19年中考专题复习(最值问题)
中考复习线段和差的最大值与最小值(拔高)
中考二轮复习之线段和(差)的最值问题一、两条线段和的最小值。
填空题:1.如图,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.则PB+PE的最小值是.2.如图,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则P A+PC的最小值是.3.如图,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.4.如图,在四边形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为__________.5.已知A(-2,3),B(3,1),P点在x轴上,若P A+PB长度最小,则最小值为.若P A—PB长度最大,则最大值为.6.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为.7、如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为8、如图,正方形ABCD的边长是2,∠DAC的平分线交DC于点E,若点P、Q分别是AD 和AE上的动点,则DQ+PQ的最小值为.综合题:1.如图,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.第1题第2题第3题第4题2.如图,已知平面直角坐标系,A ,B 两点的坐标分别为A (2,-3),B (4,-1)设M ,N 分别为x 轴和y 轴上的动点,请问:是否存在这样的点M (m ,0),N (0,n ),使四边形ABMN 的周长最短?若存在,请求出m =______,n = ______(不必写解答过程);若不存在,请说明理由.中考赏析:1.著名的恩施大峡谷(A )和世界级自然保护区星斗山(B )位于笔直的沪渝高速公路X 同侧,AB =50km 、B 到直线X 的距离分别为10km 和40km ,要在沪渝高速公路旁修建一服务区P ,向A 、B 两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP 与直线X 垂直,垂足为P ),P 到A 、B 的距离之和S 1=P A +PB ,图(2)是方案二的示意图(点A 关于直线X 的对称点是A',连接BA'交直线X 于点P ),P 到A 、B 的距离之和S 2=P A +PB . (1)求S 1、S 2,并比较它们的大小; (2)请你说明S 2=P A +PB 的值为最小;(3)拟建的恩施到张家界高速公路Y 与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B 到直线Y 的距离为30km ,请你在X 旁和Y 旁各修建一服务区P 、Q ,使P 、A 、B 、Q 组成的四边形的周长最小.并求出这个最小值.2.如图,抛物线y =35x 2-185x +3和y 轴的交点为A ,M 为OA 的中点,若有一动点P ,自M 点处出发,沿直线运动到x 轴上的某点(设为点E ),再沿直线运动到该抛物线对称轴上的某点(设为点F ),最后又沿直线运动到点A ,求使点P 运动的总路程最短的点E ,点F 的坐标,并求出这个最短路程的长.3、在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC 绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P、Q两点的坐标.4.如图,已知平面直角坐标系,A,B两点的坐标分别为A(2,-3),B(4,-1)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a为何值时,四边形ABDC的周长最短.5、如图11,在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.二、求两线段差的最大值问题 (运用三角形两边之差小于第三边)1.直线2x-y-4=0上有一点P ,它与两定点A (4,-1)、B (3,4)的距离之差最大,则P 点的坐标是 .2.已知A 、B 两个村庄的坐标分别为(2,2),(7,4),一辆汽车(看成点P )在x 轴上行驶.试确定下列情况下汽车(点P )的位置:(1)求直线AB 的解析式,且确定汽车行驶到什么点时到A 、B 两村距离之差最大? (2)汽车行驶到什么点时,到A 、B 两村距离相等?3. 如图,抛物线y =-14x 2-x +2的顶点为A ,与y 轴交于点B .(1)求点A 、点B 的坐标;(2)若点P 是x 轴上任意一点,求证:P A -PB ≤AB ; (3)当P A -PB 最大时,求点P 的坐标.4. 如图,已知直线y =21x +1与y 轴交于点A ,与x 轴交于点D ,抛物线y =21x 2+bx +c 与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B (1)求该抛物线的解析式;(3)在抛物线的对称轴上找一点M ,使|AM -MC |大,求出点M 的坐标.5. 如图,直线y =-3x +2与x 轴交于点C ,与y 轴交于点B ,点A 为y 轴正半轴上的一点,⊙A 经过点B 和点O ,直线BC 交⊙A 于点D . (1)求点D 的坐标;(2)过O ,C ,D 三点作抛物线,在抛物线的对称轴上是否存在一点P ,使线段PO 与PD 之差的值最大?若存在,请求出这个最大值和点P 的坐标.若不存在,请说明理由.好题赏析:原型:已知:P 是边长为1的正方形ABCD 内的一点,求P A +PB +PC 的最小值.例题:如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM . (1)求证:△AMB ≌△ENB ;(2)①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由; (3)当AM +BM +CM 的最小值为3+1时,求正方形的边长.变式:如图四边形ABCD 是菱形,且∠ABC =60,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM ,则下列五个结论中正确的是( )①若菱形ABCD 的边长为1,则AM +CM 的最小值1; ②△AMB ≌△ENB ;③S 四边形AMBE =S 四边形ADCM ;④连接AN ,则AN ⊥BE ;⑤当AM +BM +CM 的最小值为23时,菱形ABCD 的边长为2. A .①②③ B .②④⑤ C .①②⑤三、其它非基本图形类线段和差最值问题1、求线段的最大值与最小值需要将该条线段转化到一个三角形中,在该三角形中,其他两边是已知的,则所求线段的最大值为其他两线段之和,最小值为其他两线段之差。
2019中考数学专题复习《二次函数与线段最值问题》含解析
2019中考数学专题复习二次函数与线段最值问题含解析二次函数与线段最值问题一.填空题1.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 .二.解答题2.已知函数y=(m+2)x2+kx+n.(1)若此函数为一次函数;①m,k,n的取值范围;②当﹣2≤x≤1时,0≤y≤3,求此函数关系式;③当﹣2≤x≤3时,求此函数的最大值和最小值(用含k,n的代数式表示);(2)若m=﹣1,n=2,当﹣2≤x≤2时,此函数有最小值﹣4,求实数k的值.3.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)当a≤x≤b时,函数y的最小值为,最大值为4,求a,b应满足的条件;(3)在y轴右侧的抛物线上是否存在点P,使得三角形PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.4.已知点A(t,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)与y=x图象的交点.(1)求t;(2)若函数y=ax2+bx+4的图象与x轴只有一个交点,求a,b;(3)若1≤a≤2,设当x≤2时,函数y=ax2+bx+4的最大值为m,最小值为n,求m﹣n的最小值.5.已知y关于x的函数y=nx2﹣2(m+1)x+m+3(1)若m=n=﹣1时,当﹣1≤x≤3时,求函数的最大值和最小值;(2)若n=1,当m取何值时,抛物线顶点最高?(3)若n=2m>0,对于任意m的值,当x<k时,y随x的增大而减小,求k的最大整数;(4)若m=2n≠0,求抛物线与x轴两个交点之间的最短距离.6.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x,y轴交于A,B,C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标.(2)连接AD,CD,CA,求△ACD外接圆圆心E的坐标和半径;(3)当x≤n时,函数y所取得的最大值为4,最小值为1,求n的取值范围.7.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线.点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)若,求PC的长;(3)过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,若点P在Q左侧,矩形PMNQ的周长记为d,求d的最大值.8.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线x=1.5,点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)M位于线段AB的什么位置时,PC最长,并求出此时P点的坐标;(3)若在(2)的条件下,在x轴上方的抛物线上是否存在点Q,使,求点Q的坐标.9.如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F 作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.10.如图,抛物线y=﹣x2+bx+c的图象交x轴于A(﹣2,0),B(1,0)两点.(1)求抛物线的解析式;(2)点M为线段AB上一点(点M不与点A,B重合),过点M作x轴的垂线,与抛物线交于点P,过点P作PC∥AB交抛物线于点C,过点C作CD⊥x轴于点D.若点P在点C的左边,当矩形PCDM的周长最大时,求点M的坐标;(3)在(2)的条件下,当矩形PCDM的周长最大时,连接AC,我们把一条抛物线与直线AC的交点称为该抛物线的“恒定点”,将(1)中的抛物线平移,使其平移后的顶点为(n,2n),若平移后的抛物线总有“恒定点”,请直接写出n的取值范围.11.如图,在平面直角坐标系中,抛物线y x2x+2与x轴交于B、C两点(点B 在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为( , ),点B的坐标为( , ),点C的坐标为( , ),点D的坐标为( , );(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.12.如图,抛物线与直线相交于A,B两点,若点A在x轴上,点B的坐标是(2,4),抛物线与x轴另一交点为D,并且△ABD的面积为6,直线AB与y轴的交点的坐标为(0,2).点P是线段AB(不与A,B重合)上的一个动点,过点P作x轴的垂线,交抛物线与点Q.(1)分别求出抛物线与直线的解析式;(2)求线段PQ长度的最大值;(3)当PQ取得最大值时,在抛物线上是否存在M、N两点(点M的横坐标小于N的横坐标),使得P、D、M、N为顶点的四边形是平行四边形?若存在,求出MN的坐标;若不存在,请说明理由.13.如图,抛物线y x2x﹣4与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD于点M,求线段MQ长度的最大值.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.(4)当点P在线段EB上运动时,直线l与菱形BDEC的某一边交于点S,是否存在m 值,使得点C、Q、S、D为顶点的四边形是平行四边形?如果存在,请直接写出m值,不存在,说明理由.14.如图,已知二次函数y=﹣x2﹣2x+3的图象交x轴于A、B两点(A在B左边),交y 轴于C点.(1)求A、B、C三点的坐标和直线AC的解析式;(2)点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作x轴平行线交直线AC于M点,求线段PM的最大值.15.(1)如图,已知二次函数y=﹣x2+2x+3的图象交x轴于A,B两点(A在B左边),直线y=x+1过点A,与抛物线交于点C,点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作y轴平行线交直线AC于Q点,求线段PQ的最大值.(2)在(1)条件下,过点P作y轴垂线交直线AC于Q点,求线段PQ的最大值.16.如图1,抛物线y=﹣x2﹣4x+5与x轴交于点A、B两点,与y轴交于点C,点D为抛物线的顶点.(1)求直线AC的解析式及顶点D的坐标;(2)连接CD,点P是直线AC上方抛物线上一动点(不与点A、C重合),过P作PE∥x轴交直线AC于点E,作PF∥CD交直线AC于点F,当线段PE+PF取最大值时,在抛物线对称轴上找一点L,在y轴上找一点K,连接OL,LK,PK,求线段OL+LK+PK的最小值,并求出此时点L的坐标.(3)如图2,点M(﹣2,﹣1)为抛物线对称轴上一点,点N(2,7)为直线AC上一点,点G为直线AC与抛物线对称轴的交点,连接MN,AM.点H是线段MN上的一个动点,连接GH,将△MGH沿GH翻折得到△M′GH(点M的对称点为M′),问是否存在点H,使得△M′GH与△NGH重合部分的图形为直角三角形,若存在,请求出NH的长,若不存在,请说明理由.17.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)当D在线段AC上运动时,求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.18.如图,在平面直角坐标系xOy中,直线y x交x轴于点A,交y轴于点B,经过点A的抛物线y x2+bx+c交直线AB另一点D,且点D到y轴的距离为8.(1)求抛物线解析式;(2)点P是直线AD上方的抛物线上一动点,(不与点A、D重合),过点P作PE⊥AD于E,过点P作PF∥y轴交AD于F,设△PEF的周长为L,点P的横坐标为m,求L与m的函数关系式,并直接写出自变量m的取值范围;(3)在图(2)的条件下,当L最大时,连接PD.将△PED沿射线PE方向平移,点P、E、F的对应点分别为Q、M、N,当△QMN的顶点M在抛物线上时,求M点的横坐标,并判断此时点N是否在直线PF上.(参考公式:二次函数y=ax2+bx+c(c≠0).当x时,y最大(小)值)19.如图,已知抛物线y=ax2+bx+c(a≠0)过点A(3,0),B(1,0),且与y轴交于点C(0,﹣3),点P是抛物线AC间上一动点,从点C沿抛物线向点A运动(点P 与A、C不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,直接写出点P的坐标;(3)求线段PD的最大值,并求最大值时P点的坐标;(4)在问题(3)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.20.已知二次函数y=ax2+bx+c与x轴只有一个交点,且系数a、b满足条件:.(1)求y=ax2+bx+c解析式;(2)将y=ax2+bx+c向右平移一个单位,再向下平移一个单位得到函数y=mx2+nx+k,该函数交y轴于点C,交x轴于A、B(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.当△ADP是直角三角形时,求点P的坐标;(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.21.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P 作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.22.如图1,抛物线y=﹣x2+bx+c经过点A(2,0),B(0,2),与x轴交于另一点C.(1)求抛物线的解析式及点C的坐标;(2)点P是抛物线y=﹣x2+bx+c在第一象限上的点,过点P分别向x轴、y轴作垂线,垂足分别为D,E,求四边形ODPE的周长的最大值;(3)如图2,点P是抛物线y=﹣x2+bx+c在第一象限上的点,过点P作PN⊥x轴,垂足为N,交AB于M,连接PB,PA.设点P的横坐标为t,当△ABP的面积等于△ABC面积的时,求t的值.23.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,与y轴交于点C,三个交点的坐标分别为A(﹣1,0),B(3,0),C(0,3).(1)求抛物线的解析式及顶点D的坐标;(2)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC面积的最大值和此时P点的坐标;(3)若点P是抛物线在第一象限上的一个动点,过点P作PQ∥AC交x轴于点Q.当点P的坐标为 时,四边形PQAC是平行四边形;(直接写出结果,不写求解过程).24.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线1与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,设P点的横坐标为m.①求线段PE长度的最大值;②点P将线段AC分割成长、短两条线段PA、PC,如果较长线段与AC之比等于,则称P为线段AC的“黄金分割点”,请直接写出使得P为线段AC黄金分割点的m的值.25.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.26.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值.27.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,(不与A、C重合),过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值,并直接写出△ACE面积的最大值;(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.28.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,当点P运动到什么位置时,△ACE的面积最大?求出此时P点的坐标和S△ACE的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使以A、C、F、G为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.29.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点.求线段PE 长度的最大值;(3)若点G是抛物线上的动点,点F是x轴上的动点,判断有几个位置能使以点A、C、F、G为顶点的四边形为平行四边形,直接写出相应的点F的坐标.30.如图,抛物线y=﹣x2﹣2x+3与x轴交A、B两点(A点在B点右侧),直线l与抛物线交于A、C两点,其中C点的横坐标为﹣2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)若点P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求当点P坐标为多少时,线段PE长度有最大值,最大值是多少?(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.二次函数与线段最值问题参考答案与试题解析一.填空题1.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 6 .【考点】H5:二次函数图象上点的坐标特征.【分析】设P(x,y)(2>x>0,y>0),根据矩形的周长公式得到C=﹣2(x﹣1)2+6.根据二次函数的性质来求最值即可.【解答】解:∵y=﹣x2+x+2,∴当y=0时,﹣x2+x+2=0即﹣(x﹣2)(x+1)=0,解得x=2或x=﹣1故设P(x,y)(2>x>0,y>0),∴C=2(x+y)=2(x﹣x2+x+2)=﹣2(x﹣1)2+6.∴当x=1时,C最大值=6,.即四边形OAPB周长的最大值为6.故答案是:6.【点评】本题考查了二次函数的最值,二次函数图象上点的坐标特征.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题采用了配方法.二.解答题2.已知函数y=(m+2)x2+kx+n.(1)若此函数为一次函数;①m,k,n的取值范围;②当﹣2≤x≤1时,0≤y≤3,求此函数关系式;③当﹣2≤x≤3时,求此函数的最大值和最小值(用含k,n的代数式表示);(2)若m=﹣1,n=2,当﹣2≤x≤2时,此函数有最小值﹣4,求实数k的值.【考点】F5:一次函数的性质;H7:二次函数的最值.【分析】(1)①根据二次项系数为0,一次项系数不为0,常数项为任意实数解答即可;②根据k>0,k<0时x、y的对应关系确定直线经过的点的坐标,求出解析式;③根据一次函数的性质即增减性解答即可;(2)把m=﹣1,n=2代入关系式,得到二次函数解析式,确定对称轴,顶点坐标,分情况讨论求出k的值.【解答】解:(1)①m=﹣2,k≠0,n为任意实数;②当k>0时,直线经过(﹣2,0)(1,3),函数关系式为:y=x+2当k<0时,直线经过(﹣2,3)(1,0),函数关系式为:y=﹣x+1③当k>0时,x=﹣2,y有最小值为﹣2k+nx=3时,y有最大值为3k+n当k<0时,x=﹣2,y有最大值为﹣2k+nx=3时,y有最小值为3k+n(2)若m=﹣1,n=2时,二次函数为y=x2+kx+2对称轴为x,当2,即k≥4时,把x=﹣2,y=﹣4代入关系式得:k=5当﹣22,即﹣4<k<4时,把x,y=﹣4代入关系式得:k=±2(不合题意)当2,即k≤﹣4时,把x=2,y=﹣4代入关系式得:k=﹣5.所以实数k的值为±5.【点评】本题考查了一次函数的概念、一次函数的性质、一次函数最值的应用以及二次函数的性质,综合性较强,需要学生灵活运用性质,把握一次函数的增减性和二次函数的增减性,解答题目.3.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)当a≤x≤b时,函数y的最小值为,最大值为4,求a,b应满足的条件;(3)在y轴右侧的抛物线上是否存在点P,使得三角形PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)先把A(3,0)代入y=﹣x2+2(m﹣2)x+3,得到关于m的方程,解方程求出m的值,再利用配方法将二次函数写成顶点式,即可求出顶点D的坐标;(2)先把y=1代入y=﹣x2+2x+3,得到方程1x2+2x+3,解方程求出x1,x2,再利用二次函数的性质结合图象即可得出a,b应满足的条件;(3)先求出二次函数与y轴交点C的坐标,当三角形PDC是等腰三角形时,分三种情况进行讨论:①当DC=DP时,易求点P坐标为(2,3);②当PC=PD时,过点D 作x轴的平行线,交y轴于点H,过点P作PM⊥y轴于点M,PN⊥DH于点N.由HD=HC,PC=PD,根据线段垂直平分线的判定与等腰三角形的性质得出HP平分∠MHN,再由线段垂直平分线的性质得出PM=PN.设P(m,﹣m2+2m+3),则m=4﹣(﹣m2+2m+3),解方程求出m的值,得出点P的坐标为或;③当CD=CP时,不符合题意.【解答】解:(1)把A(3,0)代入y=﹣x2+2(m﹣2)x+3,得﹣9+6(m﹣2)+3=0,解得m=3.则二次函数为y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4);(2)把y=1代入y=﹣x2+2x+3,得1x2+2x+3,解得x1,x2,结合图象知a≤1.当a时,1≤b,当a≤1时,b;(3)x=0时,y=3,所以点C坐标为(0,3).当三角形PDC是等腰三角形时,分三种情况:①如图1,当DC=DP时,∵点P与点C关于抛物线的对称轴x=1对称,∴点P坐标为(2,3);②如图2,当PC=PD时,过点D作x轴的平行线,交y轴于点H,过点P作PM⊥y 轴于点M,PN⊥DH于点N.∵HD=HC=1,PC=PD,∴HP是线段CD的垂直平分线.∵HD=HC,HP⊥CD,∴HP平分∠MHN,∵PM⊥y轴于点M,PN⊥DH于点N,∴PM=PN.设P(m,﹣m2+2m+3),则m=4﹣(﹣m2+2m+3),解得m,∴P的坐标为或;③如图3,当CD=CP时,点P在y轴左侧,不符合题意.综上所述,所求点P的坐标为(2,3)或或.【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数的解析式,抛物线顶点坐标的求法,二次函数的性质,线段垂直平分线的判定与性质,等腰三角形的性质,综合性较强,难度适中.利用数形结合、分类讨论及方程思想是解题的关键.4.已知点A(t,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)与y=x图象的交点.(1)求t;(2)若函数y=ax2+bx+4的图象与x轴只有一个交点,求a,b;(3)若1≤a≤2,设当x≤2时,函数y=ax2+bx+4的最大值为m,最小值为n,求m﹣n的最小值.【考点】H7:二次函数的最值;HA:抛物线与x轴的交点.【分析】(1)把A(t,1)代入y=x即可得到结论;(2)根据题意得方程组,解方程组即可得到结论;(3)把A(1,1)代入y=ax2+bx+4得,b=﹣3﹣a,得到y=ax2﹣(a+3)x+4的对称轴为直线x,根据1≤a≤2,得到对称轴的取值范围x≤2,当x时,得到m,当x=2时,得到n,即可得到结论.【解答】解:(1)把A(t,1)代入y=x得t=1;(2)∵y=ax2+bx+4的图象与x轴只有一个交点,∴,∴或;(3)把A(1,1)代入y=ax2+bx+4得,b=﹣3﹣a,∴y=ax2﹣(a+3)x+4=a(x)2,∴对称轴为直线x,∵1≤a≤2,∴x2,∵x≤2,∴当x时,y=ax2+bx+4的最大值为m,当x=2时,n,∴m﹣n,∵1≤a≤2,∴当a=2时,m﹣n的值最小,即m﹣n的最小值.