成人高考高起专数学复习资料.doc

合集下载

成人高考(专升本)高等数学(一)知识点复习资料

成人高考(专升本)高等数学(一)知识点复习资料

它们是作为相应三角函数的反函数定义出来的,由于
[答]
.
,y=cosx在定义域内不单调,所以对于
2.初等函数
1.直线的倾角和斜率:

2.直线的斜截式方程: 3.两 直 线 的 平 行 与 垂 直 : 己 知 两 条 直 线
时,函数
的左极限是 A,记作

所谓初等函数是指由基本初等函数经过有限次的四则
,只考虑
母 y换成 x得
(1)各组函数中,两个函数相等的是
3)对分段函数求函数值时,不同点的函数值应代入相 结论:
应范围的公式中去求;
这就是
的反函数。
A.
4)分段函数的定义域是各段定义域的并集。
(1)直接函数
与它的反函数 y=

例 4.分段函数
图形,必定对称于直线 y=x(一般地,二者是不同的函
B.
数,其图形是不同的曲线);
(2)
是微积分中常用的指数函数。 4.对数函数
例如,匀速直线运动路程公式 示速度)
(其中 v表 内自变量 x的不同值,函数不能用一个统一的公式表示, 是 一 个 函 数 , 则 称 它 为 而是要用两个或两个以上的公式来表示。这类函数称为
的反函数,记为
自由落体运动
(其中 g为重力加速度)
“分段函数”。
3.了解函数
与其反函数
之间的关
系(定义域、值域、图像),会求单调函数的反函数。
4.熟练掌握函数的四则运算与复合运算。
5.掌握基本初等函数的性质及其图像。
6.了解初等函数的概念。
7.会建立简单实际问题的函数关系式。
(4)设
,则
例 5.函数的性质
它的定义域是

《数学》(高起专)复习资料

《数学》(高起专)复习资料

2009年高中起点专科《数学》课程入学考试复习资料(内部资料)适用专业:高中起点专科层次各理工科专业四川大学网络教育学院2008年11月四川大学网络教育学院《数学》(高中起点专科)入学考试复习资料复习参考书:全国各类高中起点专科教材总要求本大纲对所列知识提出了三个层次和相应要求,三个层次由低到高顺序排列,高一级层次的要求包含低一级层次的要求。

三个层次分别为:了解 要求考生对所列知识的含义有初步的认识,识记有关内容,并能直接运用。

理解、掌握、会 要求考生对所列知识的含义有比较深刻的认识,能够解释、举例或变形、推断,并能运用知识解决有关问题。

灵活运用 要求考生对所列知识能够综合运用,并能解决较为复杂的数学问题。

第一部分 考试内容一、代数(一) 集合和简易逻辑1. 知识范围集合的概念,集合的表示法,集合与集合的关系;简易逻辑的基本知识2. 要求了解集合的意义及表示方法,了解空集、全集、子集、交集、并集、补集的概念及其表示方法,了解符号∉∈=⊇⊆,,,,的含义,并能运用这些符号表示集合与集合、元素与集合的关系;了解充分条件、必要条件、充分必要条件的含义。

(二) 不等式与不等式组1. 知识范围不等式的概念与性质,一元一次不等式及其结法,一元一次不等式组及其解法,含有绝对值符号的不等式,一元二次不等式及其解法,可利用一元二次不等式求解的两种常见的不等式。

2. 要求(1)理解不等式的性质。

会用不等式的性质和基本不等式a2 ≥0(a∈R)a2+b2≥2ab(a、b ∈R)、a+b≥2√ab (a 、b≥0)解决一些简单问题。

(2)会解一元一次不等式,一元一次不等式组和可化为一元一次不等式组的不等式,会解一元二次不等式,了解区间的概念,会在数轴上表示不等式或不等式组的解集。

(3)了解绝对值不等式的性质,会解形如c b ax ≥+||和c b ax ≤+||的绝对值不等式。

(三)指数与对数1. 知识范围根式,有理指数幂,幂的运算法则,对数、换底公式。

成人高考高中起点数学复习资料下载

成人高考高中起点数学复习资料下载
11、在淡水资源短缺的情况下,水污染更给人类和其他生物造成了、大熊座的明显标志就是我们熟悉的由七颗亮星组成的北斗七星,
答:①可以节约能源;②减少对环境的污染;③降低成本。
一、填空:
6、月球是一个不发光、不透明的球体,我们看到的月光是它反射太阳的光。
14、大我数地区的自来水水源取自水库、湖泊或河流。自来水是主要的饮用水,饮用水源受到污染,会直接影响我们的身体健康。
缺点:不仅消耗大量电能,留下残余物,如果控制不好,还会产生有毒物质,造成二次污染。
20、对生活垃圾进行分类、分装,这是我们每个公民的义务。只要我们人人参与,养成良好的习惯,我们周围的环境一定会变得更加清洁和美丽。
7、对于生活中的一些废弃物,我们可以从垃圾中回收它们并重新加工利用。这样做不但能够减少垃圾的数量,而且能够节省大量的自然资源。
1、世界是由物质构成的。我们身边的书、橡皮、电灯、大树、动物、植物包括我们自己都是由物质构成的。

高中起点成人高考数学复习资料

高中起点成人高考数学复习资料

3、求函数)(x f 极值的方法: (1)求导数)(/x f(2)求)(x f 在定义域内的所有驻点,即解方程)(/x f =0 (3)检查)(/x f 在驻点左右侧的正负符号:如果左正右负,在该点处取___________________; 如果左负右正,在该点处取___________________;如果左右侧同号,则在该点没有取得极值。

