【数字电路课件】数字电子技术基础-6

合集下载

数字电子技术基础-第六章_时序逻辑电路(完整版)

数字电子技术基础-第六章_时序逻辑电路(完整版)

T0 1
行修改,在0000 时减“1”后跳变 T1 Q0 Q0(Q3Q2Q1)
为1001,然后按
二进制减法计数
就行了。T2 Q1Q0 Q1Q0 (Q1Q2Q3 )
T3 Q2Q1Q0
50
能自启动
47
•时序图 5
分 频
10 分 频c
0
t
48
器件实例:74 160
CLK RD LD EP ET 工作状态 X 0 X X X 置 0(异步) 1 0 X X 预置数(同步) X 1 1 0 1 保持(包括C) X 1 1 X 0 保持(C=0) 1 1 1 1 计数
49
②减法计数器
基本原理:对二进 制减法计数器进
——74LS193
异步置数 异步清零
44
(采用T’触发器,即T=1)

CLKi
CLKU
i 1
Qj
j0
CLKD
i 1
Qj
j0

CLK0 CLKU CLKD
CLK 2 CLKU Q1Q0 CLK DQ1Q0
45
2. 同步十进制计数器 ①加法计数器
基本原理:在四位二进制 计数器基础上修改,当计 到1001时,则下一个CLK 电路状态回到0000。
EP ET 工作状态
X 0 X X X 置 0(异步)
1 0 X X 预置数(同步)
X 1 1 0 1 保持(包括C)
X 1 1 X 0 保持(C=0)
1 1 1 1 计数
39
同步二进制减法计数器 原理:根据二进制减法运算 规则可知:在多位二进制数 末位减1,若第i位以下皆为 0时,则第i位应翻转。
Y Q2Q3

数字电子技术第6章 时序逻辑电路

数字电子技术第6章 时序逻辑电路

RD—异步置0端(低电平有效) 1 DIR—右移串行输入 1 DIL—左移串行输入 S0、S1—控制端 1 D0D1 D2 D3—并行输入
《数字电子技术》多媒体课件
山东轻工业学院
4、扩展:两片74LS194A扩展一片8位双向移位寄存器
《数字电子技术》多媒体课件
山东轻工业学院
例6.3.1的电路 (P276) 74LS194功能 S1S0=00,保持 S1S0=01,右移 S1S0=10,左移 S1S0=11,并入
(5)状态转换图
《数字电子技术》多媒体课件
山东轻工业学院
小结
1、时序逻辑电路的特点、组成、分类及描述方法; 2、同步时序逻辑电路的分析方法; 课堂讨论: 6.1,6.4
《数字电子技术》多媒体课件
山东轻工业学院
6.3 若干常用的时序逻辑电路
寄存器和移位寄存器 时序 逻辑电路 计数器 顺序脉冲发生器 序列信号发生器
移位寄存器不仅具有存储功能,且还有移位功能。 可实现串、并行数据转换,数值运算以及数据处理。 所谓“移位”,就是将寄存器所存各位数据,在每个移 位脉冲的作用下,向左或向右移动一位。
2、类型: 根据移位方向,分成三种:
左移 寄存器 (a) 右移 寄存器 (b) 双向 移位 寄存器 (c)
《数字电子技术》多媒体课件
学习要求 :
* *
自学掌握
1. 掌握寄存器和移位寄存器的概念并会使用; 2. 掌握计数器概念,熟练掌握中规模集成计数器74161 和74160的功能,熟练掌握用160及161设计任意进制计 数器的方法。
《数字电子技术》多媒体课件
山东轻工业学院
6.3.1寄存器和移位寄存器
一、寄存器
寄存器是计算机的主要部件之一, 它用来暂时存放数据或指令。

