专题20 圆锥曲线综合-2018年高三文科数学全国1卷高考相似模拟题分类汇编解析版
2018年各地高考真题分类汇编-圆锥曲线---学生版
圆锥曲线1.(2018年全国一·文科4)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为 A .13 B .12 CD2.(2018年全国二·文科6)双曲线,则其渐近线方程为 A .B .C .D .3.(2018年全国二·文科11)已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A .B .CD4.(2018年全国三·文科10)已知双曲线,则点到的渐近线的距离为AB .CD .5.(2018年北京·文科10)已知直线l 过点(1,0)且垂直于 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.6.(2018年北京·文科12)若双曲线2221(0)4x y a a -=>的离心率为2,则a =_________. 7.(2018年天津·文科7)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d +=则双曲线的方程为(A )22139x y -= (B )22193x y -= (C )221412x y -=(D )221124x y -= 22221(0,0)x y a b a b-=>>y =y =2y x =±y =1F 2F C P C 12PF PF ⊥2160PF F ∠=︒C 1-2-122221(00)x y C a b a b-=>>:,(4,0)C 28.(2018年江苏8)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近线,则其离心率的值是 . 9.(2018年浙江2)双曲线221 3=x y -的焦点坐标是 A .(,0),0)B .(−2,0),(2,0)C .(0,,(0D .(0,−2),(0,2) 10.(2018年浙江17)已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP =2PB ,则当m =___________时,点B 横坐标的绝对值最大.11.(2018年上海2)双曲线2214x y -=的渐近线方程为 。
2018-2019年全国各地高考真题分类汇编-圆锥曲线---学生版
圆锥曲线1.(2018年全国一·文科4)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为 A .13B .12CD2.(2018年全国二·文科6)双曲线,则其渐近线方程为A .B .C .D . 3.(2018年全国二·文科11)已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A .B .CD4.(2018年全国三·文科10)已知双曲线,则点到的渐近线的距离为AB .C .D .5.(2018年北京·文科10)已知直线l 过点(1,0)且垂直于 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.6.(2018年北京·文科12)若双曲线2221(0)4x y a a -=>a =_________.7.(2018年天津·文科7)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d +=则双曲线的方程为(A )22139x y -=(B )22193x y -= 22221(0,0)x y a b a b -=>>y =y =y =y x =1F 2F C P C 12PF PF ⊥2160PF F ∠=︒C 1-2122221(00)x y C a b a b-=>>:,(4,0)C 22(C )221412x y -=(D )221124x y -= 8.(2018年江苏8)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐,则其离心率的值是 . 9.(2018年浙江2)双曲线221 3=x y -的焦点坐标是A .(0),,0)B .(−2,0),(2,0)C .(0,),(0)D .(0,−2),(0,2)10.(2018年浙江17)已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP =2PB ,则当m =___________时,点B 横坐标的绝对值最大.11.(2018年上海2)双曲线2214x y -=的渐近线方程为 。
2018圆锥曲线高考题全国卷真题汇总
20182010圆锥曲线高考题全国卷真题汇总(word版可编辑修改)
20182010圆锥曲线高考题全国卷真题汇总(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(20182010圆锥曲线高考题全国卷真题汇总(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为20182010圆锥曲线高考题全国卷真题汇总(word版可编辑修改)的全部内容。
,
A
点为
>0
两点,若,则圆。
(完整版)2018年高考文科数学(全国I卷)试题及答案,推荐文档
2an n
,即 bn1
2bn
,又 b1
1 ,所以 {bn} 是首项为 1 ,公比为
2
的等比数列.
(3)由(2)可得
an n
2n1 ,所以 an
n 2n1 .
18.解:
(1)由已知可得, BAC 90 , BA AC .
又 BA AD ,所以 AB 平面 ACD .
又 AB 平面 ABC ,
文科数学试题 第 3 页(共 10 页)
19.(12 分)
某家庭记录了未使用节水龙头 50 天的日用水量数据(单位: m3 )和使用了节水龙头 50 天的日用水量数据, 得到频数分布表如下:
未使用节水龙头 50 天的日用水量频数分布表
日用水量 [0,0.1) [0.1,0.2 [0.2,0.3 [0.3,0.4 [0.4,0.5 [0.5,0.6 [0.6,0.7
2
2
(2)当 l 与 x 轴垂直时,AB 为 MN 的垂直平分线,所以 ABM ABN .
当 l 与 x 轴不垂直时,设 l 的方程为 y k(x 2) (k 0) , M (x1, y1) , N (x2 , y2 ) ,则 x1 0, x2 0 .
由
y k(x
y
2
2x
2),
得
ky 2
则 | a b |
1 A.
5
5 B.
5
25 C.
5
D. 1
12.设函数
f
(x)
2x ,
1,
x ≤ 0, 则满足 f (x 1) f (2x) 的 x 的取值范围是 x 0,
A. (, 1]
B. (0,)
C. (1, 0)
2018年各地高考真题分类汇编-圆锥曲线---学生版
圆锥曲线1.(2018年全国一·文科4)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为 A .13 B .12 CD2.(2018年全国二·文科6)双曲线A .B .C .D . 3.(2018年全国二·文科11)已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A .B .CD4.(2018年全国三·文科10)已知双曲线,则点到的渐近线的距离为AB .C .D .5.(2018年北京·文科10)已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.6.(2018年北京·文科12)若双曲线2221(0)4x y a a -=>的离心率为2,则a =_________. 7.(2018年天津·文科7)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d +=则双曲线的方程为(A )22139x y -= (B )22193x y -= 22221(0,0)x y a b a b-=>>y =y =y =y =1F 2F C P C 12PF PF ⊥2160PF F ∠=︒C 12122221(00)x y C a b a b-=>>:,(4,0)C 22(C )221412x y -= (D )221124x y -= 8.(2018年江苏8)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐,则其离心率的值是 . 9.(2018年浙江2)双曲线221 3=x y -的焦点坐标是A .,0),0)B .(−2,0),(2,0)C .(0,),(0D .(0,−2),(0,2) 10.(2018年浙江17)已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP u u u u r =2PB u u u u r ,则当m =___________时,点B 横坐标的绝对值最大.11.(2018年上海2)双曲线2214x y -=的渐近线方程为 。
圆锥曲线、导数2018年全国高考数学分类真题(含答案)(精编文档).doc
【最新整理,下载后即可编辑】圆锥曲线、导数2018年全国高考数学分类真题(含答案)一.选择题(共7小题)1.双曲线﹣y 2=1的焦点坐标是( ) A .(﹣,0),(,0) B .(﹣2,0),(2,0) C .(0,﹣),(0,) D .(0,﹣2),(0,2)2.已知双曲线=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A .﹣=1B .﹣=1C .﹣=1D .﹣=1 3.设F 1,F 2是双曲线C :﹣=1(a >0.b >0)的左,右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P ,若|PF 1|=|OP|,则C 的离心率为( )A .B .2C .D .4.已知F 1,F 2是椭圆C :=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P=120°,则C 的离心率为( )A .B .C .D .5.双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN 为直角三角形,则|MN|=()A.B.3 C.2D.47.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x二.填空题(共6小题)8.在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为.9.已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为.10.已知点P (0,1),椭圆+y 2=m (m >1)上两点A ,B 满足=2,则当m= 时,点B 横坐标的绝对值最大.11.已知点M (﹣1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB=90°,则k= .12.曲线y=(ax+1)e x 在点(0,1)处的切线的斜率为﹣2,则a= .13.曲线y=2ln (x+1)在点(0,0)处的切线方程为 .三.解答题(共13小题)14.设函数f (x )=[ax 2﹣(4a+1)x+4a+3]e x .(Ⅰ)若曲线y=f (x )在点(1,f (1))处的切线与x 轴平行,求a ;(Ⅱ)若f (x )在x=2处取得极小值,求a 的取值范围.15.如图,在平面直角坐标系xOy 中,椭圆C 过点(),焦点F 1(﹣,0),F 2(,0),圆O 的直径为F 1F 2. (1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若△OAB 的面积为,求直线l 的方程.16.如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(Ⅰ)设AB中点为M,证明:PM垂直于y轴;(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.17.设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A的坐标为(b,0),且|FB|•|AB|=6.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若=sin∠AOQ(O为原点),求k 的值.18.已知斜率为k 的直线l 与椭圆C :+=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <﹣;(2)设F 为C 的右焦点,P 为C 上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差.19.设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB|=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.20.设椭圆C :+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:∠OMA=∠OMB .21.记f′(x ),g′(x )分别为函数f (x ),g (x )的导函数.若存在x 0∈R ,满足f (x 0)=g (x 0)且f′(x 0)=g′(x 0),则称x 0为函数f (x )与g (x )的一个“S 点”.(1)证明:函数f (x )=x 与g (x )=x 2+2x ﹣2不存在“S 点”;(2)若函数f (x )=ax 2﹣1与g (x )=lnx 存在“S 点”,求实数a 的值;(3)已知函数f (x )=﹣x 2+a ,g (x )=.对任意a >0,判断是否存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”,并说明理由.22.已知函数f (x )=﹣lnx .(Ⅰ)若f (x )在x=x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8﹣8ln2;(Ⅱ)若a ≤3﹣4ln2,证明:对于任意k >0,直线y=kx+a 与曲线y=f (x )有唯一公共点.23.已知函数f (x )=a x ,g (x )=log a x ,其中a >1.(Ⅰ)求函数h (x )=f (x )﹣xlna 的单调区间;(Ⅱ)若曲线y=f (x )在点(x 1,f (x 1))处的切线与曲线y=g (x )在点(x 2,g (x 2))处的切线平行,证明x 1+g (x 2)=; (Ⅲ)证明当a ≥e 时,存在直线l ,使l 是曲线y=f (x )的切线,也是曲线y=g (x )的切线.24.已知函数f (x )=(2+x+ax 2)ln (1+x )﹣2x .(1)若a=0,证明:当﹣1<x <0时,f (x )<0;当x >0时,f (x )>0;(2)若x=0是f (x )的极大值点,求a .25.已知函数f (x )=e x ﹣ax 2.(1)若a=1,证明:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)只有一个零点,求a .26.已知函数f (x )=﹣x+alnx .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:<a ﹣2.圆锥曲线、导数2018年全国高考数学分类真题(含答案)参考答案与试题解析一.选择题(共7小题)1.双曲线﹣y2=1的焦点坐标是()A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2)【解答】解:∵双曲线方程可得双曲线的焦点在x轴上,且a2=3,b2=1,由此可得c==2,∴该双曲线的焦点坐标为(±2,0)故选:B.2.已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 【解答】解:由题意可得图象如图,CD是双曲线的一条渐近线y=,即bx ﹣ay=0,F (c ,0),AC ⊥CD ,BD ⊥CD ,FE ⊥CD ,ACDB 是梯形,F 是AB 的中点,EF==3, EF==b ,所以b=3,双曲线=1(a >0,b >0)的离心率为2,可得, 可得:,解得a=. 则双曲线的方程为:﹣=1. 故选:C .3.设F 1,F 2是双曲线C :﹣=1(a >0.b >0)的左,右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P ,若|PF 1|=|OP|,则C 的离心率为( )A .B .2C .D .【解答】解:双曲线C :﹣=1(a >0.b >0)的一条渐近线方程为y=x ,∴点F 2到渐近线的距离d==b ,即|PF 2|=b , ∴|OP|===a ,cos ∠PF 2O=,∵|PF 1|=|OP|,∴|PF 1|=a , 在三角形F 1PF 2中,由余弦定理可得|PF 1|2=|PF 2|2+|F 1F 2|2﹣2|PF 2|•|F 1F 2|COS ∠PF 2O ,∴6a 2=b 2+4c 2﹣2×b ×2c ×=4c 2﹣3b 2=4c 2﹣3(c 2﹣a 2), 即3a 2=c 2, 即a=c ,∴e==,故选:C .4.已知F 1,F 2是椭圆C :=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P=120°,则C 的离心率为( )A .B .C .D .【解答】解:由题意可知:A (﹣a ,0),F 1(﹣c ,0),F 2(c ,0),直线AP 的方程为:y=(x+a ),由∠F 1F 2P=120°,|PF 2|=|F 1F 2|=2c ,则P (2c ,c ),代入直线AP :c=(2c+a ),整理得:a=4c ,∴题意的离心率e==. 故选:D .5.双曲线=1(a >0,b >0)的离心率为,则其渐近线方程为( ) A .y=±x B .y=±x C .y=±x D .y=±x【解答】解:∵双曲线的离心率为e==,则=====,即双曲线的渐近线方程为y=±x=±x ,故选:A .6.已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN 为直角三角形,则|MN|=()A.B.3 C.2D.4【解答】解:双曲线C:﹣y2=1的渐近线方程为:y=,渐近线的夹角为:60°,不妨设过F(2,0)的直线为:y=,则:解得M(,),解得:N(),则|MN|==3.故选:B.7.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.二.填空题(共6小题)8.在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为 2 .【解答】解:双曲线=1(a>0,b>0)的右焦点F(c,0)到一条渐近线y=x的距离为c,可得:=b=,可得,即c=2a,所以双曲线的离心率为:e=.故答案为:2.9.已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为 2 .【解答】解:椭圆M :+=1(a >b >0),双曲线N :﹣=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,可得椭圆的焦点坐标(c ,0),正六边形的一个顶点(,),可得:,可得,可得e 4﹣8e 2+4=0,e ∈(0,1), 解得e=.同时,双曲线的渐近线的斜率为,即,可得:,即,可得双曲线的离心率为e==2.故答案为:;2.10.已知点P (0,1),椭圆+y 2=m (m >1)上两点A ,B 满足=2,则当m= 5 时,点B 横坐标的绝对值最大. 【解答】解:设A (x 1,y 1),B (x 2,y 2), 由P (0,1),=2,可得﹣x 1=2x 2,1﹣y 1=2(y 2﹣1), 即有x 1=﹣2x 2,y 1+2y 2=3, 又x 12+4y 12=4m ,即为x 22+y 12=m ,① x 22+4y 22=4m ,②①﹣②得(y 1﹣2y 2)(y 1+2y 2)=﹣3m , 可得y 1﹣2y 2=﹣m , 解得y 1=,y 2=,则m=x 22+()2, 即有x 22=m ﹣()2==,即有m=5时,x 22有最大值16, 即点B 横坐标的绝对值最大. 故答案为:5.11.已知点M (﹣1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB=90°,则k= 2 .【解答】解:∵抛物线C :y 2=4x 的焦点F (1,0), ∴过A ,B 两点的直线方程为y=k (x ﹣1), 联立可得,k 2x 2﹣2(2+k 2)x+k 2=0,设A (x 1,y 1),B (x 2,y 2), 则 x 1+x 2=,x 1x 2=1,∴y 1+y 2=k (x 1+x 2﹣2)=,y 1y 2=k 2(x 1﹣1)(x 2﹣1)=k 2[x 1x 2﹣(x 1+x 2)+1]=﹣4, ∵M (﹣1,1),∴=(x 1+1,y 1﹣1),=(x 2+1,y 2﹣1), ∵∠AMB=90°=0,∴•=0∴(x 1+1)(x 2+1)+(y 1﹣1)(y 2﹣1)=0, 整理可得,x 1x 2+(x 1+x 2)+y 1y 2﹣(y 1+y 2)+2=0, ∴1+2+﹣4﹣+2=0,即k 2﹣4k+4=0, ∴k=2. 故答案为:212.曲线y=(ax+1)e x 在点(0,1)处的切线的斜率为﹣2,则a= ﹣3 .【解答】解:曲线y=(ax+1)e x ,可得y′=ae x +(ax+1)e x , 曲线y=(ax+1)e x 在点(0,1)处的切线的斜率为﹣2, 可得:a+1=﹣2,解得a=﹣3. 故答案为:﹣3.13.曲线y=2ln (x+1)在点(0,0)处的切线方程为 y=2x . 【解答】解:∵y=2ln (x+1), ∴y′=,当x=0时,y′=2,∴曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.故答案为:y=2x.三.解答题(共13小题)14.设函数f(x)=[ax2﹣(4a+1)x+4a+3]e x.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;(Ⅱ)若f(x)在x=2处取得极小值,求a的取值范围.【解答】解:(Ⅰ)函数f(x)=[ax2﹣(4a+1)x+4a+3]e x的导数为f′(x)=[ax2﹣(2a+1)x+2]e x.由题意可得曲线y=f(x)在点(1,f(1))处的切线斜率为0,可得(a﹣2a﹣1+2)e=0,解得a=1;(Ⅱ)f(x)的导数为f′(x)=[ax2﹣(2a+1)x+2]e x=(x﹣2)(ax﹣1)e x,若a=0则x<2时,f′(x)>0,f(x)递增;x>2,f′(x)<0,f(x)递减.x=2处f(x)取得极大值,不符题意;若a>0,且a=,则f′(x)=(x﹣2)2e x≥0,f(x)递增,无极值;若a >,则<2,f (x )在(,2)递减;在(2,+∞),(﹣∞,)递增,可得f (x )在x=2处取得极小值;若0<a <,则>2,f (x )在(2,)递减;在(,+∞),(﹣∞,2)递增,可得f (x )在x=2处取得极大值,不符题意;若a <0,则<2,f (x )在(,2)递增;在(2,+∞),(﹣∞,)递减,可得f (x )在x=2处取得极大值,不符题意. 综上可得,a 的范围是(,+∞).15.如图,在平面直角坐标系xOy 中,椭圆C 过点(),焦点F 1(﹣,0),F 2(,0),圆O 的直径为F 1F 2.(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若△OAB 的面积为,求直线l 的方程.【解答】解:(1)由题意可设椭圆方程为,∵焦点F 1(﹣,0),F 2(,0),∴.∵∴,又a 2+b 2=c 2=3,解得a=2,b=1. ∴椭圆C 的方程为:,圆O 的方程为:x 2+y 2=3.(2)①可知直线l 与圆O 相切,也与椭圆C ,且切点在第一象限,∴可设直线l 的方程为y=kx+m ,(k <0,m >0). 由圆心(0,0)到直线l 的距离等于圆半径,可得.