[VIP专享]2010湖北高考数学卷(理科)

合集下载

2010年普通高等学校招生全国统一考试(湖北卷)数学试题 (理科)(解析版)

2010年普通高等学校招生全国统一考试(湖北卷)数学试题 (理科)(解析版)

3 4
9 16
27 64
)
r2
1 1
3
4 r 2
4
故 C 正确.
8、现安排甲、乙、丙、丁、戌 5 名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、 礼仪、司机四项工作之一,每项工作至少有一人参加。甲、乙不会开车但能从事其他三项工作,丙
丁戌都能胜任四项工作,则不同安排方案的种数是( )
A.152 B.126 C.90 D.54 8.【答案】B 【解析】分类讨论:若有 2 人从事司机工作,则方案有 C32 A33 18 ;若有 1 人从事司机工作,则
ABC
的三边长位
a,b,c(
a
b
c
),定义它的亲倾斜度为
l
max
a,b源自,c.min
a
,
b
,
c
,
b c a b c a
则“ l =1”是“ ABC 为等边三角形”的( )
A.必要而不充分的条件 B.充分而不必要的条件
C.充要条件
D.既不充分也不必要条件
10.【答案】A
r,r cos 30, (r cos 30) cos 30, (r cos 30, cos 30) cos 30, 即
r, 3 r,3 r,3 3 r, 则面积依次为: r2,3 r2,9 r2,27 r2, 所以
24 8
4 16 64
lim
n
Sn
lim( r 2
n
3r2 4
)
r 2 lim(1 n
解得 sin B
3 ,又因为 b a ,则 B A , 3
故 B 为锐角,所以 cos B 1 sin 2 B 6 ,故 D 正确. 3