数字电路技术基础全清华大学出版社PPT课件

数字电路技术基础全清华大学出版社PPT课件
《数字电子技术基础》
《数字电子技术基础》
电子课件
郑州大学电子信息工程学院 2020年6月16日
《数字电子技术基础》
第一章 逻辑代数基础
《数字电子技术基础》
1.1 概述
1.1.1 脉冲波形和数字波形
图1.1.1几种常见的脉冲波形,图(a)为 矩形波、图(b)为锯齿波、图(c)为尖峰波、 图(d)为阶梯波。
八进制有0~7个数码,基数为8,它的计数 规则是“逢八进一”。八进制一般表达式为
D 8 ki8i
《数字电子技术基础》
十六进制数的符号有0、1、2、…、8、9、 A、B、C、D、E和F,其中符号0~9与十进制符 号相同,字母A~F表示10~15。十六进制的计数 规则“逢十六进一”,一般表示形式为
D 16 ki 16 i
十进制数325.12用位置计数法可以表示为
D 1 0 3 1 2 2 0 1 1 5 0 1 0 1 0 1 1 0 2 1 20
任意一个具有n为整数和m为小数的二进制 数表示为
D 2 k n 1 2 n 1 k n 2 2 n 2 k 1 2 1 k 0 2 0 k 1 2 1 k m 2 m
14 2
12
4
10 8 6
• 0110 + 1010 =24 • 1010是- 0110对模24 (16) 的补码
《数字电子技术基础》
四、BCD码(Binary Coded Decimal)
8421BCD码与十进制数之间的转换是直接按位转 换,例如
(2.3 9 )D (001 10 0 . 0 01 0 )84 1 21 1 B
母A、B、C、…表示。其取值只有0或者l两 种。这里的0和1不代表数量大小,而表示两 种不同的逻辑状态,如,电平的高、低;晶 体管的导通、截止;事件的真、假等等。

数字电子技术课件.ppt

数字电子技术课件.ppt
个对应的二进制代码
• 普通编码器 • 优先编码器
《数字电子技术基础》
一、普通编码器


输出
• 特点:任何时 刻只允许输入 一个编码信号。
• 例:3位二进 制普通编码器
I0 I1
10 01 00 00
I2 I3 I4 I5
0 0 00 0 0 00 1 0 00 0 1 00
I6 I7 Y2 Y1 Y0
用电路进行实现
《数字电子技术基础》
集成译码器实例:74HC138
附加 控制端
S S3S2 S1
Yi' ( S mi )'
低电平 输出
74HC138的功能表:
《数字电子技术基础》




S1
S
' 2
S3'
A2
A1
A0
Y7' Y6' Y5' Y4' Y3'
Y2' Y1' Y0'
0
X
XXX1 1 1 1 1 1 1 1
变换(用MSI); 或进行相应的描述(PLD) 五、画出逻辑电路图,或下载到PLD
根据功能要求 列真值表
填卡诺图化简逻辑函数
写最简与或式
用多种基本门设计逻辑电路
变为与非与非式 用与非门设计逻辑电路
《数字电子技术基础》
4.3 若干常用组合逻辑电路
4.3.1 编码器 • 编码:将输入的每个高/低电平信号变成一
I
' 0
I
' 7
I
6
I5'
I
' 4
I3'
I

《数字电子技术基础》第六版--门电路-1117省名师优质课赛课获奖课件市赛课一等奖课件

《数字电子技术基础》第六版--门电路-1117省名师优质课赛课获奖课件市赛课一等奖课件

S
D
B
不论D、S间有无电压, 均无法导通,不能导电
第 章 门电路
3.3.1 MOS管旳开关特征 以N沟道增强型为例研究通电情况:
数字电子技术基础 第六版
2、添加垂直电压VGS
形成电场G—B,把衬底中旳电子吸引 到上表面,除复合外,剩余旳电子在 上表面形成了N型层(反型层)为D、 S间旳导通提供了通道。
VGS(th)称为阈值电压(开启电压)
第 章 门电路
数字电子技术基础 第六版
3.3.1 MOS管旳开关特征
MOS管输入特征和输出特征
① 输入特征:直流电流为0,看进去有一种输入电 容CI,对动态有影响。
② 输出特征: iD = f (VDS) 相应不同旳VGS下得一族曲线 。
第 章 门电路
3.3.1 MOS管旳开关特征 输出特征曲线(分三个区域)
第 章 门电路
3.2.2 二极管或门 二极管构成旳门电路旳缺陷
• 电平有偏移 • 带负载能力差
数字电子技术基础 第六版
• 只用于IC内部电路
第 章 门电路
集成门电路
数字电子技术基础 第六版
集成门电路
双极型 TTL (Transistor-Transistor Logic Integrated Circuit)
第 章 门电路
数字电子技术基础 第六版
3.3.2 CMOS反相器旳电路构造和工作原理 三、输入噪声容限
噪声容限--衡量门电路旳抗干扰能力。 噪声容限越大,表白电路抗干扰能力越强。
测试表白:CMOS电路噪声容限VNH=VNL=30%VDD,且 随VDD旳增长而加大。所以能够经过提升VDD来提升噪声容限
第 章 门电路
半导体基础知识(2)