4、(1)函数最大值,最小值概念(2)求函数)(x f 在[a,b]上的最大值、最小值方法。

①求)(x f 在(a,b)内的所有驻点②计算)(x f 在驻点与端点的函数值,并加以比较,即可得到最大值,最小值。

二、例题与练习1、求函数x x y 33-=的单调递减区间。

2、若函数)(x f =值取得极值,求在点k x kx x 1122-=++3、求函数)(x f =的极值322+-x x4、求函数)(x f 上最大值,最小值在区间]2,2[5224-+-=x x5、函数上是在区间)2,1(142+-=x x y ( ) A 、单调增加B 、单调减少C 、先单调增加后单调减少D 、先单调减少,后单调增加。

角的有关概念一、知识要点1、角定义,正角、零角、负角,终边相同的角,象限角,轴线角2、角的度量:(1)角度制:把一个周角等分成360份,把等份角的大小叫1度角,记_______;(2)弧度制:在以0为圆心,r 为半径的圆中,等于半径长的弧所对的圆心角的大小叫1弧度角。

(3)角度与弧度的转换:①1o =_____弧度;1弧度=_____度 ②特殊角的角度与弧度换算表:二、例题与练习1、求与840-o 终边相同的最小正角是_____________________2、与36-o 角终边相同的角是( )A 、754-oB 、684-oC 、754oD 、684o 3、311π是第____________________象限角 4、已知圆的半径为R ,弧长为3.5R 的圆弧所对的圆心角等于________________弧度 5、135o =____________________弧度;5π=____________________度 6、已知x 是第二象限角,则2x所在的象限有哪些?导数的概念与运算1.导数的定义:⑴函数y =f (χ)在0χ处的导数记为________、__________或dxdy()x f |0x x = ⑵定义式:________________lim )(0/=∆∆=xyx f说明:__________________)(lim 0x f x 不存在,则称函数如果极限→∆2. ⑴导函数的定义式:_______________)(/=x f⑵()x f 在0χ处的导数就是导函数()x f /在___________________. 3. ⑴导数的几何意义:.________________))(,)(00==k x f x x f y 处的切线的斜率在点(曲线⑵导数的物理意义:.__________,__________==a ν 4. ⑴两个最基本函数的导数公式: ①________(/==c c c y 为常数)则 ②_________)()(/*=∈=n n x n n x y 则 ⑵导数的四则运算:①.___________________________)]()([/=±x v x u ②.____________________________)]().([/=x v x u ③.0)(__________________________])()([/≠=x v x v x u 二、例题与练习1.用导数的定义求函数处的导数。

成人高考高起专《数学》必考考点

成人高考高起专《数学》必考考点

成人高考高起专《数学》必考考点1、集合【注意:请不要忘记空集!!!】交集:A ∩B={x| x ∈A 且x ∈B}并集:A ∪B={x| x ∈A 或x ∈B}补集:C U A={x| x A 但x ∈U}2、数列(选择和填空中的数列请大家掌握)3、解不等式(含绝对值)a>0, |x|<a 则 –a<x<a |x|>a 则 x>a 或 x<-a4、平面向量 0 ,//21211221=+⇔⊥=⇔y y x x y x y x5、平均数、方差6、解三角形(1)正弦定理:Cc B b A a sin sin sin ==(已知两边一对角或已知双角必定用正弦) (2)三角形面积公式:A bc B ac C ab S sin 21sin 21sin 21===(3)余弦定理:(已知三条边或两边一夹角必定用余弦)2222cos a b c bc A =+-B ac c a b cos 2222-+=C ab b a c cos 2222-+=7、导数0)(='c (c 为常数),)()(1+-∈='N n nx x n n ,()x x e e ='8、求切线方程步骤【例题】求曲线y=x 3-4x+2在点(1,-1)处的切线方程①求导:y ’=3x 2-4②把x=1 代入○1中:y=3-4=-1(即切线方程的k 为-1)③y=-x+b④把点(1,-1)代入○3:-1=-1+b 得b=0⑤所以切线方程为:y=-x请大家大题目当中的倒数第二题的第一步求导,无论会不会做,第一步请求导。

大题目中的解三角形无论会不会做第一步请写公式。

(完整word版)成人高考高升专数学常用知识点及公式(打印版)

(完整word版)成人高考高升专数学常用知识点及公式(打印版)

成人高考高升专数学常用知识点及公式第1章 集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素 解析:集合的交集或并集主要以列举法或不等式的形式出现知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。

若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。

题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲 A 、 若甲=乙 但 乙=甲,则甲是乙的充分必要条件(充要条件) B 、若甲=乙 但 乙≠甲,则甲是乙的充分不必要条件 C 、若甲≠乙 但 乙=甲,则甲是乙的必要不充分条件D 、若甲≠乙 但 乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第2章 不等式和不等式组知识点1:不等式的性质1. 不等式两边同加或减一个数,不等号方向不变2. 不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。

2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。

3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。

成人高考高升专数学常用知识点及公式(打印版)精编版

成人高考高升专数学常用知识点及公式(打印版)精编版

成人高考高升专数学常用知识点及公式第1章 集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素解析:集合的交集或并集主要以列举法或不等式的形式出现 知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。

若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。

题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲A 、 若甲=乙 但 乙=甲,则甲是乙的充分必要条件(充要条件)B 、若甲=乙 但 乙≠甲,则甲是乙的充分不必要条件C 、若甲≠乙 但 乙=甲,则甲是乙的必要不充分条件D 、若甲≠乙 但 乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第2章 不等式和不等式组知识点1:不等式的性质1. 不等式两边同加或减一个数,不等号方向不变2. 不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。

2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。

3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。

成人高考专升本高等数学(一)考试辅导复习资料【全】

成人高考专升本高等数学(一)考试辅导复习资料【全】

成人高等学校招生考试专升本高等数学(一)(适合2022年及往后的成考复习)函数、极限与连续本章内容一、函数二、极限三、连续本章约13%,20分选择题、填空题、解答题第一节函数知识点归纳●函数的概念、性质●反函数●复合函数●基本初等函数●初等函数考试要求1、理解概念会求函数包括分段函数的定义域、表达式及函数值,并会作出简单的分段函数图象。

