L1
C.向左加速运动
D.向左减速运动
d
b
解:.ab 匀速运动时,ab 中感应电流恒定,L1中磁通量不
变,穿过 L2 的磁通量不变化,L2中无感应电流产生,cd 保持静止,A 不正确;ab 向右加速运动

2020年高考物理总复习:电磁感应规律的综合应用

2020年高考物理总复习:电磁感应规律的综合应用
(5)根据函数关系式,进行数学分析,如分析斜率的
变化、截距等.
2.此类题的特点及解题关键
此类题的特点是已知 B-t 图或 Ф-t 图,来分析线 框中的电动势、电流或线框所受安培力的变化情况.解 题的关键是:弄清图象中的斜率、拐点、截距的物理意
ΔΦ 义,结合楞次定律、法拉第电磁感应定律 E=n Δt 、 E=BLv 及欧姆定律来分析电压、电流的大小以及安培 力大小变化.
【答案】AD
【小结】1.解决图象问题的一般步骤
(1)明确图象的种类,即是 B-t 图还是 Φ-t 图,
或者 E-t 图、I-t 图等. (2)分析电磁感应的具体过程. (3)用右手定则或楞次定律确定感应电流方向与时
间的对应关系. (4)结合法拉第电磁感应定律、欧姆定律、牛顿定律
等规律写出函数关系式.
例 2 如图甲所示,导体框架 abcd 放置于水平面内, ab 平行于 cd,导体棒 MN 与两导轨垂直并与导轨接触 良好,整个装置放置于垂直于框架平面的磁场中,磁感
应强度 B 随时间变化规律如图乙所示,MN 始终保持静 止.规定竖直向上为磁场正方向,沿导体棒由 M 到 N 为感应电流的正方向,水平向右为导体棒所受安培力 F 的正方向,水平向左为导体棒所受摩擦力 f 的正方向, 下列图象中正确的是( )
顺时针方向,则闭合 S2、电路稳定后,通过 R2 的电流 由 a 流向 b,选项 A 错误;根据法拉第电磁感应定律: E=nΔΔBt S=100×03.6×0.2 V=4 V,则闭合 S2、电路稳 定后,通过 R2 的电流大小为 I=R1+ER2+r=2+46+2 A =0.4 A,选项 B 正确;闭合 S2、电路稳定后电容器上 极板带正电,则当再断开 S1,电容器放电,通过 R2 的 电流由 a 流向 b,选项 C 错误;电路稳定后电容器带电 量 Q=CUR2=3×10-6×0.4×6 C=7.2×10-6 C,则电 路稳定后再断开 S1,通过 R2 的电荷量为 7.2×10-6 C, 选项 D 正确.

2020届高考物理第一轮总复习 第9章电磁感应课件 精品

2020届高考物理第一轮总复习 第9章电磁感应课件 精品

热点一 电磁感应和楞次定律 本部分内容在高考中所占比例为5%左右,题型主要 是选择题,以中等难度为主,考查的热点为电磁感应现 象,如2008年高考海南卷第1题,自感现象,如2008年高 考江苏卷第8题,楞次定律的应用,如2008年高考宁夏卷 第16题、重庆卷第18题,法拉第电磁感应定律,如2008年 高考广东卷第18题、2009年高考安徽卷第20题.考查的方 式主要是对电磁感应现象的理解及法拉第电磁感应定律与 楞次定律的综合应用.
热点二 电磁感应的综合应用 本 部 分 内 容 在 高 考 中 所 占 比 例 为 10% 左 右 , 题 型 既 有选择题,也有计算题,题目难度中等以上.电磁感应定 律的综合应用一直是高考的热点,常与电路、图象电路、力学、能量综合,2009年高考山东 卷第21题与楞次定律综合,2009年高考宁夏卷第19题与电 路、图象综合,2009年高考四川卷第24题与电路、动力 学、能量转化与守恒综合考查,此类题目综合考查了考生 的推理能力、分析综合能力及知识的迁移能力.
最新考纲 考向瞭望
1.电磁感应现象Ⅰ 2.磁通量Ⅰ 3.法拉第电磁感应定律Ⅱ 4.楞次定律Ⅱ 5.自感、涡流Ⅰ
1.感应电流的产生和感应电流方向的判断.出题以 选择题为主. 2.导体切割磁感线产生感应电动势的计算.此类 问题常结合力学、电学知识,解决与电量、电热的 相关的问题. 3.法拉第电磁感应定律的应用是高考热点,常以 综合性大题出现.并结合电路、力学、能量转化与 守恒等知识. 4.对电磁感应图象问题的考查主要以选择题为主 ,是常考知识点. 5.结合实际应用问题.如日光灯原理、电磁阻尼 ,电磁驱动,磁悬浮原理等.

2020届高三一轮复习说课课件《电磁感应》(共54张PPT)

2020届高三一轮复习说课课件《电磁感应》(共54张PPT)

17.如图.在水平面(纸面)内有三报相同的均匀金属棒ab、ac和 MN,其中ab、ac在a点接触,构成“V”字型导轨。空间存在 垂直于纸面的均匀磁场。用力使MN向右匀速运动,从图示位 置开始计时,运动中MN始终与∠bac的平分线垂直且和导轨 保持良好接触。下列关于回路中电流i与时间t的关系图线.可 能正确的是
解析:A [解析] 线框进入磁场过程中,磁通量增大,由 楞次定律可知,感应电流方向为逆时针方向,即正方向, 可排除B、C选项;由E=BLv可知,线框进出磁场过程中, 切割磁感线的有效长度为线框与磁场边界交点的连线, 故进、出磁场过程中,等效长度L先增大后减小,故感应 电动势先增大后减小;由欧姆定律可知,感应电流也是 先增大后减小,故A项正确,D项错误.
附高考题
年份
2012
卷类别
全国卷
题型
选择题
分值 难度系数 试题考点
6分+6分 0.474+0.694
法拉第电磁感应定律
19.如图,均匀磁场中有一由半圆弧及其直径构成的导线 框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面 (纸面)向里,磁感应强度大小为B0.使该线框从静止开
始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半
四、一轮复习设计
STSE 13题. (多选)如图所示是磁电式转速传感器的结构简图。该装置主要由测 量齿轮、软铁、永久磁铁、线圈等元件组成。测量齿轮为磁性材料,等距离地 安装在被测旋转体的一个圆周上(圆心在旋转体的轴线上),齿轮转动时线圈内 就会产生感应电流。设感应电流的变化频率为f,测量齿轮的齿数为N,旋转体 转速为n。则( ) A.f=nN B.f=N/n C.线圈中的感应电流方向不会变化 D.旋转体转速越高线圈中的感应电流越强

