毛翔宇夫兰克一赫兹实验Cdoc

合集下载

弗兰克-赫兹实验实验报告

弗兰克-赫兹实验实验报告

课程名称:大学物理实验(二)
实验名称:弗兰克-赫兹实验
图2.1 弗兰克-赫兹管原理图
设氩原子的基态能量为E1,第一激发态的能量为E2
E2−E1。

初速度为零的电子在电位差为U的加速电场作用下具有能量则电子与氩原子只能发生弹性碰撞,二者之间几乎没有能量转移。

子与氩原子就会发生非弹性碰撞,氩原子将从电子的能量中吸收相当于从基态跃迁到第一激发态,而多余的部分仍留给电子。

位差为U0则
eU0=E2−E1
图3.1弗兰克-赫兹仪实物图
对应的V G2是内部的锯齿电压,作用是急速电压自动变化。

对应于示波器观测模
I P(×10-8A)
U G2(×
图6.1 加速电压与电流的关系图
可以发现电流随电子的能量呈现有规律的周期性变化,且两相邻谷点(或峰尖)即为氩原子的第一激发电位值。

同时,可以读出峰谷的横坐标值。

峰的横坐标值如下表:
表6.1 加速电压与电流的关系图的峰横坐标记录表
第二个峰X3第三个峰X5第四个峰X7第五个峰X9
2.90 4.08 5.25 6.46
表6.2 加速电压与电流的关系图的锋横坐标记录表
第二个谷X4第三个谷X6第四个谷X8第五个谷X10
3.52
4.66
5.84 7.04
算出氩原子的第一激发电位。

弗兰克赫兹管实验报告

弗兰克赫兹管实验报告

一、实验目的1. 了解弗兰克-赫兹实验的原理和方法。

2. 测量氩原子的第一激发电势,验证原子能级的存在。

3. 深入理解量子化概念,加深对原子结构的认识。

二、实验原理弗兰克-赫兹实验是基于量子力学原理,通过测量电子与原子碰撞过程中的能量交换,验证原子能级的存在。

实验装置主要由弗兰克-赫兹管、加热炉、温控装置、F-H管电源组、扫描电源和微电流放大器等组成。

实验过程中,电子在阴极和第一栅极之间被加速,然后进入充满氩气的弗兰克-赫兹管。

在管内,电子与氩原子发生碰撞,能量交换导致电子和氩原子发生能级跃迁。

当电子能量等于氩原子第一激发能时,电子被完全阻止,此时电流急剧下降。

通过测量电流的变化,可以确定氩原子的第一激发电势。

三、实验仪器与设备1. 弗兰克-赫兹管:由阴极、第一栅极、第二栅极及板极组成,充有氩气。

2. 加热炉:用于保持弗兰克-赫兹管内氩气的饱和蒸气压。

3. 温控装置:用于控制加热炉的温度。

4. F-H管电源组:提供弗兰克-赫兹管各极所需的工作电压。

5. 扫描电源:提供0~90V的手动可调直流电压或自动慢扫描输出锯齿波电压,作为弗兰克-赫兹管的加速电压。

6. 微电流放大器:用于检测弗兰克-赫兹管的输出电流。

7. 微机X-Y记录仪:用于记录实验数据。

四、实验步骤1. 将弗兰克-赫兹管置于加热炉内,调节加热炉温度,保持氩气的饱和蒸气压。

2. 接通电源,调节F-H管电源组,使阴极和第一栅极之间的电压为0V。

3. 调节扫描电源,使加速电压从0V开始逐渐增加,同时观察微电流放大器显示的输出电流。

4. 记录电流随加速电压的变化曲线,找出电流急剧下降的位置,即氩原子的第一激发电势。

五、实验结果与分析1. 实验数据及曲线通过实验,测得氩原子的第一激发电势约为15.8V。

根据实验数据,绘制了电流随加速电压的变化曲线,如图1所示。

图1 电流随加速电压的变化曲线2. 结果分析根据实验结果,当加速电压为15.8V时,电流急剧下降,说明电子能量与氩原子第一激发能相等,发生能级跃迁。

实验 弗兰克—赫兹实验

实验  弗兰克—赫兹实验

99实验 弗兰克—赫兹实验1914年弗兰克(F .Franck )和赫兹(G .Hertz )在研究气体放电现象中低能电子与原子间相互作用时,在充汞的放电管中发现:透过汞蒸气的电子流随电子的能量呈现有规律的周期性变化,间隔为4.9eV 并拍摄到与能量4.9eV 相对应的光谱线2537Å。

对此,他们提出了原子中存在的“临界电势”的概念:当电子能量低于与临界电势相应的临界能量时,电子与原子碰撞是弹性的,而当能量达到这一临界能量时,碰撞过程由弹性变为非弹性,电子把这份特定的能量转移给原子使之受激,原子退激时再以特定的频率为光量子形式辐射出来,电子损失的能量ΔE 与光量子能量及光子频率的关系为 ΔE = eV = h νF-H 实验证实了原子内部能量是量子化的,为玻尔于1913年发表的原子理论提供了坚实的实验基础。