2、掌握判断掌握函数的单调性、奇偶性、有界性和周期性定义,会判断所给函数的相关性质。

3、理解函数理解函数与它的反函数之间的关系,会求单调函数的反函数。

4、掌握过程掌握函数四则运算与复合运算,熟练掌握复合函数的复合过程。

5、掌握性质掌握基本初等函数的简单性质及其图象。

6、掌握概念掌握初等函数的概念。

第一节函数一、函数的概念定理设x和y是两个变量,D是一个给定的数集,如果对于每个数x∈D,变量y按照一定法则总有确定的数值和它对应,则称y是x的函数,记作y=f(x).y是因变量,x是自变量。

函数值全体组成的数集W={y|y=f(x),x∈D} 称为函数的值域。

函数概念的两个基本要素对于给定的函数y=f(x),当函数的定义域D确定后,按照对应法则f,因变量的变化范围也随之确定,所以定义域和对应法则就是确定一个函数的两个要素。

两个函数只有在它们的定义域和对应法则都相同时,才是相同的。

例:研究函数y=x和y=2是不是表示相同的函数。

解:y=x是定义在(−∞,+∞)上的函数关系,y=2是定义在(−∞,0)∪(0,+∞)上的函数关系,它们定义域不同,所以这两个函数是不同的函数关系。

例:研究下面这两个函数是不是相同的函数关系f(x)=x,g(x)=2解:f(x)=x和g(x)=2是定义在(−∞,+∞)上的函数关系,f(x)的值域在(−∞,+∞)上的函数,g(x)的值域在[0,+∞),它们定义域相同,值域不同函数。

函数的定义域(1)在分式中,分母不能为零;(2)在根式中,负数不能开偶次方根;(3)在对数式中,真数必须大于零,底数大于零且不等于1;(4)在反三角函数式中,应满足反三角函数的定义要求;(5)如果函数的解析式中含有分式、根式、对数式和反三角函数式中的两者或两者以上的,求定义域时应取各部分定义域的交集。

(完整word版)成人高考专科数学复习重点 (1)

(完整word版)成人高考专科数学复习重点  (1)

第一部分代数(重点 占55%)第一章 集合和简易逻辑一、集合的概念:强调——共同属性、全体 二、元素与集合的关系: x A ∈ 或 x∉A三、集合的运算:1.交集 A ∩B={x︱x A ∈且x B ∈} 注意:“且”2.并集 A ∪B ={x︱x A ∈或x B ∈} 注意:“或”3.补集 c u A ={x︱ U x ∈但A x ∉}四、简易逻辑:充分条件.必要条件:1.充分条件:若p q ⇒,则p 是q 充分条件. 2.必要条件:若q p ⇒,则p 是q 必要条件.3.充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.第二章 函数 (重点)一、函数的定义:1.理解f的含义,掌握求函数解析式的方法-配方法2.求函数值3.求函数定义域:1)分式的分母不等于0; 2)偶次根式的被开方数≥0; 3)对数的真数>0;二、函数的性质 1.单调性:(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数2.奇偶性(1)定义:若()()f x f x -=,则函数)(x f y =是偶函数;若()()f x f x -=-,则函数)(x f y =是奇函数. (2)奇偶函数的图象特征:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数。

2024成人高考高起专、高起本数学(理)-考点知识点汇编复习资料(完整版)

2024成人高考高起专、高起本数学(理)-考点知识点汇编复习资料(完整版)