高三物理电磁感应现象、右手定则、楞次定律及其应用、自感现象 知识精讲

高三物理电磁感应现象、右手定则、楞次定律及其应用、自感现象 知识精讲

高三物理电磁感应现象、右手定则、楞次定律及其应用、自感现象 知识精讲【本讲主要内容】电磁感应现象、右手定则、楞次定律及其应用、自感现象【知识掌握】【知识点精析】一. 电磁感应现象:1. 磁通量(1)概念:穿过某一面积的磁感线条数,是标量。

(2)公式:φα==BS B S sin ⊥·,其中α是B 与S 的夹角:当S ∥B 时,φ=0;当S ⊥B 时,φ=B ·S 。

(3)单位:韦伯(W b ),1W b =1T ·m 2(4)合磁通:若通过一个回路中有方向相反的磁场,则不能直接用公式φα=BS ·sin 求φ,应考虑相反方向抵消以外剩余的磁通量,亦即此时的磁通是合磁通。

2. 产生感应电流的条件:①穿过闭合回路的磁通量发生变化。

②若电路不闭合,即使有感应电动势,也没有感应电流。

③导致磁通量变化的情况有:磁感应强度B 变化;回路面积变化;线圈在磁场中转动等。

二. 感应电流方向的判定:1. 右手定则:伸开右手,让大姆指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线垂直或斜着穿入手心,大姆指指向导体运动方向,其余四指所指的方向就是感应电流的方向。

(适用情景:部分导体切割磁感线运动。

)2. 楞次定律:(1)内容:感应电流具有这样的方向,就是感应电流产生的磁场,总要阻碍引起感应电流的磁通量的变化。

(适用情景:一切电磁感应现象。

)(2)理解:I :楞次定律“阻碍”二字含有四层意思:①谁阻碍谁?②阻碍什么?③如何阻碍?④结果如何?II :感应电流与原磁通量变化关系如下图:原磁通量变化感应电流的磁场感应电流 阻碍 产 生产生(3)楞次定律的应用步骤①明确所研究的闭合路,判断原磁场方向→②判断闭合回路内原磁通量的变化→③由楞次定律判断感应电流的磁场方向→④由安培定则根据感应电流的磁场方向判断感应电流的方向三、楞次定律的推广含义:1. 阻碍原磁通的变化:2. 阻碍(导体与磁体间、或导体间的)相对运动;(“来拒去留”)3. 阻碍原电流变化。

高考物理电磁学知识点之电磁感应知识点总复习有解析

高考物理电磁学知识点之电磁感应知识点总复习有解析

高考物理电磁学知识点之电磁感应知识点总复习有解析一、选择题1.如图电路中,电灯A、B完全相同,带铁芯的线圈L的电阻可忽略,下列说法中正确的是A.在S闭合瞬间,A、B同时发光,接着A熄灭,B更亮B.在S闭合瞬间,A不亮,B立即亮C.在电路稳定后再断开S的瞬间,通过A灯电流方向为a→bD.在电路稳定后再断开S的瞬间,B闪烁一下然后逐渐熄灭2.如图所示,电源的电动势为E,内阻为r不可忽略.A、B是两个相同的小灯泡,L是一个自感系数较大的线圈.关于这个电路的说法中正确的是A.闭合开关,A灯立刻亮,而后逐渐变暗,最后亮度稳定B.闭合开关,B灯立刻亮,而后逐渐变暗,最后亮度稳定C.开关由闭合至断开,在断开瞬间,A灯闪亮一下再熄灭D.开关由闭合至断开,在断开瞬间,电流自左向右通过A灯3.如图所示,用粗细均匀的同种金属导线制成的两个正方形单匝线圈a、b,垂直放置在磁感应强度为B的匀强磁场中,a的边长为L,b的边长为2L。

当磁感应强度均匀增加时,不考虑线圈a、b之间的影响,下列说法正确的是()A.线圈a、b中感应电动势之比为E1∶E2=1∶2B.线圈a、b中的感应电流之比为I1∶I2=1∶2C.相同时间内,线圈a、b中产生的焦耳热之比Q1∶Q2=1∶4D.相同时间内,通过线圈a、b某截面的电荷量之比q1∶q2=1∶44.如图所示,L是自感系数很大的线圈,但其自身的电阻几乎为零。

A和B是两个完全相同的小灯泡。

下列说法正确的是()A.接通开关S瞬间,A灯先亮,B灯不亮B.接通开关S后,B灯慢慢变亮C.开关闭合稳定后,突然断开开关瞬间,A灯立即熄灭、B灯闪亮一下D.开关闭合稳定后,突然断开开关瞬间,A灯、B灯都闪亮一下5.两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直。

边长为0.1m、总电阻为0.005Ω的正方形导线框abcd位于纸面内,cd边与磁场边界平行,如图甲所示。

已知导线框向右做匀速直线运动,cd边于t=0时刻进入磁场。

重磅!2020高考物理专题知识考点: 第9讲 电磁感应讲末归纳整合课件.ppt

重磅!2020高考物理专题知识考点: 第9讲 电磁感应讲末归纳整合课件.ppt
(1)求框架开始运动时ab速度v的大小; (2)从ab开始运动到框架开始运动的过程中,MN上产生的热量 Q=0.1 J,求该过程ab位移x的大小.
[解析] (1)ab对框架的压力F1=m1g① 框架受水平面的支持力FN=m2g+F1② 依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩 擦力F2=μFN③ ab中的感应电动势E=Blv④ MN中电流I=R1+E R2⑤ MN受到的安培力F安=IlB⑥ 框架开始运动时F安=F2⑦ 由上述各式,代入数据解得v=6 m/s.⑧ (2)闭合电路中产生的总热量Q总=R1+R2R2Q⑨ 由能量守恒定律,得Fx=12m1v2+Q总⑩ 代入数据解得x=1.1 m
又有R、r共同消耗了总电能
EERr=Rr ,ER+Er=E电 整理得R消耗的电能为
ER=R+R rE电
=R+R r[mgh-kh2-mmg-22Bk4hd42R+r2]
[答案]
mg-2khR+r
(1)
B2d2
(2)R+R r[mgh-kh2-mmg-22Bk4hd42R+r2]
二、电磁感应中受恒定外力的滑轨加杆模型
[答案] (1)6 m/s (2)1.1 m
[例2] 如图所示,质量m1=0.1 kg,电阻R1=0.3Ω,长度l= 0.4 m的导体棒ab横放在U形金属框架上.框 架质量m2=0.2 kg,放在绝缘水平面上,与 水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻 不计且足够长.电阻R2=0.1Ω的MN垂直于MM′.整个装置处于竖直向 上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平 恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接 触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩 擦力等于滑动摩擦力,g取10 m/s2.(1)金属棒的最大速度是多少? 2)这一过程中R消耗的电能是多少?

