四年级奥数训练1

合集下载

四年级上册奥数题目1

四年级上册奥数题目1

姓名:___________________
一、填空:
1.由2400个一万与53个一组成的数是();
2.数字5写在万位上表示(),写在百万位上表示(),写在亿位上表示();
3.一千万里面有()个一百万,一千万里面()个一万,一千万里面()个十万,一千万里面()个二百万;
4.数字9090000中左边的9所表示的数值是右边的9所表示的数值的()倍;
5.986450至少加(),和才是一个七位数;
提升题:
1.小马虎写一个六位数,将最高位上的6写成了9,所得的六位数比原来的数大了多少?
2.六张数字卡片由2,7和4个0组成,能排出多少个不同的六位数?其中只读一个0的六位数有多少个?
3.划去55355530,这个数中某一位上的数字,得数读作五百三十五万五千五百三十,想一想,共有几种不同的划法?
4.找规律,想一想,第六个数是多少?
23564781 ,35647812 ,56478123,……
5.一个六位数从左往右数,前三位的数字和是3,后三位的数字积也是3,符合条件的六位数有多少个?
6.小强用数字卡片2,5,1,6,7,0,8排出了一个七位数8217056,小刚将相邻的两张数字卡片交换了一下位置,使所得的数尽可能大,小刚该交换哪两张数字卡片的位置呢?得数最大是多少?
7.根据10000=1万,1000=0.1万,100=0.01万填空。

800=()万6000=()万3000=()万5500=()万6400=()万8900=()万。

四年级数学奥数测试题及答案一(1)

四年级数学奥数测试题及答案一(1)

