化工热力学_Chapter3_习题-01
化工热力学马沛生第一版第三章习题答案
习题3-1. 单组元流体的热力学基本关系式有哪些? 答:单组元流体的热力学关系包括以下几种:(1)热力学基本方程:它们适用于封闭系统,它们可以用于单相或多相系统。
V p S T U d d d -= p V S T H d d d += T S V p A d d d --= T S p V G d d d -=(2)Helmholtz 方程,即能量的导数式pV S H S U T ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂= T S V A V U p ⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂=- TS p G p H V ⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂= p V T G T A S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=- (3)麦克斯韦(Maxwell )关系式 V S S p V T ⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ p S S V p T ⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ TV V S T p ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ Tp p S T V ⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ 3-2. 本章讨论了温度、压力对H 、S 的影响,为什么没有讨论对U 的影响?答:本章详细讨论了温度、压力对H 、S 的影响,由于pV H U -=,在上一章已经讨论了流体的pVT 关系,根据这两部分的内容,温度、压力对U 的影响便可以方便地解决。
3-3. 如何理解剩余性质?为什么要提出这个概念?答:所谓剩余性质,是气体在真实状态下的热力学性质与在同一温度、压力下当气体处于理想气体状态下热力学性质之间的差额,即:),(),(p T M p T M M ig R -=M 与M i g 分别表示同温同压下真实流体与理想气体的广度热力学性质的摩尔量,如V 、U 、H 、S 和G 等。
需要注意的是剩余性质是一个假想的概念,用这个概念可以表示出真实状态与假想的理想气体状态之间热力学性质的差额,从而可以方便地算出真实状态下气体的热力学性质。
化工热力学 第三章(魏顺安课后习题)
实际态 T、p
真实气体 H、S
1
理想气体 H 、S 基准态 T0、p 0
* 0
3
* 0
2
理想气体 H*、S* 实际态 T、p
1 2 3 因 p 0 1atm, 所 1 0 为 以 2 3
• 气体在基准态下的 H0和S0 是相对值:
e 0.78785 f P 1.5962 MPa
0.23845
普遍化方程
BPc P r Z 1 RTc Tr BPc B 0 B1 RTc
成于勤,毁于惰, 荒于嬉,败于奢
pr 0 1 ln i B B Tr
铁可磨,石可穿, 攻必克,胜必谦
H0 0
S0 0
id R
• 从设计过程可知:
H H0 H H2 H3 nH nH
id
S S0 S S2 S3 nS nS
1cal( 热力学 ) 4.184J
R
• 为方便后面求解,现将摩尔等压热容进行单位换算。
Cp (0.886 5.602 102 T 2.771 105 T 2 5.266 109 T 3 ) 4.184 3.707 0.2344 1.159 10 4 T 2 2.203 10 8 T 3 ( J .mol1 . K 1 ) T
ZRT 0.65500 8.314 410 Vm 0.40806 10 3 m 3 .mol1 p 5471.55 103
V nVm 1 0.40806 103 4.0806 104 m 3
• (2) 求H、S
设计如下热力学过程:
《化工热力学》第3章 均相封闭系统热力学及应用课后习题答案
习题讲解: 一、是非题1、热力学基本关系式dH=TdS+VdP 只适用于可逆过程。
(错。
不需要可逆条件,适用于只有体积功存在的封闭体系)2、当压力趋于零时,()()0,,≡-P T M P T M ig (M 是摩尔性质)。
(错。
当M =V 时,不恒等于零,只有在T =T B 时,才等于零)3、纯物质逸度的完整定义是,在等温条件下,f RTd dG ln =。
(错。
应该是=-igGG 0()0ln P f RT 等)4、 当0→P 时,∞→P f。
(错。
当0→P 时,1→P f)5、因为⎰⎪⎭⎫⎝⎛-=PdPP RT V RT 01ln ϕ,当0→P 时,1=ϕ,所以,0=-PRTV 。
(错。