【点评】本题考查了抛物线与x轴的交点,二次函数的最值,正确的理解题意是解题的关键.5.已知y关于x的函数y=nx2﹣2(m+1)x+m+3(1)若m=n=﹣1时,当﹣1≤x≤3时,求函数的最大值和最小值;(2)若n=1,当m取何值时,抛物线顶点最高?(3)若n=2m>0,对于任意m的值,当x<k时,y随x的增大而减小,求k的最大整数;(4)若m=2n≠0,求抛物线与x轴两个交点之间的最短距离.【考点】H3:二次函数的性质;H7:二次函数的最值;HA:抛物线与x轴的交点.【分析】(1)利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;(3)抛物线的解析式为y=2mx2﹣2(m+1)x+m+3,对称轴x,因为对于任意m的值,当x<k时,y随x的增大而减小,所以k,由此即可解决问题;(4)构建二次函数,利用二次函数的性质,解决最值问题;【解答】解:(1)当m=n=﹣1时,函数解析式为y=﹣x2+2,顶点坐标为(0,2),函数最大值为2,∵﹣1≤x≤3,x=﹣1时,y=1,x=3时,y=﹣7.∴函数的最大值为2和最小值为﹣7.(2)n=1时,函数解析式为y=x2﹣2(m+1)x+m+3,∵顶点的纵坐标m2﹣m+2,∵﹣1<0,∴m时,抛物线顶点的纵坐标最大,顶点最高.(3)∵n=2m,∴抛物线的解析式为y=2mx2﹣2(m+1)x+m+3,对称轴x,∵对于任意m的值,当x<k时,y随x的增大而减小,∴k,∴k的最大整数为0.(4)∵m=2n,∴抛物线的解析式为y=nx2﹣2(2n+1)x+2n+3,设抛物线与x轴的交点为(x1,0)和(x2,0),则|x1﹣x2|,∴当时,抛物线与x轴两个交点之间的距离最短,最小值为.【点评】本题考查抛物线与x轴的交点、二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数解决最值问题,所以中考常考题型.6.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x,y轴交于A,B,C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标.(2)连接AD,CD,CA,求△ACD外接圆圆心E的坐标和半径;(3)当x≤n时,函数y所取得的最大值为4,最小值为1,求n的取值范围.【考点】HF:二次函数综合题.【分析】(1)把A点坐标代入可求得m的值,可求得二次函数解析式,化为顶点式可求得D的坐标;(2)利用两点间的距离公式可求得AC、CD、AD,可知△ACD为直角三角形,AD为斜边,可知E为AC的中点,可求得E的坐标及半径;(3)当x时,可求得y=1,且当x=1时y=4,根据二次函数的对称性可求得n的范围.【解答】解:(1)∵抛物线过A点,∴代入二次函数解析式可得﹣9+6(m﹣2)+3=0,解得m=3,∴二次函数为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D为(1,4);(2)由(1)可求得C坐标为(0,3),∴AC3,CD,AD2,∴AC2+CD2=AD2,∴△ACD为直角三角形,∴E为AD的中点,∴E点坐标为(2,2),外接圆的半径r AD;(3)当x时,y=1,当x=1时,y=4,∴当x≤1时,1y≤4,根据二次函数的对称性可知当1≤x时,1y≤4,∴1≤n.【点评】本题主要考查待定系数法求函数解析式及二次函数的顶点坐标、增减性、及直角三角形的判定等知识的综合应用.在(1)中掌握点的坐标满足函数的解析式是解题的关键,在(2)中判定出△ACD为直角三角形是解题的关键,在(3)中利用二次函数的对称性,结合二次函数在对称轴两侧的增减性可确定出n的范围.本题难度不大,注重基础知识的综合,较易得分.7.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线.点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)若,求PC的长;(3)过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,若点P在Q左侧,矩形PMNQ的周长记为d,求d的最大值.【考点】HF:二次函数综合题.【分析】(1)将A(﹣1,0)代入y=﹣x+n,运用待定系数法求出直线AC的解析式;根据抛物线的对称轴为x,把点A的坐标代入y=ax2+bx+2,组成关于a、b的二元一次方程组,求解即可得到抛物线的解析式;(2)设M点横坐标为m,则P(m,m2m+2),C(m,﹣m﹣1),得出PMm2m+2,PC m2m+3.由PM,得到m2m+2,即m2=3m+1,m,进而求出PC;(3)设M点横坐标为m,则PM m2m+2,MN=2(m)=3﹣2m,矩形PMNQ的周长d=﹣m2﹣m+10,将﹣m2﹣m+10配方,根据二次函数的性质,即可得出矩形PMNQ的周长的最大值.【解答】解:(1)∵直线y=﹣x+n过点A(﹣1,0),∴0=1+n,解得n=﹣1,∴直线AC的解析式为y=﹣x﹣1;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴,解得.∴抛物线的解析式是:y x2x+2;(2)如图,设M点横坐标为m,则P点坐标为(m,m2m+2),C点坐标为(m,﹣m﹣1).∵点M为线段AB上一点,∴﹣1<m<4.∴PM m2m+2,PC=(m2m+2)﹣(﹣m﹣1)m2m+3.∵PM,∴m2m+2,整理,得m2﹣3m﹣1=0,∴m2=3m+1,m,∴PC m2m+3(3m+1)m+3=m,∴当m时,PC;(3)设M点横坐标为m,则PM m2m+2,MN=2(m)=3﹣2m,∴矩形PMNQ的周长d=2(PM+MN)=2(m2m+2+3﹣2m)=﹣m2﹣m+10.∵﹣m2﹣m+10=﹣(m)2,∴当m时,d有最大值.【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数、二次函数的解析式,平行于坐标轴上的两点之间的距离,矩形的性质,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.8.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线x=1.5,点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)M位于线段AB的什么位置时,PC最长,并求出此时P点的坐标;(3)若在(2)的条件下,在x轴上方的抛物线上是否存在点Q,使,求点Q的坐标.【考点】HF:二次函数综合题.【分析】(1)将A(﹣1,0)代入y=﹣x+n,运用待定系数法求出直线AC的解析式;根据抛物线的对称轴为x,把点A的坐标代入y=ax2+bx+2,组成关于a、b的二元一次方程组,求解即可得到抛物线的解析式;(2)设M点横坐标为m,则P(m,m2m+2),C(m,﹣m﹣1),得出PMm2m+2,化成顶点式即可;(3)根据抛物线的对称轴和A的坐标,求得B的坐标,求得AB,从而求得三角形APB的面积,进而求得三角形ABQ的面积,得出Q的纵坐标,把纵坐标代入抛物线的解析式即可求得横坐标,从而求得Q的坐标.【解答】解:(1)∵直线y=﹣x+n过点A(﹣1,0),∴0=1+n,解得n=﹣1,∴直线AC的解析式为y=﹣x﹣1;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴,解得.∴抛物线的解析式是:y x2x+2;(2)如图,设M点横坐标为m,则P点坐标为(m,m2m+2),C点坐标为(m,﹣m﹣1).∵点M为线段AB上一点,∴﹣1<m<4.∴PC=(m2m+2)﹣(﹣m﹣1)m2m+3.∵PC m2m+3(m)2,所以,当m时,PC最长,此时P(,),AM;(3)存在;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴B(4,0)∴AB=5,∵S△APB AB•PM5,∵,∴S△ABQ,设Q点纵坐标为n,∵S△ABQ AB•n,∴n,(或n这样计算比较方便),∴x2x+2,解得:x或x,∴Q(,)或(,)【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数、二次函数的解析式,平行于坐标轴上的两点之间的距离,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.9.如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F 作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;16:压轴题.。
中考函数压轴--最值问题(19年真题干货)
函数压轴题之最值问题【2019 深圳】如图抛物线经y=ax2+bx+c过点A(-1,0),点C(0,3),且OB=OC .(1)求抛物线的解析式及其对称轴;(2)点D、E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值;(3)点P为抛物线上一点,连接CP,直线CP把四边形APBC面积分为3∶5两部分,求点P的坐标.【2019 陇南】如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?【2019 庆阳】如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?【2019 甘肃】如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.【2019 广州】已知抛物线G :32y 2--=mx mx 有最低点。
中考数学几何最值问题题型梳理
中考数学几何最值问题题型梳理专题1 单线段最值之单动点型例题.如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为_____.【解析】ABCD 为矩形,AB DC ∴= 又=PAB PCD S S∴点P 到AB 的距离与到CD 的距离相等,即点P 线段AD 垂直平分线MN 上, 连接AC ,交MN 与点P ,此时PC PD +的值最小,且PC PD AC +=====巩固1.如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q ,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )ABC .1D .2【解析】连接OC ,作PE ⊥AB 于E ,MH ⊥AB 于H ,QF ⊥AB 于F ,如图,∵△ACB 为到等腰直角三角形,∴AC =BC=2AB,∠A =∠B =45°, ∵O 为AB 的中点,∴OC ⊥AB ,OC 平分∠ACB ,OC =OA =OB =1,∴∠OCB =45°, ∵∠POQ =90°,∠COA =90°,∴∠AOP =∠COQ ,在Rt △AOP 和△COQ 中,A OCQ AO COAOP COQ ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴Rt △AOP ≌△COQ ,∴AP =CQ , 易得△APE 和△BFQ 都为等腰直角三角形,∴PE=2AP=2CQ ,QF2BQ , ∴PE +QF=2,CQ +BQ,=2BC=2∵M 点为PQ 的中点, ∴MH 为梯形PEFQ 的中位线,∴MH =12,PE +QF ,=12,即点M 到AB 的距离为12, 而CO =1,∴点M 的运动路线为△ABC 的中位线,∴当点P 从点A 运动到点C 时,点M 所经过的路线长=12AB =1,选C , 巩固2.如图,在平面内,线段AB =6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC =P A .若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为______,【解析】如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,在Rt,ABC′中,易知AB=BC′=6,∠ABC′=90°,,EE′=AC巩固3.如图,等边三角形ABC的边长为4,点D是直线AB上一点.将线段CD绕点D顺时针旋转60°得到线段DE,连结BE.(1)若点D在AB边上(不与A,B重合)请依题意补全图并证明AD=BE;(2)连接AE,当AE的长最小时,求CD的长.【解析】(1)补全图形如图1所示,AD=BE,理由如下:∵∵ABC是等边三角形,∵AB=BC=AC,∠A=∠B=60°,由旋转的性质得:∠ACB=∠DCE=60°,CD=CE,∵∠ACD=∠BCE,∵∵ACD≌∵BCE(S A S),∵AD=BE.(2)如图2,过点A作AF⊥EB交EB延长线于点F.∵∵ACD≌∵BCE,∵∠CBE=∠A=60°,∵点E的运动轨迹是直线BE,根据垂线段最短可知:当点E与F重合时,AE的值最小,此时CD=CE=CF,∵∠ACB=∠CBE=60°,∵AC∥EF,又∵AF⊥BE,∵AF⊥AC,在Rt∵ACF中,∵CF∵CD=CF=.例题.如图,点D 在半圆O 上,半径5OB =,4=AD ,点C 在弧BD 上移动,连接AC ,作DH AC ⊥,垂足为H ,连接BH ,点C 在移动的过程中,BH 的最小值是______.【解析】如图,设AD 的中点为点E ,则114222EA ED AD ===⨯= 由题意得,点H 的运动轨迹在以点E 为圆心,EA 为半径的圆上由点与圆的位置关系得:连接BE ,与圆E 交于点H ,此时BH 取得最小值,2EH = 连接BDAB 为半圆O 的直径,90ADB ∴∠=︒BD ∴===BE ∴===2BH BE EH ∴=-=巩固1.如图,长方形ABCD 中,AB =6,BC =4,在长方形的内部以CD 边为斜边任意作Rt ∵CDE ,连接AE ,则线段AE 长的最小值是_____.【解析】如图,点E '在以点F 为圆心,DF 为半径的圆上运动,当A ,E ,F 三点共线时,AE 值最小,DF =12×6=3,在长方形ABCD 中,AD =BC =4,由勾股定理得:AF . ∵EF =12CD =12×6=3,∵AE =AF ﹣EF =5﹣3=2,即线段AE 长的最小值是2.巩固3.如图,Rt ABC △中,AB BC ⊥,6AB =,4BC =,P 是ABC △内部的一个动点,且满足90PAB PBA ︒∠+∠=,则线段CP 长的最小值为________.【解析】∵∠P AB +∠PBA =90°,∵∠APB =90°,∵点P 在以AB 为直径的弧上(P 在∵ABC 内),设以AB 为直径的圆心为点O ,如图,接OC ,交∵O 于点P ,此时的PC 最短∵AB =6,∵OB =3,∵BC =4,∵5OC ==,∵PC =5-3=2巩固4.如图,在Rt ABC ∆中,90︒∠=C ,4AC =,3BC =,点O 是AB 的三等分点,半圆O 与AC 相切,M ,N 分别是BC 与半圆弧上的动点,则MN 的最小值和最大值之和是( )A .5B .6C .7D .8【解析】如图,设∵O 与AC 相切于点D ,连接OD ,作OP BC ⊥垂足为P 交∵O 于F , 此时垂线段OP 最短,PF 最小值为OP OF -,∵4AC =,3BC =,∵5AB =,∵90OPB ︒∠=,∵OP AC ∥∵点O 是AB 的三等分点,∵210533OB =⨯=,23OP OB AC AB ==,∵83OP =, ∵∵O 与AC 相切于点D ,∵OD AC ⊥,∵OD BC ∥,∵13OD OA BC AB ==,∵1OD =, ∵MN 最小值为85133OP OF -=-=, 如图,当N 在AB 边上时,M 与B 重合时,MN 经过圆心,经过圆心的弦最长, MN 最大值1013133=+=,513+=633,∵MN 长的最大值与最小值的和是6.选B . 巩固5.如下图所示,在矩形纸片ABCD 中,2AB =,3AD =,点E 是AB 的中点,点F 是AD 边上的一个动点,将AEF 沿EF 所在直线翻折,得到'A EF △,则'A C 的长的最小值是( )A .2B .3C 1D 1【解析】以点E 为圆心,AE 长度为半径作圆,连接CE ,当点'A 在线段CE 上时,A'C 的长取最小值,如图所示,根据折叠可知:112A'E AE AB ===.在Rt BCE △中,112BE AB ==,3BC =,90B ∠=,CE ∴,A'C ∴的最小值1CE A'E =-=.选D .技法1:借助直角三角形斜边上的中线例题1.如图,在∵ABC 中,∠C =90°,AC =4,BC =2,点A 、C 分别在x 轴、y 轴上,当点A在x 轴上运动时,点C 随之在y 轴上运动,在运动过程中,点B 到原点的最大距离是( )A .6B .C .D .【解析】如图,取CA 的中点D ,连接OD 、BD ,则OD =CD =AC =×4=2,由勾股定理得,BD ==2,当O 、D 、B 三点共线时点B 到原点的距离最大,所以,点B 到原点的最大距离是2+2.技法2:借助三角形两边之和大于第三边,两边之差小于第三边例题2.如图,已知等边三角形ABC 边长为A 、B 分别在平面直角坐标系的x 轴负半轴、轴的正半轴上滑动,点C 在第四象限,连接OC ,则线段OC 长的最小值是( )A 1B .3C .3D 【解析】如图所示:过点C 作CE ⊥AB 于点E ,连接OE ,∵∵ABC 是等边三角形,∵CE =AC ×si n 60°=3=,AE =BE ,∵∠AOB =90°,∵EO 12=AB =∵EC -OE ≥OC , ∵当点C ,O ,E 在一条直线上,此时OC 最短,故OC 的最小值为:OC =CE ﹣EO =3B .巩固1.如图,∠MON =90°,矩形ABCD 的顶点A 、B 分别在边OM 、ON 上,当B 在边ON 上运动时,A 随之在OM 上运动,矩形ABCD 的形状保持不变,其中AB =4,BC =2.运动过程中点D 到点O 的最大距离是______.【解析】如图,取AB 的中点E ,连接OE 、DE 、OD ,∵OD ≤OE +DE ,∵当O 、D 、E 三点共线时,点D 到点O 的距离最大,此时,∵AB =4,BC =2,∵OE =AE =12AB =2,DE=∵OD 的最大值为,巩固2.如图,在Rt ABC ∆中,90ACB ∠=,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,N 是''A B 的中点,连接MN ,若4,60BC ABC =∠=︒,则线段MN 的最大值为( )A .4B .8C .D .6【解析】连接CN ,∵将ABC ∆绕顶点C 逆时针旋转得到''A B C ∆,∵''=90A CB ACB ∠=∠︒,''460'B C BC A B C ABC ==∠=∠=︒,,∵'30A ∠=︒,''8A B =,∵N 是''A B 的中点,∵1''42CN A B ==, ∵在△CMN 中,MN <CM +CN ,当且仅当M ,C ,N 三点共线时,MN =CM +CN =6, ∵线段MN 的最大值为6.选D .技法3:借助构建全等图形例题3.如图,在∵ABC 中,∠ACB =90°,∠A =30°,AB =5,点P 是AC 上的动点,连接BP ,以BP 为边作等边∵BPQ ,连接CQ ,则点P 在运动过程中,线段CQ 长度的最小值是______.【解析】如图,取AB 的中点E ,连接CE ,PE .∵∠ACB =90°,∠A =30°,∵∠CBE =60°, ∵BE =AE ,∵CE =BE =AE ,∵∵BCE 是等边三角形,∵BC =BE ,∵∠PBQ =∠CBE =60°, ∵∠QBC =∠PBE ,∵QB =PB ,CB =EB ,∵∵QBC ≌∵PBE (S A S ),∵QC =PE ,∵当EP ⊥AC 时,QC 的值最小,在Rt ∵AEP 中,∵AE =52,∠A =30°,∵PE =12AE =54,∵CQ 的最小值为54.巩固4.如图,边长为12的等边三角形ABC 中,M 是高CH 所在直线上的一个动点,连结MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连结HN .则在点M 运动过程中,线段HN 长度的最小值是( )A .6B .3C .2D .1.5【解析】如图,取BC 的中点G ,连接M G ,∵旋转角为60°,∵∠MBH +∠HBN =60°, 又∵∠MBH +∠MBC =∠ABC =60°,∵∠HBN =∠G BM ,∵CH 是等边∵ABC 的对称轴,∵HB =12AB ,∵HB =B G ,又∵MB 旋转到BN ,∵BM =BN , 在∵MB G 和∵NBH 中,BG BH MBG NBH MB NB =⎧⎪∠=∠⎨⎪=⎩,∵∵MB G ≌∵NBH (S A S ),∵M G=NH ,根据垂线段最短,当M G ⊥CH 时,M G 最短,即HN 最短,此时∠BCH =12×60°=30°,C G=12AB =12×12=6,∵M G=12C G=12×6=3,∵HN =3;选B . 技法4:借助中位线例题4.如图,在等腰直角∆ABC 中,斜边AB 的长度为 8,以AC 为直径作圆,点P 为半圆上的动点,连接BP ,取BP 的中点M ,则CM 的最小值为( )A. B.CD.【解析】连接AP 、CP ,分别取AB 、BC 的中点E 、F ,连接EF 、EM 和FM ,,EM 、FM 和EF 分别是,ABP 、,CBP 和,ABC 的中位线,EM ∥AP ,FM ∥CP ,EF ∥AC ,EF =12AC ,,∠EFC =180°-∠ACB =90° ,AC 为直径,,∠APC =90°,即AP ⊥CP ,,EM ⊥MF ,即∠EMF =90°,点M 的运动轨迹为以EF 为直径的半圆上,取EF 的中点O ,连接OC ,点O即为半圆的圆心,当O 、M 、C 共线时,CM 最小,如图所示,CM 最小为CM 1的长,,等腰直角∆ABC 中,斜边 AB 的长度为 8,,AC =BC AB =,EF =12AC =FC =12BC =,OM 1=OF =12EF根据勾股定理可得OC =,CM 1=OC -OM 1即CM ,选C .巩固5.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .2C .52D .3 【解析】∵2119y x =-,∵当0y =时,21019x =-,解得:=3x ±, ∵A 点与B 点坐标分别为:(3-,0),(3,0),即:AO =BO =3,∵O 点为AB 的中点,又∵圆心C 坐标为(0,4),∵OC =4,∵BC 长度5=,∵O 点为AB 的中点,E 点为AD 的中点,∵OE 为∵ABD 的中位线,即:OE =12BD , ∵D 点是圆上的动点,由图可知,BD 最小值即为BC 长减去圆的半径,∵BD 的最小值为4,∵OE =12BD =2,即OE 的最小值为2,选A . 专题2 单线段最值之双动点型技法1借助等量代换实现转化例题1.如图,ABC ∆中,90B ︒∠=,4AB =,3BC =,点D 是AC 上的任意一点,过点D 作DE AB ⊥于点E ,DF BC ⊥于点F ,连接EF ,则EF 的最小值是_________.【解析】连接BD ,90,B DE AB DF BC ︒∠=⊥⊥,∴四边形BEDF 是矩形。
初三数学中考复习 实数的大小比较和运算 专题练习题 含答案
2019 初三数学中考复习实数的大小比较和运算专题练习题1. 下列四个数中,最大的数是( )A.3 B. 3 C.0 D.π2.|6-3|+|2-6|的值为( )A.5 B.5-2 6 C.1 D.26-13. 下列说法中正确的是( )A.实数-a2是负数 B.a2=|a|C.|-a|一定是正数 D.实数-a的绝对值是a4. 下列实数中最大的数是( )A.3 B.0 C. 2 D.-45. 比较三个数-3,-π,-10的大小,下列结论正确的是( ) A.-π>-3>-10 B.-10>-π>-3C.-10>-3>-π D.-3>-π>-106. 3-11的相反数是___________.7. 估计5-12与0.5的大小关系是:5-12_______0.5.(填“>”“=”或“<”)8. 若|a|=|-5|,则a=____________9. 若|a+1|=5,则a=_______________________10. 实数a在数轴上的位置如图,则|a-3|=__________11. 大于-18而小于13的所有整数的和为____.12. 已知实数a,b在数轴上的对应点的位置如图所示,则a+b____0.(填“>”“<”或“=”)13. 求下列各式中的x:(1)|-x|=5-1; (2)|3-x|= 2.14. 计算:25+3-8-(3)2+2215. 观察例题:∵4<7<9,即2<7<3,∴7的整数部分为2,小数部分为7-2.请你观察上述规律后解决下面的问题:(1)规定用符号[m]表示实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定,[10+1]的值为____;(2)如果3的小数部分为a ,5的小数部分为b ,求3·a+5·b-8的值. 参考答案:1---5 DCBAD 6. 11-37. >8. ±5 9. 5-1或-5-1 10. 3-a11. -412. >13. (1) 解:x =5-1或-5+1.(2) 解:x =3+2或3- 2.14. 解:原式=5-2-3+2=2.15. (1) 4(2) 解:∵1<3<4,即1<3<2,∴3的整数部分为1,小数部分为a =3-1.∵4<5<9,即2<5<3,∴5的整数部分为2,小数部分为b =5-2,∴3·a+5·b-8=3(3-1)+5(5-2)-8=3-3+5-25-8=-3-2 5.。
中考数学复习《最值问题》
解:如图,∵高为 12 cm,底面周长为 10 cm,在容器内壁离容器底部 3 cm 的 点 B 处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿 3 cm 与饭粒相对的点 A 处,∴A′D=5 cm,BD=12-3+AE=12(cm),∴将容器侧面展开,作 A 关 于 EF 的对称点 A′,连结 A′B,则 A′B 即为最短距离,A′B= A′D2+BD2= 52+122=13(cm)
解:(1)如图所示 (2)如图,即为所求
(3)作点 C 关于 y 轴的对称点 C′,连结 CP,B1C′交 y 轴于点 P, 则点 P 即为所求.设直线 B1C′的解析式为 y=kx+b(k≠0),
-2k+b=-2, k=2, ∵B1(-2,-2),C′(1,4),∴ 解得 k+b=4, b=2,
7.图1、图2为同一长方体房间的示意图 ,图3为该长方体的表面展开 图.
(1)蜘蛛在顶点A′处.