1920年弗兰克及其合作者对原先实验装置作了改进提高了分辨率测得了汞的除4.9eV 以外的较高激发能级和电离能级,进一步证实了原子内部能量是量子化的。

1925年弗兰克和赫兹共同获得诺贝尔物理学奖。

通过这一实验可以了解原子内部能量量子化的情况,扩大弹性碰撞和非弹性碰撞的知识,学习和体验弗兰克和赫兹研究气体放电现象中低能电子和原子间相互作用的试验思想和实验方法。

实验原理根据玻尔理论原子只能处在某一些状态,每一状态对应一定的能量,其数值彼此是分立的,原子在能级间进行跃迁时吸收或发射确定频率的光子,当原子与一定能量的电子发生碰撞可以使原子从低能跃迁到高能级(激发)如果是基态和第一激发态之间的跃迁则有: eV 1=21m e v 2 = E 1 - E 0 电子在电场中获得的动能和原子碰撞时交给原子,原子从基态跃迁到第一激发态V 1称为原子第一激发电势(位)。

进行F-H 实验通常使用的碰撞管是充汞的。

这是因为汞是原子分子,能级较为简单,汞是一种易于操纵的物质,常温下是液体,饱和蒸气压很低,加热就可改变它的饱和蒸气压,汞的原子量较大和电子作弹性碰撞时图1 F-H 实验线路连接图几乎不损失动能,汞的第一激发能级较低— 4.9eV,因此只需几十伏电压就能观察到多个峰值,当然除充汞蒸气以外,还常用充惰性气体如氖、氩等的,这些碰撞管温度对气压影响不大,在常温下就可以进行实验。

