信号与系统第一章
信号与系统第一章(重点)
-1
图 1.2-1 连续时间信号
离散时间信号:亦称序列, 其自变量n是离散的, 通常为整数。 若是时间信号 (可为非时间信号), 它只在某些不连续的、 规定的瞬时给出确定的函数值, 其它 时间没有定义, 其幅值可以是连续的也可以是离散的, 如图1.2-2所示。
x1(n) 2
1
只能取-1,0,1,2
0
t
-1
6. 单位冲激偶函数δ′(t)
单位冲激函数的导数。
(t)
1 lim
0
u(t
)
2
u(t
2)
(t)
d(t)
dt
1 lim
0
(t
)
2
(t
2)
(1.3-30) (1.3-31)
式(1.3-31)取极限后是两个强度为无限大的冲激函数,
0
t
-k
3. 复指数信号
f(t)=kest
s=σ+jω为复数, σ为实部系数, ω为虚部系数。 借用欧拉公式: kest=ke(σ+jω)t=keσt e jωt=keσt cosωt+jkeσt sinωt 复指数信号可分解为实部与虚部。 实部为振幅随时间变化的余弦函数, 虚部为振幅随时间变化的正弦函数。
第1章 信号与系统
1.1 信号与系统概述 1.2 信号及其分类 1.3 典型信号 1.4 连续信号的运算 1.5 连续信号的分解 1.6 系统及其响应 1.7 系统的分类 1.8 LTI系统分析方法
1.1 信号与系统概述
人们每天都与载有信息的信号密切接触:
听广播、看电视是接收带有信息的消息; 发短信、打电话是传送带有信息的消息。
信号与系统第一章
x(t ) A sin(t ) A cos(t )
A
x(t )
T
T
t
θ与φ称为它们的相位,它们的关系为: 2 上图中: 0 所以函数式为:
x(t ) A sin( t ) A cos t 2
因为同一个信号可以用正弦或余弦函数表示,仅有相 位的差别,今后在不发生混淆的时候,就不区别称呼。
波形图:
x(t )
A A
A R (t ) t0
0
t0
A R(t t0 ) t0
t
0
t0
t
0
A
t0
t
0
t0
t
Au(t t0 )
A
0
t0
t
函数式:x(t ) A [ R(t ) R(t t )] Au(t t ) 0 0
t0 A A tu(t ) (t t0 )u (t t0 ) Au(t t0 ) t0 t0
t
复指数信号不是一个实际的信号,但其实部和虚部均表 示幅度按指数规律变化的正余弦信号。 当σ=0,复指数信号表示等幅的正余弦信号;当Ω=0, 表示单调变化的指数信号,当两者均等于0,表示一直流 信号。因此,复指数信号综合地表示多种有用信号,在信 号与系统分析中,是一个重要的基本信号。
7、抽样函数信号:
(n n0 )
1
0
n0
n
x ( n)
• 抽样性:
设有序列x(n) ,则有
2 1
0
1 2 3
4
5
n
x(n)(n) x(0)(n)
1
0
3
n
x(n)(n n0 ) x(n0 )(n n0 )
信号与系统第一章信号与系统
第二节 信号
• 信号常可以表示为时间的函数(或序列),该函数的图象 称为信号 的波形,在讨论信号时,信号与函数(或序 列)两词常互相通用。 确定信号:即在给定的时间里有确定的值,可用确 定的时间函数(或序列)表示 随机信号:即不确定性信号,如干扰和噪声,其情 况不能确定 随机信号可用统计的方法处理,本课程中主要研究 确定信号。
•
函数(有周期性)。
• 三.实信号和复信号
• 物理可实现的信号,一般可表示为t(或k)的实函数,各时刻函数或序
• 列值为实数。
• 而函数(或序列)值为负数的信号称为复信号。常见的有复指信号。
• 1.连续复指数信号:
• f (t) e,st -∞<t<∞,s为复数s=δ+jω,{δ为实部Re[s],ω为虚
• 连续周期信号表示为:ƒ(t+mT). m=0,±1,±2,…,T为周期.
• 离散周期信号表示为:ƒ(k+mN).m=0,±1,±2,…,N为周期.
•
• 例:
半波整流信号:
• 连续的
•
方波信号:
f(t
•
正弦序列(sinkβ):
••
•• ••
•
•
• 注意:对离散信号的周期问题注意:
1• • • •
•
k
-1 1 2 3
• 信号的自变量为离散的,若序列的值(幅变)也为离散的称为数字信
号
• 即 连续时间信号 模拟信号
•
一般
实际应用中不太区别
• 离散时间信号 数字信号
•
一般
• 二 . 周期信号和非周期信号:
• 1.周期信号定义在(-∞,∞)区间,每隔一定时间T(或整数N)
《信号与系统》第一章知识要点+典型例题
y() 表示系统的输出。
1、线性系统与非线性系统 若系统满足下列线性性质: (1)可分解性 全响应 y () 可分解为零输入响应 y zi () 与零状态响应 y zs () 之和,即
y() y zi () y zs ()
(2)齐次性 零输入响应 y zi () 满足齐次性,零状态响应 y zs () 满足齐次性,即
( t ) 、 ( t ) 的重要性质
1
( t )dt 1 ,
t
( t )dt 0 , ( t )dt ( t ) ( k ) (k )
f ( k ) ( k ) f (0) ( k ) f ( k ) ( k k 0 ) f ( k 0 ) ( k k 0 )
f ( t ) ( t a )dt f (a )
k
f ( k ) ( k ) f (0)
(at )
5
1 (t ) a
1 b (at b) ( t ) a a f ( t ) ( t ) f (0) ( t ) f (0) ( t ) f ( t ) ( t ) f (0) ( t ) f (0) ( t )
2
。
而对离散的正弦(或余弦)序列 sin( k ) [或 cos( k ) ]( 称为数字角频率,单位为 rad ), 只有当
2
为有理数时才是周期序列,其周期 N M
2
, M 取使 N 为整数的最小整数。
如对信号 cos(6 k ) ,由于
2
2 1 为有理数,因此它是周期序列,其周期 N 1 。 6 3
信号与系统绪论第一章
= −
1 a
δ(t)dt
证毕。