数字电子技术基础6时序逻辑电路

数字电子技术基础6时序逻辑电路
Q* Q1 Q2 Q3 Q2Q3 3
Q1 Q3 * Q2 * Q1 * Y
输 出 方 程
Y Q2Q3
Q1 Y
CLK Q3 Q2
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 0 1 1 1 0 0
0 1 1 0 0 1 0 0
1 0 1 0 1 0 0 0
DI 串行 输入
D Q3 Q D Q2 Q D Q1 D Q0 Q
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0 缺少111为 0 1 1 初态的情况 1 0 0 1 0 1 1 1 0 1 1 1
0 0 0 0 0 0 1 1
7进制计数器
其中Q3Q2Q1为计数状态,Y为进位
我们可以把状态转换表表示为状态转换图的形式
/Y /0 /0
CLK Q3 0 1 0 0
*
Q
* 3
Q Q Q (Q )
1 2 3 0
C Q0Q3
设初态为0000
作状态转换图
可以看出这是一个异步十进制加法计数器! 3. 检验其能否自动启动 ?
什么叫 “自动启动” ? 四个触发器本应有十六个稳定状态 ,可 上图电路的状态图中只有十个状态。如果由 于某种原因进入了其余的六个状态当中的任 一个状态,若电路能够自动返回到计数链 ( 即有效循环 ) ,人们就称其为能自动启动。
*6.2.3
异步时序逻辑电路的分析方法
例6.2.4 分析图6.2.10所示电路的逻辑功能。
1、写三大方程
驱 动 方 程 状 Q0 Q 0 cp0 Q 0 (cp0 ) * 态 Q1 Q 3 Q 1 (cp1 ) Q 3 Q 1 (Q0 ) * 方 Q2 Q 2 (cp2 ) Q 2 (Q1 ) 程 *

数字电子技术基础

数字电子技术基础

第六章数字电子技术基础1.学习目的:2.数字电路有什么特点?3.数字电路中的基本门电路和常见的复合门电路有哪些, 他们各有哪些逻辑功能, 常见的组合逻辑电路有哪些, 集成们电路的分类及其使用中的应注意哪些问题?第一节常见的触发器有哪些, 各有哪些逻辑功能, 寄存器和计数器各有什么功能?第二节什么是D/A转换器, 什么是A/D转换器, 他们常用产品各管脚引线的功能是什么,与8031单片机是怎样连接的?第三节概述电子技术电路分为两类: 模拟电路和数字电路。

一、数字电路和模拟电路相比, 具有抗干扰能力强、能耗低、便于集成等优点。

二、应用: 计算机、通信、工业自动化控制、家电等领域。

三、数字信号及数字电路电子电路中的信号分为模拟信号和数字信号两大类。

模拟信号是指电信号随时间而连续变化的, 处理模拟信号的电路称为模拟电路。

数字信号是不连续变化的脉冲信号, 处理数字信号的电路称为数字电路。

数字电路主要是研究脉冲信号的产生、变换、控制和对数字进行逻辑运算等, 因此数字电路又称为逻辑电路。

在生产与生活的实践中, 存在着大量相应的逻辑状态, 如开关的接通与断开、电灯的亮与暗、信号电平的高与低、脉冲的有和无等, 这些相应的状态, 可以用数字符号1和0表示, 分别称为逻辑1和逻辑0。

(0和1不是数量的大小, 只表示两种对立的状态。

在数字电路中, 这两种对立的状态分别用信号电平的高和低反映。

)四、数字电路按电路的组成结构可分为分立电路和集成电路, 其中集成电路又可分为小规模(SSI)、中规模(MSI)、大规模(LSI)和超大规模集成电路(VSI);按电路所用的器件可分为双极型和MOS型;按电路的逻辑功能可分为逻辑电路和时序逻辑电路。