四年级数学奥数测试题及答案一(1)一、拓展提优试题1.豆豆全家有4口人.今年豆豆哥哥比豆豆大3岁,豆豆妈妈比豆豆爸爸小2岁.5年前,全家年龄为59岁,5年后,全家年龄和为97岁,豆豆妈妈今年岁.2.100只老虎和100只狐狸分别为100组,每组两只动物,老虎总说真话,狐狸总说假话.当问及“组内另一只动物是狐狸吗?”结果这200只动物中恰有128只回答“是”,其它的都回答“不是”.那么同组2只动物都是狐狸的共有组.3.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…4.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.5.定义运算:A△B=2A+B,已知(3△2)△x=20,x=.6.给出3、3、8、8,请你按“24点”的游戏规则,写出一个得数等于24的等式,.7.粮店里有6袋面粉,分别重15、16、18、19、20、31千克,食堂分两次买走了其中5袋,已知第一次买走得重量是第二次的两倍,剩下的一袋重量为千克.8.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米.这捆电线原来有多少米?9.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.10.六个人传球,每两人之间至多传一次,那么这六个人最多共进行15次传球.11.(7分)有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.12.买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,那么,每斤西红柿的价格是元角.13.如图,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是厘米.14.一个质数的2倍和另一个质数的5倍的和是36,求这两个质数的乘积是多少?15.3年前,爸爸的年龄是明明年龄的8倍,在今年,爸爸的年龄是明明年龄的5倍,则爸爸今年岁.16.甲、乙二人从同一天开始工作,公司规定:甲每工作3天后休息1天,乙每工作7天后连续休息3天,则在开始的前1000天中,甲、乙同一天休息的日子有天..17.教室里有若干学生,他们的平均年龄是8岁.如果加上李老师的年龄,他们的平均年龄就是11岁.已知李老师的年龄是32岁.那么,教室里一共有人.18.(8分)如图所示,东东用35米长的栅栏在墙边围出一块梯形的地用来养猪,那么,这块养猪场的面积是平方米.19.(8分)杨树、柳树、槐树、桦树和梧桐树各一棵树种成一排,相邻两颗树之间的距离都是1米.杨树与柳树、槐树之间的距离相等,桦树与杨树、槐树之间的距离相等.那么梧桐树与桦树之间的距离是米.20.4名工人3小时可以生产零件108个,现在要在8小时内生产504个零件,需增加工人名.21.如果今天是星期五,那么从今天算起,57天后的第一天是星期.22.是三位数,若a是奇数,且是3的倍数,则最小是.23.观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是.24.(8分)小红去买水果,如果买5千克苹果则少4元,如果买6千克梨则少3元,已知苹果比梨每500克贵5角5分,那么小红买水果共带了元.25.有一个学生在做计算题时,最后一步应当除以20,但却错误地加上20,因而得到错误的结果是180.请问这道计算题的正确得数应是.26.相传唐代诗仙李白去买酒,提壶街上走,遇店加1倍,见花喝2杯.途中四遇店和花,最后壶中还剩2杯酒.壶中原有杯酒.27.将一张长11厘米,宽7厘米的长方形纸沿直线剪开,每次必须剪出正方形,这样最多能剪出个正方形.28.用0、1、2、3、4这五个数字可以组成个没有重复数字的偶数.29.(7分)用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.30.如果a表示一个三位数,b表示一个两位数,那么,a+b最小是a+b最大是,a﹣b最小是,a﹣b最大是.31.(8分)传说,能在三叶草中找到四叶草的人,都是幸运之人.一天,佳佳在大森林中摘取三叶草,当她摘到第一颗四叶草时,发现摘到的草刚好共有100片叶子,那么,她已经有颗三叶草.32.某个学习小组由男生和女生共8位同学,其中女生比男生多,那么男生的人数可能是.33.如图,一小正方形的边为边向小正方形外作四个正方形,再依次连接几个定点,若图中阴影三角形的面积是S,则面积为2S的三角形有个,面积为8S的正方形有个.34.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有块糖果.35.某冷饮店推出“夏日冰饮第二杯半价”活动,小刚买了2杯饮料共花了13元5角.那么一杯饮料的原价是元.36.有一筐桃子,4个4个地数,多2个;6个6个地数,多4个;8个8个地数,少2个.已知这筐桃子的个数不少于120,也不多于150,共有个.37.在□中填上适当的数,使竖式成立.38.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是.39.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.40.小慧从开始站立的A点向西走了15米,到达B点,接着从B点向东走了23米,到达C点,那么从C点到A点的距离是米.【参考答案】一、拓展提优试题1.解:10×4﹣(97﹣59)=40﹣38=2(岁)所以豆豆是3年前出生的,即今年豆豆应该是3岁,今年豆豆的哥哥的年龄为:3+3=6(岁),今年全家的年龄和为:97﹣5×4=77(岁),今年爸爸妈妈的年龄和为:77﹣3﹣6=68(岁),豆豆的妈妈今年的年龄为:(68﹣2)÷2=33(岁).答:豆豆妈妈今年33岁.故答案为:33.2.解:128÷2=64(组)100﹣64=36(组)36÷2=18(组)答:那么同组2只动物都是狐狸的共有18组.故答案为:18.3.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.4.【分析】一共64个,4×4×4,①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;然后把几种情况的种数相加即可.解:①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;共:1+2+4+8=15(种);答:一共可以拼成15种不同的含有64个小正方体的大正方体.故答案为:15.5.解:(3△2)△x=20,(2×3+2)△x=20,8△x=20,2×8+x=20,16+x=20,x=20﹣16,x=4;故答案为:4.6.解:8÷(3﹣8÷3),=8÷(3﹣),=8÷,=24.故答案为:8÷(3﹣8÷3).7.解:15+16+18+19+20+31=119(千克),食堂共买走的总量是:119﹣20=99(千克),99÷3=33(千克),第二次买走得重量是:15+18=33(千克),第一次买走得重量是:16+31+19=66(千克);答:剩下的一袋重量为20千克.故答案为:20.8.解:[(15+7﹣10)×2+3]×2=[12×2+3]×2=[24+3]×2=27×2=54(米)答:这捆电线原来长54米.9.【分析】设x年后,爸爸、妈妈的年龄和是小翔的6倍,则:小翔x年后的年龄×4=小翔爸爸x年后的年龄+小翔妈妈x年后的年龄,列出方程解答即可.解:设x年后,爸爸、妈妈的年龄和是小翔的6倍,(5+x)×6=48+42+2x30+6x=90+2x4x=60x=15答:15年后,爸爸、妈妈的年龄和是小翔的6倍.故答案为:15.10.解:一个图形中,如果有K个奇点,那么这个图形会用笔画出来.为了让这个图形用一笔画出来,则要使它只存在2个奇点.上面的图形共有6个奇点,6×5÷2=15条线.最少可以去掉2条线(剩下13条线),使6个奇点变成2个奇点,就可以用一笔画出来了.所以6人两两传球,但每两人之间最多只能传一次,最多就能传13次.故答案为:13.11.【分析】因为前两个数相加得偶数,即奇数+奇数=偶数;同理,第四个数是:奇数+偶数=奇数,以此类推,总是奇数、奇数、偶数、奇数、奇数、偶数…;每三个数一个循环周期,然后确定2007个数里面有几个循环周期,再结合余数,即可得出偶数的个数.解:2007÷3=669,又因为,每一个循环周期中有2个奇数,1个偶数,所以前2007个数中偶数的个数是:1×669=669;答:前2007个数中,有699是偶数.故答案为:699.12.【分析】先根据买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,求出西红柿买需要的钱数,再根据单价=总价÷数量即可解答.解:11元8角=11.8元,1元4角=1.4元(11.8+1.4)÷4=13.2÷4=3.3(元);3.3元=3元3角;答:每斤西红柿的价格是3元3角.故答案为:3,3.【点评】本题主要考查学生依据单价,数量以及总价之间数量关系解决问题的能力.13.【分析】剩下部分的周长=原长方形的周长+2个(12+4)厘米,依此列出算式(50+20)×2+(12+4)×2计算即可求解.解:(50+20)×2+(12+4)×2=70×2+16×2=140+32=172(厘米)答:剩余部分图形的周长是172厘米.故答案为:172.【点评】本题主要考查了学生对长方形面积和周长公式的掌握情况,关键是让学生理解剩下部分的周长=原长方形的周长+2个(12+4)厘米.14.【分析】一个质数的2倍一定是偶数,一个质数的5倍一定是5的倍数,而36要拆成两个数的和,要么都是偶数,要么都是奇数,本题中2的倍数一定是偶数,所以只能拆成两个偶数,故此5的倍数只能是个位上带0的数,当是10时,36﹣10=26,26÷2=13当是20时,4×5=20,4不是质数当是30时,5×6=30,6不是质数,据此解答.解:根据分析可得:符合题意的5的倍数只能是10,20,305×2=10,5×4=20,5×6=30,4和6不是质数,所以只能是2,36﹣10=26.答:这两个质数的乘积是26.