1 1 1 ∴ 2δ ( t + ) = 2δ [ ( t + 1 )] = 4δ ( t + 1 ) 2 2 2
作业 2t+ 的波形。 1、信号f(t)的波形如图所示。画出信号f(-2t+4)的波形。 信号f(t)的波形如图所示。画出信号f f(t)的波形如图所示
f (t )
意义:在同样起始条件 下,系统的响应与激励 输入的时刻无关。
t0
t0 +T
t
0
t0
t
波形不变,仅延时 t0
1.3 系统的描述与分类
例3:判断以下系统是否为非时变系统。
(1) r (t ) = T [e(t )] = ate(t ). (2) r (t ) = T [e(tቤተ መጻሕፍቲ ባይዱ)] = ae(t )
f (t + t 0 )
左移 1
− t0 − 2 − t0 − t0 + 1
0
f (−t + t 0 )
反转
1
0
f (t )
1
t0 − 1 t0
t0 + 2 t
-2
0 1
t
f (t − t 0 )
1 右移 t0 − 2 t0 t 0 + 1 t
− t0 − 1 − t0 − t0 + 2
f (−t − t 0 )
= k1 [ ae1 ( t ) + b ] + k 2 [ ae2 ( t ) + b ] = a [ k1e1 ( t ) + k 2 e2 ( t )] + bk1 + bk 2
显然 T [ k1e1 ( t ) + k 2 e2 ( t )] ≠ k1r1 ( t ) + k 2 r2 ( t ) 故系统为非线性系统。
《信号与系统》第一章
学习目标
1
掌握信号与系统的基本概念、性质和分类,理解 信号与系统在信息传输、处理和应用中的重要地 位和作用。
2
掌握信号的描述和分析方法,包括时域和频域分 析,理括线性时不变系 统和线性时变系统,理解系统的基本特性、分析 和设计方法。
02
系统的基本概念和分类
阐述了系统的基本概念,系统分类(如线性时不变系统、非线性系统 、离散系统等),以及系统的描述方法。
信号与系统在通信工程中的应用
讨论了信号与系统在通信工程中的重要性,如调制解调、频分复用等 。
信号与系统在控制工程中的应用
探讨了信号与系统在控制工程中的应用,如PID控制器、控制系统稳 定性分析等。
下章预告
傅里叶变换
介绍傅里叶变换的定义、性质 及其在信号处理中的应用。
系统的状态变量分析
通过状态变量法对线性时不变系统 进行分析,包括状态方程的建立、 解法以及系统的稳定性分析。
拉普拉斯变换与Z变换
介绍拉普拉斯变换和Z变换的定 义、性质及其在连续系统和离 散系统分析中的应用。
系统的能控性和能观性
介绍能控性和能观性的概念、 判据以及其在控制系统设计中 的应用。
02
在实际应用中,需要根据具体需求和场景,选择合适的系统和信号处理方法, 以达到最佳的处理效果。
03
深入研究和理解信号与系统之间的相互作用关系,有助于更好地应用信号处理 技术,推动相关领域的发展和创新。
05
CATALOGUE
总结与展望
本章总结
信号的基本概念和分类
介绍了信号的基本概念、信号的分类(如连续信号、离散信号、周期 信号、非周期信号等)以及信号的表示方法。
CATALOGUE
信号的基本概念
信号与系统第1章总结
第一章:信号与系统的基本概念1.1 信号的基本概念一、什么是信号信号是信息的表现形式。
例如,光信号、声信号和电信号等。
二、信号的分类1、确定性信号和随机信号()f t 确定性信号有确定的函数表达式2、周期信号和非周期信号f(t)=f(t+kT) k=1,2,3...周期信号3、连续时间信号和非连续时间信号时间t 连续的是连续时间信号,时间变量t 只取特定值的为离散时间信号4、有始信号和无始信号0t t <若,0()0,f t t =为起始点三、典型的连续时间信号1、正旋信号21()cos(),,,2f t A wt T f w f w T πϕπ=+===AMFMPM A w ϕ不为常数,调幅信号不为常数,调频信号不为常数,调相信号欧拉公式:cos 2sin 2j j e e j j ee jθθθθθθ-+--=⎧⎪⎪⎨⎪⎪⎩=2、指数信号为实数αα,)(t ke t f =3、复指数信号(一种数学模型)(),st f t ke s jw δ==+4、抽样信号sin (),a ts t t t =-∞<<∞性质1、偶函数,随着t 的增大,幅值减小0sin 2()lim 1a x tt t →==性质:t=0,s3sin 0,1, 2...t t k k π=⇒==±±性质:过零点1.2 信号的运算一、信号的时域变换1、平移(时移)000()()()()()()f t f t t f t f t t f t f t t =±→-→+右移,左移2、反转以纵轴为中心,左右反转()()f t f t =-t 3、展缩{011,()(),a a f t f at <<>=,扩展压缩二、信号的相加、相乘、微分和积分1、相加:对应点相加2、相乘:主要用于信号的截取3、微分:t 4∞、积分:指(-,0)上积分t-(),f d t ττ∞⎰为变量t<0()0t 1()t>1()1t t t f d f d tf d ττττττ-∞-∞-∞=<<==⎰⎰⎰当时,当0时,当时,1.3 奇异信号----------------------------------------------------一种数学模型信号的取值或导数出现了奇异值(极大),趋于无穷一、单位阶跃信号{0,01,0()t t t ε<>=t因果信号{0,0(),0()()t f t t f t t ε<>=二、单位冲击信号----------------也是一种数学模型作用时间极短,但幅值极大{()0,0()1,1t t t dt δδ+∞-∞=∀≠=⎰即冲激强度为性质1:抽样性0000001.()()(0)()2.()()(0)()3.()()(0)()(0)4.()()()()()t t t t f t t f t f t t t f t t f t t d f t d f f t t t d f t t t d f t δδδδδδδδ+∞+∞-∞-∞+∞+∞-∞-∞=-=-==-=-=⎰⎰⎰⎰性质2:卷积特性1212()()()()()f t f t f t f f t d τττ+∞-∞=*=-⎰0005.