物理实验之弗兰克-赫兹实验

物理实验之弗兰克-赫兹实验

物理实验之弗兰克-赫兹实验弗兰克-赫兹实验是一项具有重要意义的物理实验,它为我们理解原子结构和电子能级的研究提供了重要的证据。

在这篇3000字的文章中,我将为你详细介绍弗兰克-赫兹实验的原理、过程和实验结果,希望能帮助你更好地理解这一实验。

弗兰克-赫兹实验于1914年由德国物理学家詹金斯·弗兰克和恩斯特·赫兹完成。

他们使用的实验装置主要包括一个玻璃管和一个甘汞蒸气灯。

在这个实验中,他们使用了高压电源将电流通过一个附带气体的玻璃管中,通过测量电流和电压的变化来观察气体原子中电子的行为。

实验的过程如下:首先,弗兰克-赫兹实验首先需要将气体灌入玻璃管中,并确保玻璃管处于真空状态。

然后,一个电压源与玻璃管相连接,通过调节电压源上的电压,使电流通过玻璃管中的气体。

这样,气体原子中的电子就会接收到能量,并跃迁到较高的能级。

当电子跃迁到较高的能级时,通过电流变化观察到的现象就是电压-电流图像中出现的突变。

这是因为跃迁能级需要一定的能量,只有当电压达到一定值时,电子才能够跃迁到更高的能级。

而当电压低于这个临界值时,电子无法跃迁,导致电流没有明显变化。

通过不断地改变电压值,并相应地测量电流的变化,我们可以得到一系列的跃迁能级。

这些跃迁能级的数值与原子的能级结构有关。

通过分析这些数据,我们可以了解到电子在原子中的排布情况以及原子的能级结构。

弗兰克-赫兹实验的实验结果为后来的量子力学理论的发展奠定了基石。

这个实验证实了电子只能在特定的能级之间跃迁,而不能在连续的能级之间跃迁。

这与经典物理学中电子在连续能级上运动的观点不同,它表明了原子的能级结构具有离散的性质。

这个观点后来成为了量子力学的基础。

通过弗兰克-赫兹实验,我们还可以了解到不同种类的气体可见的跃迁能级是不同的。

这为我们进一步研究气体的组成和性质提供了重要的线索。

实际上,弗兰克-赫兹实验的成功也鼓励了其他科学家进行类似的研究,从而推动了原子物理学的发展。

弗兰克-赫兹实验报告12页

弗兰克-赫兹实验报告12页

弗兰克-赫兹实验报告12页一、实验简介弗兰克-赫兹实验是用于研究原子中的电子能级的实验,由德国物理学家弗兰克和赫兹于1914年首次进行。

该实验基于能量量子化的概念,对气体中电子的能级结构进行了实验研究。

实验中使用汞气作为气体样品,并观察了在逐渐递增的电压下电子的能量变化以及电子在经过汞原子时的散射现象。

本实验在原子物理学以及量子力学发展历史上具有里程碑的意义。

二、实验原理1.能量量子化在原子中,电子所拥有的能量和它的运动状态是量子化的,因此它们只存在于特定的能量状态中。

这些能量状态被称为能级,其能量可以通过光子吸收和辐射来进行变化。

2.汞原子的能级汞原子是大型原子,其中包含80个电子,因此具有复杂的能级结构。

常见的汞原子能级包括原子的基态以及第一、第二、第三激发态等。

在本实验中,我们将重点关注第一激发态,其能量为4.9电子伏。

3.散射现象在电子经过汞原子时,它们将与原子中的电子进行散射,影响它们的移动方向和能量。

通过观察不同电压下电子在汞蒸汽中的散射情况,可以研究电子在汞原子中的散射过程以及不同能级的存在情况。

三、实验步骤1.设备调试首先对设备进行调试,检查电源、电压计、放大器等设备是否正常运行。

2.样品处理使用灯丝对汞样品进行加热,使其升华产生汞性气体。

3.电子管与样品接触将电子管的阳极与汞样品接触,使电子通过样品并进行散射。

4.电压递增逐渐递增电压,观察电子的能量变化以及电子在经过汞原子时的散射情况。

5.测量数据通过放大器和电压计来测量电压和电流等数据,记录不同电压下电流和电压之间的关系。

四、数据分析通过测量数据可以得到不同电压下汞蒸汽中散射电子的动能,进一步可以得知电子在不同能级中的能量情况。

例如,在电压为10伏的情况下,当电流增大时,证明散射电子的动能增加,这表明电子已经达到第一激发态能级。

当电压增加到50伏时,电流在急剧减小,这表明散射电子已经失去了能够到达下一个能级所需的能量。

从而可以推断出汞原子存在第一激发态能级。

弗兰克赫兹实验报告文库

弗兰克赫兹实验报告文库

一、实验背景弗兰克-赫兹实验是由德国物理学家W.弗兰克和G.赫兹于1914年进行的,该实验旨在研究电子在电场作用下的运动规律,并证明原子能级的存在。

实验通过测量电子与原子碰撞时的能量交换,揭示了原子内部结构的量子化特性。

二、实验目的1. 测量氩原子的第一激发电势,证明原子能级的存在;2. 加深对量子化概念的认识;3. 学习电子与原子碰撞微观过程与宏观物理量相结合的实验设计方法。

三、实验原理1. 原子能级理论:根据玻尔理论,原子只能长时间地处于一些稳定的状态,称为定态。

原子在这些状态时,不发射或吸收能量;各定态有一定的能量,其数值是彼此分隔的。

原子的能量只能从一个定态跃迁到另一个定态。

2. 电子与原子碰撞:当电子在电场作用下加速时,会获得动能。

当具有一定能量的电子与原子碰撞时,会发生能量交换。

若电子传递给原子的能量恰好等于原子从一个定态跃迁到另一个定态所需的能量,则原子会被激发。

3. 激发电势:原子从一个定态跃迁到另一个定态所需的能量称为激发电势。

在本实验中,测量氩原子的第一激发电势,即从基态跃迁到第一激发态所需的能量。

四、实验装置1. 夫兰克-赫兹管:由阴极、阳极、栅极和充有氩气的真空管组成。

阴极发射电子,阳极接收电子,栅极控制电子流。

2. 加速电压:通过调节加速电压,使电子在电场作用下获得不同动能。

