Volume comparison and its applications in Riemann–Finsler geometry
行波离子迁移谱技术及应用研究进展
第 29 卷第 3 期分析测试技术与仪器Volume 29 Number 3 2023年9月ANALYSIS AND TESTING TECHNOLOGY AND INSTRUMENTS Sep. 2023综述(231 ~ 244)行波离子迁移谱技术及应用研究进展潘慢慢1, 2 ,李 杭2 ,徐一仟1, 2 ,杨其穆1, 2 ,蒋丹丹2 ,王卫国2 ,陈 创2, 3 ,李海洋2(1. 中国科学院大学,北京 100049;2. 中国科学院大连化学物理研究所,辽宁大连 116023;3. 国民核生化灾害防护国家重点实验室,北京 102205)摘要:离子迁移谱(ion mobility spectrometry,IMS)是利用离子迁移率K(离子碰撞截面)差异来实现不同离子的分离与测定,具有分析速度快、检测灵敏度高的优点,其与质谱联用在蛋白质组学、代谢组学、医药等领域已获得了广泛的应用. 随着分析对象复杂性的增加,对IMS的分辨能力也提出了更高要求. 行波离子迁移谱(travelling wave ion mobility spectrometry,TWIMS)采用时域连续的行波电场实现离子传输与分离,其分析通道的长度不受行波电压幅值的限制,理论上可以无限延长离子分析通道来提高分辨能力. 目前,TWIMS的分辨率最高可达1 860,对于分析存在多种同分异构体的复杂样品别具优势. 对TWIMS的原理及分辨能力的影响因素进行了介绍,进一步探讨了不同结构TWIMS仪器的特点、性能和应用,对TWIMS未来发展方向进行了展望.关键词:离子碰撞截面;行波离子迁移谱;循环式离子迁移谱;无损离子操纵结构;离子淌度质谱中图分类号:O657. 63 文献标志码:A 文章编号:1006-3757(2023)03-0231-14DOI:10.16495/j.1006-3757.2023.03.001Advancement of Traveling Wave Ion Mobility Spectrometry andIts ApplicationPAN Manman1, 2, LI Hang2, XU Yiqian1, 2, YANG Qimu1, 2, JIANG Dandan2,WANG Weiguo2, CHEN Chuang2, 3, LI Haiyang2(1. University of Chinese Academy of Sciences, Beijing 100049, China;2. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning China;3. State Key Laboratory of NBC Protection forCivilian, Beijing 102205, China)Abstract:Ion mobility spectrometry (IMS) utilizes the difference in ion mobility K (collision cross section) to realize the separation and determination of different ions, which has the advantages of fast analysis speed and high sensitivity. And it coupling with mass spectrometry (IM-MS) was widely used in the fields of proteomics, metabolomics, medicine, etc.With the increasing complexity of the analyzed objects, higher demands are put on the resolution of the IMS. Traveling wave ion mobility spectrometry (TWIMS) uses a time-domain continuous traveling wave electric field to realize ion transport and separation. The analytical path length of the TWIMS is not limited by the amplitude of the travelling wave收稿日期:2023−05−24; 修订日期:2023−07−13.基金项目:国家自然科学基金项目(Nos. 22027804, 21974141),国民核生化灾害防护国家重点实验室科研基金项目(SKLNBC2021-16),大连化物所创新研究基金项目(DICP I202141)[Natural Science Foundation of China (Nos.22027804, 21974141), State Key Laboratory of NBC Protection for Civilian (SKLNBC2021-16), Dalian Institute of Chemical Physics (DICP I202141)]作者简介:潘慢慢(1998−),女,博士研究生,主要从事质谱分析工作,E-mail:通信作者:陈创(1984−),男,博士,《分析测试技术与仪器》青年编委,主要从事质谱分析工作,E-mail:;李海洋(1964−),男,博士,《分析测试技术与仪器》编委,主要从事质谱分析工作,E-mail:.voltage, theoretically the path can be extended indefinitely to improve the resolution. Currently, the resolution of TWIMS can reach up to 1 860, which is advantageous for the analysis of complex samples with the multiple isomers. The principle of TWIMS and the influencing factors of resolution were introduced, the characteristics, performance and applications of TWIMS instruments with different structures were further discussed, and finally the future development directions of TWIMS were prospected.Key words:collision cross section;travelling wave ion mobility spectrometry;cyclic ion mobility spectrometry;structure for lossless ion manipulation;ion mobility-mass spectrometry离子迁移谱(ion mobility spectrometry,IMS)是利用电场驱动气相离子在中性气体中迁移从而实现不同迁移率离子分离和识别的一种技术[1]. IMS能够灵敏检测pg或ng/L量级的目标物,并且具有ms级单谱图分析速度、适用于发展便携式仪器等优点,被广泛应用于化学战剂监测、爆炸物检测等领域. IMS与质谱(mass spectrometry,MS)的联用结合了IMS灵敏、快速、能提供离子结构信息和MS提供精确质量信息的特点,在食品安全、医药和生物分析等领域得到了迅速发展[2-6].在低电场条件下(E/N<2 Td),离子在中性气体中的迁移速度V d与电场强度E成正比,比例系数即为离子迁移率K,其关系如式(1):根据Revercomb等[7]对电场作用下气相离子的运动进行的研究,离子迁移率K与碰撞截面(collision cross section,CCS)满足式(2):其中,z是电荷数,e是单位电荷,N是中性气体的分子数密度,µ是离子和中性气体分子的约化质量,k是玻尔兹曼常数,T eff是有效温度,α为修正因子,ΩD (Teff)是离子的碰撞截面(即CCS),与离子的大小和形状有关,直接反映离子的结构信息. 因此IMS 可以区分MS无法分辨的同分异构体,离子的CCS 差异越小,要求IMS的分辨率越高.根据分离方式的不同,IMS可以分为迁移时间离子迁移谱(DTIMS)、非对称场离子迁移谱(FAIMS/DMS)、行波离子迁移谱(TWIMS)、阱离子迁移谱(TIMS)等,通过提高电场强度或延长离子迁移路径,可以提高IMS的分辨率[8]. 对于DTIMS 而言,延长路径的同时需要提高电压,由于空气击穿电压的限制,依靠延长路径提高分辨率非常有限.而与DTIMS依靠直流电场驱动离子不同,TWIMS 依靠沿迁移区轴向移动的脉冲电压驱动离子,电压幅值不随迁移路径的延长而增大,理论上可以无限延长迁移路径而不受电压的限制. 正是由于这一特性,TWIMS的分辨率目前已经超过1 860,成为目前超高分辨IMS-MS技术的主流[9]. 不同类型IMS 技术对比如表1所列.本文首先介绍TWIMS的原理及分辨能力的影响因素,进一步探讨不同结构TWIMS仪器的特点、性能和应用,最后对TWIMS未来发展方向进行展望.1 TWIMS原理1.1 TWIMS分离原理2004年,Giles等[14]首次将行波应用于环形电极堆栈离子导向器,提出一种使用行波进行离子迁表 1 不同IMS技术对比Table 1 Comparison of different IMSIMS技术工作气压[10]分离场CCS测量最高分辨率/(Ω/ΔΩ)联用技术迁移时间离子迁移谱(DTIMS)266 Pa~大气压强直流电场直接测量250[11]IMS-MS, GC (gaschromatography)-IMS等非对称场离子迁移谱(FAIMS/DMS)大气压强非对称射频电场无法测量Null GC-DMS, DMS-MS等行波场离子迁移谱(TWIMS)~533 Pa方波直流电场需经校准 1 860[9]550[12]TWIMS-MS阱离子迁移谱(TIMS)~400 Pa气流场结合直流电场需经校准400[13]TIMS-MS232分析测试技术与仪器第 29 卷移率分离的新模式,如图1所示. 通过在相邻电极环依次施加脉冲电压产生行波电场,离子在波前位置时,电场驱动离子轴向前进,而离子处于波后位置时,电场驱使离子反向运动,造成运动轨迹折返,即翻滚事件[图1(a)(c)]. 迁移率K较大的离子随波迁移能力强,发生翻滚的次数少,所需总迁移时间较短. 而迁移率K较小的离子随波迁移能力弱,发生翻滚的次数多,所需总迁移时间较长. 如此,不同迁移率离子即可分离. 当离子迁移率K足够大时,离子可以随波作“冲浪”运动[图1(b)].ion trajectory ring electrode(d)stacked-ring ionguidetimeringelectrodeions travelling wavevoltage pulse(a)(b)(c)图1 行波场中离子(a)(c)翻滚事件和(b)“冲浪”行为的SIMION轨迹模拟,(d)行波场的产生[14] Fig. 1 SIMION simulation showing ions (a) (c) roll over wave and (b) surf wave, (d) generation of travelling wave[14]此后数年,尽管TWIMS仪器和相关应用快速发展,但对于其分离原理的认识仍停留在定性阶段,影响离子传输时间和分辨率的因素没有得到深入研究. 直到2008年,Shvartsburg等[15]构建了简化的TWIMS数值分析模型,不考虑离子的速度弛豫、扩散和射频产生的聚焦场,使用推导和离子动力学模拟对迁移时间和分辨率进行预测,并与实际结果进行比较.定义c为行波前最大场强处(E max)的离子漂移速度和波速(s)的比值,如式(3)所列:以波长为b的三角波为例,其任一位置的电场E都相同,即E=Emax . 当c≥1,即KEmax≥s时,离子在波前的运动速度与波速相同,因此离子表现为随着行波一起运动,迁移时间t即为迁移管长L除以行波波速s.当c<1,即KE max<s时,由于离子的翻滚事件,造成迁移率分离. 离子在波前和波后的运动时间分别为t F和t B,其公式如式(4)(5)所列:由于t F>t B,离子每被一个三角波超越,在轴向会产生向前的净位移d,如式(6):v离子的平均运动速度为式(7):对于长度为L的迁移管,离子迁移时间t为式(8):对于形状更复杂的行波如半正弦波,在满足KEmax<<s时,有相似结论,即:从公式(9)可以看出,与DTIMS不同,TWIMS 中离子迁移速度与离子迁移率和电场强度并非线性关系,无法直接用迁移时间t计算CCS,需要使用结构相似的标准物进行校准方程的拟合,然后将待测物的迁移时间代入校准方程计算出CCS.2018年,Richardson等[16]进一步拓展了TWIMS 的理论,推导出平滑移动的正弦行波驱动下离子迁移时间的表达式,不经校准可直接测量CCS. 然而,动力学推导仍被限制在轴向,没有考虑高场下的离子加热,且实际设备中行波并非是平滑移动的,关于TWIMS的理论仍然需要科研工作者继续探索.第 3 期潘慢慢,等:行波离子迁移谱技术及应用研究进展2331.2 TWIMS分辨率的影响因素在离子迁移与扩散相互独立的前提下,不考虑库伦斥力,对于三角波而言,扩散控制分辨率R TW 为式(10):其中,E与行波波幅U的关系为E=2U/b. 因此,在保证c<1适用于所有离子的前提下,可以通过提高行波波幅或减小波长以提高电场强度、延长路径来提高分辨率,这是TWIMS仪器设计改进的理论依据.而对于DTIMS,扩散控制分辨率R DT为式(11):提高电场强度和延长路径,同样可以提高DTIMS的分辨率. 然而,DTIMS的电场是通过在迁移管两端施加电压差形成的,越长的迁移路径,意味着越大的电压差,过高的电压会引起放电. 不同与DTIMS,TWIMS的电场是在电极单元的单个或多个电极上循环施加脉冲电压形成的行波电场,脉冲电压幅值与迁移路径总长度无关. 因此,通过延长路径提高分辨率不受电压限制.2 TWIMS的仪器进展TWIMS于2004年出现后,经过近二十年的发展,目前的仪器按照结构主要分为三类:第一类是Waters公司早期开发的环形电极堆栈结构(stacked ring ion guide,SRIG)的TWIMS,第二类是Waters 公司于2019年推出的循环离子迁移谱(cyclic ion mobility, cIM),第三类是基于无损离子操纵结构(structures for lossless ion manipulations,SLIM)的TW-SLIM. 下面将介绍它们的结构特点、性能以及应用.2.1 环形电极堆栈结构2006年,Waters推出首款基于SRIG的TWIM-Q-ToF-MS(TWIM-quadrupole-time of flight-MS)系统,即Synapt HDMS[17].如图2(b)所示,Synapt HDMS包括三个施加行波和射频限制的SRIG(即TriWave结构),依次为trap、IM和transfer,其中IM的结构如图2(a)所示. trap用于离子积累,然后将离子团簇释放到IM离子导向器中进行迁移率分离,transfer用于将分离后的离子传送到ToF-MS中进行质荷比分析.(a)sideplategas inion transmission aperturering electrodesprintedcircuitboardsendplateanalyte spray(b)lockspraybafflelockmassreference sprayT-waveion guidequadrupoledre lenstrapgateIMS transfereinzellens transferlensespusherreflectronair-cooled turbomolecular pumpsoil-freescroll pumpisolation valveand removablesample conedetector2 mmdiameteraperture图2 (a)第一代行波离子迁移管[14],(b)Synapt HDMS示意图[18]Fig. 2 (a) First generation TWIM separator[14], (b) schematic diagram of Synapt HDMS system[18]根据分辨率影响因素的理论基础,Waters公司于2009年对行波离子迁移管进行改进,推出了Synapt G2 HDMS. 相比第一代TWIM,Synapt G2的改进如图3所示,增加电极环的数目以延长迁移路径,脉冲电压施加到4个电极环上,比原来两个电极环时平均场强提高了约20%,行波幅值从30 V 提高到40 V,进一步提高了电场强度[19]. 由于低电场条件的限制,在提高行波幅值的同时,需要提高气压以避免离子热化. 因此,在IM前增加了一个充满氦气的腔室以平衡N2的压强,将工作气压从50 Pa提升到了300 Pa. 试验结果显示,Synapt G2将SDGRG和GRGDS两种反序小肽离子的分辨率提234分析测试技术与仪器第 29 卷高了近4倍,达到了45.在之后几年,Waters 公司又相继推出了Synapt G2-S 、Synapt G2-Si 和Vion 等产品,在分辨率、灵敏度和配套软件等方面均有所提升[20].由于技术成熟、商品化程度高, SRIG 的IMS-MS 系统在蛋白质组学[21-22]、脂质组学[23-24]、代谢组学[25-26]、医药[27-29]等领域得到了广泛应用. Hale等[21]使用液体萃取表面技术(LESA )结合TWIM-MS 对小鼠肾脏组织切片的蛋白质进行质谱成像分析,将蛋白质结构与组织特征进行关联. 其中,TWIMS 提供内源蛋白质的空间、构象和质量信息,以及计算检测到的蛋白质或蛋白质复合物的碰撞截面. 此外,按到达时间过滤质荷比(m/z )维度中的离子信号,增加低强度信号来提高信噪比,进一步提高离子图像的特异性. Zang 等[25]使用流动注射法(flow injection ,FI )结合TWIM-MS 对61名前列腺癌患者和42名对照者的血清提取物进行非靶向代谢分析,将质量数、CCS 值和裂解模式与标准物或数据库进行匹配,鉴定出特征代谢物. 使用监督多元分类方法,将前列腺癌患者样本与对照样本区分开来,具有良好的准确性(88.3%~89.3%)、敏感性(88.5%~90.2%)和特异性(88.1%),展示了FI-TWIM-MS 作为用于代谢组学研究的高通量分析工具的潜力. 与超高效液相色谱(ultra-performance liquid chromatography ,UPLC )联用后,UPLC-TWIM-MS 的多维分离能力在复杂中药成分中已知、未知化合物及其异构体的发现和鉴定上有巨大的应用前景,对中药的质量评价和解释作用机制有重要意义,已成功应用于龟龄集[27]、桔梗[28]、丹芝片[29]等中药.此外,TWIM 有助于在Q-ToF-MS 仪器上实现电子转移解离功能(electron transfer dissociation ,ETD )[30]. ETD 是一种自由基驱动的裂解技术,与碰Synaptstacked ring ion guidenitrogenions in ionsin ions out ions out nitrogen out nitrogen outnitrogen outmax. field 25 V/cm (10 V applied)~90% of applied v oltagemax. field 21 V/cm (10 V applied)~60% of applied v oltage(b)(c)4 repeat pattern6 repeatpattern(a)helium outT-wave IMS cellT-wave IMS cellhelium cellheliumSynapt G2stacked ring ion guidenitrogen图3 Synapt HDMS 和Synapt G2 HDMS 的(a )IM 腔室,行波电压(b )施加方式和(c )重复模式对比图[19]Fig. 3 Comparison of (a) IM cells, (b) applied voltage and (c) repeat pattern of travelling wave betweenSynapt HDMS and Synapt G2 HDMS[19]第 3 期潘慢慢,等:行波离子迁移谱技术及应用研究进展235撞诱导解离(collision induced dissociation,CID)互补,在N-Cα键裂解后产生一系列c和z离子,对于蛋白质翻译后修饰的识别和定位非常有价值[31]. 在Synapt系统中,trap用于捕获辉光放电产生的阴离子,从而实现与进入的阳离子的气相反应. 改变行波的速度,可以精细地控制阴离子/阳离子相互作用的水平,从而控制ETD碎片的水平[32]. 结合电喷雾电离,TWIM-MS成为肽和蛋白质的测序和结构分析的有力工具.2012年,Waters基于SRIG开发出了Stepwave 技术,用于大气压离子源(如ESI)的离子传输[33]. 通过缺口处相对平行排列且内径不同的两个SRIG之间的施加电势差,实现离子的离轴传输和聚焦,而通过去除气体分子和未电离的中性分子,提高信噪比和灵敏度.2.2 循环离子迁移谱结构尽管TWIMS通过延长路径提高分辨率不受电压限制,但仍受到仪器体积的制约. 为了解决上述问题,2014年Giles等[34]提出一种循环离子迁移谱,即Cyclic Ion Mobility(如图4所示). cIM包括主体[图4(b]与MS系统的主离子光轴相交的接口区域[图4(c)]两个部分,路径长度共计98 cm,可以取代传统线性TWIM单元,嵌入到Synapt G2-Si系统中[图4(a)][12, 35]. 主体部分由印刷电路板支撑,电极结构如图4(d)所示. 相邻的cIM电极上同时施加反相的射频(2.5 MHz,300 V p-p)和行波脉冲(最大波幅45 V,波速300~1 000 m/s),射频形成的赝势阱提供z方向的限制,行波驱动离子进行迁移率分离.侧板上的repeller电极上施加高于行波波幅的直流电压(60 V),提供x方向的限制. cIM主体部分的电极形成了一个5 cm×0.5 cm的矩形离子通道,离子容量比孔径0.5 cm的线性TWIM高10倍[35]. z方向的窄电极间距,可以最大程度的减少“赛道效应”,即外圈的离子比内圈的离子迁移路径更长引起峰展宽. 接口区域是cIM的关键部分,需要在离子进入、射出和迁移率分离三种功能之间切换,且对离子传输率和分辨率不能有显著影响. Giles等[35]设计出阵列电极结构,将其分为两组,分别施加x方向[图4(e)]、y方向[图4(f)]的行波,从而实现功能切换. 此外,阵列电极结构允许cIM在多通道模式和旁道模式进行切换,在旁道模式下,离子不经过cIM的主体部分,不进行迁移率分离.cIM前后均连接传统线性TWIM,可以实现离子的注入、喷射、存储、激活. 将其与cIM的功能进行组合,可以实现IMS n(多级IMS)功能. IMS n可以选择将cIM中的特定迁移率范围的离子喷射出去,剩余的离子继续执行迁移率分离,重复这一过程将持续减小分析范围. 该功能可以避免在多通道试验中,较大迁移率离子超过较小迁移率离子产生的“套圈”现象. IMS n激活是指将特定迁移率的离子喷射回前级TWIM,其余离子被喷射到ToF中以去除,前级TWIM中的离子经过碰撞诱导激活/解离后重新注入cIM进行迁移率分离,再将分离后的离子喷射到ToF进行检测或者继续进行IMS n分析.√6初代cIM系统对松三糖和棉子糖的分析结果显示,6次循环后分辨率达到139,约为单次通过分辨率的倍,且相比于单次通过离子损失小于15%[34]. 2017年,第二代cIM系统问世,SDGRG和GRGDS两种反序肽离子经过50次循环后,分辨率超过500,实现了超高分辨离子迁移谱的一项巨大进步[12]. 2019年,Waters公司推出了商品化仪器Select Series cyclic IMS.Sisley等[36]使用LESA-QcIM-MS分析小鼠大脑和大鼠肾脏组织中的蛋白质,在cIM前通过四极杆隔离将m/z检测范围缩小到870~920(即QcIM)以避免“套圈”现象,1、2和3次通过后分别检测到24、37和54种蛋白质,充分体现了多通道cIM 的高分辨率在复杂生物样品检测上的优势.Eldrid等[37]研究了cIM中气相蛋白质离子的稳定性,并且利用IMS n结合碰撞诱导展开(CIU)探索了+7细胞色素C(CytC)离子的展开行为(如图5所示). 结果显示在与迁移率分离兼容的时间尺度上(几百毫秒),蛋白质可以很大程度保留其天然和多聚体状态. 对已激活的+7 CytC离子的不同到达时间范围的切片分别进行IMS n激活,探索了不同构象之间的转化现象以及展开顺序,展现了cIM在研究蛋白质动力学、稳定性和展开行为的应用潜力. 2021年,Eilrid等[38]将此方法命名为slice-CA(碰撞激活,collision activation),并研究了一种由胰岛β细胞产生的与Ⅱ型糖尿病有关的激素hIAPP,揭示了hIAPP解离前构象之间的相互转换.除了生物样品,cIM在石油组学上也获得了应用[39-40]. 石油作为最复杂的混合物之一,存在大量的236分析测试技术与仪器第 29 卷同分异构体和同量异位素,对IM-MS 的分辨率要求很高. Ruger 等[40]证明,在多次通过后,QcIM-MS可以更深入地了解瓦斯油中异构体的分布,并且消除同量异位素的干扰,结合碰撞诱导解离技术,可以分离多环芳烃和杂环化合物.2.3 无损离子操纵结构2014年,Garimella 等人提出了无损离子操纵结构(SLIM )[41-44]. SLIM 由一对蚀刻了条状电极的平行印刷线路板组成,通过在电极上施加电压产生静电场、射频电场和驱动电场,可以实现离子无损传输、迁移率分离、选择性离子捕获和积累等复杂操作[45-46]. SLIM 分为基于直流(DC )的DC-SLIM 和基于行波(TW )的TW-SLIM ,由于DC-SLIM 的分辨率有限,TW-SLIM 更受青睐.TW-SLIM 通常由6列射频电极和5列行波电极以及两边的保护电极组成(如图6所示),与cIM 相似,相邻两列射频电极上施加反相射频提供纵向限制,保护电极上施加直流电势提供横向限制,行波电极上施加行波驱动离子进行迁移率分离. 射频电极与行波电极间隔分布,既简化了电源,又保证离子束缚的有效性[47]. 由于印刷线路板工艺成熟,SLIM 具有加工方便、组装灵活、成本低廉的优点,结合TWIMS 电压不随迁移路径延长而增大的特点,目前TW-SLIM 已经实现了商品化[9].ESIstepwaveIGquadtrapIGHecyclic IMSpre-array store post-array store IG arrayreflectronrepellercIM electrode0.5 cm5 cmrepellerPCBs (d)yxPCBscIM electrodes(b)(c)(e)(f)array PCBentrancearray electrodescIM electrodesexitrepellerzx yzx yzx yentrancezxtransferWdetectorpusher(a)图4 cIM 的结构示意图[35](a )cIM 平台概览,(b )cIM 设备,(c )包含阵列电极结构的离子注入/喷射区域,(d )cIM 电极结构,(e )离子注入/喷射模式下行波方向为x 或-x ,(f )分离模式下行波方向为yFig. 4 Schematic diagram of structure of cIM[35](a) overview of cIM plateform, (b) cIM device, (c) ion entry/exit region, consisting of array electrodes, (d) structure of cIMelectrodes, (e) ion injection/ejection mode, array TWs applied in x (or -x ) direction,(f) separation mode, array TWs applied in y -direction第 3 期潘慢慢,等:行波离子迁移谱技术及应用研究进展2372.3.1 多圈循环式TW-SLIM为了在相对紧凑的空间尽可能的实现路径的延长,Hamid 等[48]将90°转弯结构应用在TW-SLIM 上,在有16个90°转弯结构的TW-SLIM 模块上,离子传输效率接近100%且分辨率没有显著损失. 在此基础上,Deng 等[49]开发出了分析通道长13 m 的蛇形路径TW-SLIM[图7(a )],并且对气压、板间距、行波和射频等参数进行了优化,单峰分辨率达到46,峰容量和峰生成率分别为246和370 s −1,实现了异构糖LNFP i 和LNFP ii 的基线分离. 目前,MOBILion Systems 公司已经将其集成到MS 系统中,完成了仪器的商品化,即MOBIE. 2021年,Wormwood Moser 等[50]结合流动注射分析,使用MOBIE 原型机分析了野生型小鼠半脑的脑提取物,仅需2 min 即可实现神经节苷脂的定量和高选择性测量,比传统的LC-MS 更加快速、高通量,且无需色谱样品制备步骤.