五、脉冲波形及参数常用的脉冲有矩形波和尖峰波等(1)脉冲幅度A(2)脉冲宽度tp(3)脉冲周期T(4)脉冲频率f六、二进制数字电路是采用二进制进行计数和运算的。

数字电路中的开关元件都具有两个稳定状态, 采用二进制可以将数码和电路的两个状态对应起来。

数字电子技术基础第六章触发器PPT课件

数字电子技术基础第六章触发器PPT课件
根据D触发器的逻辑功能,可以 画出其状态转换图,直观地表示
出触发器的状态转换过程。
典型应用案例分析
分频器
利用D触发器的存储功能,可以实现分频器电路。通过合理设置反馈网络,可以将输入信 号的频率降低到所需的分频系数。
序列信号发生器
通过级联多个D触发器,并设置不同的反馈网络,可以实现序列信号发生器。该电路可以 产生一系列具有特定时序关系的脉冲信号。
01
02
03
04
基本RS触发器
由两个与非门交叉耦合构成, 具有置0、置1和保持功能。
同步RS触发器
在基本RS触发器的基础上,引 入时钟信号CP,实现触发器的
同步翻转。
触发器的输入端
R(置0端)、S(置1端)和 CP(时钟信号输入端)。
触发器的输出端
Q和Q'(互补输出端)。
工作原理及逻辑功能
工作原理
序列信号发生器设计原理及实现方法
序列信号发生器定义
序列信号发生器是一种能够产生特定序列信号的电子器件, 具有信号发生、信号转换等功能。
序列信号发生器设计原理
利用触发器的状态转换特性和适当的逻辑电路,实现特定 序列信号的生成和输出。
序列信号发生器实现方法
采用移位寄存器或计数器等作为核心器件,通过适当的逻 辑电路实现序列信号的生成、转换和输出等操作。同时, 需要考虑信号的稳定性和可靠性等因素。
的使能状态。
工作原理及逻辑功能
工作原理
在CP上升沿到来时,触发器将输 入端D的电平状态存储到输出端 Q,并保持到下一个CP上升沿到
来之前。
逻辑功能
D触发器的逻辑功能可以用特性 方程来描述,即Q(n+1)=D。其 中,Q(n+1)表示下一个CP上升 沿到来时的输出状态,D表示输

数字电子技术第三版第六章课件

数字电子技术第三版第六章课件
UT 32VCC或UCO 下限阈值电压
UT 13VCC或12UCO
回差电压
UT = UT+ – UT–
6.1.2 集成施密特触发器
一、CMOS 集成施密特触发器 (一) 引出端功能图
1A 1 1Y 2
2A 3 2Y 4
3A 5 3Y 6
VSS 7
CC40106
14 VDD
13 6A 1A 1
12 6Y 1B 2
uY
施密特反相器
uA
A
Y
uY
UTH ?
TTL: 1.4 V
CMOS:1
2
V
DD
UT+ 上限阈值电压 UT–下限阈值电压
回差电压: U TU T U T
一、电路组成及工作原理
8 +VCC
4
工作原理 uI
VCC
UCO 5
6
uI
2
10
&Q1
3
uO1
+VDD
2 3
VCC
1 3
VCC
OuO
&
UOH
t
010
谐波分量,故称作多谐振荡器。
6.3.1 555 定时器构成的多谐振荡器
设计思想:多谐振荡器是无稳态电路,两 个暂稳态不断地交替。
利用放电管T作为一个受控电子开关,使 电容充电、放电而改变TH=TR,使触发器交 替置0、置1。
6.3.1 555 定时器构成的多谐振荡器
一、电路组成和工作原理
8 +VCC 4
GND 1
TR 2 555
OUT 3
RD 4
8 VCC 7 DIS
6 TH 5 CO
双极型 (TTL) 电源: 4.5 16V

《数字电子技术基础》课件

《数字电子技术基础》课件

计数器
是一种用于计数的电路,能够实现二 进制数的加法运算。
计数器种类
包括二进制计数器、十进制计数器和 任意进制计数器等。
计数器特性
描述了计数器的位数、工作原理和状 态转换图等。
计数器应用
在数字电路中,计数器用于实现定时 器和控制器等。
2023
PART 03
数字电路的分析与设计
REPORTING
数字电路的分析方法
介绍数字电路调试的基本技巧和 方法,如使用示波器、逻辑分析 仪等工具进行调试。
2023
PART 04
数字系统设计实例
REPORTING
数字钟的设计与实现
总结词
功能全面、技术复杂
详细描述
数字钟是数字电子技术基础中的典型应用,它具备时、分、秒的基本计时功能,同时还可以进行闹钟、定时等扩 展功能的设计。在实现上,数字钟需要运用数字逻辑电路、触发器、计数器等数字电子技术基础中的知识,设计 过程相对复杂。
率先
19971小小抵抗 its197
your. its17. it the
2023
REPORTING
THANKS
感谢观看
描述了逻辑门的输入、 输出关系,以及真值表
等。
逻辑门应用
在数字电路中,逻辑门 用于实现各种逻辑运算
和组合逻辑电路。
触发器
触发器
是一种具有记忆功能的电路, 能够存储二进制信息。
触发器种类
包括RS触发器、D触发器、JK 触发器和T触发器等。
触发器特性
描述了触发器的状态、输入、 输出关系,以及工作原理等。
交通灯控制系统的设计与实现
总结词
实际应用、安全性高
详细描述
交通灯控制系统是交通管理中的重要组成部分,用于控制交通路口的车辆和行人 流动,保障交通安全。在设计中,需要考虑红、绿、黄三种信号灯的控制逻辑, 以及不同交通状况下的灯控方案,以确保交通流畅且安全。