考点1实数1.实数的分类(1)有理数(2)无理数2.实数的相关概念(1)数轴(2)绝对值绝对值的意义:数轴上的点到原点的距离.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.实数a 的绝成考高起专、高起本数学(理)-考点汇编第一部分代数第一章数、式、方程和方程组(预备知识)对值可表示为a ,即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩若a,b 为实数,则(1)a ≥0,当且仅当0a =时取等号.(2)||||00a b a +=⇔=且0b =.(3)||||a a =-.(3)相反数(4)倒数3.实数的运算(1)运算法则数的运算顺序:先乘方、开方,然后乘、除,最后加、减,有括号先算括号(即从内往外的顺序)考点2整式的运算1.整式的加减运算2.整式的乘法运算(1)单项式乘单项式(2)多项式乘单项式(3)多项式乘多项式(4)常用乘法公式平方差公式:22()()a b a b a b +-=-;完全平方公式:222()2a b a ab b ±=±+;立方和、差公式:()()33223322(),()a b a b a ab bab a b a ab b +=+-+-=-++;完全立方公式:33223()33a b a a b ab b ±=±+±.3.多项式的因式分解4.分式的运算分式的加、减运算:a c ad bc ad bcb d bd bd bd ±±=±=.分式的乘法运算:ac ac bd bd⋅=.分式的除法运算:a c a d ad b d b c bc÷=⨯=.分式的乘方运算:nn n a a b b ⎛⎫= ⎪⎝⎭.注意:分式的运算结果一定要化为最简分式(或整式).5.二次根式考点3方程1.一元一次方程2.一元二次方程一元二次方程的解法直接开平方法,形如)(m x +2=ɑ(ɑ≥0)的方程因式分解法,可化为()()0m x a x b ++=的方程公式法,求根公式为=b 2-4ɑc ≥0)配方法,若20ax bx c ++=不易分解因式,考虑配方为2()a x t h +=的形式,再开方求解总结常用方法:首选因式分解法,若不适用则选择公式法.(公式法适用于一切有实数根的一元二次方程)(3)根的判别式:24b ac ∆=-叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,它与根的关系如下:①当0∆>时,方程有两个不相等的实数根.②当0∆=时,方程有两个相等的实数根.③当0∆<时,方程没有实数根.④根与系数的关系:若12,x x 是方程20(0)ax bx c a ++=≠的两个根,则有12x x +=12,b cx x a a-=(韦达定理).如果1212,x x p x x q +==,则20x px q -+=是以1x 和2x 为根的一元二次方程.考点4方程组(1)方程组形如1112220,0a x b y c a x b y c ++=⎧⎨++=⎩的方程组称为二元一次方程组.其中123123123123,,,,,,,,,,,a a a b b b c c c d d d 均为实数.“元”指未知数的个数;“次”指末知数的最高次数.(2)一次方程组的解法:一般采用代人消元法或加减消元法求解.第二章集合与简易逻辑考点1.元素与集合一组对象的全体构成一个集合.(1)集合中元素的三大特征:确定性、互异性、无序性.(2)集合中元素与集合的关系:对于元素a 与集合A ,a ∈A 或a ∉A ,二者必居其一.(3)常见集合的符号表示及其关系图.数集自然数集正整数集整数集有理数集实数集符号NN*ZQR(4)集合的表示法:列举法、描述法、Venn 图法.(5)集合的分类:集合按元素个数的多少分为有限集、无限集,有限集常用列举法表示,无限集常用描述法表示.考点2.集合间的基本关系关系定义表示相等集合A 与集合B 中的所有元素都相同A =B 子集A 中的任意一个元素都是B 中的元素A ⊆B 真子集A 是B 的子集,且B 中至少有一个元素不属于AAB注意:(1)空集用∅表示.(2)若集合A 中含有n 个元素,则其子集个数为2n,真子集个数为2n -1,非空真子集的个数为2n -2.(3)空集是任何集合的子集,是任何非空集合的真子集.(4)若A ⊆B ,B ⊆C ,则A ⊆C.考点3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪BA∩B若全集为U,则集合A 的补集为C U A图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x ∉A}运算性质A∪A=A,A∪∅=A,A∪B=B∪A.A∩A=A,A∩∅=∅,A∩B=B∩A.A∩(C U A)=∅,A∪(C U A)=U,C U (C U A)=A特别提醒:1.A ⊆B ⇔A∩B=A ⇔A∪B=B ⇔C U A ⊇C U B.2.C U (A∩B)=(C U A)∪(C U B),C U (A∪B)=(C U A)∩(C U B).考点4.简易逻辑1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.充分条件与必要条件若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q pp 是q 的必要不充分条件pq 且q ⇒pp 是q 的充要条件p ⇔qp 是q 的既不充分又不必要条件p q 且q p3.重要结论1.若A ={x |p (x )},B ={x |q (x )},则(1)若A ⊆B ,则p 是q 的充分条件;(2)若A ⊇B ,则p 是q 的必要条件;(3)若A =B ,则p 是q 的充要条件;(4)若A B ,则p 是q 的充分不必要条件;(5)若B A ,则p 是q 的必要不充分条件;(6)若AB 且BA ,则p 是q 的既不充分也不必要条件.2.充分条件与必要条件的两个特征:(1)对称性:若p 是q 的充分条件,则q 是p 的必要条件,即“p ⇒q ”⇔“q ⇐p ”.(2)传递性:若p 是q 的充分(必要)条件,q 是r 的充分(必要)条件,则p 是r 的充分(必要)条件,即“p ⇒q 且q ⇒r ”⇒“p ⇒r ”(“p ⇐q 且q ⇐r ”⇒“p ⇐r ”).注意:不能将“若p ,则q ”与“p ⇒q ”混为一谈,只有“若p ,则q ”为真命题时,才有“p ⇒q ”,即“p ⇒q ”⇔“若p ,则q ”为真命题.第三章函数考点1.函数的单调性1.单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的2.单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.考点2.函数的奇偶性偶函数奇函数定义如果对于函数f (x )的定义域内任意一个x都有f (-x )=f (x ),那么函数f (x )是偶函数都有f (-x )=-f (x ),那么函数f (x )是奇函数图象特征关于y 轴对称关于原点对称考点3.二次函数(1)解析式:一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -h )2+k (a ≠0).两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0).(2)图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域(-∞,+∞)(-∞,+∞)值域[4ac -b 24a,+∞)(-∞,4ac -b24a]单调性在x ∈(-∞,-b2a )上是减函数,在x ∈[-b2a ,+∞)上是增函数在x ∈(-∞,-b2a)上是增函数,在x ∈[-b2a,+∞)上是减函数最值当x =-b 2a 时,y 有最小值4ac -b24a当x =-b 2a 时,y 有最大值4ac -b24a奇偶性当b =0时为偶函数顶点(-b 2a ,4ac -b 24a)对称性图象关于直线x=-b2a成轴对称图形考点4.指数与指数运算1.根式(1)根式的概念根式的概念符号表示备注如果x n=a ,那么x 叫做a 的n 次方根n >1且n ∈N *当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数n a零的n 次方根是零当n 为偶数时,正数的n 次方根有两个,它们互为相反数±n a负数没有偶次方根(2)两个重要公式①na ≥0),a <0),n 为偶数.②(na )n=a (注意a 必须使n a 有意义).2.分数指数幂(1)正数的正分数指数幂是a mn =na (a >0,m ,n ∈N *,n >1).(2)正数的负分数指数幂是a -m n =1n a m(a >0,m ,n ∈N *,n >1).(3)0的正分数指数幂是0,0的负分数指数幂无意义.3.实数指数幂的运算性质(1)a r ·a s =a r +s (a >0,r 、s ∈R );(2)(a r )s =a rs (a >0,r 、s ∈R );(3)(ab )r=a r b r(a >0,b >0,r ∈R ).考点5.幂函数函数y =x y =x 2y =x 3y =x12y =x -1图象定义域R R R {x |x ≥0}{x |x ≠0}值域R {y |y ≥0}R {y |y ≥0}{y |y ≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R 上单调递增在(-∞,0)上单调递减,在(0,+∞)上单调递增在R 上单调递增在[0,+∞)上单调递增在(-∞,0)和(0,+∞)上单调递减考点6.指数函数图象与性质指数函数的概念、图象和性质定义函数f (x )=a x (a >0且a ≠1)叫指数函数底数a >10<a <1图象性质函数的定义域为R ,值域为(0,+∞)考点7.对数函数的图象和性质图象a >10<a <1性质定义域:(0,+∞)值域:(-∞,+∞)当x=1时,y=0,即过定点(1,0)当0<x<1时,y<0;当x>1时,y>0当0<x<1时,y>0;当x>1时,y<0在(0,+∞)上为增函数在(0,+∞)上为减函数第四章不等式与不等式组考点1.不等式的性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)同向可加性:a>b⇔a+c>b+c;a>b,c>d⇒a+c>b+d;(4)同向同正可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;a>b>0,c>d>0⇒ac>bd;(5)可乘方性:a>b>0⇒a n_>b n(n∈N,n≥2);(6)可开方性:a>b>0⇒na>nb(n∈N,n≥2).考点2.一元一次不等式组的解法:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