【精编版】2020年高考物理一轮复习考点归纳专题10-电磁感应

【精编版】2020年高考物理一轮复习考点归纳专题10-电磁感应

2020年高考物理一轮复习考点归纳专题10 电磁感应目录第一节电磁感应现象楞次定律 (1)【基本概念、规律】 (1)【重要考点归纳】 (2)考点一电磁感应现象的判断 (2)考点二楞次定律的理解及应用 (2)考点三“一定律三定则”的综合应用 (3)【思想方法与技巧】 (3)楞次定律推论的应用 (3)第二节法拉第电磁感应定律自感涡流 (4)【基本概念、规律】 (4)【重要考点归纳】 (5)考点一公式E=nΔΦ/Δt的应用 (5)考点二公式E=Blv的应用 (5)考点三自感现象的分析 (6)第三节电磁感应中的电路和图象问题 (7)【基本概念、规律】 (7)【重要考点归纳】 (7)考点一电磁感应中的电路问题 (7)考点二电磁感应中的图象问题 (7)【思想方法与技巧】 (8)电磁感应电路与图象的综合问题 (8)第四节电磁感应中的动力学和能量问题 (8)【基本概念、规律】 (9)【重要考点归纳】 (9)考点一电磁感应中的动力学问题分析 (9)考点二电磁感应中的能量问题 (9)【思想方法与技巧】 (10)电磁感应中的“双杆”模型 (10)电磁感应中的含容电路分析 (10)第一节电磁感应现象楞次定律【基本概念、规律】一、磁通量1.定义:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S和B的乘积.2.公式:Φ=B·S.3.单位:1 Wb=1_T·m2.4.标矢性:磁通量是标量,但有正、负.二、电磁感应1.电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有电流产生,这种现象称为电磁感应现象.2.产生感应电流的条件(1)电路闭合;(2)磁通量变化.3.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能.特别提醒:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势产生.三、感应电流方向的判断1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适用情况:所有的电磁感应现象.2.右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体切割磁感线产生感应电流.【重要考点归纳】考点一电磁感应现象的判断1.判断电路中能否产生感应电流的一般流程:2.判断能否产生电磁感应现象,关键是看回路的磁通量是否发生了变化.磁通量的变化量ΔΦ=Φ2-Φ1有多种形式,主要有:(1)S、θ不变,B改变,这时ΔΦ=ΔB·S sin θ;(2)B、θ不变,S改变,这时ΔΦ=ΔS·B sin θ;(3)B、S不变,θ改变,这时ΔΦ=BS(sin θ2-sin θ1).考点二楞次定律的理解及应用1.楞次定律中“阻碍”的含义2.应用楞次定律判断感应电流方向的步骤考点三“一定律三定则”的综合应用1.“三个定则与一个定律”的比较2.应用技巧无论是“安培力”还是“洛伦兹力”,只要是涉及磁力都用左手判断.“电生磁”或“磁生电”均用右手判断.【思想方法与技巧】楞次定律推论的应用楞次定律中“阻碍”的含义可以理解为感应电流的效果总是阻碍产生感应电流的原因,推论如下:(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”; (4)阻碍原电流的变化(自感现象)——“增反减同”第二节 法拉第电磁感应定律 自感 涡流【基本概念、规律】一、法拉第电磁感应定律 1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I =ER +r .2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比. (2)公式:E =n ΔΦΔt ,n 为线圈匝数.3.导体切割磁感线的情形 (1)若B 、l 、v 相互垂直,则E =Blv .(2)若B ⊥l ,l ⊥v ,v 与B 夹角为θ,则E =Blv sin_θ. 二、自感与涡流 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E =L ΔIΔt.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关. 2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生像水的旋涡状的感应电流.(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流,使导体受到安培力作用,安培力使导体运动起来.交流感应电动机就是利用电磁驱动的原理工作的.【重要考点归纳】考点一 公式E =nΔΦ/Δt 的应用1.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt 和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B 引起时,则E =n S ΔB Δt ;当ΔΦ仅由S 引起时,则E =n B ΔSΔt .2.磁通量的变化率ΔΦΔt 是Φ-t 图象上某点切线的斜率.3.应用电磁感应定律应注意的三个问题(1)公式E =n ΔΦΔt 求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔBΔt求感应电动势时,S 为线圈在磁场范围内的有效面积.(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关.推导如下:q =I Δt =n ΔΦΔtR Δt =n ΔΦR. 考点二 公式E =Blv 的应用 1.使用条件本公式是在一定条件下得出的,除了磁场是匀强磁场外,还需B 、l 、v 三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进行计算,公式可为E =Blv sin θ,θ为B 与v 方向间的夹角.2.使用范围导体平动切割磁感线时,若v 为平均速度,则E 为平均感应电动势,即E =Bl v .若v 为瞬时速度,则E 为相应的瞬时感应电动势.3.有效性公式中的l 为有效切割长度,即导体与v 垂直的方向上的投影长度.例如,求下图中MN 两点间的电动势时,有效长度分别为甲图:l =cd sin β.乙图:沿v 1方向运动时,l =MN ;沿v 2方向运动时,l =0.丙图:沿v1方向运动时,l=2R;沿v2方向运动时,l=0;沿v3方向运动时,l=R.4.相对性E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.5.感应电动势两个公式的比较考点三自感现象的分析1.自感现象“阻碍”作用的理解(1)流过线圈的电流增加时,线圈中产生的自感电动势与电流方向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减小时,线圈中产生的自感电动势与电流方向相同,阻碍电流的减小,使其缓慢地减小.2.自感现象的四个特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.3.