【点评】本题考查了质数的定义及其奇数与偶数的性质.15.【分析】3年前,爸爸的年龄是父子年龄差的,今年后爸爸的年龄是年龄差的,共经过了3年,对应的分率是(),用除法可以求出父子的年龄差,进而可以求出爸爸今年的年龄.据此解答.解:3÷()=3÷()=3×=28(岁)28×=35(岁)答:爸爸今年35岁.故答案为:35.【点评】父子年龄差是个不变的量,而年龄的倍数却年年不同.我们可以抓住“差不变”这个特点,再根据父子年龄之间的倍数关系与年龄之和等条件解答这类应用题.16.【分析】甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么甲只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期,每一周期有一天重合,那么100周期共有100天重合解:甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么乙只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期每一周期有一天重合,那么100周期共有100天重合.故答案为:100.【点评】本题主要考查了公约数与公倍数问题.关键是乙每工作10天才会有1天与甲的重合.17.解:(32﹣11)÷(11﹣8)+1=21÷3+1=8(人)答:教室里一共有 8人.故答案为:8.18.解:(35﹣7)×7÷2=28×7÷2=98(平方米)答:这块养猪场的面积是 98平方米.故答案为:98.19.解:杨树与柳树、槐树之间的距离相等,所有三种树的位置有可能是:柳□杨□槐,柳杨槐□□,□柳杨槐□,□□柳杨槐,其中□表示暂时不知道.而桦树与杨树、槐树之间的距离相等,所以只有可能是:柳□杨桦槐,剩余的一个位置是梧桐树,所以梧桐树和桦树间的距离是2米.故答案为:2.20.解:504÷8÷(108÷3÷4)﹣4,=504÷8÷9﹣4,=63÷9﹣4,=7﹣4,=3(名),答:需增加3名,故应填:3.21.【分析】今天算起,57天后的第一天也就是经过了57天,用57除以7,求出经过了多少周,还余几天,然后根据余数推算.解:57÷7,=57÷7,=8(周)…1(天);余数是1,星期五再过1天是星期六.故答案为:六.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.22.【分析】要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,然后根据能被3整除的数的特征确定c的最小值即可.解:要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,又因为是3的倍数,所以可得:1+0+c的和是3的倍数,所以,c最小是2,则,最小是102.故答案为:102.【点评】本题考查了能被3整除的数的特征的灵活应用,关键是确定百位和十位的数字.23.【分析】本题主要考察等差数列中最小的项.解:因为这三个数都是被5除余2,所以这三个相邻的数是个等差数列,中间数是336÷3=112,所以最小的是112﹣5=107.【点评】本题主要找到每相邻两个数相差5就能解答.24.解:设梨每千克x元,则每千克苹果x+0.55×2=(x+1.1)元6x﹣3=5×(x+1.1)﹣46x﹣3=5x+5.5﹣46x﹣5x=1.5+3x=4.56×4.5﹣3=27﹣3=24(元)答:小红买水果共带了24元.故答案为:24.25.解:设最后一步之前运算的结果是a,a+20=180,那么:a=180﹣20=160;正确的计算结果是:a÷20=160÷20=8;故答案为:8.26.解:设李白壶中原有x杯酒,由题意得:{[(x×2﹣2)×2﹣2]×2﹣2}×2﹣2=2,{[(2x﹣2)×2﹣2]×2﹣2}×2﹣2=2,{[4x﹣6]×2﹣2}×2﹣2=2,{8x﹣14}×2﹣2=2,16x﹣30=2,16x=32,x=2;答:壶中原有2杯酒.故答案为:2.27.解:根据题干分析可得:答:一共可以剪出6个正方形.故答案为:6.28.解:一位偶数有:0,2和4,3个;两位偶数:10,20,30,40,12,32,42,14,24,34,一共有10个;三位偶数:位是0时,十位和百位从4个元素中选两个进行排列有A42=12种结果,当末位不是0时,只能从2和4中选一个,百位从3个元素中选一个,十位从三个中选一个共有A21A31A31=18种结果,根据分类计数原理知共有12+18=30种结果;四位偶数:当个位数字为0时,这样的四位数共有:=24个,当个位数字为2或者4时,这样的四位数共有:2×C41×=36个,一共是24+36=60(个)五位偶数:当个位数字为0时,这样的五位数共有:A44=24个,当个位数字为2或者4时,这样的五位数共有:2×C31A33=36个,所以组成没有重复数字的五位偶数共有24+36=60个.一共是:3+10+30+60+60=163(个);答:可以组成 163个没有重复数字的偶数.故答案为:163.29.【分析】设这两个数为a,b.,且a<b.千位最小差只能是1.为了让差尽量小,只能使a其它位数最大,b的其它位数最小.所以要尽量使a的百位大于b的百位,a的十位大于b的十位,a的个位大于b的个位.因此分别是8和1,7和2,6和3,剩下的4,5分给千位.据此解答.解:设这两个数为a,b.,且a<b.千位最小差只能是1.根据以上分析,应为:5123﹣4876=247故答案为:247.30.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.解:a+b最小是10+100=110,a+b最大是99+999=1098,a﹣b最小是100﹣99=1,a﹣b最大是999﹣10=989.故答案为:110,1098,1,989.【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.31.解:(100﹣4)÷3=96÷3=32(棵)答:她已经有了32棵三叶草.故答案为:32.32.【分析】先假设男生和女生一样多,则男生有4人,女生有4人,因为女生比男生多,所以男生的人数一定小于4人,然后写出即可.解:8÷2=4(人),因为女生比男生多,所以男生的人数一定小于4人,所以男生可能是1人,2人或3人;故答案为:1人,2人或3人.【点评】解答此题的关键:先假设男、女生一样多,求出男生人数,进而根据题意,进行分析、继而得出结论.33.【分析】(1)观察题干可知,阴影部分的面积是S,则面积为2S的三角形是每个小正方形的面积的一半,即三角形的两条直角边都是小正方形的边长,由此即可计数;(2)阴影部分的面积是S,则它所在的正方形的面积是4S,则面积为8S的正方形只有中间1个,解:(1)观察图形可知,面积为2S的独三角形有4个;由两个面积为S的三角形组成的三角形有4×4=16(个),所以一共有4+16=20(个);(2)面积为8S的正方形只有1个.故答案为:20;1.【点评】本题考查平面图形数量的确定,属于中档题目,注意仔细地观察图形,要做到不重不漏.34.【分析】通过题意,甲取1块,乙取2块,甲取4块,乙取8块, (1)20,2=21,4=22,8=23…,可以看出,甲取的块数是20+22+24+26+28+…,相应的乙取得块数是21+23+25+27+29+…,我们看一看90是甲取了几次,乙相应的取了多少次,把两者总数加起来,即可得解.解:甲取的糖果数是20+22+24+…+22n=90,因为1+4+16+64+5=90,所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数,即乙取了21+23+25+27=2+8+32+128=170(块),90+170=260(块),答:最初包裹中有 260块糖果.故答案为:260.【点评】判断出甲乙取得次数是解决此题的关键.35.【分析】把第一杯饮料的原价看作单位“1”,则第二杯饮料的价钱是第一杯的,由题意可知:第一杯饮料价钱的(1+)是13.5元,根据已知一个数的几分之几是多少,求这个数,用除法解答.解:13.5÷(1+),=13.5÷1.5,=9(元);答:一杯饮料的原价是9元;故答案为:9.【点评】解答此题的关键是:判断出单位“1”,进而根据已知一个数的几分之几是多少,求这个数,用除法解答.36.【分析】可以看做4个4个地数,少2个;6个6个地数,少2个;8个8个地数,也是少2个.也就是4、6、8的公倍数减2.[4、6、8]=24.可以记作24x﹣2,120<24x﹣2<150.x是整数,x=6.这筐桃子共有24×6﹣2,计算即可.解:[4、6、8]=24.这筐桃子的数量可以记作24x﹣2,120<24x﹣2<150.x是整数,所以x=6,这筐桃子共有:24×6﹣2=142(个).答:这筐桃子共有142个.故答案为:142.【点评】关键是通过把原题转化,运用了求最小公倍数以及解不等式的方法解决问题.37.解:根据题干分析可得:38.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.解:西巴巴数字8表示阿拉伯数字9﹣8=1,西巴巴数字3表示阿拉伯数字9﹣3=6,西巴巴数字7表示阿拉伯数字9﹣7=2,西巴巴数字4表示阿拉伯数字9﹣4=5,西巴巴数字2表示阿拉伯数字9﹣2=7,所以837+742表示的正常算式为:162+257=419.故答案为:419.39.【分析】这个箭靶共三个环,设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③通过等量代换,解决问题.解:设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③由①+②得:2a+2b+2c=29+43=72即a+b+c=36即第三个靶的得分为36分.答:他在第三个箭靶上得了36分故答案为:36.40.【分析】我们通过画图进行解决,向西走15米,然后再向东走23米其实,从C点到A点的距离是就是23米与15米的差.解:画图如下:从C点到A点的距离是:23﹣15=8(米),答:从C点到A点的距离是8米.。