3. 电流计:测量电子流过夫兰克-赫兹管时的电流。

4. 数据采集系统:用于记录电流与加速电压的关系。

五、实验步骤1. 将夫兰克-赫兹管接入实验电路,调整加速电压,使电子获得不同动能。

2. 测量电子流过夫兰克-赫兹管时的电流,记录数据。

3. 改变加速电压,重复步骤2,得到一系列电流与加速电压的关系曲线。

4. 分析数据,确定氩原子的第一激发电势。

六、实验结果与分析1. 实验结果显示,电流与加速电压的关系曲线呈阶梯状。

当加速电压低于第一激发电势时,电流几乎为零;当加速电压等于第一激发电势时,电流出现突变;当加速电压高于第一激发电势时,电流逐渐增大。

弗兰克-赫兹(Franck-Hertz)实验

弗兰克-赫兹(Franck-Hertz)实验
弗兰克 - 赫兹实验是完全不同于光谱 实验,是从另一个角度来证明原子存在 分立能级,并能测量出原子一些能级。
一、弗兰克-赫兹实验的实验方法
2010/5/1 Dr. Prof. W.N.Pang
3
2010/5/1
1925
Dr. Prof. W.N.Pang
4
玻尔理论基于的三个物理学基础
二、实验中的重点概念及物理图像
2010/5/1 Dr. Prof. W.N.Pang 31
上课时间:下午1:30--4:50
晚上6:30--9:50
切勿产生浮躁情绪
谢 谢
五、实验报告及数据处理要求
2010/5/1 Dr. Prof. W.N.Pang 32
五、实验报告及数据处理要求
实验报告要求
1)拒收电子版; 2)数据处理过程严谨。
2010/5/1 Dr. Prof. W.N.Pang 15 2010/5/1
物 理 图 像
电子碰撞后速度变慢;原子退激发辐射光子 Dr. Prof. W.N.Pang 16 表现为:“非弹性碰撞”
实验中采用一定入射能量的电子与Ar原子碰撞
电子由阴极K发 出,阴极K和控 制栅极G1之间的 加速电压UG
1s22s22p63s23p6 1S0
Dr. Prof. W.N.Pang
简单叠加
14 这里的简单叠加 仅为示意,不严谨!
当电子的加速电压UA<原子第一激发电势Ug 电子与原子碰撞过程中无能量的交换。
当电子的加速电压UA ≥原子第一激发电势Ug 电子与原子碰撞发生能量交换。
物 理 图 像
碰撞前后速度不变,表现为“弹性碰撞”
R
出入射电子在非弹性碰撞过程中能量损 失的情况。

弗兰克—赫兹实验报告

弗兰克—赫兹实验报告

实验名称:弗兰克—赫兹实验 实验原理:用加速到一定能量的电子轰击原子使原子发生跃迁,跃迁的同时电子失去能量而减速,碰撞后电子的速率分布发生变化,测量到达的高速电子的数量,就可以知道有多少电子因为是原子跃迁而失去能量,间接测出了原子吸收的能量的大小,就反应出了跃迁所需的能量。

实验中原子密度较大,故只有第一激发电位发生的概率较大,其余的激发可以忽略,则电子能量每到达一次原子第一激发态吸收的能量大小E ∆,就会出现一次吸收峰,通过测量相邻吸收峰时的E ∆,也就是测量相邻吸收峰时的加速电压,就可以知道原子的第一激发态时吸收的能量大小。

实验用的装置如右图,通过灯丝加热K 使其发射电子,G 1控制通过G 1的电子数目,G 2加速电子,G 1、G 2空间较大,提供足够的碰撞概率,A 接收电子,AG 2加一扼止电压,使失去动能的电子不能到达,形成电流。

用汞进行实验测得与右下图相似的曲线。

汞的第一激发电位为 4.9V,实验中电压每到 4.9V 的n 倍就多一次吸收,故出现一个吸收峰,实验内容:一、汞的F-H 实验 测汞的第一激发电位(测I P -V G2曲线,由曲线确定第一激发电位),测六到八个峰测量条曲线,V G2上升测一条,V G2下降测一条分别由峰间距求汞的第一激发电位。

二、氩的F-H 实验 示波器观察氩的I P -V G2曲线,手动测氩的I P -V G2曲线。

实验步骤:一、汞的F-H 实验1.先将温度调到设定值,打开温控开关加温指示灯on 亮(绿色),到设定温度off 指示灯亮(红色),红灯亮过一次即可开始实验。

2.了解接线,将V p ,V G1K ,V G1P ,V G2K ,调至最小,到设定温度时再打开两仪器电源,稳定5分钟,然后据炉上标签设定各电压值,用“手动”挡测曲线,电流过量程时更换电表量程。

3.先手动调节电压观察电流随电压的变化,选适当量程从某一电压起每隔0.5V记录一组I P -V G2数据,随V G2上升测一条至约六到八个峰,再随V G2下降记录数据。

弗兰克-赫兹实验

弗兰克-赫兹实验

弗兰克-赫兹实验
弗兰克-赫兹实验(Frank-Hertz实验)是由德国物理学家威廉·赫兹和威廉·弗兰克于1914年完成的一项重要实验,旨在研究薛定谔方程在原子能级间的电子跳跃所导致的离子化能量变化。

由于无法在原子尺度上直接研究原子,弗兰克和赫兹历史上第一次使用了它们来研究原子能级间电子跳跃的实验技术,其首次实现了描述原子能级是多么的精准的能量结构的测量。

在这项实验中,弗兰克和赫兹利用了一部定制的电子管,将加热的钨丝上金属电子抽出,这种实验可以应用到的主要原理之一是,当电子跳跃时,就会发出一种特殊的电流微小指数频率,这也被称为伯格现象(Berg effect),1900年由德国物理学家威廉·伯格首次发现和描述。

利用这种技术,弗兰克和赫兹可以测量出原子能级给出的电流,据此计算出原子能级的能量差,尽管这种技术总共只能测量出原子的一个能级,但是,这便是薛定谔方程研究原子能级出现的关键原理和重要实验,以及未来任何继续研究原子能级结构必须建立在它之上的基础。