()()()()()6.()()()()()f t t f t d f t f t t t f t t d f t t ττδτδτδτδτ+∞-∞+∞-∞*=-=*-=--=-⎰⎰注:一个信号与冲激信号的卷积就是信号本身三、阶跃、冲激信号的关系 {0,01,0()()()()t t t d t d t t dt δττεεδ<-∞>===⎧⎰⎨⎩注:阶跃信号求导即为冲激信号1.4 信号分解为冲激信号的叠加1.5系统及分类一、分类1.连续时间系统:微分方程离散时间系统:差分方程2.线性系统:叠加性、齐次性f(t)→系统→y(t) kf(t)→系统 →ky(t)f1(t)+f2(t)→系统→y1(t)+y2(t)当齐次和叠加只要有一个不满足则是非线性的3.因果系统:响应不早于激励非因果系统4.时变系统是不变系统:输入输出都做相应的变化,并不随时间变化二、线性时不变系统(LTI 系统)性质1:线性、齐次性、叠加性Yzi(t):零输入响应,外部激励为0,仅在初始状态作用下的响应 Yzs(t):零状态响应,仅在外部激励作用下的响应性质2:是不变性性质3:微分、积分性f(t)→系统→y(t)()y ()f t t ''→→系统t -()()tf t dt y t dt-∞∞→→⎰⎰系统 性质4:因果性。
信号与系统第一章
m 0
n
m
令 k n பைடு நூலகம்,则 n
k
k
n
上式的正确性在于 k 仅在 k 0时为1,其余 k时取为0, n时,求和式为 0 所以当 时,求和式为零,而当 n0 1。
T
2t
2
e 4T lim T 2
所以该信既非能量信号又非功率信号
1.2 基本的连续时间和离散时间信号
1.2.1 单位阶跃信号(unit step function)与单位冲激信 号(unit impulse function) 阶跃函数和冲激函数不同于普通函数,称为奇异函 数。研究奇异函数的性质要用到广义函数(或分配函数) 的理论。这里将直观地引出阶跃函数和冲激函数。
一、阶跃函数
下面采用求函数序列极限 的方法定义阶跃函数。 选定一个函数序列γn(t)如图所示。
若阶跃幅度为 A ,则可记为 A t
若单位阶跃函数跃变点在 t t 0处,则称为延迟单位阶 跃函数
1, t t0 0, t t0 t t0
阶跃函数性质: (1)可以方便地表示某些信号 f(t) = 2ε (t)- 3ε (t-1) +ε (t-2) (2)用阶跃函数表示信号的作用区间
3.信号(signal) 信号是信息的载体,通过信号传递信息。 为了有效的传播和利用信息,常常需要将信息转 换成便于传输和处理的信号。 信号于我们并不陌生,如刚才的铃声——声信号, 表示该上课了; 十字路口的红路灯——光信号,指挥交通; 电视机天线接收的电视信号——电信号; 日常生活中的文字信号,图像信号,生物电信号 等,都属于信号。
信号与系统第一章课件
系统的传递函数
传递函数是描述线性时不变系统的复数域数学模型 ,它包含了系统的频率响应信息。
复数域分析的优势与应用
复数域分析方法可以方便地处理具有非线性 特性的系统和信号,广泛应用于控制工程、 电路分析等领域。
04 线性时不变系统
线性时不变系统的定义与性质
线性
系统的输出与输入成正比 关系,比例系数为常数。
系统的频率响应
系统的频率响应是描述系统对不同频率信号的响 应特性,通过频率响应曲线可以了解系统的性能。
3
频域分析的优势与应用
频域分析方法可以方便地处理复杂信号和系统, 广泛应用于信号处理、通信、雷达等领域。
系统的复数域分析
拉普拉斯变换与复频域分 析
拉普拉斯变换将信号从时域转换到复频域, 通过复频域分析可以了解系统的动态特性和 稳定性。
系统的定义与分类
定义
系统是指一组相互关联的元素或组成部分,它们共同完成某为线性系统和非线性系统;根据系统的动态行为,可 以分为时不变系统和时变系统。
信号与系统的重要性及应用领域
重要性
信号与系统是通信工程、电子工程、 自动控制工程等领域的核心基础,是 实现信息传输、处理、控制和应用的 关键。
要点三
信号与系统的重要意 义
信号与系统作为现代工程和科学研究 的重要基础,其发展对于推动科技进 步和产业升级具有重要意义。未来, 信号与系统的理论和技术将继续发挥 重要作用,为人类社会的进步和发展 做出贡献。
THANKS FOR WATCHING
感谢您的观看
因果性
系统的输出只与过去的输入 有关,与未来的输入无关。
时不变
系统的特性不随时间变化。
稳定性
系统在受到外部激励时, 其输出不会无限增长。
信号与系统第一章
⎩⎨
⎧-≤≤=其他 01
0 1)(N k k G N
对应图形如图所示。
若用单位阶跃序列表示,则)()()(N k k k G N --=εε 二、用复指数表示的离散时间信号
表达式
)(00)()()(ϕϕααα+ΩΩ===k j k k j j k e C e Ce c
k f 1)、实指数序列:c
α 均为实数 k C k f α=)(讨论
○
1α=1,C k f =)(——直流序列 ○
2若a >1,则k C k f α=)(——发散序
列
○
3若0<a <1,则f(k)——收敛序列 ○
4若α=-1,k C k f )1()(-=等幅、正负交替变化序列
○
5-1<a <0幅度指数下降,正负交替 ○
6 a <-1指数上升,正负交替 2)正弦序列:c
为实数α 为复数 k j e C k f )()(0Ω=α式中,0Ω为正弦序列的数字角频率;C ,ϕ为正弦序列的振幅和初相。
讨论
○
1若α=1—等幅正弦 ○
2若a >1,—发散正弦 ○
3若0<a <1,—收敛正弦 3)c
α 均为复数,有初相 三、用复指数表示的离散时间信号的周期
1、连续信号的周期
用复指数表示的连续时间信号)t (j t e Ce )(ϕωσ+=t f
0≠σ,非周期,
0=σ,t Ce )(ωj t f =表示一个余弦信号()ϕω+t Ccos 求周期[])t cos(T)t (Ccos ϕωωϕω++=++mT C m。