从积分式看,当0→P 时,PRTV -为任何值,都有1=ϕ;实际上,0lim 0=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=→BTT P P RT V6、吉氏函数与逸度系数的关系是()()ϕln 1,,RT P T G P T G ig ==-。
(错,(),(T G P T G ig -fRT P ln )1==)7、 由于偏离函数是两个等温状态的性质之差,故不可能用偏离函数来计算性质随着温度的变化。
(错。
因为:()()()()[]()()[]()()[]0102011102221122,,,,,,,,P T M P T M P T M P T M P T M P T M P T M P T M igig ig ig -+---=-)二、选择题1、对于一均相体系,VP T S T T S T ⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛∂∂∂∂等于(D 。
PV V P V P T V T P T C C T S T T S T ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛∂∂∂∂∂∂∂∂)A. 零B. C P /C VC. RD.PV T V T P T ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∂∂∂∂2、一气体符合P=RT/(V-b )的状态方程从V 1等温可逆膨胀至V 2,则体系的S 为(C 。
化工热力学 第三章 习题
第三章习题
一、概念
剩余性质Poynting校正因子纯物质逸度及逸度系数
二、问题
1. 掌握热力学基本关系式、Maxwell关系式及其应用。
2. 热力学性质的有关推导及证明。
3. 热力学性质的计算方法有哪几种(熟练运用)。
4. 为什么要引入剩余性质?描述其定义及数学表达式。
5. 写出逸度及逸度系数的数学表达式,并解释其物理意义。
6. 逸度及逸度系数的计算方法有哪些?
7. 纯液体的逸度可由下式计算
试指出式中各个量的物理意义,若已知液体的温度、压力,简述上式各个量如何求取。
8. 两相系统的热力学性质计算,化工中常用的热力学性质图主要有哪些?
9. 物质热力学性质三种表示形式(方程式、图和表)的优缺点。
化工热力学3-1Chapter3纯流体的热力学性质计算
T T 1
p 1
T T 1
注意:可观察附录的水蒸汽表中水在恒温下H,S随p的变化
*
20
§3.2 热力学性质的计算
3.2.2 直接应用Maxwell关系式和微分能量方程求解H,S 3.2.2.3工质为理想气体时 1)H*、 S*普遍式
∵pV=RT,当p为常数时两边对T求导 p(dV/dT)=R(V/T)p=R/p V-T(V/T)p=V-TR/p=0
H T T 1 2c p d T p p 1 2 V T V T p d p(3 1 8 ) 的 积 分 式 ,P 3 2
ST T 1 2c T pd T p p 1 2 V T pd p(3 1 5 )的 积 分 式 ,P 3 1
H*
T2 T1
Esys=U+Ek+Ep=UU=Q+W、dU=dQ+dW 对于可逆过程: dQR=TdS、dWR=-pdVdU=TdS-pdV (3-1)
*
9
§3.1 热力学性质间的关系
Chapter3.纯流体的热力学性质计算
3.1.1 单相流体系统基本方程——微分能量表达式 (2)复习H、A、G定义,推导dH、dA、dG
dU = dH = dA = dG = 0
Chapter3.纯流体的热力学性质计算 概述
二、本章要解决的主要问题 1.通过学习热力学性质的基本微分方程解决可直 接测量的状态函数与不可直接测量的状态函数之 间的关系; 2.纯物质的热力学性质的计算,重点为H、S的 计算; 3.常用热力学性质数据图表的应用。
(3-8) (3-9) (3-10) (3-11)
“TV”在同一边,等式带
*
“”
14
§3.1 热力学性质间的关系
化工热力学(第三版)第3章答案
化工热力学(第三版)习题解答集朱自强、吴有庭、李勉编著前言理论联系实际是工程科学的核心。
化工热力学素以概念抽象、难懂而深深印在学生的脑海之中。
特别使他们感到困惑的是难以和实际问题进行联系。
为了学以致用,除选好教科书中的例题之外,很重要的是习题的安排。
凭借习题来加深和印证基本概念的理解和运用,补充原书中某些理论的推导,更主要的是使学生在完成习题时能在理论联系实际的锻炼上跨出重要的一步。
《化工热力学》(第三版)的习题就是用这样的指导思想来安排和编写的。
《化工热力学》自出版以来,深受国内同行和学生的关注和欢迎,但认为习题有一定的难度,希望有一本习题集问世,帮助初学者更有效地掌握基本概念,并提高分析问题和解决问题的能力。
为此我们应出版社的要求把该书第三版的习题解撰并付印,以飨读者。
在编写过程中除详尽地进行习题解答外,还对部分习题列出了不同的解题方法,便于读者进一步扩大思路,增加灵活程度;对部分有较大难度的习题前加上“*”号,如果教学时间较少,可以暂时不做,但对能力较强的学生和研究生也不妨一试。