测量完原子能级结构之后,弗兰克和赫兹发现,对于原子内部电子跳跃有一种精准的离子化能量幅度,而这种幅度基本上和薛定谔方程的预期值一致,证明了薛定谔方程在原子能级间跳跃的存在,这也被人们认为是薛定谔方程的最关键的实验检验,从而最终在1925年蒙特卡罗和佩里条约之后得到了较大的广泛认可,也广泛确认了它与原子内电子跃迁有关。

弗兰克-赫兹实验突破了以往研究原子能级结构的一些困难,为今后继续研究原子能级构建了坚实的基础,同时,它的成果也为科学家们提供了更多的可能性,例如深入研究晶体拓片结构,以及有机分子的构建等等,使得物理学家钥匙更加自信地钥匙的谷,启发出物理学家们可以进一步研究的范围。

弗兰克赫兹实验

弗兰克赫兹实验

实验原理
• 波尔原子模型 • 4.当V>Vg时,电子与汞原子将发生非弹性碰撞,(如果汞 原子跃迁至第一激发态)电子损失能量为eVg。 • 5.一方面,电子能量每达4.9eV的整数倍时,由于被汞原子 吸收,电流计的示数会突然下降;另一方面,随着加速电 压的增大,穿过两栅极之后的电子由足够大的能量克服电 场而达到极板,被电流计检测到。
实验原理
• 波尔原子模型 • 1.定态假设:原子只能处在一些不连续的稳定状态中
• 2.频率定则:党员自从一个稳定状态到另一个稳定状态时, 就吸收或辐射一定频率的电磁波 • hν=En-Em
• 3.当V<Vg 时,由于电子的能量不足以让原子的能级改变, 所以电子和原子只能发生弹性碰撞,又由于偶鞥装遵循动 量守恒,电子质量很小,导致电子损失能量极小。
实验装置
实验内容
• • • • • • • (一)连接实验电路 (二)加热控温部分 1.将温度计插入炉顶小孔,用来调控温度 2.将温度计后的传感器插入控温仪 3.连接加热炉和控温仪 4.打开电源,设置温度 5.加热升温约30分钟,待温控继电器跳变时
实验内容
• (三)其他部分 • 1.扫描选择手动挡。待炉温达到预定的炉温后,接通两台 仪器的电源。 • 2.根据F-H管参考工作电压数据分别调节好VF,VG1 和VG2。 • 3.手动方式粗测。 • 4.自动方式粗扫。
弗兰克赫兹实验
芦宇轩 1310210

实验背景
• 弗兰克和盒子于1914年采用了简单的试验方法,用慢电子 鸿基稀薄气体的原子,研究碰撞前后电子能量的变化情况, 测量了汞原子内部能量量子化效应。在实验中,他们还分 析了受激原子的光辐射,测量了辐射光的频率发现它们很 好地满足波尔假设的频率定则。弗兰克-赫兹共同获得了诺 贝尔物理学奖。

弗兰克物理实验报告

弗兰克物理实验报告

一、实验目的1. 了解弗兰克-赫兹实验的原理和实验方法。

2. 通过实验验证电子与原子碰撞时能量转移的规律,加深对量子化概念的理解。

3. 掌握实验仪器的操作方法和数据处理方法。

二、实验原理弗兰克-赫兹实验是德国物理学家弗兰克和赫兹于1914年进行的,通过实验证实了原子能级的存在。

实验原理如下:1. 在实验中,电子从阴极发射出来,受到加速电压的作用,获得一定的动能。

2. 电子在通过电场加速后,进入由稀薄气体组成的电离室,与气体原子发生碰撞。

3. 当电子的动能与气体原子的第一激发能相等时,电子将能量转移给气体原子,使原子从基态跃迁到第一激发态。

4. 气体原子吸收能量后,产生光子,光子的能量等于电子与原子碰撞过程中能量转移的数值。

5. 通过测量电子的能量和光子的能量,可以验证能量转移的规律,进而证明原子能级的存在。

三、实验仪器与设备1.弗兰克-赫兹实验仪2.示波器3.直流稳压电源4.电子管5.电流表6.电压表四、实验步骤1. 连接实验仪器,调整实验仪器的参数,使电子枪的阴极发射出电子。

2. 调节加速电压,使电子获得一定的动能。

3. 打开实验仪器的电源,观察示波器上的波形,调整加速电压,使电子与气体原子发生碰撞。

4. 记录示波器上的波形,分析波形的变化,确定能量转移的规律。

5. 通过实验数据,计算电子与原子碰撞过程中能量转移的数值,验证能量转移的规律。

五、实验结果与分析1. 通过实验,观察到示波器上的波形发生了变化,说明电子与气体原子发生了碰撞。

2. 通过数据处理,计算出电子与原子碰撞过程中能量转移的数值,验证了能量转移的规律。

3. 实验结果表明,电子与原子碰撞时,能量转移的数值与电子的动能有关,与气体原子的第一激发能相等时,能量转移最为显著。

六、实验结论1. 通过弗兰克-赫兹实验,验证了电子与原子碰撞时能量转移的规律,加深了对量子化概念的理解。

2. 实验结果表明,原子能级是存在的,能量转移的数值与电子的动能有关。

夫兰克-赫兹实验报告

夫兰克-赫兹实验报告

夫兰克-赫兹实验一.实验简介1914年弗兰克(J.Frank)和赫兹(G.Hertz)用电子碰撞原子的方法,观察测量到了汞的激发电位和电离电位(即著名的Frank-Hertz实验)。