成人高考数学复习资料高起专

成人高考数学复习资料高起专

成人高考数学复习资料高起专成人高考-数学知识提纲数学复习资料1.集合:会用列举法、描述法表示集合,会集合的交、并、补运算,能借助数轴解决集合运算的问题,具体参看课本例2、4、5.2.充分必要条件要分清条件和结论,由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。

从集合角度解释,若B A ⊆,则A 是B 的充分条件;若B A ⊆,则A 是B 的必要条件;若A=B ,则A 是B 的充要条件。

例1:对“充分必要条件”的理解.请看两个例子:(1)“29x =”是“3x =”的什么条件?(2)2x >是5x >的什么条件?我们知道,若A B ⇒,则A 是B 的充分条件,若“A B ⇐”,则A 是B 的必要条件,但这种只记住定义的理解还不够,必须有自己的理解语言:“若A B ⇒,即是A 能推出B ”,但这样还不够具体形象,因为“推出”指的是什么还不明确;即使借助数轴、文氏图,也还是“抽象”的;如果用“A 中的所有元素能满足B ”的自然语言去理解,基本能深刻把握“充分必要条件”的内容.本例中,29x =即集合{3,3}-,当中的元素3-不能满足或者说不属于{3},但{3}的元素能满足或者说属于{3,3}-.假设}3|{},9|{2====x x B x x A ,则满足“A B ⇐”,故“29x =”是“3x =”的必要非充分条件,同理2x >是5x >的必要非充分条件.3.直角坐标系 注意某一点关于坐标轴、坐标原点、,y x y x ==-的坐标的写法。

如点(2,3)关于x 轴对称坐标为(2,-3),点(2,3)关于y 轴对称坐标为(-2,3),点(2,3)关于原点对称坐标为(-2,-3),点(2,3)关于y x =轴对称坐标为(3,2),点(2,3)关于y x =-轴对称坐标为(-3,-2),4.函数的三要素:定义域、值域、对应法则,如果两个函数三要素相同,则是相同函数。

《数学》高起专复习资料

《数学》高起专复习资料

《数学》(高起专)复习资料————————————————————————————————作者:————————————————————————————————日期:2009年高中起点专科《数学》课程入学考试复习资料(内部资料)适用专业:高中起点专科层次各理工科专业四川大学网络教育学院2008年11月四川大学网络教育学院《数学》(高中起点专科)入学考试复习资料复习参考书:全国各类高中起点专科教材总要求本大纲对所列知识提出了三个层次和相应要求,三个层次由低到高顺序排列,高一级层次的要求包含低一级层次的要求。

三个层次分别为:了解 要求考生对所列知识的含义有初步的认识,识记有关内容,并能直接运用。

理解、掌握、会 要求考生对所列知识的含义有比较深刻的认识,能够解释、举例或变形、推断,并能运用知识解决有关问题。

灵活运用 要求考生对所列知识能够综合运用,并能解决较为复杂的数学问题。

第一部分 考试内容一、代数(一) 集合和简易逻辑1. 知识范围集合的概念,集合的表示法,集合与集合的关系;简易逻辑的基本知识2. 要求了解集合的意义及表示方法,了解空集、全集、子集、交集、并集、补集的概念及其表示方法,了解符号∉∈=⊇⊆,,,,的含义,并能运用这些符号表示集合与集合、元素与集合的关系;了解充分条件、必要条件、充分必要条件的含义。

(二) 不等式与不等式组1. 知识范围不等式的概念与性质,一元一次不等式及其结法,一元一次不等式组及其解法,含有绝对值符号的不等式,一元二次不等式及其解法,可利用一元二次不等式求解的两种常见的不等式。

2. 要求(1)理解不等式的性质。

会用不等式的性质和基本不等式a2 ≥0(a∈R)a2+b2≥2ab(a、b ∈R)、a+b≥2√ab (a 、b≥0)解决一些简单问题。

(2)会解一元一次不等式,一元一次不等式组和可化为一元一次不等式组的不等式,会解一元二次不等式,了解区间的概念,会在数轴上表示不等式或不等式组的解集。

(完整版)成人高考数学知识点总结.doc

(完整版)成人高考数学知识点总结.doc

数学知识点与习题(一)集合[说明]重点是集合的并与交的运算。

第1题和第2题是最典型的试题,要很好掌握;关于补集的运算,元素与集合的关系,子集合的内容也要知道,做些准备。

(3、4两题在以往考试中很少出现。

)1、设集合M={1,2,3,4,5}, 集合N= {2,4,6,8,10} 则M N = _M N = ___2、设集合M {x| x 1}, N {x|x 2}则MN = —M N = ___________3、全集U= {1,2,3,4,5,6,7},集合A= {1,3,5,7},集合B={3,5}贝y C ,, A n B =;c u A U B=4、下列式子正确的是(A) 0 N (B) {0}N (C) 0N (D) {0} N(二)简要逻辑[说明]几乎每年都有一道这个内容的选择记住:要想证明由甲可以推出乙必须根据定义定理公要想证明由甲不能推出乙,除了根据定义定理公式,还可以举出反例。