在13 m 蛇形路径的基础上,结合动态开关结构,Smith 等人提出了多圈循环式TW-SLIM [图7(b )][9, 43]. 离子经过40次多圈飞行后,分析路径长度超过500 m ,分离能力达到1 860,并且可以实现基本无损的离子传输. 在初步应用中,9次通过后,低聚糖LNnH 新的构象特征首次被清楚地区分(如图8所示). 与cIM 相似,多圈循环式TW-SLIM 也存在离子飞行“套圈”现象并导致迁移率分析窗口受限. TW-SLIM 可以利用出口处的动态开关结构,摒弃一部分离子,避免“套圈”现象,简化分析结果.异构体的存在使得分析生物样品和其他复杂混合物具有挑战性,多圈循环式TW-SLIM 的超高分辨率在分析结构差异极小的异构体上有巨大优势[51]. Nagy 等[52]将α-环糊精用作手性主体,通过对环糊精与氨基酸分子形成的主客体非共价复合物进行高分辨的迁移率分离,实现了D -和L -对映体氨基酸混合物的快速检测. 此外,多圈循环式TW-SLIM 在聚糖、蛋白质等生物分子的异构体的分离和鉴定都得到了应用[53-54].然而,超长飞行路径不可避免的伴随着离子团Relative intensityV oltage/V16~17 ms slicefull ATD(a)(b)A r r i v a l t i m e /m s 1.01520253035400.50020406080100V oltage/V19~20 ms slice(c)20406080100V oltage/V23~24 ms slice (d)20406080100V oltage/V26~27 ms slice (e)20406080100Int1.00.5αβγδαβγδεζ图5 激活的+7 CytC 离子的(a )到达时间分布,(b )16~17 ms 、(c )19~20 ms 、(d )23~24 ms 和(e )26~27 ms 切片的CIU 指纹,α、β、γ、δ、ε和ζ表示离子种群[37]Fig. 5 (a) Arrival time distribution of activated +7 CytC ion, and CIU fingerprints for slices (b) 16~17 ms, (c) 19~20 ms,(d) 23~24 ms, (e) 26~27 ms, populations labeled as α, β, γ, δ, ε and ζ[37]RFguardguardTWTWTWTWTW1234567812345678图6 TW-SLIM 的电极结构[47]Fig. 6 Structure of electrodes in TW-SLIM[47](a)(b)TWRFguardswitch ONswitch OFFMSentranceg u a r d图7 (a )13 m 长的蛇形TW-SLIM [49],(b )循环蛇形路径TW-SLIM 和动态离子开关[9]Fig. 7 (a) 13 m serpentine path length TW-SLIM [49],(b) serpentine ultralong path with extended routing TW-SLIM and dynamic ion switch[9]238分析测试技术与仪器第 29 卷扩散导致的峰展宽、信噪比低、灵敏度降低等缺陷.为了解决这一问题,Garimella 等[55]提出了一种时空操纵气相离子群的方法,即压缩比离子迁移率程序(compression ratio ion mobility programming ,CRIMP ),利用断续前进的行波,将迁移率分离中的离子分布折叠成更紧密的离子包. 与使用离子漏斗进行富集相比,CRIMP 显著提高了肽的检测限,灵敏度提高了100倍以上[56]. 具有高灵敏度、高分离能力的多通道蛇形TW-SLIM 与MS 的耦合,对于解决蛋白质组学、代谢组学等长期存在的低丰度、异构混合物的挑战具有重大意义[57].2.3.2 并行分析TW-SLIM长迁移率分离时间(秒级)与有限的离子积累时间(毫秒级)的结合导致长路径TW-SLIM 存在占空比低、离子利用率低的缺点. 为了提高离子利用率,增加离子捕获区域的大小、in-SLIM 离子积累、多路复用策略等方法被相继提出,然而这些方法受到空间电荷容量、检测器的饱和点等限制[58-59]. 2022年,Deng 等[60]开发出一种新的并行分析TW-SLIM ,占空比达100%,分辨率达到150,并和三重四极质谱仪(QQQ )联用,用于靶向定量分析.并行分析TW-SLIM 由入口、开关板载积累区域(SOBA )、两条平行离子路径和出口部分组成,每条离子路径包括一个30 cm 的预过滤区域、离子开关、离子检测器、板载积累区域(OBA )和一条集成了多个迁移率过滤门的4.8 m 的蛇形路径SLIM (如图9所示). SOBA 处积累的离子可以进入任一路径的预过滤区域,经过低分辨的迁移率分离后通过离子开关将无需检测的离子传输到离子检测器,目标离子进入OBA 区域进行富集,再通过离子门注入到后面的长蛇形路径中进行迁移率分离.通过将SOBA 积累的离子多次注入到同一路径以及在两条路径分别同时进行离子积累和迁移率分离,并行分析TW-SLIM 的占空比大大提高,8次注入后利血平离子的占空比达100%,多种标准分析物的实际离子利用效率约为80%. 预过滤对目标离子靶向富集,增加了OBA 区域的目标离子容量,提高灵敏度,结合蛇形路径中的多个过滤门进一步去除干扰离子,大大提高了信噪比. 在过滤模式下,SLIM-QQQ 比QQQ 对醛固酮和可的松的灵Drift time/s0.12900.1320.1350.1380.1410.1441LNnH(a)LNHLNHβ-D-Gal-(1→3)-β-D-GlcNAc-(1→3)-[β-D-Gal-(1→4)-β-D-GlcNAc-(1→6)]-β-D-Gal-(1→4)-D-Glcβ-D-Gal-(1→4)-β-D-GlcNAc-(1→3)-[β-D-Gal-(1→4)-β-D-GlcNAc-(1→6)]-β-D-Gal-(1→4)-D-GlcOH OH OH OHOHOHOHOHOHOHOH OHNHAcOH AcHNHOHOHOHOHOO O OOOO O O OO O OH OH OH OHOHOHOHOHOH OHOHOHNHAcOH AcHNHOHOHOHOHOO O OOOO OO OO ODrift time/s1.120 1.14 1.161.18 1.20 1.22 1.241LNnHLNnH(b)LNH图8 (a )1次和(b )9次通过后获得的乳-N -六糖和乳-N -新六糖的迁移率分离结果[9]Fig. 8 IM-MS separation of sugar isomers lacto-N -hexaose and lacto-N -neohexaose obtained at (a) 1 pass and (b) 9 passes[9]第 3 期潘慢慢,等:行波离子迁移谱技术及应用研究进展239。
Theory and Applications
3 A Common Theory Framework
The goal in papers 1 and 2 is to solve The Optimization Problem. Compute MG A; B = ming2G H A; gB. A closely related problem is The Decision Problem. Given 0, does there exist g 2 G such that H A; gB ? The smallest = for which the answer to the decision problem is yes is the answer to the optimization problem. The general strategy used in both theory papers is to develop an algorithm for the decision problem and then use this algorithm in some form of parametric search 13 to get an algorithm for the optimization problem. A common framework is used in attacking the decision problem. This framework turns the decision problem into a geometric intersection problem. For the moment we assume G = T . Let C denote the closed ball" of radius centered at the origin: C = fx 2 Rd : kxk g: 2
定积分的英文专用名词
定积分的英文专用名词Definite Integral: A Deep Dive into Its Concepts and Applications.In the realm of mathematics, the definite integral occupies a pivotal position, bridging the gap between discrete and continuous functions. It represents a fundamental tool for understanding the properties of functions and for solving a wide range of practical problems. This article aims to delve into the essence of the definite integral, exploring its definitions, properties, applications, and the underlying theories that govern it.1. Introduction to Definite Integrals.The definite integral is a mathematical operation that assigns a real number to a given function on a closed interval. It is denoted as ∫[a,b]f(x)dx, where [a,b] is the closed interval and f(x) is the function beingintegrated. This notation represents the accumulation of infinitesimal changes in the function over the specified interval.The definite integral is closely related to the indefinite integral or the antiderivative. While the indefinite integral represents a family of functions that differ by a constant, the definite integral provides a specific numerical value for a given function over a specific interval.2. Properties of Definite Integrals.The definite integral possesses several important properties that govern its behavior and applications. Some of the key properties include:Linearity: The definite integral distributes over addition and scalar multiplication, allowing us to integrate complex expressions by breaking them down into simpler parts.Interval Additivity: If an interval [a,b] is divided into two subintervals [a,c] and [c,b], then the integral over the entire interval is equal to the sum of the integrals over the subintervals.Constant Factor Rule: If a constant k is multiplied with a function f(x) within the integral, then the integral of kf(x) is equal to k times the integral of f(x).Comparison Theorem: If f(x) ≤ g(x) for all x in the interval [a,b], then the integral of f(x) over [a,b] is less than or equal to the integral of g(x) over the same interval.These properties provide a solid foundation for solving complex integration problems and for understanding the behavior of functions under integration.3. Applications of Definite Integrals.The definite integral finds applications in various fields of mathematics, science, and engineering. Some ofits key applications include:Area Calculation: The most fundamental application of the definite integral is in calculating the area under a curve between two given points. This is achieved by integrating the function representing the curve over the corresponding interval.Volume Calculation: The definite integral can be extended to calculate volumes of three-dimensional objects, such as solids of revolution and regions between surfaces.Length of Curves: The integral can be used to compute the length of a curve in the plane or in space, by integrating the square root of the sum of squares of the derivatives of the curve's coordinates.Physics and Engineering: The definite integral plays a crucial role in physics and engineering, particularly in areas such as mechanics, electromagnetism, and fluid dynamics. It is used to calculate quantities like displacement, velocity, acceleration, force, work, energy,and momentum.Probability and Statistics: In probability theory and statistics, the definite integral is employed to calculate probabilities, expected values, and other statistical measures.4. Theories Underlying Definite Integrals.The theory of definite integrals is rooted in the fundamental theorem of calculus, which establishes a link between differentiation and integration. This theorem states that if F(x) is an antiderivative of f(x), then the integral of f(x) from a to b is equal to F(b) F(a). This theorem provides a practical method for evaluating definite integrals by finding antiderivatives of the integrated functions.In addition to the fundamental theorem, other important theories include the convergence theorems for infinite series and improper integrals, which extend the concept of definite integrals to infinite intervals and infinite sums.These theories provide a rigorous foundation for understanding the behavior of integrals and for solving complex integration problems.5. Conclusion.The definite integral is a powerful tool that lies at the heart of mathematics and its applications. Its ability to measure areas, volumes, lengths, and other quantities has made it indispensable in various fields ranging from physics and engineering to economics and finance. By delving into its definitions, properties, applications, and underlying theories, we can gain a deeper understanding of this fundamental concept and appreciate its value in addressing real-world problems.。
Nekrasov-矩阵的逆矩阵的无穷大范数的上界新估计
Nekrasov-矩阵的逆矩阵的无穷大范数的上界新估计王亚强【期刊名称】《《河南科学》》【年(卷),期】2019(037)002【总页数】6页(P165-170)【关键词】Nekrasov-矩阵; H-矩阵; 无穷范数; 上界; 估计【作者】王亚强【作者单位】宝鸡文理学院数学与信息科学学院陕西宝鸡 721013【正文语种】中文【中图分类】O151.21近年来,由于Nekrasov矩阵的逆矩阵的无穷大范数在数值方法的收敛性分析及线性互补等问题中的广泛应用[1-8],其逆矩阵的无穷大范数估计也就成为国内外众多学者关注的热点问题[9-17].本文将在已有研究的基础上,继续探讨该矩阵逆的无穷范数的上界估计问题.1 预备知识为叙述方便,下面给出一些记号、定义与定理.设为复数域(实数域)上n 维向量空间;为复数域(实数域)上所有n×n 矩阵的集合,指标集是一个非空子集.设,记定义1[7]设矩阵,若对任意的i ∈N 有则称A 是严格对角占优矩阵,简称SDD矩阵.定义2[7]设矩阵,若A 可逆,且A-1 ≥0,则称A 是M-矩阵.定义3[8]设矩阵,若A 的比较矩阵是M-矩阵,其中则称A 是H-矩阵.定义4[9]设矩阵,若对任意的i ∈N 有则称A 是Nekrasov矩阵,简称N-矩阵.1975年,Varah J.M在文献[5]中给出了SDD 矩阵的逆的无穷范数的一个上界,即著名的Varah 界.定理1[9]若是SDD矩阵,则此式称为Varah界.Varah 界仅适用于SDD矩阵,特别当较小时,由Varah 界所得的估计值误差就非常大.为了得到更精确的估计,许多学者对该问题进行了研究,并取得一些成果[9-17].特别地,2018年,李艳艳在文献[17]中给出了N-矩阵的逆的无穷范数的新上界,并证明了这个新界改进了已有估计式,得到如下定理.定理2[17]若为Nekrasov矩阵,当时,有其中:引理1[8]若矩阵是非奇异H-矩阵,则令A=D-L-U,其中D 为矩阵A 的主对角元素组成的对角阵,-L 和-U 分别为矩阵A 对应的严格下三角部分和严格上三角部分组成的矩阵.引理2[8]设矩阵,且A=D-L-U,其中D 为矩阵A 的主对角元素组成的对角阵,-L 和-U 分别为矩阵A 对应的严格下三角部分和严格上三角部分组成的矩阵,则有其中e=(1,1,…,1).引理3[8]矩阵是Nekrasov矩阵当且仅当即为SDD矩阵,其中E为单位矩阵.2 主要结果下面,我们给出Nekrasov矩阵逆的无穷范数上界的一个新估计式.若令,由引理3易得C 为SDD矩阵,同时,注意到c11=1,ck1=0,k=2,3,…,n,且定理3 若为Nekrasov矩阵,其中:,且则C( μ )是SDD矩阵,且证明首先由(3)式可得,对再由C( μ )定义及μ 的取值范围可得,C( μ )是SDD矩阵.应用定理1中Varah界可得定理4 若为Nekrasov矩阵,且满足则证明因为,所以,则由引理1知,下面分三步来研究这个估计.首先,估计因为是M 矩阵,所以从而,然后,估计由定理3知,C( μ )为SDD矩阵,且Δ 为正对角矩阵,从而Δ-1C( μ )也为SDD矩阵,再由定理1可得又由且,故将(8)式代入(7)式,得综合式(5)、(6)、(9)及,得下面定理5将证明定理4的结果改进了定理2的结果.定理5 若为Nekrasov矩阵,且满足则证明要证上式成立,只需要证成立.利用绝对值不等式,易得结论成立.注与定理2比较不难发现,在给定k 的情况下,定理4在参数μ 的选择范围比定理2要小,因此,在应用上更具优势.同时,定理5表明,给定k 的情况下,定理4的估计结果要比定理2的结果更精确.3 数值算例例1 考虑如下Nekrasov矩阵取k=2,由定理2可得对应逆矩阵的无穷大范数估计式中参数的取值范围为μ ∈( 0.0 82 8,4.800 0),而定理4可得参数的取值范围μ ∈( 0.6 65 0,4.500 0 ).表1 Nekrasov矩阵逆的无穷范数上界比较Tab.1 Comparison of the upper bounds of infinity norms of the inverse of Nekrasov matrix‖ A‖∞真值μ 取值Varah界[10]中估计式[14]中估计式[17]中估计式定理4 0.2390μ=0.9410.884 80.688 50.380 90.367 04 总结本文讨论了Nekrasov-矩阵逆矩阵的无穷范数的估计问题,给出了Nekrasov-矩阵逆矩阵的无穷范数的一个含有可调节参数μ 的新的估计式.同时,通过定理5证明了新的估计式比已有估计式估计的更精确,并且参数μ 的选择范围更小,在应用上更具优势.【相关文献】[1]HU J G.Scaling transformation and convergence of splittings of matrix[J].Number Math Sin,1983,5(1):72-78.[2]HU J G.Estimates ofand their applications[J].Number Math Sin,1982,4(3):272-282.[3]LI C,LIU Q,LEI G,et al.Subdirect sums of Nekrasov matrices[J].Linear&Multilinear Algebra,2016,64(2):208-218.[4] GUO A L,LIU J Z.Criteria for generalized Nekrasov matrices[J].Chinese Journal of Engineering Mathematics,2009,26(4):697-702.[5]LIU J,ZHANG J,ZHOU L,et al.The Nekrasov diagonally dominant degree on the Schur complement of Nekrasov matrices and its applications[J].Applied Mathematics and Computation,2018,320:251-263.[6]刘新,杨晓英.弱链对角占优M-矩阵A的新上界[J].河南科学,2014,32(4):491-495.[7]LI W.On Nekrasov matrices[J].Linear Algebra Applications,1998,281(1):87-96.[8]陈公宁.矩阵理论与应用[M].北京:科学出版社,2007.[9]VARAH J M.A lower bound for the smallest singular value of matrix[J].Linear Algebra Applications,1975,11(1):3-5.[10] CVETKOVIC L,KOSTIC V,DOROSLOVAVKIC K.Max-norm bounds for the inverse of S-Nekrasov matrices[J].Applied Mathematics and Computation,2012,218(18):9498-9503.[11]CVETKOVIC L,DAI P F,DOROSLOVACKI K,et al.Infinity bounds for the inverse of Nekrasov matrices[J].Applied Mathematics and Computation,2013,219(10):5020-5024.[12] KOLOTILINA L Y.On bounding inverses to Nekrasov matrices in the infinity norm[J].Journal of Mathematical Sciences,2014,199(4):432-437.[13]裴荟.Nekrasov矩阵逆的无穷范数上界的新估计[D].昆明:云南大学,2015.[14]LI C,PEI H,GAO A,et al.Improvements on the infinity norm bound for the inverse of Nekrasov matrices[J].Numerical Algorithms,2016,71(3):613-630. [15]LI C,DAI P F,LI Y.New error bounds for linear complementarity problems of Nekrasov matrices and B-Nekrasov matrices[J].Numerical Algorithms,2017,74(4):997-1009.[16]GAO L,WANG Y,LI C.New error bounds for the linear complementarity problemof QN-matrices[J].Numerical Algorithms,2018,77(1):229-242.[17]李艳艳.Nekrasov矩阵逆的无穷范数改进的估计式[J].云南大学学报(自然科学版),2018,40(4):632-637.。
第一篇SCI的故事(胡腾)
不导师一起面对面逐句修改。
第 29 页
从中文文章直接翻译
第 30 页
不Steve逐句修改
面对面,逐字逐句,前后十几遍。 论文写作建议:少用长难句,多用短句。
第 31 页
不导师逐字逐句修改
逐字逐句修改,图例修改,表达修改。。。。。。 前前后后来回十几遍,直至我们自己认为没有什么漏洞。 2011年8月5号投稿
实验结果分析(三维点云结果)
第 23 页
论文定位:个人思考
投稿方向:
国内EI? 国外SCI?