从而证明了原子等级的存在,为早一年玻尔发表的原子结构理论的假说提供了有力的实验证据。

为此他们分享了1925年诺贝尔物理学奖金。

他们的实验方法至今仍是探索原子结构的重要手段之一。

本实验应用Frank-Hertz实验方法实现电子气和Hg原子的碰撞,以观察Hg 原子能级跃迁并对Hg原子第一激发电位进行测量。

通过本实验可以深刻理解弗兰克和赫兹在研究原子内部能量量子化方面所采用的实验方法,了解电子与原子碰撞和能量交换过程的微观图像。

二.实验原理1. 电子与气态Hg原子的碰撞利用电子和气态Hg原子的碰撞时最容易实现Frank-Hertz实验的方法。

为实现原子从低能级En 向高能级Em的跃迁,通常可以通过吸收确定频率γ的光子来实现。

而光子的能量等于两个能级之间的量差,即时,原子吸收全部光子能量,发生能级跃迁,式中h为普朗克常量。

也可以通过使具有一定能量的电子和原子碰撞来实现。

若与之碰撞的电子式在电势差V的加速下,速度从零加到v,则当电子的能量满足时,电子将全部能量交换给你原子。

由于E m - E n 具有确定的值,对应的V 就应该有确定的大小。

当原子吸收电子能量从基态跃迁到第一激发态时,相应的V 称为原子的第一激发电位(或中肯电子)。

因此,第一激发电位V 所对应的就是第一激发态与基态的能量差。

出于激发态的原子是不稳定的,它将以辐射光子的形式释放能量而自发跃迁到低能级。

如果电子的能量达到原子电离的能量,会有电离发生,相应的V 称为原子的电离电位。

其中61S 0(0ev )为基态,63P 1(4.9ev )为激发态,63P 0(4.7ev )、63P 2(5.47ev )为亚稳态。

当能量等于63P 0,63P 1和63P 2与基态61S 0之间的能量差,即当能量为4.7 eV ,4.9 eV 和5.47 eV 的电子与Hg 原子碰撞时,将有最大的激发概率实现能级间跃迁。

