高考数学(新课标人教版)一轮总复习课件:第八章 平面解析几何5
高考数学(新课标人教版)一轮总复习课件:第八章 平面解析几何2
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
说明:圆的弦长、弦心距的计算常用几何方法.
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
5.圆与圆的位置关系 ⊙O1、⊙O2半径分别为r1、r2,d=|O1O2|. 图形 相离 量的关系 d>r1+r2
外切
d=r1+r2
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
[ 解析]
①错误.当 t≠0 时,方程表示圆心为(-a,-b),
考点自主回扣
考向互动探究
考能感悟提升
课时作业
[基础自测]
1.直线x-y+1=0与圆(x+1)2+y2=1的位置关系是 ( ) A.相切 B.相交,且直线过圆心
C.直线不过圆心,但与圆相交
D.相离
[ 解析] 因为圆心(-1,0)满足直线方程 x-y+1=0,故直 线与圆相交,且过圆心,故选 B.
[ 答案] B
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
2.已知方程 x2+y2-2mx+2y=3m-5 表示圆,则实数 m 的取值范围为( 5 A.m>3 C.-4<m<1
[解析]
数学一轮复习第八章解析几何第五讲椭圆学案含解析
第五讲椭圆知识梳理·双基自测错误!错误!错误!错误!知识点一椭圆的定义平面内与两个定点F1、F2的__距离的和等于常数(大于|F1F 2|)__的点的轨迹叫做椭圆,这两个定点叫做椭圆的__焦点__,两焦点间的距离叫做椭圆的__焦距__.注:若集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a、c为常数,则有如下结论:(1)若a>c,则集合P为__椭圆__;(2)若a=c,则集合P为__线段F1F2__;(3)若a<c,则集合P为__空集__.知识点二椭圆的标准方程和几何性质标准方程错误!+错误!=1(a>b>0)错误!+错误!=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴对称中心:原点错误!错误!错误!错误!1.a+c与a-c分别为椭圆上的点到焦点距离的最大值和最小值.2.过椭圆的焦点且与长轴垂直的弦|AB|=错误!,称为通径.3.若过焦点F1的弦为AB,则△ABF2的周长为4a.4.e=错误!.5.椭圆的焦点在x轴上⇔标准方程中x2项的分母较大,椭圆的焦点在y轴上⇔标准方程中y2项的分母较大.6.AB为椭圆错误!+错误!=1(a>b>0)的弦,A(x1,y1),B(x2,y2),弦中点M(x0,y0),则(1)弦长l=错误!|x1-x2|=错误!|y1-y2|;(2)直线AB的斜率k AB=-错误!.7.若M、N为椭圆错误!+错误!=1长轴端点,P是椭圆上不与M、N重合的点,则K PM·K PN=-错误!.错误!错误!错误!错误!题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×")(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.(×)(2)椭圆的离心率e越大,椭圆就越圆.(×)(3)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.(√)(4)错误!+错误!=1(a>b>0)与错误!+错误!=1(a>b>0)的焦距相同.(√)题组二走进教材2.(必修2P42T4)椭圆x210-m+错误!=1的焦距为4,则m等于(C)A.4 B.8C.4或8 D.12[解析]当焦点在x轴上时,10-m>m-2>0,10-m-(m-2)=4,∴m=4.当焦点在y轴上时,m-2>10-m>0,m-2-(10-m)=4,∴m=8.∴m=4或8.3.(必修2P68A组T3)过点A(3,-2)且与椭圆错误!+错误!=1有相同焦点的椭圆的方程为(A)A.错误!+错误!=1 B.错误!+错误!=1C.错误!+错误!=1 D.错误!+错误!=1题组三走向高考4.(2018·课标全国Ⅱ)已知F1,F2是椭圆C的两个焦点,P是C 上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为(D)A.1-错误!B.2-错误!C.错误!D.错误!-1[解析]设|PF2|=x,则|PF1|=3x,|F1F2|=2x,故2a=|PF1|+|PF2|=(1+错误!)x,2c=|F1F2|=2x,于是离心率e=错误!=错误!=错误!=错误!-1.5.(2019·课标Ⅰ,10)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为(B)A.x22+y2=1 B.错误!+错误!=1C.错误!+错误!=1 D.错误!+错误!=1[解析]设|F2B|=x(x>0),则|AF2|=2x,|AB|=3x,|BF1|=3x,|AF1|=4a-(|AB|+|BF1|)=4a-6x,由椭圆的定义知|BF1|+|BF2|=2a=4x,所以|AF1|=2x.在△BF1F2中,由余弦定理得|BF1|2=|BF2|2+|F1F2|2-2|F2B|·|F1F2|cos∠BF2F1,即9x2=x2+22-4x·cos∠BF2F1,①在△AF1F2中,由余弦定理可得|AF1|2=|AF2|2+|F1F2|2-2|AF2|·|F1F2|cos∠AF2F1,即4x2=4x2+22+8x·cos∠BF2F1,②由①②得x=错误!,所以2a=4x=2错误!,a=错误!,所以b2=a2-c2=2.所以椭圆的方程为错误!+错误!=1.故选B.考点突破·互动探究考点一椭圆的定义及应用——自主练透例1 (1)(2021·泉州模拟)已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果M是线段F1P的中点,那么动点M的轨迹是(B)A.圆B.椭圆C.双曲线的一支D.抛物线(2)已知F是椭圆5x2+9y2=45的左焦点,P是此椭圆上的动点,A(1,1)是一定点.则|PA|+|PF|的最大值和最小值分别为__6+错误!,6-错误!__.(3)已知F1,F2是椭圆C:错误!+错误!=1(a>b>0)的两个焦点,P为椭圆C上的一点,且∠F1PF2=60°.若△PF1F2的面积为3错误!,则b=__3__.[解析](1)如图所示,由题知|PF1|+|PF2|=2a,设椭圆方程:错误!+错误!=1(其中a>b>0).连接MO,由三角形的中位线可得:|F1M|+|MO|=a(a>|F1O|),则M的轨迹为以F1、O为焦点的椭圆.(2)如下图所示,设椭圆右焦点为F1,则|PF|+|PF1|=6.∴|PA|+|PF|=|PA|-|PF1|+6.由椭圆方程x29+y25=1知c=错误!=2,∴F1(2,0),∴|AF1|=错误!.利用-|AF1|≤|PA|-|PF1|≤|AF1|(当P、A、F1共线时等号成立).∴|PA|+|PF|≤6+错误!,|PA|+|PF|≥6-错误!.故|PA|+|PF|的最大值为6+2,最小值为6-错误!.(3)|PF1|+|PF2|=2a,又∠F1PF2=60°,所以|PF1|2+|PF2|2-2|PF1||PF2|cos 60°=|F1F2|2,即(|PF1|+|PF2|)2-3|PF1||PF2|=4c2,所以3|PF1||PF2|=4a2-4c2=4b2,所以|PF1||PF2|=错误!b2,又因为S△PF1F2=错误!|PF1||PF2|sin 60°=错误!×错误!b2×错误!=错误!b2=3错误!,所以b=3.故填3.[引申]本例(2)中,若将“A(1,1)”改为“A(2,2)”,则|PF|-|PA|的最大值为__4__,|PF|+|PA|的最大值为__8__.[解析]设椭圆的右焦点为F1,则∵|PF1|+|PA|≥|AF1|=2(P在线段AF1上时取等号),∴|PF|-|PA|=6-(|PF1|+|PA|)≤4,∵|PA|-|PF1|≤|AF1|=2,(当P在AF1延长线上时取等号),∴|PF|+|PA|=6+|PA|-|PF1|≤8.名师点拨(1)椭圆定义的应用范围:①确认平面内与两定点有关的轨迹是否为椭圆.②解决与焦点有关的距离问题.(2)焦点三角形的应用:椭圆上一点P与椭圆的两焦点组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求|PF1||PF2|;通过整体代入可求其面积等.〔变式训练1〕(1)(2021·大庆模拟)已知点M(3,0),椭圆错误!+y2=1与直线y=k(x+错误!)交于点A、B,则△ABM的周长为__8__.(2)(2019·课标Ⅲ,15)设F1,F2为椭圆C:错误!+错误!=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为__(3,错误!)__.(3)(2021·河北衡水调研)设F1、F2分别是椭圆错误!+错误!=1的左、右焦点,P为椭圆上任意一点,点M的坐标为(6,4),则|PM|-|PF1|的最小值为__-5__.[解析](1)直线y=k(x+错误!)过定点N(-错误!,0).而M、N恰为椭圆错误!+y2=1的两个焦点,由椭圆定义知△ABM的周长为4a=4×2=8.(2)因为F1,F2分别是椭圆C的左,右焦点,由M点在第一象限,△MF1F2是等腰三角形,知|F1M|=|F1F2|,又由椭圆方程错误!+错误!=1,知|F1F2|=8,|F1M|+|F2M|=2×6=12,所以|F1M|=|F1F2|=8,所以|F2M|=4.设M(x0,y0)(x0>0,y0>0),则错误!解得x0=3,y0=错误!,即M(3,错误!).(3)由题意可知F2(3,0),由椭圆定义可知|PF1|=2a-|PF2|.∴|PM|-|PF1|=|PM|-(2a-|PF2|)=|PM|+|PF2|-2a≥|MF2|-2a,当且仅当M,P,F2三点共线时取得等号,又|MF2|=错误!=5,2a=10,∴|PM|-|PF2|≥5-10=-5,即|PM|-|PF1|的最小值为-5.考点二椭圆的标准方程——师生共研例2 求满足下列各条件的椭圆的标准方程:(1)长轴是短轴的3倍且经过点A(3,0);(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为错误!;(3)经过点P(-2错误!,1),Q(错误!,-2)两点;(4)与椭圆错误!+错误!=1有相同离心率,且经过点(2,-错误!).[解析](1)若焦点在x轴上,设方程为错误!+错误!=1(a >b>0).∵椭圆过点A(3,0),∴错误!=1,∴a=3.∵2a=3×2b,∴b=1.∴方程为错误!+y2=1.若焦点在y轴上,设方程为错误!+错误!=1(a>b>0).∵椭圆过点A(3,0),∴9b2=1,∴b=3.又2a=3×2b,∴a=9.∴方程为错误!+错误!=1.综上所述,椭圆方程为错误!+y2=1或错误!+错误!=1.(2)由已知,有错误!解得错误!从而b2=a2-c2=9.∴所求椭圆方程为x212+错误!=1或错误!+错误!=1.(3)设椭圆方程为mx2+ny2=1(m>0,n>0,m≠n),∵点P(-2错误!,1),Q(错误!,-2)在椭圆上,∴错误!解得m=错误!,n=错误!.故椭圆方程为错误!+错误!=1.(4)若焦点在x轴上,设所求椭圆方程为错误!+错误!=t(t>0),将点(2,-错误!)代入,得t=错误!+错误!=2.故所求方程为错误!+错误!=1.若焦点在y轴上,设方程为错误!+错误!=λ(λ>0)代入点(2,-3),得λ=错误!,∴所求方程为错误!+错误!=1.综上可知椭圆方程为x28+错误!=1或错误!+错误!=1.名师点拨(1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a>|F1F2|这一条件.(2)用待定系数法求椭圆标准方程的一般步骤:①作判断:根据条件判断焦点的位置;②设方程:焦点不确定时,要注意分类讨论,或设方程为mx2+ny2=1(m>0,n>0,m≠0);③找关系:根据已知条件,建立关于a,b,c或m,n的方程组;④求解,得方程.