由,可得(4k 2+1)x 2+8kmx+4m 2﹣4=0,△=(8km )2﹣4(4k 2+1)(4m 2﹣4)=0,可得m 2=4k 2+1,∴3k 2+3=4k 2+1,结合k <0,m >0,解得k=﹣,m=3.将k=﹣,m=3代入可得,解得x=,y=1,故点P 的坐标为(.②设A (x 1,y 1),B (x 2,y 2), 由⇒k <﹣.联立直线与椭圆方程得(4k 2+1)x 2+8kmx+4m 2﹣4=0, |x 2﹣x 1|==,O 到直线l 的距离d=,|AB|=|x 2﹣x 1|=, △OAB的面积为S===,解得k=﹣,(正值舍去),m=3.∴y=﹣为所求.16.如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上. (Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴; (Ⅱ)若P 是半椭圆x 2+=1(x <0)上的动点,求△PAB 面积的取值范围.【解答】解:(Ⅰ)证明:可设P (m ,n ),A (,y 1),B (,y 2),AB 中点为M 的坐标为(,),抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上,可得()2=4•,()2=4•,化简可得y 1,y 2为关于y 的方程y 2﹣2ny+8m ﹣n 2=0的两根, 可得y 1+y 2=2n ,y 1y 2=8m ﹣n 2, 可得n=,则PM 垂直于y 轴; (Ⅱ)若P 是半椭圆x 2+=1(x <0)上的动点,可得m 2+=1,﹣1≤m <0,﹣2<n <2,由(Ⅰ)可得y 1+y 2=2n ,y 1y 2=8m ﹣n 2,由PM 垂直于y 轴,可得△PAB 面积为S=|PM|•|y 1﹣y 2| =(﹣m )•=[•(4n 2﹣16m+2n 2)﹣m]•=(n 2﹣4m ), 可令t===,可得m=﹣时,t 取得最大值;m=﹣1时,t 取得最小值2, 即2≤t ≤, 则S=t 3在2≤t ≤递增,可得S ∈[6,],△PAB 面积的取值范围为[6,].17.设椭圆+=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的离心率为,点A 的坐标为(b ,0),且|FB|•|AB|=6.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l :y=kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若=sin ∠AOQ (O 为原点),求k 的值.【解答】解:(Ⅰ)设椭圆+=1(a >b >0)的焦距为2c , 由椭圆的离心率为e=,∴=;又a 2=b 2+c 2, ∴2a=3b ,由|FB|=a ,|AB|=b ,且|FB|•|AB|=6;可得ab=6,从而解得a=3,b=2, ∴椭圆的方程为+=1;(Ⅱ)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2),由已知y 1>y 2>0;∴|PQ|sin ∠AOQ=y 1﹣y 2; 又|AQ|=,且∠OAB=,∴|AQ|=y ,由=sin ∠AOQ ,可得5y 1=9y 2;由方程组,消去x ,可得y 1=,∴直线AB 的方程为x+y ﹣2=0; 由方程组,消去x ,可得y 2=;由5y 1=9y 2,可得5(k+1)=3,两边平方,整理得56k 2﹣50k+11=0, 解得k=或k=; ∴k 的值为或.18.已知斜率为k 的直线l 与椭圆C :+=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <﹣;(2)设F 为C 的右焦点,P 为C 上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差. 【解答】解:(1)设A (x 1,y 1),B (x 2,y 2), ∵线段AB 的中点为M (1,m ), ∴x 1+x 2=2,y 1+y 2=2m 将A ,B 代入椭圆C :+=1中,可得,两式相减可得,3(x 1+x 2)(x 1﹣x 2)+4(y 1+y 2)(y 1﹣y 2)=0, 即6(x 1﹣x 2)+8m (y 1﹣y 2)=0, ∴k==﹣=﹣点M (1,m )在椭圆内,即,解得0<m ∴.(2)证明:设A (x 1,y 1),B (x 2,y 2),P (x 3,y 3), 可得x 1+x 2=2,∵++=,F (1,0),∴x 1﹣1+x 2﹣1+x 3﹣1=0,y 1+y 2+y 3=0, ∴x 3=1,∵m >0,可得P 在第一象限,故,m=,k=﹣1由椭圆的焦半径公式得则|FA|=a ﹣ex 1=2﹣x 1,|FB|=2﹣x 2,|FP|=2﹣x 3=. 则|FA|+|FB|=4﹣,∴|FA|+|FB|=2|FP|,联立,可得|x 1﹣x 2|=所以该数列的公差d 满足2d=|x 1﹣x 2|=,∴该数列的公差为±.19.设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB|=8. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【解答】解:(1)方法一:抛物线C :y 2=4x 的焦点为F (1,0),当直线的斜率不存在时,|AB|=4,不满足;设直线AB 的方程为:y=k (x ﹣1),设A (x 1,y 1),B (x 2,y 2), 则,整理得:k 2x 2﹣2(k 2+2)x+k 2=0,则x 1+x 2=,x 1x 2=1,由|AB|=x 1+x 2+p=+2=8,解得:k 2=1,则k=1,∴直线l 的方程y=x ﹣1;方法二:抛物线C :y 2=4x 的焦点为F (1,0),设直线AB 的倾斜角为θ,由抛物线的弦长公式|AB|===8,解得:sin 2θ=, ∴θ=,则直线的斜率k=1,∴直线l 的方程y=x ﹣1;(2)过A ,B 分别向准线x=﹣1作垂线,垂足分别为A 1,B 1,设AB 的中点为D ,过D 作DD 1⊥准线l ,垂足为D ,则|DD 1|=(|AA 1|+|BB 1|)由抛物线的定义可知:|AA 1|=|AF|,|BB 1|=|BF|,则r=|DD 1|=4,以AB 为直径的圆与x=﹣1相切,且该圆的圆心为AB 的中点D , 由(1)可知:x 1+x 2=6,y 1+y 2=x 1+x 2﹣2=4, 则D (3,2),过点A ,B 且与C 的准线相切的圆的方程(x ﹣3)2+(y ﹣2)2=16..20.设椭圆C :+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0). (1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA=∠OMB . 【解答】解:(1)c==1,∴F (1,0), ∵l 与x 轴垂直,∴x=1, 由,解得或,∴A (1.),或(1,﹣), ∴直线AM 的方程为y=﹣x+,y=x ﹣,证明:(2)当l 与x 轴重合时,∠OMA=∠OMB=0°, 当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴∠OMA=∠OMB , 当l 与x 轴不重合也不垂直时,设l 的方程为y=k (x ﹣1),k ≠0, A (x 1,y 1),B (x 2,y 2),则x 1<,x 2<,直线MA ,MB 的斜率之和为k MA ,k MB 之和为k MA +k MB =+,由y 1=kx 1﹣k ,y 2=kx 2﹣k 得k MA +k MB =,将y=k (x ﹣1)代入+y 2=1可得(2k 2+1)x 2﹣4k 2x+2k 2﹣2=0,∴x 1+x 2=,x 1x 2=,∴2kx 1x 2﹣3k (x 1+x 2)+4k=(4k 2﹣4k ﹣12k 2+8k 2+4k )=0从而k MA +k MB =0,故MA ,MB 的倾斜角互补, ∴∠OMA=∠OMB , 综上∠OMA=∠OMB .21.记f′(x ),g′(x )分别为函数f (x ),g (x )的导函数.若存在x 0∈R ,满足f (x 0)=g (x 0)且f′(x 0)=g′(x 0),则称x 0为函数f (x )与g (x )的一个“S 点”.(1)证明:函数f (x )=x 与g (x )=x 2+2x ﹣2不存在“S 点”; (2)若函数f (x )=ax 2﹣1与g (x )=lnx 存在“S 点”,求实数a 的值;(3)已知函数f (x )=﹣x 2+a ,g (x )=.对任意a >0,判断是否存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”,并说明理由.【解答】解:(1)证明:f′(x )=1,g′(x )=2x+2, 则由定义得,得方程无解,则f (x )=x 与g (x )=x 2+2x﹣2不存在“S 点”;(2)f′(x )=2ax ,g′(x )=,x >0, 由f′(x )=g′(x )得=2ax ,得x=,f ()=﹣=g ()=﹣lna2,得a=;(3)f′(x )=﹣2x ,g′(x )=,(x ≠0), 由f′(x 0)=g′(x 0),得b =﹣>0,得0<x 0<1,由f (x 0)=g (x 0),得﹣x 02+a==﹣,得a=x 02﹣,令h (x )=x 2﹣﹣a=,(a >0,0<x <1),设m (x )=﹣x 3+3x 2+ax ﹣a ,(a >0,0<x <1),则m (0)=﹣a <0,m (1)=2>0,得m (0)m (1)<0, 又m (x )的图象在(0,1)上连续不断, 则m (x )在(0,1)上有零点, 则h (x )在(0,1)上有零点,则f (x )与g (x )在区间(0,+∞)内存在“S”点.22.已知函数f (x )=﹣lnx .(Ⅰ)若f (x )在x=x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8﹣8ln2;(Ⅱ)若a ≤3﹣4ln2,证明:对于任意k >0,直线y=kx+a 与曲线y=f (x )有唯一公共点.【解答】证明:(Ⅰ)∵函数f (x )=﹣lnx , ∴x >0,f′(x )=﹣,∵f (x )在x=x 1,x 2(x 1≠x 2)处导数相等, ∴=﹣, ∵x 1≠x 2,∴+=,由基本不等式得:=≥,∵x 1≠x 2,∴x 1x 2>256,由题意得f (x 1)+f (x 2)==﹣ln (x 1x 2),设g (x )=,则,∴列表讨论:x (0,16)16 (16,+∞)g′(x ) ﹣ 0+ g (x )↓2﹣4ln2↑∴g (x )在[256,+∞)上单调递增, ∴g (x 1x 2)>g (256)=8﹣8ln2, ∴f (x 1)+f (x 2)>8﹣8ln2. (Ⅱ)令m=e ﹣(|a|+k ),n=()2+1,则f (m )﹣km ﹣a >|a|+k ﹣k ﹣a ≥0, f (n )﹣kn ﹣a <n (﹣﹣k )≤n (﹣k )<0,∴存在x 0∈(m ,n ),使f (x 0)=kx 0+a ,∴对于任意的a ∈R 及k ∈(0,+∞),直线y=kx+a 与曲线y=f (x )有公共点, 由f (x )=kx+a ,得k=,设h (x )=,则h′(x )==,其中g (x )=﹣lnx ,由(1)知g (x )≥g (16),又a ≤3﹣4ln2,∴﹣g (x )﹣1+a ≤﹣g (16)﹣1+a=﹣3+4ln2+a ≤0,∴h′(x )≤0,即函数h (x )在(0,+∞)上单调递减, ∴方程f (x )﹣kx ﹣a=0至多有一个实根,综上,a ≤3﹣4ln2时,对于任意k >0,直线y=kx+a 与曲线y=f (x )有唯一公共点.23.已知函数f (x )=a x ,g (x )=log a x ,其中a >1. (Ⅰ)求函数h (x )=f (x )﹣xlna 的单调区间;(Ⅱ)若曲线y=f (x )在点(x 1,f (x 1))处的切线与曲线y=g (x )在点(x 2,g (x 2))处的切线平行,证明x 1+g (x 2)=;(Ⅲ)证明当a ≥e时,存在直线l ,使l 是曲线y=f (x )的切线,也是曲线y=g (x )的切线.【解答】(Ⅰ)解:由已知,h (x )=a x ﹣xlna ,有h′(x )=a x lna ﹣lna ,令h′(x )=0,解得x=0.由a >1,可知当x 变化时,h′(x ),h (x )的变化情况如下表:x (﹣∞,0)0 (0,+∞)h′(x ) ﹣ 0 + h (x )↓极小值↑∴函数h (x )的单调减区间为(﹣∞,0),单调递增区间为(0,+∞);(Ⅱ)证明:由f′(x )=a x lna ,可得曲线y=f (x )在点(x 1,f (x 1))处的切线的斜率为lna .由g′(x )=,可得曲线y=g (x )在点(x 2,g (x 2))处的切线的斜率为.∵这两条切线平行,故有,即,两边取以a 为底数的对数,得log a x 2+x 1+2log a lna=0, ∴x 1+g (x 2)=;(Ⅲ)证明:曲线y=f (x )在点()处的切线l 1:,曲线y=g (x )在点(x 2,log a x 2)处的切线l 2:.要证明当a ≥时,存在直线l ,使l 是曲线y=f (x )的切线,也是曲线y=g (x )的切线, 只需证明当a ≥时,存在x 1∈(﹣∞,+∞),x 2∈(0,+∞)使得l 1与l 2重合, 即只需证明当a ≥时,方程组由①得,代入②得:,③因此,只需证明当a ≥时,关于x 1 的方程③存在实数解.设函数u (x )=,既要证明当a ≥时,函数y=u (x )存在零点.u′(x )=1﹣(lna )2xa x ,可知x ∈(﹣∞,0)时,u′(x )>0;x ∈(0,+∞)时,u′(x )单调递减, 又u′(0)=1>0,u′=<0,故存在唯一的x 0,且x 0>0,使得u′(x 0)=0,即.由此可得,u (x )在(﹣∞,x 0)上单调递增,在(x 0,+∞)上单调递减,u (x )在x=x 0处取得极大值u (x 0). ∵,故lnlna ≥﹣1.∴=.下面证明存在实数t ,使得u (t )<0, 由(Ⅰ)可得a x ≥1+xlna ,当时,有 u (x )≤=.∴存在实数t ,使得u (t )<0. 因此,当a ≥时,存在x 1∈(﹣∞,+∞),使得u (x 1)=0.∴当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.24.已知函数f(x)=(2+x+ax2)ln(1+x)﹣2x.(1)若a=0,证明:当﹣1<x<0时,f(x)<0;当x>0时,f (x)>0;(2)若x=0是f(x)的极大值点,求a.【解答】(1)证明:当a=0时,f(x)=(2+x)ln(1+x)﹣2x,(x>﹣1).,,可得x∈(﹣1,0)时,f″(x)≤0,x∈(0,+∞)时,f″(x)≥0∴f′(x)在(﹣1,0)递减,在(0,+∞)递增,∴f′(x)≥f′(0)=0,∴f(x)=(2+x)ln(1+x)﹣2x在(﹣1,+∞)上单调递增,又f(0)=0.∴当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)解:由f(x)=(2+x+ax2)ln(1+x)﹣2x,得f′(x)=(1+2ax)ln(1+x)+﹣2=,令h(x)=ax2﹣x+(1+2ax)(1+x)ln(x+1),h′(x)=4ax+(4ax+2a+1)ln(x+1).当a≥0,x>0时,h′(x)>0,h(x)单调递增,∴h(x)>h(0)=0,即f′(x)>0,∴f(x)在(0,+∞)上单调递增,故x=0不是f(x)的极大值点,不符合题意.当a<0时,h″(x)=8a+4aln(x+1)+,显然h″(x)单调递减,①令h″(0)=0,解得a=﹣.∴当﹣1<x<0时,h″(x)>0,当x>0时,h″(x)<0,∴h′(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减,∴h′(x)≤h′(0)=0,∴h(x)单调递减,又h(0)=0,∴当﹣1<x<0时,h(x)>0,即f′(x)>0,当x>0时,h(x)<0,即f′(x)<0,∴f(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减,∴x=0是f(x)的极大值点,符合题意;②若﹣<a<0,则h″(0)=1+6a>0,h″(e﹣1)=(2a ﹣1)(1﹣e)<0,∴h″(x)=0在(0,+∞)上有唯一一个零点,设为x,时,h″(x)>0,h′(x)单调递增,∴当0<x<x∴h′(x)>h′(0)=0,即f′(x)>0,)上单调递增,不符合题意;∴f(x)在(0,x③若a<﹣,则h″(0)=1+6a<0,h″(﹣1)=(1﹣2a)e2>0,,∴h″(x)=0在(﹣1,0)上有唯一一个零点,设为x1∴当x<x<0时,h″(x)<0,h′(x)单调递减,1∴h′(x)>h′(0)=0,∴h(x)单调递增,∴h(x)<h(0)=0,即f′(x)<0,∴f(x)在(x,0)上单调递减,不符合题意.1综上,a=﹣.25.已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.【解答】证明:(1)当a=1时,函数f(x)=e x﹣x2.则f′(x)=e x﹣2x,令g(x)=e x﹣2x,则g′(x)=e x﹣2,令g′(x)=0,得x=ln2.当x∈(0,ln2)时,g′(x)<0,当x∈(ln2,+∞)时,g′(x)>0,∴g(x)≥g(ln2)=e ln2﹣2•ln2=2﹣2ln2>0,∴f (x )在[0,+∞)单调递增,∴f (x )≥f (0)=1, 解:(2),f (x )在(0,+∞)只有一个零点⇔方程e x ﹣ax 2=0在(0,+∞)只有一个根, ⇔a=在(0,+∞)只有一个根,即函数y=a 与G (x )=的图象在(0,+∞)只有一个交点.G,当x ∈(0,2)时,G′(x )<0,当∈(2,+∞)时,G′(x )>0,∴G (x )在(0,2)递减,在(2,+∞)递增, 当→0时,G (x )→+∞,当→+∞时,G (x )→+∞, ∴f (x )在(0,+∞)只有一个零点时,a=G (2)=.26.已知函数f (x )=﹣x+alnx . (1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:<a ﹣2.【解答】解:(1)函数的定义域为(0,+∞), 函数的导数f′(x )=﹣﹣1+=﹣,设g (x )=x 2﹣ax+1,当a ≤0时,g (x )>0恒成立,即f′(x )<0恒成立,此时函数f (x )在(0,+∞)上是减函数, 当a >0时,判别式△=a 2﹣4,①当0<a ≤2时,△≤0,即g (x )>0,即f′(x )<0恒成立,此时函数f (x )在(0,+∞)上是减函数, ②当a >2时,x ,f′(x ),f (x )的变化如下表: x(0,)(,)(,+∞) f′(x ) ﹣+0 ﹣ f (x )递减递增递减综上当a ≤2时,f (x )在(0,+∞)上是减函数, 当a >2时,在(0,),和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a >2,0<x 1<1<x 2,x 1x 2=1, 则f (x 1)﹣f (x 2)=(x 2﹣x 1)(1+)+a (lnx 1﹣lnx 2)=2(x 2﹣x 1)+a (lnx 1﹣lnx 2), 则=﹣2+,则问题转为证明<1即可,即证明lnx 1﹣lnx 2>x 1﹣x 2, 即证2lnx 1>x 1﹣在(0,1)上恒成立,设h (x )=2lnx ﹣x+,(0<x <1),其中h (1)=0, 求导得h′(x )=﹣1﹣=﹣=﹣<0,则h (x )在(0,1)上单调递减, ∴h (x )>h (1),即2lnx ﹣x+>0, 故2lnx >x ﹣, 则<a ﹣2成立.。
第3集圆锥曲线——2018年高考全国1卷文科数学20题
第3集圆锥曲线——2018年高考全国1卷文科数学20题圆锥曲线作为压轴题的地位正在逐步受到挑战,是的,近年来,随着课改的深入,圆锥曲线已经开始被弱化,而概率统计却在悄然被加强。
圆锥曲线已经不好意思再作为拉分题而存在,关键时刻还得靠概率统计。
事实上,弱化圆锥曲线已经是大势所趋,也符合国际潮流,国际上许多国家对圆锥曲线的要求都不高。
另外,从实用性和与大学数学接轨上来说,弱化圆锥曲线也是理所当然,有了高等方法后,圆锥曲线的很多问题都可以轻易解决。
当然,圆锥曲线所包含的思想精髓是不可否认的,相信未来也还会作为主干知识进行考查,只不过难度会降低而已。
一·套路二·脑洞1.本题考查直线与抛物线的位置关系,涉及直线方程,角平分线,韦达定理等知识点,考查设而不求,分类讨论,以及数形结合的思想,属于中档题。
2.法1,利用点斜式设直线的方程,但要注意讨论直线斜率不存在的情况,避免因不严谨而失分。
坐标轴作为角平分线等价于两直线的倾斜角互补,进而等价于两直线的斜率互为相反数,这便是法1的核心解题思路。
3.法2,反设直线方程,这样设直线方程有两个好处:一是不用讨论直线斜率不存在的情况;二是联立方程,计算更为简洁。
当然法2与法1本质上都是一样的,都是利用韦达定理转化为两直线的斜率互为相反数来求解。
4.法3,通过角平分线性质来解答,也即是角平分线上的点到角的两边的距离相等。
由于原点在角平分线上,因此,选择原点可以大大减少计算量。
直接计算得到两个距离相等似乎不太容易,因此,本题采用分析法来证明。
5.法4,由于解析几何也是几何,当然可以采用平面几何的方法来进行解答,有些题目用平面几何的方法解答甚至会受到奇效。
值得说明的是,本题第二问的结论还可以推广至一般情况,在此不作赘述。
6.最后,本题还可以借助平面向量的夹角公式来进行解答,感兴趣的可以自行尝试。
三·迁移2018年高考数学全国1卷,真的是平平无奇,所有试题几乎都没有特色和亮点。
圆锥曲线高考真题专练含答案
2018年数学全国1卷设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠. 解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为(1,2或(1,2-.所以AM 的方程为2y x =-+2y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++.则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.已知椭圆C:2222=1x ya b+(a>b>0),四点P1(1,1),P2(0,1),P3(–1),P4(1,C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.解:(1)由于3P,4P两点关于y轴对称,故由题设知C经过3P,4P两点.又由222211134a b a b+>+知,C不经过点P1,所以点P2在C上.因此222111314ba b⎧=⎪⎪⎨⎪+=⎪⎩,解得2241ab⎧=⎪⎨=⎪⎩.故C的方程为2214xy+=.(2)设直线P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知0t≠,且||2t<,可得A,B的坐标分别为(t,),(t,).则121k k+-=-,得2t=,不符合题设.从而可设l:y kx m=+(1m≠).将y kx m=+代入2214xy+=得由题设可知22=16(41)0k m∆-+>.设A(x1,y1),B(x2,y2),则x1+x2=2841kmk-+,x1x2=224441mk-+.而12121211y yk kx x--+=+1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--,所以l 过定点(2,1-) 2016年数学全国1卷设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(I )13422=+y x (0≠y );(II ))38,12[ 【解析】试题分析:(I )利用椭圆定义求方程;(II )把面积表示为关于斜率k 的函数,再求最值。
2018年高考数学试题分类汇编之圆锥曲线解析版
FM = (0 , 2) , FN = (3 , 4) .