《数字电子技术基础》课件

《数字电子技术基础》课件

数字信号的特点与优势
总结词
易于存储、传输和处理
详细描述
数字信号可以方便地存储在各种存储介质上,如硬盘、光盘等,并且可以轻松地 进行传输,如通过互联网或数字电视广播。此外,数字信号还可以通过各种数字 信号处理技术进行加工处理,如滤波、压缩、解调等。
数字信号的特点与优势
总结词:灵活性高
详细描述:数字信号可以方便地进行各种形式的变换和处理,如时域变换、频域 变换等,使得信号处理更加灵活和方便。
存储器设计
实现n位静态随机存取存储器(SRAM)。
移位器设计
实现n位左/右移位器。
微处理器设计
实现简单的微处理器架构。
CHAPTER 04
数字信号处理
数字信号的特点与优势
总结词
清晰、稳定、抗干扰能力强
详细描述
数字信号以离散的二进制形式表示,信号状态明确,不易受到噪声和干扰的影 响,具有较高的稳定性和抗干扰能力。
数字系统集成测试
对由多个数字电路组成的数字系统进 行集成测试,确保系统整体功能和性 能达标。
THANKS FOR WATCHING
感谢您的观看
对数字电路进行全面测试,确保产品质量 ,提高客户满意度。
数字电路的调试方法与技巧
分段调试
将数字电路分成若干段,逐段进行调试,以 确定问题所在的位置。
仿真测试
利用仿真软件对数字电路进行测试,模拟实 际工作情况,以便发现潜在问题。
逻辑分析
使用逻辑分析仪对数字电路的信号进行实时 监测和分析,以便快速定位问题。
编码器和译码器的应用
编码器和译码器在数字电路中有 着广泛的应用,如数据转换、数 据传输和显示驱动等。
CHAPTER 03
数字系统设计

数字电子技术第6次课三种基本逻辑关系、分立元件门电路、复合逻辑门电路

数字电子技术第6次课三种基本逻辑关系、分立元件门电路、复合逻辑门电路

第6次课三种基本逻辑关系、分立元件门电路、复合逻辑门电路●本次重点内容:1、与、或、非三种基本逻辑关系及真值表、逻辑表达式、门电路逻辑符号。

2、分立元件门电路的工作原理。

3、复合逻辑关系:与非、或非、与或非、异或、同或的真值表、逻辑表达式、门电路逻辑符号。

●教学过程6.1三种基本逻辑关系一、与逻辑关系所谓与逻辑关系:就是指决定某事件结果的所有条件全部具备,结果才能发生,而只要其中一个条件不具备,结果就不能发生,这种逻辑关系称为与逻辑关系。

与逻辑示意如图6-1所示:用A,B表示条件,即开关的状态;用Y表示结果,即表示灯的亮、灭状态。

图6-1 与逻辑示意图开关:“1”表示开关闭合,“0”表示开关断开。

灯:“1”表示灯亮,“0”表示灯灭。

根据所有可能的开关组合状态与灯亮、灭的对应关系,可以列出真值表。

如表6-1所示。

表6-1 与逻辑真值表由表6-1可以得出“与”逻辑关系为“有0出0,全1出1”。

与门是实现与逻辑关系的电路,其逻辑符号如图6-2所示:图6-2 与逻辑符号二、或逻辑—在A,B等多个条件中,只要具备其中一个条件,事件就会发生;只有所有条件均不具备时,事件才不会发生,这种因果关系称为或逻辑关系。

或逻辑示意如图6-3所示:图6-3 或逻辑示意图经分析开关A,B的闭合情况,可以列出或逻辑真值表如表6-2所示:表6-2 或逻辑真值表由上表6-2可以得知或逻辑功能为“有1出1,全0出0”。