使用本题解的学生,应该先对习题尽量多加思考,在自学和独自完成解题的基础上加以利用和印证,否则将与出版此书的初衷有悖。
参加本习题题解编写的人员是浙江大学化工系的朱自强教授、南京大学化工系的吴有庭教授、以及李勉博士等,浙江大学的林东强教授、谢荣锦老师等也对本习题编写提供了有益的帮助。
在此深表感谢。
由于编写时间仓促,有些地方考虑不周,习题题解的写作方法不善,甚至尚有解题不妥之处,希望读者能不吝赐教,提出宝贵意见,以便再版时予以修改完善。
第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。
(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。
其中B 用Pitzer 的普遍化关联法计算。
[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ (2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ (E1)其中2 2.50.427480.08664c c ccR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.15 2.9846104.05310V -⨯=+⨯⨯350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。
化工热力学第三版(完全版)课后习题答案解析
化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。
U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。
H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。
U = 0 ,错误!未找到引用源。
H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。
化工热力学(第三版)答案与例题--陈新志等
化工热力学课后习题答案第1章 绪言一、是否题1. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对) 2. 理想气体的焓和热容仅是温度的函数.(对)3. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对.状态函数的变化仅决定于初、终态与途径无关.)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 .2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示).3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C ig P ⎪⎪⎭⎫ ⎝⎛--,∆U =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,∆H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-. B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,∆U = 0 ,∆H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,∆U =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11211ig PC RigPP P R V P R C ,∆H =1121T P P C ig P C R ig P⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛。
化工热力学-第3章练习题
§3.1均相封闭系统的热力学关系 3.1.1热力学函数的分类 3.1.2热力学函数的基本关系式 一、判断题7. 像dU =TdS -PdV 等热力学基本方程只能用于气体,而不能用于液体或固相。
( ) 3. 热力学基本关系式VdP TdS dH +=只适用于可逆过程。
( ) 二、选择题4. 对于一均匀的物质,其H 和U 的关系为( )。
A. H<UB. H>UC. H=UD. 不能确定 4. 关于热力学基本方程dU=TdS-pdV ,下面的说法中准确的是( )。
A. TdS 是过程热 B. pdV 是体积功 C. TdS 是可逆热 D. 在可逆过程中,pdV 等于体积功,TdS 即为过程热3. 对单位质量,定组成的均相流体体系,在非流动条件下有( )。
A. VdP TdS dH += B. VdP SdT dH += C. VdP SdT dH +-= D. VdP TdS dH --=4. 热力学第一定律的公式表述(用微分形式): 。
热力学第二定律的公式表述(即熵差与可逆热之间的关系,用微分形式): 。