则 FM FN = (0 ,2 ) ? (3 , 4 ) =8 .
故选: D
x2 6.(全国卷一理)( 11)已知双曲线 C:
y2 1 ,O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的
3
两条渐近线的交点分别为 M、N.若 △ OMN 为直角三角形,则 |MN |=
2018 年高考数学试题分类汇编之圆锥曲线(解析版)
一、选择题
1.(浙江卷)( 2)双曲线 x2 3
2
y =1 的焦点坐标是
A . (- 2 ,0) ,( 2 , 0) B . (- 2, 0), (2, 0) C. (0, - 2 ), (0, 2 ) D. (0, - 2), (0, 2)
解:∵双曲线方程可得双曲线的焦点在
4)已知椭圆
C
:
x a2
y 4
1的一个焦点为 (2 ,0) ,则 C 的离心率为
1 A.
3
1 B.
2
2 C.
2
解:椭圆的一个焦点为( 2,0),可得 a2-4=4,解得 a
22 D.
3
2 2,
c c 2, e
a
2
.
2
故选: C
5.(全国卷一理)(
8)设抛物线
C: y2=4x 的焦点为
F,过点( –2, 0)且斜率为
故选: B
x2 7.(全国卷二文)( 6)双曲线 a2
y2 b2
1( a
0, b
0) 的离心率为
3 ,则其渐近线方程为
A . y 2x
B. y 3x
C. y
2x
2
2018年普通高等学校招生全国统一考试仿真卷(一)文科数学含答案
绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷文科数学(一)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合(){},2M x y x y =+=,(){},2N x y x y =-=,则集合M N =( )A .{}0,2B .()2,0C .(){}0,2D .(){}2,02) A .B .C .12D3.为考察A ,B 两种药物预防某疾病的效果,进行动物实验,分别得到如下等高条形图,根据图中信息,在下列各项中,说法最佳的一项是( ) A .药物B 的预防效果优于药物A 的预防效果班级 姓名 准考证号 考场号 座位号此卷只装订不密封B .药物A 的预防效果优于药物B 的预防效果C .药物A 、B 对该疾病均有显著的预防效果D .药物A 、B 对该疾病均没有预防效果药物A 实验结果患病未患病服用药没服用药0.10.20.30.40.50.60.70.80.91药物B 实验结果患病未患病服用药没服用药0.10.20.30.40.50.60.70.80.914)A .4-B .C .13-D .135.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B.4+C.4+D.4+6.设变量,y 满足约束条件220220 2x y x y y +--+⎧⎪⎨⎪⎩≥≤≤,则目标函数z x y =+的最大值为( )A .7B .6C .5D .47.已知()201720162018201721f x x x x =++++,下列程序框图设计的是求()0f x 的值,在“ ”中应填的执行语句是( )开始i =1,n =2018结束i ≤2017?是否输入x 0S =2018输出SS =Sx 0S =S+ni =i +1A .2018n i =-B .2017n i =-C .2018n i =+D .2017n i =+8.若函数()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则的取值范围为( ) A .()0,4B .()0,+∞C .()3,4D .()3,+∞9.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数(0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B,当P ,A ,B 不共线时,PAB △面积的最大值是( ) A .BC D 10.已知双曲线E :22221x y a b-=(0,0)a b >>的右顶点为A ,右焦点为F ,B 为双曲线在第二象限上的一点,B 关于坐标原点O 的对称点为C ,直线CA 与直线BF 的交点M 恰好为线段BF 的中点,则双曲线的离心率为( )A .12B .15C .2 D .311.设锐角ABC △的三个内角A ,B ,C 的对边分别为,,,且1c =,2A C =,则ABC △周长的取值范围为( ) A.(0,2B .(0,3+C .(2++D .(2++12()2f x mx =+有一个零点,则实数m 的取值范围是( ) A ]{64-+B ]{0,64-+C ]{}632-D ]{0,63-第Ⅱ卷本卷包括必考题和选考题两部分。
专题4 圆锥曲线的离心率-2018年高三文科数学全国1卷高考相似模拟题分类汇编解析版
专题4 圆锥曲线的离心率【母题原题1】【2018新课标1,文4】已知椭圆:的一个焦点为,则的离心率为A .B .C .D .【答案】C点睛:该题考查的是有关椭圆的离心率的问题,在求解的过程中,一定要注意离心率的公式,再者就是要学会从题的条件中判断与之相关的量,结合椭圆中的关系求得结果.【母题原题2】【2016新课标1,文5】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为 ( ) A . 13 B . 12C . 23D . 34【答案】B【解析】试题分析:不妨设直线:1x y l c b +=,即0bx cy bc +-=⇒椭圆中心到l24b=12c e a ⇒==,故选B. 考点:1、直线与椭圆;2、椭圆的几何性质.【方法点晴】本题考查直线与椭圆、椭圆的几何性质,涉及方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 不妨设直线:1x yl c b+=,即0bx cy bc +-=⇒椭圆中心到l2142b c e a =⇒==,利用方程思想和数形结合思想建24b=是本题的关键节点.【命题意图】1.掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. 2. 了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. 【命题规律】1、椭圆的标准方程和几何性质x b y a ≤≤,椭圆离心率:c e a ==(0,1)e ∈,e 越大,椭圆越扁平一些,e 越小,椭圆越圆些.2.双曲线的标准方程和几何性质c 双曲线离心率:c e a ==1()e ∈∞,+,e 越大,双曲线开口越开阔一些,e 越小,双曲线开口越窄. 【方法总结】 1.求离心率的值(1)直接求出c a ,,求解e :已知标准方程或a ,c 易求时,可利用离心率公式e =ca求解;(2)变用公式,整体求e :如椭圆离心率e 与a ,b 的关系:e 2=22222221a b a b a a c -=-=⇒ba=21e -;双曲线的离心率e =c 2a 2=a 2+b 2a 2=1+b 2a2,e =c 2c 2-b2=11-b 2c2;2.双曲线的离心率与渐近线方程之间有着密切的联系,二者之间可以互求.已知渐近线方程时,可得b a的值,于是e 2=c 2a =a 2+b 2a =1+⎝ ⎛⎭⎪⎫b a 2,因此可求出离心率e 的值;而已知离心率的值,也可求出渐近线的方程,即ba=e 2-1.但要注意,当双曲线的焦点所在的坐标轴不确定时,上述两类问题都有两个解.1.【山东省临沂市沂水县第一中学2018届高三第三轮考试】在双曲线中,称离心率等于的双曲线为黄金双曲线,则下列双曲线中,是黄金双曲线的为( )A .B .C .D .【答案】B 【解析】 【分析】先求出每一个选项双曲线的离心率,再判断. 【详解】【点睛】(1)本题主要考查双曲线的离心率的计算和双曲线的几何性质,意在考查学生对这些知识的掌握水平和计算能力.(2)计算本题时,可以直接计算离心率e,也可以计算,看是否等于2.【四川省成都市双流中学2017-2018学年数学(文科)考前模拟】若F (c ,0)是双曲线﹣=1(a>b>0)的右焦点,过F作该双曲线一条渐近线的垂线与两条渐近线交于A,B两点,O为坐标原点,△OAB 的面积为,则该双曲线的离心率e=()A.B.C.D.【答案】C【解析】【分析】分析图形,已知,表示出,再用的关系式表示出线段,最后利用面积公式建立的方程式,再求解离心率。
2018年普通高等学校招生全国统一考试仿真卷 文科数学
绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷文科数学(一)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·晋城一模]已知集合(){},2M x y x y =+=,(){},2N x y x y =-=,则集合M N =( )A .{}0,2B .()2,0C .(){}0,2D .(){}2,0【答案】D【解析】解方程组22x y x y +=-=⎧⎨⎩,得20x y =⎧⎨=⎩.故(){}2,0MN =.选D .2.[2018·台州期末](i 为虚数单位)) 班级 姓名 准考证号 考场号 座位号此卷只装订不密封A .2B .1C .12D.2【答案】C11i 22z ∴=-=,选C . 3.[2018·南宁二中]为考察A ,B 两种药物预防某疾病的效果,进行动物实验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法最佳的一项是( ) A .药物B 的预防效果优于药物A 的预防效果 B .药物A 的预防效果优于药物B 的预防效果 C .药物A 、B 对该疾病均有显著的预防效果 D .药物A 、B 对该疾病均没有预防效果 【答案】B【解析】由A 、B 两种药物预防某疾病的效果,进行动物试验,分别得到的等高条形图,知:药物A 的预防效果优于药物B 的预防效果.故选B .4.[2018·滁州期末])A .4-B .4C .13-D .13【答案】C药物A 实验结果患病未患病服用药没服用药0.10.20.30.40.50.60.70.80.91药物B实验结果患病未患病服用药没服用药0.10.20.30.40.50.60.70.80.91【解析】sin2cos tan2ααα-=-⇒=,C.5.[2018·陕西一模]《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为()A.2 B.4+C.4+D.4+【答案】C【解析】根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三2,且侧棱与底面垂直,侧棱长是2,∴几C.6.[2018·滁州期末]设变量x,y满足约束条件2202202x yx yy+--+⎧⎪⎨⎪⎩≥≤≤,则目标函数z x y=+的最大值为()A.7 B.6 C.5 D.4 【答案】D【解析】画出不等式组表示的可行域(如图阴影部分所示).由z x y =+,得y x z =-+.平移直线y x z =-+,结合图形可得,当直线(图中的虚线)经过可行域内的点A 时,直线在y 轴上的截距最大,此时z 取得最大值.由2 220y x y =-+=⎧⎨⎩,解得22x y ==⎧⎨⎩,故点A 的坐标为(2,2).∴max 224z =+=,即目标函数z x y =+的最大值为4.选D .7.[2018·蚌埠一模]已知()201720162018201721f x x x x =++++,下列程序框图设计的是求()0f x 的值,在“ ”中应填的执行语句是( )A .2018n i =-B .2017n i =-C .2018n i =+D .2017n i =+【答案】A【解析】不妨设01x =,要计算()120182017201621f =+++++,首先201812018S =⨯=,下一个应该加2017,再接着是加2016,故应填2018n i =-.8.[2018·达州期末]若函数()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为( ) A .()0,4B .()0,+∞C .()3,4D .()3,+∞开始i =1,n =2018结束i ≤2017?是否输入x 0S =2018输出SS =Sx 0S =S+ni =i +1【答案】C【解析】如图,若()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则()34a ∈,,故选C .9.[2018·朝阳期末]阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B当P ,A ,B 不共线时,PAB △面积的最大值是( ) A.BCD【答案】A【解析】如图,以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系;则:()10A -,,()10B ,,设()P x y ,,PA PB=两边平方并整理得:()222261038x y x x y +-+=⇒-+=.∴PAB △面积的最大值是122⨯⨯=A .10.[2018·孝感八校]已知双曲线E :22221x y a b-=(0,0)a b >>的右顶点为A,右焦点为F ,B 为双曲线在第二象限上的一点,B 关于坐标原点O 的对称点为C ,直线CA 与直线BF 的交点M 恰好为线段BF 的中点,则双曲线的离心率为( )A .12B .15C .2D .3【答案】D【解析】不妨设2,b B c a ⎛⎫- ⎪⎝⎭,由此可得(),0A a ,2,b C c a ⎛⎫- ⎪⎝⎭,(),0F c ,20,2b M a ⎛⎫ ⎪⎝⎭,由于A ,C ,M 三点共线,故222b b a a a a c =--,化简得3c a =,故离心率3e =.11.[2018·昆明一中]设锐角ABC △的三个内角A ,B ,C 的对边分别为a ,b ,c ,且1c =,2A C =,则ABC △周长的取值范围为( ) A.(0,2 B.(0,3C.(2 D.(2+【答案】C【解析】因为ABC △为锐角三角形,所以cos 22C <<;又因为2A C =,所以sin 2sin cos A C C =,又因为1c =,所以2cos a C =;由sin sin b cB C=, 即2sin sin34cos 1sin sin c B Cb C C C ===-,所以24cos 2cos a b c C C ++=+,令cos t C =,则t ∈⎭,又因为函数242y t t =+在⎭上单调递增,所以函数值域为(2+,故选:C .12.[2018·菏泽期末]()2f x mx =+有一个零点,则实数m 的取值范围是( ) A ]{64-+B ]{0,64-+C ]{}632-D ]{0,63-【答案】B【解析】由题意函数()f x 的图象与直线2y mx =+有一个交点.如图是()f x 的图象,1x >时,()21f x x =-设切点为()00,x y ,则切线为()()02002211y x x x x -=----,把()0,2代入,02x =;1x ≤时,()2e x f x =-,()e x f x '=-,设切点为()00,x y ,则切线为()()0002e e x x y x x --=--,把()0,2代入,解得01x =,又()12ef =-,()11e e f '=-=-,]{0,42-满足题意,故选B .第Ⅱ卷本卷包括必考题和选考题两部分。
高三数学文科圆锥曲线大题训练(20个)(含答案)
高三数学文科圆锥曲线大题训练(含详细解答)1.已知椭圆22:416C x y +=. (1)求椭圆C 的离心率;(2)设椭圆C 与y 轴下半轴的交点为B ,如果直线()10y kx k =+≠交椭圆C 于不同的两点,E F ,且,,B E F 构成以EF 为底边,B 为顶点的等腰三角形,判断直线EF 与圆2212x y +=的位置关系.2.已知椭圆的中心在坐标原点O,长轴长为离心率2e =,过右焦点F 的直线l 交椭圆于P ,Q 两点.(1)求椭圆的方程;(2)当直线l 的斜率为1时,求POQ ∆的面积;(3)若以,OP OQ 为邻边的平行四边形是矩形,求满足该条件的直线l 的方程.3.在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b +=>>的一个顶点为(2,0)A -(1)求椭圆C 的标准方程;(2)直线l 过点A ,过O 作l 的平行线交椭圆C 于P ,Q 两点,如果以PQ 为直径的圆与直线l 相切,求l 的方程.4.已知离心率为2的椭圆2222:1(0)x y C a b a b +=>>与直线2x =相交于,P Q 两点(点P 在x 轴上方),且2PQ =.点,A B 是椭圆上位于直线PQ 两侧的两个动点,且APQ BPQ ∠=∠. (1)求椭圆C 的标准方程;(2)求四边形APBQ 面积的取值范围.5.已知椭圆的一个顶点为)1,0(-A ,焦点在x 轴上,若右焦点到直线022=+-y x 的距离为3. (1)求椭圆的标准方程;(2)设直线()0y kx m k =+≠与椭圆相交于不同的两点M 、N ,当AM AN =时,求m 的取值范围.6.已知椭圆1C 的中心在坐标原点,两焦点分别为双曲线222:12x C y -=的顶点,直线0=x 与椭圆1C 交于A ,B 两点,且点A的坐标为(1),点P 是椭圆1C 上异于点A ,B 的任意一点,点Q 满足0AQ AP ⋅=,0BQ BP ⋅=,且A ,B ,Q 三点不共线.(1)求椭圆1C 的方程; (2)求点Q 的轨迹方程;(3)求ABQ ∆面积的最大值及此时点Q 的坐标.7.如图,B A ,分别是椭圆C :)0(12222>>=+b a by a x 的左右顶点,F 为其右焦点,2是AF 与FB 的等差中项,3是AF 与FB 的等比中项. (1)求椭圆C 的方程;(2)已知点P 是椭圆C 上异于B A ,的动点,直线l 过点A 且垂直于x 轴,若过F 作直线FQ 垂直于AP ,并交直线l 于点Q .证明:B P Q ,,三点共线.8.已知椭圆()2222:10x y C a b a b +=>>()0,1.圆22221:C x y a b +=+.(1)求椭圆C 的方程;(2)若直线l ():0y kx m k =+≠与椭圆C 有且只有一个公共点M ,且l 与圆1C 相交于,A B 两点,问AM BM +=0是否成立?请说明理由.9.已知抛物线C :22(0)y px p =>的焦点为F ,若过点F 且斜率为1的直线与抛物线相交于,M N 两点,且8MN =.(1)求抛物线C 的方程;(2)设直线l 为抛物线C 的切线,且l ∥MN ,P 为l 上一点,求PM PN ⋅的最小值.10.已知动圆C 过定点)(2,0M ,且在x 轴上截得弦长为4.设该动圆圆心的轨迹为曲线C . (1)求曲线C 方程;(2)点A 为直线l :20x y --=上任意一点,过A 作曲线C 的切线,切点分别为P 、 Q ,APQ ∆面积的最小值及此时点A 的坐标.11.已知点)1,2(A 在抛物线:E 2x ay =上,直线1:l 1y kx =+(R k ∈,且0k ≠)与抛物线E 相交于C B ,两点,直线AC AB ,分别交直线2:l 1y =-于点S ,T .(1)求a 的值;(2)若S T =1l 的方程;(3)试判断以线段ST 为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.12.在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2(1)求椭圆C 的方程;(2)B A ,为椭圆C 上满足AOB ∆E 为线段AB 的中点,射线OE 交椭圆C 于点P ,设OP tOE =,求实数t 的值.13.已知点()2,1P 在抛物线()21:20C x py p =>上,直线l 过点()0,2Q 且与抛物线1C 交于A 、B 两点。