弗兰克赫兹实验报告

弗兰克赫兹实验报告

弗兰克赫兹实验报告一、引言弗兰克赫兹实验,是一个让人兴奋的物理实验。

它不仅揭示了原子的微观世界,还引发了无数科学家的思考。

实验简单,却蕴含着深厚的科学原理。

听起来有点神秘,但别担心,我会尽量把它讲得清晰易懂。

1.1 实验背景在20世纪初,物理学家们开始探索原子结构的奥秘。

那时候,大家都知道,原子是物质的基本单元。

可原子的内部究竟是怎样的呢?很多科学家对这个问题充满了好奇。

赫兹实验的提出,正是为了更深入地了解原子的行为。

1.2 实验目的赫兹实验的目的,就是测量气体原子在碰撞时的能量变化。

这听起来很复杂,其实很简单。

通过观察这些变化,科学家们希望揭开原子内部的秘密。

可以说,这是一次追寻未知的冒险,带着满满的期待与紧张。

二、实验过程2.1 实验装置实验的装置相对简单。

想象一下,一个真空管里面,有两个电极。

电极之间有一个小间隙,气体在这个小间隙中被激发。

当电流通过时,气体原子会被撞击,这就是实验的关键。

2.2 数据收集一旦电流通入,气体原子开始活跃起来。

科学家们通过测量电流的变化,记录下每次撞击后的能量释放。

这一过程就像捕捉闪电一样,快速而又不可预测。

每一个数据点都像是在告诉科学家一个故事。

2.3 结果分析经过一系列的实验,科学家们发现,当电压达到一定水平时,电流会突然增加。

这种现象,表明气体原子在某个能量状态下释放了能量。

简而言之,这就是“量子化”的表现。

原子并不是随意释放能量,而是在特定的条件下,遵循着严格的规律。

三、实验意义3.1 量子理论的支持赫兹实验的重要性在于,它为量子理论提供了有力的支持。

通过这些实验,科学家们意识到,原子并非如他们想象的那样简单。

它们有自己的规则,有自己的游戏。

就像玩牌一样,只有了解了游戏的规则,才能赢得胜利。

3.2 科学的进步这个实验也促进了科学的进步。

它让人们开始重新审视原子、电子与能量之间的关系。

许多科学家受到了启发,纷纷投入到量子力学的研究中。

科学的火花在这里点燃,接下来就是一连串的发现与突破。

弗兰克赫兹实验报告

弗兰克赫兹实验报告

弗兰克赫兹实验报告一、实验目的了解弗兰克赫兹实验的原理和方法,通过实验测量氩原子的第一激发电位,证明原子能级的存在。

二、实验原理弗兰克赫兹实验是用一定能量的电子去轰击原子,通过测量电子与原子碰撞过程中的能量损失,来研究原子的能级结构。

当电子与原子发生非弹性碰撞时,电子损失的能量等于原子的激发能。

在本实验中,电子在加速电场中获得能量,然后与氩原子碰撞。

如果电子的能量小于氩原子的第一激发能,碰撞为弹性碰撞,电子能量几乎不变。

当电子能量达到氩原子的第一激发能时,会发生非弹性碰撞,电子损失能量,导致电流下降。

通过测量电流随加速电压的变化,可以得到氩原子的第一激发电位。

三、实验仪器弗兰克赫兹实验仪,包括充氩的弗兰克赫兹管、加热炉、微电流放大器、电压扫描电源等。

四、实验步骤1、连接实验仪器,打开电源,预热仪器一段时间。

2、调节加热炉温度,使弗兰克赫兹管中的氩气达到合适的工作状态。

3、调节电压扫描电源,设置起始电压、终止电压和扫描步长。

4、观察微电流放大器的示数,记录电流随加速电压的变化数据。

5、改变扫描步长,重复实验,获取多组数据。

五、实验数据及处理以下是一组实验测量得到的电流 I 随加速电压 U 的变化数据:|加速电压 U(V)|电流 I(μA)||::|::|| 10 | 20 || 20 | 35 || 30 | 50 || 40 | 70 || 50 | 85 || 60 | 60 || 70 | 45 || 80 | 75 || 90 | 60 || 100 | 40 |以加速电压 U 为横坐标,电流 I 为纵坐标,绘制电流电压曲线。

从曲线中可以明显看到电流出现多次下降,相邻两次下降对应的电压差值近似相等,这个差值即为氩原子的第一激发电位。

通过对数据的分析和计算,得到氩原子的第一激发电位约为_____V。

六、实验误差分析1、温度的影响:实验中弗兰克赫兹管的温度对氩原子的状态有影响,如果温度不稳定或偏离最佳值,可能导致实验结果的偏差。

北京大学物理实验报告:弗兰克-赫兹实验(docx版)

北京大学物理实验报告:弗兰克-赫兹实验(docx版)

北京大学物理实验报告:弗兰克-赫兹实验(docx版)弗兰克-赫兹实验【实验目的】(1) 了解弗兰克-赫兹实验用伏-安证明原子存在能级的原理和方法(2) 学习用伏-安法测量非线性器件(3) 学习微电流的测量【仪器用具】仪器名参数F-H-II 弗兰克赫兹实验仪∅F-H-II 弗兰克赫兹实验仪微电流放大器10−7档F-H-II 弗兰克赫兹实验仪电源组V F 0~5V2.5级V G1K 0~5V 2.5级V G2P0~15V2.5级Victor VC9806+数字万用表200 mV档±(0.5%+4)【实验原理】(1)原子的受激辐射玻尔的氢原理理论指出,原子只能较长久地停留在一些稳定状态(称为定态)。

这些定态的能量(称为能级)是不连续分布的,其中能级最低的状态称为基态。

原子在两个定态之间发生跃迁时,要吸收或发射一定的能量,该能量等于两个定态之间的能量差ΔE mn=E m−E n原子在能级之间的跃迁可以通过有一定能量的电子与原子碰撞交换能量来实现。

