一元二次方程△和根与系数关系

合集下载

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系
△>0方程有两个不相等的实数根. △=0方程有两个相等的实数根. △<0方程没有实数根. △≥0方程有两个实数根.
上述命题的逆命题也正确
例1:不解方程判断下列方程根的情况 ① x²-4x-1=0 ②x²+5=2x ③ x²-mx+m²+1=0
例2:k取何值时,方程4 x²-(k+2)x+(k-1)=0 ①有一个根是-1。 ②有两个相等的实根
解:∵方程x²+2ax+1=0有两个不相等的实根 ∴Δ 1=4a²-4>0 既a²>1 方程②中a>1 ∴ 2a²-1>1≠0 既方程②为一元二次方程 Δ 2=4a²-4(2a-1)2=-4(4a-1)(a-1) ∵a²>1 ∴a²-1>0 ∴(4a²-1)>0 2=-4(4a²-1)(a²-1)<0 ∴方程②无实根
一元二次方程的根与系数关系
一元二次方程的根与系数关系(或称韦达定理)是初中数学内容中一个很重要的 知识点,在中考中占有重要的地位,纵观近年全国各地的中考试题,这个知 识点的考查可以解决以下几个问题:
一元二次方程的根与系数的关系 如果一元二次方程ax 2+bx+c=0(a≠0)的两个实数根是x 1,x 2,那么
点评:本题的解题关键是把a、b看作一元二次方程x 2-3x+1=0的 两根,利用根与系数关系得a+b=3,ab=1,再通过运用整体代换 的思想代入运算,问题可求.利用根与系数的关系求与根有关的代数 式的值,
五、利用给出条件,确定一个一元二次方程中某个字母系数的值
例3 已知关于x的方程x 2+px+q=0的两实数根和的平方比两实数根之积 大7,而两实数根差的平方比两实数根之积的3倍小5,求p、q值.
(x 1-x 2) 2=3 x 1·x 2-5 ……③ ∵(x 1-x 2) 2=(x 1+x 2) 2-4 x 1·x 2

一元二次方程根与系数的关系公式有哪些

一元二次方程根与系数的关系公式有哪些

⼀元⼆次⽅程根与系数的关系公式有哪些
韦达定理指出了⼀元⼆次⽅程根与系数的关系,让我们⼀起来了解⼀下吧。

下⾯是由店铺编辑为⼤家整理的“⼀元⼆次⽅程根与系数的关系公式有哪些”,仅供参考,欢迎⼤家阅读本⽂。

⼀元⼆次⽅程根与系数的关系
韦达定理指出:⼀元⼆次⽅程中两根的和等于它的⼀次项系数除以⼆次项系数所得的商的相反数;两根的积等于它的常数项除以⼆次项系数所得的商。

设⼀元⼆次⽅程ax²+bx+c=0中(a,b,c∈R,a≠0),设此⼀元⼆次⽅程有两根x₁、x₂,有如下关系:
由⼀元⼆次⽅程求根公式如下:
达定理与根的判别式的关系更是密不可分。

⼀元⼆次⽅程的根的判别式为:△=b2-4ac(a,b,c分别为⼀元⼆次⽅程的⼆次项系数,⼀次项系数和常数项)。

根的判别式是判定⽅程是否有实根的充要条件,韦达定理说明了根与系数的关系。

⽆论⽅程有⽆实数根,实系数⼀元⼆次⽅程的根与系数之间适合韦达定理。

判别式与韦达定理的结合,则更有效地说明与判定⼀元⼆次⽅程根的状况和特征。

韦达定理为数学中的⼀元⽅程的研究奠定了基础,对⼀元⽅程的应⽤创造开拓了⼴泛的发展空间。

已知两个根其中的⼀个,就可以代⼊韦达定理的关系式⾥求得另⼀个根,并且还可以⽤另⼀个关系式来检验。

数学一元二次方程根与系数的关系

数学一元二次方程根与系数的关系

数学一元二次方程根与系数的关系稿子一嘿,亲爱的小伙伴们!今天咱们来聊聊数学里超有趣的一元二次方程根与系数的关系。

你知道吗?这就像一个神秘的密码,一旦掌握,就能解开好多数学难题的大门。

比如说,当我们有一个一元二次方程ax² + bx + c = 0 (a ≠ 0),它的两个根 x₁和 x₂之间可是有着特别的联系哦!那就是 x₁ + x₂ = b/a ,x₁ · x₂ = c/a 。

是不是感觉有点神奇?想象一下,我们不用费劲去求解方程,就能通过系数 a、b、c 大概知道根的情况。

比如说,如果b² 4ac 大于 0,那就有两个不同的实数根。

这时候,根与系数的关系就能派上大用场啦,能帮我们更快地了解根的特点。

有时候做题,看到那些复杂的方程,别害怕!想起这个关系,说不定就能找到突破口。

而且哦,这个知识在生活中也有用呢。

就像算一些增长、衰减的问题,或者设计一些东西的时候,都能靠它来帮忙。

怎么样,是不是觉得一元二次方程根与系数的关系还挺有意思的?稿子二哈喽呀!今天咱们要好好唠唠一元二次方程根与系数的关系,准备好和我一起探索这个神奇的数学世界了吗?来,先看看这个方程ax² + bx + c = 0 (a ≠ 0),它的根可藏着小秘密呢。

你想啊,当我们知道了 a、b、c 的值,就能算出根的和与根的积。

比如说,x₁ + x₂等于 b/a ,这就好像是数学世界里的一条隐藏规则。

还有 x₁ · x₂等于 c/a ,是不是感觉很奇妙?有时候,老师出的题目故意不给咱具体的根,就看咱们能不能用这个关系来解决问题。

就像是玩一个解谜游戏,找到关键线索,就能揭开答案的面纱。

而且哦,这可不仅仅是为了考试。

在实际生活里,像工程计算啦,经济问题啦,都可能用到它。

想象一下,你要是能熟练掌握这个关系,那在解决问题的时候,就像是有了一把超级厉害的武器,轻松打败难题怪兽。

所以呀,别小看这一元二次方程根与系数的关系,好好琢磨琢磨,它能给你带来好多惊喜呢!。

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系

的蛛网雁胸圣!这个巨大的蛛网雁胸圣,身长四百多米,体重一百多万吨。最奇的是这个怪物长着十分悠闲的雁胸!这巨圣有着水绿色烤鸭模样的身躯和深绿色细小樱桃般 的皮毛,头上是绿宝石色磨盘一样的鬃毛,长着紫罗兰色菊花模样的虎尾雨萍额头,前半身是米黄色柳叶模样的怪鳞,后半身是扁扁的羽毛。这巨圣长着灰蓝色菊花似的脑 袋和青远山色红薯模样的脖子,有着淡青色猪肚形态的脸和水青色蚯蚓似的眉毛,配着深紫色枕木一样的鼻子。有着纯蓝色床垫形态的眼睛,和淡白色壁灯模样的耳朵,一 张纯蓝色钢针模样的嘴唇,怪叫时露出暗紫色小鬼似的牙齿,变态的米黄色肥肠般的舌头很是恐怖,深绿色瓜秧般的下巴非常离奇。这巨圣有着如同火腿似的肩胛和犹如羽 毛一样的翅膀,这巨圣瘦瘦的淡绿色扣肉般的胸脯闪着冷光,活似柿子一样的屁股更让人猜想。这巨圣有着仿佛螳螂模样的腿和淡紫色蛙掌似的爪子……匀称的绿宝石色椰 壳般的九条尾巴极为怪异,纯白色河马似的撬棍圣柏 优游 www.youyoupingta 优游 肚子有 种野蛮的霸气。淡绿色牙刷一样的脚趾甲更为绝奇。这个巨圣喘息时有种深 紫色鸡爪般的气味,乱叫时会发出深青色狮子形态的声音。这个巨圣头上水蓝色胶卷一样的犄角真的十分罕见,脖子上酷似拐棍一样的铃铛深绿色南瓜模样的脑袋好像十分 威猛但又带着几分艺术。这时那伙校精组成的巨大梦唇怪忽然怪吼一声!只见梦唇怪抖动水红色粉条形态的鬃毛,整个身体一边旋转一边像巨大的怪物一样膨胀起来……突 然,整个怪物像巨大的湖青色种子一样裂开……五十五条深青色泡菜模样的腐烂巨根急速从里面伸出然后很快钻进泥土中……接着,一棵暗黄色蝎子模样的邪恶巨大怪芽疯 速膨胀起来……一簇簇灰蓝色蜜桃模样的腐臭巨大枝叶疯速向外扩张……突然!一朵青古磁色标枪模样的阴冷巨蕾恐怖地钻了出来……随着淡蓝色长绳模样的贪婪巨花狂速 盛开,无数绿宝石色贝壳模样的变质花瓣和亮青色花蕊飞一样伸向远方……突然,无数白象牙色试管模样的阴森果实从巨花中窜出,接着飞一样射向魔墙!只见每个巨大果 实上都骑着一个梦唇怪的小替身,而那伙校精的真身也混在其中……“哇!真有假货性!”壮扭公主道。“还多少带点凶暴性!咱们让他们看看什么高层次!嘻嘻!”月光 妹妹和壮扭公主一边说着一边念动咒语……只见巨大梦唇怪猛然间长啸一声!巨大果实的飞速顿时变得慢如蜗牛,只见狗腿玉喉圣转动绿宝石色椰壳般的九条尾巴,整个身 体快速变成一枚巨大的缤纷奇蛋,这枚奇蛋一边旋转一边射出万道奇光……突然,整个奇蛋像巨大的淡蓝色花蕾一样绽开……七十二条深青色橱窗模样的时尚尾