最新-2018年全国高考数学试题分类汇编(圆锥曲线部分)-人教版[整理] 精品
2018年全国高考数学试题分类汇编——圆锥曲线第一部分,选择题。
1. (2018全国卷Ⅰ文第6题) 已知双曲线)0( 1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为 ( )(A )23(B )23 (C )26 (D )332 2 (2018全国卷Ⅰ理第6题) 已知双曲线)0( 1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为 ( )(A )23 (B )23 (C )26 (D )332 3. (2018全国卷II 文第5题)抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )(A) 2 (B) 3 (C) 4 (D) 54.(2018全国卷II 文第6题) 双曲线22149x y-=的渐近线方程是 ( )(A) 23y x =± (B) 49y x =± (C) 32y x =± (D) 94y x =±5. (2018全国卷II 理第6题) 已知双曲线22163x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直线2F M 的距离为 ( )(A)(B)(C)65(D)566. (2018全国卷III 理第9题,文第9题) 已知双曲线2212yx-=的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为 ( )(A )43 (B )53(C(D7. (2018全国卷III 理第10题,文第10题) 设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( ) (A(B(C)2 (D18. (2018辽宁卷第11题) 已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线xy 42=的准线重合,则该双曲线与抛物线x y 42=的交点到原点的距离是 ( )A .23+6B .21C .21218+D .219.(2018江苏卷第6题)抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( ) ( A )1617( B ) 1615 ( C ) 87 ( D ) 010. (2018江苏卷第11题) 点P(-3,1)在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为a =(2,-5)的光线,经直线y =-2反射后通过椭圆的左焦点,则这个椭圆的离心率为 ( ) ( A )33 ( B ) 31 ( C ) 22 ( D ) 2111. (2018广东卷第5题)若焦点在x 轴上的椭圆2212x y m +=的离心率为12,则m= ( )(B)32 (C)83 (D)2312. (2018重庆卷理第9题,文第9题) 若动点(x ,y )在曲线14222=+by x (b >0)上变化,则x 2+2y 的最大值为 ( )(A) ⎪⎩⎪⎨⎧≥<<+)4(2)40(442b bb b ;(B) ⎪⎩⎪⎨⎧≥<<+)2(2)20(442b bb b ;(C) 442+b ; (D) 2b 。
2018年高考文科数学全国各地试题汇编(精校Word版含答案
2018年全国各地高考数学真试题精校Word版汇总(全国各地文科数学试卷汇编含答案) 2018年全国卷高考文科数学真题(全国卷Ⅰ) Word版-------------- 2018年全国卷高考文科数学真题(全国卷Ⅰ) Word版答案-------- 2018年全国卷文科数学高考真题(全国卷II) Word版--------------- 2018年全国卷文科数学高考真题(全国卷II) Word版答案-------- 2018年全国卷文科数学高考真题(全国卷Ⅲ)Word版-------------- 2018年文科数学高考真题(北京卷) Word版含答案---------------- 2018年文科数学高考真题(天津卷) Word版含答案---------------- 2018年数学高考真题(上海卷)Word版含答案---------------- 2018年数学高考真题(浙江卷)Word版含答案---------------- - 1 - 绝密★启用前 2018年普通高等学校招生全国统一考试(全国一卷)文科数学试题注意事项: 1.答卷前,考生务必将自己的九名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.(= B=0, 2.设z{ A.}0,2{=,则A1.已知集合A}1,0,1,2-2,-{=,B}一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)2 1,{ B.}) 2 }0{C.(=2i,则z+i-2,1-{ D.}1,0,1,2- i+) 1 B.A.0 1 2 C.1 D.2 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是() A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半(=2,则a3=S4,a1+S2=的前n项和.若3S3}an{- 2 - 4.记Sn为等差数列 12-)A. 10-B. C.10 D.12 - 3 - 0,((在点)x(f=为奇函数,则曲线y)x(ax.若f+x2)1-a(+x3=)x(处的切线方程为5.设函数f)0 2x-=) A.y (=6.在△ABC 中,AD为BC边上的中线,E为AD的中点,则EB x-=) A.C. B.y 2x=C.y AC-x 31AB=D.y AC+4431AB 44 AC 44 7.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为(+AC 4413AB-B.D.13AB ) A.217 B.25 C.3 (=FN⋅2,FM-(4x的焦点为F,过点=且斜率为8.设抛物线C:y2)D.2 0 ) 2的直线与C交于M,N两点,则3A.5 B.6 C.7 a(+x+)x(f=)x(,f⎨=)x(ex,x≤09.已知函数f⎧D.8 1,-[ A.)围是 0⎩0>存在2个零点,则a的取值范lnx,x)x(),若g )∞+,[B. 1, - 4 -[ D.)∞+1,-[ C.)∞+ 10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC,△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则() p2=A.p1 p3=B.p1p3=C.p2 (=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的3交点分别为M,N.若△OMN为直角三角形,则MN=y2-p3 x211.已知双曲线C:+p2=D.p1 ) A. 3 2 B.3 C.23 的x的取值范围是()2x(f<)1+x(,则满足f⎨=)x(x,x≤012.设函数f-2⎧D.4 ]1⎩0>) 1,y )∞+,∞-(A.)1,0-(0, C.(B.)0 ________.=1,则a=)3(a,若f+log2x2=)x(,二、填空题(本题共4小题,每小题5分,共20分) 13.已知函数f∞-(D. ________.=0交于A,B两点,则AB=3-2y+y2+1与圆x2+x= 15.直线y)(⎩y≤0⎪2y的最大值为________.+3x=1≥0,则z+y-x⎨14.若x,y满足约束条件⎪2≤0-2y-x⎧ 8,则△ABC的面积为________.=a2-c2+csin16.△ABC 的内角A,B,C的对边分别为a, - 5 - a4siBnsC,b2+b,c,已知bsinC=B 三、解答题(共70分。
2018年全国各地高考数学模拟试题《圆锥曲线与方程》试题汇编(含答案解析)
2018年全国各地高考数学模拟试题《圆锥曲线与方程》试题汇编(含答案解析)1.(2018•红河州二模)设F1,F2分别是椭圆C:的左、右焦点,M是C上一点,且MF2与x轴垂直.直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率.(2)若直线MN在y轴上的截距为3,且|MN|=7|F1N|,求a,b.2.(2018•江苏模拟)已知中心在坐标原点的椭圆C,F1,F2分别为椭圆的左、右焦点,长轴长为6,离心率为(1)求椭圆C 的标准方程;(2)已知点P在椭圆C 上,且PF1=4,求点P到右准线的距离.3.(2018•四川模拟)已知椭圆(a>b>0)的左焦点F(﹣2,0)左顶点A1(﹣4,0).(Ⅰ)求椭圆C的方程;(Ⅱ)已知P(2,3),Q(2,﹣3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点.若∠APQ=∠BPQ,试问直线AB的斜率是否为定值?请说明理由.4.(2018•济宁一模)已知椭圆C:,直线l:y=kx+1(k≠0)与椭圆C相交于A,B两点,D为AB的中点.(1)若直线l与直线OD(O为坐标原点)的斜率之积为,求椭圆..的方程;(2)在(1)的条件下,y轴上是否存在定点M使得当k变化时,总有∠AMO=∠BMO(O为坐标原点).若存在,求出定点M的坐标;若不存在,请说明理由.5.(2018•红桥区一模)已知椭圆C:+=1(a>b>0)的离心率为,椭圆C与y轴交于A,B两点,且|AB|=2.(Ⅰ)求椭圆C的方程;(Ⅱ)设点P是椭圆C上的一个动点,且点P在y轴的右侧.直线PA,PB与直线x=4分别交于M,N两点.若以MN为直径的圆与x轴交于两点E,F,求点P 横坐标的取值范围及|EF|的最大值.6.(2018•南通一模)如图,在平面直角坐标系xOy中,已知椭圆+=1(a >b>0)的离心率为,两条准线之间的距离为4.(1)求椭圆的标准方程;(2)已知椭圆的左顶点为A,点M在圆x2+y2=上,直线AM与椭圆相交于另一点B,且△AOB的面积是△AOM的面积的2倍,求直线AB的方程.7.(2018•枣庄二模)已知抛物线C:y2=2px(0<p<1)上的点P(m,1)到其焦点F的距离为.(Ⅰ)求C的方程;(Ⅱ)已知直线l不过点P且与C相交于A,B两点,且直线PA与直线PB的斜率之积为1,证明:l过定点.8.(2018•沈阳三模)已知抛物线C1:x2=2py(p>0)过点A(2,1),且它的焦点F也是椭圆C2:(a>b>0)的一个焦点,椭圆上的点到焦点F的最小值为2.(Ⅰ)求抛物线C1和椭圆C2的标准方程;(Ⅱ)设M,N是抛物线C1上的两个动点,且=﹣4.①求证:直线MN必过定点,并求定点Q坐标;最大时,求直线MN的方程.②直线MN交椭圆C2于R、S两点,当S△FNS9.(2018•焦作四模)已知椭圆Γ:的离心率为,椭圆的四个顶点围成的四边形的面积为4.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)直线l与椭圆Γ交于A,B两点,AB的中点M在圆x2+y2=1上,求△AOB (O为坐标原点)面积的最大值.10.(2018•宣城二模)已知椭圆(a>b>0)的离心率为,点在椭圆上.(Ⅰ)求椭圆C的方程;(Ⅱ)设AB是椭圆的一条弦,斜率为k(k≠0),N(t,0)是x轴上的一点,△ABN的重心为M,若直线MN的斜率存在,记为k',问:t为何值时,k•k'为定值?11.(2018•洛阳一模)已知点M,N分别是椭圆的左右顶点,F为其右焦点,|MF|与|FN|的等比中项是,椭圆的离心率为.(1)求椭圆C的方程;(2)设不过原点O的直线l与该轨迹交于A,B两点,若直线OA,AB,OB的斜率依次成等比数列,求△OAB面积的取值范围.12.(2018•江西二模)已知椭圆E:+=1(a>b>0)过点,且两个焦点的坐标分别为(﹣1,0),(1,0).(1)求E的方程;(2)若A,B,P为E上的三个不同的点,O为坐标原点,且,求证:四边形OAPB的面积为定值.13.(2018•虹口区二模)如果直线与椭圆只有一个交点,称该直线为椭圆的“切线”,已知椭圆C:,点M(m,n)是椭圆C上的任意一点,直线l过点M且是椭圆C的“切线”.(1)证明:过椭圆C上的点M(m,n)的“切线”方程是;(2)设A、B是椭圆C长轴上的两个端点,点M(m,n)不在坐标轴上,直线MA、MB分别交y轴于点P、Q,过M的椭圆C的“切线”l交y轴于点D,证明:点D是线段PQ的中点;(3)点M(m,n)不在x轴上,记椭圆C的两个焦点分别为F1和F2,判断过M的椭圆C的“切线”l与直线MF1、MF2所成夹角是否相等?并说明理由.14.(2018•揭阳一模)已知A是椭圆T:上的动点,点P(0,),点C与点A关于原点对称.(I)求△PAC面积的最大值;(II)若射线AP、CP分别与椭圆T交于点B、D,且=m,=n,证明:m+n为定值.15.(2018•聊城一模)已知圆x2+y2=4经过椭圆C:的两个焦点和两个顶点,点A(0,4),M,N是椭圆C上的两点,它们在y轴两侧,且∠MAN的平分线在y轴上,|AM|≠|AN|.(Ⅰ)求椭圆C的方程;(Ⅱ)证明:直线MN过定点.16.(2018•定远县模拟)已知椭圆C:+=1(a>b>0)的离心率为,其左、右焦点分别为F1,F2,点P(x0,y0)是坐标平面内一点,且|OP|=5,•=16(O为坐标原点).(1)求椭圆C的方程;(2)过点S(0,﹣1)且斜率为k的动直线l交椭圆于A,B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过该点?若存在,求出点M的坐标,若不存在,说明理由.17.(2018•南充模拟)已知椭圆C:+=1(a>b>0)的离心率为,点M(2,1)在椭圆C上.(1)求椭圆C的方程;(2)直线l平行于OM,且与椭圆C交于A,B两个不同的点,若∠AOB为钝角,求直线l在y轴上的截距m的取值范围.18.(2018•成都模拟)已知椭圆C:的左右焦点分别为F1,F2,左顶点为A,离心率为,点B是椭圆上的动点,△ABF1的面积的最大值为.(1)求椭圆C的方程;(2)设经过点F1的直线l与椭圆C相交于不同的两点M,N,线段MN的中垂线为l'.若直线l'与直线l相交于点P,与直线x=2相交于点Q,求的最小值.19.(2018•齐齐哈尔一模)已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2.且椭圆C过点(,﹣),离心率e=;点P在椭圆C上,延长PF1与椭圆C交于点Q,点R是PF2中点.(I)求椭圆C的方程;(II)若O是坐标原点,记△QF1O与△PF1R的面积之和为S,求S的最大值.20.(2018•唐山一模)已知椭圆Γ:(a>b>0)的左焦点为F,上顶点为A,长轴长为,B为直线l:x=﹣3上的动点,M(m,0)(m<0),AM ⊥BM.当AB⊥l时,M与F重合.(1)若椭圆Γ的方程;(2)若C为椭圆Γ上一点,满足AC∥BM,∠AMC=60°,求m的值.21.(2018•南平二模)已知抛物线C:y2=2px的焦点为F,抛物线C上的点M(2,y0)到F的距离为3.(Ⅰ)求抛物线C的方程;(Ⅱ)斜率存在的直线l与抛物线相交于相异两点A(x1,y1),B(x2,y2),x1+x2=4.若AB的垂直平分线交x轴于点G,且=5,求直线l方程.22.(2018•洛阳三模)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|,当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,试问直线AE是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.23.(2018•资阳模拟)已知椭圆C:的离心率,且过点.(1)求椭圆C的方程;(2)过P作两条直线l1,l2与圆相切且分别交椭圆于M,N两点.①求证:直线MN的斜率为定值;②求△MON面积的最大值(其中O为坐标原点).24.(2018•辽宁模拟)已知M()是椭圆C:(a>b>0)上的一点,F1F2是该椭圆的左右焦点,且|F1F2|=2.(1)求椭圆C的方程;(2)设点A,B是椭圆C上与坐标原点O不共线的两点,直线OA,OB,AB的斜率分别为k1,k2,k3,且k1k2=k2.试探究|OA|2+|OB|2是否为定值,若是,求出定值,若不是,说明理由.25.(2018•上饶三模)已知椭圆C1:(a>1)的离心率,左、右焦点分别为F1、F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M.(1)求点M的轨迹C2的方程;(2)当直线AB与椭圆C1相切,交C2于点A,B,当∠AOB=90°时,求AB的直线方程.26.(2018•上海模拟)已知点F1、F2为双曲线C:的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,且∠MF1F2=30°.圆O的方程是x2+y2=b2.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求的值;(3)过圆O上任意一点Q(x0,y0)作圆O的切线l交双曲线C于A、B两点,AB中点为M,求证:.27.(2018•江苏一模)已知椭圆C:(a>b>0)经过点,,点A是椭圆的下顶点.(1)求椭圆C的标准方程;(2)过点A且互相垂直的两直线l1,l2与直线y=x分别相交于E,F两点,已知OE=OF,求直线l1的斜率.28.(2018•衡阳一模)已知椭圆的左、右焦点分别为F1、F2,离心率为,直线y=1与C的两个交点间的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)分别过F1、F2作l1、l2满足l1∥l2,设l1、l2与C的上半部分分别交于A、B 两点,求四边形ABF2F1面积的最大值.29.(2018•太原一模)已知椭圆的左顶点为A,右焦点为F2(2,0),点在椭圆C上.