自感现象中的能量转化通电自感中,电能转化为磁场能;断电自感中,磁场能转化为电能.4.分析自感现象的两点注意(1)通过自感线圈中的电流不能发生突变,即通电过程,线圈中电流逐渐变大,断电过程,线圈中电流逐渐变小,方向不变.此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断,在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.第三节 电磁感应中的电路和图象问题【基本概念、规律】一、电磁感应中的电路问题 1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源. (2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻. 2.电源电动势和路端电压 (1)电动势:E =Blv 或E =nΔΦΔt. (2)路端电压:U =IR =ER +r ·R .二、电磁感应中的图象问题 1.图象类型(1)随时间t 变化的图象如B -t 图象、Φ-t 图象、E -t 图象和i -t 图象. (2)随位移x 变化的图象如E -x 图象和i -x 图象. 2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量. (3)利用给出的图象判断或画出新的图象.【重要考点归纳】考点一 电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.3.解决电磁感应中电路问题的一般思路:(1)确定等效电源,利用E =n ΔΦΔt 或E =Blv sin θ求感应电动势的大小,利用右手定则或楞次定律判断电流方向.(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图.(3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解.4.(1)对等效于电源的导体或线圈,两端的电压一般不等于感应电动势,只有在其电阻不计时才相等. (2)沿等效电源中感应电流的方向,电势逐渐升高. 考点二 电磁感应中的图象问题1.题型特点一般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量;(3)根据图象定量计算.2.解题关键弄清初始条件,正负方向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.3.解决图象问题的一般步骤(1)明确图象的种类,即是B-t图象还是Φ-t图象,或者是E-t图象、I-t图象等;(2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式;(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等;(6)画出图象或判断图象.4.解决图象类选择题的最简方法——分类排除法.首先对题中给出的四个图象根据大小或方向变化特点分类,然后定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是用物理量的方向,排除错误选项,此法最简捷、最有效.【思想方法与技巧】电磁感应电路与图象的综合问题解决电路与图象综合问题的思路(1)电路分析弄清电路结构,画出等效电路图,明确计算电动势的公式.(2)图象分析①弄清图象所揭示的物理规律或物理量间的函数关系;②挖掘图象中的隐含条件,明确有关图线所包围的面积、图线的斜率(或其绝对值)、截距所表示的物理意义.(3)定量计算运用有关物理概念、公式、定理和定律列式计算.第四节电磁感应中的动力学和能量问题【基本概念、规律】一、电磁感应现象中的动力学问题 1.安培力的大小⎭⎪⎬⎪⎫安培力公式:F =BIl 感应电动势:E =Blv感应电流:I =ER⇒F =B 2l 2v R 2.安培力的方向(1)先用右手定则判定感应电流方向,再用左手定则判定安培力方向. (2)根据楞次定律,安培力的方向一定和导体切割磁感线运动方向相反. 二、电磁感应中的能量转化 1.过程分析(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.(2)感应电流在磁场中受安培力,若安培力做负功,则其他形式的能转化为电能;若安培力做正功,则电能转化为其他形式的能.(3)当感应电流通过用电器时,电能转化为其他形式的能. 2.安培力做功和电能变化的对应关系“外力”克服安培力做多少功,就有多少其他形式的能转化为电能;安培力做多少功,就有多少电能转化为其他形式的能.【重要考点归纳】考点一 电磁感应中的动力学问题分析1.导体的平衡态——静止状态或匀速直线运动状态. 处理方法:根据平衡条件(合外力等于零)列式分析. 2.导体的非平衡态——加速度不为零.处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 3.分析电磁感应中的动力学问题的一般思路(1)先进行“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ;(2)再进行“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流大小,以便求解安培力;(3)然后是“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力;(4)最后进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型. 考点二 电磁感应中的能量问题1.电磁感应过程的实质是不同形式的能量转化的过程,而能量的转化是通过安培力做功的形式实现的,安培力做功的过程,是电能转化为其他形式能的过程,外力克服安培力做功,则是其他形式的能转化为电能的过程.2.能量转化及焦耳热的求法(1)能量转化(2)求解焦耳热Q的三种方法3.在解决电磁感应中的能量问题时,首先进行受力分析,判断各力做功和能量转化情况,再利用功能关系或能量守恒定律列式求解.【思想方法与技巧】电磁感应中的“双杆”模型1.模型分类“双杆”模型分为两类:一类是“一动一静”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止、受力平衡.另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减.2.分析方法通过受力分析,确定运动状态,一般会有收尾状态.对于收尾状态则有恒定的速度或者加速度等,再结合运动学规律、牛顿运动定律和能量观点分析求解.3.分析“双杆”模型问题时,要注意双杆之间的制约关系,即“动杆”与“被动杆”之间的关系,需要注意的是,最终两杆的收尾状态的确定是分析该类问题的关键.电磁感应中的含容电路分析一、电磁感应回路中只有电容器元件1.这类问题的特点是电容器两端电压等于感应电动势,充电电流等于感应电流.2.(1)电容器的充电电流用I=ΔQΔt=CΔUΔt表示.(2)由本例可以看出:导体棒在恒定外力作用下,产生的电动势均匀增大,电流不变,所受安培阻力不变,导体棒做匀加速直线运动.二、电磁感应回路中电容器与电阻并联问题1.这一类问题的特点是电容器两端的电压等于与之并联的电阻两端的电压,充电过程中的电流只是感应电流的一支流.稳定后,充电电流为零.2.在这类问题中,导体棒在恒定外力作用下做变加速运动,最后做匀速运动.。