(3)椭圆的标准方程的两个应用①方程错误!+错误!=1(a>b>0)与错误!+错误!=λ(λ>0)有相同的离心率.②与椭圆错误!+错误!=1(a>b>0)共焦点的椭圆系方程为错误!+错误!=1(a>b>0,k+b2>0),恰当运用椭圆系方程,可使运算简便.〔变式训练2〕(1)“2<m<6”是“方程错误!+错误!=1表示椭圆”的(B)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(2021·广东深圳二模)已知椭圆C:x2a2+错误!=1(a>0)的右焦点为F,O为坐标原点,C上有且只有一个点P满足|OF|=|FP|,则C的方程为(D)A.错误!+错误!=1 B.错误!+错误!=1C.错误!+错误!=1 D.错误!+错误!=1[解析](1)错误!+错误!=1表示椭圆⇔错误!⇔2<m<6且m≠4,∴“2<m<6”是方程“错误!+错误!=1表示椭圆”的必要不充分条件,故选B.(2)根据对称性知P在x轴上,|OF|=|FP|,故a=2c,a2=3+c2,解得a=2,c=1,故椭圆方程为:错误!+错误!=1.故选:D.考点三,椭圆的几何性质-—师生共研例3 (1)(2017·全国)椭圆C的焦点为F1(-1,0),F2(1,0),点P在C上,F2P=2,∠F1F2P=错误!,则C的长轴长为(D)A.2 B.2错误!C.2+错误!D.2+2错误!(2)(2021·河北省衡水中学调研)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的错误!,则该椭圆的离心率为(B)A.错误!B.错误!C.错误!D.错误!(3)(2021·广东省期末联考)设F1,F2分别是椭圆错误!+错误!=1(a >b>0)的左、右焦点,若在直线x=错误!上存在点P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是(D)A.错误!B.错误!C.错误!D.错误![解析](1)椭圆C的焦点为F1(-1,0),F2(1,0),则c=1,∵|PF2|=2,∴|PF1|=2a-|PF2|=2a-2,由余弦定理可得|PF1|2=|F1F2|2+|PF2|2-2|F1F2|·|PF2|·cos 错误!,即(2a-2)2=4+4-2×2×2×错误!,解得a=1+错误!,a=1-错误!(舍去),∴2a=2+2错误!,故选D.(2)不妨设直线l:错误!+错误!=1,即bx+cy-bc=0⇒椭圆中心到l的距离错误!=错误!⇒e=错误!=错误!,故选B.(3)如图F2H⊥PF1,∴|F1F2|=|PF2|,由题意可知错误!-c≤2c,∴e2=错误!≥错误!,即e≥错误!,又0<e<1,∴错误!≤e<1.故选D.名师点拨椭圆离心率的求解方法求椭圆的离心率,常见的有三种方法:一是通过已知条件列方程组,解出a,c的值;二是由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解;三是通过取特殊值或特殊位置,求出离心率.椭圆离心率的范围问题一般借助几何量的取值范围求解,遇直线与椭圆位置关系通常由直线与椭圆方程联立所得方程判别式Δ的符号求解.求椭圆离心率的取值范围的方法方法解读适合题型几何法利用椭圆的几何性质,如|x|≤a,|y|≤b,0<e<1,建立不等关系,或者根据几何图形的临界情况建立题设条件有明显的几何关系〔变式训练3〕(1)(2017·全国卷Ⅲ)已知椭圆C:x2a2+错误!=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx -ay+2ab=0相切,则C的离心率为(A)A.错误!B.错误!C.错误!D.错误!(2)(2021·内蒙古呼和浩特市质检)已知椭圆C:错误!+错误!=1(a>b>0)的左、右顶点分别为A1,A2,点P是椭圆上的动点,若∠A1PA2的最大可以取到120°,则椭圆C的离心率为(D)A.错误!B.错误!C.错误!D.错误!(3)已知F1,F2是椭圆x2a2+错误!=1(a>b>0)的左、右焦点,若椭圆上存在点P,使∠F1PF2=90°,则椭圆的离心率的取值范围是__错误!__.[解析](1)由题意知以A1A2为直径的圆的圆心为(0,0),半径为a.又直线bx-ay+2ab=0与圆相切,∴圆心到直线的距离d=错误!=a,解得a=错误!b,∴ba=错误!,∴e=错误!=错误!=错误!=错误!=错误!.故选A.(2)当P为短轴端点时∠A1PA2最大,由题意可知错误!=tan 60°=错误!,∴错误!=错误!,∴e=错误!=错误!,故选D.(3)由题意可知当P为椭圆短轴端点时∠OPF1=∠OPF2≥45°,即c≥b,∴c2≥a2-c2,∴错误!≥错误!,即e≥错误!,又0<e<1,∴错误!≤e<1.考点四,直线与椭圆—-多维探究角度1直线与椭圆的位置关系例4 若直线y=kx+1与椭圆x25+错误!=1总有公共点,则m的取值范围是(D)A.m>1 B.m>0C.0<m<5且m≠1D.m≥1且m≠5[解析]解法一:由于直线y=kx+1恒过点(0,1),所以点(0,1)必在椭圆内或椭圆上,则0<错误!≤1且m≠5,故m≥1且m≠5.故选D.解法二:由错误!消去y整理得(5k2+m)x2+10kx+5(1-m)=0.由题意知Δ=100k2-20(1-m)(5k2+m)≥0对一切k∈R 恒成立,即5mk2+m2-m≥0对一切k∈R恒成立,∴错误!,即m≥1,又m≠5,∴m≥1且m≠5.故选D.角度2中点弦问题例5 (1)(2021·湖北省宜昌市调研)过点P(3,1)且倾斜角为错误!的直线与椭圆错误!+错误!=1(a>b>0)相交于A,B两点,若AP→=错误!,则该椭圆的离心率为(C)A.错误!B.错误!C.错误!D.错误!(2)已知椭圆错误!+y2=1,点P错误!,则以P为中点的椭圆的弦所在直线的方程为__2x+4y-3=0__.[解析](1)由题意可知P为AB的中点,且k AB=-1,设A (x1,y1),B(x2,y2),则错误!+错误!=1,错误!+错误!=1,两式相减得错误!=-错误!,∴k AB=错误!=-错误!=-错误!=-1,即错误!=错误!,∴e =错误!=错误!,故选C .(2)设弦的两端点为A (x 1,y 1),B (x 2,y 2),中点为M (x 0,y 0),则有错误!+y 错误!=1,错误!+y 错误!=1.两式作差,得错误!+(y 2-y 1)(y 2+y 1)=0.∵x 1+x 2=2x 0,y 1+y 2=2y 0,错误!=k AB ,代入后求得k AB =-错误!=-错误!,∴其方程为y -错误!=-错误!错误!,即2x +4y -3=0.角度3 弦长问题例6 已知椭圆E :x 2a 2+错误!=1(a >b >0)经过点P 错误!,椭圆E 的一个焦点为(3,0).(1)求椭圆E 的方程;(2)若直线l 过点M (0,错误!)且与椭圆E 交于A ,B 两点,求|AB |的最大值.[解析] (1)依题意,设椭圆E 的左、右焦点分别为F 1(-错误!,0),F 2(3,0).由椭圆E 经过点P 错误!,得|PF 1|+|PF 2|=4=2a ,∴a =2,c =错误!,∴b 2=a 2-c 2=1.∴椭圆E 的方程为错误!+y 2=1.(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +2,A(x1,y1),B(x2,y2).由错误!得(1+4k2)x2+8错误!kx+4=0.由Δ>0得(8错误!k)2-4(1+4k2)×4>0,∴4k2>1.由x1+x2=-错误!,x1x2=错误!得|AB|=错误!·错误!=2错误!.设t=11+4k2,则0<t<错误!,∴|AB|=2错误!=2错误!≤错误!,当且仅当t=错误!时等号成立.当直线l的斜率不存在时,|AB|=2<错误!.综上,|AB|的最大值为错误!.名师点拨直线与椭圆综合问题的常见题型及解题策略(1)直线与椭圆位置关系的判断方法①联立方程,借助一元二次方程的判别式Δ来判断;②借助几何性质来判断.(2)求椭圆方程或有关几何性质.可依据条件寻找满足条件的关于a,b,c的等式,解方程即可求得椭圆方程或椭圆有关几何性质.(3)关于弦长问题.一般是利用根与系数的关系、弦长公式求解.设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=错误!=错误!(其中k为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.(4)对于中点弦或弦的中点问题,一般利用点差法求解.若直线l与圆锥曲线C有两个交点A,B,一般地,首先设出A(x1,y1),B(x2,y2),代入曲线方程,通过作差,构造出x1+x2,y1+y2,x1-x2,y1-y2,从而建立中点坐标和斜率的关系.注意答题时不要忽视对判别式的讨论.〔变式训练4〕(1)(角度1)直线y=kx+k+1与椭圆错误!+错误!=1的位置关系是__相交__.(2)(角度2)(2021·广东珠海期末)已知椭圆错误!+错误!=1(a >b>0)的右焦点为F,离心率错误!,过点F的直线l交椭圆于A,B两点,若AB中点为(1,1),则直线l的斜率为(D)A.2 B.-2C.错误!D.-错误!(3)(角度3)斜率为1的直线l与椭圆错误!+y2=1相交于A,B 两点,则|AB|的最大值为(C)A.2 B.错误!C.错误!D.错误![解析](1)由于直线y=kx+k+1=k(x+1)+1过定点(-1,1),而(-1,1)在椭圆内,故直线与椭圆必相交.(2)因为错误!=错误!,∴4c2=2a2,∴4(a2-b2)=2a2,∴a2=2b2,设A(x1,y1),B(x2,y2),且x1+x2=2,y1+y2=2,错误!,相减得b2(x1+x2)(x1-x2)+a2(y1+y2)(y1-y2)=0,所以2b2(x1-x2)+2a2(y1-y2)=0,所以2b2+4b2错误!=0,所以1+2k=0,∴k=-错误!,选D.(3)设A,B两点的坐标分别为(x1,y1),(x2,y2),直线l的方程为y=x+t,由错误!消去y,得5x2+8tx+4(t2-1)=0,则x1+x2=-错误!t,x1x2=错误!.∴|AB|=错误!|x1-x2|=1+k2·错误!=2·错误!=错误!·错误!,当t=0时,|AB|max=错误!.故选C.名师讲坛·素养提升利用换元法求解与椭圆相关的最值问题例7如图,焦点在x轴上的椭圆错误!+错误!=1的离心率e=错误!,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则错误!·错误!的最大值为__4__.[解析]e2=错误!=1-错误!=1-错误!=错误!,∴b2=3,∴椭圆方程为x24+错误!=1,且F(-1,0),A(2,0),设P(2sin θ,错误!cos θ),则错误!·错误!=(-1-2sin θ,-错误!cos θ)·(2-2sin θ,-错误!cos θ)=sin2θ-2sin θ+1=(sin θ-1)2≤4.当且仅当sin θ=-1时取等号,故错误!·错误!的最大值为4.另解:设P(x,y),由上述解法知错误!·错误!=(-1-x,-y)·(2-x,-y)=x2+y2-x-2=错误!(x-2)2(-2≤x≤2),显然当x =-2时,错误!·错误!最大且最大值为4.名师点拨遇椭圆错误!+错误!=1(a>b>0)上的点到定点或定直线距离相关的最值问题,一般用三角换元法求解,即令x=a sin θ,y=b cos θ,将其化为三角最值问题.〔变式训练5〕椭圆错误!+错误!=1上的点到直线x+2y-错误!=0的最大距离是(D)A.3 B.11C.2错误!D.错误![解析]设椭圆错误!+错误!=1上的点P(4cos θ,2sin θ),则点P 到直线x+2y-2=0的距离为d=错误!=错误!,∴d max=错误!=错误!.。
高考数学一轮总复习第8章平面解析几何8.8曲线与方程课件理01.ppt
解 由题知|CA|+|CB|=|CP|+|CQ|+|AP|+|BQ|=2|CP| +|AB|=4>|AB|,所以曲线M是以A,B为焦点,长轴长为4 的椭圆(挖去与x轴的交点).