(1)求椭圆C的方程;(2)若直线y=kx(k≠0)与椭圆C交于E,F两点,直线AE,AF分别与y轴交于点M,N,在x轴上,是否存在点P,使得无论非零实数k怎样变化,总有∠MPN为直角?若存在,求出点P的坐标;若不存在,请说明理由.30.(2018•成都模拟)已知圆O的方程为x2+y2=4,若抛物线C过点A(﹣1,0),B(1,0),且以圆O的切线为准线,F为抛物线的焦点,点F的轨迹为曲线C′.(1)求曲线C′的方程;(2)过点B作直线L交曲线C′与P,Q两点,P,P′关于x轴对称,请问:直线P′Q 是否过x轴上的定点,如果不过请说明理由,如果过定点,请求出定点E的坐标31.(2018•秦州区校级一模)已知椭圆C:+=1(a>b>0)的右焦点为F2(2,0),点P(1,﹣)在椭圆C上.(Ⅰ)求椭圆C的标准方程;(Ⅱ)是否存在斜率为﹣1直线l与椭圆C相交于M,N两点,使得|F1M|=|F1N|(F1为椭圆的左焦点)?若存在,求出直线l的方程;若不存在,说明理由.32.(2018•黄山一模)已知椭圆Γ:的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形AF1BF2是边长为2的正方形.(1)求椭圆Γ的方程;(2)若C、D分别是椭圆Γ的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于与点P.证明:为定值.33.(2018•陕西一模)已知椭圆+=1(a>b>0)的左右焦点分别为F1和F2,由4个点M(﹣a,b)、N(a,b)、F2和F1组成了一个高为,面积为3的等腰梯形.(1)求椭圆的方程;(2)过点F1的直线和椭圆交于两点A、B,求△F2AB面积的最大值.34.(2018•朝阳三模)如图,椭圆经过点,且点M到椭圆的两焦点的距离之和为.(1)求椭圆C的标准方程;(2)若R,S是椭圆C上的两个点,线段RS的中垂线l的斜率为且直线l与RS交于点P,O为坐标原点,求证:P,O,M三点共线.35.(2018•徐州一模)如图,在平面直角坐标系xOy中,已知椭圆+=1(a >0,b>0)的离心率为,且过点(1,).F为椭圆的右焦点,A,B为椭圆上关于原点对称的两点,连接AF,BF分别交椭圆于C,D两点.(1)求椭圆的标准方程;(2)若AF=FC,求的值;(3)设直线AB,CD的斜率分别为k1,k2,是否存在实数m,使得k2=mk1,若存在,求出m的值;若不存在,请说明理由.36.(2018•芜湖模拟)已知椭圆C:(a>b>0)的左右焦点分别为F1,F2,点P是椭圆C上一点,若PF1⊥PF2,|F1F2|=2,△PF1F2的面积为1.(Ⅰ)求椭圆C的方程;(Ⅱ)若A,B分别为椭圆上的两点,且OA⊥OB,求证:为定值,并求出该定值.37.(2018•马鞍山二模)在直角坐标系中,己知点A(﹣2,0),B(2,0),两动点C(0,m),D(0,n),且mn=3,直线AC与直线BD的交点为P.(1)求动点P的轨迹方程;(2)过点F(1,0)作直线l交动点P的轨迹于M,N两点,试求的取值范围.38.(2018•凉山州模拟)若A(x1,y1),B(x2,y2)是椭圆E:+y2=1上位于x轴上方两点,且x1+x2=2.(1)若y1+y2=1,求线段AB的垂直平分线的方程;(2)求直线AB在y轴上截距的最小值.39.(2018•江苏二模)如图,在平面直角坐标系xOy中,B1,B2是椭圆的短轴端点,P是椭圆上异于点B1,B2的一动点.当直线PB1的方程为y=x+3时,线段PB1的长为.(1)求椭圆的标准方程;(2)设点Q满足:QB1⊥PB1,QB2⊥PB2,求证:△PB1B2与△QB1B2的面积之比为定值.40.(2018•湖北模拟)如图,已知抛物线x2=2py(p>0),其焦点到准线的距离为2,圆S:x2+y2﹣py=0,直线l:y=kx+与圆和抛物线自左至右顺次交于四点A、B、C、D,(1)若线段AB、BC、CD的长按此顺序构成一个等差数列,求正数k的值;(2)若直线l′过抛物线焦点且垂直于直线l,直线l′与抛物线交于点M、N,设AD、MN的中点分别为P、Q,求证:直线PQ过定点.参考答案与试题解析1.【分析】(1)设出M坐标,通过直线MN的斜率为,转化求解C的离心率.(2)通过原点O为F1F2的中点,MF2∥y轴,推出b2=6a,结合|MN|=7|F1N|,转化求解a,b.【解答】解:(1)根据及题设知,5b2=24ac将b2=a2﹣c2代入5b2=24ac解得或(舍去),故C的离心率为;………………………………………………(4分)(2)由题意得,原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,3)是线段MF1的中点,故,即b2=6a①………………………………………………(7分)由|MN|=7|F1N|得|DF1|=3|F1N|,设N(x1,y1)则,即代入C的方程,得②……………………………………………(10分)将①及代入②得解得故……………………………………………………(12分)【点评】本题考查椭圆的简单性质的应用,直线与椭圆的位置关系的应用,考查计算能力.2.【分析】(1)由已知可得a,再由离心率求得c,结合隐含条件求得b,则椭圆方程可求;(2)由题意定义结合已知求得PF2,再由椭圆的第二定义可得点P到右准线的距离.【解答】解:(1)根据题意:,解得,∴b2=a2﹣c2=4,∴椭圆C的标准方程为;(2)由椭圆的定义得:PF1+PF2=6,可得PF2=2,设点P到右准线的距离为d,根据第二定义,得,解得:.【点评】本题考查椭圆的简单性质,考查了椭圆定义的应用,是基础题.3.【分析】(Ⅰ)由题意可得,a=4,c=2由a2=b2+c2,得b2=42﹣22=12,问题得以解决.(Ⅱ)当∠APQ=∠BPQ时,PA、PB的斜率之和为0,设直线PA的斜率为k,则PB的斜率为﹣k,将PA、PB的直线方程分别代入椭圆方程,然后运用韦达定理,求出x1,x2,再由斜率公式化简即可得到定值.【解答】解:(Ⅰ)由题意可得,a=4,c=2由a2=b2+c2,得b2=42﹣22=12,所以椭圆C的方程为.(Ⅱ)当∠APQ=∠BPQ时,AP,BP的斜率之和为0,设直线PA的斜率为k,则直线PB的斜率为﹣k,设A(x1,y1)B(x2,y2),PA的方程为y﹣3=k(x﹣2).联立消y得(3+4k2)x2+8(3k﹣k2)x+4(4k2+9﹣12k)﹣48=0所以,同理,所以,,所以k AB===,所以AB的斜率为定值.【点评】本题考查椭圆的方程及联立直线方程消去一个未知数,得到二次方程,运用韦达定理求解,考查基本的运算能力,属于中档题.4.【分析】(1)根据题意,联立直线与椭圆的方程,可得(4+a2k2)x2+2a2kx﹣3a2=0,设A(x1,y1),B(x2,y2),D(x0,y0),用k表示D的坐标,分析可得=.解可得a2的值,将其代入椭圆的方程即可得答案;(2)假设存在定点M,且设M(0,m),分析易得k AM+k BM=0,即,变形分析可得2kx1x2+x1+x2﹣m(x1+x2)=0,结合根与系数的关系分析可得,计算可得m的值,即可得答案.【解答】解:(1)由得(4+a2k2)x2+2a2kx﹣3a2=0,显然△>0,设A(x1,y1),B(x2,y2),D(x0,y0),则,,∴,.∴=.∴a2=8.所以椭圆C的方程为.(2)假设存在定点M,且设M(0,m),由∠AMO=∠BMO得k AM+k BM=0.∴.即y1x2+y2x1﹣m(x1+x2)=0,∴2kx1x2+x1+x2﹣m(x1+x2)=0.由(1)知,,∴.∴m=4.所以存在定点M(0,4)使得∠AMO=∠BMO.【点评】本题考查直线与椭圆的位置关系,涉及椭圆的几何性质,关键是求出椭圆的标准方程.5.【分析】(Ⅰ)由题意可得,2b=2,再由椭圆的离心率公式和a,b,c的关系,解得a=2,进而得到椭圆方程;(Ⅱ)方法一、设P(x0,y0)(0<x0≤2),A(0,﹣1),B(0,1),求出直线PA,PB的方程,与直线x=4的交点M,N,可得MN的中点,圆的方程,令y=0,求得与x轴的交点坐标,运用弦长公式,结合.即可得到所求最大值;方法二、设P(x0,y0)(0<x0≤2),A(0,﹣1),B(0,1),求出直线PA,PB 的方程,与直线x=4的交点M,N,以MN为直径的圆与x轴相交,可得y M y N<0,求得,再由弦长公式,可得最大值.【解答】解:(Ⅰ)由题意可得,2b=2,即b=1,,得,解得a2=4,椭圆C的标准方程为;(Ⅱ)方法一、设P(x0,y0)(0<x0≤2),A(0,﹣1),B(0,1),所以,直线PA的方程为,同理:直线PB的方程为,直线PA与直线x=4的交点为,直线PB与直线x=4的交点为,线段MN的中点,所以圆的方程为,令y=0,则,因为,所以,所以,设交点坐标(x1,0),(x2,0),可得x1=4+,x2=4﹣,因为这个圆与x轴相交,该方程有两个不同的实数解,所以,解得.则()所以当x0=2时,该圆被x轴截得的弦长为最大值为2.方法二:设P(x0,y0)(0<x0≤2),A(0,﹣1),B(0,1),所以,直线PA的方程为,同理:直线PB的方程为,直线PA与直线x=4的交点为,直线PB与直线x=4的交点为,若以MN为直径的圆与x轴相交,则,即,即.因为,所以,代入得到,解得.该圆的直径为,圆心到x轴的距离为,该圆在x轴上截得的弦长为;所以该圆被x轴截得的弦长为最大值为2.【点评】本题考查椭圆的方程的求法,注意运用离心率公式和基本量的关系,考查直线和圆相交的弦长问题,注意运用圆的方程,以及直线和圆相交的条件,考查化简整理的运算能力,属于中档题.6.【分析】(1)设椭圆的焦距为2c,由题意得,=,=4,解出即可得出.(2)△AOB的面积是△AOM的面积的2倍,可得AB=2AM,即点M为AB的中点.A(﹣2,0).设M(x0,y0),利用中点坐标公式可得:B(2x0+2,2y0).由+=,+=1,联立解出,即可得出直线AB的方程.【解答】解:(1)设椭圆的焦距为2c,由题意得,=,=4,解得a=2,c=b=.∴椭圆的方程为:+=1.(2)△AOB的面积是△AOM的面积的2倍,∴AB=2AM,∴点M为AB的中点.∵椭圆的方程为:+=1.∴A(﹣2,0).设M(x0,y0),则B(2x0+2,2y0).由+=,+=1,化为:﹣18x0﹣16=0,≤x0≤.解得:x0=﹣.代入解得:y0=,∴k AB=,因此,直线AB的方程为:y=(x+2).【点评】本题考查了椭圆与圆的标准方程及其性质、直线与椭圆相交问题、三角形面积计算公式,考查了推理能力与计算能力,属于难题.7.【分析】(Ⅰ)通过点在抛物线上,以及抛物线的定义,列出方程求解可得C的方程;(Ⅱ)证法一:设直线PA的斜率为k(显然k≠0),则直线PA的方程为y﹣1=k (x﹣1),联立直线与抛物线方程,设A(x1,y1),由韦达定理,求出A的坐标,直线PB的斜率为.得到B的坐标,通过直线的向量是否垂直,求出直线l的方程,然后求解定点坐标.证法二:由(1),得P(1,1).若l的斜率不存在,则l与x轴垂直.设A(x1,y1),则B(x1,﹣y1),.推出l的斜率必存在.设l的斜率为k,显然k ≠0,设l:y=kx+t,利用直线方程与抛物线方程联立,设A(x1,y1),B(x2,y2),利用韦达定理,转化求解直线l:y=kx﹣1.即可说明l过定点(0,﹣1).证法三:由(1),得P(1,1).设l:x=ny+t,由直线l不过点P(1,1),所以n+t≠1.由消去x并整理得y2﹣ny﹣t=0.判别式△=n2+4t>0.设A(x1,y1),B(x2,y2),则y1+y2=n①,y1y2=﹣t②,转化求解l:x=n(y+1).说明l过定点(0,﹣1).【解答】解:(Ⅰ)由题意,得2pm=1,即.由抛物线的定义,得.由题意,.解得,或p=2(舍去).所以C的方程为y2=x.(Ⅱ)证法一:设直线PA的斜率为k(显然k≠0),则直线PA的方程为y﹣1=k (x﹣1),则y=kx+1﹣k.由消去y并整理得k2x2+[2k(1﹣k)﹣1]x+(1﹣k)2=0.设A(x1,y1),由韦达定理,得,即.=.所以.由题意,直线PB的斜率为.同理可得,即B((k2﹣1)2,k﹣1).若直线l的斜率不存在,则.解得k=1,或k=﹣1.当k=1时,直线PA与直线PB的斜率均为1,A,B两点重合,与题意不符;当k=﹣1时,直线PA与直线PB的斜率均为﹣1,A,B两点重合,与题意不符.所以,直线l的斜率必存在.直线l的方程为[x﹣(k﹣1)2],即.所以直线l过定点(0,﹣1).证法二:由(1),得P(1,1).若l的斜率不存在,则l与x轴垂直.设A(x1,y1),则B(x1,﹣y1),.则==.(x1﹣1≠0,否则,x1=1,则A(1,1),或B(1,1),直线l过点P,与题设条件矛盾)由题意,,所以x1=0.这时A,B两点重合,与题意不符.所以l的斜率必存在.设l的斜率为k,显然k≠0,设l:y=kx+t,由直线l不过点P(1,1),所以k+t≠1.由消去y并整理得k2x2+(2kt﹣1)x+t2=0.由判别式△=1﹣4kt>0,得.设A(x1,y1),B(x2,y2),则①,②,则==.由题意,.故(k2﹣1)x1x2+(kt﹣k+1)③将①②代入③式并化简整理得,即1﹣t2﹣kt﹣k=0.即(1+t)(1﹣t)﹣k(t+1)=0,即(1+t)(1﹣t﹣k)=0.又k+t≠1,即1﹣t﹣k≠0,所以1+t=0,即t=﹣1.所以l:y=kx﹣1.显然l过定点(0,﹣1).证法三:由(1),得P(1,1).设l:x=ny+t,由直线l不过点P(1,1),所以n+t≠1.由消去x并整理得y2﹣ny﹣t=0.由题意,判别式△=n2+4t>0.设A(x1,y1),B(x2,y2),则y1+y2=n①,y1y2=﹣t②则==.由题意,y1y2+(y1+y2)+1=1,即y1y2+(y1+y2)=0③将①②代入③式得﹣t+n=0,即t=n.所以l:x=n(y+1).显然l过定点(0,﹣1).【点评】本题考查抛物线的方程的求法,直线与抛物线的位置关系的综合应用,考查直线过定点问题,考查分类讨论思想的应用.8.【分析】(I)把A代入抛物线方程求出p,根据椭圆的性质列方程组求出a,b;(II)①设MN方程为y=kx+b,根据根与系数的关系和向量的数量积公式求出b 即可得出结论;②根据弦长公式计算|SR|,求出F到直线MN的距离d,得出三角形的面积关于k的函数,根据单调性得出k的值.【解答】解:(I)把A(2,1)代入抛物线C1可得:4=2p,p=2.∴抛物线C1的方程为x2=4y.故F(0,1),又F(0,1)是椭圆C2:的焦点,且椭圆上的点到焦点F的最小值为2,∴,解得a=3,b=2,∴椭圆C2的标准方程为:=1.(II)①∵直线MN与抛物线交于M,N两点,∴直线MN斜率必存在.设直线MN的方程为y=kx+b,M(x1,y1),N(x2,y2),联立方程组,消去y可得:x2﹣4kx﹣4b=0,∴x1x2=﹣4b,∴y1y2==b2,∴=x1x2+y1y2=b2﹣4b=﹣4,即b=2.∴直线MN的方程为y=kx+2.∴直线MN过定点Q(0,2).②联立方程组,消去y可得:(9+8k2)x2+32kx﹣40=0,设R(x3,y3),S(x4,y4),则x3+x4=﹣,x3x4=﹣,∴|RS|==,又F(0,1)代直线MN的距离d=,=|RS|×d=,∴S△FSR令=t,则t≥,==,∴S△FSR取得最大值,此时k=0.由对勾函数的性质可知当t=时,S△FSQ∴直线MN的方程为y=2.【点评】本题考查了抛物线、椭圆的性质,直线与圆锥曲线的位置关系,属于中档题.9.【分析】(Ⅰ)根据题意,由椭圆的离心率公式可得,进而可得,则椭圆的方程可以为以,由椭圆Γ的四个顶点围成的四边形的面积为4,得2ab=4,据此解可得a、b的值,将a、b的值代入椭圆的方程即可得答案;(Ⅱ)根据题意,按直线l的斜率是否存在分2种情况讨论,当直线l的斜率不存在时,令x=±1,易得△AOB的面积,当直线l的斜率存在时,设ly=kx+m,联立直线与椭圆的方程,用k表示△AOB的面积,由基本不等式的性质分析可得△AOB的面积,综合2种情况即可得答案.【解答】解:(Ⅰ)根据题意,椭圆Γ:的离心率为,则,得,,所以,由椭圆Γ的四个顶点围成的四边形的面积为4,得2ab=4,所以a=2,b=1,椭圆Γ的标准方程为.(Ⅱ)根据题意,直线l与椭圆Γ交于A,B两点,当直线l的斜率不存在时,令x=±1,得,,当直线l的斜率存在时,设l:y=kx+m,A(x1,y1),B(x2,y2),M(x0,y0),由,得(1+4k2)x2+8kmx+4m2﹣4=0,则,,所以,,将代入x2+y2=1,得,又因为=,原点到直线l的距离,所以==×==.当且仅当12k2=1+4k2,即时取等号.综上所述,△AOB面积的最大值为1.【点评】本题考查椭圆的几何性质,涉及直线与椭圆的位置关系,注意分析直线的斜率是否存在.10.【分析】(Ⅰ)由已知可得:,结合a2=b2+c2,解得,即可.(Ⅱ)设A(x1,y1),B(x2,y2),则重心,,.则,结合.可得当且仅当t=0,即N(0,0)时,k•k'为定值为.【解答】解:(Ⅰ)由已知可得:,结合a2=b2+c2,解得,∴椭圆方程为:.(Ⅱ)设A(x1,y1),B(x2,y2),则重心,,.由于AB斜率为k存在且k≠0,故,则∵则要使为定值,则当且仅当t=0,即N(0,0)时,k•k'为定值为.【点评】本题考查了椭圆的方程,性质,直线与椭圆的位置关系,属于中档题.11.【分析】(1)利用|MF|=a+c,|BN|=a﹣c,是|MF|与|FN|的等比中项.得到(a+c)(a﹣c)=3,结合椭圆的离心率求解即可.(2)直线l的斜率存在且不为0.设直线l:y=kx+m(m≠0),A(x1,y1),B(x2,y2),联立直线和椭圆,消去y可得,(3+4k2)x2+8kmx+4m2﹣12=0,利用判别式以及韦达定理,通过OA,AB,OB的斜率依次成等比数列,推出m2(4k2﹣3)=0,求出,0<m2<6,且m2≠3,然后求解三角形的面积的表达式,求解范围即可.【解答】解:(1)解:|MF|=a+c,|BN|=a﹣c,是|MF|与|FN|的等比中项.∴(a+c)(a﹣c)=3,∴b2=a2﹣c2=3.又,解得a=2,c=1,∴椭圆C的方程为.(2)由题意可知,直线l的斜率存在且不为0.故可设直线l:y=kx+m(m≠0),A(x1,y1),B(x2,y2),联立直线和椭圆,消去y可得,(3+4k2)x2+8kmx+4m2﹣12=0,由题意可知,△=64km﹣4(4k2+3)(4m2﹣12)=48(4k2﹣m2+3)>0,即4k2+3>m2,且,又直线OA,AB,OB的斜率依次成等比数列,所以,将y1,y2代入并整理得m2(4k2﹣3)=0,因为m≠0,,0<m2<6,且m2≠3,设d为点O到直线l的距离,则有,,所以,所以三角形面积的取值范围为.【点评】本题考查椭圆方程的求法直线与椭圆的位置关系的综合应用,三角形的面积的范围的求法,考查转化思想以及计算能力.12.【分析】(1)根据题意,由椭圆的焦点坐标可得c的值,结合椭圆的定义可得2a=+=2,即可得a的值,由椭圆的定义计算可得b的值,将a、b的值代入椭圆的方程即可得答案;(2)根据题意,按直线AB的斜率是否存在分2种情况讨论:①,直线AB的斜率不为零,②当AB的斜率为零时,分别求出四边形的面积,综合即可得结论.