四年级奥数题训练

四年级奥数题训练

四年级奥数题训练
1.甲乙两个数字相差12,如果它们的和是70,那么甲、乙分别是多少?
答:甲=41,乙=29
2.小明有20颗苹果,他想分成5份,每份有几颗苹果?
答:每份4颗苹果
3.一个矩形的长是12米,宽是6米,它的周长是多少?
答:周长为36米
4.如果一辆汽车每小时行驶60公里,那么它行驶100公里需要多长时间?
答:需要1小时40分钟
5.一块正方形农田的面积是16平方米,这块农田的边长是多少?
答:边长为4米
6.有10个苹果,小明拿走了其中的3个,小红拿走了其中的4个,还剩下几个苹果?
答:还剩下3个苹果
7.一个长方体的长、宽、高分别是3厘米、4厘米、5厘米,它的体积是多少立方厘米?
答:体积为60立方厘米
8.一个三角形的底边是7厘米,高是4厘米,它的面积是多少平方厘米?
答:面积为14平方厘米
9.甲、乙两个数字相差8,如果它们的和是35,那么甲、乙分别是多少?
答:甲=21,乙=14
10.一个圆的直径是6米,它的周长是多少米?
答:周长为18.84米(保留两位小数)
11.如果一只鸟每小时飞行30公里,它飞行90公里需要多长时间?
答:需要3小时
12.一个正方形的周长是36米,这个正方形的边长是多少米?
答:边长为9米
13.小明有80块糖果,他想平均分给5个朋友,每人能分到几块糖果?
答:每人能分到16块糖果
14.一个长方形农田的面积是24平方米,它的长是3米,宽是多少米?
答:宽为8米
15.一支蜡烛点燃后,从上往下烧掉了2/5的长度,还剩下30厘米,这支蜡烛原来有多长?
答:原来长度为50厘米。

四年级奥数题1

四年级奥数题1

四年级奥数题1一、算式谜1.在下面的数中间填上“+”、“-”,使计算结果为100。

1 2 3 4 5 6 7 8 9=1002.ABCD+ACD+CD=1989,求A、B、C、D。

3.□4□□-3□89=3839。

4.1ABCDE×3=ABCDE1,求A、B、C、D、E。

二、找规律5.找找规律填数76,2,75,3,74,4,(),();2,3,4,5,8,7,(),();2,1,4,1,8,1,(),()。

6.在()内填入适当的数1,1,2,3,5,8,(),();1,1,1,3,5,9,(),();0,1,2,3,6,11,(),();7.找规律在()内填上合适的数(1)0,1,3,8,21,55,();(2)2,6,12,20,30,42,();(3)1,2,4,7,11,16,()。

(1)1,6,7,12,13,18,19,();8.选择一个锐角三角形的一个内角是44度,其余两个角可能是()36度和100度 90度和46度75度和61度 18度和96度9.简便计算12×102-2469×56+32×56-5613×94+13×10-13×410.解决问题一个三角形的三个内角分别为∠1,∠2和∠3,∠2=2∠1,∠3=∠2,求∠1=?三、排列组合11.小华、小花、小马三个好朋友要在一起站成一排拍一张照片。

三个人争着要站在排头,无法拍照了。

后来照相师傅想了一个办法,说:"我给你们每人站在不同位置都拍一张,好不好?"这下大家同意了。

那么,照相师傅一共要给他们拍几张照片呢?12.二(1)班的小平、小宁、小刚、小超4人排了一个小块板,准备"六、一"演出。

在演出过程中,队形不断变化。

(都站成一排)算算看,他们在演出小快板过程中,一共有多少种队形变化形式?13."69"顺倒过来看还是"69",我们把这两个顺倒一样的数,称为一对数。

小学四年级奥数题及答案[1]

小学四年级奥数题及答案[1]

小学四年级奥数题:统筹规划(一)【试题】1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。

【分析】:先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。

共需要1+10=11分钟。

【试题】2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?【分析】:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。

为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)【试题】3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?【分析】:一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。

两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。

四年级奥数题:统筹规划问题(二)2010-03-25 15:42:36 来源:奥数网整理网友评论1条【试题】4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。

四年级流水行程问题奥数训练

四年级流水行程问题奥数训练

四年级流水行程问题奥数训练四年级流水行程问题奥数训练一、填空题1.船行于120千米一段长的江河中,逆流而上用10小明,顺流而下用6小时,水速_______,船速________.2.一只船逆流而上,水速2千米,船速32千米,4小时行________千米.(船速,水速按每小时算)3.一只船静水中每小时行8千米,逆流行2小时行12千米,水速________.4.某船在静水中的速度是每小时18千米,水速是每小时2千米,这船从甲地到乙地逆水行驶需15小时,则甲、乙两地相距_______千米.5.两个码头相距192千米,一艘汽艇顺水行完全程要8小时,已知水流速度是每小时4千米,逆水行完全程要用________小时.6.两个码头相距432千米,轮船顺水行这段路程要16小时,逆水每小时比顺水少行9千米,逆水比顺水多用________小时.7.A河是B河的支流,A河水的水速为每小时3千米,B河水的.水流速度是2千米.一船沿A河顺水航行7小时,行了133千米到达B河,在B河还要逆水航行84千米,这船还要行_______小时.8.甲乙两船分别从A港逆水而上,静水中甲船每小时行15千米,乙船每小时行12千米,水速为每小时3千米,乙船出发2小时后,甲船才开始出发,当甲船追上乙船时,已离开A港______千米.9.已知80千米水路,甲船顺流而下需要4小时,逆流而上需要10小时.如果乙船顺流而下需5小时,问乙船逆流而上需要_______小时.10.已知从河中A地到海口60千米,如船顺流而下,4小时可到海口.已知水速为每小时6千米,船返回已航行4小时后,因河水涨潮,由海向河的水速为每小时3千米,此船回到原地,还需再行______小时.二、解答题11.甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?12.静水中,甲船速度是每小时22千米,乙船速度是每小时18千米,乙船先从某港开出顺水航行,2小时后甲船同方向开出,若水流速度为每小时4千米,求甲船几小时可以追上乙船?13.一条轮船在两码头间航行,顺水航行需4小时,逆水航行需5小时,水速是2千米,求这轮船在静水中的速度.14.甲、乙两港相距360千米,一轮船往返两港需要35小时,逆流航行比顺流航行多花5小时,另一机帆船每小时行12千米,这只机帆船往返两港需要多少小时?。