①苍蝇在顶点B处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的 最近路线;
②苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花
板ABCD爬行的最近路线A′GC和往墙面BB′C′C爬行的最近路线A′HC,试通 过计算判断哪条路线更近;
两点距离之差的绝对值最大时,点P在直线AB上.先运用待定系数法求出直
线AB的解析式,再令y=0,求出x的值即可.
解:由题意可知,当点 P 到 A,B 两点距离之差的绝对值最大时, 点 P 在直线 AB 上.设直线 AB 的解析式为 y=kx+b,
b=1, k=1, ∵A(0,1),B(1,2),∴ 解得 ∴y=x+1, k+b=2, b=1,
令 y=0,得 0=x+1,解得 x=-1,∴点 P 的坐标是(-1,0)
中考数学专题复习-例说线段的最值问题 (共62张)
MA MD 1 AD 1,FDM 60. 2
A
N
B
解答过程:
F M D 3 0 , F D = 1 M D = 1 .
2
2
FM =MD cos30= 3 . 2
MC = FM 2+CF 2 = 7.
A 'C = M C M A ' = 7 1.
FD
C
M
A‘'
A
N
B
小结:
“关联三角形”的另外两条边尽可能长度已知(或 可求),再利用三角形三边关系求解,线段取得最值时 ,“关联三角形”不存在(三顶点共线).
解答过程:
连接OC交e O于点P,此时PC最小. 在RtBCO中, Q BC=4,OB=3, OC=5,PC=OC OP=2. 即PC最小值为2.
小结:
此道作业题构造“辅助圆”的突破口在于发现动点与 两定点连线的夹角为确定值;若点P在△ABC外部,则CP 长存在最大值;若∠APB为非直角时,则作△ABP的外接 圆,此时AB为非直径的弦.
'
2
2
2
在 R t C D D '中 ,
C D '= C D 2 D D '2 3 2 4 2 5 , 即 PC PD的 最 小 值 为 5.
小结:
1. 本题从形的角度得到点P的位置,再从数的角度计算 出点P的坐标,进而得到最小值.这正是体现了数形结合 的重要性.
典型例题2:
D
C
M
A‘'
,52
),B(4,m)两点,点P是线段AB上异于A,B的动点
,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的表达式.
y
2019届中考数学综合题型专题复习卷:最值问题
【答案】6
35.如图,M、N 是正方形 ABCD 的边 CD 上的两个动点,满足
,连接 AC 交 BN 于点 E,连
接 DE 交 AM 于点 F,连接 CF,若正方形的边长为 6,则线段 CF 的最小值是______.
【答案】 36.如图,在矩形 ABCD 中,AB=4,AD=3,矩形内部有一动点 P 满足 S△PAB= S 矩形 ABCD,则点 P 到 A、B 两点的距离之和 PA+PB 的最小值为______.
图 2 中的图案外轮廓周长是_____;
在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是_____. 【答案】 14 21 27.如图,在▱ABCD 中,AD=7,AB=2 ,∠B=60°.E 是边 BC 上任意一点,沿 AE 剪开,将△ABE 沿 BC 方向平移到△DCF 的位置,得到四边形 AEFD,则四边形 AEFD 周长的最小值为_____.
小正方体最少有( )
A.4 个 B.5 个 C.6 个 D.7 个
【答案】B
8.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运
动员起跳后的竖直高度(单位: )与水平距离(单位: )近似满足函数关系
( ).下
图记录了某运动员起跳后的 与 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞
A. B.1 C.
D.2
【答案】B
13.抛物线 C1:y1=mx2-4mx+2n-1 与平行于 x 轴的直线交于 A、B 两点,且 A 点坐标为(-1,2),请结
合图象分析以下结论:①对称轴为直线 x=2;②抛物线与 y 轴交点坐标为(0,-1);③m> ;④若抛物
2019年中考二轮专题复习《平面几何最值问题的解法》教学案
平面几何最值问题的解法平面几何的最值问题多为在存在动点或者不确定的位置关系的情况下求最值,有两种解题思路,一个是通过几何图形的性质实现对位置的确定,另一个是通过数量关系实现最值问题的解答. 一、利用对称性质,实现问题简单化图形经过某一点或者轴对称之后,就会有很多固有的由对称产生的等量关系,不同的对称性(如中心对称、轴对称等)也有独特的对称性质.合理地利用相应的性质会使问题得到简化,这会给解题带来很大的帮助.例1 在如图所示的平面直角坐标系中,在:轴的正半轴上有一点A ,B 的坐标为,点C 的坐标为1(,0)2,三点构成直角三角形OAB ,斜边OB 上有一个动点P ,求PA PC +的最小值.解析 我们利用对称的性质,会使解题息路得到转化.如右图所示,以OB 为轴,作点A 的对称点D ,连接AD 交OB 于点M .有AP DP =恒成立.利用三角形关系中两边之和大于第三边可得出当P 在DC连线上时取得最小值,即为图中所示的情形,只要求出CD 的长即可.根据B 点坐标可求出AB =,OB =由三角形面积不同求法间的等量关系可得出32AM =.故1322AN AD ==,由C 点坐标可求出1CN =.由勾股定理可求出2DC =,此值即为所求PA PC +的最小值. 点拨 本题中是作直线的对称点,实现直线同侧点到异侧点的转化,这是我们在解题中常遇到的情况以及常见的解题方法.对称性的应用注重于问题的解题技巧,目的是通过对称性使复杂的问题简单化. 二、构造不等关系,巧用基本不等式对于平面几何问题,不等关系的构造是离不开几何图形本身的数量关系的.想要利用基本不等式求解,学生需要在图形中找出满足不等式的条件,这不光对于学生的平面几何知识有考查,还要学生深入理解不等式的相关知识.例 2 已知四边形ABCD ,O 点为对角线AC 与BD 的交点,4AOB S =V ,9COD S =V ,求四边形ABCD 的面积S 的最小值解析 题中的四边形为不规则图形,没有直接求此类图形的公式,我们需要将其拆分成几个三角形进行分别求解.题中给出了两个三角形的面积,我们再表示出另两个三角形的面积就可以了.四边形按照此种分解后求面积,我们发现有很多等高的三角形,出现此类三角形,其面积比就只与底的长度有关,这时就可利用此关系计算.即有AOD CODAOB BOCS S S S =V V V V ,设AOD S a =V ,BOC S b =V ,整理得36ab =.又有131325S a b =++≥=,故最小值为25.点拨 本题中对于三角形知识的考察非常深入,将三角形面积间的关系转化为长度关系进行解答是最为关键的步骤,学生要有思维模式的转化才会想出这一解决方法,而后结合不等式知识解题,否则盲目地求面积是不能实现的.三、化为二次函数,列出方程再求解二次函数是初中数学中最重要的一类函数,此处并不是像压轴题那样对二次函数进行全面的考察,而是将所求的量转化为二次函数的形式,利用二次函数的相关性质解题,更加注重于对问题的分析转化能力.例3 有一三角形ABC ,底边120BC =,高80AD =,如图所示。
中考数学专题讲练 线段最值问题二
线段最值问题(二)一.利用轴对称求最值轴对称主要用来解决几条线段的和差的最值问题,相关模型比较多,主要包含以下几种类型: 1.如图,直线l 和l 的异侧两点A 、B ,在直线l 上求作一点P ,使PA PB +最小.2.如图,直线l 和l 的同侧两点A 、B ,在直线l 上求作一点P ,使PA PB +最小.3.如图,直线l 和l 同侧两点A 、B ,在直线l 上求作一点P ,使PA PB -最大.4.如图,直线l 和l 异侧两点A 、B ,在直线l 上求作一点P ,使PA PB -最大.lll5.如图,点P 是MON ∠内的一点,分别在OM ,ON 上作点A 、B ,使PAB ∆的周长最小.6.如图,点P ,Q 为MON ∠内的两点,分别在OM ,ON 上作点A 、B ,使四边形PAQB 的周长最小.7.如图,点A 是MON ∠外的一点,在射线OM 上作点P ,使PA 与点P 到射线ON 的距离之和最小.l8.如图,点A 是MON 内的一点,在射线OM 上作点P ,使PA 与点P 到射线ON 的距离之和最小.9.造桥选址问题二.利用二次函数求最值利用二次函数求解最值首先需要引入一个未知数作为自变量,然后根据题目中的等量关系用未知数表示出所求解的线段长度、图形面积等,最后根据函数的增减性,并结合自变量的取值范围,求出最值.l 2l 1一.考点:利用轴对称求最值,利用二次函数求最值二.重难点:利用轴对称求最值,利用二次函数求最值三.易错点:1.利用轴对称求解最值时一般情况下都是定点与最值问题,此时直接按照相应模型来求解即可,如果出现有定点也有动点的情况,可以先把动点固定下来,然后利用模型找到最值时的位置,最后再去确定动点的位置;2.利用二次函数求解最值问题时除了明确二次函数的对称轴和开口方向,一定要注意自变量的取值范围,并不是所有的最值都是在顶点取到.题模一:利用轴对称求最值例1.1.1在平面直角坐标系中,点A、B、C的坐标分别为(2,0),(31点D、E的坐标分别为(m),(n)(m、n为非负数),则CE+DE+DB的最小值是__.【答案】 4【解析】如图所示:∵点D、E的坐标分别为(m),(n)(m、n为非负数),∴直线OD的解析式为,直线OE的解析式x,设点C关于直线OE的对称点C′所在直线CC′的解析式为y=﹣+b,把C 的坐标(1故直线CC ′的解析式为y=+联立直线OE 的解析式和直线CC ′的解析式可得x y=⎧⎪⎨⎪-+⎩,解得x=1.5y=2⎧⎪⎨⎪⎩.故交点坐标为(1.5,2), ∴点C ′坐标为(2,0),设点B 关于直线OD 的对称点B ′所在直线BB ′的解析式为y=x +b ′, 把B 的坐标(3,b ′b ′故直线BB ′的解析式为y=x +联立直线OD 的解析式和直线BB ′的解析式可得y=x 3⎧⎪⎨-+⎪⎩解得x=1.5⎧⎪⎨⎪⎩故交点坐标为(1.5∴点B ′坐标为(0,则B ′C ′,即CE +DE +DB 的最小值是4.例1.1.2 已知抛物线21y=x bx 2+经过点A (4,0).设点C (1,﹣3),请在抛物线的对称轴上确定一点D ,使得|AD ﹣CD|的值最大,则D 点的坐标为__. 【答案】 (2,﹣6) 【解析】 ∵抛物线21y=x bx 2+经过点A (4,0), ∴12×42+4b=0, ∴b=﹣2,∴抛物线的解析式为:y=12x 2﹣2x=12(x ﹣2)2﹣2, ∴抛物线的对称轴为:直线x=2, ∵点C (1,﹣3),∴作点C 关于x=2的对称点C ′(3,﹣3), 直线AC ′与x=2的交点即为D ,因为任意取一点D (AC 与对称轴的交点除外)都可以构成一个△ADC .而在三角形中,两边之差小于第三边,即|AD ﹣CD |<AC ′.所以最大值就是在D 是AC ′延长线上的点的时候取到|AD ﹣C ′D |=AC ′.把A ,C ′两点坐标代入,得到过AC ′的直线的解析式即可; 设直线AC ′的解析式为y=kx +b ,∴4k b=03k b=3+⎧⎨+⎩﹣ ,解得:k=3b=12⎧⎨-⎩,∴直线AC′的解析式为y=3x﹣12,当x=2时,y=﹣6,∴D点的坐标为(2,﹣6).例1.1.3如图,∠AOB=45°,∠AOB内有一定点P,且OP=10.在OA上有一动点Q,OB上有一动点R.若△PQR周长最小,则最小周长是()A.10B.C.20D.【答案】B【解析】如图,作点P关于OA的对称点P1,关于OB的对称点P2,连接P1P2与OA、OB分别相交于点Q、R,所以,PQ=P1Q,PR=P2R,所以,△PQR的周长=PQ+QR+PR=P1Q+QR+P2R=P1P2,由两点之间线段最短得,此时△PQR周长最小,连接P1O、P2O,则∠AOP=∠AOP1,OP1=OP,∠BOP=∠BOP2,OP2=OP,所以,OP1=OP2=OP=10,∠P1OP2=2∠AOB=2×45°=90°,所以,△P1OP2为等腰直角三角,所以,P1P21即△PQR最小周长是故选B.例1.1.4如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.B.6C.D.3【答案】C【解析】如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=6,∠BAC=45°,∴BH=AB•sin45°=6∵BM+MN的最小值是BM′+M′N′=BM′+例1.1.5如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB 的长度和最短,则此时AM+NB=____A.6B.8C.10D.12【答案】B【解析】作点A关于直线a的对称点A′,并延长AA′,过点B作BE⊥AA′于点E,连接A′B交直线b于点N,过点N作NM⊥直线a,连接AM,∵A到直线a的距离为2,a与b之间的距离为4,∴AA′=MN=4,∴四边形AA′NM是平行四边形,∴AM+NB=A′N+NB=A′B ,过点B 作BE ⊥AA′,交AA′于点E ,易得AE=2+4+3=9,,A′E=2+3=5,在Rt △AEB 中,,在Rt △A′EB 中,. 故选:B .题模二:利用二次函数求最值例1.2.1 如图,在平面直角坐标系中,抛物线y=ax 2+bx+2经过点A (﹣1,0)和点B (4,0),且与y 轴交于点C ,点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点,连接CA ,CD ,PD ,PB .(1)求该抛物线的解析式;(2)当△PDB 的面积等于△CAD 的面积时,求点P 的坐标;(3)当m >0,n >0时,过点P 作直线PE ⊥y 轴于点E 交直线BC 于点F ,过点F 作FG ⊥x 轴于点G ,连接EG ,请直接写出随着点P 的运动,线段EG 的最小值. 【答案】 (1)y=﹣12x 2+32x+2 (2)(1,3)、(2,3)、(5,﹣3)或(﹣2,﹣3)(3【解析】 (1)把A (﹣1,0),B (4,0)两点的坐标代入y=ax 2+bx+2中,可得 a-b+2=016a+4b+2=0⎧⎨⎩解得1 a=23 b=2⎧⎪⎪⎨⎪⎪⎩﹣∴抛物线的解析式为:y=﹣12x2+32x+2.(2)∵抛物线的解析式为y=﹣12x2+32x+2,∴点C的坐标是(0,2),∵点A(﹣1,0)、点D(2,0),∴AD=2﹣(﹣1)=3,∴△CAD的面积=132=32⨯⨯,∴△PDB的面积=3,∵点B(4,0)、点D(2,0),∴BD=2,∴|n|=3×2÷2=3,∴n=3或﹣3,①当n=3时,﹣12m2+32m+2=3,解得m=1或m=2,∴点P的坐标是(1,3)或(2,3).②当n=﹣3时,﹣12m2+32m+2=﹣3,解得m=5或m=﹣2,∴点P的坐标是(5,﹣3)或(﹣2,﹣3).综上,可得点P的坐标是(1,3)、(2,3)、(5,﹣3)或(﹣2,﹣3).(3)如图1,设BC所在的直线的解析式是:y=mx+n,∵点C的坐标是(0,2),点B的坐标是(4,0),∴n=24m+n=0⎧⎨⎩解得1 m=2 n=2⎧⎪⎨⎪⎩﹣∴BC所在的直线的解析式是:y=﹣12x+2,∵点P的坐标是(m,n),∴点F的坐标是(4﹣2n,n),∴EG2=(4﹣2n)2+n2=5n2﹣16n+16=5(n﹣85)2+165,∵n>0,∴当n=85时,线段EG即线段EG例1.2.2如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM 周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.【答案】(1)y=﹣2x2+6x;(2)D(0,1);(3)M(,);(4)(,).【解析】(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式得:,解得:,抛物线的解析式为y=﹣2x2+6x.(2)如图1所示;∵BD⊥DE,∴∠BDE=90°.∴∠BDC+∠EDO=90°.又∵∠ODE+∠DEO=90°,∴∠BDC=∠DE0.在△BDC和△DOE中,,∴△BDC≌△DEO.∴OD=AO=1.∴D(0,1).(3)如图2所示:作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.∵x=﹣=,∴点B′的坐标为(2,4).∵点B与点B′关于x=对称,∴MB=B′M.∴DM+MB=DM+MB′.∴当点D、M、B′在一条直线上时,MD+MB有最小值(即△BMD的周长有最小值).∵由两点间的距离公式可知:BD==,DB′==,∴△BDM的最小值=+.设直线B′D的解析式为y=kx+b.将点D、B′的坐标代入得:,解得:k=,b=1.∴直线DB′的解析式为y=x+1.将x=代入得:y=.∴M(,).(4)如图3所示:过点F作FG⊥x轴,垂足为G.设点F(a,﹣2a2+6a),则OG=a,FG=﹣2a2+6a.∵S梯形D O GF=(OD+FG)•OG=(﹣2a2+6a+1)×a=﹣a3+3a2+a,S△ODA= OD•OA=×1×1=,S△AG F=AG•FG=﹣a3+4a2﹣3a,∴S△FD A=S梯形D O GF﹣S△ODA﹣S△AGF=﹣a2+a﹣.∴当a=时,S△FD A的最大值为.∴点P的坐标为(,).例1.2.3如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣12x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.【答案】见解析.【解析】解:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:﹣9a=2,解得:a=﹣29.∴抛物线的解析式为y=﹣29x2﹣49x+169.(2)连接AM,过点M作MG⊥AD,垂足为G.把x =0代入y =﹣12x +4得:y =4,∴A (0,4). 将y =0代入得:0=﹣12x +4,解得x =8,∴B (8,0).∴OA =4,OB =8. ∵M (﹣1,2),A (0,4),∴MG =1,AG =2.∴tan ∠MAG =tan ∠ABO =12. ∴∠MAG =∠ABO .∵∠OAB +∠ABO =90°,∴∠MAG +∠OAB =90°,即∠MAB =90°.∴l 是⊙M 的切线.(3)∵∠PFE +∠FPE =90°,∠FBD +∠PFE =90°,∴∠FPE =∠FBD .∴tan ∠FPE =12.∴PF :PE :EF 2:1.∴△PEF 的面积=12PE •EF =12PF PF =15PF 2. ∴当PF 最小时,△PEF 的面积最小.设点P 的坐标为(x ,﹣29x 2﹣49x +169),则F (x ,﹣12x +4). ∴PF =(﹣12x +4)﹣(﹣29x 2﹣49x +169)=﹣12x +4+29x 2+49x ﹣169=29x 2﹣118x +209=29(x ﹣18)2+7132.∴当x =18时,PF 有最小值,PF 的最小值为7132.∴P (18,5532). ∴△PEF 的面积的最小值为=15×(7132)2=50415120.随练1.1 四边形ABCD 中,∠BAD=130°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使三角形AMN 周长最小时,则∠AMN+∠ANM 的度数为( )A . 80°B . 90°C . 100°D . 130°【答案】C【解析】延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD分别交于点M、N,此时△AMN周长最小,推出∠AMN+∠NM=2(∠A′+∠A″)即可解决.延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD分别交于点M、N.∵∠ABC=∠ADC=90°,∴A、A′关于BC对称,A、A″关于CD对称,此时△AMN的周长最小,∵BA=BA′,MB⊥AB,∴MA=MA′,同理:NA=NA″,∴∠A′=′MAB,∠A″=∠NAD,∵∠AMN=∠A′+′MAB=2∠A′,∠ANM=∠A″+∠NAD=2∠A″,∴∠AMN+∠ANM=2(∠A′+∠A″),∵∠BAD=130°,∴∠A′+∠A″=180°﹣∠BAD=50°M∴∠AMN+∠NM=2×50°=100°.故选C.随练1.2如图,在平面直角坐标系中,A点的坐标是123(,),在x,y轴上分(,),B点的坐标是27别有一点P和Q,若有四边形PABQ的周长最短,求周长最短的值.【答案】如图所示:四边形PABQ的周长最短,∵A点的坐标是123(,),(,),B点的坐标是27∴AB123(,),B'-(,),27A'-A B=,故''则四边形PABQ的周长最短的值为:【解析】利用作B点关于y轴对称点B',作A点关于x轴对称点A',进而连接AB'',交y轴于点Q,交x轴于点P,进而利用勾股定理得出答案.随练1.3如图,已知30∠=︒,在OM上有两点A、B分别到ON的距离为2cm和1cm,若在ONMON-的值最大,求P点到O点的距离.上找一点P使PA PB-的值最大,P应在OM上,【答案】因为A、B在OM上,要使PA PB-<,如果P不在OM上,则P、A、B构成三角形,根据三角形的三边关系,PA PB AB所以,P是OM和ON的交点,即O点,所以P到O的距离为0.【解析】根据三角形的三边关系,两边的差小于第三边,可以判定当P点在OM和ON的交点处PA PB-的值最大,从而求得P点到O点的距离.随练1.4小明在学习轴对称的时候,老师留了这样一道思考题:如图,已知在直线l的同侧有A、B两点,请你在直线l上确定一点P,使得PA PB+的值最小.小明通过独立思考,很快得出了解决这个问题的正确方法,他的作法是这样的:①作点A关于直线l的对称点A''.②连结A B',交直线l于点P.则点P为所求.请你参考小明的作法解决下列问题:(1)如图1,在ABC△中,点D、E分别是AB、AC边的中点,6BC=,BC边上的高为4,请你在BC边上确定一点P,使得PDE△的周长最小.①在图1中作出点P .(三角板、刻度尺作图,保留作图痕迹,不写作法)②请直接写出PDE △周长的最小值__________.