信号与系统第一章
62
第1章 信号与系统的基本概念
1.14 设某地区人口的正常出生率和死亡率分别为α和β, 第k年从外地迁入的人口为f(k)。若令该地区第k年的人口为y(k), 写出y(k)的差分方程。 解 设第(k-1)年的总人口数为y(k-1),经一年后净增人口 数为(α-β)y(k-1), 第k年迁入的人口数为f(k), 故第k年的总
利润回报率稳定在β%。试建立预测若干年后该经济开发区拥
有的资金总额的数学模型。
64
第1章 信号与系统的基本概念
解 设k年后开发区拥有资金总额为y(k), 第k年投入资金 为f(k)。按题意,第(k-1)年投入资金f(k-1)在第k年度增长为
(1+α)f(k-1), 而资金y(k-2)在第k年度增长为(1+β)y(k-2)。因
人口数为上述三部分之和,即
y(k)=y(k-1)+(α-β)y(k-1)+f(k)
整理得
y(k)-(1+α-β)y(k-1)=f(k)
这是一个一阶差分方程。
63
第1章 信号与系统的基本概念
1.15 某经济开发区计划每年投入一定资金,设这批资金 在投入后第二年度的利润回报率为α%,第三年度开始年度的
号。因sint的周期T1=2π s, sin2t的周期T2=π s,且T1/T2=2为有 cosπt的周期T2=2 s, 且T1/T2=π/2 理数, 故f1(t)是周期信号,它的周期为2π s。 (2) 因sin2t的周期T1=π s, 为无理数, 故f2(t)是非周期信号。
(3) 因cost的周期为T1=2π s,
(10) x(t+1) ·y(t-1)。
15
第1章 信号与系统的基本概念
信号与系统第一章
.-
第 1 章 信号与系统的基本概念
图 1 3 1 连 续 信 号 的 相 加 和 相 乘
第 1 章 信号与系统的基f1(k) 本概念
1
- 3- 2- 10 1 2 3 4 5 6
k
图
f2(k )
1
1
.-
- 3- 2- 1
3
0 12345
k
2
-1
离
f1(k )+f2(k )
散
2
信
号
1
的
- 3- 2- 1
如果信号是时间的随机函数,事先将无法预知它的变化 规律,这种信号称为不确定信号或随机信号。
第 1 章 信号与系统的基本概念 图 1.1-1 噪声和干扰信号
第 1 章 信号与系统的基本概念
2. 连续信号与离散信号
一个信号,如果在某个时间区间内除有限个间断点外都有 定义, 就称该信号在此区间内为连续时间信号,简称连续信
时间轴展缩(尺度变换)而成的一个新的信号函数或波形。 在信号f(at)中,a为常数,|a|>1时表示f(t)沿时间轴压
缩;|a|<1时表示f(t)沿时间轴展宽。例如图1.3-5分别表示 f(t)、f(2t)、f(t/2)的波形。
信号展缩的一个例子是:如果f(t)表示录制在磁带上 的语音信号,则f(2t)表示放音速度要比原来录制的高一 倍;f(t/2)表示放音速度要比原来录制的慢一倍。
序列f(k)的数学表示式可以写成闭式,也可以直接列出序 列值或者写成序列值的集合。例如,图1.1-3(a)所示的正弦序 列可表示为
f1(k )Asin 4k
第 1 章 信号与系统的基本概念
f1(k )
… -2
-8 -6 -4
信号与系统第一章 信号与系统概述
小结 简单介绍了常用的信号分类,引入了对系统分析非常重要的 两类信号:冲激信号和阶跃信号,并详细介绍了冲激信号的 性质。本章还介绍了几个重要的系统的性质,包括线性、因 果性、稳定性、时不变性等性质。
1 信号
一 信号的定义
信号是信息的一种物理体现,信息则是信号的具体内容
二 信号的分类
信号的分类
模
确
连
周
拟
定
续
期
信
信
信
信
号
号
号
号
与
与
与
与
数
随
离
非
字
机
散
周
信
信
信
期
号
号
号
信
号
2 基本信号及时域特性
1.指数信号 指数信号的表达式为
ƒ(t)=Aeat 指数信号波形如图1-1所示
图1-1 指数信号波形
2.正弦信号 正弦信号和余弦信号二者仅在相位上相差1800,统称为正弦 信号,表达式为
图1-11 信号的反转
2.平移(移位)
以变量t-b代替信号ƒ(t)中的独立变量t,得信号ƒ(t-b),它 是信号ƒ(t)沿时间轴平移b的波形。如图1-12所示,ƒ(t)与 ƒ(t-b)的波形形状完全一样,只是在位置上移动了b。 当 b>0时, ƒ(t)右移b;当b<0时, ƒ(t)左移∣b∣。
图1-12 信号的平移
df (t) dy(t)
dt
dt
称为系统的微分性质。
4.积分性质
一个连续时间系统对激励ƒ(t)的响应为y (t),则
t
t
信号与系统概论第一章
2)冲激函数定义 (多种方式演变) ①单位冲激函数(狄拉克函数)
( ※ 0时刻取不定值,面积为1。为广义函数)
1.5 奇异信号及其基本特性(续)
◆ t=t0时刻的单位冲激函数:
②矩形脉冲定义的单位冲激函数
( ※ 面积为冲激强度,强度为1时为单位冲激)
1.5 奇异信号及其基本特性(续)
※ 对于冲激偶函数可继续二次求导。(如双边指数脉冲等)
冲激函数
冲激偶函数
强度无穷大
(单向面积:1/τ)
1.5 奇异信号及其基本特性(续)
2)冲激偶函数的性质 ①
推导:
0
性质
1.5 奇异信号及其基本特性(续)
②面积为零:
③冲激偶函数与普通函数乘积的性质: (证:两边取积分)
-f’(0)
0
-f’(0)
1.4 信号的基本运算及波形变换(续)
② 若以变量 at+b 代替 t,可得沿时间轴伸缩平移的 新信号 f(at+b)。 a>0时:信号沿时间轴伸缩、平移。
(a>1, a<1)
a<0时:信号沿时间轴伸缩、平移、反褶。(a>-1,a<-1) ◆特点:
所有运算都是自变量t的变换,且变换前后端点函数值不变。
③其他函数形式定义的单位冲激函数
1.5 奇异信号及其基本特性(续)
1.5 奇异信号及其基本特性(续)
3)冲激函数的性质 ①抽样性质(筛选特性)
1.5 奇异信号及其基本特性(续)
冲激函数与普通函数乘积的积分可将普通 函数在冲激出现时刻的函数值抽取出来!