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系
三:以两个数为根作一元二次方程
以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x+x 1x 2=0
例3:分别以x 2+3x-2=0的两根和与两根积为根的一元二次方程是: 分析:本题求一个已知两个根的一元二次方程,关键是要求出两个根的和与两根的积。
四、不解方程,求与根有关的代数式的值
解:∵方程x²+2ax+1=0有两个不相等的实根 ∴Δ 1=4a²-4>0 既a²>1 方程②中a>1 ∴ 2a²-1>1≠0 既方程②为一元二次方程 Δ 2=4a²-4(2a-1)2=-4(4a-1)(a-1) ∵a²>1 ∴a²-1>0 ∴(4a²-1)>0 2=-4(4a²-1)(a²-1)<0 ∴方程②无实根
例4:求证关于x的方程x²-(m+2)x+2m-1=0有两个不相等的实根。
证明:△=[-(m+2)] 2-4(2m+1)=m2 -4m+8=(m-2)2 + 4 ∵不论m为何实数(m-2)2≥0 ∴(m-2)2+4一定是正数 既△>0 ∴方程x²-(m+2)x+2m-1=0有两个不相等的实根
例5:已知a是实数且方程x²+2ax+1=0 ①有两个不相等的实根。试判别方程 (2a 2-1)x²+2ax+2a 2-1=0 ②没有实根
一元二次方程的根与系数关系
一元二次方程的根与系数关系(或称韦达定理)是初中数学内容中一个很重要的 知识点,在中考中占有重要的地位,纵观近年全国各地的中考试题,这个知 识点的考查可以解决以下几个问题:
一元二次方程的根与系数的关系 如果一元二次方程ax 2+bx+c=0(a≠0)的两个实数根是x 1,x 2,那么

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系
一元二次方程根的判别式、Байду номын сангаас根与系数的关系
一元二次方程根的判别式
一元二次方程根的判别式是一个比较重要的知识点,它的应用很广泛,既可以 用来判断一元二次方程根的情况,还是后续知识点的基础和准备。另一方面, 根的判别式也能独立形成综合题。
一元二次方程ax 2+bx+c=0(a≠0)的判别式:△=b 2-4ac
△>0方程有两个不相等的实数根. △=0方程有两个相等的实数根. △<0方程没有实数根. △≥0方程有两个实数根.
上述命题的逆命题也正确
例1:不解方程判断下列方程根的情况 ① x²-4x-1=0 ②x²+5=2x ③ x²-mx+m²+1=0
例2:k取何值时,方程4 x²-(k+2)x+(k-1)=0 ①有一个根是-1。 ②有两个相等的实根
; https:///product-selection/pushbutton/ 超小型按动开关 ; https:///product-selection/dip/ ck拨码开关 ; https:///contact-us/ ck开关代理商
分析:①方程有一个根是-1,需将x=-1代入原方程 ②方程有两个相等的实根,既△=0
例3:当m为何值时,方程(m-1)x²+2mx+m+3=0
①﹑无实根 ②﹑有实根
③﹑只有一个实根
④﹑有两个实根 ⑤﹑有两个不等实根 ⑥﹑有两个相等实根
分析 (1)﹑只需△<0 (2)、分情况讨论 ① m-1=0 ② △≥0 且m-1≠0 (3)﹑当m-1=0时 (4)、 △≥0 且 m-1≠0 (5)、△>0 且 m-1≠0 (6)、 △=0 且 m-1≠0

一根普通的老茅草,也不知是红色还是绿色。”作者为什么要

一元二次方程根与系数的关系

一元二次方程根与系数的关系

第一讲 一元二次方程根与系数的关系一、一元二次方程的根的判别式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为: 2224()24b b ac x a a-+= (1) 当240b ac ->时,方程有两个不相等的实数根:x =(2) 当240b ac -=时,方程有两个相等的实数根:1,22b x a=-; (3) 当240b ac -<时,方程没有实数根.由于可以用24b ac -的取值情况来判定一元二次方程的根的情况.因此,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式:∆=24b ac -.二、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:1222b b x x a a-+--==所以:12b x x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么: 12x x +=______________, 12x x =______________.说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为韦达定理.上述定理成立的前提是0∆≥.例1:已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.例2:若12,x x 是方程2220090x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2)1211x x +; (3) 12(5)(5)x x --;(4) 12||x x -.说明:在求判断式时,务必先把方程变形为一元二次方程的一般形式. 例3:已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根. (1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由. (2) 求使12212x x x x +-的值为整数的实数k 的整数值.练习:1.已知一元二次方程2(1)210k x x ---=有两个不等的实数根,求k 的取值范围.2.若方程22(1)30x k x k -+++=的两根之差为1,求k 的值.3.已知关于x 的一元二次方程2(41)210x m x m +++-=. (1) 求证:不论m 为任何实数,方程总有两个不相等的实数根; (2) 若方程的两根为12,x x ,且满足121112x x +=-,求m 的值.图(12) 第二讲 一次函数、反比例函数、二次函数1.当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为 ,对称轴为直线 ;当x <2b a -时,y 随着x 的增大而 ;当x >2ba-时,y 随着x 的增大而 ;当x =2ba-时,函数取最小值y = .2.当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为 ,对称轴为直线 ;当x <2b a -时,y 随着x 的增大而 ;当x >2ba-时,y 随着x 的增大而 ;当x =2ba-时,函数取最大值y = .3.二次函数的三种表示方式:一般式 顶点式 交点式 注:确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.二次函数的关系式可设如下三种形式:①给出三点坐标可利用一般式来求;②给出两点,且其中一点为顶点时可利用顶点式来求.③给出三点,其中两点为与x 轴的两个交点)0,(1x .)0,(2x 时可利用交点式来求.例1:如图,反比例函数ky x=的图象与一次函数y mx b =+的图象交于A (1)B n -,两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x 取何值时,反比例函数的值大于一次函数的值.例2:求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.例3:根据下列条件,分别求出对应的二次函数的关系式.(1)某二次函数的最大值为2,图像的顶点在直线y =x +1上,并且图象经过点(3,-1); (2)已知二次函数的图象过点(-3,0),(1,0),且顶点到x 轴的距离等于2; (3)已知二次函数的图象过点(-1,-22),(0,-8),(2,8).巩固练习1.若函数12-+=a ax y 在11≤≤-x 上的值有正也有负,则a 的取值范围是_________2.若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,则实数a 的取值范围是_____________.3.二次函数y =-x 2+23x +1的函数图象与x 轴两交点之间的距离为 .4.把函数y =-(x -1)2+4的图象向左平移2个单位,向下平移3个单位,所得图象对应的解析式为________________.第三讲 解不等式一、一元一次不等式(组)及其解法 :例1:(1)解关于x 的不等式组0,231x a x -<⎧⎨-+<⎩二、一元二次不等式及其解法形如20(0) (0)ax bx c a ++><≠或其中的不等式称为关于x 的一元二次不等式例2:解下列不等式:(1) 260x x +->; (2)(2)(3)6x x +-< (3) (1)(2)(2)(21)x x x x -+≥-+例:3:已知关于x 的不等式22(1)30kx k x -+-<的解为13x -<<,求k 的值.二、简单分式不等式的解法例4:解下列不等式: (1) 2301x x -<+; (2)2301x x x +≥-+.例5:解不等式132x ≤+.三、含绝对值不等式的解法 例6:解不等式:(1) 13x ->; (2) 327x x ++-< ;练习:1、二次函数2365y x x =--+的图像的顶点坐标是________.2、如果22()530x a b x b x x ++⋅+=--,则b =___________.3、若2是关于x 的一元二次方程23100x mx +-=的一个根,则m =________.4、若一次函数(12)y k x k =--的图像不经过第二象限,则k 的取值范围是________.5、若函数2y x b =--与24y x =+的图像交于x 轴上一点A ,且与y 轴分别交于B ,C 两点,则ABC ∆的面积为________.6、已知一个直角三角形的两个直角边的长恰是方程22870x x -+=的两个根,则这个直角三角形的斜边长为____________.7、当22x -≤≤时,函数223y x x =--的最大值为______.8、不等式260x x -+<的解为_______.9、已知关于x 的方程22310x x m -++-=的两个实根同号,则实数m 的取值范围为____.10、函数231y ax x =-+的最小值大于0,则实数a 的取值范围为_________.11、两个数的和为60,它们的积的最大值为___________.12、如果不等式210ax ax ++<无解,则a 的取值范围是_________.13、已知(3,2),(1,1)M N -,点P 在y 轴上,且PM PN +最短,则点P 的坐标为_______.14、解下列不等式:(1) 23180x x --≤ ; (2)31221x x +<-; (3)116x x -++>. 15、已知关于x 的不等式20mx x m -+<的解是一切实数,求m 的取值范围.16、解关于x 的不等式(2)1m x m ->-.17、已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根12,x x . (1)求实数k 的取值范围;(2)是否存在实数k ,使方程的两实根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由.18、已知二次函数212y x bx c =-++的图像经过(2,0),(0,6)A B -两点. (1) 求这个二次函数的解析式;(2) 设该二次函数图像的对称轴与x 轴交于点C ,连接,BA BC ,求ABC ∆的面积.19、已知关于x 的函数222y x ax =++在55x -≤≤上. (1) 当1a =-时,求函数的最大值和最小值; (2) 当a 为实数时,求函数的最大值.。