4. 几个重要的定义公式:焓H=________;自由能A=___________;自由焓G=_________。
5. 几个热力学基本关系式:dU=_________;dH=_________;dA=_______;dG=________。
3.1.3Maxwell 关系式 一、判断题1. 理想气体的焓和热容仅是温度的函数。
( ) 1. 理想气体的熵和吉氏函数仅是温度的函数。
( )5. 理想气体的U 、C v 、H 、C p 虽然与p 无关,但与V 有关。
( ) 二、选择题4. 设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( )。
A. 1x y zZ Z x x y y ⎛⎫⎛⎫∂∂∂⎛⎫=- ⎪ ⎪⎪∂∂∂⎝⎭⎝⎭⎝⎭ B. 1y x Z Z x y x y Z ⎛⎫∂∂∂⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭C. 1y xZ Z x y x y Z ⎛⎫∂∂∂⎛⎫⎛⎫= ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ D. 1y Z x Z y y x x Z ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 5. 麦克斯韦关系式的主要作用是( )。
化工热力学第三版课后习题答案(1)
化工热力学课后答案第1章绪言—、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相, 。
在尚未达到平衡时,, 两个相都是均相敞开体系;达到平衡时,则,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程, 其体积总是变化着的, 但是初态和终态的体积相T 2等,初态和终态的温度分别为 T [和丁2,则该过程的 UC V dT ;同样,对于初、终态T iT 2压力相等的过程有 HC p dT 。
(对。
状态函数的变化仅决定于初、 终态与途径无关。
)T 1二、填空题状态函数的特点是: ________ 。
封闭体系中,温度是 T 的1mol 理想气体从(P , V )等温可逆地膨胀到(P ,V f ),则所做的 功为 W revRTl nV i V f (以 V 表示)或 W rev RT l nP f P (以 P 表示)。
C PP T1T 1。
1.3. 封闭体系中的imol 理想气体(已知C pg ),按下列途径由T 、P i 和V 可逆地变化至P 2,则A 等容过程的 W = _,Q= Cp 1RP 2 P 2P i/C Pg RP 1 1 T 1 , H=B等温过程的RTln l,^RTln t,U= 0 ,H=_0 ___ 。
解:EOSW revV 2 b RTl n丄 V 1 bRTln 纟V 1999In 2 1.0007222. 对于c P为常数的理想气体经过一绝热可逆过程,状态变化符合下列方程解: 3. 解: T 1 P 1(1),其式又是如何?以上a 、b 、 理想气体的绝热可逆过程,C ;gRdTT 22a Rb TT 1aln 旦 b T 2T1RT dV V cT dTCigC !,试问,对于C P a bTcT 2的理想气体,上述关系c 为常数。
《化工热力学章节习题及解答》第三章例题
《化⼯热⼒学章节习题及解答》第三章例题第三章例题⼀、空题 1. 状态⽅程的偏离焓和偏离熵分别是bP dP P R T b P RT dP T V T V HH PP P ig=-+=? -=-?0和0ln 0000=-= ?-=+-dP P R P R dP T V P R P P R S S PP P ig;若要计算()()1122,,P T H P T H -和()()1122,,P T S P T S -还需要什么性质?igP C ;其计算式分别是()()1122,,P T H P T H -()()[]()()[]()()[]()dTC P P b dTC bP bP T H T H T H P T H T H P T H T T igP T T igP ig ig ig ig ?+-=+-=-+---=2121121212111222,,和()()1122,,P T S P T S -()()[]()()[]()()[]dTTC P P R dT T C P P R P P R P T S P T S P T S P T S P T S P T S TT igP T T ig P ig ig ig ig ?+-=++-=-+---=2121120102010201110222ln ln ln ,,,,,,。
2. 由vdW ⽅程P=RT /(V-b )-a/V 2计算,从(T,P 1)压缩⾄(T,P 2)的焓变为。
()()()()[]()()[]T H P T H T H P T H P T H P T H ig ig ---=-1212,,,,;其中偏离焓是()432----=-见例题RT Vab V RTV H H ig 。