1.5 奇异信号及其基本特性(续)
②偶函数性质: ③与阶跃函数的关系: ◆冲激函数的积分是阶跃函数: δ(t) = δ(-t)
信号与系统第1章-信号与系统的基本概念
1 0
1
t
1 0
2
一半语速信号
4 t
正常语速信号
2倍语速信号
若
a 1 ,波形在t 轴上扩展 1 a 倍。
若 a 1 ,波形在t 轴上压缩1/
a 倍。
信号与系统
SIGNALS & SYSTEMS
第一章 信号与系统的基本概念
前言
§1.1 信号的描述与分类 §1.2 连续时间信号的基本运算与变换 §1.3 系统的描述与分类 §1.4 系统分析方法
♣ 连续时间信号的基本运算主要包括
相加(减)、相乘(除)、微分、积分
♣ 信号波形变换主要指
波形的翻转、平移和展缩 通常是通过对自变量的代换实现
信号与系统
SIGNALS & SYSTEMS
一.信号的相加减
f1(t) 1 0 1
1
f ( t )=f1 ( t )+f2 ( t )
2 1
1
f2 (t)
f1 (t ) f2 (t )
信号与系统
SIGNALS & SYSTEMS
六.信号的时移(波形平移)
连续时间信号的时移定义为
y(t ) f (t t0 )
f (t )
f (t b)
t0为时移量
t t t0
f (t b)
-1
b1
t
(-1+b)
1 (1+b) t
(-1-b)
(1-b)
t
t0>0时右移
t0<0时左移
出现冲激, 其冲激强度 为该处的跳 变量
0
1 2 3
t
0 1
-2
3 (2)
t
信号与系统 第一章
§1.4
系统的概念
一、系统(Systems)的定义
一般而言,系统是一个由若干相互关联的事物构成的, 用以达到某些特定目的的有机整体。 本课主要讨论电路系统。 电路系统 ———— 处理信号的电路之组合。
系统与网络、电路的区别:主要在于分析问 题的着眼点,而不在于组成的复杂程度。
•系统 ——— 着重在输入输出间的关系, 或者运算功能上。
t t
4.抽样函数sampling
sin t f (t ) Sa(t ) t
Sa(t ) 是偶函数, t , 2 , Sa(t ) 具有以下性质:
0
f (t )
t
时,函数值为0。
Sa (t ) dt
2
Sa(t )dt
另一种类似的表示形式为
3.从信号特性上划分continuous-time,discrete连续时间系统 ——— 激励信号与响应信号都 是连续时间信号。 离散时间系统 ——— 激励信号与响应信号 都是离散时间信号。
系统还可划分为集总参数系统和分布参数 系统等。
三、系统的数学模型
方程:equation
线性系统 ———— 线性方程 非线性系统 ———— 非线性方程 时变系统 ———— 变参数方程 非时变系统———— 常参数方程
•Variable-coefficient •Constant- coefficient 连续时间系统———— 微分方程differential 离散时间系统———— 差分方程difference
四、基本系统性质(1.6节) 1.记忆系统与无记忆系统(systems with and without memory)
t
2. 从时间取值的连续性划分 在某一时间间隔内,对于一切时 间值,除了若干不连续点外,函 (continuous-time signals) 数都能给出确定的函数值。 离散时间信号——— 只在某些不连续的规定瞬时给出 函数值,其它时间没有定义的信 (discrete-time signals) 号。 连续时间信号———
信号与系统第一章
t
1
f (t )
R( t )
延迟的单位斜变信 号 f (t t 0 )
R( t t 0 )
1
1 t
0 f (t ) t
t 0 t 0
1
O
O
t t0 0 f (t t0 ) t t0 t t0 三角形脉冲可用单位斜变信号表示:
f1 (t ) f (t )
冲激强度为1
(1) t
6
o
(t )
(1) t
o
(t t0 )
延时的单位冲激信号
(1)
o
t0
t
只在 t 0 有一个“单位冲激”,在 处,信号值 t0 都为 0,单位冲激的强度为 1。若矩形脉冲面积为 A,则冲 激强度为A。 三角形脉冲、双边指数脉冲、钟形信号、抽样信号等 取极限,都可以得到冲激信号。
f 2 (t ) e t u(t ) u(t t 0 )
0
t0
t
1
sgnt
• 可用阶跃信号表示符号函数。
1 sgn(t ) 1 t 0 t 0
O
-1
t
sgn(t ) u(t ) u(t ) 2u(t ) 1
1 u (t ) [sgn( t ) 1] 2 5
0
t
同样,对于电感电路,由于
当i L (t )为阶跃信号时,v L (t )为冲激信号,说明由于冲激 电压的出现,允许电感电流在无限短时间内产生跳变。
12
四、冲激偶信号
冲激信号求导,称为冲激偶信号。是正、负极性的一 对冲激,强度均为无限大。
s( t )
1
信号与系统第一章
0 t ≠ 0 δ (t) = 和 ∞ t = 0
∫
∞
∞
δ (t)dt =1
3. 复指数信号(complex exponential signal)
f (t) = est
s = σ + jω 为复数,称复频率.