个人顾虑:
1. 保证毕业,投个国内EI算了?
2. 做的东西太简单了,老外看丌上。 3. 写英文也太难了吧。。。。 4. 听说SCI投稿周期太长了,到时候两头顾丌上?
导师意见: 你觉得简单,也花了这么长时间做!真的简单么?
2. 精读一篇最经典的外文综述性文章(来自于领域内权威)。 “A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms,” D. Scharstein and R. Szeliski, 2002.
第 6页
第 35 页
审稿人2
3) As stated by the authors, obvious color difference is the primary error source that must be considered. However, the proposed approach is based on RGB color space, how this impact is reduced by the proposed approach? Why the authors did not use other color-invariant space? Please explain it.
谱方法在计算流体力学中的应用研究
西北工业大学硕士学位论文谱方法在计算流体力学中的应用研究姓名:王建瑜申请学位级别:硕士专业:计算数学指导教师:欧阳洁200703013.3谱近似(a)右端函数(b)精确解图3.1右端函数与精确解3.3.1ChebyshevTau方法应用谱方法数值求解问题(3.1)式,首先要确定展开基函数。
根据第二章中关于基函数的介绍,选择Chebyshev多项式(同样可以选择Legendre多项式)作为基函数,其表达式为丸。
(x,Y)=乙(x)瓦∽其中乙(x)为m次Chebyshev多项式。
根据2.2.2小节中关于Chebyshev多项式的介绍,由于基函数不满足问题(3一1)式的边界条件,应用Tau方法来逼近。
为使基函数和权函数满足单位正交关系,选权函数为‰(x,力=最(x)6(y)其中删=石2再1獬铲∽冀此时有如下两种单位正交关系成立虬舭朋心y蚴={:!富剧硼£~鹕∽出={:!等“。
ⅣO,_y)=∑∑口射如(x,y)(3·8)将近似解(3-8)式代入问题(3—1)式的微分方程,并对余量进行加权积分眦等+等Mw)蛐=“m蒯_伽少,k,l=0,1,--.,N由权函数和基函数的正交性,得a£’o’+4眢’2’=厶,||},,=0,1,…,Ⅳ(3.9)(3-9)式中厶=£l£lj;f,盯(训),(x,y)dxdy,k,l=0,1,…,N而且(3.6)式和(3-7)式依然成立,应用这两个关系式代替函数关于两个空问变量的二阶偏导数的展开系数,则方程组(3-9)式等价于下列方程组去耋p2_k2h+去”p2_12ZP(Pk21y,PCP12‰=1‘1鼽似y№y)dxdy÷)%+■)%=rI∥甜(w),(而q;i:妊戢“pp+f为=l+2儡敢k,,=0,1,…,N(3一12)求解代数方程组(3-12)式,即可得(3.8)式所表示的近似解。
3.3.3结果分析首先研究右端函数基于经典Chebyshev多项式的展开。
[黎曼几何]比较定理的应用(直径估计、基本群)
LECTURE40:APPLICATIONS OF THE VOLUME COMPARISONTHEOREM1.Volume Growth of Geodesic BallsLet(M,g)be a complete Riemannian manifold with Ric≥0.According to Bishop-Gromov volume comparison theorem,Vol(B r(p))≤Vol(B0r)=ωm r m,whereωm is the volume of unit ball in R m with equality holds if and only if(M,g)is isometric with(R m,g0).A natural question is:what is the lower bound of the volume growth?Of course this question is reasonable only for non-compact Riemannian manifolds.Theorem1.1(Calabi-Yau).Let(M,g)be a complete non-compact Riemannian man-ifold with Ric≥0.Then there exists a positive constant c depending only on p and m so thatVol(B r(p))≥crfor any r>2.Proof.(This proof is due to Gromov.)Since M is complete and non-compact,for any p∈M there exists a ray,i.e.a geodesicγ:[0,∞)→M withγ(0)=p such that dist(p,γ(t))=t for all t>0.(See PSet3problem4for more details.) For any t>32,using the Bishop-Gromov volume comparison theorem,we getVol(B t+1(γ(t))) Vol(B t−1(γ(t)))≤ωm(t+1)mωm(t−1)m=(t+1)m(t−1)m.On the other hand,by triangle inequality,B1(p)⊂B t+1(γ(t))\B t−1(γ(t)).It followsVol(B1(p)) Vol(B t−1(γ(t)))≤Vol(B t+1(γ(t))\B t−1(γ(t)))Vol(B t−1(γ(t)))≤(t+1)m−(t−1)m(t−1)m,i.e.Vol(B t−1(γ(t)))≥Vol(B1(p))(t−1)m(t+1)m−(t−1)m≥C(m)Vol(B1(p))t,wehre C(m)is the infimum of the function1t(t−1)m(t+1)m−(t−1)mon[32,∞),which is positive.Now the theorem follows from the factB r(p)⊃B r+12−1(γ(r+12)).12LECTURE40:APPLICATIONS OF THE VOLUME COMPARISON THEOREM2.Cheng’s Maximal Diameter TheoremAs a second application of volume comparison theorem,we will proveTheorem2.1(S.Y.Cheng).Let(M,g)be a complete Riemanniian manifold withRic≥(n−1)k for some k>0,and diam(M,g)=π√k ,then M is isometric to thestandard sphere of radius1√k.Proof.(This proof is due to Shiohama)For simplicity we may assume k=1.By Bishop-Gromov volume comparison theorem,for any p∈M,Vol(Bπ/2(p)) Vol(M)=Vol(Bπ/2(p))Vol(Bπ(p))≥Vol(B1π/2)Vol(B1π)=12.Now let p,q∈M so that dist(p,q)=π.The the above inequality impliesVol(Bπ/2(p))≥12Vol(M),Vol(Bπ/2(q))≥12Vol(M).Since Bπ/2(p)∩Bπ/2(q)=∅,we must haveVol(Bπ/2(p)) Vol(Bπ(p))=Vol(B1π/2)Vol(B1π)=12,Vol(Bπ/2(q))Vol(Bπ(q))=Vol(B1π/2)Vol(B1π)=12.According to Bishop-Gromov comparison theorem,Bπ/2(p)and Bπ/2(q)are both iso-metric to half sphere.It follows that M is isometric to S m.3.Fundamental Group and Milnor’s ConjectureLet’s start with some abstract definitions in algebra.Let G be a group.G is said to befinitely generated if there exists afinite subsetΓ={g1,···,g N}of G so that any element in G can be represented as group multiplications of elements inΓ.Note that if the group identity element e is inΓ,we can always remove it.Now let’sfix a setΓof generators of G.The growth function of G with respect toΓis defined to be the number of group elements that can be represented as a product of at most k generators,i.e.NΓG (k)=#{g∈G|∃l≤k and g i1,···,g il∈Γs.t.g=g i1···g il}.We say that G is of(at most)polynomial growth if NΓG (k)≤ck n for some constant cdepending only on G,Γ,and similarly G is of(at least)exponential growth if NΓG (k)≥ce k.Note that ifΓ is anotherfinite set of generators,then there exists integers c1,c2 so that any element ofΓcan be represented via at most c1elements ofΓ ,and any element ofΓ can be represented via at most c2elements ofΓ.It follows thatNΓG (k)≥NΓG(c1k),NΓG(k)≥NΓG(c2k).So the conception of polynomial/exponential growth is independent of the choice of the generating set.LECTURE40:APPLICATIONS OF THE VOLUME COMPARISON THEOREM3Coming back to Riemannian manifolds.If(M,g)is a compact Riemannian man-ifold,and M its universal covering endowed with pull-back metric.Then the funda-mental groupπ1(M)acts isometrically on M as the group of deck transformations.If M is compact,the following results are well-known:•π1(M)isfinitely generated.•(Gromov)If K≥0,then the set of generates can be choose to be no more than c(m)for some constant c depending only on m.A similar results holds for manifolds with K≥−k2and diam(M,g)≤D.(The proof uses Toporogov comparison theorem.)•(Milnor)If Ric≥0,then NΓ(k)≤ck m;if K<0,then NΓ(k)≥ce k.(The proof uses volume comparison theorem.See the following theorem for thefirst part.)For non-compact Riemannian manifolds,the fundamental group might be not finitely generated in general.However,we haveTheorem3.1(Milnor).Let M be a complete Riemannian manifold with Ric≥0 and let G⊂π1(M)be anyfinitely generated subgroup.Then there exists a constant c depending only on M and the chosefinite generating setΓof G so that NΓ(k)≤ck m. Proof.LetΓbe afinite set of generators of G.Fix a point˜p∈ M and letl=max{dist(˜p,g i˜p)|g i∈Γ}.Then by triangle inequality,for any g=g i1···g ik∈Γk⊂G,dist(˜p,g˜p)≤kl.One theother hand side,we can pickε=13min{dist(˜p,g˜p)|e=g∈G}>0so that the balls Bε(g˜p)are all disjoint for g∈G.It followsB kl+ε(˜p)⊃∪g∈Γk Bε(g˜p)and thusVol(B kl+ε(˜p))≥NΓGVol(Bε(p)). Applying the Bishop-Gromov’s volume comparison theorem,we getNΓG ≤Vol(B kl+ε(˜p))Vol(Bε(p))≤(kl+ε)mεm≤ck m.We end this course by stating the following major conjecture in this subject: Conjecture3.2(Milnor).Let M be a complete Riemannian manifold with Ric≥0, thenπ1(M)isfinitely generated.。
英语作文comparison
英语作文comparisonComparison is a fundamental cognitive process that allows us to identify similarities and differences between various objects, ideas, or phenomena. It is a ubiquitous aspect of our daily lives, enabling us to make informed decisions, draw meaningful conclusions, and enhance our understanding of the world around us. In this essay, we will explore the role of comparison in various domains and its significance in our personal and professional lives.One of the primary applications of comparison is in the realm of decision-making. When faced with multiple options, we often engage in a comparative analysis to determine the most suitable choice. This could be as simple as comparing the prices and features of different products before making a purchase or as complex as evaluating job offers or investment opportunities. By carefully examining the pros and cons of each alternative, we can make more informed and strategic decisions that align with our goals and preferences.Furthermore, comparison plays a crucial role in the field of education.In the classroom, students are frequently asked to compare and contrast different concepts, theories, or historical events. This exercise not only reinforces their understanding of the subject matter but also hones their critical thinking and analytical skills. By identifying the similarities and differences between various ideas or phenomena, students develop a deeper appreciation for the complexities of the world and become better equipped to navigate complex problems.Beyond the academic realm, comparison is also integral to personal growth and self-improvement. When we compare our current selves to our past selves or to the achievements of others, it can serve as a powerful motivator for personal development. By acknowledging our strengths and weaknesses, we can set realistic goals and work towards becoming the best version of ourselves. This process of self-reflection and comparison can lead to increased self-awareness, enhanced emotional intelligence, and a greater sense of purpose.In the professional sphere, comparison is a valuable tool for benchmarking and performance evaluation. Businesses often compare their products, services, or financial metrics to those of their competitors to assess their market position and identify areas for improvement. This comparative analysis can inform strategic decision-making, guide resource allocation, and drive innovation within the organization. Additionally, employees may engage in self-assessment or peer-to-peer comparisons to gauge their own performance and identify opportunities for professional development.The use of comparison is not limited to the realms of decision-making, education, and professional development. It also plays a significant role in the field of scientific research. Scientists often compare experimental results, theoretical models, or data sets to uncover patterns, test hypotheses, and advance our understanding of the natural world. By drawing comparisons, researchers can identify trends, anomalies, and causal relationships that may have been previously overlooked, ultimately leading to groundbreaking discoveries and advancements in various scientific disciplines.In the realm of interpersonal relationships, comparison can also have a significant impact. When we compare our relationships, interactions, or experiences to those of others, it can shape our perceptions, expectations, and even our emotional well-being. While healthy comparison can foster personal growth and inspire us to nurture meaningful connections, unhealthy comparison can lead to feelings of envy, insecurity, or even resentment. It is essential to maintain a balanced perspective and recognize that every relationship is unique, with its own set of complexities and dynamics.Furthermore, comparison has become increasingly prevalent in thedigital age, where social media platforms have amplified our exposure to the lives and accomplishments of others. This has led to a phenomenon known as "social comparison," where individuals often find themselves comparing their own lives, possessions, or achievements to those of their peers or influencers online. While this can be a source of inspiration and motivation, it can also contribute to feelings of inadequacy, low self-esteem, and even depression. It is crucial to approach social comparison with caution and to maintain a healthy perspective, focusing on personal growth and fulfillment rather than external validation.In conclusion, comparison is a fundamental cognitive process that plays a vital role in various aspects of our lives. It enables us to make informed decisions, enhance our understanding, drive personal and professional development, and advance scientific knowledge. However, it is essential to approach comparison with a balanced and nuanced perspective, recognizing both its benefits and potential pitfalls. By harnessing the power of comparison in a constructive manner, we can unlock new opportunities for growth, foster meaningful connections, and navigate the complexities of the world around us.。
有关title例句和规则
For example, we may easily find such titles as:(1) Civilization's Source and Its Implication.(2) A Multi-perspective Account of Met linguistic Negation.(3) Research on the Motivations of Lexis and V ocabulary Learning Strategies.(4) Emotional Therapeutics: New Rectifying Approaches for Children's Behavior Problems.For example, Research and Development of Sound-transmitted Technology is not a title to express the specific content accurately. By analyzing the original writing material, we know it is a paper about sound-transmitted technology used in on-line monitoring for machine tools. So it should be corrected into On-line Monitoring for Cutting on Machine Tools by Using Sound-transmitted Technology.For example, such a title as Computer Simulations of the Measurement will be regarded as too general and global, vague and empty, telling the reader nothing specific. It would be better to change the title into something like Computer Simulations of the Measurement of Quadratic Electrooptic Coefficients Associated with Rotations of the Principal Axes of the Optical Permittivity Tensor (Journal of Optics A: Pure Appl. Opt. 5, 2003,147), according to the content of the paper. The revised title can greatly highlight the emphasis and particularity of the work.For example, The title When Should Nerve Gaps Be Grafted? An Experimental Study on Rats should be changed into Optimal Time for Nerve Gaps Grafting: An Experimental Study on Rats.In general, nouns and gerunds should not be mixed in a given title. For instance, the title Digital Laser Microinterferometer and Its Applying should be changed into Digital Laser Microinterferometer and Its Applications and the title Measuring of Surface Shape and Deformation by Phase-Shifting Image Digital Holography should be replaced by Measurement of Surface Shape and Deformation by Phase-Shifting Image Digital Holography (2003 Society of Photo-Optical Instrumentation Engineers, 1267)..How to Name a TitleA title should give prominence to the central idea of the research paper. The most important key words, which show the main idea of a paper, are normally fixed first in a title. That will draw readers' attention.Recently, some authors like to crown a title with such words as:(1) Observation on, Comparison between, Improvement of, and etc. to show the aim of writing the paper.(2) Nuclear Energy in China, AIDS in the United States, Patients with Breast Cancer, Depression in Elderly, and etc. to tell readers the object of the research.(3) Experimental Study of Laser Processing of Analysis of, and etc. to tell the research method.(4) Results of, Verification of, Follow-up of, and etc. to show the result of the research.(5) Realizing the Importance of, Regression Analysis Is Necessary for... and etc. to introduce the thesis.It ought to be noticed that we should not apply the above expressions mechanically. But we should use them according to the certain situation. In general, the ABC principles are applicable forever.Abbreviations in TitlesWith the development of science and technology, a great amount of technological terms come into being. All these terms consist of nouns. It is inconvenient to be written and printed or recounted orally. Thus, they are expressed by the abbreviations of the formation of nouns, and most of them are the acronym formed by the first letter of every noun. But we should severely use the abbreviations in titles--only those abbreviations, whose full terms are rather long and which are generally acknowledged in the scientific field and very familiar to readers, can be used, such as:(1) LASER (light amplification by stimulated emission of radiation, 激光).(2) DNA (deoxyribonucleic acid, 脱痒拳核糖核酸).(3) AIDS (acquired immune deficiency syndrome).(4) CT (computerized tomography, 电子计算机断).(5) NMR (nuclear magnetic resonance, 核磁共振).(6) BCG (Bacilli Calmette-Guerin, 卡介苗).(7) SARS (severe acquired respiration syndrome,严重获得性呼吸道综合征,”非典”)Reader groups also restrict the using extent of abbreviations. Take the above abbreviations as examples, generally speaking, LASER, CT, AIDS and SARS are generally recognized and familiar in the whole scientific field and can be used in the titles in all sorts of learned journals; DNA, NMR, and BCG are normally known and familiar in the whole medical world and can be utilized in the titles in all medicaljournals. All in all, it is especially noticed that the use of abbreviations should be selected according to the various branches of learning and specialized subjects.Writing Patterns for TitlesWhether all the first letters of the principal words in a title should be capitalized or not, may depend upon the specific requirements set forth by the journal to which your manuscript is to be submitted. In general, there are three patterns for writing a title.(1) All the letters are capitalized, for instance, INTEGRA TED MODEL FOR PERFORMANCE ANAL YSIS OF MULTIPLE CLASS-OF-SER VICE INTERNET. But if pH, α,β,γ, and etc. are contained in a title, p, α,β,γ and etc. are not capitalized. For instance, α-RAY, γ-RAY, β-PARTICLE.(2) The first letter of every notional word in a title should be capitalized, such as, A Comparison of an OFDM System and a Single Carrier System Using Frequency Domain Equalization, Array Antenna Assisted Doppler Spread Compensator for OFDM, Capacity Optimization in MC- CDMA Systems, and etc. Notes:a. The first letters of articles like a, an and the, conjunctions like and, but, or and nor and the prepositions containing less than four letters like of in, on, to, for, and etc. in a title are not capitalized. But the first letters of all the examples mentioned above should be capitalized when they are at the beginning or end of a title, or they are behind a colon or the first word of a sub-title. For instance, Scope of the Investigations: The First Phase, A New Broadband Uniform Accuracy DOA Estimator and The Research of Nuclear Structure Going On.b. The first letters of the prepositions containing four or more letters are capitalized. For instance, with, about, between, through, and etc. For example, The Relation Between the View of Scientific Development and the Strategy of Revitalizing China Through Talents.c. The infinitive mark to in a title should be written as To.