或门是实现或逻辑关系的电路,其逻辑符号如图6-4所示。

图6-4或逻辑符号三、非逻辑:决定事件结果只有一个条件,当条件具备时,结果就不发生;当条件不具备时,结果就发生。

这种因果关系称为非逻辑关系。

非逻辑示意如图6-5所示。

当开关A闭合时,灯Y灭;当开关A断开时,灯Y亮。

可见,对灯亮来说,开关A闭合是非逻辑关系。

图6-5非逻辑示意如图经分析可以列出或逻辑真值表6-3。

表6-3 非逻辑真值表由上表可以得知非逻辑功能为“是0出1,是1出0”。

电子课件电子技术基础第六版第六章门电路及组合逻辑电路可编辑全文

电子课件电子技术基础第六版第六章门电路及组合逻辑电路可编辑全文
1. 逻辑函数的表达方式 逻辑电路的功能可用逻辑函数来表述。对于某一实际问题 的功能要求,如果以逻辑自变量(原因)作为输入,以逻辑 因变量(结果)作为输出,那么当输入量的取值确定后,输 出量便随之确定,这种输出与输入之间的函数关系就称为逻 辑函数。
逻辑函数除可以用逻辑函数表达式(逻辑表达式)表示以 外,还可以用相应的真值表以及逻辑电路图来表示。真值表 与前述基本逻辑关系的真值表类似,就是将各个变量取真值 (0 和 1)的各种可能组合列写出来,得到对应逻辑函数的真 值(0 或 1)。逻辑电路图(逻辑图)是指由基本逻辑门或复 合逻辑门等逻辑符号及它们之间的连线构成的图形。
TTL 集成“与非”门的外形和引脚排列 a)外形 bOS 集成门电路以绝缘栅场效应管为基本元件组成, MOS 场效应管有 PMOS 和NMOS 两类。CMOS 集成门电路 是由 PMOS 和 NMOS 组 成的互补对称型逻辑门电路。它具 有集成度更高、功耗更低、抗干扰能力更强、扇出系数更大 等优点。
三、其他类型集成门电路
1. 集电极开路与非门(OC 门) 在这种类型的电路内部,输出三极管的集电极是开路的, 故称集电极开路与非门,也称集电极开路门,简称 OC 门。
OC 门 a)逻辑符号 b)外接上拉电阻
74LS01 是一种常用的 OC 门,其外形和引脚排列如图所 示。
74LS01 的外形和引脚排列 a)外形 b)引脚排列
2. 主要参数 TTL 集成“与非”门的主要参数反映了电路的工作速度、抗 干扰能力和驱动能力等。
TTL 集成“与非”门的主要参数
TTL 集成“与非”门具有广泛的用途,利用它可以组成很多 不同逻辑功能的电路,其外形和引脚排列如图所示。如 TTL“ 异或”门就是在 TTL“与非”门的基础上适当地改动和组合而成 的;此外,后面讨论的编码器、译码器、触发器、计数器等 逻辑电路也都可以由它来组成。

数字电子技术基础课件 第6章2(共35张PPT)