初速度为零的电子经过电势差U0加速获得能量eU0,当这些电子与稀薄气体(例如汞)发生碰撞,就会发生能量交换。

当电子能量满足eU0=ΔE mn便会使得原子从E n被激发到E m,电子能量被吸收。

(2)弗兰克-赫兹实验图 1 弗兰克-赫兹装置示意图图1是弗兰克-赫兹实验装置示意图。

图中左侧为弗兰克-赫兹管(F-H管),它是一种密封的玻璃管,其中充有稀薄的原子量较大的汞或惰性气体原子。

在这里灯丝用来对阴极K加热,使其发射热电子。

灯丝电压U F越高,阴极K发射的电子流也就越大。

第一栅极G1的主要作用是消除空间电荷对阴极电子发射的影响。

第二栅极G2的作用是在G2和K之间形成对电子加速的静电场。

发射的电子穿过栅极G2达到极板P,形成板流I P。

板流I P的大小由微电流测试仪进行测量。

在板极P和G2之间加有一反向电压,它对电子减速,使经过碰撞后动能非常低的电子折回。

实验38 弗兰克—赫兹实验---讲义

实验38 弗兰克—赫兹实验---讲义

实验三十八弗兰克—赫兹实验1913年丹麦物理学家玻尔(N❿Bohr)提出了原子能级的概念并建立了原子模型理论。

该理论指出,原子处于稳定状态时不辐射能量,当原子从高能态(能量E m)向低能态(能量E n)跃迁时才辐射。

辐射能量满足∆E = E m-E n(1)对于外界提供的能量,只有满足原子跃迁到高能级的能级差,原子才吸收并跃迁,否则不吸收。

1914年德国物理学家弗兰克(J❿Franck)和赫兹(G❿Hertz)用慢电子穿过汞蒸气的实验,测定了汞原子的第一激发电位,从而证明了原子分立能态的存在。

后来他们又观测了实验中被激发的原子回到正常态时所辐射的光,测出的辐射光的频率很好地满足了玻尔理论。

弗兰克—赫兹实验的结果为玻尔理论提供了直接证据。

玻尔因其原子模型理论获1922年诺贝尔物理学奖,而弗兰克与赫兹的实验也于1925年获此奖。

夫兰克——赫兹实验与玻尔理论在物理学的发展史中起到了重要的作用。

一、实验目的1、研究弗兰克—赫兹管中电流变化的规律2、测量氩原子的第一激发电位;证实原子能级的存在,加深对原子结构的了解;3、了解在微观世界中,电子与原子的碰撞几率。

二、实验仪器LB-FH弗兰克-赫兹实验仪,示波器三、实验原理夫兰克一赫兹实验原理(如图1所示),氧化物阴极K,阳极A,第一、第二栅极分别为G1、G2。

图1弗兰克-赫兹实验原理图灯丝电压K-G 1-G 2加正向电压,为电子提供能量。

V G1K 的作用主要是消除空间电荷对阴极电子发射的影响,提高发射效率。

G 2-A 加反向电压,形成拒斥电场。

电子从K 发出,在K-G 2区间获得能量,在G 2-A 区间损失能量。

如果电子进入G 2-A 区域时动能大于或等于eV G2K ,就能到达板极形成板极电流I .电子在不同区间的情况:(1) K-G 1区间 电子迅速被电场加速而获得能量。

(2) G 1-G 2区间 电子继续从电场获得能量并不断与氩原子碰撞。

当其能量小于氩原子第一激发态与基态的能级差∆E =E 2-E 1 时,氩原子基本不吸收电子的能量,碰撞属于弹性碰撞。

弗兰克赫兹实验报告结论

弗兰克赫兹实验报告结论

一、实验概述弗兰克-赫兹实验是由德国物理学家W.弗兰克和G.赫兹于1914年进行的。

该实验旨在研究电子与气体原子之间的碰撞,通过测量电子与原子碰撞后的能量变化,证实了原子能级的存在,为量子力学的发展奠定了基础。

二、实验原理根据量子理论,原子只能处在一系列不连续的能量状态,称为定态。

相应的定态能量称为能级。

原子的能量要发生变化,必须在两个定态之间以跃迁的方式进行。

当基态原子与带一定能量的电子发生碰撞时,可以使原子从基态跃迁到高能态。

弗兰克-赫兹实验的原理可由以下公式表示:E1 = E0 + eV1其中,E1为第一激发态能量,E0为基态能量,e为电子电荷,V1为电子的能量。

三、实验方法1. 实验装置:实验采用了一个真空管,其中充满了低压气体(如氩气或汞气)。

管中设有阴极、栅极和阳极,通过调节电压使电子在电场作用下加速,并与气体原子发生碰撞。

2. 实验步骤:(1)调整阴极和栅极之间的电压,使电子在电场作用下获得足够的能量;(2)调整栅极和阳极之间的电压,观察输出电流的变化;(3)记录不同电压下输出电流的变化,分析电子与气体原子碰撞后的能量变化。

四、实验结果与分析1. 实验结果表明,当电子能量达到一定值时,输出电流出现明显的峰值。

这表明,电子与气体原子发生了有效的碰撞,使原子从基态跃迁到第一激发态。

2. 通过对实验数据的分析,我们可以得到氩原子和汞原子的第一激发电位。

实验结果显示,氩原子的第一激发电位约为4.9V,汞原子的第一激发电位约为13.6V。

3. 实验结果与波尔理论预测的能级结构相吻合,进一步证实了原子能级的存在。

五、结论1. 弗兰克-赫兹实验证实了原子能级的存在,为量子力学的发展奠定了基础。

2. 实验结果与波尔理论预测的能级结构相吻合,进一步证实了量子理论在原子物理领域的正确性。

3. 弗兰克-赫兹实验对于理解原子结构、电子与原子相互作用以及量子力学的发展具有重要的意义。

4. 该实验方法为后续的原子物理和量子力学实验提供了借鉴和参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档