3. 对于混合物体系,偏离函数中参考态是与研究态同温.同组成的理想⽓体混合物。
⼆、计算题1. 试⽤PR 状态⽅程和理想⽓体等压热容⽅程()32dT cT bT a C igP+++=计算纯物在任何状态的焓和熵。
第三章 化工热力学习题解答
第三章 纯流体的热力学性质计算思考题3-1气体热容,热力学能和焓与哪些因素有关?由热力学能和温度两个状态参数能否确定气体的状态?答:气体热容,热力学能和焓与温度压力有关,由热力学能和温度两个状态参数能够确定气体的状态。
3-2 理想气体的内能的基准点是以压力还是温度或是两者同时为基准规定的? 答:理想气体的内能的基准点是以温度为基准规定的。
3-3 理想气体热容差R p v c c -=是否也适用于理想气体混合物?答:理想气体热容差R p v c c -=不适用于理想气体混合物,因为混合物的组成对此有关。
3-4 热力学基本关系式d d d H T S V p =+是否只适用于可逆过程? 答:否。
热力学基本关系式d d d H T S V p =+不受过程是否可逆的限制3-5 有人说:“由于剩余函数是两个等温状态的性质之差,故不能用剩余函数来计算性质随着温度的变化”,这种说法是否正确?答:不正确。
剩余函数是针对于状态点而言的;性质变化是指一个过程的变化,对应有两个状态。
3-6 水蒸气定温过程中,热力学内能和焓的变化是否为零?答:不是。
只有理想气体在定温过程中的热力学内能和焓的变化为零。
3-7 用不同来源的某纯物质的蒸气表或图查得的焓值或熵值有时相差很多,为什么?能否交叉使用这些图表求解蒸气的热力过程?答:因为做表或图时选择的基准可能不一样,所以用不同来源的某纯物质的蒸气表或图查得的焓值或熵值有时相差很多。
不能够交叉使用这些图表求解蒸气的热力过程。
3-8 氨蒸气在进入绝热透平机前,压力为2.0 MPa ,温度为150℃,今要求绝热透平膨胀机出口液氨不得大于5%,某人提出只要控制出口压力就可以了。
你认为这意见对吗?为什么?请画出T -S 图示意说明。
答:可以。
因为出口状态是湿蒸汽,确定了出口的压力或温度,其状态点也就确定了。
3-9 很纯的液态水,在大气压力下,可以过冷到比0℃低得多的温度。
假设1kg 已被冷至-5℃的液体。
化工热力学答案(3章).
3-1. 物质的体积膨胀系数β和等温压缩系数k 的定义分别为:1PV V T β∂⎛⎫=⎪∂⎝⎭,1TV k V P ∂⎛⎫=- ⎪∂⎝⎭。
试导出服从 状态方程的β和k 的表达式。
解: 方程2RT aP V b V=-- 由()的性质1y xz z x y x y z ⎛⎫∂∂∂⎛⎫⎛⎫⋅⋅=- ⎪⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭得 1T P VP V T V T P ∂∂∂⎛⎫⎛⎫⎛⎫⋅⋅=- ⎪⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 又 ()232TP a RTV V V b ∂⎛⎫=-⎪∂⎝⎭- VP R T V b∂⎛⎫=⎪∂-⎝⎭所以 ()2321P a RTV V b VT R V b ⎡⎤∂-⎛⎫-⋅⋅=-⎢⎥⎪∂⎝⎭-⎢⎥⎣⎦()()3232P RV V b V T RTV a V b -∂⎛⎫= ⎪∂⎝⎭-- 故 ()()22312PRV V b V V T RTV a V b β-∂⎛⎫==⎪∂⎝⎭--()()222312T V V b V k V P RTV a V b -∂⎛⎫=-= ⎪∂⎝⎭-- 3-2. 某理想气体借活塞之助装于钢瓶中,压力为34.45,温度为93℃,反抗一恒定的外压力3.45 而等温膨胀,直到两倍于其初始容积为止,试计算此过程之U ∆、H ∆、S ∆、A ∆、G ∆、TdS ⎰、pdV ⎰、Q 和W 。
解:理想气体等温过程,U ∆=0、H ∆=0 ∴ 21112ln 2V V V VRTpdV pdV dV RT V===⎰⎰⎰2109.2 ∴ 2109.2 又 P PdTV dS C dP T T ∂⎛⎫=- ⎪∂⎝⎭ 理想气体等温膨胀过程0、P V R T P∂⎛⎫= ⎪∂⎝⎭∴ R dS dP P=-∴ 222111ln ln ln2S P P P SP S dS R d P R PR ∆==-=-=⎰⎰=5.763(·K)A U T S ∆=∆-∆366×5.7632109.26 (·K)G H T S A ∆=∆-∆=∆2109.26 (·K)TdS T S A =∆=∆⎰2109.26 (·K)21112ln 2V V V V RTpdV pdV dV RT V===⎰⎰⎰=2109.2 3-3. 试求算1氮气在压力为10.13、温度为773K 下的内能、焓、熵、V C 、p C 和自由焓之值。
化工热力学答案(3章)
3-1. 物质的体积膨胀系数β和等温压缩系数k 的定义分别为:1P V V T β∂⎛⎫=⎪∂⎝⎭,1TV k V P ∂⎛⎫=- ⎪∂⎝⎭。