设曲线M:ax22+by22=1(a>b>0,y≠0),
则a2=4,b2=a2-|A2B|2=3, 所以曲线M:x42+y32=1(y≠0)为所求.
触类旁通 代入法求轨迹方程的4个步骤
(1)设出所求动点坐标P(x,y). (2)寻求所求动点P(x,y)与已知动点Q(x′,y′)的关 系. (3)建立P,Q两坐标间的关系,并表示出x′,y′. (4)将x′,y′代入已知曲线方程中化简求解.
【变式训练2】 [2017·济南模拟]已知圆C方程为:x2+
(2)由椭圆C2:x92+y2=1,知A1(-3,0),A2(3,0), 由曲线的对称性及A(x0,y0),得B(x0,-y0), 设点M的坐标为(x,y), 直线AA1的方程为y=x0y+0 3(x+3),① 直线A2B的方程为y=x- 0-y03(x-3),②
由①②得y2=x- 20-y209(x2-9).③ 又点A(x0,y0)在椭圆C上,故y02=1-x902.④ 将④代入③,得x92-y2=1(x<-3,y<0). 因此点M的轨迹方程为x92-y2=1(x<-3,y<0).
第8章 平面解析几何 第8讲 曲线与方程
板块一 知识梳理·自主学习
[必备知识] 考点1 曲线与方程 一般地,在直角坐标系中,如果某曲线C(看作点的集 合或适合某种条件的点的轨迹)上的点与一个二元方程f(x, y)=0的实数解建立了如下的关系: (1)曲线上点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点. 那么,这个方程叫做曲 __线 __的 __方 __程 __;这条曲线叫做方程 的曲线.
2024届高考一轮复习数学课件(新教材人教A版):解析几何
当m=-k时,直线PQ的方程为y=kx-k=k(x-1). 此时直线PQ过定点(1,0). 当直线PQ的斜率不存在时, 若直线PQ过定点(1,0), P,Q 的坐标分别为1,32,1,-32. 满足 kAP·kAQ=-14. 综上,直线PQ过定点(1,0).
1234
②求△APQ面积的最大值.
1234
则 x1·x2 + 2(x1 + x2) + 4 + 4(kx1 + m)(kx2 + m) = (1 + 4k2)x1x2 + (2 + 4km)(x1+x2)+4m2+4=1+4k32+44mk22-12+(2+4km)·3-+84kmk2+4m2+ 4=0, 则m2-km-2k2=0, ∴(m-2k)(m+k)=0,∴m=2k或m=-k. 当m=2k时,直线PQ的方程为y=kx+2k=k(x+2), 此时直线PQ过定点(-2,0),显然不符合题意;
1234
设l1的方程为x=my+1,M(x1,y1),N(x2,y2), x=my+1,
联立x42+y32=1, 消去 x 得(3m2+4)y2+6my-9=0, 易知 Δ>0 恒成立,由根与系数的关系得 y1+y2=3-m26+m4,y1y2=3m-2+9 4,
由直线 A1M 的斜率为kA1M=x1y+1 2,得直线 A1M 的方程为 y=x1y+1 2(x+2),
第八章 直线和圆、圆锥曲线
必刷大题17 解析几何
1.(2022·南通模拟)已知P为抛物线C:y2=4x上位于第一象限的点,F为C 的焦点,PF与C交于点Q(异于点P).直线l与C相切于点P,与x轴交于点M. 过点P作l的垂线交C于另一点N. (1)证明:线段MP的中点在定直线上;
1234
设 P(x0,y0),则 y20=4x0,
高考数学(理)一轮复习课件:第8章 平面解析几何8-5
栏目 导引
第十二章
选考部分
2 2 x y 1 + =1. 2.[教材改编]已知椭圆的一个焦点为 F(1,0),离心率为 ,则椭圆的标准方程为________ 4 3 2
x2 y2 解析 设椭圆标准方程为 2+ 2=1, a b
c=1 a= 2 a 2 由已知可得c=1, ⇒b= 3 2 2 2 c=1 a =b +c
2 2 2 a = b + c 椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中 a 为斜边长,_______________.
栏目 导引
第十二章
选考部分
小题快做 1.思考辨析 (1)椭圆既是轴对称图形,又是中心对称图形.( √ ) (2)平面内与两个定点 F1、F2 的距离之和等于常数的点的轨迹是椭圆.( × ) (3)方程 mx2+ny2=1(m>0,n>0 是 m≠n)表示的曲线是椭圆.( √ )
选考部分
典例1
x2 y2 (1)[2013· 课标全国卷Ⅰ]已知椭圆 E: 2+ 2=1(a>b>0)的右焦点为 F(3,0),过点 F 的直线交 a b ) x2 y2 B. + =1 36 27 x2 y2 D. + =1 18 9
E 于 A,B 两点.若 AB 的中点坐标为(1,-1),则 E 的方程为( x2 y2 A. + =1 45 36 x2 y2 C. + =1 27 18
焦距. 两定点叫做椭圆的焦点,两焦点间的距离叫做______ 2a ,且 2a______|F > (2)集合语言:P={M||MF1|+|MF2|=______ 1F2|},|F1F2|=2c,其中 a>c>0,且 a,c 为常
数. 注意:当 2a>|F1F2|时,轨迹为椭圆;当 2a=|F1F2|时,轨迹为线段 F1F2;当 2a<|F1F2|时,轨迹不存在.
2025高考数学一轮复习-8.1-直线的方程【课件】
(2)若图中直线l1,l2,l3的斜率分别为k1,k2,k3,则( D )
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
解析 因为直线l2,l3的倾斜角为锐角, 且直线l2的倾斜角大于直线l3的倾斜角,所以0<k3<k2. 直线l1的倾斜角为钝角,斜率k1<0,所以k1<k3<k2.
π 6.直线 x=-2 与直线 3x-y+1=0 的夹角为__6______.
解析 由于直线 x=-2 的倾斜角为π2, 直线 3x-y+1=0 即直线 y= 3x+1,
其倾斜角为π3,故夹角为π6.
考点突破 题型剖析
KAODIANTUPOTIXINGPOUXI
例 1 (1)直线 l 过点 P(1,0),且与以 A(2,1),B(0, 3)为端点的线段有公共点, 则直线 l 斜率的取值范围为_(_-__∞__,__-___3_]_∪__[_1_,__+__∞__)_. 解析 设 PA 与 PB 的倾斜角分别为 α,β,直线 PA 的斜率是 kAP=1,直线 PB 的斜率是 kBP=- 3, 当直线l由PA变化到与y轴平行的位置PC时,它的倾斜角由α增 至90°,斜率的取值范围为[1,+∞). 当直线 l 由 PC 变化到 PB 的位置时,它的倾斜角由 90°增至
Ax+By+C=0 (A2+B2≠0)
适用条件 与x轴不垂直的直线
与两坐标轴均不垂直的直线 不过原点且与两坐标轴均不垂
直的直线 所有直线
1.直线的倾斜角α和斜率k之间的对应关系:
α
0
π 0<α<2
π 2
高考数学一轮复习 第8章 平面解析几何 第5讲 椭圆创新教学案(含解析)新人教版-新人教版高三全册数
第5讲椭圆[考纲解读] 1.掌握两种求椭圆方程的方法:定义法、待定系数法,并能根据其标准方程及几何图形研究椭圆的几何性质(X围、对称性、顶点、离心率).(重点) 2.掌握直线与椭圆位置关系的判断,并能求解直线与椭圆相关的综合问题.(难点) [考向预测]从近三年高考情况来看,本讲为高考的必考内容.预测2021年将会考查:①椭圆标准方程的求解;②直线与椭圆位置关系的应用;③求解与椭圆性质相关的问题.试题以解答题的形式呈现,灵活多变、技巧性强,具有一定的区分度,试题中等偏难.1.椭圆的定义(1)定义:在平面内到两定点F1,F2的距离的□01和等于□02常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做□03焦距.(2)集合语言:P={M||MF1|+|MF2|=□042a,且2a□05>|F1F2|},|F1F2|=2c,其中a>c>0,且a,c为常数.注:当2a>|F1F2|时,轨迹为椭圆;当2a=|F1F2|时,轨迹为线段F1F2;当2a<|F1F2|时,轨迹不存在.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性X围-a≤x≤a,-b≤y≤b -b≤x≤b,-a≤y≤a直线与椭圆方程联立方程组,消掉y,得到Ax2+Bx+C=0的形式(这里的系数A一定不为0),设其判别式为Δ:(1)Δ>0⇔直线与椭圆□01相交;(2)Δ=0⇔直线与椭圆□02相切;(3)Δ<0⇔直线与椭圆□03相离.4.弦长公式(1)假设直线y=kx+b与椭圆相交于两点A(x1,y1),B(x2,y2),那么|AB|=□011+k2|x1-x2|=□021+1k2|y1-y2|.(2)焦点弦(过焦点的弦):最短的焦点弦为通径长□032b2a,最长为□042a.5.必记结论(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),那么当x=0时,|OP|有最小值b,P点在短轴端点处;当x=±a时,|OP|有最大值a,P点在长轴端点处.(2)过焦点F1的弦AB,那么△ABF2的周长为4a.1.概念辨析(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)方程mx2+ny2=1(m>0,n>0且m≠n)表示的曲线是椭圆.()(3)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).()(4)x2a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相同.()答案(1)×(2)√(3)√(4)√2.小题热身(1)椭圆x29+y24=1的离心率是()A.133 B.53C.23 D.59答案 B解析由得a=3,b=2,所以c=a2-b2=32-22=5,离心率e=ca=5 3.(2)椭圆C:x2a2+y2b2=1(a>b>0),假设长轴的长为6,且两焦点恰好将长轴三等分,那么此椭圆的标准方程为()A.x236+y232=1 B.x29+y28=1C.x29+y25=1 D.x216+y212=1答案 B解析由题意,得2c2a=13,2a=6,解得a=3,c=1,那么b=32-12=8,所以椭圆C的方程为x29+y28=1.应选B.(3)假设方程x2m-2+y26-m=1表示椭圆,那么m的取值X围是________.答案2<m<6且m≠4解析方程x2m-2+y26-m=1表示椭圆⇔⎩⎪⎨⎪⎧m-2>0,6-m>0,m-2≠6-m,解得2<m<6且m≠4.(4)动点P(x,y)的坐标满足x2+(y+7)2+x2+(y-7)2=16,那么动点P的轨迹方程为________.答案x264+y215=1解析由得点P到点A(0,-7)和B(0,7)的距离之和为16,且16>|AB|,所以点P的轨迹是以A(0,-7),B(0,7)为焦点,长轴长为16的椭圆.显然a=8,c=7,故b2=a2-c2=15,所以动点P的轨迹方程为x264+y215=1.题型一椭圆的定义及应用1.过椭圆x24+y2=1的左焦点F1作直线l交椭圆于A,B两点,F2是椭圆右焦点,那么△ABF2的周长为()A.8 B.4 2 C.4 D.2 2 答案 A解析因为椭圆为x24+y2=1,所以椭圆的半长轴a=2,由椭圆的定义可得AF1+AF2=2a=4,且BF1+BF2=2a=4,所以△ABF2的周长为AB+AF2+BF2=(AF1+AF2)+(BF1+BF2)=4a=8.2.