题目内容会涉及代数、三角或几何知识。

1、设命题甲:|a| = |b| ;命题乙:a=b贝U(A)甲是乙的充分条件但不是乙的必要条件(B)甲是乙的必要条件但不是乙的充分条(C)甲不是乙的充分条件也不是乙的必要条件(D)甲是乙的充分必要条件2、设命题甲:x=1 ;命题乙:x2 x 0(A)甲是乙的充分条件但不是乙的必要条件(B)甲是乙的必要条件但不是乙的充分条件(C)甲不是乙的充分条件也不是乙的必要条件(D)甲是乙的充分必要条件3、设x、y是实数,则x2 y2的充分必要条件是(A) x=y (B) x=-y (C) x3 y3(D) |x|=|y|(三)不等式的性质[说明]判断不等式是否成立,在试题中也常出现。

一定要明白不等式性质中的条件是什么结论是什么;此外用作差比较法可解决一些问题;最后还可根据函数单调性判断某些不等式能否成立(见指数函数对数函数)1、若a<b<0 ,则下列不等式中不能成立的是(A)a b(B)氏a(C)I a | > | b |(D)a2 b22、设x、y是实数且x > y 则下列不等式中,一定成立的是2 2 x .(A)x y (B ) xc >yc (c 工0)(C) x - y>0 (D)弋 1(四)解一元一次不等式和不等式组[说明]一般没有直接作为试题出现,但是必须掌握这些基础知识并提高运算能力3x 2 7 2 5x c1、不等式组的解集为___________2、解不等式才莎04 5x 21(五)解绝对值不等式[说明]这部分内容重要,在历年试题中几乎都出现过。

成人高考高升专数学必考知识点汇总

成人高考高升专数学必考知识点汇总

成人高考高升专数学必考知识点汇总成人高考高升专数学知识点汇总【篇一】1、知识范围(1)向量的概念向量的定义、向量的模、单位向量、向量在坐标轴上的投影、向量的坐标表示法、向量的方向余弦(2)向量的线性运算向量的加法、向量的减法、向量的数乘(3)向量的数量积二向量的夹角、二向量垂直的充分必要条件(4)二向量的向量积、二向量平行的充分必要条件2、要求(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。

(2)熟练掌握向量的线性运算、向量的数量积与向量积的计算方法。

(3)熟练掌握二向量平行、垂直的充分必要条件。

【篇二】1、知识范围(1)不定积分、原函数与不定积分的定义、原函数存在定理不定积分的性质(2)基本积分公式(3)换元积分法、第一换元法(凑微分法)、第二换元法(4)分部积分法(5)一些简单有理函数的积分2、要求(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理。

(2)熟练掌握不定积分的基本公式。

(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。

(4)熟练掌握不定积分的分部积分法。

(5)会求简单有理函数的不定积分。

【篇三】1、知识范围(1)导数概念导数的定义、左导数与右导数、函数在一点处可导的充分必要条件导数的几何意义与物理意义、可导与连续的关系(2)求导法则与导数的基本公式导数的四则运算、反函数的导数、导数的基本公式(3)求导方法复合函数的求导法、隐函数的求导法、对数求导法由参数方程确定的函数的求导法、求分段函数的导数(4)高阶导数高阶导数的定义、高阶导数的计算(5)微分微分的定义、微分与导数的关系、微分法则一阶微分形式不变性2、要求(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。

(2)会求曲线上一点处的切线方程与法线方程。

(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。

成人高考高数复习经典资料

成人高考高数复习经典资料

第一讲函数、连续与极限一、理论要求二、题型与解法极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1、函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2、极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3、连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)第二讲导数、微分及其应用一、理论要求1、导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导)会求平面曲线的切线与法线方程2、微分中值定理理解Roll、Lagrange、Cauchy、Taylor定理会用定理证明相关问题3、会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图会计算曲率(半径)二、题型与解法第三讲不定积分与定积分一、理论要求二、题型与解法1、不定积分掌握不定积分的概念、性质(线性、与微分的关系)会求不定积分(基本公式、线性、凑微分、换元技巧、分部)2、定积分理解定积分的概念与性质理解变上限定积分是其上限的函数及其导数求法会求定积分、广义积分会用定积分求几何问题(长、面、体)会用定积分求物理问题(功、引力、压力)及函数平均值第四讲向量代数、多元函数微分与空间解读几何一、理论要求二、题型与解法1、向量代数理解向量的概念(单位向量、方向余弦、模)了解两个向量平行、垂直的条件向量计算的几何意义与坐标表示2、多元函数微分理解二元函数的几何意义、连续、极限概念,闭域性质理解偏导数、全微分概念能熟练求偏导数、全微分熟练掌握复合函数与隐函数求导法3、多元微分应用理解多元函数极值的求法,会用Lagrange乘数法求极值4、空间解读几何掌握曲线的切线与法平面、曲面的切平面与法线的求法会求平面、直线方程与点线距离、点面距离第五讲多元函数的积分一、理论要求二、题型与解法。