高三物理一轮复习知识总结:电磁感应基础知识归纳

高三物理一轮复习知识总结:电磁感应基础知识归纳

高中物理电磁感应基础知识归纳考点1、磁通量(Φ)(1)定义:穿过某一面积的磁感线的条数叫做穿过这一面积的磁通量。

磁通量简称磁通。

①若磁场方向与面积垂直,磁场的磁感应强度为B ,平面的面积为S ,则穿过该平面的磁通量为Φ=BS②若磁场方向与面积不垂直,则穿过该平面的磁通量等于磁感应强度与该平面在垂直于磁场方向上投影面积的乘积。

③若磁感线沿相反方向穿过同一平面,且正向磁感线条数为Φ1,反向磁感线条数为Φ2,则磁通量为Φ=Φ1-Φ2(2)磁通量的变化量的计算①ΔΦ=Φ2-Φ1;ΔΦ=B ΔS ;ΔΦ=S ΔB②开始和转过1800时平面都与磁场垂直,则磁通量的变化量ΔΦ=2BS (磁感应强度为B ,平面的面积为S )(3)磁通量的变化率①磁通量的变化率:描述磁场中穿过某个面磁通量变化快慢的物理量。

②大小计算:tB s t S B t ∆∆=∆∆=∆∆ϕ ③在数值上等于单匝线圈产生的感应电动势的大小。

④在Φ—t 图象中,图象的斜率表示t∆∆ϕ (4)引起某一回路磁通量变化的原因(1)磁感强度的变化(2)线圈面积的变化(部分导体做切割磁感线运动)(3)线圈平面的法线方向与磁场方向夹角的变化考点2、感应电流的方向判断(1)判断的方法:①右手定则——部分导体做切割磁感线运动时产生的感应电流的方向②楞次定律(2)楞次定律的理解运用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,即为: ①明确原磁场:弄清原磁场的方向及磁通量的变化情况.②确定感应磁场:即根据楞次定律中的"阻碍"原则,结合原磁场磁通量变化情况,确定出感应电流产生的感应磁场的方向.③判定电流方向:即根据感应磁场的方向,运用安培定则判断出感应电流方向.(b )判断闭合电路(或电路中可动部分导体)相对运动类问题的分析策略在电磁感应问题中,有一类综合性较强的分析判断类问题,主要讲的是磁场中的闭合电路在一定条件下产生了感应电流,而此电流又处于磁场中,受到安培力作用,从而使闭合电路或电路中可动部分的导体发生了运动.对其运动趋势的分析判断可有两种思路方法:①常规法:据原磁场(B 原方向及ΔΦ情况)−−−−→−楞次定律确定感应磁场(B 感方向)−−−−→−安培定则判断感应电流(I 感方向)−−−−→−左手定则导体受力及运动趋势.②效果法由楞次定律可知,感应电流的“效果”总是阻碍引起感应电流的“原因”,深刻理解“阻碍”的含义.据"阻碍"原则,可直接对运动趋势作出判断,更简捷、迅速.a 、 阻碍变化变形为−→−−−阻碍原磁通的变化b 、阻碍变化拓展为−→−−−阻碍(导体间的)相对运动,即“来时拒,去时留” c 、 阻碍变化推广为−→−−−阻碍原电流的变化,应用在解释自感现象的有关问题。

2020新亮剑高考物理总复习讲义:第十单元 电磁感应 课时1

2020新亮剑高考物理总复习讲义:第十单元 电磁感应 课时1

第十单元电磁感应课时1 电磁感应现象 楞次定律见《自学听讲》P182 1.磁通量(1)概念:在磁感应强度为B的匀强磁场中,有一个与磁场方向垂直的平面,面积为S,我们把B与S的乘积叫作穿过这个面积的磁通量。

(2)公式:Φ=BS。

(3)单位:Wb。

(4)公式的适用条件①匀强磁场。

②磁感线的方向与平面垂直,即B⊥S。

(5)磁通量的意义磁通量可以理解为穿过某一面积的磁感线的条数。

2.电磁感应现象(1)电磁感应现象当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生的现象。

(2)产生感应电流的条件①条件:穿过闭合导体回路的磁通量发生变化。

②特例:闭合导体回路的一部分导体在磁场内做切割磁感线运动。

(3)产生电磁感应现象的实质电磁感应现象的实质是产生感应电动势,如果导体回路闭合,那么产生感应电流;如果导体回路不闭合,那么只有感应电动势,而无感应电流。

1.(2019山东模拟)如图所示,匝数为N、半径为r1的圆形线圈内有匀强磁场,匀强磁场在半径为r2的同心圆形区域内,且r2<r1,匀强磁场的磁感应强度B垂直于线圈平面。

通过该线圈的磁通量为( )。

r12r22r12r22A.BπB.BπC.NBπD.NBπB2.()如图所示,闭合线圈abcd水平放置,其面积为S,匝数为n,线圈与匀强磁场B的夹角θ=45°。

现将线圈以ab 边为轴沿顺时针方向转动90°,则在此过程中线圈磁通量的改变量大小为( )。

A.0B.BS2C.nBSD.无法计算2B3.()如图所示的匀强磁场中有一个矩形闭合导线框,在下列四种情况中,线框中会产生感应电流的是( )。

A.线框平面始终与磁感线平行,线框在磁场中左右运动B.线框平面始终与磁感线平行,线框在磁场中上下运动C.线框绕位于线框平面内且与磁感线垂直的轴线AB转动D.线框绕位于线框平面内且与磁感线平行的轴线CD转动C 3.感应电流的方向(1)楞次定律①内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

2020年高考物理专题10 电磁感应

2020年高考物理专题10  电磁感应

重点1 电磁感应现象楞次定律【要点解读】1.磁通量变化的常见情况弹性线圈在向外拉的过程中(1)楞次定律中“阻碍”的含义(2)判断感应电流方向的两种方法方法一用楞次定律判断方法二用右手定则判断该方法适用于切割磁感线产生的感应电流。

判断时注意掌心、拇指、四指的方向:①掌心——磁感线垂直穿入;②拇指——指向导体运动的方向;③四指——指向感应电流的方向。

4.楞次定律、左手定则、右手定则、安培定则的综合应用(1)“三个定则一个定律”的比较①因电而生磁(I→B)→安培定则;②因动而生电(v、B→I安)→右手定则;③因电而受力(I、B→F安)→左手定则;④因磁而生电(Φ、B→I安)→楞次定律。

(3)相互联系①应用楞次定律,一般要用到安培定则。

②研究感应电流受到的安培力,一般先用右手定则确定电流方向,再用左手定则确定安培力的方向,有时也可以直接应用楞次定律的推论确定。

5.利用“因果关系法”分析电磁感应现象(物理思想)(1)方法概述因果关系分析法是指在解题过程中依据事物之间的前后相连,先行后续的因果关系去分析,推断事物的原因或结果的一种思维方法。

(2)利用因果关系分析法进行主观性推断的两种情形①据因推果:根据某种原因,预见它可能产生的结果。

②执果索因:根据某种结果,探究产生或导致这种结果的原因。

(3)电磁感应中常见因果关系的例析①阻碍原磁通量变化——“增反减同”②阻碍相对运动——“来拒去留”③)使回路面积有扩大或缩小的趋势——“增缩减扩”④阻碍原电流的变化——“增反减同”【考向1】电磁感应现象【例题】(多选)如图所示,矩形闭合线圈abcd竖直放置,OO′是它的对称轴,通电直导线AB与OO′平行。