* For instance, Compounds To Be Tested.d. The first letter of the word ray should not be capitalized when it is used in X-ray in a title.e. The first letter of the name for a genus should be capitalized, whereas the one of the name for a species is not capitalized, such as, Novel Metabolites of Siphonaria pectinata Bacillus Subtil Pneumo-coccus Aureus.f. The first letters of the two words in a compound in a title should be capitalized if it is used as an entirety to modify the other words, for instance, Laser-Produced Protons and Their Application as a ParticleProbe and Wide-Angel Achromatic Prism Beam Steering for Infrared Countermeasure Applications.g. The abbreviation for measure unit should not be capitalized. But the first letter of the full form for it should be. Such as, Analysis of Milligram Amounts →...of 2mg.(3)The first letter of the only first word is capitalized while the others are not. For instance, Pair production via crossed laser, Dual-frequency sounder for UMTS frequency-division duplex channels, and etc.Note:a. Proper nouns should be capitalized whether they are at the beginning or not, for instance, Health care in the United States.b. The first letter of a noun to show directions of a country or an area is capitalized, but the adjective for the noun is not, such as, Northeast→ northeastern and Midwest→ midwestern.c. The first letter of the word earth used to denote a planet in the universe is capitalized.The last point should be noticed: Nowadays, some important international retrieval organizations have their own different requirements for titles. For instance, EI has the following requirements for titles:a. Try to avoid using articles (the, a and an) at the very beginning of a title;b. The first letter of the first word in a title is capitalized while the others are not except the first letters of proper nouns, every letter in abbreviations, the first letter of Germany nouns and the first letter of any word after the punctuation period in a title;c. The main title and the subtitle must be separated by period but not colon, semicolon or dash.d. Try to avoid using abbreviations in a title. If they have to be used, the full forms of them should be given in brackets;e. Try to avoid using some particular characters such as numbers and Greek letters in a title or use them less.。
新核心综合学术英语教程3 unit1 答案
Unit 1Reading 2 Indigenous Knowledge3. 1) r. override 2) j. expertise 3) d. intimate 4) a. unanimous 5) g. intrusion6) u. dissemination 7) c. insights 8) l. susceptible 9) n. incorporating 10) f. vanish11) m. interaction 12) s. scenario 13) i. detrimental 14) p. implement 15) k. alleviation16) b. encompass 17) o. validate 18) h. impending 19) e. interweave 20) t. rational4. For reference:The two articles both employ definitions for the introduction of the terms and examples to validate each facet. Both use classifications, descriptions, comparison and contrast for further analysis. One big difference lies in the perspective to view the title, with the first a rather holistic discussion ranging from the status quo to the settlement of the existing problems and the second a partial focus on chiefly its applications.Reading 3 Ultrasonics5. 1) component 2) accumulate 3) spherical 4) navigate 5) fatigue6) harness 7) version 8) synonymous 9) inhibit 10) integrity11) uniform 12) detect 13) incidence 14) monitor 15) probe16) intensity 17) convert 18) proceed 19) visualize 20) inspect6. Attention: there is a mistake here, the first should be Para. KPara. K—e Para. B—a Para. C—c Para. D—f Para. E—hPara. F—d Para. G—j Para. H—i Para. I—b Para. J—g7. 1) E 2) F 3) Para. E 4) E 5) F 6) Para. H 7) Para. H 8) E8. For open discussionTask 4 Writing an Essay of DefinitionReading 4 Disruptive Technologies5. For reference only1) Natural breathing will be provided by the robot for the patient during surgery.2) The pressure will have to be reduced by us.3) All instruments need to be sterilized.4) For us, some physical and technical factors may be considered/ taken into consideration.5) If we make sustained efforts, there is a chance that the environment will be improved.6) Some specific demands of the scientific establishment have to be made.7) The presence of the country has been felt more than ever by the whole world.8) It seems that other explanations are hard to be found.9) The interaction between organism and environment is being perceived.10) The tests work most effectively if what will be measured can be most precisely defined.Integrated Exercises2. 1) component 2) integrity 3) mobilize 4) option 5) monitor 6) navigate 7) encompass8) compromise 9) incorporate 10) implement 11) impending 12) scenario3. 1) The survey encompasses social, political, and economic aspects of the situation.2) In some countries power is synonymous with corruption.3) The strike shut down many airports, but international f lights were unaffected.4) The scenery is beautiful but inaccessible to most ordinary travelers.5) The conflict deprived him of the means of livelihood.6) Such animals can withstand the extremes of weather.7) The rise in the time spent on the Internet is concomitant with the massive loss ofsociability.8) Many inventions such as gunpowder and compass originated in China.9) The frequency of mining accidents has decreased over the past 10 years.10) The maximum number of places offered by the medical school for the applicants is 15. 5. 1) Scientists should warn people about PM 2.5 and the need to restrict their children’soutdoor activities to avoid even the minimal damage.2) The local government has implemented a development program for the mountain climbersto leave the surrounding region unaffected.3) We can reduce the risks to zero since we are sure of what risks they are running.4) To combat your anxiety, you should compel yourself to visualize a promising future in whicha problem has already been settled.5) He holds that developed countries should be held accountable for economic growth on aglobal scale.6) Trash is not yet fully utilized, leading to overlooking the potential in it.7) A large number of females choose the option of personal finance to achieve control of theirown lives.8)The university has decided to invest in the project because it has many technical advantagesover other similar ones.9) Trees can provide shelter for both man and animals, which we tend to overlook.10) We are trying to achieve a sound understanding of liberal arts courses, which encompassesa wide range of subjects.Listening 2A. (1) F (2) T (3) T (4) F (5) T (6) T (7) TB. (1) Clouding computing is about the provision of computer resources like SaaS, PaaS, andinfrastructure provision while private computing isn’t.(2) 67.(3) Because the Industrial Revolution is not a thing, and it cannot be defined by some specificproducts. It is a transformation or a transition involving concepts, ideas, ways of production, changing attitudes, etc.(4) Because it is more than just technology, as the speaker further compares it to electricity,which has transformed from an innovation to much more of a utility service.(5) Ubiquitous.Listening 3A. (1) C (2) B (3) A (4) C (5) DB. compressed, whisper, external, pockets, panic, assembly, psychological, reflection,simultaneous, architecture, figure out, legitimate, instantaneous, clicking, addictedC. (1) B, C (2) C。
已发表的学术论文
(1)Ying Lungan, Zhou Tie, "Long-time Asymptotic Behavior of Lax-Friedrichs Scheme", J. PartialDiff. Eqs., Vol.6, No.1 (1993), 39-61(2)Long-an Ying, Tie Zhou, "Nonlinear Stability of Discrete Shocks", Proceedings of the Japan-ChinaSeminar on Numerical mathematics, Lecture Notes in Numerical and Applied Analysis, Vol.14 (1995), pp227-239.(3)Tie Zhou, "A Remark on the Nonlinear Stability of Discrete Shocks for Single HyperbolicConservation Laws", Acta Scientiarum Naturalium Universitatis Pekinensis, Vol.33, No.5 (1997), pp554-560. (EI)(4)Han-song Tang, Tie Zhou, "Why nonconservative interface algorithms may be applicable: analysisfor Chimera grids", Proceedings of 7th International Symposium on CFD(1997), pp336-341. (5)Han-song Tang, Tie Zhou, "On Nonconservative Conditions at Grid Interfaces", SIAM Journal onNumerical Analysis, V ol.37, No.1 (1999), pp173-193. (SCI)(6)李荫藩,宋松和,周铁,“双曲型守恒律的高阶、高精度有限体积法”,力学进展, V ol. 31,No.2 (2001), pp245-263.(7)Tie Zhou, Yin-fan Li, Chi-Wang Shu, "Numerical Comparison of WENO Finite Volume and Runge-Kutta Discontinous Galerkin Methods", Journal of Scientific Computing, Vol.16, No.2 (2001), pp145-171. (EI)(8)Tie Zhou, Yan Guo, Chi-Wang Shu, "Numerical Study on Landau Damping", Physica D, V ol.157(2001), pp322-333. (SCI)(9)Tie Zhou, Shulin Zhou, Ming Jiang, Danfeng Lu, "Theory of continuous multiscale homomorphicfiltering and applications", XI-th International Congress for Sterology Beijing Conference, inconjunction with Xth Chinese National Symposium for Sterology and Image Analysis, November 4-8, 2003, Beijing.(10)Yan Guo, Chi-Wang Shu, Tie Zhou, "The dynamics of a Plane Diode", SIAM Journal onMathematical Analysis, V ol. 35, Number 6 pp. 1617-1635. 2004. (SCI)(11)Jinghua Wang, Hairui Wen, Tie Zhou, "On large time step schemes for hyperbolic conservationlaws", COMM. MATH. SCI. , V ol. 2, No. 3, pp. 477-495. 2004.(12)Jiansheng Yang, Qiang Kong, Tie zhou, Ming Jiang, "Cone Beam Cover Method: An Approach toPerforming Backprojection in Katsevich’s Exact Algorithm for Spiral Cone Beam CT", Journal of X-ray Science and Technology,V ol.9 , 1-16, 2004. (EI)(13)蔚喜军,周铁,“流体力学方程的间断有限元方法”,计算物理,V ol. 22, No. 2 (2005), pp108-116. (EI)(14)DanFeng Lu, HongKai Zhao, Ming Jiang, ShuLin Zhou, Tie Zhou, "A Surface ReconstructionMethod for Highly Noisy Point Clouds", N. Paragios et al. (Eds.): VLSM 2005, LNCS 3752, pp.283–294. Springer-Verlag Berlin Heidelberg 2005. (SCI)(15)郭晓虎,杨建生,孔强,周铁,姜明,“锥束覆盖方法的并行实现及性能分析”,中国体视学与图像分析,V ol.10, No.3, 165-169, 2005.(16)Jiansheng Yang, Xiaohu Guo, Qiang Kong, Tie Zhou, Ming Jiang, "Parallel Implementation of theKatsevich's FBP Algorithm", International Journal of Biomedical Imaging, Special Issue on"Development of Computed Tomography Algorithms", 2006, Article ID 17463.(17)Ge Wang, Ming Jiang, Jie Tian,Wenxiang Cong, Yi Li, Weimin Han, Durai Kumar, Xin Qian, HaiouShen, Tie Zhou, Jiantao Cheng, Y ujie Lv, Hui Li, Jie Luo, "Recent development in bioluminescence tomography", 2006 3RD IEEE INTERNA TIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM MACRO TO NANO, VOLS 1-3, IEEE International Symposium on Biomedical Imaging, pages: 678-681, 2006. (SCI)(18)Ming Jiang, Tie Zhou, Jiantao Cheng, Wengxiang Cong, Durairaj Kumar, Ge Wang, "ImageReconstruction for Bioluminescence Tomography", RSNA 2005.(19)Ming Jiang, Tie Zhou, Jiantao Cheng, Wenxiang Cong, Ge Wang, "Development of bioluminescencetomography", art. no. 63180E, Developments in X-Ray Tomography V, PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS (SPIE), vol. 6318, pages: E3180-E3180, 2006. (SCI)(20)Jinxiao Pan, Tie Zhou, Yan Han, Ming Jiang, “Variable Weighted Ordered Subset ImageReconstruction Algorithm”, International Journal of Biomedical Imaging, V olume 2006 (2006), doi:10.1155/IJBI/2006/10398 Article ID 10398, 7 pages(21)Seung Wook Lee, Jinxiao Pan, Chunhua Liu, Tie Zhou, Cheul-Muu Sim, Ming Jiang, A PreliminaryStudy of Iterative Reconstruction Algorithms for Neutron Tomography, The 8th World Conference on Neutron Radiography, National Institute of Standards and Technology, Gaithersburg, MD, 16 - 19 October, 2006. (SCI)(22)G. Wang, X. Qian, W. Cong, H. Shen, Y. Li, W. Han, D. Kumar, M. Jiang, T. Zhou, J. Cheng, J. Tian,Y. Lv, Hui Li, J. Luo, "Recent development in bioluminescence tomography", Current MedicalImaging Reviews, V olume 2, Number 4, November 2006. (SCI)(23)Tony Chan, Haomin Zhou, Tie Zhou, "Error Analysis for H^1 Based Wavelet Interpolations", ImageProcessing Based on Partial Differential Equations: Proceedings of the International Conference on PDE-Based Image Processing and Related Inverse Problems, Editors: X.-C. Tai, K.-A. Lie, T.F.Chan, and S. Osher, Series: Mathematics and Visualization, Springer Verlag, 2007.(24)Jiang, Ming; Louis, Alfred K.; Wolf, Didier; Zhao, Hongkai; Daul, Christian; Zhang, Zhaotian;Zhou, Tie, Mathematics in biomedical imaging: Editorial, International Journal of BiomedicalImaging, v 2007, Article number: 64954. 2007. (EI)(25)M. Jiang, T. Zhou, J. Cheng, W. Cong, G. Wang, "Image reconstruction for bioluminescencetomography from partial measurement", OPTICS EXPRESS, V ol. 15, No. 18, September 2007.(SCI)(26)Wenlei Ni, Ming Jiang, Shulin Zhou, Tie Zhou, “On Reconstruction Algorithms of X-ray PhaseContrast CT by Holographic Measurements” (invited), An Interdisciplinary Workshop onMathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), Centro di Ricerca Matematica Ennio De Giorgi, Scuola Normale Superiore di Pisa, Italy, October 15 - 20, 2007.(27)Ni Wen-lei, Zhou Tie, "Algorithm for phase contrast X-ray tomography based on nonlinear phaseretrieval", Applied Mathematics and Mechanics (English Edition), Vol.29, No.1, pp101-112, 2008.(SCI)(28)Jiantao Cheng, Tie Zhou, "A Variational EM Method for the Inverse Black Body RadiationProblem", Journal of Computational Mathematics (English Edition), V ol.26, No.6, pp876–890, 2008.(SCI)(29)Tie Zhou, Jiantao Cheng, Ming Jiang, Bioluminescence Tomography Reconstruction by Radial BasisFunction Collocation Method, Industrial and Applied mathematics in China (Series in Contemporary Applied Mathematics CAM 10), pp229-239, Higher Education Press, 2009.(30)Caifang Wang, Tie Zhou, “Local convergence of an EM-like image reconstruction method fordiffuse optical tomography”, Journal of Computational Mathematics (English Edition), Vol.29, No.1, pp.61-73, 2011. (SCI)(31)Caifang Wang, Tie Zhou, “The order of convergence for Landweber Scheme with α,β –rule”, InverseProblems and Imaging,V ol.6, No.1, pp.133-146, 2012. (SCI)(32)周宇,周铁,姜明,“X射线相位相位衬度层析成像的数学模型”,数学建模及其应用,第1卷,第2期,pp.12-18,2012.(33)Yu Zhou, Tie Zhou, Ming Jiang, “An alternative derivation for Bronnikov’s formula in x-ray phasecontrast tomography”, World Congress on Medical Physics and Biomedical Engineering, ofInternational Federation for Medical and Biological Engineering (IFMBE) Proceedings, vol.39,pp.1038-1040, 2012.(EI)(34)Yanbin Lu, Jiansheng Yang, John W Emerson, Heng Mao, Tie Zhou,Y uanzheng Si, Ming Jiang,“Cone-beam reconstruction for the two-circles-plus-one-line trajectory”, Physics in Medicine and Biology”, Vol.57, No.9, pp.2689-2707, 2012.(SCI)(35)S. Luo, H. Zhou, T. Zhou, “An Improved Color Image Demosaicking Algorithm”, 2012 5thInternational Congress on Image and Signal Processing (CISP 2012), 2012-10. (EI)(36)Yu Zhou, Alfred K Louis, Tie Zhou, Ming Jiang, “Partial Coherence Theory for X-ray PhaseContrast Imaging Technique with Gratings”, Optics Communications,V olume 285, Issue 24, Pages 4763–4774, 2012-11. (SCI)(37)Seung Wook Lee, Yu Zhou, Tie Zhou, Ming Jiang, Jongyul Kim, Chiwon Ahn, Alfred K. Louis,Visibility studies in grating-based neutron phase contrast and dark-field imaging by partial coherence theory, Journal of Korean Physical Society, V ol. 63, NO. 11, pp. 2093 - 2097, 2013.(38)Shousheng Luo, Jiansheng Yang and Tie Zhou, “Moment-based cosh-Hilbert Inversion and ItsApplications in Single-photon Emission Computed Tomography”, CHINESE JOURNAL OFCOMPUTATIONAL PHYSICS(计算物理), Vol. 30, No. 6, pp.799-807, Nov. 2013.(核心期刊)(39)Shousheng Luo, Tie Zhou, “Superiorization of EM Algorithm and Its Application in Single-PhotonEmission Computed Tomography(SPECT) ”, Inverse Problems and Imaging , Vol 8, Issue 1, Pages: 223 - 246, February 2014.(SCI)(40)Tangjie Lv, Tie Zhou, “V ARIATIONAL ITERA TIVE ALGORITHMS IN PHOTOACOUSTICTOMOGRAPHY W ITH V ARIABLE SOUND SPEED”, Journal of Computational Mathematics, Vol.32, No.5, pp.579-600, Aug. 2014. (SCI)(41)毛珩,李宣成,李海文,TAO Louis,周铁,“基于主动轮廓模型的运动线虫中心线定位算法”,中国科学:数学46(7),pp.1005-1016,2016.(42)Ji Li and Tie Zhou, “On gradient descent algorithm for generalized phase retrieval problem”,Proceedings of IEEE Conference on Signal Processing (ICSP 2016).(EI)(43)Ji Li and Tie Zhou, “On Relaxed Averaged Alternating Reflections (RAAR) Algorithm for PhaseRetrieval from Structured I lluminations”, Inverse Problems, 33 (2), 025012(20pp), 2017. (SCI) (44)Ji Li and Tie Zhou, “NUMERICAL OPTIMIZATION ALGORITHMS FOR WA VEFRONT PHASERETRIEV AL FROM MULTIPLE MEASUREMENTS”, Inverse Problems and Imaging 11(4),pp.721-743, 2017.(SCI)(45)Ji Li, Tie Zhou and Chao Wang, “On global convergence of gradient descent algorithms forgeneralized phase retrieval problem”, Journal of Computational and Applied Mathematics, Volume 329, Pages 202-222, 2017.(SCI)(46)Chao Wang, Tie Zhou, “On Iterative Algorithms for Quantitative Photoacoustic Tomography in theRadia tive Transport Regime”, Inverse Problems, 33(11), 115006 (25pp) , 2017. (SCI)(47)Chao Wang, Tie Zhou, “A Hybrid Reconstruction Approach for Absorption Coefficient byFluorescence Photoacoustic Tomography”, Inverse Problems, 35 (2019) 025005, 2019. (SCI) (48)S. Luo, Y. Zhang, T. Zhou and J. Song , “XCT Image Reconstruction by a Modified SuperiorizedIteration and Theoretical Analysis”, Optimization Methods and Software, online,https:///10.1080/10556788.2018.1560442, 2019. (SCI)。
高等数学(微积分学)专业术语名词、概念、定理等英汉对照.