一元二次方程根与系数的关系

一元二次方程根与系数的关系

(2)解:当a=5为底边长时,b=c 当a=5为腰长时,不妨设a=b=5, 由根与系数的关系:5+c=2k-3 2 ∴Δ = (2K-5) =0,k=2.5, 5c=2k-4 2 原方程为:x -2x+1=0 解得:c=1,k=4.5 ∴b=c=1 ∵b+c<a ∴此三角形的周长为a+b+c=11 ∴此时不构成三角形,舍去。
_年 _月 _日
星期_______
天气_____ 自我评价:___________ 悄悄话:老师我想对你说______ _______________________ _______________________ ________________________
学习课题:_____________ 知识归纳与整理:________ _____________________ 有那些数学思想方法_____ 我的收获与困惑_________
分析解答
2、已知关于的方程。x2-(2k-3)x +2k-4=0 (1)求证:无论取什么实数值,方程总有实数根。 (2)若等腰三角形的一边长a=5,另两边长b、c恰好是这个方程的两个实数根, 求这个三角形的周长?
(1)证明: ∵Δ =[-(2k-3)]2-4(2k-4) =(2K-5)2 ∴不论k取何值,(2K-5)2 ≥0, 即Δ ≥0,原方程总有实数根。
2、方程2x2-3x+1=0的两根记作x1,x2, 不解方程,求:
(1) x1 x2 x2 x1 ;
分析解答
由根与系数的关系得:x1+x2=3/2 x1x2=1/2
x x ( x1 x2 ) 2 2 x1 x2 x1 x2 x1 x2 x1 x2 x2 x1

1元2次方程根与系数的关系

1元2次方程根与系数的关系

1元2次方程根与系数的关系
在解一元二次方程时,我们通常使用求根公式:
若方程ax+bx+c=0的根为x1和x2,则有:
x1, x2 = (-b±√(b-4ac))/2a
可以发现,方程的系数a、b、c与方程的根x1、x2之间存在一定的关系。

首先,我们可以通过求根公式得到以下结论:
1. 当b-4ac>0时,方程有两个不相等的实数根;
2. 当b-4ac=0时,方程有两个相等的实数根;
3. 当b-4ac<0时,方程没有实数根,但有两个共轭复数根。

另外,我们还可以根据求根公式将x1、x2分别表示为:
x1 = (-b+√(b-4ac))/2a,x2 = (-b-√(b-4ac))/2a 通过上式可以发现,方程的系数与根之间存在一定的对称性。

例如,当我们将方程ax+bx+c=0中的a、b、c同时乘以k,则方程的根也会相应地乘以k。

具体来说,若原方程的根为x1和x2,新方程的根为y1和y2,则有:
y1, y2 = (-kb±√(b-4ac))/2ak
可以发现,y1和y2与x1和x2之间的关系是线性的,即:
y1 = kx1,y2 = kx2
也就是说,系数k的变化对应着根的变化。