若要在线圈中产生感应电流,可行的做法是()A.AB中电流I逐渐增大B.AB中电流I先增大后减小C.以AB为轴,线圈绕AB顺时针转90°D.线圈绕OO′轴逆时针转动90°(俯视)【审题指导】(1)AB中电流变化,能否在线圈中产生感应电流?提示:只要AB中电流变,线圈中磁通量就变,就有感应电流产生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013高考物理复习专题电磁感应教学案【重点知识整合】一、法拉第电磁感应定律法拉第电磁感应定律的内容是感应电动势的大小与穿过回路的磁通量的变化率成正比.在具体问题的分析中,针对不同形式的电磁感应过程,法拉第电磁感应定律也相应有不同的表达式或计算式.二、楞次定律与左手定则、右手定则1.左手定则与右手定则的区别:判断感应电流用右手定则,判断受力用左手定则.2.应用楞次定律的关键是区分两个磁场:引起感应电流的磁场和感应电流产生的磁场.感应电流产生的磁场总是阻碍引起感应电流的磁场的磁通量的变化,“阻碍”的结果是延缓了磁通量的变化,同时伴随着能量的转化.3.楞次定律中“阻碍”的表现形式:阻碍磁通量的变化(增反减同),阻碍相对运动(来拒去留),阻碍线圈面积变化(增缩减扩),阻碍本身电流的变化(自感现象).三、电磁感应与电路的综合电磁感应与电路的综合是高考的一个热点内容,两者的核心内容与联系主线如图4-12-1所示:1.产生电磁感应现象的电路通常是一个闭合电路,产生电动势的那一部分电路相当于电源,产生的感应电动势就是电源的电动势,在“电源”内部电流的流向是从“电源”的负极流向正极,该部分电路两端的电压即路端电压,U=RR+rE.2.在电磁感应现象中,电路产生的电功率等于内外电路消耗的功率之和.若为纯电阻电路,则产生的电能将全部转化为内能;若为非纯电阻电路,则产生的电能除了一部分转化为内能,还有一部分能量转化为其他能,但整个过程能量守恒.能量转化与守恒往往是电磁感应与电路问题的命题主线,抓住这条主线也就是抓住了解题的关键.在闭合电路的部分导体切割磁感线产生感应电流的问题中,机械能转化为电能,导体棒克服安培力做的功等于电路中产生的电能.说明:求解部分导体切割磁感线产生的感应电动势时,要区别平均电动势和瞬时电动势,切割磁感线的等效长度等于导线两端点的连线在运动方向上的投影.【高频考点突破】考点一电磁感应中的图象问题电磁感应中常涉及磁感应强度B、磁通量Φ、感应电动势E、感应电流I、安培力F安或外力F外随时间t变化的图象,即B-t图、Φ-t图、E-t图、I-t图、F-t图.对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E和感应电流I随位移s 变化的图象,即E-s图、I-s图等.图象问题大体上可分为两类:1.由给定的电磁感应过程选出或画出正确图象,此类问题要注意以下几点:(1)定性或定量地表示出所研究问题的函数关系;(2)在图象中E、I、B等物理量的方向通过正负值来反映;(3)画图象时要注意横、纵坐标的单位长度定义或表达.2.由给定的有关图象分析电磁感应过程,求解相应的物理量.不管是何种类型,电磁感应中的图象问题常需利用右手定则、左手定则、楞次定律和法拉第电磁感应定律等规律进行分析解决.例1.如图所示,一有界区域内,存在着磁感应强度大小均为B ,方向分别垂直于光滑水平桌面向下和向上的匀强磁场,磁 场宽度均为L .边长为L 的正方形线框 abcd 的bc 边紧靠磁场边缘置于桌面上.使线框从静止开始沿x 轴正方向匀加速通过磁场区域,若以逆时针方向为电流的正方向,能反映线框中感应电流变化规律的是( )【解析】线框做匀加速直线运动,则有v =at ,v =2as ;由欧姆定律可得电流I =BLv R=BLat R =BL 2asR,即感应电流大小与时间成正比,与位移的平方根成正比,故A 、C 两项正确,B 、D两项错误.【答案】AC【变式探究】如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计,匀强磁场与导轨平面垂直.阻值为R的导体棒垂直于导轨静止放置,且与导轨接触良好.t=0时,将开关S由1掷到2.q、i、v和a分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度.下列图象正确的是( )考点二电磁感应中的动力学问题1.动力学问题的研究对象2.解决电磁感应中动力学问题的具体思路电源―→电路―→受力情况―→功、能问题具体步骤为:(1)明确哪一部分电路产生感应电动势,则这部分电路就是等效电源;(2)正确分析电路的结构,画出等效电路图;(3)分析所研究的导体受力情况;(4)列出动力学方程或平衡方程并求解.例2、如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上,导轨上端连接一个定值电阻R.导体棒a和b放在导轨上,与导轨垂直并良好接触.斜面上水平虚线PQ以下区域内,存在着垂直穿过斜面向上的匀强磁场.现对a棒施以平行导轨斜向上的拉力F,使它沿导轨匀速向上运动,此时放在导轨下端的b棒恰好静止.当a棒运动到磁场的上边界PQ 处时,撤去拉力,a棒将继续沿导轨向上运动一小段距离后再向下滑动,此时b棒已滑离导轨.当a棒再次滑回到磁场上边界PQ处时,又恰能沿导轨匀速向下运动.已知a棒、b棒和定值电阻的阻值均为R,b棒的质量为m,重力加速度为g,导轨电阻不计.求:(1)a棒在磁场中沿导轨向上运动的过程中,a棒中的电流强度I a与定值电阻R中的电流强度I R之比;(2)a棒质量m a;(3)a棒在磁场中沿导轨向上运动时所受的拉力F.【变式探究】如图所示,两足够长的光滑金属导轨竖直放置,相距为L,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I.整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻.求:(1)磁感应强度B 的大小;(2)电流稳定后,导体棒运动速度v 的大小; (3)流经电流表电流的最大值I m .