四年级奥数问题合集(一)含答案

四年级奥数问题合集(一)含答案

四年级奥数问题合集(一)含答案多次相遇问题专项训练【篇一】某人沿公路前进,对面来了一辆汽车,他问司机:“后面有自行车吗?”司机回答:“十分钟前我超过一辆自行车”,这人继续走了十分钟,遇到自行车,已知自行车速度是人步行速度的三倍,问汽车的速度是步行速度的()倍.考点:多次相遇问题.分析:人遇见汽车的时候,离自行车的路程是:(汽车速度-自行车速度)×10,这么长的路程要自行车和人合走了10分钟,即:(自行车+步行)×10,等式:(汽车速度-自行车速度)×10=(自行车+步行)×10,即:汽车速度-自行车速度=自行车速度+步行速度.汽车速度=2×自行车速度+步行速度,又自行车的速度是步行的3倍,所以汽车速度是步行的7倍.解答:(汽车速度-自行车速度)×10=(自行车+步行)×10,即:汽车速度-自行车速度=自行车速度+步行速度.汽车速度=2×自行车速度+步行,又自行车的速度是步行的3倍,所以汽车速度=(2×3+1)×步行速度=步行速度×7.故答案为:7.点评:解答此题的关键是要推出:汽车与自行车的速度差等于人与自行车的速度和. 【篇二】1.红旗钢铁厂用两辆汽车从距工厂90千米的矿山运矿石,现有甲、乙两辆汽车,甲车自矿山,乙车自钢铁厂同时出发相向而行,速度分别为每小时40千米和50千米,到达目的地后立即返回,如此反复运行多次,如果不计装卸时间,且两车不作任何停留,则两车在第三次相遇时,距矿山多少千米?解析请看下一页分析:在往返来回相遇问题中,第一次相遇两人合走完一个全程,以后每次再相遇,都合走完两个全程.即:两人相遇时是在他们合走完1,3,5个全程时.然后根据路程÷速度和=相遇时间解答即可.解答:解答:①第三次相遇时两车的路程和为:90+90×2+90×2,=90+180+180,=450(千米);②第三次相遇时,两车所用的时间:450÷(40+50)=5(小时);③距矿山的距离为:40×5-2×90=20(千米);答:两车在第三次相遇时,距矿山20千米.点评:在多次相遇问题中,相遇次数n与全程之间的关系为:1+(n-1)×2个全程=一共行驶的路程.【篇三】求两地之间的距离1.给出两人的速度以及某次相遇的时间,求两地距离。

四年级奥数训练第1讲整数计算综合

四年级奥数训练第1讲整数计算综合

四年级奥数训练第1讲整数计算综合内容概述熟练运用已学的各种方法解决复杂的整数四则运算问题;学会利用加减抵消、分组计算方法处理各种数列的计算问题。

学会处理“定义新运算”的问题,初步体会用字母表示数。

典型问题兴趣篇1. 计算:(1) 121×32÷8; (2) 4×(250÷8) (3) 25×83×32×1252. 计算:(1) 56×22+56×33+56×44 (2) 222×33+889×66.3. 计算:(1) 37×47+36×53 (2) 123×76-124×75。

4. 计算:100-99+98-97+96-95+…+12-11+10.5. 计算:50+49-48-47+46+45-44-43+…-4-3+2+1.6. 计算:(1+3+5+7+…+199+201) -(2+4+6+8+…+198+200).7. 计算:1+2+3+4+…+48+49+50+49+48+…+4+3+2+1.8. 下面是一个叫做“七上八下”的数字游戏。

游戏规则是:对一个给定的数,按照由若干个7和8组成的口令进行一连串的变换。

口令“7”是指在这个数中插入一个数字,使得新生成的数尽量大;口令“8”是指将这个数中的一个数字去掉,也要使新生成的数尽量大。

例如:给出的数是1995,口令是“8→7,”在第一个口令“8”发出后变成995,在第二个口令“7”发出后变成9995。

如果给出数“6595”以及口令“8→7→8→7→8→8”,问:变换后依次得到的6个数的和是多少?9. 规定运算“∇”为:a∇b= (a+1) ×(b-1), 请计算:(1)8∇10;(2) 10∇8.10. 规定运算“☺”为:a☺b=a×b-(a+b), 请计算:(1) 5☺8; (2) 8☺5; (3) (6☺5)4; (4)6☺ (54)拓展篇1. 计算:(1)72×27×88÷(9×11×12); (2) 31×121-88×125÷(1000÷121).2. 计算:(1) 555×445-556×444; (2) 42×137-80÷15+58×138-70÷15.3. 计算:20092009×2009-20092008×2008-20092008.4. 计算:1+2-3+4+5-6+7+8-9+……+97+98-99.5. 计算:100×99-99×98-98×97-97×96-96×95-95×94+…+4×3-3×2-2×1.6. 在不大于1000的自然数中,A为所有个位数字为8的数之和,B为所有个位数字为3的数之和. A与B的差是多少?7. 求图1-1中所有数的和.8. 已知平方差公式:22()()-=+⨯-,计算:a b a b a b22222222-+-+-++-201918171615219. 计算:951×949-52×48.10. 规定运算“Θ”为:aΘb=a+2b-2, 计算:(1) (8Θ7)Θ6;(2) 8Θ(7Θ6)11. 规定运算“”为:a b=(a+1) ×(b-2). 如果6(5)=91,那么方格内应该填入什么数?12. 规定:符号“∆”为选择两数中较大的数的运算,“∇”为选择两数中较小的数的运算,例如:3∆5=5,3∇5=3请计算:1∆2∆3∇4∆5∆6∇7∆…∇100.(运算的顺序是从左至右)超越篇1. 观察下面算式的规律:2000+1991-1988-1982+1976+1970-1964-1958+1952+1946-1940-1934+……一直这样写下去,那么最后4个自然数分别是哪4个?符号分别是加还是减?算式最终的结果为多少?2. 从1, 2, ……, 9, 10 中任意选取一个奇数和一个偶数,并将两数相乘,可以得到一个乘积,把所有这样的乘积全部加起来,总和是多少?3. 计算:1-3+6-10+15-21+28- (4950)4. 已知平方差公式:22()()a b a b a b-=+⨯-, 计算:222222222222+--++--+++--1009998979695949343215. aΘb表示从a开始依次增加的b个连续自然数的和,例如:4Θ3=4+5+6=15, 5Θ4=5+6+7+8=26, 请计算:(1) 4Θ15 (2) 在算式(Θ7)Θ11=1056中,方框里的数应该是多少?6. 定义两种运算:aΩb=a-b+1, a∀b=a×b+1, 用“Ω”、“∀”和括号填入下面的式子,使得等式成立(不能用别的计算符号):7 3 4 5=27.现定义四种操作的规则如下:①“一分为二”:如果一个自然数是偶数,就把它除以2;如果是奇数,就先加上1,然后除以2. 例如从16可以得到8,从27可以得到14.②“丢三落四”:如果一个自然数中包含数字“3”或“4”,就将其划掉,例如从5304可以得到50,从408可以得到8. (不含数字3和4的自然数不能进行“丢三落四”操作)③“七上八下”:如果一个自然数中包含数字“7”,就将所有“7”移到最左边;如果一个自然数中包含数字“8”,就将所有“8”移到最右边。