(2)如图2在矩形ABCD 中,4AB =,6BC =,G 为边AD 的中点,若E 、F 为边AB 上的两个动点,点E 在点F 左侧,且1EF =,当四边形CGEF 的周长最小时,请你在图2中确定点E 、F 的位置.(三角板、刻度尺作图,保留作图痕迹,不写作法),并直接写出四边形CGEF 周长的最小值_____.【答案】 (1)①见解析②8(2)6+【解析】 该题考查的是将军饮马问题.(1)如图1,作D 关于BC 的对称点'D ,由轴对称的性质可知'D P D P =,DPE C DE DP PE ∆=++'DE D P PE =++ 'D E D E ≥+∴当'D 、P 、E 共线时DPE C ∆最小,即P 为'D E 与BC 的交点, …………………………………………………1分此时,由D 、E 分别为AB 、AC 中点,∴DE //BC 且132DE BC ==, 且D 到BC 距离为A 到BC 距离一半,即为2,由轴对称的性质可知'D P D P =,'DD BC ⊥,∴'DD 即为D 到BC 距离两倍,所以'4D D =,∵DE //BC ,'DD BC ⊥∴'DD DE ⊥,在Rt △'DD E 中,'90D DE ∠=︒,由勾股定理'5D E =,∴358DPE C ∆=+=; ……………………………………………………………2分(2)如图2,作G 关于AB 的对称点M ,在CD 上截取1CH =,则CH 和EF 平行且相等,∴四边形CHEF 为平行四边形,∴CF HE =,由轴对称的性质可知GE ME =,CGEF C CG GE EF CF =+++1CG ME EH =+++ 1CG MH ≥++∴当M 、E 、H 共线时CGEF C 最小,连接HM 与AB 的交点即为E ,在EB 上截取1EF =即得F ,……………4分此时3DH =,3DG AG AM ===,∴9DM =,在Rt △DHM 和Rt △DGC 中由勾股定理:MH =5DG = ∴516CGEF C =+++……………………………………………5分随练1.5 在平面直角坐标系中,已知y=﹣12x 2+bx+c (b 、c 为常数)的顶点为P ,等腰直角三角形ABC 的顶点A 的坐标为(0,﹣1),点C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若抛物线经过A、B两点,求抛物线的解析式.(2)平移(1)中的抛物线,使顶点P在直线AC上并沿AC后的抛物线与直线AC交于x轴上的同一点.(3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.【答案】(1)y=﹣12x2+2x﹣1;(2)见解析;(3)当B′、Q、F三点共线时,NP+BQ最小,最小值为【解析】(1)∵等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3)∴点B的坐标为(4,﹣1).∵抛物线过A(0,﹣1),B(4,﹣1)两点,∴111641 2cb c=-⎧⎪⎨-⨯++=-⎪⎩,解得:b=2,c=﹣1,∴抛物线的函数表达式为:y=﹣12x2+2x﹣1.(2)如答题图2,设顶点P在直线AC上并沿AC时,到达P′,作P′M∥y轴,PM∥x轴,交于M点,∵点A的坐标为(0,﹣1),点C的坐标为(4,3),∴直线AC的解析式为y=x﹣1,∵直线的斜率为1,∴△P′PM是等腰直角三角形,∵∴P′M=PM=1,∴抛物线向上平移1个单位,向右平移1个单位,∵y=﹣12x2+2x﹣1=﹣12(x﹣2)2+1,∴平移后的抛物线的解析式为y=﹣12(x﹣3)2+2,令y=0,则0=﹣12(x﹣3)2+2,解得x1=1,x=52,∴平移后的抛物线与x轴的交点为(1,0),(5,0),解()213221y xy x⎧=--+⎪⎨⎪=-⎩,得1xy=⎧⎨=⎩或32xy=⎧⎨=⎩∴平移后的抛物线与AC的交点为(1,0),∴平移后的抛物线与直线AC交于x轴上的同一点(1,0).(3)如答图3,取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q,取AB中点F,连接QF,FN,QB′,易得FN∥PQ,且FN=PQ,∴四边形PQFN为平行四边形.∴NP=FQ.∴.∴当B′、Q、F三点共线时,NP+BQ最小,最小值为随练1.6如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC∥x轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF交BC于点E.(1)求抛物线的表达式;(2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围;(3)如图2,过点F作FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,垂足为N,连接MN,直线AC分别交x轴,y轴于点H,G,试求线段MN的最小值,并直接写出此时m的值.【答案】(1)y=(x﹣2)2+2=x2﹣x+3;(2)S=m﹣3.(2≤m≤6);(3)m=时,MN最小==【解析】(1)∵过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),∴点C的横坐标为4,BC=4,∵四边形ABCD为平行四边形,∴AD=BC=4,∵A(2,6),∴D(6,6),设抛物线解析式为y=a(x﹣2)2+2,∵点D在此抛物线上,∴6=a(6﹣2)2+2,∴a=,∴抛物线解析式为y=(x﹣2)2+2=x2﹣x+3,(2)∵AD∥BC∥x轴,且AD,BC间的距离为3,BC,x轴的距离也为3,F(m,6)∴E(,3),∴BE=,∴S=(AF+BE)×3=(m﹣2+)×3=m﹣3∵点F(m,6)是线段AD上,∴2≤m≤6,即:S=m﹣3.(2≤m≤6)(3)∵抛物线解析式为y=x2﹣x+3,∴B(0,3),C(4,3),∵A(2,6),∴直线AC解析式为y=﹣x+9,∵FM⊥x轴,垂足为M,交直线AC于P∴P(m,﹣m+9),(2≤m≤6)∴PN=m,PM=﹣m+9,∵FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,∴∠MPN=90°,∴MN===∵2≤m≤6,∴当m=时,MN最小==作业1如图,∠MON=20°,A、B分别为射线OM、ON上两定点,且OA=2,OB=4,点P、Q分别为射线OM、ON两动点,当P、Q运动时,线段AQ+PQ+PB的最小值是()A.3B.C.2D.【答案】D【解析】作A关于ON的对称点A′,点B关于OM的对称点B′,连接A′B′,交于OM,ON分别为P,Q,连接OA′,OB′,则PB′=PB,AQ=A′Q,OA′=OA=2,OB′=OB=4,∠MOB′=∠NOA′=∠MON=20°,∴AQ+PQ+PB=A′Q+PQ+PB′=A′B′,∠A′OB′=60°,∵cos60°=12,OAOB''=12,∴∠OA′B′=90°,∴∴线段AQ+PQ+PB的最小值是:作业2阅读材料:,如图,建立平面直角坐标系,点P(x,0)是x P与点A(0,1点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′,即原式的最小值为根据以上阅读材料,解答下列问题:(1P(x,0)与点A(1,1)、点B____的距离之和.(填写点B的坐标)(2____.【答案】(1)(2,3)(2)10【解析】(1∴代数式P(x,0)与点A(1,1)、点B(2,3)的距离之和,故答案为(2,3);(2的形式,∴所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,7)、点B(6,1)的距离之和,如图所示:设点A关于x轴的对称点为A′,则PA=PA′,∴PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,∴PA′+PB的最小值为线段A′B的长度,∵A(0,7),B(6,1)∴A′(0,-7),A′C=6,BC=8,∴,故答案为:10.作业3定义:对于平面直角坐标系xOy中的线段PQ和点M,在△MPQ中,当PQ边上的高为2时,称M为PQ的“等高点”,称此时MP+MQ为PQ的“等高距离”.(1)若P(1,2),Q(4,2).①在点A(1,0),B(52,4),C(0,3)中,PQ的“等高点”是;②若M(t,0)为PQ的“等高点”,求PQ的“等高距离”的最小值及此时t的值.(2)若P(0,0),PQ=2,当PQ的“等高点”在y轴正半轴上且“等高距离”最小时,直接写出点Q的坐标.【答案】(1)A、B(2)见解析(3)Q)或Q()【解析】解:(1)A 、B……………………………………………………………………………2分(2)如图,作点P 关于x 轴的对称点P′,连接P′Q ,P′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P′Q 的长. ………………………3分∵P (1,2),∴ P′ (1,-2).设直线P′Q 的表达式为y kx b =+,根据题意,有242k b k b +=-⎧⎨+=⎩,解得43103k b ⎧=⎪⎪⎨⎪=-⎪⎩. ∴直线P′Q 的表达式为41033y x =-.……………4分 当0y =时,解得52x =. 即52t =.………………………………………………………………………5分 根据题意,可知PP′=4,PQ =3, PQ ⊥PP′,∴'5P Q .∴“等高距离”最小值为5.…………………………………………………6分(3)Q)或Q().………………………………8分作业4 如图,已知在平面直角坐标系中,A ,B 两点在x 轴上,线段OA ,OB 的长分别为方程x 2﹣8x+12=0的两个根(OB >OA ),点C 是y 轴上一点,其坐标为(0,﹣3).(1)求A ,B 两点的坐标;(2)求经过A ,B ,C 三点的抛物线的关系式;(3)D是点C关于该抛物线对称轴的对称点,E是该抛物线的顶点,M,N分别是y轴、x轴上的两个动点.①当△CEM是等腰三角形时,请直接写出此时点M的坐标;②以D、E、M、N位顶点的四边形的周长是否有最小值?若有,请求出最小值,并直接写出此时点M,N的坐标;若没有,请说明理由.【答案】(1)A(﹣2,0),B(6,0).(2)y=14(x+2)(x﹣6)=14x2﹣x﹣3.(3)有;①M(03)、(03)、(0,﹣5)或(0,﹣112).②M(0,﹣53)N(107,0)【解析】(1)∵x2﹣8x+12=0,∴(x﹣2)(x﹣6)=0,解得:x1=2,x2=6,∵OB>OA,∴OA=2,OB=6,∴点A的坐标为(﹣2,0),点B的坐标为(6,0).(2)设抛物线的解析式为:y=a(x+2)(x﹣6)(a≠0),将C(0,﹣3)代入得:﹣3=﹣12a,解得:a=14,∴经过A,B,C三点的抛物线的关系式为:y=14(x+2)(x﹣6)=14x2﹣x﹣3.(3)①依据题意画出图形,如图1所示.设点M的坐标为(0,m),∵抛物线的关系式为y=14x2﹣x﹣3=14(x﹣2)2﹣4,∴点E(2,﹣4),∴CM=|m+3|,.△CEM是等腰三角形分三种情况:当CE=CM,解得:3或m=3,此时点M的坐标为(03)或(03);当CE=ME,解得:m=﹣3(舍去)或m=﹣5,此时点M的坐标为(0,﹣5);当CM=ME时,有,解得:m=﹣112,此时点M的坐标为(0,﹣112).综上可知:当△CEM是等腰三角形时,点M的坐标为(03)、(03)、(0,﹣5)或(0,﹣112).②四边形DEMN有最小值.作点E关于y轴对称的点E′,作点D关于x轴对称的点D′,连接D′E′交x轴于点N,交y 轴于点M,此时以D、E、M、N位顶点的四边形的周长最小,如图2所示.∵点C(0,﹣3),点E(2,﹣4),∴点D(4,﹣3),=∵E、E′关于y轴对称,D、D′关于x轴对称,∴EM=E′M,DN=D′N,点E′(﹣2,﹣4),点D′(4,3),∴EM+MN+DN=D′E′=∴C四边形DEMN.设直线D′E′的解析式为y=kx+b,则有3442k bk b⎧-+⎨-=-+⎩,解得:7653kb⎧=⎪⎪⎨⎪=-⎪⎩,∴直线D′E′的解析式为y=76x﹣53.令y=76x﹣53中x=0,则y=﹣53,∴点M(0,﹣53);令y=76x﹣53中y=0,则76x﹣53=0,解得:x=107,∴点N(107,0).故以D、E、M、N,此时点M的坐标为(0,﹣53),点N的坐标为(107,0).作业5已知抛物线y=x2+bx+c与直线y=x+1有两个交点A、B.(1)当AB的中点落在y轴时,求c的取值范围;(2)当,求c的最小值,并写出c取最小值时抛物线的解析式;(3)设点P(t,T)在AB之间的一段抛物线上运动,S(t)表示△PAB的面积.①当y 轴时,求S (t )的最大值,以及此时点P 的坐标; ②当AB=m (正常数)时,S (t )是否仍有最大值,若存在,求出S (t )的最大值以及此时点P 的坐标(t ,T )满足的关系,若不存在说明理由.【答案】 见解析【解析】 此题主要考查了二次函数与一元二次方程的关系,根与系数的关系,根的判别式,函数图象交点及图形面积的求法等知识,综合性强,难度较大.(1)若AB 的中点落在y 轴上,那么A 、B 的横坐标互为相反数,即两个横坐标的和为0;可联立两个函数的解析式,那么A 、B 的横坐标即为所得方程的两根,根据方程有两个不等的实数根及两根的和为0即可求出c 的取值范围;(2)由于直线AB 的斜率为1,当A 、B 两点横坐标差的绝对值为2;联立两个函数的解析式,可得到关于x 的方程,那么A 、B 的横坐标就是方程的两个根,可用韦达定理表示出两根差的绝对值,进而求出b 、c 的关系式,即可得到c 的最小值以及对应的b 的值,由此可确定抛物线的解析式;(3)①在(2)中已经求得了b 、c 的关系式,若抛物线与直线的一个交点在y 轴,那么c=1,可据此求出b 的值;进而可确定抛物线的解析式,过P 作PQ ∥y 轴,交AB 于Q ,可根据抛物线和直线AB 的解析式表示出P 、Q 的纵坐标,进而可求出PQ 的表达式,以PQ 为底,A 、B 横坐标的差的绝对值为高即可求出△PAB 的面积,进而可得出关于S (t )和t 的函数关系式,根据函数的性质即可求出△PAB 的最大面积及对应的P 点坐标;②结合(2)以及(3)①的方法求解即可.(1)由x 2+bx+c=x+1,得x 2+(b-1)x+c-1=0①.设交点A (x 1,y 1),B (x 2,y 2) (x 1<x 2).∵AB 的中点落在y 轴,∴A ,B 两点到y 轴的距离相等,即A ,B 两点的横坐标互为相反数,∴x 1+x 2=0,故210(1)4(1)0b b c ⎧-=⎪⎨⎪=--->⎩V∴c<1;(3分)(2)∵,如图,过A作x轴的平行线,过B作y轴的平行线,它们交于G点,∵直线y=x+1与x轴的夹角为45°,∴△ABG为等腰直角三角形,而,=2,即|x1-x2|=2,∴(x1+x2)2-4x1x2=4,由(1)可知x1+x2=-(b-1),x1x2=c-1.代入上式得:(b-1)2-4(c-1)=4,∴c=14(b-1)2≥0∴c的最小值为0;此时,b=1,c=0,抛物线为y=x2+x;(3)①∵由(2)知c=14(b-1)2成立.又∵抛物线与直线的交点在y轴时,交点的横坐标为0,把x=0代入①,得c-1=0,∴c=1.∴这一交点为(0,1);∴14(b-1)2=1∴b=-1或3;当b=-1时,y=x2-x+1,过P作PQ∥y轴交直线AB于Q,则有:P(t,t2-t+1),Q(t,t+1);∴PQ=t+1-(t2-t+1)=-t2+2t;∴S (t )=122+2t=-(t-1)2+1; 当t=1时,S (t )有最大值,且S (t )最大=1,此时P (1,1);当b=3时,y=x 2+3x+1,同上可求得:S (t )=122-2t=-(t+1)2+1; 当t=-1时,S (t )有最大值,且S (t )最大=1,此时P (-1,-1);故当P 点坐标为(1,1)或(-1,-1)时,S (t )最大,且最大值为1;②同(2)可得:(b-1)2-4(c-1)=m 2,由题意知:c=1,则有:(b-1)2=m 2,即b=1±m ;当b=1+m 时,y=x 2+(1+m )x+1,∴P (t ,t 2+(1+m )t+1),Q (t ,t+1);∴PQ=t+1-[t 2+(1+m )t+1]=-t 2-mt ;∴S (t )=1212(-t 2-mt )(t+2m )2m 3;∴当t=-2m 时,S (t )最大3, 此时P (-12m ,-24m -2m +1); 当b=1-m 时,y=x 2+(1-m )x+1,同上可求得:S (t )m (t-2m )23;∴当t=12m 时,S (t )最大3, 此时P (12m ,34m 2+12m+1);故当P (-12m ,-24m -2m +1)或(12m ,34m 2+12m+1)时,S (t 3.作业6 如图,抛物线y=ax 2﹣2ax+c 过坐标系原点及点B (4,4),交x 轴的另一个点为A .(1)求抛物线的解析式及对称轴;(2)抛物线上找出点C ,使得S △ABO =S △CBO ,求出点C 的坐标;(3)连结BO 交对称轴于点D ,以半径为12作⊙D ,抛物线上一动点P ,过P 作圆的切线交圆于点Q ,使得PQ 最小的点P 有几个?并求出PQ 的最小值.【答案】 (1)故抛物线的解析式为: 21y=x x 2-,对称轴x=﹣1122-⨯=1 (2)点C 的坐标为:C 1(2,0),C 2(2﹣4﹣C 3(2+4+(3)点P 有2个,PQ【解析】 (1)∵抛物线y=ax 2﹣2ax +c 过坐标系原点及点B (4,4),∴c=016a 8a+c=4⎧⎨-⎩, 解得:1a=2c=0⎧⎪⎨⎪⎩, 故抛物线的解析式为:21y=x x 2-, 对称轴x=﹣1122-⨯=1; (2)当y=0,0=12x 2﹣x , 解得:x 1=0,x 2=2,故A (2,0),∵B (4,4),∴直线BO 的解析式为:y=x ,作BO 的平行线y=x ﹣2, 则2y=x 21y=x x 2-⎧⎪⎨-⎪⎩ , 解得:x 1=x 2=2,则y=0,故C 1(2,0)往上平移还可以得到另一直线:y=x +2,组成方程组: 2y=x 21y=x x 2+⎧⎪⎨-⎪⎩, 解得:11x =2y =4⎧-⎪⎨-⎪⎩22x =2y =4⎧+⎪⎨+⎪⎩可得C 2(2﹣4﹣C 3(2+4+综上所述:点C 的坐标为:C 1(2,0),C 2(2﹣4﹣C 3(2+4+(3)∵y=12x 2﹣x=12(x ﹣1)2+1, ∴可得D (1,1),设P (x ,y ),由相切得:DQ ⊥PQ ,则PQ 2=PD 2﹣DQ 2, 故2221(x 1y 14PQ =-+--)()=2217x x 244-+(), 故x=0,2时PQ 最小,故点P 有2个,PQ的最小值为2.作业7 如图1,在平面直径坐标系中,抛物线y=ax 2+bx ﹣2与x 轴交于点A (﹣3,0).B (1,0),与y 轴交于点C(1)直接写出抛物线的函数解析式;(2)以OC 为半径的⊙O 与y 轴的正半轴交于点E ,若弦CD 过AB 的中点M ,试求出DC 的长;(3)将抛物线向上平移32个单位长度(如图2)若动点P (x ,y )在平移后的抛物线上,且点P 在第三象限,请求出△PDE 的面积关于x 的函数关系式,并写出△PDE 面积的最大值.【答案】 (1)抛物线的函数解析式为y=23x 2+43x ﹣2. (2). (3)△PDE 的面积关于x 的函数关系式为S △PDE =﹣2815x ﹣23x+2<x <0),且△PDE 面积的最大值为5324【解析】 (1)由点A 、B 的坐标利用待定系数法即可求出抛物线的解析式;(2)令抛物线解析式中x=0求出点C 的坐标,根据点A 、B 的坐标即可求出其中点M 的坐标,由此即可得出CM 的长,根据圆中直径对的圆周角为90°即可得出△COM ∽△CDE ,根据相似三角形的性质即可得出OC CM DC CE=,代入数据即可求出DC 的长度; (3)根据平移的性质求出平移后的抛物线的解析式,令其y=0,求出平移后的抛物线与x 轴的交点坐标,由此即可得出点P 横坐标的范围,再过点P 作PP′⊥y 轴于点P′,过点D 作DD′⊥y 轴于点D′,通过分割图形求面积法找出S △PDE 关于x 的函数关系式,利用配方结合而成函数的性质即可得出△PDE 面积的最大值.解:(1)将点A (﹣3,0)、B (1,0)代入y=ax 2+bx ﹣2中,得:093202a b a b =--⎧⎨=+-⎩,解得:2343a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的函数解析式为y=23x2+43x﹣2.(2)令y=23x2+43x﹣2中x=0,则y=﹣2,∴C(0,﹣2),∴OC=2,CE=4.∵A(﹣3,0),B(1,0),点M为线段AB的中点,∴M(﹣1,0),∴∵CE为⊙O的直径,∴∠CDE=90°,∴△COM∽△CDE,∴OC CM DC CE=,∴.(3)将抛物线向上平移32个单位长度后的解析式为y=23x2+43x﹣2+32=23x2+43x﹣12,令y=23x2+43x﹣12中y=0,即23x2+43x﹣12=0,解得:x1,x2.∵点P在第三象限,x<0.过点P作PP′⊥y轴于点P′,过点D作DD′⊥y轴于点D′,如图所示.(方法一):在Rt△CDE中,,CE=4,∴,sin ∠DCE=DE CE =在Rt △CDD′中,,∠CD′D=90°,∴DD′=CD•sin ∠DCE=85,165, ∴OD′=CD′﹣OC=65, ∴D (﹣85,65),D′(0,65). ∵P (x ,23 x 2+43x ﹣12), ∴P′(0,23 x 2+43x ﹣12). ∴S △PDE =S △DD′E +S梯形DD′P′P ﹣S △EPP′=12DD′•ED′+12(DD′+PP′)•D′P′﹣12PP′•EP′=﹣2815x ﹣23x+2x <0),∵S △PDE =﹣2815x ﹣23x+2=﹣285()158x ++5324<﹣58<0, ∴当x=﹣58时,S △PDE 取最大值,最大值为5324.故:△PDE 的面积关于x 的函数关系式为S △PDE =﹣2815x ﹣23x+2<x <0),且△PDE 面积的最大值为5324.(方法二):在Rt △CDE 中,,CE=4,∴, ∵∠CDE=∠CD′D=90°,∠DCE=∠D′CD , ∴△CDE ∽△CD′D ,∴DD CD CD DE CD CE''==, ∴DD′=85,CD′=165, ∴∴OD′=CD′﹣OC=65, ∴D (﹣85,65),D′(0,65). ∵P (x ,23 x 2+43x ﹣12), ∴P′(0,23 x 2+43x ﹣12). ∴S △PDE =S △DD′E +S梯形DD′P′P ﹣S △EPP′=12DD′•ED′+12(DD′+PP′)•D′P′﹣12PP′•EP′=﹣2815x ﹣23x+2x <0),∵S △PDE =﹣2815x ﹣23x+2=﹣285()158x ++5324<﹣58<0, ∴当x=﹣58时,S △PDE 取最大值,最大值为5324.故:△PDE 的面积关于x 的函数关系式为S △PDE =﹣2815x ﹣23x+2<x <0),且△PDE 面积的最大值为5324.。