解析:(1)电流稳定后,导体棒做匀速运动, 则有BIL =mg ① 解得B =mg IL.②(2)感应电动势E =BLv ③ 感应电流I =E R④由②③④式解得v =I 2Rmg.(3)由题意知,导体棒刚进入磁场时的速度最大,设为v m 由机械能守恒定律得12mv 2m =mgh感应电动势的最大值E m =BLv m , 感应电流的最大值I m =E m R联立以上各式解得I m =mg 2ghIR. 答案:(1)mg IL (2)I 2R mg (3)mg 2ghIR考点三 电磁感应中的电路、 能量转化问题 1.电路问题(1)将切割磁感线导体或磁通量发生变化的回路作为电源,确定感应电动势和内阻. (2)画出等效电路.(3)运用闭合电路欧姆定律,串、并联电路特点,电功率公式,焦耳定律公式等求解.2.能量转化问题(1)安培力的功是电能和其他形式的能之间相互转化的“桥梁”,用框图表示如下:(2)明确功能关系,确定有哪些形式的能量发生了转化.如有摩擦力做功,必有内能产生;有重力做功,重力势能必然发生变化;安培力做负功,必然有其他形式的能转化为电能.(3)根据不同物理情景选择动能定理,能量守恒定律,功能关系,列方程求解问题. 例3、如图所示,宽度L =0.5 m 的光滑金 属框架MNPQ 固定于水平面内,并处在磁感应强度大小B =0.4 T,方向竖直向下的匀强磁场中,框架的电阻非均匀分布.将质量m =0.1 kg,电阻可忽略的金属棒ab 放置在框架上,并与框架接触良好.以P 为坐标原点,PQ 方向为x 轴正方向建立坐标系.金属棒从x 0=1 m 处以v 0=2 m/s 的初速度,沿x 轴负方向做a =2 m/s 2的匀减速直线运动,运动中金属棒仅受安培力作用.求:(1)金属棒ab 运动0.5 m ,框架产生的焦耳热Q ;(2)框架中aNPb 部分的电阻R 随金属棒ab 的位置x 变化的函数关系;(3)为求金属棒ab 沿x 轴负方向运动0.4 s 过程中通过ab 的电量q ,某同学解法为:先算出经过0.4 s 金属棒的运动距离s ,以及0.4 s 时回路内的电阻R ,然后代入q =ΔΦR=BLsR求解.指出该同学解法的错误之处,并用正确的方法解出结果.【答案】(1)0.1 J(2)R=0.4x(3)见规范解答【变式探究】电阻可忽略的光滑平行金属导轨长S=1.15 m,两导轨间距L=0.75 m,导轨倾角为30°,导轨上端ab接一阻值R=1.5 Ω的电阻,磁感应强度B=0.8 T的匀强磁场垂直轨道平面向上.阻值r=0.5 Ω,质量m=0.2 kg的金属棒与轨道垂直且接触良好,从轨道上端ab处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热Q1=0.1 J.(取g=10 m/s2)求:(1)金属棒在此过程中克服安培力的功W安;(2)金属棒下滑速度v=2 m/s时的加速度a;(3)为求金属棒下滑的最大速度v m,有同学解答如下:由动能定理,W重-W安=1 2mv2m,…….由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答.解析:(1)下滑过程中安培力的功即为在电阻上产生的焦耳热,由于R =3r ,因此Q R =3Q r =0.3 J∴W 安=Q =Q R +Q r =0.4 J(2)金属棒下滑时受重力和安培力F 安=BIL =B 2L 2R +r v由牛顿第二定律mg sin 30°-B 2L 2R +r v =ma∴a =g sin 30°-B 2L 2m R +rv=10×12-0.82×0.752×2+m/s 2=3.2 m/s 2(3)此解法正确.金属棒下滑时受重力和安培力作用,其运动满足mg sin 30°-B 2L 2R +rv =ma上式表明,加速度随速度增加而减小,棒做加速度减小的加速运动.无论最终是否达到匀速,当棒到达斜面底端时速度一定为最大.由动能定理可以得到棒的末速度,因此上述解法正确.mgS sin 30°-Q =12mv 2m∴v m =2gS sin 30°-2Qm=2×10×1.15×12-2×0.40.2m/s =2.74 m/s.答案:(1)0.4 J (2)3.2 m/s 2(3)见解析【难点探究】难点一 电磁感应的图象问题在电磁感应问题中出现的图象主要有B -t 图象、Φ-t 图象、E -t 图象和I -t 图象,有时还可能出现感应电动势E或感应电流I随线圈位移x变化的图象,即E-x图象或I-x 图象.(1)对切割类电磁感应图象问题,关键是根据E=BLv来判断感应电动势的大小,根据右手定则判断感应电流的方向并按规定的正方向将其落实到图象中.(2)电磁感应图象问题的特点是考查方式灵活:根据电磁感应现象发生的过程,确定给定的图象是否正确,或画出正确的图象;由题目给定的图象分析电磁感应过程,综合求解相应的物理量.(3)电磁感应图象问题可综合法拉第电磁感应定律、楞次定律和安培定则、右手定则及左手定则,结合电路知识和力学知识求解.(4)电磁感应图象问题的解题方法技巧:根据初始条件,确定给定的物理量的正负或方向的对应关系和变化范围,确定所研究的物理量的函数表达式以及进出磁场的转折点等,这是解题的关键.例1 如图4-12-2所示,平行导轨间有一矩形的匀强磁场区域,细金属棒PQ沿导轨从MN处匀速运动到M′N′的过程中,棒上感应电动势E随时间t变化的图示,可能正确的是( )【点评】电磁感应的图象问题在广东高考中出现的形式一般是选择正确的感应电流的图线或感应电动势的图线.要求理解图线的意义,能够根据导线或线圈的运动情况找出感应电动势或感应电流的变化规律,根据变化规律画出感应电动势或感应电流随时间变化的图象.【变式探究】在图4-12-5所示的四个情景中,虚线上方空间都存在方向垂直纸面向里的匀强磁场.A 、B 中的导线框为正方形,C 、D 中的导线框为直角扇形.各导线框均绕轴O 在纸面内匀速转动,转动方向如箭头所示,转动周期均为T .