【解答】解:(1)根据题意,椭圆E:+=1的两个焦点的坐标分别为(﹣1,0),(1,0).则c=1,又由椭圆经过点,则2a=+=2,即a=,b==1,则E的方程为;(2)证明:根据题意,分2种情况讨论:①,当直线AB的斜率不为零时,可设AB:x=my+t代入得:(m2+2)y2+2mty+t2﹣2=0,设A(x1,y1),B(x2,y2),则,△=8(m2+2﹣t2),设P(x,y),由,得,∵点P在椭圆E上,∴,即,∴4t2=m2+2,,原点到直线x=my+t的距离为.∴四边形OAPB的面积:.②当AB的斜率为零时,四边形OAPB的面积,∴四边形OAPB的面积为定值.【点评】本题考查椭圆的几何性质,涉及直线与椭圆的位置关系,关键是求出椭圆的标准方程.13.【分析】(1)方法一:设切线方程,代入椭圆方程,由M在椭圆方程,利用△=0,即可求得k的值,求得“切线”方程是;方法二:将直线方程代入椭圆方程,由△=0,则直线与椭圆只有一个交点,故直线与椭圆相切;(2)求得直线MA,MB的方程,令x=0,即可求得P和Q点坐标,令x=0,求得D点坐标,由y P+y Q=2y D,即可求得点D是线段PQ的中点;(3)求得交点坐标,即可求得MF1及MF2斜率,根据直线的夹角公式,求得tanθ1=tanθ1,过M的椭圆C的“切线”l与直线MF1、MF2所成夹角是否相等【解答】解:(1)方法一:当n=0时,m=±,则切线方程x=±,满足,当m≠0时,设直线y=k(x﹣m)+n,联立,整理得:(1+2k2)x2﹣4k(km﹣n)x+2(km﹣2)2﹣2=0,由△=16k2(km﹣n)2﹣4×(1+2k2)[2(km﹣2)2﹣2]=0,整理得:(2﹣m2)k2+2mnk+1﹣n2=0,由M(m,n)在椭圆上,则,2﹣m2=2n2,1﹣n2=,∴2n2k2+2mnk+=0,则(nk+)2=0,解得:k=﹣,∴切线方程y=﹣(x﹣m)+n,整理得:;综上可知:过椭圆C上的点M(m,n)的“切线”方程是;方法二:由直线,整理得:mx+2ny=2,,整理得:(2n2+m2)y2﹣4ny+2﹣m2=0,由M(m,n)在椭圆上,则,2﹣m2=2n2,2n2+m2=2,则y2﹣2ny+n2=0,则△=0,∴过椭圆C上的点M(m,n)的“切线”方程是;(2)由椭圆的左顶点A(﹣,0),右顶点B(,0),由直线MA的方程:y=(x+),令x=0,则y P=,同理y Q=,切线方程,令x=0,则y D=y P+y Q===2y D,∴点D是线段PQ的中点;(3)相等,由椭圆的焦点F1(﹣1,0),F2(1,0),过椭圆C上的点M(m,n)的“切线”方程是,则直线MF 1的斜率=,直线MF2的斜率=,则切线的斜率k=,由夹角公式tanθ1=||=,tanθ1=||=,所以所成夹角相等.【点评】本题考查椭圆的标准方程的性质,直线的切线方程的应用,直线与椭圆的位置关系,考查直线夹角公式的应用,中点坐标公式,考查转化思想,属于中档题.14.【分析】(Ⅰ)设A(x1,y1),依题意得点C(﹣x1,﹣y1),表示出△PAC面积,即可求出最大值,(Ⅱ)证法1:当直线AP的斜率存在时,设其方程为y=kx+,根据根与系数的关系可得m,n是方程9x2﹣30x+4x12+9=0的两个根,由韦达定理,m+n=;证法2:当直线AP的斜率存在时,这时点A不在y轴上,即x1≠0,设其方程为y=kx+,根据根与系数的关系,求出m,n,即可求出m+n的值.【解答】解:(Ⅰ)设A(x1,y1),依题意得点C(﹣x1,﹣y1),则S=|OP|•2|x1|=|x1|,△PAC∵点A在椭圆T:+y2=1上,∴|x1|≤2,∴S=|x1|≤1(当且仅当x1=±2时等号成立)△PAC∴△PAC面积的最大值为1;(Ⅱ)证法1:当直线AP的斜率存在时,设其方程为y=kx+,由,消去y,得(1+4k2)x2+4kx﹣3=0,设B(x2,y2),由韦达定理,得,而由=m,得(﹣x1,﹣y1)=m(x2,y2﹣),故﹣x1=mx2,x2=﹣,代入①、②,得,两式相除,得k=,代入④,整理得9m2﹣30m+4x12+9=0;对于射线CP,同样的方法可得9n2﹣30n+4x12+9=0,故m,n是方程9x2﹣30x+4x12+9=0的两个根,由韦达定理,m+n=;当直线AP的斜率不存在时,点A为椭圆T的上顶点或下顶点,当点A为(0,1)时,则B、C重合于点(0.﹣1),D、A重合,由=m,=n,得m=,n=3,这时m+n=;若点A为椭圆T的下顶点(0,﹣1),同理可得m+n=;综上可知m+n为定值,该值为.证法2:当直线AP的斜率存在时,这时点A不在y轴上,即x1≠0,设其方程为y=kx+,由,消去y,得(1+4k2)x2+4kx﹣3=0,设B(x2,y2),由韦达定理,得x1x2=﹣,又k=,代入上式得x2=,由=m,得(﹣x1,﹣y1)=m(x2,y2﹣),故﹣x1=mx2,∴m=﹣=对于射线CP,同样的方法可得n=,∴m+n==.当直线AP的斜率不存在时,点A为椭圆T的上顶点或下顶点,当点A为(0,1)时,则B、C重合于点(0.﹣1),D、A重合,当直线AP的斜率不存在时,点A为椭圆T的上顶点或下顶点,当点A为(0,1)时,则B、C重合于点(0.﹣1),D、A重合,由=m,=n,得m=,n=3,这时m+n=;若点A为椭圆T的下顶点(0,﹣1),同理可得m+n=;综上可知m+n为定值,该值为.【点评】本题考查了直线和椭圆的位置关系,向量的基本运算,考查了运算能力和转化能力,属于中档题.15.【分析】(Ⅰ)根据题意,由圆的方程分析可得椭圆的焦点和顶点坐标,即可得。
2018年数学全国1卷各省模拟题精汇版(文科)——(7)(简答题)圆锥曲线
2018年数学全国1卷各省模拟题精汇版(文科)——(7)(简答题)圆锥曲线(1) 【2018广东省惠州一中(惠州市)第三次调研20】已知1F ,2F 分别为椭圆C :22182x y +=的左、右焦点,点P 在椭圆C 上.(1)求12PF PF ⋅的最小值;(2)设直线l 的斜率为12,直线l 与椭圆C 交于A , B 两点,若点P 在第一象限,且121PF PF ⋅=-,求ABP ∆面积的最大值. 【答案】(1)有题意可知()1F ,)2F ,设点00(,)P x y则()100,PF x y =- ,)200,PF x y =- , ………2分 ∴2212006PF PF x y ⋅=+- , ∵点()00,P x y 在椭圆C 上,∴2200182x y +=,即220024x y =-, ………3分 ∴22200120326444x x PF PF x ⋅=+--=-+(0x -≤≤, ………4分∴当00x =时, 12PF PF ⋅的最小值为4-. ………6分 (注:此问也可用椭圆的参数方程表达点P 求解) (2)设l 的方程12y x b =+,点()11,A x y , ()22,B x y ,由221,2 182y x b x y =++=⎧⎪⎪⎨⎪⎪⎩得222240x bx b ++-=, ………7分 令2248160b b ∆=-+>,解得22m -<<.由韦达定理得122x x b +=-, 21224x x b =-, 由弦长公式得AB == ………8分且121PF PF ⋅=-,得()2,1P . 又点P 到直线l的距离d ==, ………9分∴1122PAB S AB d ∆===22422b b +-≤=, ………11分当且仅当b = ∴ PAB ∆面积最大值为2. ……12分(2) 【2018广东省揭阳市第二次模拟20】已知椭圆()22122:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,圆2C 经过椭圆1C 的两个焦点和两个顶点,点P 在椭圆1C 上,且12PF =22PF =(Ⅰ)求椭圆1C 的方程和点P 的坐标;(Ⅱ)过点P 的直线1l 与圆2C 相交于A 、B 两点,过点P 与1l 垂直的直线2l 与椭圆1C 相交于另一点C ,求ABC △的面积的取值范围. 【答案】解:(I )设)0,(1c F -,)0,(2c F , 可知圆2C 经过椭圆焦点和上下顶点,得c b =, 由题意知4||||221=+=PF PF a ,得2=a ,由222a c b =+,得2==c b ,所以椭圆1C 的方程为12422=+y x , 点P 的坐标为)0,2(. (II )由过点P 的直线l 2与椭圆1C 相交于两点,知直线l 2的斜率存在, 设l 2的方程为)2(-=x k y ,由题意可知0≠k ,联立椭圆方程,得0488)12(2222=-+-+k x k x k ,设),(22y x C ,则12482222+-=⋅k k x ,得1224222+-=k k x , 所以1214|2|1||2222++=-+=k k x k PC ;由直线l 1与l 2垂直,可设l 1的方程为)2(1--=x ky ,即02=-+ky x圆心)0,0(到l 1的距离212kd +=,又圆的半径2=r ,所以1)1(2142)2||(222222+-=+-=-=k k k d r AB , 1122||22+-⋅=k k AB , 由r d <即2122<+k ,得12>k ,112||||2122+-⋅==∆k k PC AB S ABC 1212412142222+-⋅=++⋅k k k k , 设12-=k t ,则0>t,2ABC S t t∆==≤=+当且仅当t =k =,所以△ABC的面积的取值范围是(0,.(3) 【2018安徽省黄山市一模检测20】设1F 、2F 分别是椭圆2214x y +=的左、右焦点.(1)若P 是第一象限内该椭圆上的一点,且1254PF PF ⋅=- ,求点P 的坐标;(2)设过定点()0,2M 的直线l 与椭圆交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围. 【答案】解:(1)由题意得122,1,(a b c F F ===\-.设(,)(0,0)P x y x y >>.则22125(,),)34PF PF x y x y x y ?--?-=+-=-u u u r u u . 又2214x y +=,联立22221474x y x y ìïï+=ïïïíïï+=ïïïî解得1x y ì=ïïïíï=ïïïîP . ……………………5分 (2)显然0x =不满足题设条件.可设l 的方程为2y kx =+,设1122(,),(,)A x y B x y .联立22142x y y kx ìïï+=ïíïï=+ïî,即22(14)16120k x kx +++=,1212221216,1414k x x x x k k \=+=-++ 由22(16)4(14)120k k =-??V ,得234k >①. …………………………………8分 又AOB ∠为锐角⇔cos 0AOB ∠>⇔0OA OB ⋅>, 12120OA OB x x y y \?+>u u u u u u u r,又212121212(2)(2)2()4y y kx kx k x x k x x =++=+++,221212121224(4)(1)2()4014k x x y y k x x k x x k-\+=++++=>+ 24k \< ② 综合①②可知2344k <<, ∴k的取值范围是(2,--?. …………12分(4) 【2018安徽省六安市皖西省示范高中联盟期末20】已知经过抛物线2:4C y x =的焦点F的直线l 与抛物线C 相交于两点(),,11y x A ()22,y x B ,直线BO AO ,分别交直线1:-=x m 于点N M ,.(Ⅰ)求证:4,12121-==y y x x ; (Ⅱ)求线段MN 长的最小值.BM【解析】(Ⅰ)易知)0,1(F ,设:1AB x y λ=+ -----1分则221440,4x y y x y x λλ=+⎧--=⎨=⎩得 -----2分124y y ∴=-, -----3分()22212121214416y y y y x x ∴=⋅==; -----4分(Ⅱ)设221212(,),(,)44y y A y B y ,所以1244,,AO BO k k y y ==所以AO 的方程是:14x y y =, ------6分由11441M y x y y y x ⎧=⎪∴=⎨-⎪=-⎩, ------7分同理由22441N y x y y y x ⎧=⎪∴=⎨-⎪=-⎩------8分1244||||||M N MN y y y y ∴=-=---12124||y y y y -=① ------9分且由(Ⅰ)知4,4,y y y y λ=-+=12||yy ∴-==代入①得到: 12||MNy y =-=分 ||4MN ≥, 仅当0λ=时,||MN 取最小值4, 综上所述:||MN 的最小值是4 ------12分(5) 【2018湖南师大附中月考卷五】设F 1、F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是(A) (A)2x ±y =0 (B)x ±2y =0 (C)x ±2y =0 (D)2x ±y =0【解析】不妨设P 为右支上一点,由双曲线的定义,可得,|PF 1|-|PF 2|=2a , 又|PF 1|+|PF 2|=6a ,解得,|PF 1|=4a ,|PF 2|=2a , 且|F 1F 2|=2c ,由于2a 最小,即有∠PF 1F 2=30°,由余弦定理,可得,cos 30°=|PF 1|2+|F 1F 2|2-|PF 2|22|PF 1|·|F 1F 2|=16a 2+4c 2-4a 22×4a ·2c =32.则有c 2+3a 2=23ac ,即c =3a , 则b =c 2-a 2=2a ,则双曲线的渐近线方程为y =±bax ,即为y =±2x ,故选A.(6) 【2018湖南师大附中月考卷五】已知O 为坐标原点,抛物线C :y 2=nx (n >0)上在第一象限内的点P (2,t )到焦点的距离为52,曲线C 在点P 处的切线交x 轴于点Q ,直线l 1经过点Q且垂直于x 轴. (Ⅰ)求Q 点的坐标;(Ⅱ)设不经过点P 和Q 的动直线l 2:x =my +b 交曲线C 于点A 和B ,交l 1于点E ,若直线P A ,PE ,PB 的斜率依次成等差数列,试问: l 2是否过定点?请说明理由.【解析】(Ⅰ)由抛物线上的点P (2,t )到焦点的距离为52,得2+n 4=52,所以n =2,则抛物线方程为y 2=2x ,故曲线C 在点P 处的切线斜率k =12,切线方程为y -2=12(x -2),令y =0得x =-2,所以点Q (-2,0).(Ⅱ)由题意知l 1:x =-2,因为l 2与l 1相交,所以m ≠0.设l 2:x =my +b ,令x =-2,得y =-b +2m ,故E (-2,-b +2m),设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧x =my +b y 2=2x 消去x 得y 2-2my -2b =0,则y 1+y 2=2m ,y 1y 2=-2b ,直线P A 的斜率为y 1-2x 1-2=y 1-2y 212-2=2y 1+2,同理直线PB 的斜率为2y 2+2,直线PE 的斜率为2+b +2m 4.因为直线P A ,PE ,PB 的斜率依次成等差数列,所以k P A +k PB =2k PE ,即2y 1+2+2y 2+2=2m +2+b 2m ,即2m +42m +2-b=2m +2+b 2m 整理得:b 2=4,因为l 2不经过点Q ,所以b ≠-2.所以b =2. 故l 2:x =my +2,即l 2恒过定点(2,0). (7) 【2018安徽省合肥一中等六校第二次联考20】已知椭圆C 1:1(a>b>0)的右焦点为F ,上顶点为A ,P 为C 1上任一点,MN 是圆C 2:x 2+(y -3)2=1的一条直径,与AF 平行且在y 轴上的截距为3-的直线l 恰好与圆C 2相切.(1)求椭圆C 1的离心率; (2)若的最大值为49,求椭圆C 1的方程.【答案】(1)由题意可知,直线l 的方程为bx +cy -(3-2)c =0,因为直线l 与圆C 2:x 2+(y -3)2=1相切,所以d =|3c -3c +2c |b 2+c 2=1, 即a 2=2c 2,从而e =22.............4分 (2)设P (x ,y ),圆C 2的圆心记为C 2,则x 22c 2+y 2c 2=1(c >0),又因为PM →·PN →=(PC 2→+C 2M →)·(PC 2→+C 2N →) =PC 2→2-C 2N →2 =x 2+(y -3)2-1 =-(y +3)2+2c 2+17(-c ≤y ≤c ). ①当c ≥3时, (PM →·PN →)max=17+2c 2=49,解得c =4,此时椭圆方程为x 232+y 216=1;.............10分 ②当0<c <3时,(PM →·PN →)max =-(-c +3)2+17+2c 2=49, 解得c =±52-3.但c =-52-3<0,且c =52-3>3,故舍去.综上所述,椭圆C 1的方程为x 232+y 216=1. .............12分(8) 【2018河北省唐山市上学期期末】已知抛物线E :y 2=4x ,过点P (2,0)作两条互相垂直的直线m ,n ,直线m 交E 于不同两点A ,B ,直线n 交E 于不同两点C ,D ,记直线m 的斜率为k .(1)求k 的取值范围;(2)设线段AB ,CD 的中点分别为M ,N ,证明:直线MN 过定点Q (2,0). 【答案】解:(Ⅰ)由题设可知k ≠0,所以直线m 的方程为y =kx +2,与y 2=4x 联立, 整理得ky 2-4y +8=0, ①由Δ1=16-32k >0,解得k < 12.…2分直线n 的方程为y =- 1k x +2,与y 2=4x 联立,整理得y 2+4k y -8k =0,由Δ2=16k 2+32k >0,解得k >0或k <-2.…4分所以⎩⎨⎧k ≠0,k <12,k >0或k <-2,故k 的取值范围为{k |k <-2或0<k <12}.…6分(Ⅱ)设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0).由①得,y 1+y 2= 4 k ,则y 0= 2 k ,x 0= 2 k 2- 2 k ,则M (2 k 2- 2 k , 2k ).…8分同理可得N (2k 2+2k ,-2k ).直线MQ 的斜率k MQ =2k2k 2-2k -2=-kk 2+k -1,直线NQ 的斜率k NQ =-2k 2k 2+2k -2=-kk 2+k -1=k MQ,所以直线MN 过定点Q (2,0).…12分(9) 【2018东北三省三校第三次联合模拟考20】 已知抛物线2:8C x y =与直线:=1l y kx +交于,A B 不同两点分别过点A 、点B 作抛物线C 的切线,所得的两条切线相交于点P .(Ⅰ)求证OA OB ∙为定值:(Ⅱ)求ABP ∆的面积的最小值及此时的直线l 的方程. 