综上所述,方程的系数与根之间存在一定的关系。

通过了解这种
关系,我们可以更深入地理解1元2次方程的性质和解法。

一元二次方程的判别式及跟与系数的关系

一元二次方程的判别式及跟与系数的关系

一元二次方程的根的判别式及根与系数的关系要点一、一元二次方程的判别式1.定义:在一元二次方程()ax bx c a 2++=0≠0中,只有当系数a 、b 、c 满足条件△≥b ac 2=−40时才有实数根.这里b ac 2−4叫做一元二次方程根的判别式,记作△.2.判别式与根的关系:在实数范围内,一元二次方程()ax bx c a 2++=0≠0的根的情况由△b ac 2=−4确定. 设一元二次方程为()ax bx c a 2++=0≠0,其根的判别式为:△b ac 2=−4,则①△>0⇔方程()ax bx c a 2++=0≠0有两个不相等的实数根,x 12.②△=0⇔方程()ax bx c a 2++=0≠0有两个相等的实数根b x x a12==−2. ③△<0⇔方程()ax bx c a 2++=0≠0没有实数根. 特殊的:(1)若a ,b ,c 为有理数,且△为完全平方式,则方程的解为有理根;(2)若△为完全平方式,同时b −±2a 的整数倍,则方程的根为整数根.【例1】(1)不解方程,直接判断下列方程的解的情况: ①x x 27−−1=0 ②()x x 29=43−1 ③x x 2+7+15=0④()mx m x 2−+1+=02(m 为常数)(2)已知a 、b 、c 分别是三角形的三边,则方程()()a b x cx a b 2++2++=0的根的情况是( ) A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根【解析】(1)①△>0,有两个不等实根;②△=0,有两个相等实根; ③△<0,无实根;④△m 2=+1>0,方程有两个不等实根. (2)由题()()()()△c a b a b c c a b 22=2−4+=4++−−∵a b c ++>0,c a b −−<0,故方程没有实根.选A .【点评】这道题(1)主要考察判别式与根的关系,属于特别基础的题,锻炼孩子们的思维,(2)结合三角形三边关系来考察一元二次方程的判别式和根的个数的关系.【例2】(1)若关于x 的一元二次方程()k x x 21−1+−=04有实根,则k 的取值范围为______. 【解析】(1)≥k 0且≠k 1;【变式2-1】若关于x 的一元二次方程kx 2﹣4x+3=0有实数根,则k 的非负整数值是( ) A. 1 B. 0,1 C. 1,2 D. 1,2,3【答案】A.提示:根据题意得:△=16﹣12k≥0,且k≠0,解得:k≤,且k≠0. 则k 的非负整数值为1.【变式2-2】已知关于x 的一元二次方程有实数根,则m 的取值范围是________ 【答案】且m≠1 【解析】因为方程有实数根,所以,解得, 同时要特别注意一元二次方程的二次项系数不为0,即, ∴ m 的取值范围是且m≠1. 【总结升华】注意一元二次方程的二次项系数不为0,即,m≠1.【例3】已知:关于x 的方程有两个不相等的实数根,求k 的取值范围. 【答案】.【变式3-1】关于x的一元二次方程()k x 21−2−−1=0有两个不相等的实数根,则k 的取值范围______.≤k −1<2且k 1≠2, 由题意,得()()k k k k 4+1+41−2>0⎧⎪+1≥0⎨⎪1−2≠0⎩,解得≤k −1<2且k 1≠2;2(1)10m x x −++=54m ≤2(1)10m x x −++=214(1)450m m =−−=−+≥△54m ≤(1)0m −≠54m ≤(1)0m −≠2(1)04kkx k x +++=102k k ≠>-且【变式3-2】已知关于x 的方程x 2+2x+a ﹣2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根. 【思路点拨】(1已知方程有两个不相等的实数根,即判别式△=b 2﹣4ac >0.即可得到关于a 的不等式,从而求得a 的范围.(2)设方程的另一根为x 1,根据根与系数的关系列出方程组,求出a 的值和方程的另一根. 【答案与解析】解:(1)∵b 2﹣4ac=(﹣2)2﹣4×1×(a ﹣2)=12﹣4a >0,解得:a <3.∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得:,解得:,则a 的值是﹣1,该方程的另一根为﹣3.【变式3-2】关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根,则实数k 的取值范围是 .【思路点拨】此题要考虑两方面:判别式要大于0,二次项系数不等于0. 【答案】k <2且k≠1;【解析】解:∵关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根, ∴k ﹣1≠0且△=(﹣2)2﹣4(k ﹣1)>0, 解得:k <2且k≠1. 故答案为:k <2且k≠1.【总结升华】不能忽略二次项系数不为0这一条件.【例4】当a 、b 为何值时,方程()x a x a ab b 222+21++3+4+4+2=0有实根?(3)要使关于x 的一元二次方程()x a x a ab b 222+21++3+4+4+2=0有实根,则必有△≥0,即()()≥a a ab b 22241+−43+4+4+20,得()()a b a 22+2+−1≤0.又因为()()a b a 22+2+−1≥0,所以()()a b a 22+2+−1=0,得a =1,b 1=−2.【变式4-1】已知关于x 的一元二次方程()a x ax 213−1−+=04有两个相等的实数根,求代数式a a a21−2+1+的值.【解析】由题,一元二次方程()a x ax 213−1−+=04有两个相等的实数根, 所以a a 2−3+1=0.所以有a a a 2−2+1=,a a 2+1=3.代入a a a21−2+1+,得a a a a a a a a a 2211+13−2+1+=+===3.【点评】这道题主要是考察判别式与代数式的结合,难度不大.【变式4-2】m 为任意实数,试说明关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根. 【答案】∵Δ=[-(m-1)]2-4×[-3(m+3)]=m 2+10m+37=(m+5)2+12>0,∴关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根.【例5】在等腰△ABC 中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,已知a =3,b 和c 是关于x 的方程x mx m 21++2−=02的两个实数根,求△ABC 的周长.【解析】当b c =时,方程有两个相等的实数根,则=△m m 21⎛⎫−42−=0 ⎪2⎝⎭,∴m 1=−4,m 2=2.若m =−4,原方程化为x x 2−4+4=0, 则x x 12==2,即b c ==2, ∴△ABC 的周长为2+2+3=7. 若m =2,原方程化为x x 2+2+1=0, 则x x 12==−1,不合题意.当a b =或a c =时,x =3是方程的一个根, 则m m 19+3+2−=02,则m 22=−5,原方程化为x x 22221−+=055,解得x 1=3,x 27=5, ∴ABC △的周长为7373+3+=55.综上所述,ABC △的周长为7或375. 【点评】这道题主要考察学生们的分类讨论能力,应对多种情况是要理清思路.要点二、一元二次方程的根与系数关系(韦达定理)1.韦达定理:如果()ax bx c a 2++=0≠0的两根是x 1,x 2,则b x x a 12+=−,cx x a12=.(使用前提:△≥0)特别地,当一元二次方程的二次项系数为1时,设x 1,x 2是方程x px q 2++=0的两个根,则x x p 12+=−,x x q 12=. 2.韦达定理的逆定理:如果有两个数x 1,x 2满足b x x a 12+=−,cx x a12=,那么x 1,x 2必定是()ax bx c a 2++=0≠0的两个根.特别地,以两个数x 1、x 2为根的一元二次方程(二次项系数为1)是()x x x x x x 21212−++=0. 3.韦达定理与根的符号关系:在△≥b ac 2=−40的条件下,我们有如下结论: (1)当ca<0时,方程的两根必一正一负. ①若≥b a −0,则此方程的正根不小于负根的绝对值;②若ba−<0,则此方程的正根小于负根的绝对值.(2)当ca>0时,方程的两根同正或同负. ①若b a −>0,则此方程的两根均为正根;②若ba−<0,则此方程的两根均为负根.注意:(1)若ac <0,则方程()ax bx c a 2++=0≠0必有实数根.(2)若ac >0,方程()ax bx c a 2++=0≠0不一定有实数根.【例6】(1)已知一元二次方程ax ax c 2+2+=0的一根x 1=2,则方程的另一根______x 2=.(2)已知x 1,x 2是方程x x 2−3+1=0的两个实数根,则:①x x 2212+;②()()x x 12−2⋅−2;③x x x x 221122+⋅+;④x x x x 2112+;⑤x x 12−;⑥x x 2212−;⑦x x 1211−.【解析】(1)−4;(2)()x x x x x x 2222121212+=+−2⋅=3−2⨯1=7, ()()()x x x x x x 121212−2⋅−2=⋅−2++4=1−2⨯3+4=−1, ()x x x x x x x x 22211221212+⋅+=+−⋅=9−1=8,x x x x x x x x 2221211212+7+===7⋅1,()()x x x x x x 222121212−=+−4⋅=3−4⨯1=5,∴x x 12−=,∴()()(x x x x x x 22121212−=+−=3⨯=x x x x x x 21121211−−==.【点评】第三小题,主要是考察韦达定理的灵活运用,包含了各种变形情况.【例7】(1)已知关于x 的方程()x k x k 22+2−3+−3=0有两个实数根x 1,x 2,且x x x x 121211+=+,求k 值.(2)已知x 1,x 2是方程ax ax a 24−4++4=0的两实根,是否能适当选取a 的值,使得()()x x x x 1221−2−2的值等于54.【解析】(1)∵方程()x k x k 22+2−3+−3=0有两个实数根x 1,x 2,∴()()△≥k k k 22=2−3−4−3=21−120得:≤k 74. 由韦达定理得,()x x k x x k 12212+=−2−3⎧⎪⎨⋅=−3⎪⎩. ∵x x x x 121211+=+,∴x xx x x x 121212++=,x x 12+=0或x x 12=1,当x x 12+=0时,k 3−2=0,k 3=2,∵k 37=<24,所以k 3=2符合题意. 当x x 12=1时,k 2−3=1,k =±2,∵k 7≤4,∴k =2舍去.∴k 的值为32或−2. (2)显然a ≠0由()△a a a 2=16−16+4≥0得a <0, 由韦达定理知x x 12+=1,a x x a12+4=4, 所以()()()()()a x x x x x x x x x x x x a 2221221121212129+4−2−2=5−2+=9−2+=−24a a+36=4 若有()(),x x x x 12215−2−2=4则a a +365=44,∴a =9,这与0a <矛盾, 故不存在a ,使()()x x x x 12215−2⋅−2=4. 【点评】这道题主要锻炼孩子们的过程,以及有两个实根,解出来别忘了限制条件,这种类型的题比较常见,一定不要忽视∆的限定条件以及用韦达定理可得到的限定条件.【例8】(1)若m ,n 是方程x x 2+−1=0的两个实数根,则m m n 2+2+−1的值为________.(2)已知a ,b 是方程x x 2+2−5=0的两个实数根,则a ab a b 2−+3+的值为__________.(3)已知m 、n 是方程x x 2+2016+7=0的两个根,则()()m m n n 22+2015+6+2017+8= ________.【解析】(1)∵m ,n 是方程x x 2+−1=0的两个实数根,∴m n +=−1,m m 2+−1=0,则原式()()m m m n 2=+−1++=−1=−1,(2)∵a 是方程x x 2+2−5=0的实数根,∴a a 2+2−5=0,∴a a 2=5−2,∴a ab a b a ab a b a b ab 2−+3+=5−2−+3+=+−+5, ∵a ,b 是方程x x 2+2−5=0的两个实数根,∴a b +=−2,ab =−5,∴a ab a b 2−+3+=−2+5+5=8. 故答案为8.(3)∵m 、n 是方程x x 2+2016+7=0的两个根,∴m n +=−2016,mn =7;∴m m 2+2016+7=0,n n 2+2016+7=0,()()()()m m n n m m m n n n 2222+2015+6+2017+8=+2016+7−−1+2016+7++1()()()()m n mn m n =−+1+1=−+++1=−7−2016+1=2008故答案是:2008.【点评】这道题主要考查韦达定理根系关系的应用,进一步强化孩子对于韦达定理应用的理解.【例9】(1)已知一元二次方程()ax a x a 2+3−2+−1=0的两根都是负数,则k 的取值范围是_________.(2)已知二次方程342x x k 2−+−=0的两根都是非负数,则k 的取值范围是__________.【解析】(1)此方程两实根为,x x 12,由已知得a x x x x 1212≠0⎧⎪∆0⎪⎨+<0⎪⎪>0⎩≥,∴()()a a a a a a a a2≠0⎧⎪3−24−10⎪⎪2−3⎨<0⎪⎪−1⎪>0⎩-≥g ,即a 91<8≤.(2)此方程两实根为,x x 12,由已知得≥x x x x 1212∆≥0⎧⎪+≥0⎨⎪0⎩,得:∴2()43()k k ⎧⎪−4−⨯−2≥0⎪4⎪>0⎨3⎪−2⎪≥0⎪3⎩即k 102≤≤3. 【点评】这道题主要考查韦达定理和判别式结合不等式组的形式去判定根的具体情况,这类题是比较常见一类题,要将这种不等的思想传授给孩子.【课后作业】1.已知关于x 的一元二次方程()()k x k x 22−1+2+1+1=0有两个不相等的实数根,则k 的取值范围为_____________. A .k 1≥4 B .k 1>4且≠k 1 C .k 1<4且≠k 1 D .k 1≥4且≠k 1【解析】B .2.已知关于x 的一元二次方程x m 2−=0有两个不相等的实数根,则m 的取值范围__________.3.关于x 的方程()()m x m x 22−4+2+1+1=0有实根,则m 的取值范围__________.【解析】2.由题意可知,原方程的判别式(m m m 21∆=+4=1+3>0⇒>−3.又≥≤m m 1−0⇒1, 故≤m 1−<13.3.题设中的方程未指明是一元二次方程,还是一元一次方程,所以应分0m 2−4=和m 2−4≠0,两种情形讨论:当m 2−4=0即m =±2时,()m 2+1≠0,方程为一元一次方程,总有实根; 当m 2−4≠0即m ≠±2时,方程有根的条件是: [()]()≥m m m 22=2+1−4−4=8+20∆0,解得m 5≥−2.∴当m 5≥−2且m ≠±2时,方程有实根.综上所述:当m 5≥−2时,方程有实根.4.已知关于x 的方程()x k x k 2−+1+2−2=0. (1)求证:无论k 为何值,方程总有实根;(2)若等腰ABC △,底边a =3,另两边b 、c 恰好是此方程的两根,求ABC △的周长.【解析】(1)()()()≥△k k k 22=+1−42−2=−30,∴无论k 为何值,方程总有实根.(2)当a =3为底,b ,c 为腰时,b c =,∴方程有两个相等的实根,∴∆=0,即()k 2−3=0,k =3,此时方程为x x 2−4+4=0,解x x 12==2,∴ABC △的周长为3+2+2=7,当a =3为腰,则方程有一根为3,将x =3代入方程,得k =4,方程为x x 2−5+6=0,解得x 1=2,x 2=3,∴ABC △的周长为2+3+3=8,综上所述,ABC △的周长为7或8.5.关于x 的方程x kx 22+=10的一个根是−2,则方程的另一根是_______;k =________.6.已知a ,b ,c 为正数,若二次方程ax bx c 2++=0有两个实数根,那么方程a x b x c 2222++=0的根的情况是( ) A .有两个不相等的正实数根 B .有两个异号的实数根 C .有两个不相等的负实数根D .不一定有实数根7.设α,β是一元二次方程x x 2+3−7=0的两个根,则ααβ2+4+=________.【解析】5.设另一根为x ,由根与系数的关系可建立关于x 和k 的方程组,解之即得.x 5=2,k =−1. 6.a x b x c 2222++=0的()()D b a c b ac b ac 42222=−4=+2−2, ∵二次方程ax bx c 2++=0有两个实数根, ∴≥b ac 2−40, ∴b ac 2−2>0,∴()()△b a c b ac b ac 42222=−4=+2−2>0∴方程有两个不相等的实数根,而两根之和为负,两根之积为正. 故有两个负根.故选C .7.∵α,β是一元二次方程x x 2+3−7=0的两个根, ∴αβ+=−3,αα2+3−7=0, ∴αα2+3=7,∴ααβαααβ22+4+=+3++=7−3=4,故答案为:4.11 8.已知关于x 的方程()x m x m 22+2+2+−5=0有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值.【解析】有实数根,则∆≥0,且x x x x 221212+−=16,联立解得m 的值.依题意有:()2()3()()x x m x x m x x x x m m 12212121222+=−2+2⎧⎪=−5⎪⎨+−=16⎪⎪∆=4+2−4−5≥0⎩,解得:m =−1或m =−15且m 9≥−4, ∴ m =−1.韦达定理说明了一元n 次方程中根和系数之间的关系。