在平面直角坐标系xOy中,P是椭圆y24+x23=1上的一个动点,点A(1,1),B(0,-1),那么|P A|+|PB|的最大值为() A.5 B.4 C.3 D.2 答案 A解析如图,∵椭圆y24+x23=1,∴焦点坐标为B(0,-1)和B′(0,1),连接PB′,AB′,根据椭圆的定义,得|PB|+|PB′|=2a=4,可得|PB|=4-|PB′|,因此|P A|+|PB|=|P A|+(4-|PB′|)=4+(|P A|-|PB′|).∵|P A|-|PB′|≤|AB′|,∴|P A|+|PB|≤4+|AB′|=4+1=5.当且仅当点P 在AB ′的延长线上时,等号成立. 综上所述,可得|P A |+|PB |的最大值为5.3.(2019·某某模拟)F 1,F 2是椭圆x 29+y 27=1的左、右焦点,A 为椭圆上一点,且∠AF 1F 2=45°,那么△AF 1F 2的面积为( )A .7 B.74 C.72 D.752答案 C解析 由题意,得a =3,b =7,c =2,|AF 1|+|AF 2|=6.∴|AF 2|=6-|AF 1|.在△AF 1F 2中,|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|·|F 1F 2|·cos45°=|AF 1|2-4|AF 1|+8,∴(6-|AF 1|)2=|AF 1|2-4|AF 1|+8,解得|AF 1|=72,∴△AF 1F 2的面积S =12×72×22×22=72.利用定义解焦点三角形问题及求最值的方法解焦点三角形问题利用定义求焦点三角形的周长和面积.解决焦点三角形问题常利用椭圆的定义、正弦定理或余弦定理.其中|PF 1|+|PF 2|=2a 两边平方是常用技巧.见举例说明3求最值抓住|PF 1|与|PF 2|之和为定值,可联系到基本不等式求|PF 1|·|PF 2|的最值;利用定义|PF 1|+|PF 2|=2a 转化或变形,借助三角形性质求最值.见举例说明21.如下图,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,那么点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆答案 A解析 由题意得|PF |=|MP |,所以|PO |+|PF |=|PO |+|MP |=|MO |>|OF |,即点P 到两定点O ,F 的距离之和为常数(圆的半径),且此常数大于两定点的距离,所以点P 的轨迹是椭圆.2.(2019·某某皖江模拟)F 1,F 2是长轴长为4的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆上一点,那么△PF 1F 2面积的最大值为________.答案 2解析 解法一:∵△PF 1F 2的面积为12|PF 1||PF 2|·sin ∠F 1PF 2≤12⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=12a 2.又2a =4,∴a 2=4,∴△PF 1F 2面积的最大值为2.解法二:由题意可知2a =4,解得a =2.当P 点到F 1F 2距离最大时,S △PF 1F 2最大,此时P 为短轴端点,S △PF 1F 2=12·2c ·b =bc .又a 2=b 2+c 2=4,∴bc ≤b 2+c 22=2, ∴当b =c =2时,△PF 1F 2面积最大,为2.题型二 椭圆的标准方程角度1 定义法求椭圆的标准方程1.A ⎝ ⎛⎭⎪⎫-12,0,B 是圆⎝ ⎛⎭⎪⎫x -122+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,那么动点P 的轨迹方程为________.答案 x 2+y 234=1解析 如图,由题意知|P A |=|PB |,|PF |+|BP |=2.所以|P A |+|PF |=2且|P A |+|PF |>|AF |,即动点P 的轨迹是以A ,F 为焦点的椭圆,a =1,c =12,b 2=34.所以动点P 的轨迹方程为x 2+y 234=1.角度2 待定系数法求椭圆的标准方程2.椭圆的中心在原点,以坐标轴为对称轴,且经过两点⎝ ⎛⎭⎪⎫-32,52,(3,5),那么椭圆方程为________.答案 y 210+x 26=1解析设椭圆方程为mx 2+ny 2=1(m >0,n >0且m ≠n ).由得⎩⎨⎧94m +254n =1,3m +5n =1,解得m =16,n =110,所以椭圆方程为y 210+x 26=1.1.定义法求椭圆的标准方程根据椭圆的定义确定a 2,b 2的值,再结合焦点位置求出椭圆的方程.见举例说明1.其中常用的关系有:(1)b2=a2-c2;(2)椭圆上任意一点到椭圆两焦点的距离之和等于2a;(3)椭圆上一短轴顶点到一焦点的距离等于实半轴长a.2.待定系数法求椭圆的标准方程的四步骤提醒:当椭圆的焦点位置不明确时,可设为mx2+ny2=1(m>0,n>0,m≠n)可简记为“先定型,再定量〞.见举例说明2.1.与圆C1:(x+3)2+y2=1外切,且与圆C2:(x-3)2+y2=81内切的动圆圆心P的轨迹方程为________.答案x225+y216=1解析设动圆的半径为r,圆心为P(x,y),那么有|PC1|=r+1,|PC2|=9-r. 所以|PC1|+|PC2|=10>|C1C2|,所以点P的轨迹是以C1(-3,0),C2(3,0)为焦点,长轴长为10的椭圆,点P的轨迹方程为x225+y216=1.2.(2019·某某调研)一个椭圆的中心在原点,焦点F1,F2在x轴上,P(2,3)是椭圆上一点,且|PF1|,|F2F2|,|PF2|成等差数列,那么椭圆方程为________.答案x28+y26=1解析 ∵椭圆的中心在原点,焦点F 1,F 2在x 轴上,∴可设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),∵P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,∴⎩⎨⎧4a 2+3b 2=1,2a =4c ,又a 2=b 2+c 2,∴a =22,b =6,c =2,∴椭圆方程为x 28+y 26=1.题型三 椭圆的几何性质1.椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,那么椭圆的左顶点为( )A .(-3,0)B .(-4,0)C .(-10,0)D .(-5,0)答案 D解析 由得,椭圆的一个焦点坐标为(3,0),故c =3,又因为2b =8,b =4,所以a 2=b 2+c 2=16+9=25.故a =5.所以椭圆的左顶点为(-5,0).2.F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于A ,B 上下两点,假设△ABF 2是锐角三角形,那么该椭圆的离心率e 的取值X 围是( )A .(0,2-1)B .(2-1,1)C .(0,3-1)D .(3-1,1)答案 B解析 ∵F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1且垂直于x轴的直线与椭圆交于A ,B 上下两点,∴F 1(-c,0),F 2(c,0),A ⎝ ⎛⎭⎪⎫-c ,b 2a ,B ⎝ ⎛⎭⎪⎫-c ,-b 2a ,∵△ABF 2是锐角三角形,∴∠AF 2F 1<45°,∴tan ∠AF 2F 1<1,∴b 2a2c <1,整理,得b 2<2ac ,∴a 2-c 2<2ac ,两边同时除以a 2,并整理,得e 2+2e -1>0,解得e >2-1或e <-2-1(舍去),∵0<e <1,∴椭圆的离心率e 的取值X 围是(2-1,1).3.(2019·某某质检)如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,那么PF →·P A →的最大值为________.答案 4解析 由题意知a =2,因为e =c a =12,所以c =1,b 2=a 2-c 2=3.故椭圆方程为x 24+y 23=1.设P 点坐标为(x 0,y 0).所以-2≤x 0≤2,-3≤y 0≤ 3.因为F (-1,0),A (2,0),PF →=(-1-x 0,-y 0),P A →=(2-x 0,-y 0),所以PF →·P A →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2.那么当x 0=-2时,PF →·P A →取得最大值4.1.利用椭圆几何性质的注意点及技巧 (1)注意椭圆几何性质中的不等关系在求与椭圆有关的一些X 围问题时,经常用到x ,y 的X 围,离心率的X 围等不等关系.见举例说明3.(2)利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,理清顶点、焦点、长轴、短轴等基本量的内在联系.见举例说明1.2.求椭圆离心率的方法(1)直接求出a,c,利用离心率公式e=ca求解.(2)由a,b,c之间的关系求离心率,可以利用变形公式e=1-b2a2求解.也可以利用b2=a2-c2消去b,得到关于a,c的方程或不等式,进而转化为关于e 的不等式再求解.如举例说明2.(3)由椭圆的定义求离心率.e=ca=2c2a,而2a是椭圆上任意一点到两焦点的距离之和,2c是焦距,从而与焦点三角形联系起来.1.椭圆E的焦点在x轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,那么椭圆E的标准方程为()A.x22+y22=1 B.x22+y2=1C.x24+y22=1 D.y24+x22=1答案 C解析易知b=c=2,故a2=b2+c2=4,从而椭圆E的标准方程为x24+y22=1.2.(2020·某某模拟)椭圆C:x2a2+y2b2=1(a>b>0)和直线l:x4+y3=1,假设过C的左焦点和下顶点的直线与l平行,那么椭圆C的离心率为()A.45B.35C.34D.15答案 A解析 直线l 的斜率为-34,过C 的左焦点和下顶点的直线与l 平行,所以bc =34,又b 2+c 2=a 2⇒⎝ ⎛⎭⎪⎫34c 2+c 2=a 2⇒2516c 2=a 2,所以e =c a =45. 3.假设点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,那么OP →·FP→的最大值为( )A .2B .3C .6D .8 答案 C解析 由椭圆x 24+y 23=1,得F (-1,0),点O (0,0),设P (x ,y )(-2≤x ≤2),那么OP →·FP →=x 2+x +y 2=x 2+x +3⎝ ⎛⎭⎪⎫1-x 24=14x 2+x +3=14(x +2)2+2,-2≤x ≤2,当且仅当x =2时,OP →·FP→取得最大值6.题型四 直线与椭圆的综合问题角度1 直线与椭圆的位置关系1.直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点. 解将直线l的方程与椭圆C 的方程联立,得方程组⎩⎨⎧y =2x +m , ①x 24+y 22=1, ②将①代入②,整理,得9x 2+8mx +2m 2-4=0. ③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点.(3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解,这时直线l 与椭圆C 没有公共点.角度2 点差法解中点弦问题2.