2022年成人高考高起点《数学(文)》复习资料

2022年成人高考高起点《数学(文)》复习资料

2022年成人高考高起点《数学(文)》复习资料第一篇:《成人高考高起点数学(文)复习资料》成人高考高起点数学(文)复习资料一、三性(奇偶、单调、周期)(1)、下列函数在其定义域内是奇函数又是偶函数的是(D)(1995年真题)A.y=inB。

y=log2C。

y=+8D。

y=3(2)、函数y=3+2in(A)(1996年真题)A。

奇B。

偶C。

非奇非偶D。

既是奇函数又是偶函数(3)、函数y=1-2in2(B)(1998年真题)A。

奇B。

偶C。

既是奇函数又是偶韩式D。

非奇非偶(4)、下列函数中偶函数(D)(2002年真题)A。

co(+1)B。

y=3C。

y=(-1)2D。

y=in2(5)、下列函数中偶函数(A)(2003年真题)A。

y=3+3-B。

y=32-3C。

y=1+inD。

y=tan2022年成人高考高起点《数学(文)》复习资料。

(6)、函数f()=in+3(2004年真题)A。

偶B。

奇C。

既是奇函数又是偶函数D。

非奇非偶(7)、下列选项中,正确的是(B)A。

y=+in是偶函数B。

y=_in是奇函数C。

y=∣∣+in是偶函数D。

y=∣∣+in是奇函数(8)、下列函数中为偶函数的是(D)A。

y=2B。

y=2C。

y=log2D。

y=2co(9)、下列函数中既不是奇函数又不是偶函数的是(B)A。

f()=1、1+2B。

f()=2+C。

f()=co、3D。

f()=2、(10)、函数y=in在区间(C)为增函数A。

[0π]B。

[π,2π]C。

[3π、2,5π、2]D。

[5π、8,7π、8]第二篇:《成人高考高起点数学复习讲义》2022年成人高考高起点《数学(文)》复习资料。

成人高考高起点数学复习讲义难点1集合思想及应用集合是高中数学的基本,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用。

本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019成人高考(高起专)专用复习资料数学成人高考数学复习资料(可打印)集合和简易逻辑: 考点:交集、并集、补集 概念:1、由所有既属于集合A 又属于集合B 的元素所组成的集合,叫做集合A 和集合B 的交集,记作A ∩B ,读作“A 交B ”(求公共元素)A ∩B={x|x ∈A,且x ∈B}2、由所有属于集合A 或属于集合B 的元素所组成的集合,叫做集合A 和集合B 的并集,记作A ∪B ,读作“A 并B ”(求全部元素)A ∪B={x|x ∈A,或x ∈B}3、如果已知全集为U ,且集合A 包含于U ,则由U 中所有不属于A 的元素组成的集合,叫做集合A 的补集,记作A C u ,读作“A 补”A C u ={ x|x ∈U ,且x A } 解析:集合的交集或并集主要以例举法或不等式的形式出现 考点:简易逻辑 概念:在一个数学命题中,往往由条件A 和结论B 两部分构成,写成“如果A 成立,那么B 成立”。

充分条件:如果A 成立,那么B 成立,记作“A →B ”“A 推出B ,B 不能推出A ”。

必要条件:如果B 成立,那么A 成立,记作“A ←B ”“B 推出A ,A 不能推出B ”。

充要条件:如果A →B,又有A ←B ,记作“A ←B ”“A 推出B ,B 推出A ”。

解析:分析A 和B 的关系,是A 推出B 还是B 推出A ,然后进行判断 不等式和不等式组 考点:不等式的性质如果a>b ,那么b<a ;反之,如果b>a ,那么a<b 成立如果a>b,且b>c,那么a>c如果a>b,存在一个c(c可以为正数、负数或一个整式),那么a+c>b+c,a-c>b-c 如果a>b,c>0,那么ac>bc(两边同乘、除一个正数,不等号不变)如果a>b,c<0,那么ac<bc(两边同乘、除一个负数,不等号变号)如果a>b>0,那么a2>b2如果解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面考点:一元一次不等式定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。

解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。

如:6x+8>9x-4,求x?把x的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。

考点:一元一次不等式组定义:由几个一元一次不等式所组成的不等式组,叫做一元一次不等式组解法:求出每个一元一次不等式的值,最后求这几个一元一次不等式的交集(公共部分)。

考点:含有绝对值的不等式定义:含有绝对值符号的不等式,如:|x|<a,|x|>a型不等式及其解法。

简单绝对值不等式的解法:|x|<a的解集是{x|-a<x<a},取中间,在数轴上表示所有与原点的距离小于a 的点的集合;|x|>a 的解集是{x|x>a 或x<-a},取两边,在数轴上表示所有与原点的距离大于a 的点的集合。

复杂绝对值不等式的解法:|ax+b|<c ,相当于解不等式-c<ax+b<c,不等式三边同时减去b ,再同时除以a (注意,当a<0的时候,不等号要改变方向);|ax+|>c 相当于解不等式ax+b>c 或ax+b<-c ,解法同一元一次不等式一样。

解析:主要搞清楚取中间还是取两边,取中间是连起来的,取两边有“或” 考点:一元二次不等式定义:含有一个未知数并且未知数的最高次数是二次的不等式,叫做一元二次不等式。

如:02>++c bx ax 与02<++c bx ax (a>0)) 解法:求02>++c bx ax (a>0为例) 步骤:(1)先令02=++c bx ax ,求出x (三种方法:求根公式、十字相乘法、配方法)求根公式:a acb b x 242-±-=十字相乘法:如:62x -7x-5=0求x ?2 1 ×3 -5交叉相乘后 3 + -10 = -7解析:左边两个相乘等于2x 前的系数,右边两个相乘等于常数项,交叉相乘后相加等于x 前的系数,如满足条件即可分解成:(2x+1)×(3x-5)=0,两个数相乘等于0,只有当2x+1=0或3x-5=0的时候满足条件,所以x=21-或x=35。