根与系数的关系一元二次方程

根与系数的关系一元二次方程

根与系数的关系一元二次方程
嘿,宝子们!今天咱来唠唠一元二次方程里那奇妙的根与系数的关系呀!这关系可太重要啦!就好比是一把解开方程秘密的钥匙呢!
比如说方程x²+3x-4=0,它有两个根,咱可以通过计算或直接求解发
现这两个根。

那根与系数有啥关系呢?哈哈,这关系可神了,韦达定理就说明白啦!在一元二次方程ax²+bx+c=0 中,两根之和就等于 -b/a,两根之积就等于 c/a 呀!咱就拿刚才那个例子,两根之和不就是 -3 嘛,两根之积
就是 -4,神奇不神奇?这就好像你知道了一个人的特点,就能猜到他下一
步会干啥一样!
根与系数的关系用处可大了去了呀!咱可以用来判断方程根的情况。

你想想,要是能一下子就知道根的大概情况,那得多厉害呀!就好比你知道前方道路的状况,心里就有底了呀!还能快速解题呢,节省好多时间呢!哎呀,真的是超棒的哟!宝子们,一定要好好掌握这个神奇的根与系数的关系呀!。

根与系数的关系

根与系数的关系

一元二次方程根与系数对于一元二次方程,当判别式△=时,其求根公式为:;若两根为,当△≥0时,则两根的关系为:;,根与系数的这种关系又称为韦达定理;它的逆定理也是成立的,即当,时,那么则是的两根。

一元二次方程的根与系数的关系,综合性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。

学习中,老师除了要求同学们应用韦达定理解答一些变式题目外,还常常要求同学们熟记一元二次方程根的判别式存在的三种情况,以及应用求根公式求出方程的两个根,进而分解因式,即。

下面就对应用韦达定理可能出现的问题举例做些分析,希望能给同学们带来小小的帮助。

一、根据判别式,讨论一元二次方程的根。

例1:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解?分析:在同时满足方程(1),(2)条件的的取值范围中筛选符合条件的的整数值。