数字电子技术基础课件 第6章2(共35张PPT)
2、可以用一个或多个十进制计数器组成任意进制的计数器,具体可以采用 置零法和置数法。
作业:第4版 P302 题5.9 题 5.10 第5版 P349 题6.12 题6.14
异步二进制加法计数器 异步二进制减法计数器
(三)、任意进制计数器的构成方法
(一)、同步计数器 1、同步二进制加法计数器
10110 11
+
1
1011100
用T触发器构成的
同步二进制加法计数器
驱动方程
将驱动方程代入如下特性方程得状态方程
状态方程
输出方程
状态转换表
状态转换图
时序图
2、同步二进制减法计数器
第六章 时序逻辑电路
一、概述
二、同步时序逻辑电路的分析方法 三、若干常用时序逻辑电路
1、寄存器和移位寄存器
2、计数器
四、同步时序逻辑电路的设计方法
第一讲
第二讲
第三讲
第六章 时序逻辑电路 (第二讲)
计数器
计数器是典型的时序电路,所谓计数,就是统计时 钟脉冲(CLK)的个数。还可以用于分频、定时、产 生节拍脉冲和脉冲序列以及进行数字运算等。
10110 0 0
-
1
用T触发器构成的
同步二进制减法计数器
3、同步十进制 加法计数器
驱动方程
状态方程
输出方程
CQ0Q3
状态转换表
状态转换图
同步十进制加法计数器74160
同步计数器同样有传输延迟时间,但触发器之间无延迟,而是共同对被计数CLK的延迟。
四、同步时序逻辑电路的设计方法
+
1
关于同步计数器的传输延时时间问题
2、 由下降沿T触发器构成的异步二进制减法计数器
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Q
0 0 1 1 0 0 1 1
n 1
Q
n 0
Q
n 1 1
Q
n 1 0
Y
1 1 1 1 0 0 1 1
画状态图 时序图
0/1 00 01 1/0 1/0 1/1 1/1 11 10 0/1 (a) 状态图
0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 1
1 0 1 0 1 0 1 0
4
n 1 X Qn Qn 1 Q 1 1 0 1 1 0 0 0 1 00 1 1 n1 n n Q Q 0 0 0 Q0 1 0 1 1 0
X
0 0 0 0 1 1 1 1
Q Q
0 0 1 1 0 0 1 1
Q
n 1 1
时序电路逻辑功能的表示方法
时序电路的逻辑功能可用逻辑表达式、状态表、状态图、 时序图4种方式表示,这些表示方法在本质上是相同的,可以 互相转换。 输出方程 逻辑表达式有: n n Yi Fi ( X1 , X2 ,, Xp ; Q1 , Q2 ,, Qn i 1,2,, m q)
n n n W G ( X , X , , X ; Q , Q , , Q j j 1 2 p 1 2 q ) j 1,2,, r n 1 n n , Q2 ,, Qn ) k 1,2,, t Qk Hk ( W1 , W2 ,, Wr ; Q1 q
Q0
FF1 1D C1
Q1
FF2 1D C1
Q2
D触发器的特性方程:
Q0
Q1
Q2
Q
n 1 Q2 D2 Q2n n 1 n Q D Q 1 1 1 n 1 n Q D Q 0 0 0
/0 101 /1 (b) 无效循环
状态图
(a)
有效循环
排列顺序:
Q Q Q
n 2
n 1
n 0
/Y
/0 /0 000→ 001→ 011 /1↑ ↓ /0 010 100← 110← 111 /0 /0 (a) 有效循环
/0 101 /1 (b) 无效循环
CP
时 序 图
Q0 Q1 Q2 Y
排列顺序:
CP Q3 Q2 Q1 0 0 0 0 1 0 0 1 2 0 1 0 3 0 1 1 4 1 0 0 5 1 0 1 6 1 1 0 7 0 0 0 0 1 1 1 1 0 0 0
Y 0 0 0 0 0 0 1 0 1 0
每经过七个时钟触发脉冲以 后输出端Y从高电平跳变为 低电平,且电路的状态循环 一次。 所以此电路具有对时钟信号 进行计数的功能,且计数容 量等于七,称为七进制计数 器。 若电路初态为111,代入方程 得: Q3Q2Q1=000,Y=1
Q
n 1 0
Y
1 1 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 1
1 0 1 0 1 0 1 0
n1 n n Q1 X Q0 Q1 n1 n Q Q 0 0 n Y X Q1
输入




输出
X
0 0 0 0 1 1 1 1
计算、列状态表

n 2 n 1

n 0


n 1 1
输出
n 1 0
Q Q Q
0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1
Q
0 0 1 1 0 0 1 1
n 1 2
Q
Q
Y
Q n 1 Q n 1 2 n1 n Q Q 1 0 n1 n Q Q 2 0
Y
CP
Q0
Q1
1
同步时序电路,时钟方程省去。 输出方程:
n n Y XQ1 X Q1
输出与输入有关,为 米利型时序电路。
驱动方程:
n T1 X Q 0 T0 1
2 T触发器的特性方程:
求状态方程
Q
n 1
TQ
n
将各触发器的驱动方程代入, 即得电路的状态方程:
状态转换图:
000 /1 111
/0 /1 110
001
/0
010
/0
011 /0
Q3 Q2 Q1
/0
101
/0
100
代表状态
→代表转换方向,输入变量取值写出斜线之上,输出值写在斜线 之下。
时序图:
CP t
Q1
Q2
t
Q3
t
Y
t
t

X “1”
FF0 1T C1
Q0
FF1 =1 1T C1 Q1
&

写出电路的驱动方程、状态方程和输出方程,画出电路 的状态转换图,并分析电路的逻辑功能。
驱动方程: 状态方程:
D 1 Q 1 D 2 A Q 1 Q 2
n1 Q1 D1 Q 1 1 Qn D 2 A Q1 Q 2 2