焦点是F (0,52),并截直线y =2x -1所得弦的中点的横坐标是27的椭圆的标准方程为________.答案 y 275+x 225=1解析 设所求的椭圆方程为y 2a 2+x 2b 2=1(a >b >0),直线被椭圆所截弦的端点为A (x 1,y 1),B (x 2,y 2).由题意,可得弦AB 的中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,且x 1+x 22=27,y 1+y 22=-37.将A ,B 两点坐标代入椭圆方程,得⎩⎪⎨⎪⎧y 21a 2+x 21b 2=1,y 22a 2+x 22b 2=1.两式相减并化简,得a 2b 2=-y 1-y 2x 1-x 2×y 1+y 2x 1+x 2=-2×-6747=3,所以a 2=3b 2,又c 2=a 2-b 2=50,所以a 2=75,b 2=25,故所求椭圆的标准方程为y 275+x225=1.角度3 弦长问题3.椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,某某数m 的取值X 围; (2)求被椭圆截得的最长弦所在的直线方程.解(1)由⎩⎪⎨⎪⎧4x 2+y 2=1,y =x +m ,得5x 2+2mx +m 2-1=0,因为直线与椭圆有公共点,所以Δ=4m 2-20(m 2-1)≥0,解得-52≤m ≤52. (2)设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由(1)知,5x 2+2mx +m 2-1=0, 所以x 1+x 2=-2m 5,x 1x 2=15(m 2-1), 所以|AB |=(x 1-x 2)2+(y 1-y 2)2=2(x 1-x 2)2=2[(x 1+x 2)2-4x 1x 2]= 2⎣⎢⎡⎦⎥⎤4m 225-45(m 2-1) =2510-8m 2.所以当m =0时,|AB |最大,即被椭圆截得的弦最长,此时直线方程为y =x . 角度4 综合计算问题4.(2019·某某高考)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .椭圆的短轴长为4,离心率为55.(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上,假设|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率.解(1)设椭圆的半焦距为c ,依题意,2b =4,c a =55, 又a 2=b 2+c 2,可得a =5,b =2,c =1. 所以椭圆的方程为x 25+y 24=1.(2)由题意,设P (x P ,y P )(x P ≠0),M (x M,0).设直线PB 的斜率为k (k ≠0),又B (0,2),那么直线PB 的方程为y =kx +2,与椭圆方程联立⎩⎨⎧y =kx +2,x 25+y 24=1,整理得(4+5k 2)x 2+20kx =0,可得x P =-20k 4+5k2,代入y =kx +2得y P =8-10k 24+5k2,进而直线OP 的斜率为y P x P =4-5k2-10k.在y=kx+2中,令y=0,得x M=-2 k.由题意得N(0,-1),所以直线MN的斜率为-k2.由OP⊥MN,得4-5k2-10k·⎝⎛⎭⎪⎫-k2=-1,化简得k2=245,从而k=±2305.所以直线PB的斜率为2305或-2305.1.直线与椭圆位置关系的判定方法(1)代数法联立直线与椭圆方程可得到一个关于x,y的方程组,消去y(或x)得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标.见举例说明1.(2)几何法画出直线与椭圆的图象,根据图象判断公共点个数.2.“点差法〞的四步骤处理有关中点弦及对应直线斜率关系的问题时,常用“点差法〞,步骤如下:3.中点弦的重要结论AB为椭圆x2a2+y2b2=1(a>b>0)的弦,A(x1,y1),B(x2,y2),弦中点M(x0,y0).(1)斜率:k =-b 2x 0a 2y 0.见举例说明2.(2)弦AB 的斜率与弦中点M 和椭圆中心O 的连线的斜率之积为定值-b 2a 2. 4.直线与椭圆相交的弦长公式(1)假设直线y =kx +m 与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),那么|AB |=1+k 2|x 1-x 2|=1+1k 2|y 1-y 2|.见举例说明3.(2)焦点弦(过焦点的弦):最短的焦点弦为通径长2b 2a ,最长为2a .1.假设直线y =kx +1与椭圆x 25+y 2m =1总有公共点,那么m 的取值X 围是( ) A .m >1B .m >0C .0<m <5且m ≠1D .m ≥1且m ≠5答案 D解析 直线y =kx +1恒过定点(0,1),假设直线y =kx +1与椭圆x 25+y 2m =1总有公共点,那么点(0,1)在椭圆x 25+y 2m =1内部或在椭圆上,所以1m ≤1,由方程x 25+y 2m =1表示椭圆,那么m >0且m ≠5,综上知m 的取值X 围是m ≥1且m ≠5.2.直线y =x +m 被椭圆2x 2+y 2=2截得的线段的中点的横坐标为16,那么中点的纵坐标为________.答案 -13解析 解法一:由⎩⎪⎨⎪⎧y =x +m ,2x 2+y 2=2,消去y 并整理得3x 2+2mx +m 2-2=0,设线段的两端点分别为A (x 1,y 1),B (x 2,y 2),那么x 1+x 2=-2m 3,∴-2m 3=13,解得m =-12.由截得的线段的中点在直线y =x -12上,得中点的纵坐标y =16-12=-13.解法二:设线段的两端点分别为A (x 1,y 1),B (x 2,y 2),那么2x 21+y 21=2,2x 22+y 22=2.两式相减得2(x 1-x 2)(x 1+x 2)+(y 1-y 2)(y 1+y 2)=0.把y 1-y 2x 1-x 2=1,x 1+x 2=13代入上式,得y 1+y 22=-13,那么中点的纵坐标为-13.3.(2019·某某六中模拟)直线l :y =kx +2与椭圆C :x 28+y 22=1交于A ,B 两点,直线l 1与直线l 2:x +2y -4=0交于点M .(1)证明:直线l 2与椭圆C 相切;(2)设线段AB 的中点为N ,且|AB |=|MN |,求直线l 1的方程.解(1)证明:由⎩⎨⎧x 28+y 22=1,x +2y -4=0,消去x 整理得y 2-2y +1=0, ∵Δ=4-4=0,∴l 2与C 相切.(2)由⎩⎪⎨⎪⎧y =kx +2,x +2y -4=0,得M 的坐标为(0,2).由⎩⎨⎧x 28+y 22=1,y =kx +2,消去y 整理得(1+4k 2)x 2+16kx +8=0, 因为直线l 1与椭圆交于A ,B 两点, 所以Δ=(16k )2-32(1+4k 2)=128k 2-32>0,解得k 2>14.设A (x 1,y 1),B (x 2,y 2),N (x 0,y 0), 那么x 1+x 2=-16k 1+4k 2,x 1x 2=81+4k 2, 所以x 0=x 1+x 22=-8k1+4k 2. ∵|AB |=|MN |, 即1+k 2|x 1-x 2|=1+k 2|x 0-0|,∴(x 1+x 2)2-4x 1x 2=|x 0|, 即8k1+4k2=4 24k 2-11+4k 2,解得k 2=12,满足k 2>14.∴k =±22,∴直线l 1的方程为y =±22x +2.组 基础关1.椭圆mx 2+3y 2-6m =0的一个焦点的坐标为(0,2),那么m 的值为( ) A .1 B .3 C .5 D .8答案 C解析 由mx 2+3y 2-6m =0,得x 26+y22m =1.因为椭圆的一个焦点的坐标为(0,2),所以2m =6+4,解得m =5.2.(2019·某某模拟)如图,某瓷器菜盘的外轮廓线是椭圆,根据图中数据可知该椭圆的离心率为( )A.25B.35C.235D.255答案 B解析 由题2b =16.4,2a =20.5,那么b a =45,那么离心率e =1-⎝ ⎛⎭⎪⎫452=35.3.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,那么实数a 的取值X 围是( )A .(-6,-2)B .(3,+∞)C .(-6,-2)∪(3,+∞)D .(-6,-3)∪(2,+∞) 答案 C解析 由题意,得⎩⎪⎨⎪⎧ a 2>a +6,a +6>0,解得⎩⎪⎨⎪⎧a <-2或a >3,a >-6,所以-6<a <-2或a >3.4.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,那么△OAB 的面积为( )A.43B.53C.54D.103答案 B解析 由题意知椭圆的右焦点F 的坐标为(1,0),那么直线AB 的方程为y =2x-2.联立⎩⎨⎧x 25+y 24=1,y =2x -2,解得交点(0,-2),⎝ ⎛⎭⎪⎫53,43,∴S △OAB =12·|OF |·|y A -y B |=12×1×⎪⎪⎪⎪⎪⎪-2-43=53.应选B.5.如图,椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |且|PF |=4,那么椭圆C 的方程为( )A.x 225+y 25=1 B.x 230+y 210=1 C.x 236+y 216=1 D.x 245+y 225=1答案 C解析 设F ′为椭圆的右焦点,连接PF ′,在△POF 中,由余弦定理,得cos ∠POF =|OP |2+|OF |2-|PF |22|OP ||OF |=35,那么|PF ′|=|OP |2+|OF ′|2-2|OP ||OF ′|cos (π-∠POF )=8,由椭圆定义,知2a =4+8=12,所以a =6,又c =25,所以b 2=16.故椭圆C 的方程为x 236+y 216=1.6.椭圆x 2a 2+y 2b 2=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点坐标是M (-4,1),那么椭圆的离心率是( )A.12B.22C.32D.55答案 C解析 设直线x -y +5=0与椭圆x 2a 2+y 2b 2=1相交于A (x 1,y 1),B (x 2,y 2)两点,因为AB 的中点M (-4,1),所以x 1+x 2=-8,y 1+y 2=2.易知直线AB 的斜率k =y 2-y 1x 2-x 1=1.⎩⎪⎨⎪⎧x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,两式相减得,(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,所以y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2,所以b 2a 2=14,于是椭圆的离心率e =ca =1-b 2a 2=32.应选C.7.(2020·某某一诊)点M (-1,0)和N (1,0),假设某直线上存在点P ,使得|PM |+|PN |=4,那么称该直线为“椭型直线〞,现有以下直线:①x -2y +6=0;②x -y =0;③2x -y +1=0;④x +y -3=0. 其中是“椭型直线〞的是( ) A .①③ B .①② C .②③ D .③④答案 C解析 由椭圆的定义知,点P 的轨迹是以M ,N 为焦点的椭圆,其方程为x 24+y 23=1.