高考数学试卷理科013199

高考数学试卷理科013199

高考数学试卷(理科)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M∩N=()A.{1,4} B.{﹣1,﹣4} C.{0} D.∅2.(5分)若复数z=i(3﹣2i)(i是虚数单位),则=()A.2﹣3i B.2+3i C.3+2i D.3﹣2i3.(5分)下列函数中,既不是奇函数,也不是偶函数的是()A.y=B.y=x+C.y=2x+D.y=x+ex4.(5分)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.B.C.D.15.(5分)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0 B.2x+y+=0或2x+y﹣=0C.2x﹣y+5=0或2x﹣y﹣5=0 D.2x﹣y+=0或2x﹣y﹣=06.(5分)若变量x,y满足约束条件,则z=3x+2y的最小值为()A.4 B.C.6 D.7.(5分)已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=18.(5分)若空间中n个不同的点两两距离都相等,则正整数n的取值()A.至多等于3 B.至多等于4 C.等于5 D.大于5二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)9.(5分)在(﹣1)4的展开式中,x的系数为.10.(5分)在等差数列{an}中,若a3+a4+a5+a6+a7=25,则a2+a8=.11.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=.12.(5分)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)13.(5分)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则P=.14.(5分)已知直线l的极坐标方程为2ρsin(θ﹣)=,点A的极坐标为A (2,),则点A到直线l的距离为.15.如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O 作BC的平行线,分别交EC和AC于D和点P,则OD=.三、解答题16.(12分)在平面直角坐标系xOy中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx的值;(2)若与的夹角为,求x的值.17.(12分)某工厂36名工人年龄数据如图:工人编号年龄工人编号年龄工人编号年龄工人编号年龄1 2 40441011363119202743282934393 4 5 6 7 8 9 40413340454243121314151617183839434539383621222324252627413734423744423031323334353643384253374939(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s2;(3)36名工人中年龄在﹣s 和+s之间有多少人?所占百分比是多少(精确到0.01%)?18.(14分)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.19.(14分)设a>1,函数f(x)=(1+x2)ex﹣a.(1)求f(x)的单调区间;(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP 平行,(O是坐标原点),证明:m≤﹣1.20.(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.21.(14分)数列{an}满足:a1+2a2+…nan=4﹣,n∈N+.(1)求a3的值;(2)求数列{an}的前 n项和Tn;(3)令b1=a1,bn=+(1+++…+)an(n≥2),证明:数列{bn}的前n项和Sn满足Sn<2+2lnn.高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M∩N=()A.{1,4} B.{﹣1,﹣4} C.{0} D.∅【分析】求出两个集合,然后求解交集即可.【解答】解:集合M={x|(x+4)(x+1)=0}={﹣1,﹣4},N={x|(x﹣4)(x﹣1)=0}={1,4},则M∩N=∅.故选:D.【点评】本题考查集合的基本运算,交集的求法,考查计算能力.2.(5分)若复数z=i(3﹣2i)(i是虚数单位),则=()A.2﹣3i B.2+3i C.3+2i D.3﹣2i【分析】直接利用复数的乘法运算法则化简求解即可.【解答】解:复数z=i(3﹣2i)=2+3i,则=2﹣3i,故选:A.【点评】本题考查复数的代数形式的混合运算,复数的基本概念,考查计算能力.3.(5分)下列函数中,既不是奇函数,也不是偶函数的是()A.y=B.y=x+C.y=2x+D.y=x+ex【分析】直接利用函数的奇偶性判断选项即可.【解答】解:对于A,y=是偶函数,所以A不正确;对于B,y=x+函数是奇函数,所以B不正确;对于C,y=2x+是偶函数,所以C不正确;对于D,不满足f(﹣x)=f(x)也不满足f(﹣x)=﹣f(x),所以函数既不是奇函数,也不是偶函数,所以D正确.故选:D.【点评】本题考查函数的奇偶性的判断,基本知识的考查.4.(5分)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.B.C.D.1【分析】首先判断这是一个古典概型,从而求基本事件总数和“所取的2个球中恰有1个白球,1个红球”事件包含的基本事件个数,容易知道基本事件总数便是从15个球任取2球的取法,而在求“所取的2个球中恰有1个白球,1个红球”事件的基本事件个数时,可利用分步计数原理求解,最后带入古典概型的概率公式即可.【解答】解:这是一个古典概型,从15个球中任取2个球的取法有;∴基本事件总数为105;设“所取的2个球中恰有1个白球,1个红球”为事件A;则A包含的基本事件个数为=50;∴P(A)=.故选:B.【点评】考查古典概型的概念,以及古典概型的求法,熟练掌握组合数公式和分步计数原理.5.(5分)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0 B.2x+y+=0或2x+y﹣=0C.2x﹣y+5=0或2x﹣y﹣5=0 D.2x﹣y+=0或2x﹣y﹣=0【分析】设出所求直线方程,利用圆心到直线的距离等于半径,求出直线方程中的变量,即可求出直线方程.【解答】解:设所求直线方程为2x+y+b=0,则,所以=,所以b=±5,所以所求直线方程为:2x+y+5=0或2x+y﹣5=0故选:A.