解:∵方程(1)有两个不相等的实数根,∴解得;∵方程(2)没有实数根,∴解得;于是,同时满足方程(1),(2)条件的的取值范围是其中,的整数值有或当时,方程(1)为,无整数根;当时,方程(1)为,有整数根。

解得:所以,使方程(1)有整数根的的整数值是。

说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出,这也正是解答本题的基本技巧。

1二、判别一元二次方程两根的符号。

例1:不解方程,判别方程两根的符号。

分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若判定根的正负,则需要确定或的正负情况。

因此解答此题的关键是:既要求出判别式的值,又要确定或的正负情况。

解:∵,∴△=—4×2×(—7)=65>0∴方程有两个不相等的实数根。

设方程的两个根为,∵<0∴原方程有两个异号的实数根。

说明:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,(1)若,则方程有一正一负根;(2)若,,则方程有两个正根;(3)若,,则方程有两个负根.三、已知一元二次方程的一个根,求出另一个根以及字母系数的值。

一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系一、知识点:1.一元二次方程)0(02≠=++a c bx ax 根的判别式:2.一元二次方程根与系数的关系: (1)如果1x ,2x 是一元二次方程)0(02≠=++a c bx ax 的两个根,那么a b x x -=+21,ac x x =∙21 (2)如果1x ,2x 是方程02=++q px x 的两个根,那么p x x -=+21,q x x =∙21二、一元二次方程)0(02≠=++a c bx ax 根的判别式的应用:1. 不解方程,判断方程根的情况:(1);05432=--x x (2);01322=+-x x (3)26232-=+y y2. 证明方程根的情况:(1)已知关于x 的方程0)12(2)12(2=-++-k x k x .①求证:无论k 取什么实数值,这个方程总有实数根;②若等腰△ABC 中有两边的长恰好是这个方程的两个根,且这两边和为6,求△ABC 的周长.(2)小明说:“关于x 的方程)1.(0)1(4)1(222±≠=++-+m m mx x m 一定没有实数根”。

小明的说法对吗?说明你的理由.(3)求证:无论m 取何值,关于x 的方程01)32(2=++++m x m x 总有两个不相等的实数根。

(4)已知a ,b ,c 为△ABC 的三边,试判断关于x 的方程)(02)(2c b c b ax x c b ≠=-+--的根的情况.(5)已知a ,b ,c 为△ABC 的三边,且关于x 的方程0)()(2)(2=-+-+-b a x a b x b c 有两个相等的实数根,试判断△ABC 的形状.3. 已知方程根的情况,求字母系数的取值范围:(1)已知:关于x 的一元二次方程:0)1(22=+++k x k kx 有两个实数根,求k 的取值范围.(2)关于x 的一元二次方程06)4(22=+--x kx x 无实数根,求k 的最小整数值.(3)若关于x 的方程0122=--x kx 有实数根,求k 的取值范围.三、一元二次方程根与系数的关系的应用:1.已知方程一根,求方程另一根及字母系数的值:(1)已知32+是关于x 的方程042=+-c x x 的一个根,求方程的另一个根及c 的值.(2)已知方程:0422=--bx x 的一个根为1,求另一个根及b 的值.(3)已知关于x 的方程0252=++k kx x 的一个根是21,它的另一个根及k 的值.2. 已知方程两根之间的关系,求字母系数的值:(1)关于x 的方程0)1(22=+--m x m x 的两根互为相反数,求m 的值.(2)关于x 的方程02)1(2=+++-k x k x 的两个实数根的平方和等于6,求k 的值.(3)在Rt △ABC 中,∠C=90°, ∠A ,∠B ,∠C 的对边分别是a ,b ,c ,并且a ,b 是方程07822=+-x x 的两根. 求斜边c 的值.3. 不解方程,求代数式的值:(1)若1x ,2x 是方程01422=+-x x 的两个根,求下列代数式的值: ①2111x x +; ②2221x x + ③1221x x x x +;④221)x x -( ⑤)3)(3(21++x x(2)已知1x ,2x 是方程0132=+-x x 的两个根,求代数式21214x x x --的值.(3)如果实数a ,b 满足方程0172=+-a a ,0172=+-b b ,求代数式b a a b +的值.(4)关于x 的一元二次方程0122=++-k x x 的实数根是1x ,2x .(1)求k 的取值范围;(2)如果7)4)(4(21-=--x x ,求k 的值;(3)设k x x x x y 2)(22121----=,求y 的最大值.。

一元二次方程判别式以及根与系数关系

一元二次方程判别式以及根与系数关系

一元二次方程判别式以及根与系数关系知识总结1.一元二次方程的根的判别式(1)一元二次方程ax 2+bx +c =0(a ≠0)的根的情况由b 2-4ac 来确定.我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用“Δ”来表示,即Δ=b 2-4ac .注意:要想利用根的判别式求解方程,首先要将方程化为一元二次方程的一般式ax 2+bx +c =0(a ≠0),以便确定a ,b ,c 并代入b 2-4ac 计算. (2)一元二次方程的根的情况与根的判别式的关系①利用根的判别式判定根的情况.一般地,方程ax 2+bx +c =0(a ≠0),当Δ>0时,有两个不相等的实数根;当Δ=0时,有两个相等的实数根;当Δ<0时,没有实数根.②根据方程根的情况,确定Δ的取值范围.当方程有两个不相等的实数根时,Δ>0;当方程有两个相等的实数根时,Δ=0;当方程没有实数根时,Δ<0.注意:①如果说一元二次方程有实数根,那么应该包括有两个不相等实数根或有两个相等的实数根两种情况,此时b 2-4ac ≥0,切勿丢掉等号.②当b 2-4ac <0时,方程在实数范围内无解(无实数根),但在复数范围内方程仍有两个解,这将在高中阶段学习.【例1】不解方程,判别下列方程的根的情况:(1)2x 2+3x -4=0;(2)3x 2+2=26x ;(3)ax 2+bx =0(a ≠0);(4)ax 2+c =0(a ≠0).(3)利用根的判别式确定方程中字母系数的取值范围若一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根,则b 2-4ac >0;若一元二次方程ax 2+bx +c =0(a ≠0)有两个相等的实数根,则b 2-4ac =0.从而根据关于字母系数的方程或不等式求出字母系数的值或取值范围.在运用时应注意前提条件:必须是一元二次方程且符合其一般形式.【例2】已知关于x 的方程kx 2-4kx +k -5=0有两个相等的实数根,求k 的值,并解这个方程.【例3】当k 取何值时,关于x 的一元二次方程kx 2+9=12x ,(1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?2.一元二次方程的根与系数的关系(1)如果方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,那么x 1+x 2=-b a ,x 1·x 2=c a.这个关系通常称为韦达定理.(1)在实数范围内运用根与系数的关系时,必须注意两个条件: ①方程必须是一元二次方程,即二次项系数a ≠0;②方程有实数根,即Δ≥0.因此,解题时要注意分析题中隐含条件Δ≥0和a ≠0.(2)如果方程x 2+px +q =0的两根是x 1,x 2,这时韦达定理应是:x 1+x 2=-p ,x 1·x 2=q .【例4】不解方程,说明一元二次方程2x 2+4x =1必有实数根,并求出两根之和与两根之积.(2)利用根与系数的关系确定一元二次方程若x 1,x 2满足x 1+x 2=-b a ,x 1·x 2=c a,那么x 1,x 2是一元二次方程ax 2+bx +c =0的两根. 注意:(1)利用这一性质比较容易检验一元二次方程的解是否正确.(2)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1x 2=0. 【例5】已知一个关于x 的一元二次方程,它的两根为2和6,请你写出这个一元二次方程.总结:已知两根求一元二次方程,其一般步骤是:①先根据两根分别求出两根之和与两根之积;②把两根之和、两根之积代入一元二次方程x 2-(x 1+x 2)x +x 1x 2=0,求出所要求的方程.【例6】求作一个一元二次方程,使它的两根分别是方程5x 2+2x -3=0各根的负倒数.(3)利用一元二次方程根与系数的关系求关于两根x 1,x 2的代数式的值已知一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则求含有x 1,x 2的代数式的值时,其方法是把含x 1,x 2的代数式通过转化,变为用x 1+x 2,x 1x 2的代数式进行表示,然后再整体代入求出代数式的值.解决此类问题时经常要运用到以下代数式及变形:①21x +22x =(x 1+x 2)2-2x 1x 2;②1x 1+1x 2=x 1+x 2x 1x 2;③(x 1+a )(x 2+a )=x 1x 2+a (x 1+x 2)+a 2;④|x 1-x 2|=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2.【例7】已知方程2x 2+5x -6=0的两个根为x 1,x 2,求下列代数式的值.(1)(x 1-2)(x 2-2);(2)x 2x 1+x 1x 2.(4)已知含未知常数m 的一元二次方程两根关系式,求未知常数m 。