对于①,把x -2y +6=0代入x 24+y 23=1,整理得2y 2-9y +12=0,由Δ=(-9)2-4×2×12=-15<0,知x -2y +6=0不是“椭型直线〞;对于②,把y =x 代入x 24+y 23=1,整理得x 2=127,所以x -y =0是“椭型直线〞;对于③,把2x -y +1=0代入x 24+y 23=1,整理得19x 2+16x -8=0,由Δ=162-4×19×(-8)>0,知2x-y+1=0是“椭型直线〞;对于④,把x+y-3=0代入x24+y23=1,整理得7x2-24x+24=0,由Δ=(-24)2-4×7×24<0,知x+y-3=0不是“椭型直线〞.故②③是“椭型直线〞.8.椭圆的中心在原点,焦点在x轴上,离心率为55,且过点P(-5,4),那么椭圆的标准方程为________.答案x245+y236=1解析由题意设椭圆的标准方程为x2a2+y2b2=1(a>b>0).由离心率e=55可得a2=5c2,所以b2=4c2,故椭圆的方程为x25c2+y24c2=1,将P(-5,4)代入可得c2=9,故椭圆的方程为x245+y236=1.9.椭圆x25+y24=1的右焦点为F,假设过点F且倾斜角为π4的直线l与椭圆相交于A,B两点,那么|AB|的值为________.答案165 9解析由题意知,F(1,0).∵直线l的倾斜角为π4,∴斜率k=1.∴直线l的方程为y=x-1.代入椭圆方程,得9x2-10x-15=0.设A(x1,y1),B(x2,y2),那么x1+x2=109,x1x2=-53.∴|AB|=2·(x1+x2)2-4x1x2=2×⎝⎛⎭⎪⎫1092+4×53=1659. 10.椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点P在椭圆上,且PF2垂直于x轴,假设直线PF1的斜率为33,那么该椭圆的离心率为________.答案3 3解析 因为点P 在椭圆上,且PF 2垂直于x 轴,所以点P 的坐标为⎝ ⎛⎭⎪⎫c ,b 2a .又因为直线PF 1的斜率为33,所以在Rt △PF 1F 2中, PF 2F 1F 2=33,即b 2a 2c =33.所以3b 2=2ac . 3(a 2-c 2)=2ac ,3(1-e 2)=2e , 整理得3e 2+2e -3=0, 又0<e <1,解得e =33.组 能力关1.过椭圆x 225+y 216=1的中心任意作一条直线交椭圆于P ,Q 两点,F 是椭圆的一个焦点,那么△PQF 周长的最小值是( )A .14B .16C .18D .20答案 C解析 如图,设F 1为椭圆的左焦点,右焦点为F 2,根据椭圆的对称性可知|F 1Q |=|PF 2|,|OP |=|OQ |,所以△PQF 1的周长为|PF 1|+|F 1Q |+|PQ |=|PF 1|+|PF 2|+2|PO |=2a +2|PO |=10+2|PO |,易知2|OP |的最小值为椭圆的短轴长,即点P ,Q 为椭圆的上、下顶点时,△PQF 1(或△PQF 2)的周长即△PQF 周长的最小值,为10+2×4=18.2.离心率为22的椭圆C :y 2a 2+x 2b 2=1(a >b >0)的下、上焦点分别为F 1,F 2,直线l :y =kx +1过椭圆C 的焦点F 2,与椭圆交于A ,B 两点,假设点A 到y 轴的距离是点B 到y 轴距离的2倍,那么k 2=________.答案 27解析 直线l 过定点(0,1),即F 2为(0,1),由于c a =22,a 2=b 2+c 2,故a =2,b =1,那么椭圆C 的方程为y 22+x 2=1,由⎩⎨⎧y 22+x 2=1,y =kx +1,得(k 2+2)x 2+2kx -1=0,设A (x 1,y 1),B (x 2,y 2),那么x 1+x 2=-2kk 2+2,x 1x 2=-1k 2+2,由点A 到y 轴的距离是点B 到y 轴距离的2倍,得x 1=-2x 2,代入x 1+x 2=-2kk 2+2,解得x 2=2kk 2+2,x 1=-4k k 2+2,代入x 1x 2=-1k 2+2,解得k 2=27.3.(2019·全国卷Ⅲ)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.假设△MF 1F 2为等腰三角形,那么M 的坐标为________.答案 (3,15)解析 设F 1为椭圆的左焦点,分析可知点M 在以F 1为圆心,焦距为半径的圆上,即在圆(x +4)2+y 2=64上.因为点M 在椭圆x 236+y 220=1上,所以联立方程可得⎩⎨⎧(x +4)2+y 2=64,x 236+y 220=1,解得⎩⎪⎨⎪⎧x =3,y =±15.又因为点M 在第一象限,所以点M 的坐标为(3,15).4.(2020·某某摸底)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C 的右顶点,以A 为圆心的圆与直线y =b a x 相交于P ,Q 两点,且A P →·A Q →=0,O P →=3O Q →,那么椭圆C 的标准方程为________,圆A 的标准方程为________.答案 x 24+y 2=1 (x -2)2+y 2=85 解析 如图,设T 为线段PQ 的中点,连接AT ,那么AT ⊥PQ . ∵A P →·A Q →=0,即AP ⊥AQ , ∴|AT |=12|PQ |.又O P →=3O Q →,∴|OT |=|PQ |. ∴|AT ||OT |=12,即b a =12.由得焦半距c =3,∴a 2=4,b 2=1, 故椭圆C 的方程为x 24+y 2=1.又|AT |2+|OT |2=4,∴|AT |2+4|AT |2=4, ∴|AT |=255,r =|AP |=2105. ∴圆A 的方程为(x -2)2+y 2=85.5.椭圆C :x 2a 2+y 2b 2=1(a >b >0),e =12,其中F 是椭圆的右焦点,焦距为2,直线l 与椭圆C 交于点A ,B ,线段AB 中点的横坐标为14,且AF→=λFB →(其中λ>1).(1)求椭圆C 的标准方程; (2)某某数λ的值.解(1)由椭圆的焦距为2,知c =1, 又e =12,∴a =2,故b 2=a 2-c 2=3, ∴椭圆C 的标准方程为x 24+y 23=1.(2)由AF→=λFB →,可知A ,B ,F 三点共线, 设点A (x 1,y 1),点B (x 2,y 2).假设直线AB ⊥x 轴,那么x 1=x 2=1,不符合题意; 当AB 所在直线l 的斜率k 存在时, 设l 的方程为y =k (x -1).由⎩⎨⎧y =k (x -1),x 24+y 23=1,消去y 得(3+4k 2)x 2-8k 2x +4k 2-12=0.①①的判别式Δ=64k 4-4(4k 2+3)(4k 2-12)=144(k 2+1)>0. ∵⎩⎪⎨⎪⎧x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,∴x 1+x 2=8k 24k 2+3=2×14=12,∴k 2=14.将k 2=14代入方程①,得4x 2-2x -11=0,解得x =1±354. 又AF →=(1-x 1,-y 1),FB →=(x 2-1,y 2),AF →=λFB →, 即1-x 1=λ(x 2-1),λ=1-x 1x 2-1,又λ>1,∴λ=3+52.组 素养关1.(2019·某某二模)椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上一点,且满足PF 2⊥x 轴,|PF 2|=32,离心率为12.(1)求椭圆的标准方程;(2)假设M 为y 轴正半轴上的定点,过M 的直线l 交椭圆于A ,B 两点,设O 为坐标原点,S AOB =-32tan ∠AOB ,求点M 的坐标.解(1)由题意,知c a =12,b 2a =32,结合a 2=b 2+c 2,得a =2,b =3,所以x 24+y 23=1.(2)设M (0,t ),t >0,由题意知,直线l 的斜率存在,设l 为y =kx +t ,A (x 1,y 1),B (x 2,y 2),由S △AOB =-32tan ∠AOB ,得12|OA ||OB |sin ∠AOB =-32·sin ∠AOBcos ∠AOB ,得|OA ||OB |cos ∠AOB =-3,即OA →·OB→=-3, 联立直线l 和椭圆C 的方程,有 ⎩⎨⎧y =kx +t ,x 24+y 23=1,整理得(3+4k 2)x 2+8ktx +4t 2-12=0, ∴x 1+x 2=-8kt3+4k 2,x 1x 2=4t 2-123+4k 2,由x 1x 2+(kx 1+t )(kx 2+t )=-3,得(k 2+1)x 1x 2+kt (x 1+x 2)+t 2=-3, ∴(k 2+1)4t 2-123+4k 2-kt ·8kt3+4k 2+t 2=-3, 整理可得7t 2=3,又t >0,得t =217. 故M 的坐标为⎝⎛⎭⎪⎫0,217 2.(2019·某某六市第二次联考)动点P 到定点F (1,0)和到直线x =2的距离之比为22,设动点P 的轨迹为曲线E ,过点F 作垂直于x 轴的直线与曲线E 相交于A ,B 两点,直线l :y =mx +n 与曲线E 交于C ,D 两点,与AB 相交于一点(交点位于线段AB 上,且与点A ,B 不重合).(1)求曲线E 的方程;(2)求直线l 与圆x 2+y 2=1相切时,四边形ABCD 的面积是否有最大值?假设有,求出其最大值及对应的直线l 的方程;假设没有,请说明理由.解(1)设点P (x ,y ).由题意可得(x -1)2+y 2|x -2|=22,化简得x 22+y 2=1.所以曲线E 的方程为x 22+y 2=1. (2)设点C (x 1,y 1),D (x 2,y 2).将x =1代入x 22+y 2=1,得|y |=22,所以|AB |= 2. 当m =0时,显然不符合题意.当m ≠0时,因为直线l 与圆x 2+y 2=1相切,word- 31 - / 31 所以|n |m 2+1=1,所以n 2=m 2+1.由⎩⎨⎧ y =mx +n ,x 22+y 2=1消去y 并整理, 得⎝ ⎛⎭⎪⎫m 2+12x 2+2mnx +n 2-1=0. 因为Δ=4m 2n 2-4⎝ ⎛⎭⎪⎫m 2+12(n 2-1)=2m 2>0, 所以x 1+x 2=-4mn2m 2+1,x 1x 2=2(n 2-1)2m 2+1. 所以S 四边形ACBD =12|AB |·|x 1-x 2|=12×2·(x 1+x 2)2-4x 1x 2=2|m |2m 2+1=22|m |+1|m |≤22, 当且仅当2|m |=1|m |,即m =±22时等号成立.将m =±22代入n 2=m 2+1,得n =±62.经检验可知,直线y =22x -62和直线y =-22x +62符合题意.故四边形ACBD 的面积有最大值,最大值为22,对应的直线方程为y =22x-62和y =-22x +62.。
高考数学一轮总复习教学课件第八章 平面解析几何第1节 直线的方程
(3)若一条直线的倾斜角为θ,则此直线的斜率为tan θ.( × )
(4)若一条直线的斜率为tan θ,则此直线的倾斜角为θ.( × )
(5)所有直线的方程都可以写成一次函数y=kx+b的形式.( × )
2. 一 条 直 线 l 与 x 轴 相 交 , 其 向 上 方 向 与 y 轴 正 方 向 所 成 的 角 为
√
解析:(3)由-1≤k< ,即-1≤tan α< ,而α∈[0,π),如图,结合
正切函数图象得α∈[0,)∪[ ,π).故选 D.