试导出服从Vander Waals 状态方程的β和k 的表达式。
解:Van der waals 方程2RT a P V b V=--由Z=f(x,y)的性质1y x z z x y x y z ⎛⎫∂∂∂⎛⎫⎛⎫⋅⋅=- ⎪ ⎪⎪∂∂∂⎝⎭⎝⎭⎝⎭得 1T P VP V T V T P ∂∂∂⎛⎫⎛⎫⎛⎫⋅⋅=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 又 ()232TP a RTV VV b ∂⎛⎫=-⎪∂⎝⎭- VP R T V b∂⎛⎫= ⎪∂-⎝⎭所以 ()2321P a RT V V b V T RV b ⎡⎤∂-⎛⎫-⋅⋅=-⎢⎥⎪∂⎝⎭-⎢⎥⎣⎦()()3232P RV V b V T RTV a V b -∂⎛⎫= ⎪∂⎝⎭-- 故 ()()22312PRV V b V V T RTV a V b β-∂⎛⎫==⎪∂⎝⎭--()()222312T V V b V k V P RTV a V b -∂⎛⎫=-= ⎪∂⎝⎭-- 3-2. 某理想气体借活塞之助装于钢瓶中,压力为34.45MPa ,温度为93℃,反抗一恒定的外压力3.45 MPa 而等温膨胀,直到两倍于其初始容积为止,试计算此过程之U ∆、H ∆、S ∆、A ∆、G ∆、TdS ⎰、pdV ⎰、Q 和W 。
解:理想气体等温过程,U ∆=0、H ∆=0 ∴ Q =-W =21112ln 2V V V V RTpdV pdV dV RT V===⎰⎰⎰=2109.2 J/mol ∴ W =-2109.2 J/mol 又PP dT V dS C dP T T ∂⎛⎫=- ⎪∂⎝⎭ 理想气体等温膨胀过程dT =0、PV R T P ∂⎛⎫= ⎪∂⎝⎭ ∴RdS dP P=-∴ 222111ln ln ln2S P P P S P S dS R d P R PR ∆==-=-=⎰⎰=5.763J/(mol·K)A U T S ∆=∆-∆=-366×5.763=-2109.26 J/(mol·K)G H T S A ∆=∆-∆=∆=-2109.26 J/(mol·K)TdS T S A =∆=∆⎰=-2109.26 J/(mol·K)21112ln 2V V V V RTpdV pdV dV RT V===⎰⎰⎰=2109.2 J/mol 3-3. 试求算1kmol 氮气在压力为10.13MPa 、温度为773K 下的内能、焓、熵、V C 、p C 和自由焓之值。
化工热力学第三版(完全版)课后习题答案
化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。
U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。
H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。
U = 0 ,错误!未找到引用源。
H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。
化工热力学马沛生第二版第三章部分习题答案
3-1思考下列说法是否正确:(1) 当压力趋于零时,M (R,P )-M ig ((T,P)3-3 试证明(a)以T 、V 为自变量时焓变为V V p V T p T T T p V C H T VV V d d d ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+=证明:以T 、V 为自变量时焓变为V V H T T H H TV d d d ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂= (A )又由p V S T H d d d += (B )将(B )式两边在恒定的温度V 下同除以的d T 得:VV V T p V T S T T H ⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 因,T C T S V V=⎪⎭⎫⎝⎛∂∂ 则,VV V T p V C T H ⎪⎭⎫⎝⎛∂∂+=⎪⎭⎫⎝⎛∂∂ (C ) 将(B )式两边在恒定的温度T 下同除以的d V 得:TT T V p V V S T V H ⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 将Maxwell 关系式VT T p V S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂代入得:TV T V p V T p T V H ⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ (D ) 将(C )式和(D )式代人(A )式得:V V p V T p T T T p V C H T VV V d d d ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+=即:原式得证3-7. 试使用下列水蒸汽的第二维里系数计算在573.2K 和506.63kPa 下蒸汽的Z 、RH 及R S 。