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系

在漫漫人生路上,往往只有不留下退路,才更容易赢得出路。当我们难以驾驭自己的惰性和欲望,不能专心致志地前行时,不妨也采取一些斩断退路之举,逼着自己全力以赴地寻找出路,走向成功。 请以“不留退路,才有出路”为话题写一篇作文,所写内容必须与“退路和出路”有关,
文体不限,文题自拟,不得少于800字,不得抄袭。 [写作提示]这个话题富于哲理性。一个人在生活中,如果事事留有退路,说白了就是败有退路。也就意味着这个人在事情还未开始的时候,就已经准备要承受失败了,那么他成功的概率肯定小,因为,留有退路的时候,就潜藏着懈怠、
的好伙伴。 这天,老人用轮椅推着她去附近的一所幼儿园,操场上孩子们动听的歌声吸引了他们。当一首歌唱完,老人说着:“
”她吃惊地看着老人,问道:“我的胳膊动不了,你只有一条胳膊,怎么鼓掌啊?”老人对她笑了笑,解开衬衣扣子,露出胸膛,用手掌
拍起了胸膛…… 晚上,她让父亲写了一个字条贴到墙上:一只巴掌也能拍响。从那以后,她开始配合医生做运动。甚至在父母不在时,她自己扔开拐杖试着走路。她日复一日地坚持着,她相信自己能够像其他孩子一样行走,奔跑…… 11岁时,她终于扔掉了拐杖。1960年罗马奥运会女子
就寓言谈寓言,就庄子谈庄子,就匠石谈匠石,那么就“答非所问”了。 ? 10.阅读下面文字,根据要求作文。 辞书上说:命运是指生死、贫富和一切遭遇。有人说:命运是生命的一种运行方式。生命平常地运行,就是平常的命运;生命异常地运行,就是异常的命运;生命超常地运行,
就是超常的命运。 命运与环境有关,改变了环境,便能改变命运;命运与选择有关,把握好选择,也就把握好命运;命运与机遇有关,抓住了机遇,也便抓住了命运…… 也有人说:生死有命,富贵在天。 生活中,你对“命运”有何认识,请以“命运与××”为话题,写一篇文章。 注

一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系

2021年中考专题复习一元二次方程根的判别式和根与系数的关系回忆与思考1.一元二次方程ax2+bx+c = 0(a≠0)的根的情况可由△=b2-4ac来判定:(1)当b2–4ac>0时,方程有实数根,即x1=,x2=.当b2–4ac=0时,方程有实数根,即x1=x2=.当b2–4ac<0时,方程实数根.我们把b2-4ac叫做一元二次方程ax2+bx+c = 0(a≠0)的根的判别式.(2)一元二次方程根的判别式的应用:①不解方程,判别根的情况,特别是判别含有字母系数的一元二次方程根的情况,可通过配方法把b2–4ac变形为±(m±h)2+k的形式,由此得出结论,无论m为何值,b2–4ac≥0或b2–4ac<0,从而判定一元二次方程根的情况.一般步骤是:先计算△,再用配方法将△恒等变形,然后判断△的符号,最后得出结论.②根据方程的根的情况,求待定系数的取值范围;③进展有关的证明.(3)关于根的判别式的应用:①对于数字系数方程,可直接计算其判别式的值,然后判断根的情况;②对于字母系数的一元二次方程,假设知道方程根的情况,可以确定判别式大于零、等于零还是小于零,从而确定字母的取值范围;③运用配方法,并根据一元二次方程根的判别式可以证明字母系数的一元二次方程的根的有关问题.(4)应用根的判别式须注意以下几点:①要用△,要特别注意二次项系数a≠0这一条件.②认真审题,严格区分条件和结论,譬如是△>0,△≥0还是要证明△<0.③要证明△≥0或△<0,需用配方法将△恒等变形为±(m±h)2+k的形式,从而得到判断.2.一元二次方程的根与系数的关系(1)如果方程ax2+bx+c = 0(a≠0)的根是x1和x2,那么x1+x2=,x1x2=.特别低,如果方程x2+px+q = 0的根是x1和x2,那么x1+x2=,x1x2=.(2)一元二次方程根与系数关系的应用.①验根.验根是一元二次方程根与系数关系的简单应用,应用时要注意三个问题:一要先把一元二次方程化成标准型,二不要漏除二次项系数a≠0;三还要注意–ba中的符号.②方程一根,求另一根.③不解方程,求与根有关的代数式的值.一般步骤:先求出x1+x2,x1x2的值,再将所求代数式用x1+x2,x1x2的代数式表示,然后将x1+x2,x1x2的值代入求值.④两个数,求作以这两个数为根的一元二次方程:以x1,x2为根的一元二次方程可写成x2-(x1+x2)x+x1x2=0.(3)应用一元二次方程根与系数的关系时,应注意:①根的判别式b2–4ac≥0;②二次项系数a≠0,即只有在一元二次方程有根的前提下,才能应用根与系数的关系.(4)求方程两根所组成的代数式的值,关键在于把所求代数式变形为两根的和与两根的积的形式.(5) 常见的形式:3.二次三项式的因式分解:ax2+bx+c=a(x-x1)(x-x2).其中x1,x2是关于x的方程ax2+bx+c=0的两个实数根.【例1】不解方程,判定关于x的方程根的情况(1)2x2–9x+8=0 (2)9x2+6x+1=0 (3) 16x2+8x=–3 (4)x2=7x+18(5)2x2–(4k+1)x+2k2–1=0 (6)x2+(2t+1)x+(t–2)2=0【例2】(1)关于x的一元二次方程kx2+2(k+1)x+k=0有两个实数根,求k的取值范围.(2)假设关于x的一元二次方程(a–2)x2–2ax+a+1=0没有实数解,求ax+3>0的解集〔用含a 的式子表示〕.【例3】(1)关于x的方程x2–mx+m–2=0,求证:方程有两个不相等的实数根(2)求证:方程(m2+1)x2–2mx+(m2+4)=0没有实数根.【例4】(1)方程x2–5x–6=0的根是x1和x2,求以下式子的值:①(x1–3)(x2–3) ②x12+x22+x1x2③x1x2+x2x1(2)利用根与系数的关系,求一个一元二次方程,①使它的根分别是方程3x2–x–10=0各根的3倍;②使它的根分别是方程3x2–x–10=0各根的负倒数。