中考数学复习:专题9-9 探究动点背景下的线段最值问题
探究动点背景下的线段最值问题【专题综述】图形运动问题是中考数学命题的热点题型,其中有一类动点背景下线段长度的最值问题,常常使学生感到比较为难.本文谈谈破解这类问题的方法. 动点背景下线段长度的最值问题一般有两种解法:1、代数解法.通过设未知量,建立函数关系或列方程列不等式等,用函数最值、二次方程判别式、解不等式来求解.2、几何方法.常通取特殊点,如线段中点、端点;与动点的特殊位置相关的特殊线段,如三角形的高、中线、圆的直径等;特殊图形,如直角三角形、等边三角形、矩形等,用几何公理、定理来求解. 一般而言,用几何方法抓住特殊情形处理,比代数方法更有独特魅力. 【方法解读】一、从动点所在特殊位置入手图形中动点的运动有一定的范围,其较为特殊的位置有:线段上动点的两端点、线段中点等;若点在线段外运动,则与某线段共线就是特殊位置.这些特殊位置正是产生最值的关键点.例1 如图1,在四边形ABCD 中,90A ∠=︒,33AB =,3AD =,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为. 分析 DM ,MN 的长度随点M ,N 分别在线段BC ,AB 上运动而变化,点E ,F 分别为DM ,MN 的中点却保持不变.题设中EF 与不变量A ∠,AB ,AD 无直接数量关系,但连结DN ,则由三角形的中位线定理可知12EF DN =,如图1所示,从而可知DN 最大时,EF 最大.因为N 在线段AB 上,当点N 与其端点B 重合时DN 最大,如图2所示.此时,由勾股定理知6BD =,所以EF 长度的最大值为3.例2 如图3,在⊙O 中,直径6AB =,BC 是弦,30ABC ∠=︒,点P 是BC 上的一个动点,点Q 在⊙O 上,且OP PQ ⊥.求PQ 长的最大值.分析 点P 在BC 运动时,OP ,PQ 的位置和大小都变化,但OP PQ ⊥,圆的半径不变,连结OQ ,则OPQ ∆保持直角三角形不变.在Rt OPQ ∆中,22223PQ OQ OP OP =-=-,所以OP 最小时PQ 的长的最大.由垂径定理知,此时点P 正好是CB 的中点,如图4所示,Q 点与C 点重合.分析 连结OQ . ∵OP PQ ⊥,∴OPQ ∆为直角三角形. 又∵OP CB ⊥,132OB AB ==,30ABC ∠=︒, ∴32OP =由勾股定理,得223333()22PQ =-=即PQ 长的最大值332. 二、从动点产生的特殊线段入手在图形中,点的运动会引起相应线段位置和长度大小的变化,位置的变化会使线段成为具有某种特殊性质抓住这些线段变化的特殊性:如三角形的高、中线、圆的直径等,往往会找到最值的答案.例3 如图5,在直角ABC ∆中,90C ∠=︒,3AC =,4BC =,P 为AB 上(不与AB 重合)一动点,过点P 分别作PE AC ⊥于点E ,PF BC ⊥与F ,则EF 的最小值 .分析 因为点P 在AB 上运动时,PE AC ⊥于点E ,PF BC ⊥与F ,90C ∠=︒,所以四边形CFDE 是矩形,且这些关系不变.连结PC ,则EF CP =,要求EF 的最小值,就是求CP 的最小值.显然当CD AB ⊥,即CD 是斜边AB 的高时,CD 最小.又由勾股定理,得5AB =,根据三角形面积不变,得AC BC CD AB ⨯=⨯,解得125CP =,所以EF 的最小值为125. 例4 如图6,在圆O 上有定点C 和动点P 位于直径AB 的异侧,过点C 作CP 的垂线,与PB 的延长线交于点G .已知:圆O 半径为52,4tan 3ABC ∠=,则CG 的最大值是(). (A)5 (B)154(C)253(D)203分析 点P 在AB 上运动时,PC 的位置和大小会随之变化,但CAB CPG ∠=∠,90ACB PCG ∠=∠=︒保持不变,故有ABCPGC ∆∆,∴BC AC CG PC =,即BC CG PC AC=,由3tan 4AC ABC PC ∠==,知43CG PC =,当PC 最大时,CQ 取到最大值易知,当PC 经过圆心,即PC 为圆O 的直径时,PC 最大(此时CG 是圆O 的切线). ∵圆O 半径为52, ∴PC 的最大值为5,∴315544CG =⨯=. ∴CG 的最大值154,故选B.三、抓住动点问题的特性,从构造特殊图形入手某些动点问题中,难以找到图形变化时与相关线段最值的特殊情形若要用几何解法,应联系整个问题所含条件添加辅助线,构造特殊图形,然后借助特殊图形的性质将问题进行有效转化.例5 如图7,ABC ∆中,45B ∠=︒,60BAC ∠=︒,22AB =. D 是BC 上的一个动点以AD 为直径画圆与AB ,AC 相交于E ,F 两点,求EF 的最小值.分析 点D 在BC 上运动,AD 的位置改变引起圆O 的位置和大小变化,而所求EF 的 值与不变量B ∠,BAC ∠以及AB 的关系不明显.连结OE ,OF ,构造含120︒角的特殊等腰三角形,如图8所示,过O 点作OH EF ⊥垂足为H ,由圆周角定理可知1602EOH EOF BAC ∠=∠=∠=︒.在Rt EOH ∆中,由垂径定理可知23EF EH OE ==.所以当OE 最小时,EF 的值最小,而12OE AD =,由垂线段的性质可知,当AD 为ABC ∆的边BC 上的高时,直径AD 最短,此时线段EF 最小.在Rt ADB ∆中,45ABC ∠=︒,22AB =∴2AD BD ==,即此时圆的直径为2. 在Rt EOH ∆中,33sin 122EH OE EOH =∠=⨯= ∴23EF EH ==, 即EF 的最小值为3.四、从图形运动中相对保持不动的点入手若图形中的动点不止一个,这种情形相对单一动点问题要复杂一般会引起变化的量增加或整个图形发生运动,难以找到原图中保存不变的量,这时可着眼于图中的相对不变量.相对不变量是指在整个图形运动变化中,保持某种特性不变的量与动点下线段最值所对应的仍是图中特殊相对不变量透过图形运动的整体,抓住特殊相对不变量才是解题的关键.例6 如图9,在ABC ∆中,90ACB ∠=︒,3BC =,8AC =,点A ,C 分别在x 轴、y 轴的正半轴上.当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动中OB 的最大值是多少?分析 当点A 在x 轴上运动时,点C 随之在y 轴上运动,这样改变了ABC ∆的位置,点B 的位置也随之改变,OB 的长度随之发生变化.虽然BC 、AC 的长度不变,但些相对不变的量与OB 没有直接的关系. 仔细观察图9,AC 是Rt COA ∆的斜边,AC 长度不变,则点O 与其中点D 的连线段OD 的长度保持不变,这个隐含的相对不变的特殊量与OB 有关. 于是,连结DB ,则OB DB OD <+,所以,当O 、D 、B 三点共线时OB 值最大,即BO OD DB =+. 在Rt BCA ∆中,4CD =,3CB =,5DB =. 则OB 的最大值为549+=:.综上可知,解决动点背景下线段长度的最值问题时,一般可用几何方法从特殊情形出发考虑.1、在分析动点位置变化的同时,重点抓住图形中不变的量,不变的关系和性质,以不变应万变,动中求静.2、线段的最大值和最小值,常与下列知识相关:两点之间线段最短,垂线段最短,直径是圆中最大的弦,三角形中任意两边之和大于第三边,任意两边之差小于第三边等等.所以要抓住特殊情形,联系与问题相关的结论进行有效转化.【强化训练】1.(2017四川省内江市)如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=430,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且P A+AB+BQ 最小,此时P A+BQ= .2.(2017山东省东营市)如图,已知菱形ABCD的周长为16,面积为83,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.3.(2017山东省威海市)如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠P AB=∠ACP,则线段PB长度的最小值为.4. (2017甘肃省天水市)如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是.5.(2017贵州省贵阳市)如图,在矩形纸片ABCD 中,AB =2,AD =3,点E 是AB 的中点,点F 是AD 边上的一个动点,将△AEF 沿EF 所在直线翻折,得到△A ′EF ,则A ′C 的长的最小值是 .6.(2016山东省枣庄市)如图,把△EFP 放置在菱形ABCD 中,使得顶点E ,F ,P 分别在线段AB ,AD ,AC 上,已知EP =FP =6,EF =63,∠BAD =60°,且AB >63. (1)求∠EPF 的大小;(2)若AP =10,求AE +AF 的值;(3)若△E FP 的三个顶点E 、F 、P 分别在线段AB 、AD 、AC 上运动,请直接写出AP 长的最大值和最小值.7.(2016山东省枣庄市)如图,已知抛物线2y ax bx c =++(a ≠0)的对称轴为直线x =﹣1,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B .(1)若直线y =mx +n 经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴x =﹣1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴x =﹣1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.8.(2017山东省烟台市)如图1,抛物线22y ax bx =++与x 轴交于A ,B 两点,与y 轴交于点C ,AB =4,矩形OBDC 的边CD =1,延长DC 交抛物线于点E . (1)求抛物线的解析式;(2)如图2,点P 是直线EO 上方抛物线上的一个动点,过点P 作y 轴的平行线交直线EO 于点G ,作PH ⊥EO ,垂足为H .设PH 的长为l ,点P 的横坐标为m ,求l 与m 的函数关系式(不必写出m 的取值范围),并求出l 的最大值;(3)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M ,使得以M ,A ,C ,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.9.(2016四川省眉山市)已知如图,在平面直角坐标系xOy 中,点A 、B 、C 分别为坐标轴上上的三个点,且OA =1,OB =3,OC =4.(1)求经过A 、B 、C 三点的抛物线的解析式;(2)在平面直角坐标系xOy 中是否存在一点P ,使得以以点A 、B 、C 、P 为顶点的四边形为菱形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)若点M 为该抛物线上一动点,在(2)的条件下,请求出当|PM ﹣AM |的最大值时点M 的坐标,并直接写出|PM ﹣AM |的最大值.10. (2016广西梧州市)如图,抛物线24y ax bx =+-(a ≠0)与x 轴交于A (4,0)、B (﹣1,0)两点,过点A 的直线y =﹣x +4交抛物线于点C . (1)求此抛物线的解析式;(2)在直线AC 上有一动点E ,当点E 在某个位置时,使△BDE 的周长最小,求此时E 点坐标; (3)当动点E 在直线AC 与抛物线围成的封闭线A →C →B →D →A 上运动时,是否存在使△BDE 为直角三角形的情况,若存在,请直接写出符合要求的E 点的坐标;若不存在,请说明理由.。
中考专题:轨迹法求最值
中考复习专题最值问题---轨迹法在中考复习中,分析动点轨迹求最值,首先要确定动点运行的轨迹,可以先选择一些特殊点进行尝试、观察规律;然后猜想验证、确定轨迹。
初中常用的基本轨迹有:(一)直线形1.两定点+等距⇒垂直平分线2.两定线+等距⇒角平分线(二)圆弧形1.一定点+定长⇒圆2.一定线+定角⇒弧下面结合具体的中考题,利用轨迹法解决最值问题进行分析:【翻折问题】如图,在边长为2的菱形ABCD中,∠A=60°,M是边AD的中点,N是AB上一动点(不与A、B重合),将△AMN沿MN所在直线翻折得到△A1MN,连接A1C,画出点N从A到B 的过程中A1的运动轨迹,A1C的最小值为.【分析】在这个问题中,落点A1满足A1M=AM,A1的轨迹是以M为圆心,以MA为半径的弧。
先连接CM,过点M向CD的延长线作垂线,垂足为点H,根据折叠可知点N从A 到B的过程中,A1的运动轨迹为以M为圆心,MA为半径的半圆,再根据勾股定理求得CM 的长,最后根据A1C+A1M≥CM,可得A1C≥CM﹣A1M=﹣1,进而得出A1C的最小值.【解答】解:如图,连接CM,过点M向CD的延长线作垂线,垂足为点H,由折叠可得,若点N与点B重合,则点A1与点D重合,故点N从A到B的过程中,A1的运动轨迹为以M为圆心,MA为半径的半圆,由翻折的性质可得:A1M=AM,∵M是AD边的中点,四边形ABCD为菱形,边长为2,∴AM=A1M=1,∵∠A=60°,四边形ABCD为菱形,∴∠HDM=60°,∵在Rt△MHD中,DH=DM•cos∠HDM=,MH=DM•sin∠HDM=,∴CH=CD+DH=2+=,∴在Rt△CHM中,CM==,∵A1C+A1M≥CM,∴A1C≥CM﹣A1M=﹣1,即当点A1在线段CM上时,A1C的最小值为﹣1.故答案为:﹣1.同类问题:1.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,AC=4,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是.2.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.【定弦定角】如图,在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在边DC,CB上移动,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动.若AD =2,线段CP的最小值是______.【分析】先证得点P在运动中保持∠APD=90°,从而得出点P的路径是一段以AD为直径的弧,连接AD的中点和C的连线交弧于点P,此时CP的长度最小,然后根据勾股定理求得QC,即可求得CP的长.【解答】解:如图:在△ADE和△DCF中,,∴∠DAE≌∠CDF(SAS),∴∠DAE=∠CDF,∵∠DAE+∠AED=90°,∴∠CDF+∠AED=90°,∴∠DPE=∠APD=90°,由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,QC=,∴CP=QC﹣QP=.故答案为﹣1.总结:解决本题的关键是确定E点运动的轨迹,从而把问题转化为圆外一点到圆上一点的最短距离问题.同类问题:1.如图,在等腰Rt△ABC中,∠BAC=90°,BC=2,点P是△ABC内部的一个动点,且满足∠PBC=∠PCA,则线段AP长的最小值为()A.0.5B.﹣1C.2﹣D.【分析】先计算出∠PBC+∠PCB=45°,则∠BPC=135°,利用圆周角定理可判断点P 在以BC为弦的⊙O上,如图,连接OA交于P′,作所对的圆周角∠BQC,利用圆周角定理计算出则∠BOC=90°,从而得到△OBC为等腰直角三角形,四边形ABOC 为正方形,所以OA=BC=2,OB=,根据三角形三边的关系得到AP≥OA﹣OP(当且仅当A、P、O共线时取等号,即P点在P′位置),于是得到AP的最小值.【解答】解:∵△ABC为等腰直角三角形,∴∠ACB=45°,即∠PCB+∠PCA=45°,∵∠PBC=∠PCA,∴∠PBC+∠PCB=45°,∴∠BPC=135°,∴点P在以BC为弦的⊙O上,如图,连接OA交于P′,作所对的圆周角∠BQC,则∠BCQ=180°﹣∠BPC=45°,∴∠BOC=2∠BQC=90°,∴△OBC为等腰直角三角形,∴四边形ABOC为正方形,∴OA=BC=2,∴OB=BC=,∵AP≥OA﹣OP(当且仅当A、P、O共线时取等号,即P点在P′位置),∴AP的最小值为2﹣.故选:C.2.在△ABC中,∠BCA=90°,AC=BC=2,点P是同一平面内的一个动点,且满足∠BPC=90°,连接AP,线段AP的最小值和最大值分别是多少?【分析】由于∠BPC=90°,所以点P在以BC为直径的圆O上.以BC为直径作圆O,连结AO交圆于两点,则AP1最小,AP2最大.【解答】解:如图,以BC为直径作圆O,连结AO交圆于两点P1,P2,则AP1最小,AP2最大.∵AP1•AP2=AC2,AC=2,P1P2=2,∴AP1(AP1+2)=4,解得AP1=﹣1±(负值舍去),∴AP2=﹣1++2=1+.故线段AP的最小值和最大值分别是﹣1+和1+.3.如图,△ABC中.∠C=90°,点D是边BC上一个动点(点D不与点C重合).以CD为直径的圆交AD于点P.若AC=6.线段BP长度的最小值是2.则AB的长为()A.8B.2C.4D.2【分析】利用圆周角定理得到∠CPD=90°,则可判断点P在以AC为直径的⊙O上,如图,连接OB交⊙O于P′,利用点与圆的位置关系得到BP′=2,再利用勾股定理计算出BC,然后在Rt△ABC中利用勾股定理可计算出AB.【解答】解:∵CD为直径,∴∠CPD=90°,∵∠APC=90°,∴点P在以AC为直径的⊙O上,如图,连接OB交⊙O于P′,∵线段BP长度的最小值是2,∴BP′=2,∴OB=2+3=5,在Rt△OBC中,BC==4,在Rt△ABC中,AB==2.故选:D.【手拉手模型】如图,△ABC为等腰直角三角形,∠C=90°,点P为△ABC外一点,CP=,BP=3,AP的最大值是()A.+3B.4C.5D.3【分析】以CP为边作等腰直角△ECP,∠ECP=90°,由题意可证△ACP≌△BCE,可得AP=BE,根据三角形的三边关系可求BE的最大值,即可得AP的最大值.【解答】解:如图:以CP为边作等腰直角△ECP,∠ECP=90°∵△ECP是等腰直角三角形,∠ECP=90°∴EC=CP=,在Rt△ECP中,EP==2∵△ABC为等腰直角三角形,∠ACB=90°,∴AC=BC,∠ACB=∠ECP=90°∴∠ACP=∠ECB,且AC=BC,EC=CP∴△ACP≌△BCE(SAS)∴AP=BE若点E,点P,点B不共线时,BE<EP+BP;若点E,点P,点B共线时,BE=EP+BP;∴BE≤EP+PB=2+3=5∴BE的最大值为5即AP的最大值为5.总结:解决本题的关键是根据手拉手模型,把AP转化为BE,从而把问题转化三角形的三边关系问题.【瓜豆原理】如图,△ABC是边长为6的等边三角形,点D在边AB上,AD=2,点E是BC上一点,连结DE,将DE绕点D逆时针旋转60°得DF,连结CF,则CF的最小值为()A.2B.C.2D.6﹣3【分析】把△CDB绕点D逆时针旋转60°,得到△C′DB′,过点C作CF′⊥B′C′时,此时的CF′就是CF最小值的情况.因为等边△CBA底边AB上的高(点C到AB的距离)为3,根据∴,解得CF′值就是最小值.【解答】解:把△CDB绕点D逆时针旋转60°,得到△C′DB′,∵∠B=∠BDB′=60°,所以B′在BC上,BB′=BD=4.∵∠C′B′D=60°,∴∠CB′C′=60°,∴B′C′∥AB.过点C作CF′⊥B′C′时,此时的CF′就是CF最小值的情况.∵等边△CBA底边AB上的高(点C到AB的距离)为3,∴,解得CF′=.即CF最小值为.总结:另外这个问题,也可以通过取几个特殊点,观察F的轨迹,实际上是一条线段,然后从定点C到直线的最短距离就是从C点向B′C′作垂线段。
2019年中考数学一轮复习第八章专题拓展8.3几何最值问题试卷部分79
遇上你是我的今生的缘分
9
三、利用“隐形圆”求最值
1.(2018秦皇岛海港一模,13)如图,在矩形ABCD中,AB=3,BC=3 3 ,点P是BC边上的动点,现将△ PCD沿直线PD折叠,使点C落在点C1处,则点B到点C1的最短距离为 ( )
A.5 B.4 C.3 D.2
答案 C 将△PCD沿直线PD折叠,则DC=DC1,显然点C1在以点D为圆心,CD长为半径的圆上, 连接BD交☉D于一点,这个交点到点B的距离即为点B到点C1的最短距离,∵AB=CD=3,BC=3
思路分析 点A关于直线BD的对称点为点C,连接CE,AP+EP的最小值就是线段CE的长度;通 过证明△CDE≌△ABF,得CE=AF,即可得到PA+PE的最小值等于线段AF的长.
解后反思 本题考查轴对称,正方形的性质,主要依据“两点之间线段最短”.只要作出点A(或
点20E19)关年于5月直23线日BD的对称点C(或G),再连遇接上你EC是(或我A的G今),所生的得缘的分线段长为两条线段和的最小值.
AC,垂足为点Q,则PM+PQ的最小值为
.
答案 3
解析 作点M关于AB的对称点N,过N作NQ⊥AC于Q,交AB于P,
则NQ 的长即为PM+PQ的最小值,
设MN与AB交于点D,则MD⊥AB,DM=DN,
∵∠NPB=∠APQ,∴∠N=∠BAC=30°,
∵∠BAC=30°,AM=2,∴MD= 12 AM=1,∴MN=2,
6
2.(2017天津,11,3分)如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上的一个动 点,则下列线段的长等于BP+EP最小值的是 ( )
A.BC B.CE C.AD D.AC 答案 B 如图,连接PC,∵AB=AC,BD=CD,∴AD⊥BC, ∴PB=PC,∴PB+PE=PC+PE,∵PE+PC≥CE,∴当P、C、E三点共线时,PB+PE的值最小,最小 值为CE,故选B.