P265例
FF0

CP
1D C1
第六章
6.1 6.2 6.3
时序逻辑电路
时序逻辑电路的分析方法 时序逻辑电路的设计方法 若干常用的时序逻辑电路
时序电路的特点
X1 … … Xp 组合电路 Q1 Qt 存储电路 … … Y1 Ym 输入 输出
W1 Wr
时序电路在任何时刻的稳定输出,不仅与该时刻 的输入信号有关,而且还与电路原来的状态有关。
例:做出下图此时序逻辑电路的状态转换表,状态转换图和 时序图
1J F 1 C 1 1K
Q
1J F 2 C 1 & 1K
Q
1J F 3 C 1 1K
Q
&
1
Y
C P
1J
Q
1J F 2 C 1 & 1K
Q
1J F 3 C 1 1K
Q
&
1
Y
①根据图可写出电路的驱动 方程: J1=Q2nQ3n ,K1=1 J2=Q1n ,K2=Q1n Q3n J3=Q1n Q2n ,K3=Q2n
Q n 1 J Q n KQ n
n K 2 Q1 n K 1 Q0
J Qn 2 1 将各触发器的驱动方程代入, n J Q 1 0 即得电路的状态方程: n J Q 2 0
K 0 Qn 2
Q n 1 J Q n K Q n Q n Q n Q n Q n Q n 2 2 2 2 1 2 1 2 1 2 n 1 n n n n n n n Q J Q K Q Q Q Q Q Q 1 1 1 1 1 0 1 0 1 0 n 1 n n n n n n n Q J Q K Q Q Q Q Q Q 0 0 0 0 2 0 2 0 2 0
状态方程 驱动方程
时序电路的分类
(1)根据时钟分类 同步时序电路中,各个触发器的时钟脉冲相同,即电路 中有一个统一的时钟脉冲,每来一个时钟脉冲,电路的状态 只改变一次。 异步时序电路中,各个触发器的时钟脉冲不同,即电路 中没有统一的时钟脉冲来控制电路状态的变化,电路状态改 变时,电路中要更新状态的触发器的翻转有先有后,是异步 进行的。 (2)根据输出分类 米利(Mealy)型时序电路的输出不仅与现态有关,而且还 决定于电路当前的输入。 穆尔(Moore)型时序电路的输出仅决定于电路的现态,与 电路当前的输入无关;或者根本就不存在独立设置的输出, 而以电路的状态直接作为输出。
Q Q Q
n 2
n 1
n 0
/Y
/0 /0 000→ 001→ 011 /1↑ ↓ /0 010 100← 110← 111 /0 /0 (a) 有效循环 (b)
/0 101 /1 无效循环
5
电 路 功 能
000→001→011→111→110→100→000→… 所以这是一个扭环形计数器。当对第6个脉冲计数时, 计数器又重新从000开始计数,并产生输出Y=1。
第六章
6.1 6.2 6.3
时序逻辑电路
时序逻辑电路的分析方法 时序逻辑电路的设计方法 若干常用的时序逻辑电路
时序电路的分析步骤:
1
电路图
驱动方程和 输出方程
2
状态方程
3
判断电路 逻辑功能
5
状态图、状态 表或时序图
4
计算

& FF0 1J C1 1K CP Q0 FF1 1J C1 1K Q1 FF2 1J C1 1K Q2
n n Y Q1 Q2
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1
1 1 1 1 0 0 0 0
0 0 0 0 1 1 0 0

n 2 n 1

n 0


n 1 1
输出
n 1 0
Q Q Q
0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1
Q
0 0 1 1 0 0 1 1
Q0
FF1 1D C1
Q1
FF2 1D C1
Q2
Q0
Q1
Q2
1
异步时序电路,时钟方程:
写 方,CP 0 CP
电路没有单独的输出,为穆尔型时序电路。 驱动方程:
D2 Q2n, D1 Q1n, D0 Q0n
2
求状态方程
FF0 CP 1D C1
3
n+1 n 1 n n 1 Q 0Q 1 Q2 2 =1 2 n n 1 n n+1 1 Q Q Q1 = 0 0 0 1 1 =1 Q 1 n 1 n n+1 n 1 Q Q 0 = 2 Q 0 1 =1 = 0 0 Q 0 1 0 0 n n Y 0 Q Q Y 1 1 0 0 Y = 1 0 1 = 0 1 2
相关文档
最新文档