【答案】解:设1122(,),(,)A x y B x y281x y y kx ⎧=⎨=+⎩消y 得2880x kx --=,方程的两个根为12,x x , 222=440p k p ∆+>恒成立,12+=8x x k ,128x x ⋅=-,A B 在抛物线C 上,221212,88x x y y ∴==,()222121212=18864x x x x y y ∴⋅=⋅=(Ⅰ)证明:1122=(,),(,)OA x y OB x y = ,1212=+817OA OB x x y y ∴⋅=-+=-为定值.(Ⅱ)解: 2:8C x y =即218y x =,14y x '=,114AP k x =,214BP k x =21111()84x AP y x x x ∴-=-:即2111148y x x x =-,同理2221148BP y x x x =-:由 21122211481148y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩得1212122()()()x x x x x x x -=-+,而12x x ≠故有12=42x x x k +=,1218x xy ==-,即点(4,1)P k -,AB ===点(4,1)P k -到直线:1l y kx =+的距离d =322111)22ABPS AB d k ∆∴=⋅==+21k ≥ 20k ∴=即0k =时ABP S ∆有最小值为l 为1y =.(10) 【2018福建省厦门市(3月)20】设O 为坐标原点,椭圆()2222:10x y C a b a b+=>>的左焦点为F.直线():0l y kx m m =+>与C 交于,A B 两点,AF 的中点为M ,5OM MF +=. (1)求椭圆C 的方程;(2)设点()0,1,4P PA PB ⋅=-,求证:直线l 过定点,并求出定点的坐标.【答案】解:(1)设椭圆的右焦点为1F ,则OM 为1AFF ∆的中位线,所以111,2OM AF MF AF ==,所以152AF AF OMMF a ++=== 因为c e a ==,所以c =所以b =C 的方程为:221255x y +=(2)设()()1122,,,A x y B x y联立221255y kx m x y =+⎧⎪⎨+=⎪⎩,消去y 整理得:()22215105250k x mkx m +++-=所以0∆>,212122210525,1515km m x x x x k k -+=-=++ 所以()121222215my y k x x m k +=++=+()()()2212121212y y kx m kx m k x x km x x m =++=+++ 222222222222525105251515k m k k m m k m k m k k --++-+==++ 因为()0,1,4P PA PB ⋅=-所以()()()1122121212,1,114x y x y x x y y y y -⋅-=+-++=-所以222222525252+50151515m k m m k k k--+-+=+++ 整理得:23100m m --= 解得:2m =或53m =-(舍去)所以直线l 过定点()0,2.(11) 【2018广东省第三次调研考20】已知椭圆C 1以直线0mx y +=所过的定点为一个焦点,且短轴长为4. (Ⅰ)求椭圆C 1的标准方程;(Ⅱ)已知椭圆C 2的中心在原点,焦点在y 轴上,且长轴和短轴的长分别是椭圆C 1的长轴和短轴的长的λ倍(λ>1),过点C (−1,0)的直线l 与椭圆C 2交于A ,B 两个不同的点,若2AC CB =,求△OAB 的面积取得最大值时直线l 的方程.(12) 【2018广东省东莞市第一次调研考21】已知椭圆E : 22221(0)x y a b a b+=>>的左顶点为A ,右焦点为()1,0F ,过点A 且斜率为1的直线交椭圆E 于另一点B ,交y 轴于点C ,6AB BC =.(1)求椭圆E 的方程;(2)过点F 作直线l 与椭圆E 交于,M N 两点, 连接MO (O 为坐标原点)并延长交椭圆E 于点Q , 求MNQ ∆面积的最大值及取最大值时直线l 的方程. 【答案】解:(Ⅰ)由题知),0(),0,(a C a A -,故)76,7(aa B -,……………1分 代入椭圆E 的方程得1493649122=+ba ,……………2分 又122=-b a ,……………3分 故3,422==b a ,……………4分 椭圆134:22=+y x E ;……………5分(Ⅱ)由题知,直线l 不与x 轴重合,故可设1:+=my x l , 由⎪⎩⎪⎨⎧=++=134122y x my x 得096)43(22=-++my y m ,……………8分 设),(),,(2211y x N y x M ,则439,436221221+-=+-=+m y y m m y y ,由Q 与M 关于原点对称知, 431124)(||2222122121++=-+=-==∆∆m my y y y y y S S MONMNQ 11131222+++=m m ,……………10分1,4∴,即3MNQ S ∆≤,当且仅当0=m 时等号成立,MNQ ∆∴面积的最大值为3,此时直线l 的方程为1=x ……………12分(13) 【2018广东省佛山市质量检测(一)20】已知椭圆1C :22221x y a b+=()00ab >>,的右顶点与抛物线2C :22(0)y px p =>的焦点重合,椭圆1C 的离心率为12,过椭圆1C 的右焦点F 且垂直于x 轴的直线截抛物线2C 所得的弦长为(Ⅰ)求椭圆1C 和抛物线2C 的方程;(Ⅱ)过点A (-2,0)的直线l 与2C 交于M ,N ,点M 关于x 轴的对称点'M ,证明:直线M ’N 恒过一定点.(14) 【2018广东省广州市综合测试(一)20】已知两个定点()1,0M 和()2,0N ,动点P 满足PN =.(1)求动点P 的轨迹C 的方程;(2)若A ,B 为(1)中轨迹C 上两个不同的点,O 为坐标原点.设直线OA ,OB ,AB 的斜率分别为1k ,2k ,k .当123k k =时,求k 的取值范围.(15) 【2018广东省深圳市南山区上学期期末20】如图所示,已知A 、B 、C 是长轴长为4的椭圆E上的三点,点A 是长轴的一个端点,BC 过椭圆中心O , 且0=⋅BC AC ,|BC |=2|AC |. (1)求椭圆E 的方程;(2)在椭圆E 上是否存点Q ,使得222|QB||QA|-=?若存在,有几个(不必求出Q 点的坐标),若不存在,请说明理由.(3)过椭圆E 上异于其顶点的任一点P ,作2243O :x y +=的两条切线, 切点分别为M 、N ,若直线MN 在x 轴、y 轴上的截距分别为m 、n ,证明:22113m n+为定值.【答案】 解:(1)依题意知:椭圆的长半轴长2a =,则A (2,0),设椭圆E 的方程为14222=+by x ----------------------------------------------------------1分 由椭圆的对称性知|OC |=|OB | 又∵0=⋅AC ,|BC |=2|AC |∴AC ⊥BC ,|OC |=|AC | ∴△AOC 为等腰直角三角形,∴点C 的坐标为(1,1),点B 的坐标为(-1,-1),----------------------------3分 将C 的坐标(1,1)代入椭圆方程得342=b∴所求的椭圆E 的方程为143422=+y x ----------------------------------------------4分(2)解法一:设在椭圆E 上存在点Q ,使得222|QB||QA|-=,设00Q(x ,y ),则()()()2222220000001126222|QB ||QA|x y x y x y .-=+++---=+-=即点Q 在直线320x y +-=上,---------------------------------------------------------6分∴点Q 即直线320x y +-=与椭圆E 的交点,∵直线320x y +-=过点203(,),而点椭圆203(,)在椭圆E 的内部,∴满足条件的点Q 存在,且有两个.--------------------------------------------------8分 【解法二:设在椭圆E 上存在点Q ,使得222|QB||QA|-=,设00Q(x ,y ),则()()()2222220000001126222|QB ||QA|x y x y x y .-=+++---=+-=即00320x y +-=,--------①------------------------------------------------6分又∵点Q 在椭圆E 上,∴2200340x y +-=,-----------------②由①式得0023y x =-代入②式并整理得:2007920x x -+=,-----③ ∵方程③的根判别式8156250∆=-=>,∴方程③有两个不相等的实数根,即满足条件的点Q 存在,且有两个. ---------------8分】(3)解法一:设点11P(x ,y ),由M 、N 是O 的切点知,OM MP,ON NP ⊥⊥, ∴O 、M 、P 、N 四点在同一圆上, ------------------------------------------9分且圆的直径为OP,则圆心为1122x y(,),其方程为22221111224x y x y (x )(y )+-+-=, ------------------------------10分即22110x y x x y y +--=-----④即点M 、N 满足方程④,又点M 、N 都在O 上,∴M 、N 坐标也满足方程----2243O :x y += -----------⑤⑤-④得直线MN 的方程为1143x x y y +=, ------------------------------11分令0y ,=得143m x =,令0x =得143n y =,∴114433x ,y m n ==,又点P 在椭圆E 上, ∴22443433()()m n +=,即2211334m n +==定值. ---------------------------------12分 【解法二:设点112233P(x ,y ),M(x ,y ),N(x ,y ),则221PM OM x k ,k y =-=-----------9分 直线PM 的方程为2222x y y (x x ),y -=--化简得2243x x y y ,+=--------------④ 同理可得直线PN 的方程为3343x x y y ,+= ---------------⑤------------------10分把P 点的坐标代入④、⑤得121213134343x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩ ∴直线MN 的方程为1143x x y y +=, ------------------------------------------11分 令0y ,=得143m x =,令0x =得143n y =,∴114433x ,y m n ==,又点P 在椭圆E 上, ∴22443433()()m n +=,即2211334m n +==定值. -----------------------------------12分】(16) 【2018广东省省际名校(茂名市)下学期联考(二)20】已知圆()()221:222C x y -+-=内有一动弦AB ,且2AB =,以AB 为斜边作等腰直角三角形PAB ,点P 在圆外. (1)求点P 的轨迹2C 的方程;(2)从原点O 作圆1C 的两条切线,分别交2C 于,,,E F G H 四点,求以这四点为顶点的四边形的面积S .【答案】解:(1)连接11,C A C B,∵112C A C B AB ==,∴1C AB ∆为等腰直角三角形. ∵FAB ∆为等腰直角三角形,∴四边形1FAC B 为正方形. ∴12PC =,∴点P 的轨迹是以1C 为圆心,2为半径的圆, 则2C 的方程为()()22224x y -+-=.(2)如图,,1C N OF ⊥于点N ,连接111,,C E C F C O .在1Rt OC N ∆中,∵11OC C N =ON ∴11sin 2C ON ∠=,∴130C ON ∠=︒. ∴OEH ∆与OFG ∆为正三角形.∵11C EN C FN ∆≅∆,且112C E C F ==,∴NE NF ==∴四边形EFGH的面积226OFC CEH S S S ∆∆=-==.(17) 【2018广东省五校1月联考20】已知椭圆E :+=1(a >b >0)的左焦点F 1与抛物线y 2=﹣4x 的焦点重合,椭圆E 的离心率为,过点M (m ,0)(m >)作斜率不为0的直线l ,交椭圆E 于A ,B 两点,点P (,0),且•为定值.(Ⅰ)求椭圆E 的方程; (Ⅱ)求△OAB 面积的最大值.【答案】解:(Ⅰ)设F 1(﹣c ,0),∵抛物线y 2=﹣4x 的焦点坐标为(﹣1,0),且椭圆E的左焦点F 与抛物线y 2=﹣4x 的焦点重合,∴c=1, ……… (1分)又椭圆E 的离心率为,得a=, ……… (2分)于是有b 2=a 2﹣c 2=1.故椭圆Γ的标准方程为:. ……… (3分)(Ⅱ)设A (x 1,y 1),B (x 2,y 2),直线l 的方程为:x=ty+m ,由整理得(t 2+2)y 2+2tmy+m 2﹣2=0 ……… (4分),, ……… (5分),==(t 2+1)y 1y 2+(tm ﹣t )(y 1+y 2)+m 2﹣=.要使•为定值,则,解得m=1或m=(舍) ……… (8分)当m=1时,|AB|=|y 1﹣y 2|=, ……… (9分)点O 到直线AB 的距离d=, ……… (10分)△OAB 面积s==.∴当t=0,△OAB 面积的最大值为, ……… (12分)(18)【2018河北省邯郸市教学质量检测21】已知椭圆C :22221(0)x y a b a b+=>>过点12⎛- ⎝⎭.过点的直线l 与椭圆C 交于M ,N 两点. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若点P 为椭圆C 的右顶点,探究:PM PN k k +是否为定值,若是,求出该定值,若不是,请说明理由.(其中,PM k ,PN k 分别是直线PM 、PN 的斜率)【答案】(Ⅰ)依题意,2222211414162a b a b c c a ⎧+=⎪⎪⎪=+⎨⎪⎪=⎪⎩解得a =1b =,故椭圆C 的标准方程为2212x y +=.(Ⅱ)依题意,P .易知当直线MN 的斜率不存在时,不合题意.当直线MN 的斜率存在时,设直线MN的方程为(y k x =, 代入2222x y +=中,得2222(12))4820k x k k x k k +-++++=,设11(,)M x y ,22(,)N x y ,由222232()4(12)(482)0k k k k k ∆=+-+++>,得14k <-,12x x +=,212248212k k x x k ++=+,故PM PN k k +=+=2k =22)42k k k +-=1= 综上所述,PM PN k k +为定值1.(19)【2018河北省衡水中学第十次模拟20】已知椭圆22221(0)x y a b a b+=>>经过点,离心率为12,左、右焦点分别为1(,0)F c -,2(,0)F c . (1)求椭圆的方程; (2)若直线l :12y x m =-+与椭圆交于A ,B 两点, 与以12F F 为直径的圆交于C ,D两点,且满足4AB CD=,求直线l 的方程. 【答案】解:(1)由题设知22212b c a b a c ⎧=⎪⎪=⎨⎪⎪=-⎩,解得21a b c =⎧⎪=⎨⎪=⎩22143x y +=. (2)由题设,以12F F 为直径的圆的方程为221x y +=,∴圆心(0,0)到直线l的距离d =由1d <,得m <(*).∴CD ===. 设11(,)A x y ,22(,)B x y ,由2212143y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得2230x mx m -+-=, 由根与系数的关系得12x x m +=,2123x x m =-,∴AB ==.由AB CD=1=,解得m =,满足(*). ∴直线l的方程为12y x =-或12y x =-. (20)【2018湖北省武汉市四月调研19】已知直线2y x =与抛物线Γ:22y px =交于O 和E 两点,且OE =(1)求抛物线Γ的方程;(2)过点(2,0)Q 的直线交抛物线Γ于A 、B 两点,P 为2x =-上一点,PA ,PB 与x 轴相交于M 、N 两点,问M 、N 两点的横坐标的乘积M N x x ⋅是否为定值?如果是定值,求出该定值,否则说明理由.【答案】解:(1)由22y px =与2y x =,解得交点(0,0)O ,(,)2pE p ,∴OE ==2p =. ∴抛物线方程为:24y x =.(2)设AB :2x ty =+,代入24y x =中,设11(,)A x y ,22(,)B x y , 则2480y ty --=, ∴121248y y t y y +=⋅⋅⋅⎧⎨⋅=-⋅⋅⋅⎩①②.设0(2,)P y -,则PA :1001(2)2y y y y x x --=++, 令0y =,得01011()2M y y x y x y -=+③同理由BP 可知:02022()2N y y x y x y -⋅=+④由③×④得0102()()M N y y y y x x --⋅011022(2)(2)y x y y x y =++201201221122()4y x x y y x y x y y =+++ 2222212210012122()44444y y y y yy y y y y =+⋅+⋅+⋅ 2221201201212124164y y y y y y y y y y +=⋅++(其中128y y =-.)20120124[(()]y y y y y y =-++, 从而4M N x x ⋅=为定值.(21) 【2018广东省惠来一中下学期第一次阶段考试20】已知圆O :221x y +=过椭圆C :12222=+b x a y (a >b >0)的短轴端点,椭圆C 的离心率为23. (1)求椭圆C 的方程;(2)圆O 的一条切线t kx y +=交椭圆C 于M ,N 两点,求△OMN 的面积的最大值. 【答案】解:(1)∵圆O 过椭圆C 的短轴端点,∴b=1,又∵23==a c e ,∴a=2.∴椭圆C 的标准方程为. …………3分(2)由题意可设切线MN 的方程为y=kx+t ,即kx ﹣y+t=0,则,得k 2=t 2﹣1.①…………5分 联立得方程组,消去y 整理得(k 2+4)x 2+2ktx+t 2﹣4=0.…………6分其中△=(2kt )2﹣4(k 2+4)(t 2﹣4)=﹣16t 2+16k 2+64=48>0,设M (x 1,y 1),N (x 2,y 2),则,,…………7分则.② …………8分将①代入②得,∴,…………9分而,等号成立当且仅当,即.…………11分综上可知:(S △OMN )max =1. …………12分(22) 【2018广东省深圳市第一次调研考20】已知椭圆C 22221x y a b+=(a>b>0)的离心率为12,直线l :x+2y=4与椭圆有且只有一个交点T.(I )求椭圆C 的方程和点T 的坐标;(Ⅱ)O 为坐标原点,与OT 平行的直线'l 与椭圆C 交于不同的两点A ,B ,求△0AB 的面积最大时直线'l 的方程.(23)【2018河南省八市学评下学期第一次测评20】已知椭圆错误!未找到引用源。