中考 最值问题复习题(带答案)
【最值问题复习】一、 将军饮马1. 如图,在矩形ABCD 中,AD=3,点E 为边AB 上一点,AE=1,平面内动点P 满足1=3PAB ABCD S S △矩形,则DP EP -的最大值为_____________.2. 如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △P AB =S 矩形ABCD ,则点P 到A 、B 两点距离之和P A +PB 的最小值为 .类型二:点到直线距离垂线段最短3.在平面直角坐标系中,原点O 到直线24y kx k =-+的最大距离为____________.4. 如图,在Rt △ABC 中,∠A =90°,AB =3,AC =4,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为( )A .2B .2.2C .2.4D .2.55. 如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 的距离的最小值是( )A .B .1C .D .6. 如图,直线y=x+4与x轴、y轴分别交于点A和点B,点D为线段OB的中点,点C、P分别为线段AB、OA上的动点,当PC+PD值最小时点P的坐标为.7. 如图,菱形ABCD中,∠ABC=60°,AB=4,对角线AC、BD交于点O,E是线段BO上一动点,F是射线DC上一动点,若∠AEF=120°,则线段EF的长度的整数值的个数有()A.1个B.2个C.3个D.4个8. 如图,在Rt△ABC中,∠ACB=90°,AC=10,BC=5,将直角三角板的直角顶点与AC边的中点P重合,直角三角板绕着点P旋转,两条直角边分别交AB边于M,N,则MN 的最小值是.9.如图,P是线段AB上异于端点的动点,且AB=6,分别以AP、BP为边,在AB的同侧作等边△APM和等边△BPN,则△MNP外接圆半径的最小值为.类型三、平行线间的距离为最值10.如图,菱形ABCD中,AB=4,∠A=120°,点M、N、P分别为线段AB、AD、BD上的任意一点,则PM+PN的最小值为.11. 如图,在等边△ABC中,AB=4,P、M、N分别是BC、CA、AB边上动点,则PM+MN的最小值是.类型四、利用三角形三边关系、三点共线取最值12. 如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与x轴相交于点A,与y轴相交于点B.点P在运动时,线段AB的长度也在发生变化,则线段AB长度的最小值为___________.13.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为.14.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为.类型五、构造圆球最值(圆外一点与圆上点的连线的距离最值问题)15.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为.16.在平面直角坐标系xOy中,A(3,0)、B(a,2)、C(0,m)、D(n,0),且m2+n2=4,若E为CD中点.则AB+BE的最小值为.17.如图,半径为2的⊙O分别与x轴,y轴交于A,D两点,⊙O上两个动点B,C,使∠BAC=60°恒成立,设△ABC的重心为G,则DG的最小值是.18.如图,在△ABC中,∠A=60°(∠B<∠C),E、F分别是AB、AC上的动点,以EF为边向下作等边三角形DEF,△DEF的中心为点O,连接CO.已知AC=4,则CO的最小值为___________.类型六、面积、周长最值问题19. 如图,⊙O 的半径是2,直线l 与⊙O 相交于A 、B 两点,M 、N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB =45°,则四边形MANB 面积的最大值是( )A .2B .4C .4D .820. 如图,在菱形ABCD 中,∠BAD =135°,AB =4,点P 是菱形ABCD 内或边上的一点,且∠DAP +∠CBP =90°,连接DP ,CP ,则△DCP 面积的最小值为 .21. 如图,sin ∠C =,长度为2的线段ED 在射线CF 上滑动,点B 在射线CA 上,且BC =5,则△BDE 周长的最小值为 .类型七、函数最值问题22.已知22(3)9(1)4y x x =-+--+,则y 的最大值为_____________.23.已知6213309,3b ___________.a b c b c a c =+=-+,且≥,≤则的最大值为24.如图,AB 为半圆的直径,点O 为圆心,AB=8,若P 为AB 反向延长线上的一个动点(不与点A 重合),过点P 作半圆的切线,切点为C ,过点B 作BD ⊥PC 交PC 的延长线于点D ,则AC+BD 的最大值为_______________.25. 如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接P A.设P A=x,PB=y,则(x﹣y)的最大值是.26.如图,在正方形ABCD中,AB=4,以B为圆心,BA长为半径画弧,点M为弧上一点,MN ⊥CD于N,连接CM,则CM-MN的最大值为.27. 如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为(结果留根号).类型八、胡不归与阿氏圆问题28. 如图,在平面直角坐标系中,A(﹣3,0),点B是y轴正半轴上一动点,点C、D在x 正半轴上.以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,则OP的最小值_________.29.如图,在△ABC中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则AD+BD的最小值是.30.如图,点C的坐标为(2,5),点A的坐标为(7,0),圆C的半径为10,点B在圆C上运动,则55OB AB+的最小值为_______________.31.如图,在平面直角坐标系中,点A(-1,0),B(0,22),点C是线段OB上的动点,则3AC BC+的最小值为_________,此时点C的坐标为_______________.【参考答案】1.【解答】 DP EP -≤1DE =22. 【解答】解:设△ABP 中AB 边上的高是h .∵S △P AB =S 矩形ABCD ,∴AB •h =AB •AD ,∴h =AD =2,∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 的长就是所求的最短距离. 在Rt △ABE 中,∵AB =5,AE =2+2=4,∴BE ===, 即P A +PB 的最小值为. 故答案为:.3.【解答】直线24y kx k =-+=24y k x =-+()过定点(2,4),OH ≤OA ,当OA 垂直于该直线时,距离最大,为254.【解答】解:连接AP,∵∠A=90°,PE⊥AB,PF⊥AC,∴∠A=∠AEP=∠AFP=90°,∴四边形AFPE是矩形,∴EF=AP,要使EF最小,只要AP最小即可,过A作AP⊥BC于P,此时AP最小,在Rt△BAC中,∠A=90°,AC=4,AB=3,由勾股定理得:BC=5,由三角形面积公式得:×4×3=×5×AP,∴AP=2.4,即EF=2.4,故选:C.5.【解答】解:如图所示:当PE∥AB.由翻折的性质可知:PF=FC=2,∠FPE=∠C=90°.∵PE∥AB,∴∠PDB=90°.由垂线段最短可知此时FD有最小值.又∵FP为定值,∴PD有最小值.又∵∠A=∠A,∠ACB=∠ADF,∴△AFD∽△ABC.∴,即=,解得:DF=3.2.∴PD=DF﹣FP=3.2﹣2=1.2.故选:D.6.【解答】解:作点D关于x轴对称点D′,过点D′作DC⊥AB于点C,与OA交于点P,则此时PC+PD值最小.当x=0时,y=x+4=4,∴OB=4;当y=0时,x+4=0,解得:x=﹣4,∴OA=4.∵OA=OB,∠AOB=90°,∴△AOB为等腰直角三角形,∴∠OBA=45°.∵D′C⊥AB,∴△BCD′为等腰直角三角形,∴∠BD′C=45°.在△OPD′中,∠POD′=90°,∠OD′P=45°,∴∠OPD′=45°,∴OP=OD′=OD.又∵点D为线段OB的中点,∴OD=2,∴OP=2,∴点P的坐标为(﹣2,0).故答案为:(﹣2,0).7.【解答】解:如图,连结CE,∵在菱形ABCD中,AB=BC,∠ABE=∠CBE=30°,BE=BE,∴△ABE≌△CBE,∴AE=CE,设∠OCE=a,∠OAE=a,∠AEO=90°﹣a,∴∠DEF=120°﹣(90°﹣a)=30°+a,∴∠EFC=∠CDE+∠DEF=30°+30°+a=60°+a,∵∠ECF=∠DCO+∠OCE=60°+a,∴∠ECF=∠EFC,∴CE=EF,∴AE=EF,∵AB=4,∠ABE=30°,∴在Rt△ABO中,AO=2,∵OA≤AE≤AB,∴2≤AE≤4,∴AE的长的整数值可能是2,3,4,即EF的长的整数值可能是2,3,4.故选:C.8.【解答】解:取MN的中点D连接PD,∵∠MPN=90°,∴MN=2PD,∴当PD⊥MN时,PD值最小,此时MN的值最小,如图所示,∵∠A=∠A,∠ADP=∠ACB=90°,∴△APD∽△ABC,∴,即,∴PD=,∴MN=2PD=2.故答案为:2.9.【解答】解:分别作∠A与∠B角平分线,交点为O,连接OP,∵△AMP和△NPB都是等边三角形,∴AO与BO为PM、PN垂直平分线.∵圆心O在PM、PN垂直平分线上,即圆心O是一个定点,若半径OP最短,则OP⊥AB.又∵∠OAP=∠OBP=30°,AB=6,∴OA=OB,∴AP=BP=3,∴在直角△AOP中,OP=AP•tan∠OAP=3×tan30°=,故答案为:.10.【解答】解:连接AC,过点A作AE⊥BC于点E,∵四边形ABCD是菱形,∴AB=AD,当PM⊥AB,PN⊥AD时,PM+PN的值最小,最小值=AD边上的高,设这个高为AE,•AB•PM+•AD•PN=AD•AE,PM+PN=AE,∵菱形ABCD中,AB=4,∠A=120°,∴∠ABC=60°,AB=BC=4,∴△ABC是等边三角形,∴BE=EC=2,∴AE==2.故答案为:2.11.【解答】解:作点B关于直线AC的对称点K,连接AK、CK,作点N关于直线AC 的对称点N′,作N′P′⊥BC于P′,交AC于M′,则线段N′P′的长即为PM+MN 的最小值(垂线段最短).∵△ABC是等边三角形,易知,四边形ABCK是菱形,N′P′是菱形的高=×4=2,∴PM+MN的最小值为2,故答案为2.12.【解答】线段AB长度的最小值为4,理由如下:连接OP,∵AB切⊙O于P,∴OP⊥AB,取AB的中点C,则AB=2OC;当OC=OP时,OC最短,即AB最短,此时AB=4;13.【解答】解:作AB的中点E,连接EM、CE.在直角△ABC中,AB===10,∵E是直角△ABC斜边AB上的中点,∴CE=AB=5.∵M是BD的中点,E是AB的中点,∴ME=AD=2.∵5﹣2≤CM≤5+2,即3≤CM≤7.∴最大值为7,故答案为:7.14.【解答】解:连结AE,如图1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD为直径,∴∠AED=90°,∴∠AEB=90°,∴点E在以AB为直径的⊙O上,∵⊙O的半径为2,∴当点O、E、C共线时,CE最小,如图2,在Rt△AOC中,∵OA=2,AC=4,∴OC==2,∴CE=OC﹣OE=2﹣2,即线段CE长度的最小值为2﹣2.故答案为2﹣2.15.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠P AB=∠PBC∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC﹣OP=5﹣3=2.∴PC最小值为2.故答案为2.16.【解答】解:由题意CD==2,∵E为CD中点,∴OE=CD=1,∴点E在O为圆心,1为半径的圆上,作点A关于直线y=2的对称点A′,连接OA′交直线y=2于B,交⊙O于E.此时BA+BE=BA′+BE的值最小.在Rt△OAA′中,OA′==5,∴EA′=5﹣1=4,∴BA+BE的最小值为4,故答案为:4.17.【解答】解:连接AG并延长,交BC于点F,∵△ABC的重心为G,∴F为BC的中点,∴OF⊥BC,∵∠BAC=60°,∴∠BOF=60°,∴∠OBF=30°,∴OF=OB=1,∵△ABC的重心为G,∴AG=AF,在AO上取点E,使AE=AO,连接GE,∵==,∠F AO=∠GAE,∴△AGE∽△AFO,∴=,∴GE=.∴G在以E为圆心,为半径的圆上运动,∴E(,0),∴DE==,∴DG的最小值是﹣,故答案为:﹣.18.【解答】连接OE、OD、OA,∠DAE+∠DOE=180°,所以A、E、O、D四点共圆,所以∠EAO=∠ODE=30°,所以点O在一条直线上运动,过点C向这条直线作垂线CH,所以CO的最小值为CH,最小值为2.19.【解答】【解答】解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA=2,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB 的面积最大,即M点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.故选:C.20.【解答】解:在菱形ABCD中,∵AD∥BC,∴∠DAB+∠ABC=180°,∵∠DAP+∠CBP=90°,∴∠P AB+∠PBA=90°,∴AP⊥PB,∴当△DCP面积的最小时,P到CD的距离最小,即P到AB的距离最大,∴当Rt△ABP是等腰直角三角形时,即P到AB的距离最大,∵∠CBA=45°,∴点P在BC边上,且AP⊥BC,过C作CF⊥AB于F,PE⊥AB于E,∴CF=BC=4,PE=AB=2,∴P到CD的距离=4﹣2,∴△DCP面积的最小值为:4×(4﹣2)=8﹣8,故答案为:8﹣8.21.【解答】解:如图作BK∥CF,使得BK=DE=2,作K关于直线CF的对称点G,连接BG交CF于D′,此时△BD′E′的周长最小.在Rt△BGK中,易知BK=2,GK=6,∴BG==2,∴△BDE周长的最小值为BE′+D′E′+BD′=KD′+D′E′+BD′=D′E′+BD′+GD′=D′E′+BG=2+2.故答案为:2+2.22.【解答】设点C(x,0),A(3,3),B(1,2)222222(3)9(1)4(3)(03)(1)(02)y x x x x=-+--+=-+---+-表示AC-BC的值,且AC-BC≤AB,当A,BC三点共线时,AC-BC取最大值AB,即5.23.【解答】13 6213309,c29,302a b c b c a b a=+===-,且≥,≤得≤≥,解得13962a ≤≤,所以393b 62a c a -+=-+的 取值范围是15133b 22a c -+-≤≤. 24. 【解答】连接BC ,易证△ABC ∽△CBD ,可得2BC AB BD =⋅,设AC=x ,在△ABC 中,22=64BC x -,所以2648x BD -=,所以288x AC BD x +=-++,所以当4x =时,取最大值4.25【解答】解:如图,作直径AC ,连接CP ,∴∠CP A =90°,∵AB 是切线,∴CA ⊥AB ,∵PB ⊥l ,∴AC ∥PB ,∴∠CAP =∠APB ,∴△APC ∽△PBA ,∴,∵P A =x ,PB =y ,半径为4,∴=,∴y =x 2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.26.【解答】过点H作BH⊥MC,易证△BHC∽△CNM,设CM=x,MN=y,由△BHC∽△CNM可得BC CHMC MN,代入可得y=x2,所以CM-MN= x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2.27.【解答】解:连接PM、PN.∵四边形APCD,四边形PBFE是菱形,∠DAP=60°,∴∠APC=120°,∠EPB=60°,∵M,N分别是对角线AC,BE的中点,∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,∴∠MPN=60°+30°=90°,设P A=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),∴MN===,∴a=3时,MN有最小值,最小值为2,故答案为2.28. 【解答】如图3,以OA为对称轴作等边△ADE,连接EP,并延长EP交x轴于点F.可证得,△AEP≌△ADB,∴∠AEP =∠ADB =120°,∴∠OEF =60°,∴OF =OA =3,∴点P 在直线EF 上运动,当OP ⊥EF 时,OP 最小,∴OP =OF =则OP 的最小值为.29. 【解答】考虑到D 点轨迹是圆,A 是定点,且要求构造23AD ,条件已经足够明显. 当D 点运动到AC 边时,DA=3,此时在线段CD 上取点M 使得DM=2,则在点D 运动过程中,始终存在23DM DA =. M A BCD D C B A M问题转化为DM+DB 的最小值,直接连接BM ,则AD +BD=DM+BD ≥BM=1030. 【解答】连接AC ,在AC 取一点M 使得2(2÷CM r BC =),易证得 △CBM ∽CAB 5=AB BM ,所以5=OB AB BM OB OM +≥,当O 、B 、M 三点共线时取最小值,由于点M 坐标为(3,4),OM=5,所以最小值为5.31. 【解答】13=3)3AC BC AC BC ++(,构造1sin =3α,故1tan =22α,取点D (1,0),连接BD ,作CH ⊥BD ,故1=3BC CH ,所以13=3)AC CH 3AC BC AC BC ++=+(≥AH ,当AH 垂直于BD 时,取最小值,由等积法可求得垂直时,AH 的最小值为423,所以3AC BC +的最小值为42,由相似可得此时点C 的坐标为2(0,)4.。
2019年数学中考真题知识点汇编48 几何最值(含解析).docx
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】一、选择题12.(2019·长沙)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+5 BD的最小值是【】A.25B.45C.53D.10【答案】B2.3.二、填空题16.(2019·黄冈)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8.点M为AB的中点.若∠CMD=120°,则CD的最大值是.【答案】14【解析】将△CAM沿CM翻折到△CA′M,将△DBM沿DM翻折至△DB′M,则A′M=B′M,∠AMC=∠A′MC,∠DMB=∠DMB′,∵∠CMD=120°,∴∠AMC+∠DMB=∠A′MC+∠DMB′=60°,∴∠A′MB′=180°-(∠AMC+∠DMB+∠A′MC+∠DMB′)=60°,∴△A′MB′是等边三角形,又∵AC=2,BD=8,AB=8.点M为AB的中点,∴A′B′=A′M=B′M=AM=12AB=4,CA′=AC=2,DB′=DB=8,又CD≤CA′+A′B′+DB′=2+4+8=14.三、解答题24.(2019山东威海,24,12分)如图,在正方形ABCD中,AB=10cm,E为对角线BD上一动点,连接AE,CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止,设△BEF的面积为ycm2,E点的运动时间为x秒.(1)求证:CE=EF;(2)求y与x之间关系的函数表达式,并写出自变量x的取值范围;(3)求△BEF面积的最大值.【解题过程】(1)证明:过E作MN∥AB,交AD于M,交BC于N,∵四边形ABCD是正方形,∴AD∥BC,AB⊥AD,∴MN⊥AD,MN⊥BC,∴∠AME=∠FNE=90°=∠NFE+∠FEN,∵AE⊥EF,∴∠AEF=∠AEM+∠FEN=90°,∴∠AEM=∠NFE,∵∠DBC=45°,∠BNE=90°,∴BN=EN=AM.∴△AEM≌△EFN(AAS).∴AE=EF.∵四边形ABCD是正方形,∴AD=CD,∠ADE=∠CDE,∵DE=DE,∴△ADE≌△CDE(SAS),∴AE=CE=EF.(2)在Rt△BCD中,由勾股定理得:BD=,∴0≤x≤.由题意,得BE=2x,∴BN=EN x.由(1)知:△AEM≌△EFN,∴ME=FN,∵AB=MN=10,∴ME=FN=10x,如图(1),当0≤x≤2时,∴BF=FN-BN=10x x=10-x.∴y=12BF·EN=1(102-=-2x2+(0≤x);如图(2),当2<x≤ ∴BF =BN -FNx -(10x)=-10, ∴y =12BF ·EN=12-=2x 2-(2≤x≤.∴222(022(2x x y x x ⎧-+≤≤⎪⎪=⎨⎪-<≤⎪⎩(1) (2) (3)y =-2x 2+5x =-2(x-524)2+254,∵-2<0, ∴当x =524时,y 有最大值是;即△BEF 面积的最大值是;当2<x ≤ y =2x 2-=22(4x --254, 此时2>0,开口向上,对称轴为直线x =4, ∵对称轴右侧,y 随x 的增大而增大, ∴当x =y 最大值=50.∴当x =BEF 面积的最大值是50.【知识点】四边形综合运用,二次函数的解析式,二次函数的最值问题,三角形全等的判定. 25.(2019山东省威海市,题号25,分值12) (1)方法选择如图①,四边形ABCD 是OO 的内接四边形,连接AC ,BD .AB =BC =AC . 求证:BD =AD +CD .小颖认为可用截长法证明:在DB 上截取DM =AD ,连接AM ..…… 小军认为可用补短法证明:延长CD 至点N ,使得DN =AD …… 请你选择一种方法证明.(2)类比探究【探究1】如图②,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD .BC 是⊙O 的直径,AB =AC .试用等式表示线段AD ,BD ,CD 之间的数量关系,并证明你的结论. 【探究2】如图③,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD .若BC 是⊙O 的直径,∠ABC =30°,则线段AD ,BD ,CD 之间的等量关系式是. (3)拓展猜想如图④,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD .若BC 是O 0的直径,BC :AC :AB =a :b :c ,则线段AD ,BD ,CD 之间的等量关系式是.【思路分析】(1)选小颖的截长法,如图①,在DB 上截取DM =AD ,连接AM ,由旋转全等得BM =CD ,∴BD =MD +BM =AD +CD(2)【探究1】数量关系为:BDAD +CD如图②,在DB 上截取AD =AN ,连接AN ,可得△AND 为等腰直角三角形,∴NDAD ,由旋转全等得BN =CD ,∴BD =ND +BNAD +CD 【探究2】数量关系为:BD =2AD图①图②B图③BC 图④BC如图③,在DB 上截取2AD =PD ,连接AP ,可得△APD 为30°的直角三角形, 由旋转相似得BPCD ,∴BD =PD +BP =2AD(3)拓展猜想数量关系为:BD =a bAD +cb CD如图④,过A 作AQ ⊥AD 交BD 于Q ,连接AQ ,由旋转相似得=BQ AB c CD AC b =,=DQ BC aAD AC b=, ∴BQ =c b CD ,BQ =a b AD ,∴BD =PD +BP =a bAD +c b CD【解题过程】(1)选小颖的截长法,如图①,在DB 上截取DM =AD ,连接AM ,可得△AMD 为等边三角形,可证△BAM ≌△CAD (SAS )得BM =CD ,∴BD =MD +BM =AD +CD(2)【探究1】数量关系为:BDAD +CD如图②,在DB 上截取AD =AN ,连接AN ,可得△AND 为等腰直角三角形,∴NDAD ,∠BAN =∠CAD ,可证△BAN ≌△CAD (SAS )得BN =CD ,∴BD =ND +BN+CD【探究2】数量关系为:BD =2AD如图③,在DB 上截取2AD =PD ,连接AP ,可得△APD 为30°的直角三角形,∴=tan 30AP ABAD AC=︒,∠BAP =∠CAD ,可证△BAP ∽△CAD 得BP,∴BD =PD +BP =2AD答案图①答案图②BCD(3)拓展猜想数量关系为:BD =a bAD +c b CD如图④,过A 作AQ ⊥AD 交BD 于Q ,连接AQ ,可得∠BAQ =∠CAD ,∠ABQ =∠ACD ,∠ADQ =∠ACB ,∠BAC =∠QAD ∴△BAP ∽△CAD ,△ADQ ∽△ACB ∴=BQ AB c CD AC b =,=DQ BC aAD AC b=, ∴BQ =c b CD ,BQ =a b AD ,∴BD =PD +BP =a bAD +cb CD26.