配方法(省略)(2)求出x 之后,“>”取两边,“<”取中间,即可求出答案。

注意:当a<0时必须要不等式两边同乘-1,使得a>0,然后用上面的步骤来解。

考点:其他不等式不等式(ax+b )(cx+d )>0(或<0)的解法这种不等式可依一元二次方程(ax+b )(cx+d )=0的两根情况及2x 系数的正、负来确定其解集。

不等式0>++d cx bax (或<0)的解法它与(ax+b )(cx+d )>0(或<0)是同解不等式,从而前者也可化为一元二次不等式求解。

此处看不明白者问我,课堂上讲。

指数与对数 考点:有理指数幂正整数指数幂:a a a a a nΛ⨯⨯= 表示n 个a 相乘,(n +∈N 且n>1) 零的指数幂:10=a (0≠a )负整数指数幂:p p a a 1=-(0≠a ,p +∈N )分数指数幂:正分数指数幂:nm nm a a =(a ≥0,;m ,n +∈N 且n>1)负分数指数幂:nmnm nm a aa11==-(a>0,;m ,n +∈N 且n>1)解析:重点掌握负整数指数幂和分数指数幂 考点:幂的运算法则y x y x a a a +=⨯(同底数指数幂相乘,指数相加) yx y x a b a -=(同底数指数幂相除,指数相减) xy y x a a =)((可以乘进去) x x x b a ab =)((可以分别x 次)解析:重点掌握同底数指数幂相乘和相除 考点:对数定义:如果N a b =(a>0且1≠a ),那么b 叫做以a 为底的N 的对数,记作b N a =log (N>0),这里a 叫做底数,N 叫做真数。

特别底,以10为底的对数叫做常用对数,通常记N 10log 为lgN ;以e 为底的对数叫做自然对数,e ≈2.7182818,通常记作N ln 。

两个恒等式:ba N ab a N a ==log log ,几个性质:b N a =log ,N>0,零和负数没有对数1log =a a ,当底数和真数相同时等于1 01log =a ,当真数等于1的对数等于0n n =10lg ,(n Z ∈)考点:对数的运算法则NM MN a a a log log )(log +=(真数相乘,等于两个对数相加;两个对数相加,底相同,可以变成真数相乘)N M N Ma a alog log log -=(真数相除,等于两个对数相减;两个对数相减,底相同,可以变成真数相除)Mn M a n a log log =(真数的次数n 可以移到前面来)M n M a n a log 1log =(n n M M 1=,真数的次数n 1可以移到前面来)M a bM N b N a log log =函数考点:函数的定义域和值域定义:x 的取值范围叫做函数的定义域;y 的值的集合叫做函数的值域 求定义域:c bx ax y bkx y ++=+=2一般形式的定义域:x ∈R x ky =分式形式的定义域:x ≠0x y =根式的形式定义域:x ≥0xy a log = 对数形式的定义域:x >0解析:考试时一般会求结合两种形式的定义域,分开最后求交集(公共部分)即可考点:函数的单调性在)(x f y =定义在某区间上任取1x ,2x ,且1x <2x ,相应得出)(1x f ,)(2x f 如果: 1、)(1x f <)(2x f ,则函数)(x f y =在此区间上是单调增加函数,或增函数,此区间叫做函数的单调递增区间。

随着x 的增加,y 值增加,为增函数。

2、)(1x f >)(2x f ,则函数)(x f y =在此区间上是单调减少函数,或减函数,此区间叫做函数的单调递减区间。

随着x 的增加,y 值减少,为减函数。

解析:分别在其定义区间上任取两个值,代入,如果得到的y 值增加了,为增函数;相反为减函数。

考点:函数的奇偶性定义:设函数)(x f y =的定义域为D ,如果对任意的x ∈D ,有-x ∈D 且: 1、)()(x f x f -=-,则称)(x f 为奇函数,奇函数的图像关于原点对称 2、)()(x f x f =-,则称)(x f 为偶函数,偶函数的图像关于y 轴对称解析:判断时先令x x -=,如果得出的y 值是原函数,则是偶函数;如果得出的y 值是原函数的相反数,则是奇函数;否则就是非奇非偶函数。

考点:一次函数定义:函数b kx y +=叫做一次函数,其中k ,b 为常数,且0≠k 。

当b=0是,kx y =为正比例函数,图像经过原点。

当k>0时,图像主要经过一三象限;当k<0时,图像主要经过二四象限 考点:二次函数定义:c bx ax y ++=2为二次函数,其中a ,b ,c 为常数,且0≠a ,当a>0时,其性质如下:定义域:二次函数的定义域为R图像:顶点坐标为(a b ac a b 44,22--),对称轴a bx 2-=,图像为开口向上的抛物线,如果a<0,为开口向下的抛物线单调性:(-∞,a b 2-]单调递减,[a b2-,+∞)单调递增;当a<0时相反.最大值、最小值:a b ac y 442-=为最小值;当a<0时a b ac y 442-=取最大值 韦达定理:a cx x a b x x =⋅-=+2121,考点:反比例函数 定义:x ky =叫做反比例函数定义域:0≠x 是奇函数当k>0时,函数在区间(-∞,0)与区间(0,+∞)内是减函数 当k<0时,函数在区间(-∞,0)与区间(0,+∞)内是增函数 考点:指数函数定义:函数)10(≠>=a a a y x且叫做指数函数 定义域:指数函数的定义域为R 性质:a a a ==10,10>x a图像:经过点(0,1),当a>1时,函数单调递增,曲线左方与x 轴无限靠近;当0<a<1时,函数单调递减,曲线右方可与x 轴无限靠近。

相关文档
最新文档