目录第一部分英汉微积分词汇Part 1 English-Chinese Calculus Vocabulary第一章函数与极限Chapter 1 function and Limit (1)第二章导数与微分Chapter 2 Derivative and Differential (2)第三章微分中值定理Chapter 3 Mean Value theorem of differentials and theApplicati on of Derivatives (3)第四章不定积分Chapter 4 Indefinite Intergrals (3)第五章定积分Chapter 5 Definite Integral (3)第六章定积分的应用Chapter 6 Application of the Definite Integrals (4)第七章空间解析几何与向量代数Chapter 7 Space Ana lytic Geomertry and Vector Algebra (4)第八章多元函数微分法及其应用Chapter 8 Differentiation of functions Several variablesand Its Application (5)第九章重积分Multiple Integrals (6)第十章曲线积分与曲面积分Chapter 10 Line(Curve ) Integrals and Sur face Integrals……………………6 第十一章无穷级数Chapter 11 Infinite Series……………………………………………………6 第十二章微分方程Chapter 12 Differential Equation (7)第二部分定理定义公式的英文表达 Part 2 English Expression for Theorem, Definition and Formula第一章函数与极限Chapter 1 Function and L imit (19)1.1 映射与函数(Mapping and Function ) (19)1.2 数列的极限(Limit of the Sequence of Number) (20)1.3 函数的极限(Limit of Function) (21)1.4 无穷小与无穷大(Infinitesimal and Inifinity) (23)1.5 极限运算法则(Operation Rule of L imit) (24)1.6 极限存在准则两个重要的极限(Rule for theExistence of Limits Two Important Limits) (25)1.7 无穷小的比较(The Comparison of infinitesimal) (26)1.8 函数的连续性与间断点(Continuity of FunctionAnd Discontinuity Points) (28)1.9 连续函数的运酸与初等函数的连续性(OperationOf Continuous Functions and Continuity ofElementary Functions) (28)1.10 闭区间上联系汗水的性质(Properties ofContinuous Functions on a Closed Interval) (30)第二章导数与数分Chapter2 Derivative and Differential (31)2.1 导数的概念(The Concept of Derivative) (31)2.2 函数的求导法则(Rules for Finding Derivatives) (33)2.3 高阶导数(Higher-order Derivatives) (34)2.4 隐函数及由参数方程所确定的函数的导数相关变化率(Derivatives of Implicit Functions and Functions Determined by Parametric Equation and Correlative Change Rate) (34)2.5 函数的微分(Differential of a Function) (35)第三章微分中值定理与导数的应用Chapter 3 Mean Value Theorem of Differentials and theApplication of Derivatives (36)3.1 微分中值定理(The Mean Value Theorem) (36)3.2 洛必达法则(L’Hopital’s Rule) (38)3.3 泰勒公式(Taylor’s Formula) (41)3.4 函数的单调性和曲线的凹凸性(Monotonicityof Functions and Concavity of Curves) (43)3.5 函数的极值与最大最小值(Extrema, Maximaand Minima of Functions) (46)3.6 函数图形的描绘(Graphing Functions) (49)3.7 曲率(Curvature) (50)3.8 方程的近似解(Solving Equation Numerically) (53)第四章不定积分Chapter 4 Indefinite Integrals (54)4.1 不定积分的概念与性质(The Concept andProperties of Indefinite Integrals) (54)4.2 换元积分法(Substitution Rule for Indefinite Integrals) (56)4.3 分部积分法(Integration by Parts) (57)4.4 有理函数的积分(Integration of Rational Functions) (58)第五章定积分Chapter 5 Definite Integrals (61)5.1 定积分的概念和性质(Concept of Definite Integraland its Properties) (61)5.2 微积分基本定理(Fundamental Theorem of Calculus) (67)5.3 定积分的换元法和分部积分法(Integration by Substitution andDefinite Integrals by Parts) (69)5.4 反常积分(Improper Integrals) (70)第六章定积分的应用Chapter 6 Applications of the Definite Integrals (75)6.1 定积分的元素法(The Element Method of Definite Integra (75)6.2 定积分在几何学上的应用(Applications of the DefiniteIntegrals to Geometry) (76)6.3 定积分在物理学上的应用(Applications of the DefiniteIntegrals to Physics) (79)第七章空间解析几何与向量代数Chapter 7 Space Analytic Geometry and Vector Algebar (80)7.1 向量及其线性运算(Vector and Its Linear Operation) (80)7.2 数量积向量积(Dot Produc t and Cross Product) (86)7.3 曲面及其方程(Surface and Its Equation) (89)7.4 空间曲线及其方程(The Curve in Three-space and Its Equation (91)7.5 平面及其方程(Plane in Space and Its Equation) (93)7.6 空间直线及其方程(Lines in and Their Equations) (95)第八章多元函数微分法及其应用Chapter 8 Differentiation of Functions of SeveralVariables and Its Application (99)8.1 多元函数的基本概念(The Basic Concepts of Functionsof Several Variables) (99)8.2 偏导数(Partial Derivative) (102)8.3 全微分(Total Differential) (103)8.4 链式法则(The Chain Rule) (104)8.5 隐函数的求导公式(Derivative Formula for Implicit Functions). (104)8.6 多元函数微分学的几何应用(Geometric Applications of Differentiationof Ffunctions of Severalvariables) (106)8.7方向导数与梯度(Directional Derivatives and Gradients) (107)8.8多元函数的极值(Extreme Value of Functions of Several Variables) (108)第九章重积分Chapter 9 Multiple Integrals (111)9.1二重积分的概念与性质(The Concept of Double Integralsand Its Properities) (111)9.2二重积分的计算法(Evaluation of double Integrals) (114)9.3三重积分(Triple Integrals) (115)9.4重积分的应用(Applications of Multiple Itegrals) (120)第十章曲线积分与曲面积分Chapte 10 Line Integrals and Surface Integrals………………………………121 10.1 对弧长的曲线积分(line Intergrals with Respect to Arc Length) ………121 10.2 对坐标的曲线积分(Line Integrals with respect toCoordinate Variables) ……………………………………………………123 10.3 格林公式及其应用(Green's Formula and Its Applications) ………………124 10.4 对面积的曲面积分(Surface Integrals with Respect to Aarea) ……………126 10.5 对坐标的曲面积分(Surface Integrals with Respect toCoordinate Variables) ………………………………………………………128 10.6 高斯公式通量与散度(Gauss's Formula Flux and Divirgence) …… 130 10.7 斯托克斯公式环流量与旋度(Stokes's Formula Circulationand Rotation) (131)第十一章无穷级数Chapter 11 Infinite Series (133)11.1 常数项级数的概念与性质(The concept and Properties ofThe Constant series) ………………………………………………………133 11.2 常数项级数的审敛法(Test for Convergence of the Constant Series) ……137 11.3 幂级数(powe r Series). ……………………………………………………143 11.4 函数展开成幂级数(Represent the Function as Power Series) ……………148 11.5 函数的幂级数展开式的应用(the Appliacation of the Power Seriesrepresentation of a Function) (148)11.6 函数项级数的一致收敛性及一致收敛级数的基本性质(The Unanimous Convergence of the Ser ies of Functions and Its properties) (149)11.7 傅立叶级数(Fourier Series).............................................152 11.8 一般周期函数的傅立叶级数(Fourier Series of Periodic Functions) (153)第十二章微分方程Chapter 12 Differential Equation……………………………………………155 12.1 微分方程的基本概念(The Concept of DifferentialEqu ation) ……155 12.2 可分离变量的微分方程(Separable Differential Equation) ………156 12.3 齐次方程(Homogeneous Equation) ………………………………156 12.4 一次线性微分方程(Linear Differential Equation of theFirst Order) (157)12.5 全微分方程(Total Differential Equation) …………………………158 12.6 可降阶的高阶微分方程(Higher-order DifferentialEquation Turned to Lower-order DifferentialEquation) (159)12.7 高阶线性微分方程(Linear Differential Equation of Higher Order) …159 12.8 常系数齐次线性微分方程(Homogeneous LinearDifferential Equation with Constant Coefficient) (163)12.9 常系数非齐次线性微分方程(Non HomogeneousDifferential Equation with Constant Coefficient) (164)12.10 欧拉方程(Euler Equation) …………………………………………164 12.11 微分方程的幂级数解法(Power Series Solutionto Differential Equation) (164)第三部分常用数学符号的英文表达Part 3 English Expression of the Mathematical Symbol in Common Use第一部分英汉微积分词汇Part1 English-Chinese Calculus Vocabulary映射 mappingX到Y的映射 mapping of X ontoY 满射 surjection 单射 injection一一映射 one-to-one mapping 双射 bijection 算子 operator变化 transformation 函数 function逆映射 inverse mapping复合映射 composite mapping 自变量 independent variable 因变量 dependent variable 定义域 domain函数值 value of function 函数关系 function relation 值域 range自然定义域 natural domain 单值函数 single valued function 多值函数 multiple valued function 单值分支 one-valued branch 函数图形 graph of a function 绝对值函数 absolute value 符号函数 sigh function 整数部分 integral part 阶梯曲线 step curve 第一章函数与极限Chapter1 Function and Limit 集合 set元素 element 子集 subset 空集 empty set 并集 union交集 intersection 差集 difference of set 基本集 basic set补集 complement set 直积 direct product笛卡儿积 Cartesian product 开区间 open interval 闭区间 closed interval 半开区间half open interval 有限区间 finite interval区间的长度 length of an interval 无限区间 infinite interval 领域 neighborhood领域的中心 centre of a neighborhood 领域的半径 radius of a neighborhood 左领域left neighborhood 右领域 right neighborhood当且仅当 if and only if(iff) 分段函数 piecewise function 上界 upper bound 下界lower bound 有界 boundedness 无界 unbounded函数的单调性 monotonicity of a function 单调增加的 increasing 单调减少的decreasing单调函数 monotone function函数的奇偶性 parity(odevity) of a function对称 symmetry 偶函数 even function 奇函数 odd function函数的周期性 periodicity of a function 周期 period反函数 inverse function 直接函数 direct function 复合函数 composite function 中间变量 intermediate variable 函数的运算 operation of function基本初等函数 basic elementary function 初等函数 elementary function 幂函数 power function指数函数 exponential function 对数函数 logarithmic function 三角函数 trigonometric function反三角函数 inverse trigonometric function 常数函数 constant function 双曲函数hyperbolic function 双曲正弦 hyperbolic sine 双曲余弦 hyperbolic cosine 双曲正切hyperbolic tangent反双曲正弦 inverse hyperbolic sine 反双曲余弦 inverse hyperbolic cosine 反双曲正切 inverse hyperbolic tangent 极限 limit数列 sequence of number 收敛 convergence 收敛于 a converge to a 发散 divergent极限的唯一性 uniqueness of limits收敛数列的有界性 boundedness of aconvergent sequence子列 subsequence函数的极限 limits of functions函数f(x)当x趋于x0时的极限 limit of functions f(x) as x approaches x0 左极限 left limit 右极限 right limit单侧极限 one-sided limits水平渐近线 horizontal asymptote 无穷小 infinitesimal 无穷大 infinity铅直渐近线 vertical asymptote 夹逼准则 squeeze rule单调数列 monotonic sequence高阶无穷小 infinitesimal of higher order 低阶无穷小 infinitesimal of lower order 同阶无穷小 infinitesimal of the same order 等阶无穷小 equivalent infinitesimal 函数的连续性 continuity of a function 增量 increment函数f(x)在x0连续 the function f(x) is continuous at x0左连续 left continuous 右连续 right continuous区间上的连续函数 continuous function 函数f(x)在该区间上连续 function f(x) is continuous on an interval 不连续点 discontinuity point第一类间断点 discontinuity point of the first kind第二类间断点 discontinuity point of the second kind初等函数的连续性 continuity of the elementary functions定义区间 defined interval最大值 global maximum value (absolute maximum)最小值 global minimum value (absolute minimum)零点定理 the zero point theorem介值定理 intermediate value theorem 第二章导数与微分Chapter2 Derivative and Differential 速度 velocity匀速运动 uniform motion 平均速度 average velocity瞬时速度 instantaneous velocity 圆的切线 tangent line of a circle 切线 tangent line切线的斜率 slope of the tangent line 位置函数 position function 导数 derivative 可导derivable函数的变化率问题 problem of the change rate of a function导函数 derived function 左导数 left-hand derivative 右导数 right-hand derivative 单侧导数 one-sided derivativesf(x)在闭区间【a,b】上可导 f(x)isderivable on the closed interval [a,b] 切线方程 tangent equation 角速度 angular velocity 成本函数 cost function 边际成本 marginal cost 链式法则 chain rule隐函数 implicit function 显函数 explicit function 二阶函数 second derivative 三阶导数 third derivative 高阶导数 nth derivative莱布尼茨公式 Leibniz formula 对数求导法 log- derivative 参数方程 parametric equation 相关变化率 correlative change rata 微分 differential 可微的 differentiable 函数的微分 differential of function自变量的微分 differential of independent variable微商 differential quotient间接测量误差 indirect measurement error 绝对误差 absolute error相对误差 relative error第三章微分中值定理与导数的应用Chapter3 MeanValue Theorem of Differentials and the Application of Derivatives 罗马定理Rolle’s theorem 费马引理Fermat’s lemma拉格朗日中值定理Lagrange’s mean value theorem驻点 stationary point 稳定点 stable point 临界点 critical point辅助函数 auxiliary function拉格朗日中值公式Lagrange’s mean value formula柯西中值定理Cauchy’s mean value theorem洛必达法则L’Hospital’s Rule0/0型不定式 indeterminate form of type 0/0不定式 indeterminate form泰勒中值定理Taylor’s mean value theorem泰勒公式 Taylor formula 余项 remainder term拉格朗日余项 Lagrange remainder term 麦克劳林公式Maclaurin’s formula 佩亚诺公式 Peano remainder term 凹凸性 concavity凹向上的 concave upward, cancave up 凹向下的,向上凸的concave downward’ concave down拐点 inflection point函数的极值 extremum of function 极大值 local(relative) maximum 最大值global(absolute) mximum 极小值 local(relative) minimum 最小值 global(absolute) minimum 目标函数 objective function 曲率 curvature弧微分 arc differential平均曲率 average curvature 曲率园 circle of curvature 曲率中心 center of curvature 曲率半径 radius of curvature渐屈线 evolute 渐伸线 involute根的隔离 isolation of root 隔离区间 isolation interval 切线法 tangent line method第四章不定积分Chapter4 Indefinite Integrals原函数 primitive function(antiderivative) 积分号 sign of integration 被积函数integrand积分变量 integral variable 积分曲线 integral curve 积分表 table of integrals换元积分法 integration by substitution 分部积分法 integration by parts分部积分公式 formula of integration by parts有理函数 rational function 真分式 proper fraction 假分式 improper fraction第五章定积分Chapter5 Definite Integrals 曲边梯形 trapezoid with 曲边 curve edge窄矩形 narrow rectangle曲边梯形的面积 area of trapezoid with curved edge积分下限 lower limit of integral 积分上限 upper limit of integral 积分区间 integral interval 分割 partition积分和 integral sum 可积 integrable矩形法 rectangle method积分中值定理 mean value theorem of integrals函数在区间上的平均值 average value of a function on an integvals牛顿-莱布尼茨公式 Newton-Leibniz formula微积分基本公式 fundamental formula of calculus换元公式 formula for integration by substitution递推公式 recurrence formula 反常积分 improper integral反常积分发散 the improper integral is divergent反常积分收敛 the improper integral is convergent无穷限的反常积分 improper integral on an infinite interval无界函数的反常积分 improper integral of unbounded functions绝对收敛 absolutely convergent第六章定积分的应用Chapter6 Applications of the Definite Integrals元素法 the element method 面积元素 element of area平面图形的面积 area of a luane figure 直角坐标又称“笛卡儿坐标 (Cartesian coordinates)”极坐标 polar coordinates 抛物线 parabola 椭圆 ellipse旋转体的面积 volume of a solid of rotation旋转椭球体 ellipsoid of revolution, ellipsoid of rotation曲线的弧长 arc length of acurve 可求长的 rectifiable 光滑 smooth 功 work水压力 water pressure 引力 gravitation 变力 variable force第七章空间解析几何与向量代数Chapter7 Space Analytic Geometry and Vector Algebra向量 vector自由向量 free vector 单位向量 unit vector 零向量 zero vector 相等 equal 平行parallel向量的线性运算 linear poeration of vector 三角法则 triangle rule平行四边形法则 parallelogram rule 交换律 commutative law 结合律 associative law 负向量 negative vector 差 difference分配律 distributive law空间直角坐标系 space rectangular coordinates坐标面 coordinate plane 卦限 octant向量的模 modulus of vector向量a与b的夹角 angle between vector a and b方向余弦 direction cosine 方向角 direction angle向量在轴上的投影 projection of a vector onto an axis数量积,外积,叉积 scalar product,dot product,inner product曲面方程 equation for a surface 球面 sphere旋转曲面 surface of revolution 母线 generating line 轴 axis圆锥面 cone 顶点 vertex旋转单叶双曲面 revolution hyperboloids of one sheet旋转双叶双曲面 revolution hyperboloids of two sheets柱面 cylindrical surface ,cylinder 圆柱面 cylindrical surface 准线 directrix抛物柱面 parabolic cylinder 二次曲面 quadric surface 椭圆锥面 dlliptic cone 椭球面ellipsoid单叶双曲面 hyperboloid of one sheet 双叶双曲面 hyperboloid of two sheets 旋转椭球面 ellipsoid of revolution 椭圆抛物面 elliptic paraboloid旋转抛物面 paraboloid of revolution 双曲抛物面 hyperbolic paraboloid 马鞍面 saddle surface椭圆柱面 elliptic cylinder 双曲柱面 hyperbolic cylinder 抛物柱面 parabolic cylinder 空间曲线 space curve空间曲线的一般方程 general form equations of a space curve空间曲线的参数方程 parametric equations of a space curve 螺转线 spiral 螺矩 pitch 投影柱面 projecting cylinder 投影 projection平面的点法式方程 pointnorm form eqyation of a plane法向量 normal vector平面的一般方程 general form equation of a plane两平面的夹角 angle between two planes 点到平面的距离 distance from a point to a plane空间直线的一般方程 general equation of a line in space方向向量 direction vector直线的点向式方程 pointdirection form equations of a line方向数 direction number直线的参数方程 parametric equations of a line两直线的夹角 angle between two lines 垂直 perpendicular直线与平面的夹角 angle between a line and a planes平面束 pencil of planes平面束的方程 equation of a pencil of planes行列式 determinant系数行列式 coefficient determinant第八章多元函数微分法及其应用Chapter8 Differentiation of Functions of Several Variables and Its Application 一元函数 function of one variable 多元函数 function of several variables 内点 interior point 外点 exterior point 边界点 frontier point,boundary point 聚点 point of accumulation 开集 openset 闭集 closed set 连通集 connected set 开区域 open region 闭区域 closed region有界集 bounded set 无界集 unbounded setn维空间 n-dimentional space 二重极限 double limit 多元函数的连续性 continuity of function of seveal 连续函数 continuous function 不连续点 discontinuity point 一致连续 uniformly continuous 偏导数 partial derivative 对自变量x的偏导数 partial derivative with respect to independent variable x 高阶偏导数 partial derivative of higher order 二阶偏导数 second order partial derivative 混合偏导数 hybrid partial derivative 全微分 total differential 偏增量 oartial increment 偏微分 partial differential 全增量 total increment 可微分 differentiable 必要条件 necessary condition充分条件 sufficient condition 叠加原理 superpostition principle 全导数 total derivative中间变量 intermediate variable 隐函数存在定理 theorem of the existence of implicit function 曲线的切向量 tangent vector of a curve 法平面 normal plane 向量方程vector equation 向量值函数 vector-valued function 切平面 tangent plane 法线 normal line 方向导数 directional derivative梯度 gradient数量场 scalar field 梯度场 gradient field 向量场 vector field 势场 potential field 引力场 gravitational field 引力势 gravitational potential 曲面在一点的切平面 tangent plane to asurface at a point 曲线在一点的法线 normal line to asurface at a point 无条件极值 unconditional extreme values 条件极值 conditional extreme values 拉格朗日乘数法 Lagrange multiplier method 拉格朗日乘子 Lagrange multiplier 经验公式 empirical formula 最小二乘法 method of least squares 均方误差mean square error 第九章重积分 Chapter9 Multiple Integrals 二重积分 double integral 可加性 additivity累次积分 iterated integral 体积元素 volume element 三重积分 triple integral 直角坐标系中的体积元素 volumeelement in rectangular coordinate system 柱面坐标 cylindrical coordinates 柱面坐标系中的体积元素 volumeelement in cylindrical coordinate system 球面坐标 spherical coordinates 球面坐标系中的体积元素 volumeelement in spherical coordinate system 反常二重积分 improper double integral 曲面的面积 area of a surface 质心 centre of mass 静矩 static moment 密度 density 形心centroid 转动惯量 moment of inertia 参变量 parametric variable 第十章曲线积分与曲面积分Chapter10 Line(Curve)Integrals and Surface Integrals对弧长的曲线积分 line integrals with respect to arc hength第一类曲线积分 line integrals of the first type对坐标的曲线积分 line integrals with respect to x,y,and z第二类曲线积分 line integrals of the second type有向曲线弧 directed arc单连通区域 simple connected region 复连通区域 complex connected region 格林公式Green formula第一类曲面积分 surface integrals of the first type对面的曲面积分 surface integrals with respect to area有向曲面 directed surface对坐标的曲面积分 surface integrals with respect to coordinate elements第二类曲面积分 surface integrals of the second type有向曲面元 element of directed surface 高斯公式 gauss formula拉普拉斯算子 Laplace operator 格林第一公式Green’s first formula 通量 flux散度 divergence斯托克斯公式 Stokes formula 环流量 circulation 旋度 rotation,curl第十一章无穷级数Chapter11 Infinite Series 一般项 general term 部分和 partial sum 余项 remainder term 等比级数 geometric series 几何级数 geometric series 公比 common ratio调和级数 harmonic series柯西收敛准则 Cauchy convergence criteria, Cauchy criteria for convergence 正项级数series of positive terms 达朗贝尔判别法D’Alembert test 柯西判别法 Cauchy test交错级数 alternating series 绝对收敛 absolutely convergent 条件收敛 conditionally convergent 柯西乘积 Cauchy product 函数项级数 series of functions 发散点 point of divergence 收敛点 point of convergence 收敛域 convergence domain 和函数 sum function 幂级数 power series幂级数的系数 coeffcients of power series 阿贝尔定理 Abel Theorem收敛半径 radius of convergence 收敛区间 interval of convergence 泰勒级数 Taylor series麦克劳林级数 Maclaurin series 二项展开式 binomial expansion 近似计算approximate calculation舍入误差 round-off error,rounding error 欧拉公式Euler’s formula魏尔斯特拉丝判别法 Weierstrass test 三角级数 trigonometric series 振幅 amplitude 角频率 angular frequency 初相 initial phase 矩形波 square wave谐波分析 harmonic analysis 直流分量 direct component 基波 fundamental wave 二次谐波 second harmonic三角函数系 trigonometric function system 傅立叶系数 Fourier coefficient 傅立叶级数 Forrier series 周期延拓 periodic prolongation 正弦级数 sine series 余弦级数cosine series 奇延拓 odd prolongation 偶延拓 even prolongation傅立叶级数的复数形式 complex form of Fourier series第十二章微分方程Chapter12 Differential Equation解微分方程 solve a dirrerential equation 常微分方程 ordinary differential equation偏微分方程 partial differential equation,PDE微分方程的阶 order of a differential equation微分方程的解 solution of a differential equation微分方程的通解 general solution of a differential equation初始条件 initial condition微分方程的特解 particular solution of a differential equation初值问题 initial value problem微分方程的积分曲线 integral curve of a differential equation可分离变量的微分方程 variable separable differential equation隐式解 implicit solution隐式通解 inplicit general solution 衰变系数 decay coefficient 衰变 decay齐次方程 homogeneous equation一阶线性方程 linear differential equation of first order非齐次 non-homogeneous齐次线性方程 homogeneous linear equation非齐次线性方程 non-homogeneous linear equation常数变易法 method of variation of constant暂态电流 transient stata current 稳态电流 steady state current 伯努利方程 Bernoulli equation全微分方程 total differential equation 积分因子 integrating factor高阶微分方程 differential equation of higher order悬链线 catenary高阶线性微分方程 linera differentialequation of higher order自由振动的微分方程 differential equation of free vibration强迫振动的微分方程 differential equation of forced oscillation串联电路的振荡方程 oscillation equation of series circuit二阶线性微分方程 second order linera differential equation线性相关 linearly dependence 线性无关 linearly independce二阶常系数齐次线性微分方程 second order homogeneour linear differential equation with constant coefficient二阶变系数齐次线性微分方程 second order homogeneous linear differential equation with variable coefficient 特征方程 characteristic equation无阻尼自由振动的微分方程 differential equation of free vibration with zero damping 固有频率 natural frequency简谐振动 simple harmonic oscillation,simple harmonic vibration微分算子 differential operator待定系数法 method of undetermined coefficient共振现象 resonance phenomenon 欧拉方程 Euler equation幂级数解法 power series solution 数值解法 numerial solution 勒让德方程 Legendre equation微分方程组 system of differential equations常系数线性微分方程组 system of linera differential equations with constant coefficient第二部分定理定义公式的英文表达Part2 English Expression for Theorem, Definition and Formula第一章函数与极限Chapter 1 Function and Limit1.1 映射与函数 (Mapping and Function)一、集合 (Set)二、映射 (Mapping)映射概念 (The Concept of Mapping) 设X, Y是两个非空集合 , 如果存在一个法则f,使得对X中每个元素x,按法则f,在Y中有唯一确定的元素y与之对应 ,则称f为从X到 Y的映射 , 记作f:X→Y。