(1)斜率的两种求法
①定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据
k=tan α求斜率;
②公式法:若已知直线上两点A(x1,y1),B(x2,y2),一般根据斜率公式
又直线l在y轴上的截距为-1,
所以直线l的方程为 y= x-1 .
提升·关键能力
类分考点,落实四翼
考点一
直线的倾斜角与斜率
[例1] (1)直线l向上的方向与x轴负半轴的夹角为120°,则直线l
的斜率是(
A.
)
B.-
C.
√
D.-
解析:(1)由题意,直线l向上的方向与x轴正半轴的夹角为60°,
点 A(- ,3),所以所求直线方程为 y-3= (x+ ),即 x-y+6=0.
(3)若直线经过点A(-5,2),且在x轴上的截距等于在y轴上的截距的
2倍.
解:(3)①当横截距、纵截距均为零时,设所求的直线方程为y=kx,
将(-5,2)代入 y=kx 中,得 k=- ,此时,直线方程为 y=- x,即 2x+5y=0.
2016届高三数学一轮总复习课件:第八章 平面解析几何8-5
【规律方法】 (1)求解与椭圆几何性质有关的问题时要结合 图形进行分析,即使不画出图形,思考时也要联想到图形.当涉 及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间 的关系,挖掘出它们之间的内在联系.
(2)求椭圆离心率问题,应先将 e 用有关的一些量表示出来, 再利用其中的一些关系构造出关于 e 的等式或不等式,从而求出 e 的值或范围.离心率 e 与 a,b 的关系:e2=ca22=a2-a2 b2=1-ba22⇒ba = 1-e2.
第三十三页,编辑于星期五:二十点 十三分。ቤተ መጻሕፍቲ ባይዱ
变式思考 2 (1)(2014·江西卷)设椭圆 C:xa22+by22=1(a>b>0)的 左右焦点为 F1,F2,过 F2 作 x 轴的垂线与 C 相交于 A,B 两点, F1B 与 y 轴相交于点 D,若 AD⊥F1B,则椭圆 C 的离心率等于 ________.
问题 3 求椭圆离心率的常用方法有哪些? (1)求得 a、c 的值,直接代入公式 e=ac求得;(2)列出关于 a, b,c 的齐次方程(或不等式),然后根据 b2=a2-c2,消去 b,转化 成关于 e 的方程(或不等式)求解.
第二十页,编辑于星期五:二十点 十三分。
高频考点
考点一
椭圆的定义及标准方程
第四页,编辑于星期五:二十点 十三分。
J 基础回扣·自主学习
理教材 夯基础 厚积薄发
第五页,编辑于星期五:二十点 十三分。
知识点一
知识梳理 椭圆的定义
平面内与两定点 F1、F2 的距离的和等于常数(__大__于___|F1F2|) 的点的轨迹叫椭圆,这两定点叫做椭圆的__焦__点___,两焦点间的距 离叫做_焦__距__.
则 k 的取值范围是( )
2025年高考数学一轮复习-8.1-直线的方程【课件】
【练一练】
1.判断正误(正确的打“√”,错误的打“×”)
(1)若直线的斜率为 ,则其倾斜角为 .( )
×
(2)斜率相等的两直线的倾斜角不一定相等.( )
×
(3)经过定点 的直线都可以用方程 .( )
×
2.(人A选择性必修第一册 习题 变条件)若过点 , 的直线的斜率等于1,则 的值为( )
(2)倾斜角及斜率取值范围的两种求法①数形结合法:作出直线在平面直角坐标系中可能的位置,借助图形,结合正切函数的单调性确定;②函数图象法:根据正切函数图象,由倾斜角范围求斜率范围,反之亦可.
考点二 直线的方程(师生共研)
例1.(1)(多选)过点 且在两坐标轴上的截距相等的直线的方程可能是( )
1.直线 的倾斜角的取值范围是( )
A. B. C. D.
解析:选B.设直线的倾斜角为 ,则有 .因为 ,所以 ,又 ,所以 或 ,故选B.
√
2.直线 过点 ,且与以 , 为端点的线段有公共点,则直线 的斜率 的取值范围为____________________.
A. B. 或 C. D. 或
解析:选C.直线的斜率为 .因为直线倾斜角的取值范围为 ,所以所求直线的倾斜角为 ,故选C.
√
1.直线的倾斜角 <m></m> 和斜率 <m></m> 之间的对应关系
0
0
不存在
2.识记几种特殊位置的直线方程
(1) 轴: .
必备知识 自主排查
核心考点 师生共研
必备知识 自主排查
01
1.直线的倾斜角与斜率
(1)直线的倾斜角①定义:当直线 与 轴相交时,以 轴为基准, 轴正向与直线 向上的方向之间所成的角 叫做直线 的倾斜角.②规定:当直线 与 轴平行或重合时,规定它的倾斜角为___.③范围:直线的倾斜角 的取值范围为______________.
2024版高考数学一轮复习教材基础练第八章平面解析几何第五节双曲线教学课件
10. (1)若双曲线的焦点在x轴上,焦距为2,且双曲线过点(-5,2),则双曲线的标准方程为 . (2)若双曲线过点(2,0),且与双曲线-=1的离心率相等,则双曲线的标准方程为 . (3)若双曲线过点P1(-2,)和P2(,4),则双曲线的标准方程为 .
教材素材变式
如果一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线.
性质
(1)它们有共同的渐近线;(2)它们的四个焦点共圆;(3)它们的离心率的倒数的平方和等于1.
知识点103:双曲线的几何性质
常用结论与双曲线有关的常用结论(1)双曲线的焦点到其渐近线的距离为 ,双曲线的顶点到渐近线的距离为 .(2)双曲线 的焦点为 , ,当点 在双曲线右支上时, , ;当点 在双曲线左支上时, , .(3)若 是双曲线右支上一点, , 分别为双曲线的左、右焦点,则 , .
a,b,c的关系
c2=a2+b2
(2)标准方程
知识点102:双曲线的定义及标准方程
规律总结焦点位置的判断在双曲线的标准方程中,看 项与 项的系数的正负,若 项的系数为正,则焦点在 轴上;若 项的系数为正,则焦点在 轴上,即“焦点位置看正负,焦点随着正的跑”.
知识点102:双曲线的定义及标准方程
知识点103:双曲线的几何性质
方法技巧
(1)渐近线方程的求法:求双曲线 的渐近线的方法是令 ,即得两渐近线方程为 ,也就是 .
(2)在双曲线的几何性质中重点是渐近线方程和离心率,在双曲线 中,离心率 与双曲线的渐近线的斜率 ,满足关系式 .
知识点103:双曲线的几何性质
第五节 双曲线
知识点102:双曲线的定义及标准方程
教材知识萃取
新课程2021高考数学一轮复习第八章平面解析几何解答题专项突破五圆锥曲线的综合问题课件
综上,以 MN 为直径的圆过定点(0,1).
热点题型 2 圆锥曲线中的定值问题 典例1 如图,在平面直角坐标系 xOy 中,点 F12,0,直线 l:x=-12, 点 P 在直线 l 上移动,R 是线段 FP 与 y 轴的交点,RQ⊥FP,PQ⊥l.
(1)求动点 Q 的轨迹 C 的方程;
解题思路 (1)R 是线段 FP 的中点,且 RQ⊥FP→RQ 是线段 PF 的垂直 平分线→|PQ|=|QF|→点 Q 的轨迹是以 F 为焦点,l 为准线的抛物线→确定 焦准距,根据抛物线的焦点坐标,求出抛物线的方程.
当 l1:x= 3时,l1 与“准圆”交于点( 3,1),( 3,-1), 此时 l2 为 y=1(或 y=-1),显然直线 l1,l2 垂直; 同理可证当 l1:x=- 3时,直线 l1,l2 垂直.
②当 l1,l2 斜率存在时, 设点 P(x0,y0),其中 x20+y20=4. 设经过点 P(x0,y0)与椭圆相切的直线为 y=t(x-x0)+y0,
典例2 (2019·济南模拟)已知 Q 为圆 x2+y2=1 上一动点,Q 在 x 轴, y 轴上的射影分别为点 A,B,动点 P 满足B→A=A→P,记动点 P 的轨迹为曲线 C.
(1)求曲线 C 的方程;
解题思路 (1)设 Q(x0,y0),P(x,y),利用所给条件建立两点坐标之间 的关系,利用 Q 在圆上可得 x,y 的方程,即为所求.
∴H→M·H→N=x1x2+y1y2-m(y1+y2)+m2
100m2-1k2+25m2+30m-55
=
251+4k2
=0,
∵对任意的 k 恒成立,∴12050m2m+2-301m=-05,5=0,
解得 m=1,即定点为 H(0,1),
最新-2021年高考数学文一轮复习课件:第八章 平面解析几何 第5讲 课件 精品
质轴 焦距
长轴 A1A2 的长为__2_a___ 短轴 B1B2 的长为_2_b____
|F1F2|=_2_c____
离心率
c e=__a__,e∈(0,1)
a,b,c 的关系
c2=___a_2-__b_2_____
1.辨明两个易误点 (1)椭圆的定义中易忽视 2a>|F1F2|这一条件,当 2a=|F1F2|时, 其轨迹为线段 F1F2,当 2a<|F1F2|时,不存在轨迹. (2)求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程 为xa22+by22=1(a>b>0).
离心率 e=12,且它的一个焦点与抛物线 y2=-4x 的焦点重合,
则此椭圆方程为( A ) A.x42+y32=1 C.x22+y2=1
B.x82+y62=1 D.x42+y2=1
(2)设 F1,F2 分别是椭圆 E:x2+by22=1(0<b<1)的左、右焦点, 过点 F1 的直线交椭圆 E 于 A,B 两点,若|AF1|=3|F1B|,
A.0
B.1
C.2
D.2 2
【解析】 (1)如图,|OB|为椭圆中心到 l 的距离,则|OA|·|OF| =|AF|·|OB|,即 bc=a·b2,所以 e=ac=12.故选 B. (2)设 P(x0,y0),则P→F1=(-1-x0,-y0),P→F2=(1-x0,-y0), 所以P→F1+P→F2=(-2x0,-2y0), 所以|P→F1+P→F2|= 4x20+4y20 =2 2-2y02+y20=2 -y20+2. 因为点 P 在椭圆上, 所以 0≤y20≤1, 所以当 y20=1 时,|P→F1+P→F2|取最小值为 2.
r)=16,又|C1C2|=8<16,所以动圆圆心 M 的轨迹是以 C1、C2
高考数学一轮复习第8章平面解析几何第5讲作业课件理
12/11/2021
第八页,共四十四页。
解析
5.过椭圆x52+y42=1 的右焦点作一条斜率为 2 的直线与椭圆交于 A,B
两点,O 为坐标原点,则△OAB 的面积为( )
4 A.3
B.53
C.54
D.130
答案 B
12/11/2021
第九页,共四十四页。
答案
解析 由题意知椭圆的右焦点 F 的坐标为(1,0),则直线 AB 的方程为 y
A 组 基础关
1.已知椭圆的标准方程为 x2+1y02 =1,则椭圆的焦点坐标为(
)
A.( 10,0),(- 10,0) B.(0, 10),(0,- 10)
C.(0,3),(0,-3)
D.(3,0),(-3,0)
答案 C
12/11/2021
第一页,共四十四页。
答案
解析 椭圆 x2+1y02 =1 的焦点在 y 轴上,a2=10,b2=1,故 c2=a2-b2 =9,c=3.所以椭圆的焦点坐标为(0,3),(0,-3).