从线框处于图示位置时开始计时,以在OP 边上从P 点指向O 点的方向为感应电流i 的正方向,则在图4-12-15所示的四个情景中,产生的感应电流i 随时间t 的变化规律如图4-12-4所示的是( )【答案】C【解析】 由电流的图象可知,导体切割磁感线有电流时,电流是恒定的,这就排除了A 、B 两种情况,因A 、B 两种情况中电流是变化的;再根据右手定则,在T 4到T 2内产生的感应电流的方向由P 指向O 的只有C 这种情况.难点二 电磁感应与电路的综合问题1.解答电磁感应与电路的综合问题时,关键在于准确分析电路的结构,能正确画出等效电路图,并综合运用电学知识进行分析、求解.2.求解过程中首先要注意电源的确定,通常将切割磁感线的导体或磁通量发生变化的回路作为等效电源;其次是要能正确区分内、外电路,应把产生感应电动势的那部分电路视为内电路,感应电动势为电源电动势,其余部分相当于外电路;最后应用闭合电路欧姆定律及串并联电路的基本规律求解,处理问题的方法与闭合电路问题的求解基本一致.例2、法拉第曾提出一种利用河流发电的设想,并进行了实验研究.实验装置的示意图可用图4-12-6表示,两块面积均为S 的矩形金属板平行、正对、竖直地全部浸在河水中,间距为d .水流速度处处相同,大小为v ,方向水平.金属板与水流方向平行.地磁场磁感应强度的竖直分量为B ,水的电阻率为ρ,水面上方有一阻值为R 的电阻通过绝缘导线和开关K 连接到两金属板上.忽略边缘效应,求:(1)该发电装置产生的电动势;(2)通过电阻R 的电流;(3)电阻R 消耗的电功率.【答案】 (1)Bdv (2)Bdv ρd +RS (3)⎝ ⎛⎭⎪⎫BdvS ρd +RS 2R 【解析】 (1)由法拉第电磁感应定律,有E =Bdv(2)两板间河水的电阻 r =ρd S由闭合电路欧姆定律,有 I =E r +R =BdvS ρd +RS(3)由电功率公式,P =I 2R得P =⎝ ⎛⎭⎪⎫BdvS ρd +RS 2R 难点三 涉及电磁感应的力电综合题以电磁感应现象为核心,综合应用牛顿运动定律、动能定理、能量守恒定律及电路等知识形成的力电综合问题,经常以导体棒切割磁感线运动或穿过线圈的磁通量发生变化等物理情景为载体命题.(1)受力与运动分析导体棒运动切割磁感线产生感应电动势,而感应电流在磁场中受安培力的作用,安培力将阻碍导体棒的运动.导体棒运动过程受到的安培力一般是变力,引起导体棒切割磁感线运动的加速度发生变化.当加速度变为零时,运动达到稳定状态,最终导体棒做匀速直线运动,利用平衡条件可求导体棒稳定状态的速度.(2)解题思路①利用法拉第电磁感应定律和楞次定律或右手定则确定感应电动势的大小和方向;②应用闭合电路欧姆定律求电路中的感应电流的大小;③分析所研究的导体的受力情况,关注安培力的方向;④应用运动学规律、牛顿第二定律、动能定理、平衡条件等列方程求解.例3 、如图4-12-7所示,间距l=0.3 m的平行金属导轨a1b1c1和a2b2c2分别固定在两个竖直面内.在水平面a1b1b2a2区域内和倾角θ=37°的斜面c1b1b2c2区域内分别有磁感应强度B1=0.4 T、方向竖直向上和B2=1 T、方向垂直于斜面向上的匀强磁场.电阻R=0.3 Ω、质量m1=0.1 kg、长为l的相同导体杆K、S、Q分别放置在导轨上,S杆的两端固定在b1、b2点,K、Q杆可沿导轨无摩擦滑动且始终接触良好.一端系于K杆中点的轻绳平行于导轨绕过轻质定滑轮自然下垂,绳上穿有质量m2=0.05 kg的小环.已知小环以a=6 m/s2的加速度沿绳下滑,K杆保持静止,Q杆在垂直于杆且沿斜面向下的拉力F作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长.取g=10 m/s2,sin37°=0.6,cos37°=0.8.求:(1)小环所受摩擦力的大小;(2)Q杆所受拉力的瞬时功率.【点评】电磁感应过程实质是电能与其他形式的能之间相互转化的过程,安培力做功的过程是电能转化为其他形式的能的过程,“外力”克服安培力做功,则是其他形式的能转化为电能的过程.一般解题思路是:(1)若安培力为恒力,由于电磁感应中产生的电能等于克服安培力所做的功,可先求克服安培力做的功;(2)若安培力为变力,应从能量守恒角度解题,即系统初态总机械能等于系统末态总机械能与产生的电能之和;(3)利用电路中所产生的电能计算.【变式探究】如图4-12-8甲所示,在水平面上固定有长为L=2 m、宽为d=1 m的金属“U”形导轨,在“U”形导轨右侧l=0.5 m范围内存在垂直纸面向里的匀强磁场,且磁感应强度随时间变化规律如图乙所示.在t=0时刻,质量为m=0.1 kg的导体棒以v0=1 m/s的初速度从导轨的左端开始向右运动,导体棒与导轨之间的动摩擦因数为μ=0.1,导轨与导体棒单位长度的电阻均为λ=0.1 Ω/m,不计导体棒与导轨之间的接触电阻及地球磁场的影响(取g=10 m/s2).(1)通过计算分析4 s 内导体棒的运动情况;(2)计算4 s 内回路中电流的大小,并判断电流方向;(3)计算4 s 内回路产生的焦耳热.【答案】(1)略 (2)0.2 A 顺时针(3)0.04 J【解析】 (1)导体棒先在无磁场区域做匀减速运动,有-μmg =ma v t =v 0+at x =v 0t +12at 2 导体棒速度减为零时,v t =0代入数据解得:t =1 s ,x =0.5 m ,因x <L -l ,故导体棒没有进入磁场区域.导体棒在1 s 末已停止运动,以后一直保持静止,离左端位置仍为x =0.5 m(2)前2 s 磁通量不变,回路电动势和电流分别为E =0,I =0后2 s 回路产生的电动势为E =ΔΦΔt =ld ΔB Δt=0.1 V 回路的总长度为5 m ,因此回路的总电阻为R =5λ=0.5 Ω 电流为I =E R=0.2 A 根据楞次定律,在回路中的电流方向是顺时针方向.(3)前2 s 电流为零,后2 s 有恒定电流,回路产生的焦耳热为Q =I 2Rt =0.04 J.【历届高考真题】【2012高考】1.(2012·海南)如图,一质量为m 的条形磁铁用细线悬挂在天花板上,细线从一水平金属环中穿过。

相关文档
最新文档