英语词汇隐喻的研究参考文献
英语词汇隐喻的研究参考文献References for the Study of English Vocabulary Metaphors.1. Kovecses, Z. (2002). Metaphor: A Practical Introduction. Oxford University Press.This book provides a comprehensive introduction to the study of metaphor, focusing on its cognitive and linguistic aspects. It explores the role of metaphor in our daily lives, in language, and in thought, making it a valuable resource for researchers interested in the field of vocabulary metaphors.2. Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. Chicago: University of Chicago Press.This seminal work in cognitive linguistics examines the pervasive role of metaphor in our everyday lives, arguing that metaphor is not just a rhetorical device but afundamental means of understanding and experiencing the world. It offers a framework for analyzing and understanding vocabulary metaphors in English.3. Ungerer, F., & Schmid, H. J. (2008). An Introduction to Cognitive Linguistics. Foreign Language Teaching and Research Press.This introduction to cognitive linguistics covers a range of topics, including metaphor, metonymy, and imagery. It provides a theoretical framework for understanding how metaphorical language works and how it shapes our understanding of the world.4. Gibbs, R. W. (1994). The Poetics of Mind: Figurative Thought, Language, and Understanding. Cambridge University Press.This book explores the role of figurative thought, including metaphor, in our cognitive processes. It argues that metaphorical language is not just a decorativeaddition to our speech but a crucial part of our cognitivetoolbox, helping us to understand and reason about abstract concepts.5. Dirven, R., & Verspoor, M. H. (2004). Metaphor and Metonymy in Comparison and Contrast. Mouton de Gruyter.This volume compares and contrasts the theories and applications of metaphor and metonymy, two closely related cognitive processes. It includes chapters on thetheoretical foundations of these processes, as well as on their role in vocabulary and lexicography.6. Cameron, L. (1999). Working with Metaphor. John Benjamins Publishing Company.This book provides a practical guide to working with metaphor in language and literature. It covers a range of topics, including the nature of metaphor, its role in communication, and techniques for analyzing and creating metaphorical language.7. Steen, G. J., Dorst, A. G., Herrmann, J. B., Kaal, A.I., & Krennmayr, T. (2010). Metaphor in Cognitive Linguistics: Selected Papers from the 7th International Cognitive Linguistics Conference. John Benjamins Publishing Company.This collection of papers from the 7th International Cognitive Linguistics Conference focuses on the role of metaphor in cognitive linguistics. It includescontributions from leading scholars in the field, covering a range of topics such as the nature of metaphor, its cognitive functions, and its applications in various linguistic domains.These references provide a comprehensive overview of the field of English vocabulary metaphors, covering both theoretical and applied aspects. They offer insights into the cognitive and linguistic mechanisms underlying metaphorical language, as well as practical guidance for working with metaphor in research and teaching.。
什么和什么同学对比作文200字
什么和什么同学对比作文200字英文回答:In the realm of academia, comparison serves as a powerful tool, illuminating the similarities and differences between subjects. It allows us to gain a deeper understanding of each subject by examining its unique qualities in relation to another.中文回答:在学术领域中,比较是一种有力的工具,它可以阐明不同事物之间的异同。
它使我们能够通过考察某个事物与另一个事物之间的关联,更深入地理解它。
英文回答:When comparing two subjects, it is important to establish a clear and relevant basis for comparison. This basis should be specific and narrow enough to allow formeaningful analysis, yet broad enough to capture the essential aspects of the subjects.中文回答:在比较两个事物时,明确而相关的比较基础至关重要。
该基础应该具有足够清晰和简洁的针对性,以允许有意义的分析,但要足够广泛以涵盖事物的本质方面。
英文回答:Once the basis for comparison is established, the next step is to identify the similarities and differences between the subjects. This involves examining their characteristics, qualities, and attributes. Similarities can indicate shared traits or commonalities, while differences highlight unique aspects or contrasting features.中文回答:建立比较基础之后,下一步是要找出两个事物之间的异同。
compare的英文作文
compare的英文作文Title: A Comparative Analysis: Exploring the Nuances of Comparison。
In the realm of academic discourse and beyond, the act of comparison serves as a fundamental tool for understanding, analyzing, and contextualizing various subjects, phenomena, or ideas. Whether examining historical events, literary works, scientific theories, or cultural practices, comparison allows for the elucidation of similarities, differences, patterns, and insights that might otherwise remain unnoticed. In this essay, we embark on a journey of comparison, delving into its intricacies, significance, and applications across diverse domains.To begin with, let us delve into the essence of comparison itself. At its core, comparison entails the juxtaposition of two or more entities, be they objects, concepts, or processes, for the purpose of discerning their likenesses and disparities. This analytical approachfacilitates a deeper comprehension of the subject matter by highlighting its attributes in relation to others. Moreover, comparison enables the identification of commonalities and distinctions, fostering a holistic understanding that transcends individual entities.One of the primary advantages of comparison lies in its capacity to unveil underlying patterns and structures. By observing similarities across disparate domains,researchers can discern overarching principles or frameworks that govern diverse phenomena. For instance, in the field of linguistics, comparative analysis of languages has led to the identification of universal grammatical structures, shedding light on the cognitive mechanisms underlying human language acquisition and processing.Furthermore, comparison serves as a catalyst forcritical thinking and problem-solving. When confronted with complex issues or multifaceted problems, individuals often resort to comparison as a strategy for elucidation and decision-making. By assessing alternative approaches or solutions in light of their respective merits and drawbacks,one can make informed choices that optimize outcomes and mitigate risks. This cognitive process is exemplified in disciplines ranging from economics, where comparative advantage theory informs trade policies, to medicine, where comparative effectiveness research guides clinicaldecision-making.In addition to its analytical utility, comparison plays a pivotal role in fostering intercultural understanding and appreciation. In an increasingly interconnected world characterized by cultural diversity, the ability to empathize with and comprehend perspectives different from our own is indispensable. Through comparative studies of cultural practices, traditions, and worldviews, individuals can transcend ethnocentrism and cultivate a more inclusive outlook grounded in mutual respect and dialogue. Thiscross-cultural competency is instrumental in promoting global harmony and cooperation amidst socio-political tensions and ideological divides.However, it is imperative to acknowledge the inherent complexities and limitations of comparison. Whilecomparison offers valuable insights, it can also oversimplify or distort reality if employed uncritically. The selection of criteria, variables, and frameworks for comparison is fraught with subjectivity and bias, potentially leading to skewed interpretations or misrepresentations. Moreover, the contextual factors surrounding the entities being compared must be carefully considered to avoid erroneous conclusions or generalizations. Thus, practitioners of comparison must exercise diligence and reflexivity to ensure the validity and integrity of their analyses.In conclusion, comparison emerges as a multifaceted and indispensable tool for understanding, analyzing, and engaging with the world around us. From its role in elucidating patterns and structures to its function in promoting intercultural empathy and critical thinking, comparison permeates various domains of human inquiry and endeavor. Nevertheless, the prudent application of comparison demands attentiveness to its complexities and limitations, lest it devolve into a simplistic exercise devoid of nuance or insight. As we navigate the intricaciesof comparison, let us strive for discernment, humility, and intellectual rigor in our quest for knowledge and understanding.。
牛顿第二定律英语
牛顿第二定律英语Newton's second law of motion states that the force acting on an object is directly proportional to the rate of change of its momentum. In mathematical terms, this law can be expressed as F = ma, where F is the force applied to the object, m is the mass of the object, and a is the acceleration of the object.This law implies that the larger the force applied to an object, the greater its acceleration will be. Conversely, if the mass of the object is increased, the acceleration will decrease for a given force.One of the key implications of Newton's second law is that it provides a quantitative measure of force and its effect on an object. By knowing the mass and acceleration of an object, one can calculate the force acting on it. Thisallows for predicting the motion of an object under the influence of various forces.Additionally, Newton's second law allows for the comparison of the effects of different forces on an object. For example, if two objects with different masses are subjected to the same force, their accelerations will be different according to their respective masses. This fundamental principle forms the basis for understanding the behavior of objects in a wide range of physical phenomena.Furthermore, Newton's second law has significantpractical applications in everyday life and various fields of science and engineering. For instance, it is essential in the design and analysis of machinery, vehicles, and structures.It also plays a crucial role in fields such as physics, astronomy, and biomechanics.In conclusion, Newton's second law of motion is a fundamental principle in physics that provides a quantitativerelationship between force, mass, and acceleration. It is widely used to understand and predict the behavior of objects under the influence of forces, and its applications are essential in various scientific and practical contexts.。
7月浙江自考英语科技文选试题及答案解析
浙江省2019年7月高等教育自学考试英语科技文选试题课程代码:00836Ⅰ.Directions:Add the appropriate affix(es) to each word according to the given Chinese,making changes when necessary.(10%)1.instinct 本能地 1.________2.observe 天文台 2.________3.continue 连续性 3.________4.active 激活 4.________5.efficient 系数 5.________6.time 永恒的 6.________7.response 敏感的7.________8.diverse 变化,不同n. 8.________9.equal 平衡,均势n. 9.________10.gene 遗传学10.________Ⅱ.Directions:Fill in the blanks,each using one of the given words and phrases below in its proper form.(10%)evolution associate with magnify at random intensify shrinkdistribute run down constructive oversell affect discrete11.The processes of ________ are still going on among plants,birds,and animals.12.I did not have anything __________ to say.13.The battery has __________.14.He was serious at the beginning,and then started to guess __________.15.In the late 1960s the pressure suddenly __________.16.They __________ the prizes among the winners.17.The world's forests are __________ at an alarming rate.18.It would be foolish to __________ the powers of science.19.Of the three particles,the neutrons __________ the atom the least.20.The characteristics are transmitted across generations in_____ units,now known as genes thatare inherited in a statistically predictable fashion.Ⅲ.Directions:Fill in each blank with a suitable word given below.(10%)Practical or use hence law thusconnection establish extend examplePure science is primarily concerned with development of theories(or,as they are frequently called,models) 21 relationships between the phenomena of the universe.When they are sufficiently validated,these theories become the working 22 or principles of science.In carrying out this work,the pure scientist usually disregards its applications to practical affairs,confining his attention to explanations of how and why events occur. 23 ,in physics,the equations describing the behaviour of fundamental particles, 24 in biology ,the establishment of the life cycle of a particular species of insect living in a Polar environment,are said to be examples of pure science (basic research),having no apparent 25(for the moment) with technology,i.e.applied science.Applied science,on the other hand,is directly concerned with the application of the working laws of pure science to the 26 affairs of life,and to increasing man's control over hisenvironment, 27 leading to the development of new techniques,processes and machines.Such activities as investigating the strength and uses of materials, 28 the findings of pure mathematics to improve the sampling procedures 29 in agriculture or the social sciences,and developing the potentialities of atomic energy,are all 30 of the work of the applied scientist or technologist.21.__________ 22.__________23.__________ 24.__________25.__________ 26.__________27.__________ 28.______29.__________ 30.__________Ⅳ.Directions:Translate the following sentences into English,each using one of the given words or phrases below.(10%)carry out reinforce in terms of after all spectrum31.我们一起体验了各种各样的感情变化。
BachelordegreeinEnglish