一元二次方程△和根与系数关系

一元二次方程△和根与系数关系

精心整理一元二次方程根的判别式及根与系数的关系【教学目标】目标一:一元二次方程的判别式 目标二:一元二次方程根与系数的关系【课程教授】目标一:一元二次方程的判别式【知识讲解】1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆(1)当△>0时,一元二次方程有2个不相等的实数根; (2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根.知识点诠释:利用根的判别式判定一元二次方程根的情况的步骤:①把一元二次方程化为一般形式;②确定c b a .,的值;③计算ac b 42-的值;④根据ac b 42-的符号判定方程根的情况.2.一元二次方程根的判别式的逆用 在方程()002≠=++a c bx ax 中,(1)方程有两个不相等的实数根⇒ac b 42-﹥0; (2)方程有两个相等的实数根⇒ac b 42-=0; (3)方程没有实数根⇒ac b 42-﹤0.【例题讲解】例1、不解方程,判断下列方程的根的情况:(1)???2x 2+3x-4=0 (2)ax 2+bx=0(a≠0)例2、不解方程,判别方程根的情况:2210x ax a -++=例3、若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是().A .1k >-B .1k >-且0k ≠C .1k <D .1k <且0k ≠【堂上练习一】1.下列方程,有实数根的是()A .2x 2+x+1=0B .x 2+3x+21=0C .x 2-0.1x-1=0D .22230x x -+=2.一元二次方程20(0)ax bc c a ++=≠有两个不相等的实数根,则24b ac -满足的条件是()A .240b ac -=B .240b ac ->C .240b ac -<D .240b ac -≥3.关于x 的一元二次方程2620x x k -+=有两个不相等的实数根,则实数k 的取值范围是()A .92k ≤B .92k <C .92k ≥D .92k >4.已知关于x 的方程x 2-2x+k =0有实数根,则k 的取值范围是________. 5.已知一元二次方程x 2-6x+5-k=0•的根的判别式△=4,则这个方程的根为_______.6.m 为任意实数,试说明关于x 的方程x 2-(m-1)x-3(m+3)=0恒有两个不相等的实数根.目标二:一元二次方程根与系数的关系【知识讲解】1.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么ab x x -=+21,ac x x =21.注意它的使用条件为a ≠0,Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2.一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根;(2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于x 1、x 2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①222121212()2x x x x x x +=+-; ②12121211x x x x x x ++=; ③2212121212()x x x x x x x x +=+;④2221121212x x x x x x x x ++=2121212()2x x x x x x +-=; ⑤22121212()()4x x x x x x -=+-; ⑥12()()x k x k ++21212()x x k x x k =+++;【例题讲解】例1、已知方程2560x kx +-=的一个根是2,求另一个根及k 的值. 例2、已知方程220x x c -+=的一个根是3,求它的另一根及c 的值. 例3、求作一个一元二次方程,使它的两根分别是133-,122.例4、求作一个一元二次方程,使它的两根分别是方程25230x x +-=各根的负倒数.【堂上练习二】1.关于方程2230x x ++=的两根12,x x 的说法正确的是() A.122x x += B.123x x +=- C.122x x +=- D.无实数根2.一元二次方程22630x x -+=的两根为α、β,则2()αβ-的值为(). A .3B .6C .18D .243.已知3x 2-2x-1=0的二根为x 1,x 2,则x 1+x 2=______,x 1x 2=______,1211x x +=••_______,•x 12+x 22=_______,x 1-x 2=________. 4.若方程的两根是x 1、x 2,则代数式的值是 。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理
一元二次方程根的判别式及根与系数的关系
【教学目标】
目标一:一元二次方程的判别式 目标二:一元二次方程根与系数的关系
【1.方程
2+ax (1(2(3情况2.一元二次方程根的判别式的逆用 在方程()002≠=++a c bx ax 中,
(1)方程有两个不相等的实数根⇒ac b 42-﹥0; (2)方程有两个相等的实数根⇒ac b 42-=0; (3)方程没有实数根⇒ac b 42-﹤0.
【例题讲解】
例1、不解方程,判断下列方程的根的情况:
(1)???2x 2+3x-4=0 (2)ax 2+bx=0(a≠0)
例2、不解方程,判别方程根的情况:2210x ax a -++=
例3、若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范
A .k 1.A .2()A 3A 45.
6.m 为任意实数,试说明关于x 的方程x 2
-(m-1)x-3(m+3)=0恒有两个不相等的实数根.
目标二:一元二次方程根与系数的关系
【知识讲解】
1.一元二次方程的根与系数的关系
如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a
b x x -=+21,a
c x x =21.
注意它的使用条件为a ≠0,Δ≥0.
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.
2.一元二次方程的根与系数的关系的应用
(1)
(2)(3)例1、已知方程2560x kx +-=的一个根是2,求另一个根及k 的值. 例2、已知方程220x x c -+=的一个根是3,求它的另一根及c 的值. 例3、求作一个一元二次方程,使它的两根分别是1
33
-,122

例4、求作一个一元二次方程,使它的两根分别是方程25230x x +-=各根的负倒数.
【堂上练习二】
1.关于方程2230x x ++=的两根12,x x 的说法正确的是() A.122x x += B.123x x +=- C.122x x +=- D.无实数根
2.一元二次方程22630x x -+=的两根为α、β,则2()αβ-的值为(). A .3B .6C .18D .24
3.已知3x -2x-1=0的二根为x 1,x 2,则x 1+x 2=______,x 1x 2=______,1
2
1
1
x x +=••_______,•
x 12+x 22=_______,x 1-x 2=________. 4.若方程
的两根是x 1、x 2,则代数式
的值是 。

5.设一元二次方程2320x x --=的两根分别为1x 、2x ,以21x 、22x 为根的一元二次方程是________.
6.已知a ,b ,c 是△ABC 的三边长,且方程(a 2+b 2)x 2-2cx+1=0有两个相等的实数根.
请你判断△ABC 的形状.
【提高训练】
1.关于x 的方程2210mx x ++=无实数根,则m 的取值范围为(). A .m ≠0B .m >1C .m <1且m ≠0D .m >-1
2.已知a 、b 、c 是△ABC 的三条边,且方程22有两个相等的实数根,那么这个三角形是()
A .等腰三角形
B .等边三角形
C .直角三角形
D .等腰直角三角形 3.若1x 、2x 是一元二次方程2210x x +-=的两根,则12
11
x x +的值为(). A .-1B .0C .1D .2
4.设a ,b 是方程220130x x +-=的两个实数根,则22a a b ++的值为(). A .2010B .2011C .2012D .2013
5.若ab ≠1,且有25201290a a ++=,及29201250b b ++=,则a b
的值是().
A .95
B .59
C .20125-
D .2012
9
- 6.已知关于x 的方程221
(3)04
x m x m --+=有两个不相等的实数根,那么m 的最大整数
值是________.
7.关于x 的一元二次方程22(21)10x m x m -+++-=无实数根,则m 的取值范围是_____. 8.求以21+和21-为根的一元二次方程是.
9.设x 1、x 2是方程22610x x --=的两根,不解方程,求下列各式的值:
(1)2212x x +;(2)212()x x -;(3)122111x x x x ⎛
⎫⎛⎫
+
+ ⎪⎪⎝
⎭⎝⎭
. 【当堂检测】
1.关于方程2230x x ++=的两根12,x x 的说法正确的是() A.122x x += B.123x x +=- C.122x x +=- D.无实数根
2.已知4x 2-2x-1=0的二根为x 1,x 2,则x 1+x 2=______,x 1x 2=______,12
1
1
x x +=••_______,•
x 12+x 22=_______,x 1-x 2=________.
3.设一元二次方程2320x x --=的两根分别为1x 、2x ,以21x 、22x 为根的一元二次方程是________.
4.在Rt △ABC 中,∠C=900
,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程
的两根,那么AB 边上的中线长是.
5.当k 为何值时,关于x 的方程x 2-(2k-1)x =-k 2+2k+3,
(1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?
6.已知关于x 的方程22210x mx m --+=的两根的平方和等于
29
4
,求m 的值. 7.已知关于x 的方程kx 2-2(k +1)x +k -1=0有两个不相等的实数根, (1)求k 的取值范围;
(2)是否存在实数k ,使此方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由.
【课后作业】
1.一元二次方程22630x x -+=的两根为α、β,则2()αβ-的值为(). A .3B .6C .18D .24
2.已知方程2(k+1)x 2+4kx+3k-2=0,(1)当k 为时,两根互为相反数;(2)当k 为时,有一根为零,另一根不为零. 3.已知:关于x 的方程
①的两个实数根的倒数和等于3,关于x 的方程
②有实数根且k 为正整数,则代数式
的值为.
4.已知:x 1、x 2是关于x 的方程x 2+(2a -1)x +a 2=0的两个实数根且 (x 1+2)(x 2+2)=11,求a 的值.
5.已知方程组220,10
x y a x y ⎧-++=⎨
-+=⎩①②
的两个解为11,x x y y =⎧⎨
=⎩和22
,
x x y y =⎧⎨=⎩ 且x 1、x 2是两个不相等的实数,若222121238611x x x x a a +-=--, (1)求a 的值;
(2)不解方程组判断方程组的两个解能否都为正数,为什么?。

相关文档
最新文档