四年级奥数1

四年级奥数1

四年级奥数题(1)1、兄弟二人去同一学校,弟弟先出发,每小时行10千米,弟弟行了半小时后,哥哥才出发,哥哥每小时行15千米,结果,兄弟二人同时到达学校,问他们的家离学校多少千米2、有一个数列,4、10、16、22、……52,这个数列有多少项他们的和是多少3、一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米4、甲、乙二人同时从A地去B地,甲每分钟走60米,乙每分钟走90米,乙到达B地后立即返回,在离B地180 米处相遇。

A、B两地相距多少米5、加工一批零件,甲工人要15小时完成,乙工人要20小时完成, 丙工人要10小时完成.现在甲和乙先同时加工5小时,然后由丙单独做,还要多少小时完成6、王师傅加工一批零件,如果每天做50个,要比原计划晚8天完成;如果每天做60个,可以提前5天完成。

这批零件共有多少个四年级奥数题(2)1、四个完全相同的长方形和一个小正方形拼成了一个大正方形(如图),大正方形的面积是64平方米,小正方形的面积是4平方米,长方形的短边是多少米(p76)2、一辆汽车从甲地开往乙地,要行360千米,开始按计划以每小时45千米的速度行驶,途中因汽车出了故障修车2小时。

因为要按时到达乙地,修好车后必须每小时多行30千米。

问:汽车是在离甲地多远处修车的3、一人以每分钟60米的速度沿铁路步行,一列长144米的客车对面开来,从他身边通过用了8秒钟,列车的速度是每秒多少米4、有一根长为180厘米的绳子,从一端开始每隔3厘米作一个记号,每隔4厘米也作一个记号,然后将标有记号的地方剪断。

问绳子共被剪成了多少段。

5、一项工程,甲独做要10天,乙独做要15天,丙独做要20天。

三人合做期间,甲因病请假,工程6天完工,问甲请了几天病假奥数题(3)1、一位旅客乘火车以每秒15米的速度前进,他看见对面开来的火车只用2秒钟就从他身边驶过。

如果知道迎面来的火车长70米,求它每小时行驶多少千米2、一个长方形的木板,如果长减少5分米,宽减少2分米,那么它的面积就减少66平方分米,这时剩下的部分恰好是一个正方形,求原来长方形的面积.3、小华和小明同时从A、B两城出发,相向而行,在离甲城85千米处相遇,到达对方城市后立即沿途返回,又在离甲城35千米处相遇,两城相距多少千米4、一段公路,甲队单独修需要12天,乙队单独修需要10天,甲乙两队合修3天后还剩2700米,这段公路有多少米5、一个两位数等于其个位数字的平方与十位数字之和,这个两位数是________。

四年级奥数训练第1讲整数计算综合

四年级奥数训练第1讲整数计算综合

四年级奥数训练
第1讲整数计算综合
内容概述
熟练运用已学的各种方法解决复杂的整数四则运算问题;学
会利用加减抵消、分组计算方法处理各种数列的计算问题。

学会处理“定义新运算”的问题,初步体会用字母表示数。

典型问题
兴趣篇
1. 计算:(1) 121×32÷8; (2) 4×(250÷8) (3) 25×83×32×125
2. 计算:(1) 56×22+56×33+56×44 (2) 222×33+889×66.
3. 计算:(1) 37×47+36×53 (2) 123×76-124×75。

4. 计算:100-99+98-97+96-95+,+12-11+10.
5. 计算:50+49-48-47+46+45-44-43+,-4-3+2+1.
6. 计算:(1+3+5+7+,+199+201) -(2+4+6+8+,+198+200).
7. 计算:1+2+3+4+,+48+49+50+49+48+,+4+3+2+1.
8. 下面是一个叫做“七上八下”的数字游戏。

游戏规则是:
对一个给定的数,按照由若干个7和8组成的口令进行一连串的变换。

口令“7”是指在这个数中插入一个数字,使得
新生成的数尽量大;口令“8”是指将这个数中的一个数字。

北师大版四年级上册数学奥数训练专项(试题)

北师大版四年级上册数学奥数训练专项(试题)

四年级奥数训练专项
一.找规律.(每空3分,共30分).
1. 33、28、23、()、13、()、3
2. 19、3、17、3、15、3、()、()、11、3
3. 53、44、36、29、()、18、()、11、9、8
4. 30、2、26、2、22、2、()、()、14、2
5. 13、2、15、4、17、6、()、()
二.和倍问题(每题14分,共42分).
公式温习:
和÷(倍数+1)=小数小数×倍数=大数
1.乙两数的和是112,甲数除以乙数的商是6,甲、乙数各是多少?
2.某专业户李大伯养鸡鸭鹅共960只,养鸡的只数是鹅的3倍,养鸭的只数是鹅的4倍,鸡鸭鹅各养了多少只?
3.甲乙丙三个数之和是400,又知甲为乙的3倍,丙为甲的4倍,求甲乙丙各是多少?
三.巧算年龄(每题14分,共28分).
1.今年爸爸的年龄是儿子的4倍,3年前,爸爸和儿子的年龄和是44岁。

爸爸和儿子今年各是多少岁?
2.今年小芳和她妈妈的年龄和是38岁,3年前妈妈的年龄比小芳的9倍多2岁。

小芳和妈妈今年各多少岁?
四.速算与巧算(每题5分,共20分).
262+266+270+268+264 283+69-183
125×25×32 9+99+999+9999。