Bachelor degree in EnglishThe university entrance examination of minnan university in 2011English test outlineThe scope and requirements of the examination1. Alexander, editor, foreign language teaching and research press the second volume of "new concept English" the first book to, and refer to the minnan buddhist college English test undergraduate admissions counseling books.2. Candidates must grasp basic English language knowledge and have a certain ability to use language, including basic pronunciation, grammar and vocabulary, reading comprehension, oral communication and translation, writing ability.Second, the exam contentA) voiceCandidates should be able to master the following voice rules:The vowels are pronounced in the wordsThe consonant letter is pronounced in the wordThe pronunciation of common letter combinations2) vocabularyGrasp the vocabulary of 3,000 to 4000 words (of which the words are 2000) and the common phrases made up of these words.You can understand the meaning of these words and words in context.To understand the meaning of the derivative and the synthesis words in the context according to the method of composition.3) grammar (the contents of the tutorial series)The examinee should master the following basic grammar ruleslexical1. The term1) the classification of nouns: common nouns and proper nounsA. the classification of common nounsB. class transformation: between countable nouns and uncountable nouns, between the individual nouns and the noun and the abstract nounsThe number of nouns: the rule changes and irregular changes that make up the plural form3) n: the form of the possessive and all of the lattice(4) the syntax function of nouns: subject, phenology, object, adjective, adverbial, object complement, subject complement2. The word1) classification of articles: definite and indefinite articlesThe basic use of definite articles and indefinite articlesThe basic usage of the definite article: the things, the categories, the unique things mentioned in the second timeB. The basic usage of the indefinite article: genera, "one", "one", "class"3) the condition of not adding articles3. The pronoun1) the classification of the pronoun: personal pronouns, possessive pronouns, reflexive pronouns, demonstrative pronoun and pronouns, indefinite pronouns, interrogative pronoun, connect the pronoun, relative pronounsThe syntax of the pronoun is: the subject, attributive, object, phenotype, and appositive4. The numerals1) the classification of numerals: cardinal, ordinal, andfractions; Decimal and percentage2) the syntax of the number words: attributive, subject, object, phenotype, and appositive5. An adjective1) classification of adjectives: attribute adjectives, relational adjectivesThe level of the adjective: original, comparative, and superlative, which constitutes a variation of the rules and irregular variation of the higher and higher levelsAn adjective, an adjective, an adverbial, an object complement, an adverbial, an independent component6. Adverbs1) the classification of adverbs: time adverbs, adverbs of place, adverbs, degree adverbs, question adverbs, conjunctions and adverbsThe level of the adverb: the original, the comparativeand the superlatives, and the rules change and the irregular variations of the comparison and the highest levels(3) the syntax of adverbs is used.7. The verb1) the classification of verbs: transitive verbs, intransitive verbs, verbs, auxiliary verbs, modal verbs2) the basic form of the verbA. present, past, past participleThe rule changes and irregular changes of past and past participles3) the finite form of verbs4) tenseA) - the present tense of b) is now done when the c) is now completed and d) normally used to be done in the pastG) the future of the future when the future of the j) will be completed in the future) when the future is completed and the time when it is finished will be done in the future5) morphology.A. active voice b. passive voice6) toneA. the tone of the voiceThe composition and usage of the subjunctive mood(1) an assumption that is contrary to the truth in a simple sentence used in a non-real condition sentence or in a prepositional phrase(2) for the subject, object, watchword, and corresponding clause,Expressing desires, orders, Suggestions, importance, urgency, etc.(3) modal verbs can, could, may, might indicate the subjunctive mood(4) the subjunctive tone is used in other situations, such as complex time, non-real conditions7) the modal verbA. can (could), must, ought, ought, ought, ought, ought, ought, ought, ought, ought(should) will (should) be used as a modal verb8) verbs are not limitedA. infinitiveUsage: to make a subject in a sentenceB. participleA) (1) now participle (2) the past participleB) usage: in the words of attributive (front and rear), predicate, adverbial (time, reasons, results, conditions, ways, with case), object complement, subject complementC) independent participle structureC. a gerundA) composition: classification and composition are the same as the present participleB) usage: subject, predicate in the sentence (the difference between with predicate verb infinitive), prepositions, verb object object (a prepositional phrase, in the words of attributive, complement and adverbial), attributive (and the present participle as the attributive difference)C) the logical subject of the gerund8. Prepositions1) the combination of prepositions and verbs, nouns, adjectives, and adverbsThe use of a prepositional phrase: attributive, adverbial, phenotype, object complement and subject complement3) the meaning of prepositions and their functions4) prepositions and prepositions9. Conjunctions1) classification of conjunctions: juxtaposition and subordination2) the meaning of conjunction and its functionssyntacticSentence 1.1) the sentence is classified by the purpose of use2) the sentence is classified by structureA: B.The subject clause, the subject clause, the object clause, the relative clause, attributive clause and adverbial clauseD. stressed wordsBasic sentence patterns1) the subject is a term2) the subject is a verbThe subject is a verbThe subject is an object of the objectThe Lord is the object of a verb3. The word order1) normal speech and reverse order, complete reverse and incomplete inversion4. Omit5. Emphasize wordsWord formationDerived method 1.Prefixes, suffixes, some common prefixes and suffixes2. Synthesis3. The process4) readCandidates should be able to read all kinds of subjects (including social life, biographies, science, history, political and economic, cultural, etc.) and type (including narrative, exposition, description, argument, practical writing, etc.), new words reading materials by no more than 2% of the amount of writing material. The examinee should be able to understand the main idea of the material. Master the mainfacts and relevant details, identify the basic attitudes and opinions of the author, and be able to reason, judge, or extend according to relevant information.5) writingCandidates should be able to write 100-150 words in 30 minutes. The meaning is clear, no serious language error.6) translationAccording to the Chinese sentence meaning given complete English sentences or translation complete sentences (focuses on students' book of "new concept English" the first, the second volume of the text is commonly used in sentence pattern and important phrases)7) situational communicationAccording to the situation, complete the dialogue and complete the dialogue. Or you can write sentences that meet the requirements.Examination form and examination paper structureComparative economics. Pen. The exam time is 120 minutes. Papers out of 100 pointsThe difficulty in the paper is about 60%Medium difficulty is about 30%The problem is about 10%Test sample(1) voice knowledge (1 point, 5 points)Pick out the underlined words and the other three different words1.A. expressions usingB. houseC. howD. the month2.A. writeB. whoseC. the whoD. what3.A. dearB. wearC. nearD. hear4.A. the withB. thirstyC. bothD.谢谢(二)语法与词汇(每小题1分,共30分)从A,B,C,D中,选择一个最佳答案完成句子1。
blindwatermark使用
blindwatermark使用Blindwatermark是一种常用的数字图像水印技术,它可以在图像中嵌入不可见的信息,以确认图像的版权和完整性。
与传统的数字图像水印技术相比,Blindwatermark有更高的容忍度和更强的鲁棒性。
以下是一些与Blindwatermark相关的参考内容。
1. "Digital Image Watermarking Techniques: A Comprehensive Review" - 这篇论文对数字图像水印技术进行了全面的综述,包括Blindwatermark在内。
它讨论了不同的数字图像水印算法,并对它们的优缺点进行了比较和分析。
2. "BlindWaterMarking Algorithm for Image Authentication" - 这篇研究论文提出了一种基于Blindwatermark的图像认证算法。
它介绍了该算法的原理和实现细节,并对算法的性能进行了评估。
3. "A Robust Blind Watermarking Scheme Based on Discrete Wavelet Transform and Singular Value Decomposition" - 这篇论文提出了一种基于离散小波变换和奇异值分解的鲁棒性Blindwatermark方案。
它讨论了该方案的安全性和抗攻击能力,并进行了实验验证。
4. "Blind Watermarking for Image Tampering Detection and Recovery" - 这篇论文介绍了一种基于Blindwatermark的图像篡改检测和恢复方法。
它详细说明了该方法的步骤和流程,并通过实验结果验证了算法的有效性。
5. "A Survey on Digital Watermarking Techniques and its Applications" - 这篇综述性文章对数字水印技术及其应用进行了调研和总结。
quantity
QuantityQuantity refers to the numerical value or amount of something. It is an essential concept in various fields such as mathematics, science, economics, and statistics. In this document, we will explore the significance of quantity, its different types, and its applications in different domains.Types of Quantity1. Discrete QuantityA discrete quantity is a countable quantity that can only take specific values. These values are distinct and separate from each other. Examples include the number of students in a class, the number of cars in a parking lot, or the number of books on a shelf. Discrete quantities are usually represented by whole numbers.2. Continuous QuantityOn the other hand, a continuous quantity is one that can take any value within a given range or interval. These values can be fractional or decimal. Examples of continuous quantities are temperature, time, and weight. Continuous quantities are represented by real numbers and can be measured more precisely due to their infinite possibilities.Importance of QuantityThe concept of quantity plays a crucial role in many aspects of our daily lives as well as in various professional fields. Here are a few reasons why quantity is significant:1.Measurement: Quantity allows us to measure and quantify variousobjects, phenomena, and processes. It provides a standard basis for comparison and evaluation.2.Analysis and Decision-Making: Quantitative data and analysisenable objective decision-making by providing numerical evidence and insights.For instance, in business, analyzing sales quantity helps determine profitability and make informed decisions regarding production, pricing, and marketingstrategies.3.Predictability: Quantitative models and calculations help predictfuture trends and outcomes. By analyzing historical data and patterns, we can make informed predictions about population growth, market demand, orfinancial trends.4.Research and Experimentation: In scientific research, quantity iscrucial for designing experiments, collecting data, and drawing conclusions.Measuring variables and gathering quantitative data ensures accuracy andobjectivity in research findings.Applications of QuantityLet’s explore a few applications of quantity in different fields:1. Economics and FinanceIn economics, quantity plays a vital role in determining supply and demand. The quantity of goods or services available in the market affects their prices and availability. Moreover, financial analysis relies heavily on quantities such as revenue, expenses, assets, and liabilities to evaluate the performance and stability of businesses.2. Physics and EngineeringQuantity is fundamental in describing and analyzing physical phenomena, such as velocity, force, energy, and acceleration. Engineers use quantities to design structures, calculate stresses, and predict the behavior of materials under different conditions. Additionally, quantities like voltage, current, and resistance are essential in electrical engineering.3. Medicine and HealthcareIn medicine, quantities like dosage, blood pressure, heart rate, and body temperature are critical for diagnosis, treatment, and monitoring of patients. Medical research often involves analyzing quantities to study the effectiveness of drugs, therapies, or interventions. Quantitative data analysis also contributes to identifying population health trends and formulating public health policies.4. Education and AssessmentsQuantitative assessments and grading systems are widely used in education to evaluate students’ knowledge and skills. From s tandardized tests to grading systems, quantity helps measure academic performance, identify areas for improvement, and ensure accountability in education.ConclusionQuantity is an essential concept in various fields and everyday life. It enables us to measure, analyze, and predict numerical values, making it possible to make informed decisions and advancements. Whether it’s in mathematics, finance, science, or healthcare, understanding and utilizing quantity results in better outcomes and progress in numerous domains.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
advances in mathematics128,306 328(1997)article no.AI971630Volume Comparison and Its Applicationsin Riemann Finsler GeometryZhongmin Shen*Department of Mathematical Science,Indiana University Purdue University at Indianapolis,Indianapolis,Indiana46202-3216Received May9,1996;accepted December30,1996We introduce a new geometric quantity,the mean covariation for Finsler metrics,and establish a volume comparison theorem.As an application,we obtain someprecompactness and finiteness theorems for Finsler manifolds. 1997Academic Press1.INTRODUCTIONEarly work in conjunction with the global comparison geometry of Finsler manifolds was done by L.Auslander[A],who proved that if a complete Finsler n-manifold(M,F)satisfies Ric M (n&1),then the diameter diam M ?.In particular,?1(M)is finite.This is the Bonnet Myers theorem if F is Riemannian.Further,he proved that if a complete Finsler manifold(M,F)has non-positive flag curvature,then the exponential map exp x:T x MÄM is a local C1-diffeomorphism.This is the Cartan Hadamard theorem if F is Riemannian.We point out that Auslander used the Cartan connection and stated the above theorems under slightly stronger conditions on curvatures,because he did not realize that the cur-vature terms in the second variation formula can be simplified to the flag curvature.See[AZ2,BCh]for simplified formulas.We remark that the flag curvature is independent of a particular choice of connections,and hence is of particular interest in the metric geometry of Finsler manifolds. See[L,AZ1,D1 D3,GKR,Mo1,Mo2,K1,K2,BCh],etc.,for other interesting work on global Finsler geometry.In Riemann geometry,the Bishop Gromov volume comparison theorem [BCr,GLP]plays a very important role in the global differential geometry of Riemann manifolds.One of its applications is the Gromov precompact-ness theorem for the class C(n,*,d)with respect to the Gromov Hausdorff distance d GH,where C(n,*,d)denotes the set of all Riemann manifolds (M,g)satisfying Ric M (n&1)*and diam M d.For=>0,R 1,consider *E-mail:zshenÄ.3060001-8708Â97 25.00Copyright 1997by Academic PressAll rights of reproduction in any form reserved.a sub-class C =,R (n ,*,d )/C (n ,*,d ),which consists of (M ,g )satisfying that any =-ball B (x ,=)is contractible in B (x ,R=)/M .It can be shown that if two manifolds M 0,M 1#C =,R (n ,*,d )are sufficiently close with respect to d GH ,then they have to be homotopy bining this with the pre-compactness of C (n ,*,d ),one can conclude that there are only finitely many homotopy types in C =,R (n ,*,d )([P1])(see also [GPW]for a homeomorphism version of this).This is a generalized version of Cheeger's finiteness theorem [C1,C2]and Grove Petersen's finiteness theorem[GP].See also [Y,Z]for some other interesting finiteness theorems.Here we shall not mention the references on the convergence theory of Riemann metrics,because we will only focus on the finiteness problem.The reader is referred to a recent paper of P.Petersen [P3]for a beautiful discussion and references on the convergence of Riemannian metrics.Petersen [P1,P2]studied the finiteness problem for metric spaces in great generally.This enables us to find geometric (curvature)conditions and establish a finiteness theorem for a much larger class of manifolds equipped with ``smooth''inner metrics.First we shall briefly discuss inner metrics which naturally lead to Finsler metrics.Let d be an inner metric on a C n-manifold M .Suppose it satisfies the following Lipschitz condition:at each point x #M ,there is a coordinate neighborhood .:V /R n ÄU /M such thatA &1|x 0&x 1| d (.(x 0),.(x 1)) A |x 0&x 1|,\x 0,x 1#V ;(1.1a)|d (.(x 0),.(x 0+y )&d (.(x 1),.(x 1+y )|A |x 0&x 1||y |,\x 0,x 1#V ,y #B n (=).(1.1b)We can prove that (1.1)implies that the following limit exists:F d (x ,y ):=lim r Ä0d (.(x ),.(x +ry ))|r | 0,\x #V ,y #R n (1.2)Further,F (x ,y )=F d (x ,y )has the following properties:F (x ,y )=|r |F (x ,y ),\r #R ,y #R n ;(1.3)F (x ,y )=0if and only if y =0;(1.4)|F (x 0,y )&F (x 1,y )| A |x 0&x 1||y |,\x 0,x 1#V ,y #R n ;(1.5)F (x ,y 1+y 2) F (x ,y 1)+F (x ,y 2),\y 1,y 2#R n .(1.6)A function F :TM Ä[0, )is called a Lipschitz Finsler metric if it satisfies (1.3) (1.6)in local coordinates.One can show that if d =d F is the inner metric induced by a Lipschitz Finsler metric F ,then d satisfies (1.1)307RIEMANN FINSLER GEOMETRYand reproduces F=F d by(1.2)([BM];see also[V,DCP]for the study of inner metrics satisfying(1.1a)only).Thus there is an one-to-one corre-spondence between Lipschitz inner metrics and Lipschitz Finsler metrics. To study the differential geometry of Finsler manifolds,we shall restrict ourselves to C Finsler metrics.A function F:TMÄ[0, )is called a C Finsler metric if it satisfies(1.3)and the following convexityÂregularity conditions:(1.7)F is smooth on TM"[0];(1.8)the Hessian(g ij(x,y)),y{0,is positive definite,whereg ij(x,y):=122F2y y(x,y).Note that(1.7),(1.8)imply(1.4),(1.5)and(1.6).The inner metric d=d F induced by F reproduces F=F d by(1.2).By the homogeneity of F,one always has F(x,y)=-g ij(x,y)y i y j.F is called Riemannian if g ij(x)= g ij(x,y)are independent of y.F is called locally Minkowskian if g ij(x,y)= g ij(y)are independent of x.Let F x denote the restriction of F onto T x M.When F is Riemannian, (T x M,F x)are all isometric to the Euclidean spaces R n.But,for general Finsler metric F,(T x M,F x)may be not isometric to each other.Thus the geometry of Finsler manifolds becomes more complicated.The Finsler metric F induces a familly of inner products g v in T x M byg v(u,w)=g ij(x,y)u i w j,(1.9) where v=y i(  x i)|x,u=u i(  x i)|x,w=w i(  x i)|x.Take an arbitrary basis[e i]ni=1for T x M.Let B x(1)=[y=(y i):F(y i e i) 1].Put g vij =g v(e i,e j).Define the mean distortion+:TM"[0]Ä(0, )by+(v):=vol(B x(1))vol(B(1))-det(g vij).(1.10)Clearly,+(v)is independent of a particular choice of[e i]ni=1,and+(*v)=+(v),\*{0.The mean covariation H:TM"[0]ÄR is defined byH(v):=ddt[ln+(#v)]|t=0,(1.11)where#v is the geodesic with#v(0)=v.Put H(0)=0.It is easy to see thatH(*v)=*H(v),\*#R.308ZHONGMIN SHENRoughly speaking,the mean covariation H(v )measures the average rate of changes of (T x M ,F x )in the direction v #T x M .We say |H M | +if |H(v )| +F (v ),\v #TM "[0].An important property is that H=0for Finsler manifolds modeled on a single Minkowski space.In particular,H=0for Berwald spaces.Locally Minkowski spaces and Riemann spaces are all Berwald spaces.In order to introduce other geometric quantities,one needs (linear)con-nections.In Finsler geometry,there are several important linear connec-tions such as the Berwald connection [Be],the Cartan connection [C],and the Chern connection [Ch1,Ch2,BCh].See [S]for a new interesting linear connection and its relationship with others.All of them are uniquely determined by two equations (torsion equation and metric equation)and reduce to the common one when F is Riemannian.Except for the Cartan connection,all of them are torsion-free.But the Cartan connection is metric-compatible.In a Finsler manifold (M ,F ),one cannot get a connec-tion which is torsion-free and metric-compatible,unless F is ing any of these connections,one can define three curvatures R ,P ,Q (Q =0for torsion free connections).These curvature terms depend on a particular choice of linear connections.The flag curvature tensor (defined by R only)is independent of a particular choice of these connections,that is,the term appears in the second variation of length,thus is of particular interest to us.We remark that if F is Riemannian,then P =Q =0,and the flag curvature tensor is the Riemannian curvature tensor.The average of the flag curvature tensor is the Ricci curvature Ric:TM ÄR .It has the property that Ric(rv )=r 2Ric(v ),r >0,v #TM .We say Ric M (n &1)*if Ric(v ) (n &1)*F (v )2,\v #TM .More details will be given in Section 2.For a constant *#R and + 0,putV *,+(r ):=Vol(S n &1(1))|r0e +t s *(t )n &1dt ,(1.12)where s *(t )denotes the unique solution to y "+*y =0with y (0)=0,y $(0)=1.Note that V *,+(r )=vol(B n (r ))(1+o (r ))as r Ä0+.We shall show that vol(B (x ,r ))=vol(B n (r ))(1+o (r ))as r Ä0+.Thuslimr Ä0+vol(B (p ,r ))V *,+(r )=1.