由于复指数信号能概括多种情况,所以可利用它来描述多种 基本信号,如直流信号,指数信号,等幅,增幅或减幅正弦 或余弦信号,因此,它是信号与系统分析中经常遇到的重要 信号. 上面我们介绍了几种最基本的信号,接着来介绍有关信号的 各种运算. 1.2 信号的运算 1.2.1 信号的相加与相乘 两个信号相加(相乘)可得到一个新的信号,它在任意时刻 的值等于两个信号在该时刻的值之和(积).信号相加与相 乘运算可以通过信号的波形 ( 或信号的表达式 ) 进行.
信号的特性可以从两个方面来描述,即时间特性和频率特性. 信号可写成数学表达式,即是时间 t 的函数,它具有一定的 波形,因而表现出一定波形的时间特性,如出现时间的先后, 持续时间的长短,重复周期的大小及随时间变化的快慢等. 另一方面,任意信号在一定条件下总可以分解为许多不同频 率的正弦分量,即具有一定的频率成份,因而表现为一定波 形的频率特性,如含有大小不同频率分量,主要频率分量占 有不同的范围等. 信号的形式所以不同,就因为它们各自有不同的时间特性和 频率特性,而信号的时间特性和频率特性有着对应的关系, 不同的时间特性将导致不同的频率特性的出现. 1.1.2 信号的分类 对于各种信号,可以从不同的角度进行分类. 1.确定信号和随机信号
信号与系统
沈元隆 周井泉
第一章
第1章 信号与系统的基本概念 1.1 信号的描述及分类 1.2 信号的运算 1.3 系统的数学模型及其分类 1.4 系统的模拟 1.5 线性时不变系统分析方法概述 习题1
信号与系统 第一章_绪论(青岛大学)小白发布
∫
∞
−∞ ∞
Sa (t )dt = π Sa 2 (t )dt = π
∫
−∞
另外一个类似的函数:
sin π t sinc( t ) = πt
§1.3 信号的运算
(一)对自变量进行的运算: 移位、反褶与尺度 对自变量进行的运算: 移位、 1. 移位: f (t ) → f (t ± t0 ) 移位:
t
t
t
sin (Ωt ) + sin (8 Ωt )
× sin ( Ωt ) sin (8 Ωt )
t
t
反相点
§1.4 阶跃信号与冲激信号 奇异信号: 奇异信号:
(一)单位斜变信号tu(t) (二)单位阶跃信号 u(t) (三)单位冲激信号δ (t) (四)冲激偶信号δ ' (t)
(一)单位斜变信号tu(t)
(3) cos(3n − )
当 当
2π
2π
π
ω0
为有理数时, 为周期序列; 为有理数时,sin(ω0n) 为周期序列; 为无理数时, 为非周期序列。 为无理数时,sin(ω0n) 为非周期序列。
2π 为无理数, 为无理数, 3
非周期序列
4
ω0
4.能量(有限)信号与功率(有限)信号 能量(有限)信号与功率(有限)
2.信号的传输、 2.信号的传输、交换和处理 信号的传输
信号传输(Transmission)
——古代烽火传送边疆警报 ——击鼓、信鸽、旗语等 击鼓、信鸽、 ——电信号传输(19世纪开始): 电信号传输( 世纪开始 世纪开始):
1837年莫尔斯发明了电报 年莫尔斯发明了电报 1876年贝尔发明了电话 年
信号与系统第一章总结
信号与系统第一章总结1、信号的分类(1)周期信号和非周期信号两个周期信号x(t),y(t)的周期分别为T 1和T 2,若其周期之比T 1/T 2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T 1和T 2的最小公倍数。
(2)连续信号和离散信号连续时间信号:信号存在的时间范围内,任意时刻都有定义。
用t 表示连续时间变量。
离散时间信号:在时间上是离散的,只在某些不连续的规定瞬时给出函数值, 用n 表示。
(3)模拟信号,抽样信号,数字信号 模拟信号:时间和幅值均为连续的信号。
抽样信号:时间离散,幅值连续的信号。
数字信号:时间和幅值均为离散的信号。
(4)按照信号能量特点分类:能量受限信号:若信号f (t)的能量有界,即E<∞ ,则称其为能量有限信号,简称能量信号,此时P = 0。
功率受限信号:若信号f(t)的功率有界,即P<∞ ,则称为功率有限信号,简称功率信号,此时E = ∞。
PS :时限信号为能量信号;周期信号属于功率信号。
2、典型的确定性信号(1)指数信号: , α=0 直流(常数);α<0 指数衰减;α>0指数增长。
通常把称为指数信号的时间常数,记作τ ,代表信号衰减速度,具有时间的量纲。
对时间的微分和积分仍然是指数形式(2)正弦信号:,振幅K ,周期T=ωπ2 ,初相衰减正弦信号:对时间的微分和积分仍然是同频率的正弦信号 (3)复指数信号:α1θdt t f E 2)(⎰∞∞-∆=⎰-∞→=222|)(|1lim T T T dt t f T P t K t f αe )(=)sin()(θω+=t K t f ()0sin e )(>⎩⎨⎧<≥=-αωαt t t K t f t()()t K t K t K t f t t stωωσσsin e j cos e )( e )(+=∞<<-∞=为复数,称为复频率j ωσ+=s rad/s的量纲为 ,/s 1 的量纲为 ωσ振荡衰减增幅等幅⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≠<≠>≠= 0 ,0 0 ,0 0 ,0ωσωσωσ⎪⎩⎪⎨⎧=<=>==衰减指数信号升指数信号直流 0 ,0 0 ,0 0 ,0ωσωσωσ(4)抽样信号(重点): 性质:1. 偶函数2. 3. 4.5. 6.(5)钟形信号(高斯函数):3、信号的平移,反褶,展缩(1)平移:左加右减(注意符号)(2)反褶:关于y 轴对称(3)展缩:f(t)到f(at),图形变换(1/a)倍变换方法: 1. 