解:T =573.2K ,B=-119-13mol cm ⋅,且p = 506.63kPa 由式(2-10b )得:9871.02.563314.81063.506101191136=⨯⨯⨯⨯-+=+=-RT Bp Z由式(3—64)得:TR T B T B p H ⎥⎦⎤⎢⎣⎡-⋅=d d 式中:()[]()()11376K mol m 100.62.5632.58310125113d d ----⋅⋅⨯=-⨯---=∆∆≈TB T B()()1763mol J 53.234100.62.573101191063.506d d -=-=⋅-⨯⨯⨯-⨯⨯⎥⎦⎤⎢⎣⎡-⋅=--TR T B T B p H 由式(3-65)得:()1-173K mol J 304.0100.61063.506d d --⋅⋅⨯⨯⨯-⋅-===TBp S R 3-8. 利用合适的普遍化关联式,计算1kmol 的1,3-丁二烯,从2.53MPa 、400K 压缩至12.67MPa 、550K 时的U V S H ∆∆∆∆,,,。
化工热力学(第三版)第3章答案
化工热力学(第三版)习题解答集朱自强、吴有庭、李勉编著前言理论联系实际是工程科学的核心。
化工热力学素以概念抽象、难懂而深深印在学生的脑海之中。
特别使他们感到困惑的是难以和实际问题进行联系。
为了学以致用,除选好教科书中的例题之外,很重要的是习题的安排。
凭借习题来加深和印证基本概念的理解和运用,补充原书中某些理论的推导,更主要的是使学生在完成习题时能在理论联系实际的锻炼上跨出重要的一步。
《化工热力学》(第三版)的习题就是用这样的指导思想来安排和编写的。
《化工热力学》自出版以来,深受国内同行和学生的关注和欢迎,但认为习题有一定的难度,希望有一本习题集问世,帮助初学者更有效地掌握基本概念,并提高分析问题和解决问题的能力。
为此我们应出版社的要求把该书第三版的习题解撰并付印,以飨读者。
在编写过程中除详尽地进行习题解答外,还对部分习题列出了不同的解题方法,便于读者进一步扩大思路,增加灵活程度;对部分有较大难度的习题前加上“*”号,如果教学时间较少,可以暂时不做,但对能力较强的学生和研究生也不妨一试。
使用本题解的学生,应该先对习题尽量多加思考,在自学和独自完成解题的基础上加以利用和印证,否则将与出版此书的初衷有悖。
参加本习题题解编写的人员是浙江大学化工系的朱自强教授、南京大学化工系的吴有庭教授、以及李勉博士等,浙江大学的林东强教授、谢荣锦老师等也对本习题编写提供了有益的帮助。
在此深表感谢。
由于编写时间仓促,有些地方考虑不周,习题题解的写作方法不善,甚至尚有解题不妥之处,希望读者能不吝赐教,提出宝贵意见,以便再版时予以修改完善。
第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。
(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。
其中B 用Pitzer 的普遍化关联法计算。
[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ (2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ (E1)其中2 2.50.427480.08664c c ccR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.15 2.9846104.05310V -⨯=+⨯⨯350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(见参考书"化工热力学例题与习题" pp38-39) 3. 对于服从vdW状态方程的气体,试求出(Cp – CV)的表达 式,并证明该气体的CV仅是温度的函数. 4. 一理想气体借活塞之助装于钢瓶中,压力为34.45MPa,温 度为366K,反抗一恒定的外压力3.45MPa而等温膨胀,直到 两倍于其初始容积为止,试计算此过程的:
ΔU , ΔH , ΔS , ΔA, ΔG, ∫ TdS ,∫ pdV , Q和W.
5. 试证明由VDW方程推得的剩余焓,剩余熵的计算表达式 分别为:
ΔH R = RT pV + a / V p(V b) ΔS R = R ln RT 提示: Vdp = d ( pV ) pdV V p ( ) p dp = ( )V dV T T
(恒T)
�
第三章 纯流体的热力学性质 作业题(1)_(Mar. 26, 2010): 1. 试证明下列关系式:
β κ = p T T p
式中β, κ分别为体积膨胀系数和等温压缩系数,即
1 Байду номын сангаасV 1 V β= ,κ = V T p V p T
2. 试证明,以T,V为自变量时,焓变为