(2019·益阳)如图,在半面直角坐标系xOy 中,矩形ABCD 的边AB=4,BC=6.若不改变矩形ABCD 的形状和大小,当形顶点A 在x 轴的正半轴上左右移动时,矩形的另一个顶点D 始终在y 轴的正半上随之上下移动. (1)当∠OAD=30°时,求点C 的坐标;(2)设AD 的中点为M ,连接OM 、MC ,当四边形 OMCD 的面积为221时,求OA 的长; (3)当点A 移动到某一位置时,点C 到点O 的距离有最大值,请直接写出最大值,并求此时cos ∠OAD 的值.第26题图 第26题备用图【解题过程】(1)如图1,过点C 作CE ⊥y 轴,垂足为E.答案图③B答案图④BC第26题答图1∵矩形ABCD 中,CD ⊥AD , ∴∠CDE+∠ADO=90°, 又∵∠OAD+∠ADO=90°, ∴∠CDE=∠OAD=30°. 在Rt △CED 中,CE=21CD=2, ∴DE=32242222=-=-CE CD ; 在Rt △OAD 中,∠OAD=30°, ∴OD=21AD=3. ∴点C 的坐标为(2,323+). (2)∵M 为AD 的中点, ∴DM=3,6=DCM S △. 又∵221=OMCD S 四边形, ∴29=ODM S △, ∴9=OAD S △. 设OA=x ,OD=y ,则⎪⎩⎪⎨⎧==+9213622xy y x , ∴xy y x 222=+,即0)(2=-y x , ∴x=y.将x=y 代入3622=+y x 得182=x ,解得23=x (23-不合题意,舍去), ∴OA 的长为23.(3)OC 的最大值为8.理由如下: 如图2,第26题答图2 ∵M 为AD 的中点,∴OM=3,522=+=DM CD CM .∴OC ≤OM+CM=8,当O 、M 、C 三点在同一直线时,OC 有最大值8.连接OC ,则此时OC 与AD 的交点为M ,过点O 作ON ⊥AD ,垂足为N. ∵∠CDM=∠ONM=90°,∠CMD=∠OMN , ∴△CMD ∽△OMN , ∴OM CMMN DM ON CD ==, 即3534==MN ON , 解得59=MN ,512=ON , ∴56=-=MN AM AN . 在Rt △OAN 中, ∵55622=+=AN ON OA ,∴55cos ==∠OA AN OAD . 26.(2019·衡阳)如图,在等边△ABC 中,AB =6cm ,动点P 从点A 出发以cm/s 的速度沿AB 匀速运动.动点Q 同时从点C 出发以同样的速度沿BC 延长线方向匀速运动.当点P 到达点B 时,点P 、Q 同时停止运动.设运动时间为t (s ).过点P 作PE ⊥AC 于E ,连接PQ 交AC 边于D .以CQ 、CE 为边作平行四边形CQFE . (1)当t 为何值时,△BPQ 为直角三角形;(2)是否存在某一时刻t ,使点F 在∠ABC 的平分线上?若存在,求出t 的值,若不存在,请说明理由;(3)求DE 的长;(4)取线段BC 的中点M ,连接PM ,将△BPM 沿直线PM 翻折,得△B ′PM ,连接AB ′,当t 为何值时,AB ′的值最小?并求出最小值.解:(1)∵△ABC 为等边三角形,∴∠B =60°,∵BP ⊥PQ ,∴2BP =BQ 即2(6-t )=6+t ,解得t =2.∴当t 为2时,△BPQ 为直角三角形;(2)存在.作射线BF ,∵PE ⊥AC ,∴AE =0.5t .∵四边形CQFE 是平行四边形,∴FQ =EC =6-0.5t ,∵BF 平分∠ABC ,∴∠FBQ +∠BQF =90°.∵BQ =2FQ ,BQ =6+t ,∴6+t =2(6-0.5t ),解得t =3.(3)过点P 作PG ∥CQ 交AC 于点G ,则△APG 是等边三角形.∵BP ⊥PQ ,∴EG =12AG .∵PG ∥CQ ,∴∠PGD =∠QCD ,∵∠PDG =∠QDC ,PG =PA =CG =t ,∴△PGD ≌△QCD .∴GD =12GC .∴DE =12AC =3.(4)连接AM ,∵△ABC 为等边三角形,点M 是BC 的中点,∴BM =3.由勾股定理,得AM =. 由折叠,得BM ′=3.当A 、B ′、M 在同一直线上时,AB ′的值最小,此时AB ′=3.MMMQBC过点B ′作B ′H ⊥AP 于点H ,则cos30°=AH AB ',t,解得t =9-∴t 为9-AB ′的值最小,最小值为3.1.(2019·重庆A 卷)如图,在平面在角坐标系中,抛物线y =x 2-2x -3与x 轴交与点A ,B (点A 在点B 的左侧)交y 轴于点C ,点D 为抛物线的顶点,对称轴与x 轴交于点E .(1)连结BD ,点M 是线段BD 上一动点(点M 不与端点B ,D 重合),过点M 作MN ⊥BD 交抛物线于点N (点N 在对称轴的右侧),过点N 作NH ⊥x 轴,垂足为H ,交BD 于点F ,点P 是线段OC 上一动点,当MN 取得最大值时,求HF +FP +13PC 的最小值;(2)在(1)中,当MN 取得最大值,HF +FP +13PC 取得小值时,把点P向上平移个2单位得到点Q ,连结AQ ,把△AOQ 绕点O 顺时针旋转一定的角度α(0°<α<360°),得到△A OQ '',其中边A Q ''交坐标轴于点G ,在旋转过程中,是否存在一点G ,使得OG Q Q ''∠=∠?若存在,请直接写出所有满足条件的点Q '的坐标;若不存在,请说明理由.解:(1)由题意得A (-1,0),B (3,0),C (0,-3),D (1,-4),直线BD :y =2x -6. 如答图1,连接DN 、BN ,则S △BDN =12BD •MN ,而BD 为定值,故当MN 最大时,S △BDN 取最大值.此时由S △M BBDN =S △DFN +S △BFN =12EH •FN +12BH •FN =12BE •FN =FN ,从而S △BDN 取最大值时,即为FN 有最大值.令N (m ,m 2-2m -3),则F (m ,2m -6),从而FN =(2m -6)-(m 2-2m -3)=-m 2+4m -3=-(m -2)2+1,此时,当且仅当m =2,FN 有最大值为1,于是N (2,-3),F (2,-2),H (2,0).在直角三角形中,设最小的直角边为a ,斜边为3a ,较长直角边为3,即可求出a =4,于是在x 轴上取点K (0),连接KC ,易求直线KC :y =-x -3.如答图1,过点F 作FR ⊥CK 于点R ,交OC 于点P ,作FT ⊥OC ,交CK 于点T ,则∠OCK =∠TFR ,于是,由△PCR ∽△ACO ∽△TFR ,得133PR OK a PC KC a ===,从而PR =13PC ,因此由FH 为定值,再由定点F 到直线的垂直线最短,可知MN 取得最大值时,HF +FP+13PC 最小值=HF +FR .在y =-x -3中,当y =-2,x =-4,于是FT =2+4.在Rt △FTR中,由3FR FT =,得FR =3FT =3(2+4)=133+,故HF +FP +13PC 最小值=2+13+(2)(,55--,()55-,(,)55,(55-. 2.(2019·重庆B 卷)在平面直角坐标系中,抛物线2y =++与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴与x 轴交于点Q .(1)如图1,连接AC ,BC .若点P 为直线BC 上方抛物线上一动点,过点P 作PE ∥y 轴交BC 于点E ,作PF⊥BC 于点F ,过点B 作BG ∥AC 交y 轴于点G .点H ,K 分别在对称轴和y 轴上运动,连接PH ,HK .当△PEF 的周长最大时,求PH +HKKG 的最小值及点H 的坐标. (2)如图2,将抛物线沿射线AC 方向平移,当抛物线经过原点O 时停止平移,此时抛物线顶点记作D ’,N 为直线DQ 上一点,连接点D ’,C ,N ,△D ’CN 能否构成等腰三角形?若能,直接写出满足条件的点N 的坐标;若不能,请说明理由.解:(1)∵2y x =+与x 轴交于A ,B 两点, ∴当y=0时,即20=++,∴122,4x x =-=,即A (-2,0),B (4,0), 设直线BC 的解析式为y =kx +b ,∵C (0,,B (4,0),备用图图1图2∴40b k b ⎧=⎪⎨+=⎪⎩,∴b k ⎧=⎪⎨=⎪⎩,∴直线BC的解析式为y =+设点2(,4),P m m +<< ∵PE ∥y 轴且点E 在直线BC上,∴(,E m +∠PEF =∠OCE ,∴2(04),PE m =<< ∵PF ⊥BC ,∴∠PFE =∠COB =90°,∴△PEF ∽△BCO ,设△PEF 的周长为1l ,△BCO 的周长为2l , 则12l PEl BC=,∵B (4,0),C (0,,∴BC=24l =+∴21)(04),l m =+<< ∴当m=2时,1l此时点P 的坐标为(2,), ∵A (-2,0),C (0,),∴∠ACO =30°,∠CAO =60°, ∵BG ∥AC ,∴.∠BGD =30°,∠OBG =60°,∴G (0,-, 直线BG解析式为y -PM解析式为y =,过点G 作GN ⊥BG ,过点P 作PM ⊥GN 于点M ,如图1,此时,点H 为PM 与对称轴的交点,K 为PM 与y 轴的交点,点K 与点O 重合, 则KM=OMKG ,PH +HKKG 的最小值为线段PM 的长.(此问题是胡不归问题).解法一:(作一线三直角利用相似求解)如图2,过点P 作PQ ∥x 轴交对称轴于点T ,图1N过点M作MQ⊥y轴交PT于点Q,过点G作GJ⊥MQ交MQ于点J.设点Q(n,,∴J(n,-,∴PQ=2-n,2-n),∵GJ=-n,∴MJ=,∴MQ+MJ=CG=(-=,2-n)+()=,∴n=-3,∴Q(-3,,∴PQ=5,∴PM=2PQ=10,∴PH+HKKG的最小值为10,∵∠OGM=60°,∠PHT=30°,∠HPT=60°,∴PT=1,∴HTH(1.解法二:由上面的解法可知MG⊥BG,直线MG的解析式为:y=-如图3,过点P作PR⊥x轴交MG于点R,∴R(2,,由第一种解法可知∠PRG=60°,∴PMP R()=10,∴PH+HKKG的最小值为10,同理可求H(1. 图2N(2)这样的N 点存在.当△'CD N 为等腰三角形时,这样的N有:1N,2N,3N,4N,5N .【提示】由(1)可知∠ACO=30°,∠OAC=60°,又∵221)y x =++=-D (1, ∵抛物线按射线AC的方向平移,设平移后顶点'(D a +,平移后的抛物线解析式为21)y x a =--该抛物线经过原点,则201)a =--+∴2280a a --=,∴a =4或a =-2(舍去),即D . 设点N (1,b )'CDCN ='ND =如图4,当△'CD N 为等腰三角形时,分三种情况: ①当'CD CN ==,可得1N,2N ; ②当''CD D N ==3N,4N ,N③当'CN D N ==可得5N , ∴当△'CD N 为等腰三角形时,这样的N有:1N,2N,3N,4N,5N .3.(2019·天津)已知抛物线y=x 2-bx+c(b,c 为常数,b>0)经过点A (-1,0),点M(m,0)是x 轴正半轴上的动点, (1)当b=2时,求抛物线的顶点坐标;(2)点D(b,y D )在抛物线上,当AM=AD,m=5时,求b 的值; (3)点Q(1b ,2+y Q )2QM +的最小值为4时,求b 的值. 解:(1)∵抛物线y=x 2-bx+c 经过点A (-1,0), ∴1+b+c=0,∴c=-1-b 当b=2时,c=-3,∴抛物线的解析式为y=x 2-2x-3, ∴顶点坐标为(1,-4) (2)由(1)知,c=-1-b , ∵点D(b,y D )在抛物线上, ∴y D =-b-1,∵b>0,∴b 02b >>,-b-1<0,∴D(b,-b-1)在第四象限,且在抛物线对称轴2bx =的右侧.如图,过点D 作DE ⊥x 轴于E ,则E (b ,0),∴AE=b+1=DE,所以1)b +, ∵m=5,∴AM=5-(-1)=6, ∴1)b +∴b=(3)∵点Q(1b ,2+y Q )在抛物线上, ∴yQ=2113)()12224b b b b b +-+--=--(, ∴点Q (1b ,2+3-24b -)在第四象限,且在直线x=b 的右侧,2QM +的最小值为4,A(-1,0) ∴取点N(0,1),如图,过点Q 作QH ⊥x 轴于H ,作QG ⊥AN 于G,QG 与x 轴交于点M ,则H (1b ,2+0),∠GAM=45°,∴GM=2AM ,∵M (m,0),∴AM=m+1,MH=1b 2m +-,QH=324b +, ∵MH=QH,∴1b 2m +-=324b +,∴m=1-24b , ∴AM=13-12424b b +=+,3)24b =+(2QM +33)2())24244b b +++=,∴b=4. 4.(2019·自贡)如图,已知直线AB 与抛物线:y =ax 2+2x +c 相交于点A (-1,0)和点B (2,3)两点. (1)求抛物线C 函数解析式;(2)若点M 是位于直线AB 上方抛物线上的一动点,以MA 、MB 为相邻的两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时平行四边形MANB 的面积S 及点M 的坐标; (3)在抛物线C 的对称轴上是否存在顶点F ,使抛物线C 上任意一点P 到F 的距离等于到直线y =174的距离,若存在,求出定点F 的坐标;若不存在,请说明理由.解:(1)将A (-1,0)和B (2,3)代入抛物线解析式得{a −2+c =04a +4+c =3解得,{a =−1c =3∴抛物线解析式为y =-x 2+2x +3.(2)过M 作MH ∥y 轴,交AB 于H ,设直线AB 为y =kx +b ,将A ,B 坐标代入得,{−k +b =02k +b =3解得,{k =1b =1.∴直线AB 的解析式为y =x +1.设M 为(m ,-m 2+2m +3),则H (m ,m +1) ∴MH =y M -Y H =(-m 2+2m +3)-( m +1)=-m 2+m +2. ∴S △ABM =S △AMH +S △BMH =12·MH ·(x B -x A ) =12·(-m 2+m +2)·(2+1)=-32(m 2-m )+3 =-32(m -12)2+278.∵四边形MANB 是以MA 、MB 为相邻的两边的平行四边形, ∴△ABM ≌△BAN .∴S 四边形MANB =2 S △ABM =-3(m -12)2+274,∵a =-3<0且开口向下,∴当m =12时,S 四边形MANB 的最大值为274.此时,M 坐标为(12,154). (3)存在,理由如下:过P 作直线y =174的垂线,垂足为T ,∵抛物线为y =-x 2+2x +3=-(x -1)2+4.∴抛物线的对称轴为直线x =1,顶点坐标为(1,4). 当P 为顶点,即P (1.4)时, 设F 点坐标为(1,t ), 此时PF =4-t ,PT =174-4=14.∵P 到F 的距离等于到直线y =174的距离,∴4-t =14,即t =154. ∴F 为(1,154)设P 点为(a ,-a 2+2a +3),由勾股定理,PF 2=(a -1)2+(-a 2+2a +3-154)2 =a 4-4a 3+132a 2-5a +2516.又∵PT 2=[174-(-a 2+2a +3)]2= a 4-4a 3+132a 2-5a +2516.∴PF 2=PT 2,即PF =PT .∴当F 为(1,154)时,抛物线C 上任意一点P 到F 的距离等于到直线y =174的距离 .27.(2019·淮安)如图①,在△ABC 中,AB=AC=3,∠BAC=100°,D 是BC 的中点.小明对图①进行了如下探究:在线段AD 上任取一点P ,连接PB.将线段PB 绕点P 按逆时针方向旋转80°,点B 的对应点是点E ,连接BE ,得到△BPE.小明发现,随着点P 在线段AD 上位置的变化,点E 的位置也在变化,点E 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧. 请你帮助小明继续探究,并解答下列问题: (1)当点E 在直线AD 上时,如图②所示. ①∠BEP=°;②连接CE ,直线CE 与直线AB 的位置关系是.(2)请在图③中画出△BPE ,使点E 在直线AD 的右侧,连接CE.试判断直线CE 与直线AB 的位置关系,并说明理由.(3)当点P 在线段AD 上运动时,求AE 的最小值.【解题过程】(1)①由题意得,PE=PB ,∠BPE=80°,∴∠BEP=︒=︒-︒50280180; ②如图所示,∵AB=AC ,D 是BC 的中点,∠BAC=100°, ∴∠ABC=︒=︒-︒402100180,∵∠BEP=50°,∴∠BCE=∠CBE=40°, ∴∠ABC=∠BCE , ∴CE ∥AB.答案:①50°;②平行(2)在DA 延长线上取点F ,使∠BFA=∠CFA=40°,总有△BPE ∽△BFC. 又∵△BPF ∽△BEC , ∴∠BCE=∠BFP=40°, ∴∠BCE=∠ABC=40°, ∴CE ∥AB.(3)当点P 在线段AD 上运动时,由题意得PB=PE=PC , ∴点B 、E 、C 在以P 为圆心、PB 为半径的圆上, 如图所示:∴AE 的最小值为AC=3.5.(2019·凉山州)如图,抛物线y = ax 2+bx +c 的图象过点A (-1,0)、B (3,0)、C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△P AC 的周长最小,若存在,请求出点 P 的坐标及△P AC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得 S △P AM =S △P AC ,若存在,请求出点M 的坐标;若不存在,请说明理由.解:(1)由题知⎪⎩⎪⎨⎧==++=+-30390c c b a c b a ,解得⎪⎩⎪⎨⎧==-=321c b a ,∴抛物线的解析式为y = -x 2+2x +3;(2)存在.连接BC 交抛物线对称轴于点P ,此时△P AC 的周长最小.设BC :y =kx +3,则3k +3=0,解得k =-1,∴BC :y =-x +3.由抛物线的轴对称性可得其对称轴为直线x =1,当x =1时,y =-x +3=2,∴P (1,2).在Rt △OAC 中,AC =2231+=10;在Rt △OBC 中,BC =2233+=32.∵点P 在线段AB 的垂直平分线上,∴P A =PB ,∴△P AC 的周长=AC +PC +P A = AC +PC +PB =AC +BC =10+32.综上,存在符合条件的点P ,其坐标为(1,2),此时△P AC 的周长为10+32;(3)存在.由题知AB =4,∴S △P AC =S △ABC -S △P AB =21×4×3-21×4×2=2.设:AP :y =mx +n ,则⎩⎨⎧=+=+-20n m n m ,解得⎩⎨⎧==11n m ,∴AP :y =x +1. ①过点C 作AP 的平行线交x 轴上方的抛物线于M ,易得CM :y =x +3,由⎩⎨⎧++-=+=3232x x y x y 解得⎩⎨⎧==3011y x ,⎩⎨⎧==4122y x ,∴M (1,4);②设抛物线对称轴交x 轴于点E (1,0),则S △P AC =21×2×2=2=S △P AC .过点E 作AP 的平行线交x 轴上方的抛物线于M ,设EM :y =x +t ,则1+t =0,∴t =-1,∴EM :y =x -1. 由⎩⎨⎧++-=-=3212x x y x y 解得⎪⎪⎩⎪⎪⎨⎧--=-=2171217111y x (舍),⎪⎪⎩⎪⎪⎨⎧+-=+=2171217122y x ,∴M (2171+,2171+-). 综上,存在符合条件的点M ,其坐标为(1,4)或(2171+,2171+-).27.(2019·苏州,26,10)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为cm/s,BC的长度为cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N 经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.图①图②图③(第27题)【解题过程】解:(1)∵t=2.5s时,函数图象发生改变,∴t=2.5s时,M运动到点B处,∴动点M的运动速度为52.52cm/s,∵t=7.5s时,S=0,∴t=7.5s时,M运动到点C处,∴BC=(7.5﹣2.5)×2=10(cm),故答案为2,10;(2)①∵两动点M ,N 在线段BC 上相遇(不包含点C ),∴当在点C 相遇时,v 527.53==(cm/s ),当在点B 相遇时,v 5102.5+==6(cm/s ),∴动点N 运动速度v (cm/s )的取值范围为23cm/s <v ≤6cm/s ; ②过P 作EF ⊥AB 于F ,交CD 于E ,如图所示:则EF ∥BC ,EF =BC =10,∴AF APAB AC=,∵AC==∴5AF =,解得AF =2,∴DE =AF =2,CE =BF =3,PF ==4, ∴EP =EF ﹣PF =6,∴S 1=S △APM =S △APF +S 梯形PFBM ﹣S △ABM 12=⨯4×212+(4+2x ﹣5)×312-⨯5×(2x ﹣5)=﹣2x +15,S 2=S △DPM =S △DEP +S 梯形EPMC ﹣S △DCM 12=⨯2×612+(6+15﹣2x )×312-⨯5×(15﹣2x )=2x , ∴S 1•S 2=(﹣2x +15)×2x =﹣4x 2+30x =﹣4(x 154-)22254+,∵2.5154<<7.5,在BC 边上可取,∴当x 154=时,S 1•S 2的最大值为2254.第27题答图6.(2019·巴中)如图,抛物线y =ax 2+bx -5(a ≠0)经过x 轴上的点A(1,0)和点B 及y 轴上的点C,经过B,C 两点的直线为y =x+n.①求抛物线的解析式;②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 描,求t 为何值时,△PBE 的面积最大,并求出最大值.③过点A 作AM ⊥BC 与点M,过抛物线上一动点N(不与点B,C 重合)作直线AM 的平行线交直线BC 于点Q,若点A,M,N,Q 为顶点的四边形是平行四边形.求点N 的横坐标.第26题图分析:①由点A 和直线y =x+n 可得方程组,解出系数,求得二次函数的解析式;②根据题意表示出三角形面积,利用二次函数最值进行求解;③分析得到AM 平行且等于NQ,设出坐标,利用坐标关系列方程进行求解,并检验. 解:①因为点B,C 在y =x+n 上,所以B(-n,0),C(0,n),因为点A(1,0)在抛物线上,所以250505a b an bn n ,解得,a =-1,b =6,所以抛物线的解析式为:y =-x 2+6x -5. ②由题意得:PB =4-t,,BE =2t ,由①可知:∠OBC =45°,点P 到BC 上的高h =BPsin45(4-t), 所以S △PBE =12BE h =22222t ,当t =2时,S 取得最大值为③因为l BC :y =x -5,所以B(5,0), 因为A(1,0),所以AB =4,在Rt △ABM 中,∠ABM =45°,AMAB =M(3,-3), 过点N 作x 轴的垂线交直线BC 于点P 交x 轴于点H, 设N(m,-m 2+6m -5),则H(m,0),P(m,m -5),易证△PQN 为等腰直角三角形,即NQ =PQ =所以PN =4.当NH+HP =4时,即-m 2+6m -5-(m -5)=4, 解之得,m 1=1,m 2=4.当m 1=1时,点N 与点A 重合,故舍去;当NH+HP =4时,即m -5-(-m 2+6m -5)=4, 解得,m 1541,m 2541,因为m>5,所以m 541; 当NH -HP =4,即-(-m 2+6m -5)-[-(m -5)]=4, 解得,m 1541,m 2541,因为m<0,所以m541.综上所述,要使点A,M,N,Q 为顶点的四边形是平行四边形,点N 的横坐标为:4541或541.第26题答图7.(2019·淄博)如图,顶点为M 的抛物线y =ax 2+bx +3与x 轴交于A (3,0),B (-1,0)两点,与y 轴交于点C .(1)求这条抛物线对应的函数表达式;(2)问在y 轴上是否存在点P ,使得△P AM 为直角三角形?若存在,求出点P 的坐标;若不存在,说明理由. (3)若在第一象限的抛物线下方有一动点D ,满足DA =OA ,过D 作DG ⊥x 轴于点G ,设△ADG 的内心为I ,试求CI 的最小值.解:(1)将A 、B 两点坐标代入抛物线表达式,得933030a b a b ++=⎧⎨-+=⎩,解得12a b =-⎧⎨=⎩.∴y =-x 2+2x +3.(2)假设存在点P ,使△P AM 是直角三角形.当点M 为直角顶点,过M 作CD ⊥y 轴,过A 作AD ⊥x 轴,交CD 于D ,CD 交y 轴于C ,∵∠AMP =90°, ∴∠CMP +∠AMD =90,∴∠CMP =∠MAD ,又∵∠DM =∠PCM ,∴△CPM ∽△DMA ,∴CM AD =PCMD, ∴14=2PC ,∴PC =12,∴P 1(0,72); 当点A 为直角顶点,过A 作CD ⊥x 轴,过M 作MD ⊥y 轴交AD 于D ,过P 作PC ⊥y 轴交CD 于C ,同上△CP A∽△DAM ,∴PC AD =AC MD ,∴34=2AC ,∴AC =32,∴P 2(0,-32); 当点P 为直角顶点,过M 作CM ⊥y 轴于C ,∴△CPM ∽△OAP ,∴PC AO =CM PO ,∴3PC =14-PC,∴PC =1或3,∴P 3(0,3),P 4(0,1).