最新小学四年级奥数题及答案(可直接打印) 一

最新小学四年级奥数题及答案(可直接打印) 一

最新小学四年级奥数题及答案(可直接打印) 一一、拓展提优试题1.10个连续的自然数从小到大排列,若最后6个数的和比前4个数的和的2倍大15,则这10个数中最小的数是.2.观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是.3.某列车通过285米的隧道用24秒,通过245米的大桥用22秒.若该车与另一列长135米,速度为每秒10米的货车相遇,两列车从碰上到全错开用秒.4.甲乙两所学校共有学生864人.新学期开学前,由甲校调入乙校32人,这时甲校还比乙校多48人.原来甲校有个学生.5.如图,一小正方形的边为边向小正方形外作四个正方形,再依次连接几个定点,若图中阴影三角形的面积是S,则面积为2S的三角形有个,面积为8S 的正方形有个.6.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…7.给出3、3、8、8,请你按“24点”的游戏规则,写出一个得数等于24的等式,.8.粮店里有6袋面粉,分别重15、16、18、19、20、31千克,食堂分两次买走了其中5袋,已知第一次买走得重量是第二次的两倍,剩下的一袋重量为千克.9.如图,BC=3BE,AC=4CD,三角形ABC的面积是三角形ADE面积的倍.10.一辆公共汽车有78个座位,空车出发,第一站上一位乘客,第二站上二位乘客,第三站上三位乘客,依次下去,多少站以后,车上坐满乘客?11.如图是长方形,将它分成7部分,至少要画条直线.12.(15分)水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果.问:(1)水果店原有多少个火龙果?(2)用完所有的哈密瓜后,还剩多少个猕猴桃?13.若2台收割机3天可以收割小麦450亩,则用7台收割机收割2100亩小麦需要天.14.袋子中有黑白两种颜色的棋子,黑子的个数是白子的个数的2倍,每次从袋中同时取出3个黑子和2个白子,某次取完后,白子剩下1个,黑子剩下31个,则袋中原有黑子个.15.(8分)如图,在一个长、宽分别为19厘米和11厘米的大长方形内放了四个正方形,那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是平方厘米.【参考答案】一、拓展提优试题1.【分析】本题主要考察等差数列.解:设最小的数为x,则剩余自然数依次为x+1,x+2,…,x+9,由题可得2(4x+1+2+3)+15=6x+4+5+6+7+8+9,化简后是8x+27=6x+39∴x=6,【点评】本题可以借助列方程,设最小的数为x,一一用x表示其他连续自然数,根据等量关系就可求解.2.【分析】本题主要考察等差数列中最小的项.解:因为这三个数都是被5除余2,所以这三个相邻的数是个等差数列,中间数是336÷3=112,所以最小的是112﹣5=107.【点评】本题主要找到每相邻两个数相差5就能解答.3.解:列车速度为:(285﹣245)÷(24﹣22)=40÷2,=20(米);列车车身长为:20×24﹣285=480﹣285,=195(米);列车与货车从相遇到离开需:(195+135)÷(20+10),=330÷30,=11(秒).答:列车与货车从相遇到离开需11秒.4.解:甲校比乙校多的人数:32×2+48=112人,甲校的人数:(864+112)÷2,=976÷2,=488(人).答:原来甲校有488人.故答案为:488.5.【分析】(1)观察题干可知,阴影部分的面积是S,则面积为2S的三角形是每个小正方形的面积的一半,即三角形的两条直角边都是小正方形的边长,由此即可计数;(2)阴影部分的面积是S,则它所在的正方形的面积是4S,则面积为8S的正方形只有中间1个,解:(1)观察图形可知,面积为2S的独三角形有4个;由两个面积为S的三角形组成的三角形有4×4=16(个),所以一共有4+16=20(个);(2)面积为8S的正方形只有1个.故答案为:20;1.【点评】本题考查平面图形数量的确定,属于中档题目,注意仔细地观察图形,要做到不重不漏.6.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.7.解:8÷(3﹣8÷3),=8÷(3﹣),=8÷,=24.故答案为:8÷(3﹣8÷3).8.解:15+16+18+19+20+31=119(千克),食堂共买走的总量是:119﹣20=99(千克),99÷3=33(千克),第二次买走得重量是:15+18=33(千克),第一次买走得重量是:16+31+19=66(千克);答:剩下的一袋重量为20千克.故答案为:20.9.解:因为BC=3BE,AC=4CD,则BC:BE=3:1,AC:CD=4:1,所以S△ABE =S△ABC,S△ACE=S△ABC,S△ADE=S△ACE=S△ABC=S△ABC,三角形ABC的面积是三角形ADE面积的2倍.故答案为:2.10.解:设第n站以后车上坐满了乘客,可得:[1+1+(n﹣1)×1]×n÷2=78[2+n﹣1]×n÷2=78,[1+n]×n÷2=78,(1+n)×n=156,由于12×13=156,即n=12.答:12站以后,车上坐满乘客.11.【分析】两条直线把正方形分成4部分,第三条直线与前两条直线相交多出3部分,共分成7部分;第四条直线与前3条直线相交,又多出4部分.共11部分,第五条直线与前4条直线相交,又多出5部分,如下图所示.解:1+1+2+3=7答:在一个长方形上画上3条直线,最多能把长方形分成7部分.故答案为:3.【点评】此题考查了图形的拆拼.使直线间相互交叉,交点越多,则分割的空间越多.每多第几条直线,就加几个部分.12.【分析】(1)所有的果篮用掉2个哈密瓜,4个火龙果,8个猕猴桃.当哈密瓜全部用完时,用掉火龙果的数量是哈密瓜的2倍,依题意,可画出线段图帮助理解:剩下的130个对应着箭头部分,然后列式解答;(2)先求出水果店原有的猕猴桃,即370×2=740(个);再求用完所有的哈密瓜后,还剩下的猕猴桃数即可.解:(1)(130﹣10)÷2=120÷2=60(个)60×6+10=360+10=370(个)答:水果店原有370个火龙果.(2)370×2=740(个)740﹣60×10=740﹣600=140(个)答:还剩140个猕猴桃.【点评】此题属于比较难的题目,解答的关键在于画出线段图来理解,找出数量关系式,列式解答.13.【分析】首先求出每台每天的工作效率,再求出7台1天的工作效率,因为工作量÷工作效率=工作时间,据此解答即可.解:2100÷(450÷3÷2×7)=2100÷(75×7)=2100÷525=4(天),答:用7台收割机收割2100亩小麦需要4天.故答案为:4.【点评】此题属于二次反归一问题,首先用连除求出单一量,再用除法求出部分量.14.【分析】因黑子个数是白子个数的2倍,可假设黑子每次取的个数也是白子的2倍,即黑子每次2×2=4个、白子每次取2个,则白子余1个时,黑子余2个.现每次黑子取少4﹣3=1个了,则黑子多出来的数量,除以应取和实取的差,就是取的次数.据此解答.解:假设黑子每次取的个数也是白子的2倍,即黑子每次2×3=6个、白子每次取3个,则:(31﹣1×2)÷(2×2﹣3)=29÷1=29(次)3×29+31=87+31=118(个)答:袋中原有黑子 118个.故答案为:118.【点评】本题的关键是根据黑子是白子个数的2倍,假设每次取黑子的个数是白子的2倍,与实际取黑子的差,及实际取与假设取应剩下黑子的差,进行解答.15.解:最大正方形的边长是11厘米,次大正方形的边长:19﹣11=8(厘米)最小正方形的边长是:11﹣8=3(厘米)阴影长方形的长是3厘米,宽是8﹣3﹣3=2(厘米)3×2=6(平方厘米)答:没有被正方形覆盖的小长方形(图中阴影部分)的面积是 6平方厘米.故答案为:6.。