先展缩:a>1,压缩a 倍; a<1,扩展1/a 倍 2. 后平移:+,左移b/a 单位;-,右移b/a 单位 3. 加上倒置:4、阶跃信号和冲激信号(1)单位阶跃信号(通常以u (t )表示)门函数:符号函数:ttt sin )Sa(=)Sa(lim ,即1)Sa(,00===→t t t t 3,2,1π,0)Sa(=±==n n t t ,⎰⎰∞∞-∞==πd sin ,2πd sin 0t t t t t t 0)Sa(lim=±∞→t t ()()t t t ππsin )sinc(=2e )(⎪⎭⎫ ⎝⎛-=τt E tf ()()()[]()0 >±=±→a a b t a f b at f t f 设()()[]a b t a f b at f -=±-()[(/)]f t f a t b a →±()()f t f at →210 0100)(点无定义或⎩⎨⎧><=t t t u ()⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+=22ττt u t u t f ⎩⎨⎧<->=0101)sgn(t t t(2)单位冲激信号:①定义:狄拉克函数 只在t=0时,函数值不为0;积分面积为1;t =0 时,为无界函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沈元隆 周井泉
第一章
第1章 信号与系统的基本概念 1.1 信号的描述及分类 1.2 信号的运算 1.3 系统的数学模型及其分类 1.4 系统的模拟 1.5 线性时不变系统分析方法概述 习题1
第1章 信号与系统的基本概念 章 1.1 信号的描述及其分类 1.1.1 信号及其描述 什么是信号(signal)?广义地说,信号是随时间变化的某 种物理量。在通信技术中,一般将语言、文字、图像或数据 等统称为消息(message)。在消息中包含有一定数量的信息 (information)。但是,信息的传送一般都不是直接的,它 必须借助于一定形式的信号(光信号、声信号、电信号等), 才能远距离快速传输和进行各种处理。因而,信号是消息的 表现形式,它是通信传输的客观对象,而消息则是信号的具 体内容,它蕴藏在信号之中。本课程将只讨论应用广泛的电 信号,它通常是随时间变化的电压或电流,在某些情况下, 也可以是电荷或磁通。由于信号是随时间而变化的,在数学 上可以用时间 t 的函数 f ( t ) 来表示,因此,“信号”与“函 数”两个名词常常通用。
ε (t) = t 1 0 t > 0< 0 ε (t) =
1
t <0 0 单位阶跃信号的定义为: t >0
(1.1-3)
其波形在跃变点t = 0处,函数值未定。
若单位阶跃信号跃变点在t = t 0处,则称其为延迟单位阶跃函 数。 2.单位冲激信号(unit impulse signal) 单位冲激信号( t )是一个特殊信号,它不是用普通的函数来定 义。它的工程定义如式(1.1-5)描述。这个定义由狄拉克 (P.A.M. Dirac) 提出,故又称狄拉克函数。它除在原点以外, 处处为零,并且具有单位面积值。直观地看,这一函数可以 设想为一列窄脉冲的极限。如一个矩形脉冲。
2.连续信号和离散信号 按照函数时间取值的连续性划分,确定信号可分为连续时 间信号和离散时间信号,简称连续信号和离散信号。 连续信号(continuous signal)是指在所讨论的时间内,对 任意时刻值除若干个不连续点外都有定义的信号,通常用f ( t ) 表示。 离散信号(discrete signal)是指只在某些不连续规定的时刻 有定义,而在其它时刻没有定义的信号。通常用 f(tk) 或 f(kT) [简写 f(k )] 表示,如图1.1-2所示。图中信号 f (tk) 只在t k = -2, -1, 0, 1, 2, 3,…等离散时刻才给出函数值。 3. 周期信号和非周期信号 按信号(函数)的周期性划分,确定信号又可以分为周期信 号与非周期信号。
2. 线性系统和非线性系统 线性系统是指具有线性特性的系统。所谓线性特性(linearity) 系指齐次性与叠加性。若系统输入增加k倍,输出也增加k倍, 这就是齐次性(homogeneity)。若有几个输入同时作用于系 统,而系统总的输出等于每一个输入单独作用所引起的输出 之和,这就是叠加性(superposition Property)。系统同时具 有齐次性和叠加性便呈现线性特性 。 一个系统的输出不仅与输入有关,还与系统的初始状态有关。 设具有初始状态的系统加入激励时的总响应为y ( t );仅有激 励而初始状态为零的响应为y z s ( t ),称为零状态响应;仅有 初始状态而激励为零时的响应为y z i ( t ),称为零输入响应。 若将系统的初始状态看成系统的另一种输入激励,则对于线 性系统,根据系统的线性特性,其输出总响应必然是每个输 入单独作用时相应输出的叠加。
按时间函数的确定性划分,信号可分为确定信号和随机信 号两类。 确定信号(determinate signal)是指一个可以表示为确定的 时间函数的信号。对于指定的某一时刻,信号有确定的值。 如我们熟知的正弦信号、周期脉冲信号等。随机信号 (random signal)则与之不同,它不是一个确定的时间函数, 通常只知道它取某一数值的概率,如噪音信号等。 实际传输的信号几乎都具有不可预知的不确定性,因而都 是随机信号。如,通信系统中传输的信号带有不确定性, 接收者在收到所传送的消息之前,对信息源所发出的消息 是不知道的,否则,接收者就不可能由它得知任何新的消 息,也就失去通信的意义。另外,信号在传输过程中难免 受各种干扰和噪声的影响,将使信号产生失真。所以,一 般的通信信号都是随机信号。但是,在一定条件下,随机 信号也表现出某些确定性,通常把在较长时间内比较确定 的随机信号,近似地看成确定信号,以使分析简化。