图综上所述,使△P AM 是直角三角形的点P 的是P 1(0,72),P 2(0,-32),P 3(0,3),P 4(0,1).(3)(方法1)由(1)得DA =OA =3,设D (x ,y ),△ADG 的内切圆半径为r ,则△ADG 的内心I 为(x +r ,r ), ∴DG =y ,AG =3-x由两点距离公式可得()2222339DA x y =-+==①由等面积法得r =()33+22y x DG AG DA +---==2y x-②∴()()2223CI x r r =++-③由①②③得(2229123124CI x y -⎡⎤⎡⎤⎛⎫=-+-+ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,2CI 在3335=512105x y =--,最小,此时CI 也最小,()()min 912253=10-242CI -=(方法2)简解:如图,由内心易知:∠DIA =135°,∠DAI =∠OAI ,△DAI ≌△OAI (SAS ),∴∠DIA =∠OIA =135°,则I 在圆周角∠OIA =135°⊙T 的圆周上运动,且半径R =322,圆心T 为(32,32),∴CI =3102在△CIA 中,CI ≥CT -IT =()310-22,当C 、I 、T 三点一线时,()min 3=10-22CI .8.(2019·枣庄)已知抛物线y =ax 2+32x+4的对称轴是直线x =3,与x 轴相交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C.(1)求抛物线的解析式和A 、B 两点的坐标;(2)答图1Iy 12(2)如图1,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC面积的最大值;若不存在,请说明理由.(3)如图2,若点M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求点M 的坐标.解:(1)抛物线y=ax2+32x+4的对称轴为:x=332224ba a a-=-=-=3,∴a=14-,∴抛物线的解析式为:y=14-x2+32x+4,令y=0,得14-x2+32x+4=0,解之,得,x1=-2,x2=8,∵点B在点A的右侧,∴A(-2,0),B(8,0);(2)连接BC,在抛物线y=14-x2+32x+4中,令x=0,得y=4,∴C(0,4),∴OC=4,OB=8,∴S△OBC=16,∵B(8,0),C(0,4),设l BC:y=kx+b,得0=8k+b,4=b,∴k=12-,b=4,l BC:y=12-x+4,∴过点P作PD∥y轴交BC于点D,过点C作CE垂直PD于点E,过点B作BF⊥PD于点F,则S△PBC=S△PCD+S△PBD=12PD×CE+12PD×BF=12PD×(CE+BF)=12PD×(x B-x C)=12PD×8=4PD,∵点P在抛物线上,设点P(x,14-x2+32x+4),∵PD∥y轴,点D在直线BC上,∴D(x,12-x+4),∵点P在B,C间的抛物线上运动,∴PD=y P-y D=14-x2+32x+4-(12-x+4)=14-x2+2x,S△PBC=4PD=4(14-x2+2x)=-x2+8x=-(x-4)2+16,∴当x=4时,S△PBC取最大值16,∴此时S四边形OBPC=S△OBC+S△PBC=32;第25题答图(3)∵MN∥y轴,∴设M,N的横坐标为m,∵点M在抛物线上,设点M(m,n),其中n=14-m2+32m+4,点N在直线BC上,∴N(m,12-m+4),∵点M 是抛物线上任意一点,∴点M 和点N 的上下位置关系不确定,∴MN =|14-m 2+32m+4-(12-m+4)|=|14-x 2+2x|,∵MN =3,∴|14-x 2+2x|=3,即14-x 2+2x =3或14-x 2+2x =-3,解这两个方程,得m 1=2,m 2=6, m 3=4+4=4-∴n 1=6, n 2=4, n 3-1, n 4-1,∴M 1(2,6), M 2(6,4), M 3(4+-1), M 4(4--1).9.(2019· 聊城)如图,在平面直角坐标系中,抛物线y =ax 2+bx+c 与x 轴交于点A(-2,0),点B(4,0),与y 轴交于点C(0,8),连接BC,又已知位于y 轴右侧且垂直于x 轴的动直线l,沿x 轴正方向从O 运动到B(不含O 点和B 点),且分别交抛物线,线段BC 以及x 轴于点P,D,E. (1)求抛物线的表达式;(2)连接AC,AP,当直线l 运动时,求使得△PEA 和△AOC 相似的点P 的坐标; (3)作PF ⊥BC,垂足为F,当直线l 运动时,求Rt △PFD 面积的最大值.第25题图解:(1)由已知,将C(0,8)代入y =ax 2+bx+c,∴c =8,将点A(-2,0)和B(4,0)代人y =ax 2+bx+8,得428016480a b a b -+=⎧⎨++=⎩,解得12a b =-⎧⎨=⎩,∴抛物线的表达式为y =-x 2+2x+8; (2)∵A(-2,0),C(0,8),∴OA =2,OC =8,∵l ⊥x 轴,∠PEA =∠AOC =90°,∵∠PAE ≠∠CAO,只有当∠PAE =∠ACO 时,△PEA ∽△AOC.此时AE PECO AO=,∴AE =4PE.设点P 的纵坐标为k,则PE =k,AE =4k,∴OE =4k -2,P 点的坐标为(4k -2,k),将P(4k -2,k)代入y =-x 2+2x+8,得-(4k -2)2+2(4k -2)+8=k,解得k 1=0(舍去),k 2=2316,当k =2316时,4k -2=154,∴P 点的坐标为(154,2316). (3)在Rt △PFD 中,∠PFD =∠COB =90°,∵l ∥y 轴,∴∠PDF =∠OCB,∴Rt △PFD ∽Rt △BOC,∴2PFD=S PD S BC ⎛⎫ ⎪⎝⎭△△BOC,∴S △PFD =2PD S BC ⎛⎫⋅ ⎪⎝⎭△BOC ,由B(4,0)知OB =4,又∵OC =8,∴BC 又S △BOC =12OB OC ⋅=16,∴S △PFD =215PD ,∴当PD 最大时,S △PFD 最大.由B(4,0),C(0,8)可解得BC 所在直线的表达式为y =-2x+8,设P(m,-m 2+2m+8),则D(m,-2m+8),∴PD =-(m -2)2+4,当m =2时,PD 取得最大值4,∴当PD =4时,S △PFD =165,为最大值.10.(2019·济宁)如图1,在矩形ABCD 中,AB =8,AD =10,E 是CD 边上一点,连接AE ,将矩形ABCD 沿AE 折叠,顶点D 恰好落在BC 边上点F 处,延长AE 交BC 的延长线于点G . (1)求线段CE 的长;(2)如图2,M ,N 分别是线段AG ,DG 上的动点(与端点不重合),且∠DMN =∠DAM ,设AM =x ,DN =y . ①写出y 关于x 的函数解析式,并求出y 的最小值;②是否存在这样的点M ,使△DMN 是等腰三角形?若存在,请求出x 的值;若不存在,请说明理由.解:(1)由折叠可得AF =AD =10,EF =ED ,矩形ABCD 中,∠B =90°,∴AB 2+BF 2=AF 2,∴6,BF ==∴CF =BC -BF =AD -BF =10-6=4.设CE =x ,则EF =DE =CD -CE =AB -CE =8-x ,∵EF 2=CE 2+CF 2.∴(8-x )2=x 2+42.∴x =3,∴CE =3. (2)①∵矩形ABCD 中,AD ∥BC ,∴∠DAG =∠AGF , ∵∠DAG =∠F AG , ∠DAG =∠AGF , ∴∠F AG =∠AGF ,∴AF =FG =10, ∴BG =BF +FG =6+10=16. ∵矩形ABCD 中∠B =90°,∴AB 2+BG 2=AG 2,∴AG ===∵AD =FG ,AD ∥FG ,∴四边形AFGE 是平行四边形, 又∵AD =AF ,∴平行四边形AFGE 是菱形,∴DG =DA =10, ∴∠DAG =∠DGA ,∵∠DMG =∠DMN +∠NAG =∠DAM +∠ADM , ∠DMN =∠DAM , ∴∠NMG =∠ADM .在△ADM 和△MNG 中,∠ADM =∠NMG , ∠DAG =∠DGA , ∴△ADM ∽△GMN .∴AD AMMG NG=10xy=-,∴2110105y x x=-+,∵110>0,∴当51210x=-=⨯时,y有最小值为214101021410⎛⨯⨯-⎝⎭=⨯.∴y关于x的函数解析式是:2110105y x x=-+,当x=y有最小值为2.②在△DMN和△DMG中,∠DMN=∠DGM,∠MDG=∠MDG,∴△DMN和△DMG是相似三角形.当△DMG是等腰三角形时,△DMN也是等腰三角形.∵M不与A重合,∴DM≠DG,∴△DMG是等腰三角形只有GM=GD或DM=GM两种情况:(1)如图3,当△DMG中GM=GD=10时,△DMN也是等腰三角形,即x=AG-MG=10;(2)如图4,当△DMG中DM=GM时,△DMN也是等腰三角形,∴∠MDG=∠DGM,∴∠DAG=∠MDG=∠MDG,∴△ADG∽△DMG,∴AD AGMG DG=,=,∴x.综上:当x的值为2或2时,△DMN是等腰三角形.11.(2019·滨州)如图①,抛物线y=-x2+x+4与y轴交于点A,与x轴交于点B,C,将直线AB绕点A 逆时针旋转90°,所得直线与x轴交于点D.(1)求直线AD的函数解析式;(2)如图②,若点P是直线AD上方抛物线上的一个动点①当点P到直线AD的距离最大时,求点P的坐标和最大距离;②当点P到直线AD的距离为时,求sin∠P AD的值.解:(1)当x=0时,y=4,则点A的坐标为(0,4),………………………………………1分当y=0时,0=-x2+x+4,解得x1=-4,x2=8,则点B的坐标为(-4,0),点C的坐标为(8,0),∴OA=OB=4,∴∠OBA=∠OAB=45°.∵将直线AB绕点A逆时针旋转90°得到直线AD,∴∠BAD=90°,∴OAD=45°,∴∠ODA=45°,∴OA=OD,∴点D的坐标为(4,0).………………………………………………………………………2分设直线AD的函数解析式为y=kx+b,,得,即直线AD的函数解析式为y=-x+4.……………………………………………………………4分(2)作PN⊥x轴交直线AD于点N,如右图①所示,设点P的坐标为(t,-t2+t+4),则点N的坐标为(t,-t+4),∴PN=(-t2+t+4)-(-t+4)=-t2+t,………………………………………………6分∴PN⊥x轴,∴PN∥y轴,∴∠OAD=∠PNH=45°.作PH⊥AD于点H,则∠PHN=90°,∴PH==(-t2+t)=t=-(t-6)2+,∴当t=6时,PH取得最大值,此时点P的坐标为(6,),………………………………8分即当点P到直线AD的距离最大时,点P的坐标是(6,),最大距离是.………………9分②当点P到直线AD的距离为时,如右图②所示,则t=,解得t1=2,t2=10,………………………………………………………………………10分则P1的坐标为(2,),P2的坐标为(10,-).当P1的坐标为(2,),则P1A==,∴sin∠P1AD==;…………………………………………………………12分当P2的坐标为(10,-),则P2A==,∴sin∠P2AD==;由上可得,sin∠P AD的值是或.……………………………………………14分中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
专题21 最值问题-2019年中考数学年年考的28个重点微专题(原卷版)
专题21 最值问题一、基础知识在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要为以下几种:1.二次函数的最值公式二次函数2y ax bx c =++(a 、b 、c 为常数且0a ≠)其性质中有 ①若0a >当2b x a =-时,y 有最小值。
2min 44ac b y a -=; ②若0a <当2b x a =-时,y 有最大值。
2max 44ac b y a -=。
利用二次函数的这个性质,将具有二次函数关系的两个变量建立二次函数,再利用二次函数性质进行计算,从而达到解决实际问题之目的。
2.一次函数的增减性一次函数(0)y kx b k =+≠的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
3. 判别式法根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得0∆≥,进而求出y 的取值范围,并由此得出y 的最值。
4.构造函数法“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。
5. 利用非负数的性质在实数范围内,显然有22a b k k ++≥,当且仅当0a b ==时,等号成立,即22a b k ++的最小值为k 。
6. 零点区间讨论法用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。
7. 利用不等式与判别式求解在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。
8. “夹逼法”求最值在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。
二、专题典型例题考法及其解析【例题1】二次函数y=2(x ﹣3)2﹣4的最小值为 . 【例题2】要使代数式x 32 有意义,则x 的( )A.最大值为32 B.最小值为32 C.最大值为23 D.最大值为23 【例题3】如图,MN 是⊙O 的直径,MN=4,∠AMN=40°,点B 为弧AN 的中点,点P 是直径MN 上的一个动点,则PA+PB 的最小值为 .三、最值问题提训练题及其答案和解析1.如图,AB 是⊙O 的弦,AB=5,点C 是⊙O 上的一个动点,且∠ACB=45°,若点M 、N 分别是AB 、AC 的中点,则MN 长的最大值是 .2.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x <15)之间的函数关系式,并求出第几天时销售利润最大? 时间(天)1≤x <9 9≤x <15 x ≥15 售价(元/斤)第1次降价后的价格 第2次降价后的价格 销量(斤)80-3x 120-x 储存和损耗费用(元) 40+3x 3x 2-64x +400(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?3. 某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x 只玩具熊猫的成本为R (元),售价每只为P (元),且R 、P 与x 的关系式分别为50030R x =+,1702P x =-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学最值问题解决几何最值问题的通常思路两点之间线段最短;直线外一点与直线上所有点的连线段中,垂线段最短;三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.几何最值问题中的基本模型举例轴对称最值图形lPBANM lBAAPBl 原理两点之间线段最短两点之间线段最短三角形三边关系特征A,B为定点,l为定直线,P为直线l上的一个动点,求AP+BP的最小值A,B为定点,l为定直线,MN为直线l上的一条动线段,求AM+BN的最小值A,B为定点,l为定直线,P为直线l上的一个动点,求|AP-BP|的最大值转化作其中一个定点关于定直线l的对称点先平移AM或BN使M,N重合,然后作其中一个定点关于定直线l的对称点作其中一个定点关于定直线l的对称点折叠最值图形B'NMCAB原理两点之间线段最短特征在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折,B点的对应点为B',连接AB',求AB'的最小值.转化转化成求AB'+B'N+NC的最小值二、典型题型1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为.【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.∵PC关于OA对称,∴∠COP=2∠AOP,OC=OP同理,∠DOP=2∠BOP,OP=OD∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.∴△COD是等腰直角三角形.则CD=2OC=2×32=6.【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键.2.如图,当四边形P ABN的周长最小时,a=.【分析】因为AB,PN的长度都是固定的,所以求出P A+NB的长度就行了.问题就是P A+NB什么时候最短.把B点向左平移2个单位到B′点;作B′关于x轴的对称点B″,连接AB″,交x轴于P,从而确定N点位置,此时P A+NB最短.设直线AB″的解析式为y=kx+b,待定系数法求直线解析式.即可求得a的值.【解答】解:将N点向左平移2单位与P重合,点B向左平移2单位到B′(2,﹣1),作B′关于x轴的对称点B″,根据作法知点B″(2,1),设直线AB″的解析式为y=kx+b,则123k bk b=+⎧⎨-=+⎩,解得k=4,b=﹣7.∴y=4x﹣7.当y=0时,x=74,即P(74,0),a=74.故答案填:74.【题后思考】考查关于X轴的对称点,两点之间线段最短等知识.3.如图,A 、B 两点在直线的两侧,点A 到直线的距离AM =4,点B 到直线的距离BN =1,且MN =4,P 为直线上的动点,|P A ﹣PB |的最大值为 .D PB′N BMA【分析】作点B 于直线l 的对称点B ′,则PB =PB ′因而|P A ﹣PB |=|P A ﹣PB ′|,则当A ,B ′、P 在一条直线上时,|P A ﹣PB |的值最大.根据平行线分线段定理即可求得PN 和PM 的值然后根据勾股定理求得P A 、PB ′的值,进而求得|P A ﹣PB |的最大值.【解答】解:作点B 于直线l 的对称点B ′,连AB ′并延长交直线l 于P . ∴B ′N =BN =1,过D 点作B ′D ⊥AM , 利用勾股定理求出AB ′=5 ∴|P A ﹣PB |的最大值=5.【题后思考】本题考查了作图﹣轴对称变换,勾股定理等,熟知“两点之间线段最短”是解答此题的关键.4.动手操作:在矩形纸片ABCD 中,AB =3,AD =5.如图所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A ′在BC 边上可移动的最大距离为 .【分析】本题关键在于找到两个极端,即BA ′取最大或最小值时,点P 或Q 的位置.经实验不难发现,分别求出点P 与B 重合时,BA ′取最大值3和当点Q 与D 重合时,BA ′的最小值1.所以可求点A ′在BC 边上移动的最大距离为2.【解答】解:当点P 与B 重合时,BA ′取最大值是3, 当点Q 与D 重合时(如图),由勾股定理得A ′C =4,此时BA ′取最小值为1. 则点A ′在BC 边上移动的最大距离为3﹣1=2. 故答案为:2【题后思考】本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺乏动手操作习惯,单凭想象造成错误.5.如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4,点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点A 的落点记为P .当P 落在直角梯形ABCD 内部时,PD 的最小值等于 .【分析】如图,经分析、探究,只有当直径EF最大,且点A落在BD上时,PD最小;根据勾股定理求出BD的长度,问题即可解决.【解答】解:如图,∵当点P落在梯形的内部时,∠P=∠A=90°,∴四边形PF AE是以EF为直径的圆内接四边形,∴只有当直径EF最大,且点A落在BD上时,PD最小,此时E与点B重合;由题意得:PE=AB=8,由勾股定理得:BD2=82+62=80,∴BD=45,∴PD=458 .【题后思考】该命题以直角梯形为载体,以翻折变换为方法,以考查全等三角形的判定及其性质的应用为核心构造而成;解题的关键是抓住图形在运动过程中的某一瞬间,动中求静,以静制动.6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为.【分析】取AB的中点E,连接OD、OE、DE,根据直角三角形斜边上的中线等于斜边的一半可得OE=AB,利用勾股定理列式求出DE,然后根据三角形任意两边之和大于第三边可得OD过点E时最大.【解答】解:如图,取AB的中点E,连接OD、OE、DE,∵∠MON=90°,AB=2∴OE=AE=12AB=1,∵BC=1,四边形ABCD是矩形,∴AD=BC=1,∴DE2,根据三角形的三边关系,OD<OE+DE,∴当OD过点E是最大,最大值为2+1.故答案为:2+1.【题后思考】本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,勾股定理,确定出OD过AB的中点时值最大是解题的关键.7.如图,线段AB的长为4,C为AB上一动点,分别以AC、BC为斜边在AB的同侧作等腰直角△ACD 和等腰直角△BCE,那么DE长的最小值是.【分析】设AC=x,BC=4﹣x,根据等腰直角三角形性质,得出CD=22x,CD′=22(4﹣x),根据勾股定理然后用配方法即可求解.【解答】解:设AC=x,BC=4﹣x,∵△ABC,△BCD′均为等腰直角三角形,∴CD=22x,CD′=22(4﹣x),∵∠ACD=45°,∠BCD′=45°,∴∠DCE=90°,∴DE2=CD2+CE2=12x2+12(4﹣x)2=x2﹣4x+8=(x﹣2)2+4,∵根据二次函数的最值,∴当x取2时,DE取最小值,最小值为:4.故答案为:2.【题后思考】本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.8.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK 的最小值为.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,∵AB=2,∠A=120°,∴点P′到CD的距离为2×33∴PK+QK3故答案为:3.【题后思考】本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.9.如图所示,正方形ABCD的边长为1,点P为边BC上的任意一点(可与B、C重合),分别过B、C、D作射线AP的垂线,垂足分别为B′、C′、D′,则BB′+CC′+DD′的取值范围是.【分析】首先连接AC,DP.由正方形ABCD的边长为1,即可得:S△ADP=12S正方形ABCD=12,S△ABP+S△ACP=S△ABC=12S正方形ABCD=12,继而可得12AP•(BB′+CC′+DD′)=1,又由1≤AP≤2,即可求得答案.【解答】解:连接AC,DP.∵四边形ABCD是正方形,正方形ABCD的边长为1,∴AB=CD,S正方形ABCD=1,∵S△ADP=12S正方形ABCD=12,S△ABP+S△ACP=S△ABC=12S正方形ABCD=12,∴S△ADP+S△ABP+S△ACP=1,∴12AP•BB′+12AP•CC′+12AP•DD′=12AP•(BB′+CC′+DD′)=1,则BB′+CC′+DD′=2 AP,∵1≤AP≤2,∴当P与B重合时,有最大值2;当P与C重合时,有最小值2.∴2≤BB′+CC′+DD′≤2.故答案为:2≤BB′+CC′+DD′≤2.【题后思考】此题考查了正方形的性质、面积及等积变换问题.此题难度较大,解题的关键是连接AC,DP,根据题意得到S△ADP+S△ABP+S△ACP=1,继而得到BB′+CC′+DD′=2 AP.10.如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A 和⊙B上的动点,则PE+PF的最小值是.【分析】利用菱形的性质以及相切两圆的性质得出P与D重合时PE+PF的最小值,进而求出即可.【解答】解:由题意可得出:当P与D重合时,E点在AD上,F在BD上,此时PE+PF最小,连接BD,∵菱形ABCD中,∠A=60°,∴AB=AD,则△ABD是等边三角形,∴BD=AB=AD=3,∵⊙A、⊙B的半径分别为2和1,∴PE=1,DF=2,∴PE+PF的最小值是3.故答案为:3.【题后思考】此题主要考查了菱形的性质以及相切两圆的性质等知识,根据题意得出P点位置是解题关键.。