小学四年级奥数[1]

小学四年级奥数[1]

小学四年级奥数:找规律把自然数按下图的方式排列:1 2 5 10 17…4 3 6 11 18…9 8 7 12 19…16 15 14 13 20…25 24 23 22 21……问:1、第9行第9列的那个数是多少?2.、2009在第几行第几列?(如8在第3行第2列,22在第5行第4列)解答:(1)据观察得出的规律可知第9行第9列的数是9×9=81,所以第9行第9列的数是81-8=73;(2)因为45×45=2025,所以第45行第一列的数是2025,2009比2025少16,所以2009在第45行第17列。

【小结】对于找规律的题目:我们应该先细心观察,找到规律以后记得要验证规律是否正确。

小学四年级奥数:计算12345×2345+2469×38275=解答:一看是两个乘式的和,应想到提取公因数;我们需要拆数以凑出公因数,观察12345、2469,想到凑1234:原式=(12340+5)×2345+(2468+1)×38275=1234×23450+11725+2×1234×38275+38275=1234×(23450+76550)+50000=123400000+50000=123450000小学四年级奥数:奥特曼与怪兽一群奥特曼打败了一群小怪兽,已知所有的奥特曼均有一个头、两条腿,所有的小怪兽均有一个头、五条腿。

战场上一共有10个头,41条腿,那么有多少个奥特曼?有多少个小怪兽?解答:假设10个头均为奥特曼的,则战场上应共有2×10=20条腿,故小怪兽共有(41-20)÷(5-2)=7(个),奥特曼共有10-7=3(个)。

有一个大桶装满了8升汽油,另外还有两个空桶,一个可装5升,一个可装3升。

现在要利用这三个桶将汽油倒来倒去,将8升汽油平分为两个4升,要求最多倒8次。

小朋友,这可不是一件容易的事,你可要多动动脑筋,想想办法呀!巧断对错(奥数趣题)马老师经常与同学们做数学游戏。

小学四年级数学上册奥数题(一)

小学四年级数学上册奥数题(一)

四年级数学上册奥数题(一)班级姓名学号1、下列算式中,不同的汉字代表不同的数字.当每个汉字代表什么数字时,竖式成立:祝全国老师节日好×日好好好好好好好好好祝= 全= 国= 老= 师= 节= 日= 好=2、有12 根木料,每根长10 米,现在需要把它们锯成长为2 米的圆木,如果每锯开一处需要3 分钟,问全部锯完需要多少时间?3、某班40名同学排成一排,从第一名开始报数,报单数的同学退出队列,报双数的站在原地不动,再报数,如此下去,最后剩下的一名同学,开始时应站在几号位置上?4、□□□+□□□□=1999这七个□中数字的和是多少?5、一个老人以等速在公路上散步,从第一根电线杆走到第12 根电线杆用了22分钟,这个老人如果走48分钟,应走到第多少根电线杆?6、3*2=3+33=36,2*4=2+22+222+2222=2468,1*3=1+11+111=123,那么7*5=()7、吴韵同学把143只乒乓球放进两种盒子中,每个大盒子装12个,每个小盒子装5个,恰好装完。

那么大盒子比小盒子多多少个?8、有两组数,第一组:3,5,7。

第二组:2,4,8。

现在从两组中各取一个数相加,一共可以得到几个不同的和?9、一本175页的书,编页后,数字1在页码中共出现了多少次?10、把27 枚棋子放到7 个不同的空盒中,如果要求每个盒子都不空,且任意两个盒子里的棋子数目都不一样多,问能否办到。

若能,写出具体方案;若不能,说明理由。

11、从1 到50这50个连续自然数中,取两数相加,使其和大于50 ,有多少种不同的取法?12、某个自然数,除以3余2 ,除以5余4 ,这个自然数最小是多少?13、有12 根木料,每根长10 米,现在需要把它们锯成长为2 米的圆木,如果每锯开一处需要3 分钟,问全部锯完需要多少时间?14、甲班和乙班共83 人,乙班和丙班共86 人.丙班和丁班共88 人。

问甲班和丁班共有多少人?15、如图,在每个方格中填入一个数字,使得每行、每列以及每条对角线上的方格中的四个数字都有1、2、3、4.16、《丁丁历险记》共有200 页,数字1 在页码中共出现了几次?17、一个老人以等速在公路上散步,从第一根电线杆走到第12 根电线杆用了22 分钟,这个老人如果走48分钟,应走到第几根电线杆?18、如图,将1~8这8个数分别填入八个圆圈中,使四条边上的数之和都相等。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学四年级(上)思维训练(1)
一、填空题:
1、754÷63的商的最高位在()位上,商是()位数。

2、最大的两位数乘最小的两位数,积是()。

3、一个数除以16,商是20,余数是10,这个数是()。

4、40×□<161,□最大填()。

5、15135商是(),商是最大的()位数。

6、一个数除以5,商是12,有余数,当余数最大时,被除数是()。

7、()÷40=14......39 483÷()=9 (6)
8、因为25的4倍是100,所以()÷4=25 ()÷25=()。

9、240÷80=()()是80的()倍。

10、39个十除以4个十,商是()个十,余数是()个十。

二、判断题:
1、200÷30=6……2。

()
2、6×4÷6×4=1。

()
3、因为□÷△=☆……〇,所以△=(□-〇)÷☆。

()
4、在计算有余数的除法时,每次除后余下的数都要比除数小。

()
5、有余数除法的验算方法是“除数×商+余数”的和是否与被除数相等。

()
三、选择题:
1、两位数乘两位数,积可能是位数。

()
A、两
B、三或两
C、三或四
2、甲数÷乙数=12……19,乙数最小是()
A、12
B、19
C、20
3、甲数÷乙数=3….2。

如果把甲、乙两数都扩大10倍,那么甲数÷乙数等于()….
()
A、3 2
B、3 20
C、30 20
4、两位数除三位数的商()
A、一定是两位数。

B、一定是一位数。

C、可能是一位数,也可能是两位数。

5、试商时,如果余数比除数大,应该把商()
A、调大
B、调小
C、不变
6、480里面有4个()
A、120
B、160
C、80
7、把除数42看作40来试商时,初商容易()
A、偏大
B、偏小
C、不变
8、653÷82中把82看作80来试商时,会出现()
A、初商偏大
B、初商偏小
C、初商正好
9、在☆×△=□中,正确的是()
A、☆=△×□
B、△=□÷☆
C、□=☆÷△
10、被减数除以减数加差的和,商是()
A、1
B、2
C、无法知道
四、。

相关文档
最新文档