圆锥曲线高考真题专练含答案精编版
圆锥曲线高考真题专练含答案精编版MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】2018年数学全国1卷设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠. 解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为(1,2或(1,2-.所以AM 的方程为2y x =-2y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠. 当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++.则3131322244128423()4021k k k k kk k k k x x x x --++-++==+.从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,P 4(1C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 解:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b +>+知,C 不经过点P1,所以点P2在C 上. 因此222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩. 故C 的方程为2214x y +=.(2)设直线P2A 与直线P2B 的斜率分别为k1,k2,如果l 与x 轴垂直,设l :x=t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t,),(t,).则121k k +=-=-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得由题设可知22=16(41)0k m ∆-+>. 设A (x1,y1),B (x2,y2),则x1+x2=2841kmk -+,x1x2=224441m k -+.而12121211y y k k x x --+=+1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--,所以l 过定点(2,1-)2016年数学全国1卷设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(I )13422=+y x (0≠y );(II ))38,12[【解析】试题分析:(I )利用椭圆定义求方程;(II )把面积表示为关于斜率k 的函数,再求最值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题20 圆锥曲线综合【母题原题1】【2018新课标1,文20】设抛物线22C y x =:,点()20A ,, ()20B -,,过点A 的直线l 与C 交于M , N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明: ABM ABN ∠=∠.()()()21121212121222222BM BN x y x y y y y yk k x x x x ++++=+=++++.① 将112y x k =+, 222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 ()()1212211212248820y y k y y x y x y y y kk++-++++===. 所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM =∠ABN . 综上,∠ABM =∠ABN .点睛:该题考查的是有关直线与抛物线的问题,涉及到的知识点有直线方程的两点式、直线与抛物线相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.【母题原题2】【2017新课标1,文20】设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.【母题原题3】【2016新课标1,文20】在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.【解析】(Ⅰ)由已知得M(0,t),P.【命题热点剖析】1.圆锥曲线的解答题新课标的要求理科一般以椭圆或抛物线为背景,而文科一般以椭圆或圆或抛物线为背景进行综合考查,由于双曲线的弱化,故以双曲线为背景的解析几何解答题不在考虑.从近几年高考来看,圆锥曲线的解答题中主要是以椭圆,抛物线为基本依托,考查椭圆,抛物线方程的求解、考查直线与曲线的位置关系,考查数形结合思想、函数与方程思想、等价转化思想、分类与整合思想等数学思想方法,这道解答题往往是试卷的压轴题之一.从近几年高考来看,计算量都不是太大,说明文理难度都在降低,特别是计算量不大,但要求的逻辑思维能力,数形结合的能力与往年差不多,体现高考重能力,轻运算.由于圆锥曲线与方程是传统的高中数学主干知识,在高考命题上已经比较成熟,考查的形式和试题的难度、类型已经较为稳定,考查方向为以椭圆,抛物线为背景,考查轨迹问题、探索性命题及最值问题,文科也有可能以圆为背景命题,也有可能继续保持题型不变,考查细节上有所变化.2.从近几年高考来看,求曲线的轨迹方程是高考的常考题型,主要以解答题的形式出现,考查轨迹方程的求法以及利用曲线的轨迹方程研究曲线的几何性质,一般用直接法、待定系数法、相关点代入法等求曲线的轨迹方程,其关键是找到与任意点有关的等量关系.轨迹问题的考查往往与函数、方程、向量、平面几何等知识相融合,着重考查分析问题、解决问题的能力,对逻辑思维能力、运算能力也有一定的要求.【应试经验与技巧】1.判断两种标准方程的方法为比较标准形式中2x与2y的分母大小,若2x的分母比2y的分母大,则焦点在x 轴上,若2x的分母比2y的分母小,则焦点在y轴上.2.注意椭圆的范围,在设椭圆)0(12222>>=+b a by a x 上点的坐标(),P x y 时,则x a ≤,这往往在求与点P有关的最值问题中特别有用,也是容易忽略导致求最值错误的原因.3.注意椭圆上点的坐标范围,特别是把椭圆上某一点坐标视为某一函数问题求解,求函数的单调区间,最值有重要意义.4.直线和抛物线若有一个公共点,并不能说明直线和抛物线相切,还有可能直线与抛物线的对称轴平行. 5.在求得轨迹方程之后,要深入地思考一下:(1)是否还遗漏了一些点?是否还有另一个满足条件的轨迹方程存在?(2)在所求得的轨迹方程中,x ,y 的取值范围是否有什么限制?确保轨迹上的点“不多不少”. 6.作为解答题的倒数第二个,试题的难度较大,也体现在计算量上尤为明显,学生在解题时往往会思路,但计算往往不对,对此,建议如下:第一问保证准确,如轨迹方程,曲线方程,或者几何性质等,因为第二问往往以第一问为基础,故第一问要舍得花时间去验证一下;对于第二问,往往就是曲线与直线联立,建立方程组,利用判别式,韦达定理等这些都已经成立的模式,建立关系式,即使思路无法进行,也要准确的放在卷面上,一般它们都要占到部分分数;如果涉及到直线方程的探索,特别注意斜率不存在的情况,有时一些定值定点问题,可以通过这种特殊情况直接得到.【重点知识整合】1.椭圆的第一定义:平面内到两个定点12,F F 的距离之和等于定长(12F F >)的点的轨迹.注意:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹. 2.直线和椭圆的位置关系 (1)位置关系判断:直线与椭圆方程联立方程组,消掉y,得到20Ax Bx C ++=的形式(这里的系数A 一定不为0),设其判别式为∆,(1)相交:0∆>⇔直线与椭圆相交; (2)相切:0∆=⇔直线与椭圆相切; (3)相离:0∆<⇔直线与椭圆相离; (2弦长公式:(1)若直线y kx b =+与圆锥曲线相交于两点A 、B,且12,x x 分别为A 、B 的横坐标,则AB 12x -,若12,y y 分别为A 、B 的纵坐标,则AB =21211y y k -+,若弦AB 所在直线方程设为x ky b =+,则AB=12y y -.(2)焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解.椭圆22221(0)x y a b a b+=>>左焦点弦12||2()AB a e x x =++,右焦点弦12||2()AB a e x x =-+.其中最短的为通径:22b a,最长为2a ; (3)椭圆的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解.在椭圆12222=+by a x 中,以00(,)P x y 为中点的弦所在直线的斜率2020b x k a y =-.3.与焦点三角形相关的结论椭圆上的一点与两焦点所构成的三角,通常叫做焦点三角形.一般与焦点三角形的相关问题常利用椭圆的第一定义和正弦、余弦定理求解.设椭圆上的一点00(,)P x y 到两焦点12,F F 的距离分别为12,r r ,焦点12F PF ∆的面积为S ,设12F PF θ∠=,则在椭圆12222=+by a x 中,有以下结论:(1)θ=)12arccos(212-r r b ,且当12r r =即P 为短轴端点时,θ最大为θmax =222arccos ac b -; (2)2122||||1cos b PF PF θ=+;焦点三角形的周长为2()a c +;(3)221201sin sin tan ||21cos 2S r r b b c y θθθθ====+,当0||y b =即P 为短轴端点时,max S 的最大值为bc ; 4.直线和抛物线的位置关系(1)位置关系判断:直线(0)y kx m m =+≠与双曲线方程22(0)y px p =>联立方程组,消掉y,得到2222()0k x mk p x m +-+=的形式,当0k =,直线和抛物线相交,且与抛物线的对称轴并行,此时与抛物线只有一个交点,当0k ≠设其判别式为∆,①相交:0∆>⇔直线与抛物线有两个交点;②相切:0∆=⇔直线与抛物线有一个交点; ③相离:0∆<⇔直线与抛物线没有交点.注意:过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线. (2)焦点弦:若抛物线22(0)y px p =>的焦点弦为AB,1122(,),(,)A x y B x y ,则有12||AB x x p =++,221212,4p x x y y p ==-.(3) 在抛物线22(0)y px p =>中,以00(,)P x y 为中点的弦所在直线的斜率0p k y =. (4)若OA 、OB 是过抛物线22(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p ,反之亦成立.5.求曲线(图形)方程的方法及其具体步骤如下: 这是求曲线方程).注意:这五个步骤(不包括证明)可浓缩为五字“口诀”:建设现(限)代化.1.【山东、湖北部分重点中学2018年高考冲刺模拟试卷(二)】已知椭圆的离心率为,分别为椭圆的左、右焦点,点为椭圆上一点,面积的最大值为.(Ⅰ)求椭圆的方程;(Ⅱ)过点作关于轴对称的两条不同直线分别交椭圆于与,且,证明直线过定点,并求的面积的取值范围.【解析】试题分析:解得.所以椭圆的方程为.(Ⅱ)设方程为,联立,得,,因为关于轴对称的两条不同直线的斜率之和为0,即,即,得,即.解得:.直线方程为:,所以直线过定点,又,令,又.点睛:求定点,定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.【陕西省咸阳市2018年高考5月信息专递】已知椭圆的右焦点与抛物线的焦点重合,且椭圆的离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设是椭圆的右顶点,过点作两条直线分别与椭圆交于另一点,若直线的斜率之积为,求证:直线恒过一个定点,并求出这个定点的坐标.即,整理得,解得或(舍去)直线,知直线恒过点.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现. 3.【山东省肥城市2018届高三适应性训练】已知点为圆的圆心,是圆上的动点,点在圆的半径上,且有点和上的点,满足,.(1)当点在圆上运动时,判断点的轨迹是什么?并求出其方程;(2)若斜率为的直线与圆相切,与(1)中所求点的轨迹交于不同的两点,,且(其中是坐标原点),求的取值范围.(2)设直线:,,,直线与圆相切,得,即,联立消去得:,,得,,,∴,所以,得,∴,解得:或,故所求范围为.点睛:直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化,涉及弦长的问题中,应熟练地利用根与系数关系,设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.涉及中点弦问题往往利用点差法.4.【山东省潍坊市青州市2018届高三第三次高考模拟】设椭圆的右焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为 .(1)求椭圆的方程;(2)若上存在两点,椭圆上存在两个点满足:三点共线,三点共线,且,求四边形的面积的最小值.(ii)当直线的斜率存在时,设直线的方程为,联立,点睛:本题主要考查椭圆的标准方程与几何性质、直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常利用的关系,确定椭圆(圆锥曲线)方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,确定函数的性质进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.5.【重庆市西南大学附中高2018级第四次月考】已知椭圆的两个焦点与短轴的一个顶点构成底边为,顶角为的等腰三角形.(1)求椭圆的方程;(2)设、、是椭圆上三动点,且,线段的中点为,,求的取值范围.【解析】分析:(1)两个焦点与短轴的一个顶点构成底边为,顶角为的等腰三角形.说明,再由直角三角形得,从而可得值,得标准方程;当的斜率不存在时,,由,,得,∴,当的斜率存在时,设得:,,由点在椭圆上得得:,此时总成立又,∴,∴且,∴且综上:点睛:本题考查直线与椭圆的位置关系问题,考查“设而不求”的思想方法,考查范围问题,解析几何中范围问题一般要把目标表示出一个参数的函数,这里关键是参数的选择要恰当.第(2)题中可用下列方法6.【辽宁省葫芦岛市2018年普通高中高三第二次模拟】已知椭圆的焦距为,离心率为,圆,是椭圆的左右顶点,是圆的任意一条直径,面积的最大值为2.(1)求椭圆及圆的方程;(2)若为圆的任意一条切线,与椭圆交于两点,求的取直范围.【解析】分析:(1)易知当线段AB在y轴时,,,结合可求,可求椭圆方程和圆的方程;(2)设直线L方程为:y=kx+m,直线为圆的切线,,直线与椭圆联立,,得,利用弦长公式可得,然后利用换元法求其范围即可.详解:解:(1) 设B点到x轴距离为h,则,易知当线段AB在y轴时,,点睛:本题考查椭圆方程的求法,主要考查了直线与椭圆的位置关系的应用,直线与曲线联立,根据方程的根与系数的关系解题,是处理这类问题的最为常用的方法,但圆锥曲线的特点是计算量比较大,要求考试具备较强的运算推理的能力,是难题.7.【江西省临川一中2018届高三模拟考试】已知的直角顶点在轴上,点为斜边的中点,且平行于轴.(Ⅰ)求点的轨迹方程;(Ⅱ)设点的轨迹为曲线,直线与的另一个交点为.以为直径的圆交轴于即此圆的圆心为,求的最大值.【解析】试题分析:(1)设的中点的坐标为,根据,得即;(2)(2)讨论BC的斜率,求出圆P的半径和横坐标,计算最小值,进而得到的最大值.详解:设点的坐标为(,则的中点的坐标为,点的坐标为,由,得即,经检验,当点运动至原点时,与重合,不合题意舍去.点睛:本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.8.【四川省双流中学2018届高三考前第二次模拟考试】在平面直角坐标系中,点、分别为双曲线的左、右焦点,双曲线的离心率为,点在双曲线上,不在轴上的动点与动点关于原点对称,且四边形的周长为.(1)求动点的轨迹的方程;(2)过点的直线交的轨迹于,两点,为上一点,且满足,其中,求的取值范围.【解析】试题分析:(1)根据题意列出表达式,又因为点在双曲线上,所以,联立两个方程可得到参数值;(2)联立直线和椭圆得到二次方程,又因为,得,代入椭圆方程得,根据弦长公式得到,求表达式的范围即可.(2)由题意可知该直线存在斜率,设其方程为且.由得,∴,得,设,,,则,由,得,代入椭圆方程得,由得,∴,令,则,∴.点睛:本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.9.【山东省实验中学2015级第二次模拟考试】过抛物线的焦点的直线与抛物线在第一象限的交点为,与抛物线准线的交点为,点在抛物线准线上的射影为,若的面积为 .( 1 )求抛物线的标准方程;( 2 )过焦点的直线与抛物线交于两点,抛物线在点处的切线分别为,且与相交于点,与轴交于点,求证: .(2)易知直线的斜率存在,设直线,设联立消去得,得,,设,,,得点坐标,由,得,,所以,即.点睛:(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.10.【河北省石家庄二中2018届高三三模】已知椭圆的左右顶点分别为,,右焦点的坐标为,点坐标为,且直线轴,过点作直线与椭圆交于,两点(,在第一象限且点在点的上方),直线与交于点,连接.(1)求椭圆的方程;(2)设直线的斜率为,直线的斜率为,问:的斜率乘积是否为定值,若是求出该定值,若不是,说明理由.联立所以,,因为点在直线上,所以可设,又在直线上,所以:所以点睛:圆锥曲线的定值问题会涉及到曲线上的动点及动直线,常用解题步骤为:设动点和动直线、即引入参数;结合已知条件将目标式用参变量表示,(3)通过化简消参求得定值.设而不求、整体思想和消元思想的运用可有效的简化运算.11.【河南省安阳35中2018届高三核心押题卷一】已知椭圆的上顶点为,点,是上且不在轴上的点,直线与交于另一点,若的离心率为,的最大面积等于.(Ⅰ)求的方程,(Ⅱ)若直线分别与轴交于点,试判断是否为定值.坐标之间的关系。