E = lim ∫
其平均功率定义为:
T
ห้องสมุดไป่ตู้
2
T →∞ −T
f (t) dt
(1.1-1)
2 1 T P = lim ∫−T f (t) dt T →∞ 2 T
( 1.1-2 )
上两式中,被积函数都是f ( t )的绝对值平方,所以信号能量 E 和信号功率P 都是非负实数。 若信号f ( t )的能量0 < E < ∞ , 此时P = 0,则称此信号 为能量有限信号,简称能量信号(energy signal)。 若信号f ( t )的功率0 < P < ∞ , 此时E = ∞ ,则称此信 号为功率有限信号,简称功率信号(power signal)。 信号f ( t )可以是一个既非功率信号,又非能量信号, 如单位斜坡信号就是一个例子。但一个信号不可能同时既是 功率信号,又是能量信号。
3. 时不变系统和时变系统 只要初始状态不变,系统的输出仅取决于输入而与输入 的起始作用时刻无关,这种特性称为时不变性。具有时不 变特性的系统为时不变系统(time invariant system)。不具 有时不变特性的系统为时变系统(time varying system)。 对时不变系统,如果激励是 x(t),系统产生的响应是y ( t ), 当激励延迟一段时间td为x ( t –td),则系统的响应也同样延迟 td时间为y ( t –td),其波形形状不变。公式化地表示为: 若 则 x(t) x ( t – td) y(t) y ( t – td) (1.3-7)
1.2.2 信号的导数与积分 d f (t) 信号f ( t )的导数是指 dt 或记作f ‘( t ),从波形看,它表 示信号值随时间变化的变化率。当f ( t ) 含有不连续点时,由 于引入了冲激函数的概念,f ( t )在这些不连续点上仍有导数, 出现冲激,其强度为原函数在该处的跳变量。 信号f ( t )的积分是指或记作f (-1)( t ),从波形看,它在任意时 刻t的值为从-到t区间,f ( t )与时间轴所包围的面积。 1.2.3 信号的时移和折叠 信号f(t)时移 ± t0 (t0 > 0),就是将 f(t)表达式中所有自 变量t用t ± t0 替换,成为 f (t ± t0 ) 。信号f ( t )的折叠就是将 f ( t )表达式以及定义域中的变量 t 用 –t 替换,成为f ( - t )。 1.2.4 信号的尺度变换 尺度变换就是把信号f ( t )以及定义域中自变量t用at去置换, 成为f ( at )。
系统模型的建立是有一定条件的,对于同一物理系统,在不 同条件下可以得到不同形式的数学模型。另一方面,对于不 同的物理系统,经过抽象和近似,有可能得到形式上完全相 同的数学模型。 1.3.3 系统的分类 系统的分类比较复杂,我们主要考虑其数学模型的差异来划 分不同的类型。 1. 连续时间系统和离散时间系统 输入和输出均为连续时间信号的系统称为连续时间系统。输 入和输出均为离散时间信号的系统称为离散时间系统。模拟 通信系统是连续时间系统,而数字计算机就是离散时间系统。 连续时间系统的数学模型是微分方程,而离散时间系统则用 差分方程来描述。
系统的线性和时不变性是两个不同的概念,线性系统可以 是时不变的,也可以是时变的,非线性系统也是如此。本 课程只讨论线性时不变(LTI)系统,简称线性系统。线性 时不变连续(离散)系统的数学模型为常系数微分(差分) 方程。
1.3 系统的数学模型及其分类 1.3.1 系统的概念 什么是系统(system)?广义地说,系统是由若干相互作用 和相互依赖的事物组合而成的具有特定功能的整体。例如, 通信系统、自动控制系统、计算机网络系统、电力系统、水 利灌溉系统等。通常将施加于系统的作用称为系统的输入激 励;而将要求系统完成的功能称为系统的输出响应。 1.3.2 系统的数学模型 分析一个实际系统,首先要对实际系统建立数学模型,在数 学模型的基础上,再根据系统的初始状态和输入激励,运用 数学方法求其解答,最后又回到实际系统,对结果作出物理 解释,并赋予物理意义。所谓系统的模型是指系统物理特性 的抽象,以数学表达式或具有理想特性的符号图形来表征系 统特性。
信号的特性可以从两个方面来描述,即时间特性和频率特性。 信号可写成数学表达式,即是时间 t 的函数,它具有一定的 波形,因而表现出一定波形的时间特性,如出现时间的先后、 持续时间的长短、重复周期的大小及随时间变化的快慢等。 另一方面,任意信号在一定条件下总可以分解为许多不同频 率的正弦分量,即具有一定的频率成份,因而表现为一定波 形的频率特性,如含有大小不同频率分量、主要频率分量占 有不同的范围等。 信号的形式所以不同,就因为它们各自有不同的时间特性和 频率特性,而信号的时间特性和频率特性有着对应的关系, 不同的时间特性将导致不同的频率特性的出现。 1.1.2 信号的分类 对于各种信号,可以从不同的角度进行分类。 1.确定信号和随机信号
因此,一般线性系统必须具有: a. 分解性(decomposition property): 即 y ( t )= y z s ( t )+ y z i ( t ) (1.3-6)
b.零输入线性——当系统有多个初始状态时,零输入响 应对每个初始状态呈线性。 c.零状态线性——当系统有多个输入时,零状态响应对 每个输入呈线性。 凡不具备上述特性的系统则称为非线性系统。
周期信号(periodic signal)是指一个每隔一定时间T,周而 复始且无始无终的信号,它们的表达式可写为 f(t)=f(t+nT) n = 0, 1, 2, …