(1.13)The following is our main theorem.Theorem 1.1.Let (M ,F )be complete Finsler manifold .Suppose thatRic M (n &1)*,|H M | +.(1.14)309RIEMANN FINSLER GEOMETRYThen for any0<r<R,vol(B(x,R)) V*,+(R)vol(B(x,r))V*,+(r).(1.15)In particular,vol(B(x,r)) V*,+(r).(1.16) In Section6,we shall discuss the case when the equality in(1.15)holds. Given n,*,+ 1,let M(n,*,+)denote the class of pointed complete Finsler n-manifold(M,p,F)satisfying the bounds(1.14).As a direct conse-quence of Theorem1.1,we have the followingCorollary 1.2.The class M(n,*,+)is precompact in the pointed Gromov Hausdorff topology.This corollary follows from Theorem1.1and[GLP,P2].A function\:[0,r)Ä[0, )is called a contractibility function if it satisfies(i)\(0)=0,(ii)\(=) =,(iii)\(=)Ä0as=Ä0,(iv)\is non-decreasing.Given a contractibility function\,a metric space X is said to be LGC(\)if for every=#[0,r]and x#X,the ball B(x,=)is contractible inside B(x,\(=)).For a number r>0,if every ball B(x,=)is contractible inside B(x,=),x#X,0<=<r,namely,X is LGC(\)for\(=)==:[0,r)Ä[0,r),then we say X has contractibility radius c(X) r.Given n,*, +,\,d,let M(n,*,+,d,\)denote the class of compact LGC(\)Finsler n-manifolds satisfyingRic M (n&1)*,|H M| +,diam M d.(1.17)Corollary 1.3.The class M(n,*,+,d,\)contains only finitely many homotopy types.In[C1,C2],J.Cheeger proved that if a compact Riemannian manifold M n satisfies the bound4 K M *,diam M d,vol M v,then the injec-tivity radius inj M i o(n,*,4,d,v)>0.Thus M is LGC(\)space for \(=)==:[0,i o]Ä[0, ).In[GP],Grove and Petersen proved that if a compact Riemannian manifold M n satisfies the bounds K M *,diam M d, vol M v,then every ball B(x,=)is contractible in B(x,R=)for\= =o(n,*,d,v)and R=R(n,*,d,v).Thus M is a LGC(\)space for \(=)=R=:[0,=o]Ä[0, ).It is an interesting question under what cur-vature bounds is a compact Finsler manifold M n satisfying the bounds diam M d,vol M v a LGC(\)space for some\depending only on those bounds.This problem will be discussed somewhere else.We remark that 310ZHONGMIN SHENboth arguments in [C1]and [GP]were carried out using Toponogov's comparison theorem.However,we can show that,in a Finsler manifold,Topogonov's triangle comparison theorem does not hold,unless it is Riemannian.In other words,a Finsler manifold is not curved from below in the sense of Alexandrov [A1,A2]unless it is Riemannian.By the same argument as in [GLP],one can obtain the followingCorollary 1.4.Let (M ,F )be a complete Finsler n-manifold satisfying the bounds (1.17).Then the first Betti number b 1(M ) c (n ,*,+,d ).There are many other important theorems in Riemannian geometry are false for Finsler manifolds.For example,the Cheeger Gromoll splitting theorem [CG]is no longer true,even for flat Finsler manifolds (say Minkowski spaces).Nevertheless,Milnor's theorem still holds for certain Finsler manifolds.Corollary 1.5.Let (M ,F )be a complete Finsler n-manifold withRic M 0,H M =0.Then any finitely generated subgroup 1of the fundamental group ?1(M )has polynomial growth of order n .2.PRELIMINARIESIn this section we shall recall some basic facts of Riemann Finsler geometry.See [M,R,BCh]for more details.We begin with the simplest Finsler manifolds.Let V be a vector space,and let F o :V Ä[0, )be a function satisfying (i)F o (*y )=|*|F (y ),(ii)F o is C on V "[0],and (iii)g ij (y ):=12( F 2o  y i y j )(y )is positive definite for y {0.F o is called a Minkowski norm on V ,and (V ,F o )is called a Minkowski space .Each T x V is naurally identified with V .Thus F o induces a Finsler metric F on V .There are lots of Minkowski spaces,but there is a unique Euclidean space,up to an isometry.Let (M ,F )be an arbitrary Finsler manifold.By definition,the restriction F x of F to T x M is a Minkowski norm in T x M .(T x M ,F x )is called a Minkowski tangent space at x #M .In general,(T x M ,F x )are not linearly isometric to each other.It is possible that on (M ,F ),we have infinitely many distinct Minkowski tangent spaces.There is no notion of angles between two tangent vectors in a Finsler manifold.Nevertheless,the volume form is well-defined [B1].Let [e i ]n i =1be a local basis for TM and ['i ]n i =1be its dual basis for T *M .Put 311RIEMANN FINSLER GEOMETRYB x(1):=[y=(y i):F(y i e i) 1].B x(1)is a strictly convex open subset in R n.Let B n(1)denote the standard unit ball in R n.The volume form dv is defined bydv=vol(B n(1))vol(B x(1))'17}}}7'n,(2.1)where vol(A)denotes the Euclidean volume of a subset A/R n.dv is inde-pendent of a particular choice of positive basis[e i]ni=1!As usual,thevolume vol(U)of an open subset U/M is defined by vol(B(x,r))= U dv. It is easy to see that the r-ball B(x,r)in a Minkowski space has the same volume of B n(r)in the Euclidean space R n.Busemann[B1]proved that for any bounded open subset U/M,vol(U)=H d(U),where H d(U) denotes the Hausdorff measure of U with respect to d=d F.This fact might be true for Lipschitz innerÂFinsler metrics(compare[V]).In order to define curvatures,it is more convenient to consider the pull-back tangent bundle than the tangent bundle,because our geometric quantities depend on directions.Let TM o=TM"[0]and let?*TM denote the pull-back of the tangent bundle TM by?:TM oÄM.Denote vectors in?*TM by(v;w),v#TM o, w#T?(v)M.For the sake of simplicity,we denote by i|v=(v;  x i|x), v#T x M the natural local basis for?*TM.The Finsler metric F defines two tensors g and A in?*TM byg( i|v, j|v)=g ij(x,y),A( i|v, j|v, k|v)=12F(x,y)g ijy k(x,y),where v=y i(  x i)|x.g and A are called the fundamental and Cartan tensors,respectively.Note that(?*TM,g)is a Riemannian vector bundle.A trivial fact is that F is Riemannian if and only if A=0.In Finsler geometry,we study connections and curvatures in(?*TM,g), rather than in(TM,F).The pull-back tangent bundle?*TM is a very special vector bundle.It has a unit vector l defined byl v=1F(v)(v;v).It is easy to see that A(X1,X2,X3)=0whenever X i=l for some i=1,2,3.Let[E i]ni=1be a local frame for?*TM.Define the dual co-frame[|i]ni=1on TM o by(v;?*(X))=|i(X)E i,X#T(TM o). Put l=l i E i,A ijk=A(E i,E j,E k),g ij=g(E i,E j).312ZHONGMIN SHENWe have the followingTheorem 2.1(Chern).There is a unique set of local 1-forms [|j i ]1 i ,j non TM o such that d|i =|j 7|j i (2.2)dg ij =g kj |i k +g ik |j k +2A ijk |n +k ,(2.3)where |n +k :=dl k +l l |l k +l k d (ln F ).Further ,[|i ;|n +i ]is a local co-frame for T *(TM o ).In a standard local coordinate system (x i ;y i )in TM ,take a natural basis [E i = i ]n i =1for ?*TM .We have|j i =1i jk (x ,y )dx kwhere1i jk =#i jk +1Fg il [A jks N s l &A ljs N s k &A kls N s j ]N s l =#s la y a &1Fg sj A jlk #k ab y a y b (2.4)#i jk =12g il { x j g lk + x k g lj & x l g jk =.We call [|j i ]the set of local connection forms .It defines a linear connec-tion {in ?*TM by{X Y =[XY i +Y j |j i (X )]E i ,X #T (TM o ),Y =Y i E i #C (?*TM ).(2.5)We also get two bundle maps \,+:T (TM o )Ä?*TM ,defined by\:=|i E i ,+:=F|n +i E i (2.6)Note that the VTM :=ker \is the vertical tangent bundle of TM o .Put HTM :=ker +.We have the direct composition T (TM o )=HTM ÄVTM .Tangent vectors in HTM are called horizontal ,and tangent vectors in VTM are called vertical .An important fact is that \|HTM and +|VTM are bundle isomorphisms.Define the set of local curvature forms 0j i by0j i :=d|j i &|j k 7|k i .313RIEMANN FINSLER GEOMETRYBy(2.2),one can show that0j i does not have vertical part,that is,one can write0j i=1R j i kl|k7|l+P j i kl|k7|n+l.Define the curvature tensors R,P in?*TM byR(U,V)W=u k v l w j Rj iklE i,P(U,V)W=u k v l w j P j i kl E i,where U=u i E i,V=v i E i,W=w i E i#?*TM.A Finsler manifold(M,F)is called a Berwald space if P=0.Let_=span[u,v]/T x M be a two-dimensional section.The flag cur-vature K(_;v)of the flag[_,v]is defined byK(_;v):=g(R(U,V)V,U)g(V,V)g(U,U)&g(U,V)2,where U=(v;u),V:=(v;v)#?*TM.When F is a Riemannian,K(_)=K(_;v) is independent of v#_,that is,the sectional curvature in Riemannian geometry.Further,it is independent of the above-mentioned linear connec-tions.Thus it really does not matter which connection should be used in the metric geometry of Finsler manifolds.Fixing a unit vector v#T x M,let[e i]ni=1,e n=v,be a basis for T x Msuch that[(v;e i)]ni=1is an orthonormal basis for?*TM.Let_i=span[e i,v],1 i n&1.The Ricci curvature Ric(v)is defined byRic(v):=:n&1i=1K(_i;v)F(v)2.The linear connection{in(2.5)defines the covariant derivative D v u of a vector field u on M in the direction v#T x M as follows.Let c be a curve in M with c(0)=v.Let c=dcÂdt be the canonical lift of c in TM o.Let u(t)=u|c(t)and U(t):=(c;u(t))#?*TM.Define D v u by(v;D v u):={dcÂdt U(0).(2.7) Note that D satisfies all properties of linear connections in TM,except forthe linearity in v,that is,D v1+v2u{D v1u+D v2u.Thus D is not a linear con-nection in TM in a usual sense.A vector field u=u(t)along c is called parallel if D dcÂdt u=0.A curve#:[0,a]ÄM is a geodesic if and only if#is parallel along#,i.e.,D##=0.(2.8) In this case,#must be parametrized proportional to arc-length.314ZHONGMIN SHENThe exponential map exp x :T x M ÄM is defined as usual,that is,exp x (v )=#v (1),where #v is a geodesic with #v (0)=x and #(0)=v .The Hopf Rinow theorem says that if (M ,d F )is complete,then exp x is defined on all of T x M for all x #M .This implies that any two points x 0,x 1#M can be joined by a minimizing geodesic.From now on,we always assume that (M ,d F )is complete.It is a well-known fact that the exponential map exp x is C away from the origin in T x M and only C 1at the origin with exp x |0=identity [W].In [B2],Busemann proved that if exp x is C 2at the origin for all x #M ,then all (T x M ,F x )are isometric to each other.On the other hand,Ichijyo[I]proved that in a Berwald space,all (T x M ,F x )are isometric to each other.Finally,Akbar Zadeh [AZ3]proved that exp x is C all over T x M for all x #M ,if and only if the Finsler metric is Berwald.Using the exponential map exp x ,one can easily show that d 2x =d (x ,})2is C near x and C 1at x .We remind the reader that (F x )2is only C 1at the origin,although exp x is C in a Berwald space.Proposition 2.2.If d 2x is C 2at x ,then F is Riemannian at x .Proof .Let .:V /R n ÄU /M be a local coordinate system at x with .(0)=x .Let h (z )=d 2x b .(z ),z #V .Note that h (z ) h (0)=0,z #V .Byassumption h is C 2in V .Thush (z )=12 2h z i zj (0)z i z j +o (|z |).As we have pointed in Section 1,d =d F reproduces F =F d by (1.2),that is,F (x ,y )2=lim r Ä0h (ry )2r 2=12 2h z i z j (0)y i y j .By definition,F is Riemannian at x .KThe cut-value t v of a vector v #T x M is defined to be the largest number r >0such that #v is minimizing on [0,r ].Let I x :=[v #T x M ,F (v )=1].The map v #I x Ät v #[0, )is continuous.The cut-locus C x =[exp p t v v :v #I x ]has zero Hausdorff measure in M .The injectivity radius inj x at x is defined by inj x =inf v #I x t v .Let 0x :=M "C x ,and O x =[(t ,x ):t <t v ].Then exp x :O x Ä0x is a diffeomorphism (C 1at the origin).For v #T x M ,define R v :T x M ÄT x M byR v (u )=R (U ,V )V ,(2.9)where U =(v :u ),V =(v ;V )#?*TM .315RIEMANN FINSLER GEOMETRYFix v#T x M,and let#v be a normal geodesic from x with#v(0)=v.Along#v,we have a family of inner products g t=g#v(t)in T#v (t)M(see(1.9))and flag curvatures R t=R#v(t):T#v (t)MÄT#u(t)M.For the sake ofsimplicity,we shall denote D t=D#v ,if no confusion is caused.(2.3)impliesthat for any vector fields u=u(t),w=w(t)along#v,ddt(g t(u(t),w(t))=g t(D t u(t),w(t))+g t(u(t),D t v(t)).(2.10) A vector field J=J(t)along#v is called a Jacoby field if it satisfiesD t D t J(t)+R t J(t)=0.(2.11)Lemma 2.3.A vector field Jualong#v with J u(0)=0and D t J u(0)=u is a Jacobi field if and only ifJ u(t)=d(exp x)|tv(tu).(2.12) In particular,a vector field J given by(2.12)is smooth along#v.We shall always denote by#v the geodesic with#v(0)=v#T x M and by J u the Jacobi field along#v defined by(2.12).Lemma 2.4(Gauss Lemma).For every Jacobi field Ju,J u(t)is per-pendicular to#v(t)for all t with respect to g t,if and only if u is perpendicular to v with respect to g v.From(2.12),we can see that exp x is singular at rv#T x M if and only if there is0{u#T x M,such that the Jacobi field J u satisfies J u(r)=0.In this case we call#v(r)a conjugate point with respect to x.By the standard argu-ment,one can show that if the flag curvature K(_;v) *,then there are no conjugate points on#|[0,r),for r=?Â-*(= if* 0).This is the so-called Cartan Hadamard theorem in Finsler geometry[A].The index lemma is still true.For a vector field W=W(t)along#v with W(0)=0,defineI(W,W)=|r0[g t(D t W(t),D t W(t))&g t(R t W(t),W(t))]dt.Lemma 2.5(Index Lemma).Suppose that#v does not contain conjugatepoints on[0,r].Let J be a Jacobi field along#v with J(0)=0.Then for any vector field W along#with W(0)=0and W(r)=J(r),I(J,J) I(W,W),the equality holds if and only if W=J.For a Jacobi field J u,we haveI(J u,J u)=g r(D t J u(r),J u(r)).By a standard argument and the index lemma,one can easily prove Bonnet and Myers'theorem for Finsler manifolds([A]).A Finsler space(M,F)is said to be modeled on a single Minkowski spaceif for every geodesic#,the parallel translation P t0,t1:(T#(t)M,F#(t))Ä(T#(t1)M,F#(t1))is an isometry for all t0,t1.In this case,all(T x M,F x)arelinearly isometric to each other.The class of such manifolds contains all Riemann manifolds and locally minkowski manifolds.Define F*:T R nÄ[0, )byF*\y i x i}x+= :n i=1(y i)2+* :i=1(y i)4,(2.13)where*:R nÄ[0, )is a C function.Clearly,(R n,F*)in(2.13)is not modeled on a single Minkowski space,if*:R nÄ[0, )is not constant. See[AIM]for more interesting Finsler metrics from physics.Proposition 2.6.If(M,F)is modeled on a single Minkowski space, then H=0.Proof.By definition,if u=u(t)is a parallel vector field along a geodesic#v,then F(u(t))=constant.Let[e i(t)]ni=1be a parallel basis for T#v(t)Mwith e i(0)=e i,1 i n.We haveB#v (t)(1):=[(y i):F(y i e i(t)) 1]=B x(1).We also have det(g t(e i(t),e j(t)))=det(g v(e i,e j)).Thus+(#v(t))=constant. This implies H(v)=0.KProposition 2.7([I]).Any Berwald space is modeled on a single Minkowski space.3.THE SINGULAR RIEMANN METRICS g x AND g xThe Finsler metric F induces a singular Riemann metric g x on T x M"[0] byg x(u,w):=g v(u,w),\u,w#T tv(T x M)t T x M,v#T x M.(3.1)Let I x=[v#T x M:F(v)=1].Let g x be the induced Riemann metric of g x on I x/T x M.Regard T x M as the cone C(I x)over I x.By the homogeneity of F,we haveg x=dt2Ät2g x.(3.2) Let'x denote the volume form of g x on T x M"[0]=C(I x)"[o].Let[e i]ni=1be a basis for T0(T x M)t T x M.Extend it to a global basis forT(T x M).Let[%i]ni=1be the dual basis for T*(T x M).We have'x|tv=-det(g x(e i,e j))|tv%17}}}7%n=-det(g(e i,e j))%17}}}7%n.(3.3) Let'x denote the volume form of g x on I x.By(3.2)we have'x|tv=t n&1'x|v7dt,\(t,v)#C(I x).(3.4) Define the density3x at x#M by3x=vol(I x,'x)vol(S n&1(1)).(3.5)When F is Riemannian,3x=1,\x#M.In general,3x does not have to be constant unless F is a weak Landsberg space(see[BS]).It is still an open problem whether or not there are two universal constants0<a n<b n, n=dim M such thata n 3xb n,\x#M.(3.6) If the norm of the Cartan tensor A is small enough,say&A& -3Â10,then (3.6)holds for some a n,b n.Define a smooth Riemannian metric g x inside0x"[x]byg x|#v (t)=g#v(t)(3.7)(see(1.9)).Putg x:=(exp x)*g x.(3.8) In general,g x is singular at the origin,unless F is Riemannian.Regard exp x as a map C(I x)ÄM.By the Gauss Lemma,we haveg x=dt2Äh t,(3.9) where h t is a family of Riemannian metrics on I x.Lemma 3.1.The metric g x satisfies1 t2h tÄg x,12th ttÄg x.(3.10)Proof.Let u,w#T v(I x M)/T tv(T x M)t T x M.Let g t=g#(t).Clearly,g t(u(t),w(t))Äg x(u,w),(3.11) where u(t),w(t)are parallel vector fields along#with u(0)=u,w(0)=w. For u#T x M,let J u(t)=d(exp x)|tv(tu).We haveh t(u,w)=g x(d(exp x)|tv(tu),d(exp x)|tv(tw))=g t(J u(t),J w(t)).(3.12) Thus by(2.10)htt(u,w)=g t(D t J u(t),J w(t))+g t(J u(t),D t J w(t)).(3.13)Put J u=(1Ât)J u(t),for t{0.Since J is smooth along#and J(0)=0, then J u:=(1Ât)J u(t)converges,as tÄ0.Put J(0)=lim tÄ0J u(t).Then J u is smooth.Thus D t J u is bounded.Observe that D t J u(t)=J u(t)+tD t J u(t).We can conclude that1tJ u(t)ÄD t J u(0)=u.(3.14) Now(3.10)follows from(3.11) (3.13).KThe following proposition is important in computing the flag curvature.Proposition 3.2.(i)Let D x be the Levi Civita connection of g x in0x. The along any normal geodesic#v,v#I x,D xt=D t.(3.15)(ii)Let u#T v(I x),and let_t=span[d(exp x)|tv(u),#v(t)]/T#v(t)M.Let K x(_t)denote the sectional curvature of g x.Then the flag curvature K(_t,#v(t))of F satisfiesK(_t;#v(t))=K x(_t)=&122t2(h t)uu+14t(h t)u:(h t):;t(h t)+;(h t)uu,(3.16)where[e:]n&1:=1is a basis for T v(I x),(h t)uu=h t(u,u),(h t)u:=h t(u,e:),and(h t):;=h t(e:,e;).Proof .Let (t ,x )be the conical (or polar)coordinate system in0x =exp x (O x ),regarding T x M as C (I x ).Let (t ,x;s ,y )be the standard coordinate system in T0x .By the Gauss lemma or (3.9),we have\100(g x ):;(t ,x )+=\100g :;(t ,x ;1,0)+=\100(h t ):;(t ,x )+.Put D x  t (  x :)=#;t:(t ,x)(  x ;).We have #;t:(t ,x )=12(h t );&(t ,x ) t(h t ):&;(t ,x ).We can put D (  t )(  x :)=1;t:(t ,x;1,0)(  x ;).By (2.4),1;t:(t ,x ;1,0)=#;t:(t ,x )&(h t );&(t ,x )A :&{(t ,x ;1,0)#{tt (t ,x).An easy computation yields that #{tt (t ,x)=0.Thus 1;t:(t ,x ;1,0)=#;t:(t ,x).This implies (3.15).Let R x denote the Riemann curvature tensor of g x on 0x .Note that J :(t ):=d exp x |(t ,x )(t (  x :)=t (  x )|(t ,x )is a Jacobi field of both F and g x .By the Jacobi equation (2.11),one obtains(R x )t x :=&1t D x  t D x  t J :(t )=&1t D  t D  t J :(t )=R t x :.By an easy computation,one obtain that for _t =span [  t ,  x :],K x (_t )=& t [g t (D  t J :(t ),J :(t ))]&g t (D  t J :(t ),D  t J :(t ))(g t )(J :(t ),J :(t ))=&12 2 t (h t )::+14 t (h t ):;(h t );& t (h t )&:(h t )::.K See [LS]for further discussions on Riemann metrics with conical singularities.。