12/11/2021
第二十四页,共四十四页。
解析
2.(2018·昆明诊断)椭圆x92+2y52 =1 上的一点 P 到两焦点的距离的乘积为 m,当 m 取最大值时,点 P 的坐标是________.
答案 (-3,0)或(3,0)
12/11/2021
第二十五页,共四十四页。
答案
解析 记椭圆的两个焦点分别为 F1,F2,有|PF1|+|PF2|=2a=10. 则 m=|PF1|·|PF2|≤|PF1|+2 |PF2|2=25,当且仅当|PF1|=|PF2|=5,即点 P 位于椭圆的短轴的顶点处时,m 取得最大值 25.∴点 P 的坐标为(-3,0)或(3,0).
新课标2020年高考数学一轮总复习第八章平面解析几何8_5椭圆课件理新人教A
第五节 椭圆
教 材 回 顾 考 点 突 破
栏目导航
最新考纲考情考向分析
1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.
2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.3.利用椭圆的几何性质研究直线与椭圆的关系.椭圆的定义、标准方程、几何性质通常以小题形式考查,直线与椭圆的位置关系主要出现在解答题中.题型主要以选择、填空题为主,一般为中档题,椭圆方程的求解经常出现在解答题的第一问.
之和
焦点焦距。
高考数学一轮复习第8章平面解析几何课件
[五年考情]
考点
2016 年 2015 年 2014 年
2013 年
2012 年
直线的倾斜角 与斜率、直线的 方程、距离
17,4 分(文) 15,4 分(理)
3,位置关 系、圆与圆的位 10,6 分(文)
14,4 分(理) 14,4 分(文)
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/7/12
最新中小学教学课件
5
谢谢欣赏!
2019/7/12
最新中小学教学课件
6
④ 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、语 文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。
⑤ 搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的 内容,以免顾此失彼。来自:学习方法网
19,15 分 (理)
19,15 分 (文)
19,15 分 (理)
19,15 分 (文)
21,15 分 (理)
22,7 分(文)
22(2),9 分(理) 22,14 分(文)
21(2),8 分(理) 22,15 分(文)
[重点关注] 综合近 5 年浙江卷高考试题,我们发现高考主要考查直线的方程、圆的方 程、直线与圆、圆与圆的位置关系、圆锥曲线(椭圆、双曲线、抛物线)的定义、 标准方程及性质、直线与圆锥曲线的位置关系及综合应用,突出对数形结合思 想、函数与方程思想、转化与化归思想的考查.
高考数学一轮总复习第八章平面解析几何第五节椭圆课件理
第二十一页,共22页。
因为 A(- 3,0),B( 3,0), 所以A→C·D→B+A→D·C→B=(x1+ 3,y1)·( 3-x2,-y2)+(x2+ 3, y2)·( 3-x1,-y1) =6-2x1x2-2y1y2=6-2x1x2-2k2(x1+1)(x2+1) =6-(2+2k2)x1x2-2k2(x1+x2)-2k2 =6+22k+2+3k122. 由已知得 6+22k+2+3k122=8,解得 k=± 2.
第二十页,共22页。
(2)设点 C(x1,y1),D(x2,y2),由 F(-1,0)得直线 CD 的方程
为 y=k(x+1),
y=k(x+1),
由方程组x32+y22=1
消去 y,
整理得(2+3k2)x2+6k2x+3k2-6=0.
由于 Δ=48k2+48>0 恒成立,
则 x1+x2=-2+6k32k2,x1x2=32+k2-3k62,
第三页,共22页。
(2)不妨设点 A 在第一象限,设半焦距为 c,则 F1(-c,0),F2(c, 0).
∵AF2⊥x 轴,则 A(c,b2)(其中 c2=1-b2,0<b<1). 又|AF1|=3|F1B|,得A→F1=3F→1B,
第四页,共22页。
设 B(x0,y0),则(-2c,-b2)=3(x0+c,y0), ∴x0=-53c且 y0=-b32, 代入椭圆 x2+by22=1,得 25c2+b2=9① 又 c2=1-b2,② 联立①②,得 b2=23. 故椭圆 E 的方程为 x2+32y2=1. 答案:(1)12 (2)x2+32y2=1
第十五页,共22页。
解:(1)过点(c,0),(0,b)的直线方程为 bx+cy-bc=0, 则原点 O 到该直线的距离 d= bb2+c c2=bac,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点自主回扣
考向互动探究
考能感悟提升
课时作业
提示:当定点 F在定直线 l 上时,动点的轨迹是过点 F且与
直线l垂直的直线.
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
2.抛物线的标准方程与几何性质
y2=2px (p>0) y2=-2px (p>0) x2=2py (p>0) x2=-2py (p>0)
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
拓展提高
(1)利用抛物线的定义可以确定动点与定点、定
直线距离有关的轨迹是否为抛物线. (2)涉及抛物线上的点到焦点(准线)的距离问题,可优先考 虑利用抛物线的定义转化为点到准线(焦点)的距离问题求解.
第八章 平面解析几何
考点自主回扣
为 x=-1,又由|PM|=5 可得点 P 的横坐标为 4,代入 y2=4x, 1 可求得其纵坐标为± 4,故 S△MPF=2×5×4=10,选 B. [ 答案] B
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
3.设抛物线 y2=8x 的准线与 x 轴交于点 Q,若过点 Q 的 直线 l 与抛物线有公共点,则直线 l 的斜率的取值范围是(
线的抛物线,且p=6,所以其标准方程为x2=12y. [答案] x2=12y
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
5.已知点 P 是抛物线 y2=2x 上的动点,点 P 到准线的距 离为 d,且点 P 在 y 轴上的射影是 M,点 的最小值是________.
[ 解析] 设抛物线 y =2x 的焦点为 F,则
标准 方程
p 的几何意义:焦点 F 到准线 l 的距离
图形
顶点
O(0,0)
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
对称轴 焦点 离心率 准线 方程 范围 开口方 向 p x=-2
p F 2,0
y=0
p F -2,0 p F 0,2
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
[ 基础自测] 1 2 1.(2014· 安徽高考)抛物线 y=4x 的准线方程是( A.y=-1 C.x=-1
[ 解析]
)
B.y=-2 D.x=-2
1 2 因为抛物线 y=4x 的标准方程为 x2=4y,所以其
准线方程为 y=-1.故选 A.
x=0
p F 0,-2
e=1 p x=2 p y=-2 p y=2
x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R 向右 向左 向上 向下
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
质疑探究2:抛物线的标准方程中p的几何意义是什么?
提示:p的几何意义是焦点到准线的距离.
第八章 平面解析几何
第5节 抛物线
考点自主回扣
考向互动探究
考能感悟提升
课时作业
1.掌握抛物线的定义、几何图形、标准方程及简单几何
性质(范围、对称性、顶点、离心率). 2.理解数形结合的思想. 3.了解抛物线的实际背景及抛物线的简单应用.
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
考点自主回扣
考向互动探究
考能感悟提升
课时作业
[典例透析] 考向一 例 1 抛物线的定义及应用 已知抛物线y2=2x的焦点是F,点P是抛物线上的动
点,又有点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时
P点的坐标. 思路点拨 把|PF|转化为P到准线的距离,两点之间线段最
短.
第八章 平面解析几何
1 1 A.-2,2
)
B.[ -2,2] D.[ -4,4]
C.[ -1,1]
[解析]
Q(-2,0),设直线l的方程为y=k(x+2),代入抛物
线方程,消去y整理得k2x2+(4k2-8)x+4k2=0, 由Δ=(4k2-8)2-4k2·4k2=64(1-k2)≥0, 解得-1≤k≤1. [答案] C
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
4.若点P到直线y=-1的距离比它到点(0,3)的距离小2, 则点P的轨迹方程是________ [ 解析 ] 由题意可知点 P 到直线 y =- 3 的距离等于它到点
(0,3) 的距离,故点 P 的轨迹是以点 (0,3) 为焦点,以 y =- 3 为准
2
7 A2,4,则|PA|+|PM|
1 F2,0,又点
7 1 A2,4在抛物线的外侧,抛物线的准线方程为 x=-2,则|PM|
1 9 =d-2,又|PA|+d=|PA|+|PF|≥|AF|=5,所以|PA|+|PM|≥2. 9 [ 答案] 2
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
[ 解]
将 x=3 代入抛物线方程 y2=2x,得 y=± 6.
∵ 6>2,∴A 在抛物线内部.
1 设抛物线上点 P 到准线 l: x=-2的距离为 d,由定义知|PA| +|PF|=|PA|+d,当 PA⊥l 时,|PA|+d 最小, 7 最小值为2 7 即|PA|+|PF|的最小值为2. 此时 P 点纵坐标为 2,代入 y2=2x,得 x=2, ∴点 P 坐标为(2,2).
考向互动探究
考能感悟提升
课时作业
活学活用1
(2015·辽宁省五校联考)设抛物线x2=12y的焦
点为F,经过点P(2,1)的直线l与抛物线相交于A,B两点,又知 点P恰为AB的中点,则|AF|+|BF|=________. [解析] 分别过点A,B,P作准线的垂线,垂足分别为M, N , Q ,根据抛物线上的点到焦点的距离等于该点到准线的距 离,得|AF|+|BF|=|AM|+|BN|=2|PQ|=8. [答案] 8
[ 答案]
A
第八章 平面解析感悟提升
课时作业
2.从抛物线 y2=4x 上一点 P 引抛物线准线的垂线,垂足 为 M,且|PM|=5,设抛物线的焦点为 F,则△MPF 的面积为 ( ) A.5 C.20 B.10 D. 15
[ 解析]
由抛物线方程 y2=4x 易得抛物线的准线 l 的方程
[要点梳理]
1.抛物线的概念
相等 的 平面内与一个定点F和一条定直线l(F∉l)的距离_______ 焦点,直线l叫做抛 点的轨迹叫做抛物线.点F叫做抛物线的______ 准线 . 物线的_____ 质 疑 探 究 1 :若抛物线定义中定点F在定直线l上时,动点
的轨迹是什么图形?
第八章 平面解析几何