【点评】本题考查两条直线平行的判定,圆的切线方程,考查计算能力,是基础题.6.(5分)若变量x,y满足约束条件,则z=3x+2y的最小值为()A.4 B.C.6 D.【分析】作出不等式组对应的平面区域,根据z的几何意义,利用数形结合即可得到最小值.【解答】解:不等式组对应的平面区域如图:由z=3x+2y得y=﹣x+,平移直线y=﹣x+,则由图象可知当直线y=﹣x+,经过点A时直线y=﹣x+的截距最小,此时z最小,由,解得,即A(1,),此时z=3×1+2×=,故选:B.【点评】本题主要考查线性规划的应用,根据z的几何意义,利用数形结合是解决本题的关键.7.(5分)已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【分析】利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程.【解答】解:双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),可得:,c=5,∴a=4,b==3,所求双曲线方程为:﹣=1.故选:C.【点评】本题考查双曲线方程的求法,双曲线的简单性质的应用,考查计算能力.8.(5分)若空间中n个不同的点两两距离都相等,则正整数n的取值()A.至多等于3 B.至多等于4 C.等于5 D.大于5【分析】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断.【解答】解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,三个点在圆上,一个点是圆心,圆上的点到圆心的距离都相等,则不成立;n大于4,也不成立;在空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,且球的半径不等于边长,即有球心与正四面体的底面的中心重合,但显然球的半径不等于棱长,故不成立;同理n>5,不成立.故选:B.【点评】本题考查空间几何体的特征,主要考查空间两点的距离相等的情况,注意结合外接球和三角形的两边与第三边的关系,属于中档题和易错题.二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)9.(5分)在(﹣1)4的展开式中,x的系数为6.【分析】根据题意二项式(﹣1)4的展开式的通项公式为Tr+1=•(﹣1)r•,分析可得,r=2时,有x的项,将r=2代入可得答案.【解答】解:二项式(﹣1)4的展开式的通项公式为Tr+1=•(﹣1)r•,令2﹣=1,求得r=2,∴二项式(﹣1)4的展开式中x的系数为=6,故答案为:6.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题10.(5分)在等差数列{an}中,若a3+a4+a5+a6+a7=25,则a2+a8=10.【分析】根据等差数列的性质,化简已知的等式即可求出a5的值,然后把所求的式子也利用等差数列的性质化简后,将a5的值代入即可求答案.【解答】解:由a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=5a5=25,得到a5=5,则a2+a8=2a5=10.故答案为:10.【点评】本题主要考查了等差数列性质的简单应用,属于基础题.11.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=1.【分析】由sinB=,可得B=或B=,结合a=,C=及正弦定理可求b【解答】解:∵sinB=,∴B=或B=当B=时,a=,C=,A=,由正弦定理可得,则b=1当B=时,C=,与三角形的内角和为π矛盾故答案为:1【点评】本题考查了正弦、三角形的内角和定理,熟练掌握定理是解本题的关键12.(5分)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了1560条毕业留言.(用数字作答)【分析】通过题意,列出排列关系式,求解即可.【解答】解:某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了=40×39=1560条.故答案为:1560.【点评】本题考查排列数个数的应用,注意正确理解题意是解题的关键.13.(5分)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则P=.【分析】直接利用二项分布的期望与方差列出方程求解即可.【解答】解:随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,可得np=30,npq=20,q=,则p=,故答案为:.【点评】本题考查离散型随机变量的分布列的期望以及方差的求法,考查计算能力.14.(5分)已知直线l的极坐标方程为2ρsin(θ﹣)=,点A的极坐标为A (2,),则点A到直线l的距离为.【分析】把极坐标方程转化为直角坐标方程,然后求出极坐标表示的直角坐标,利用点到直线的距离求解即可.【解答】解:直线l的极坐标方程为2ρsin(θ﹣)=,对应的直角坐标方程为:y﹣x=1,点A的极坐标为A(2,),它的直角坐标为(2,﹣2).点A到直线l的距离为:=.故答案为:.【点评】本题考查极坐标与直角坐标方程的互化,点到直线的距离公式的应用,考查计算能力.15.如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O 作BC的平行线,分别交EC和AC于D和点P,则OD=8.【分析】连接OC,确定OP⊥AC,OP=BC=,Rt△OCD中,由射影定理可得OC2=OP•OD,即可得出结论.【解答】解:连接OC,则OC⊥CD,∵AB是圆O的直径,∴BC⊥AC,∵OP∥BC,∴OP⊥AC,OP=BC=,Rt△OCD中,由射影定理可得OC2=OP•OD,∴4=OD,∴OD=8.故答案为:8.【点评】本题考查圆的直径与切线的性质,考查射影定理,考查学生的计算能力,比较基础.三、解答题16.(12分)在平面直角坐标系xOy中,已知向量=(,﹣),=(sinx,cosx),x∈(0,).(1)若⊥,求tanx的值;(2)若与的夹角为,求x的值.【分析】(1)若⊥,则•=0,结合三角函数的关系式即可求tanx的值;(2)若与的夹角为,利用向量的数量积的坐标公式进行求解即可求x的值.【解答】解:(1)若⊥,则•=(,﹣)•(sinx,cosx)=sinx ﹣cosx=0,即sinx=cosxsinx=cosx,即tanx=1;(2)∵||=,||==1,•=(,﹣)•(sinx,cosx)=sinx ﹣cosx,∴若与的夹角为,则•=||•||cos =,即sinx ﹣cosx=,则sin(x ﹣)=,∵x∈(0,).∴x ﹣∈(﹣,).则x ﹣=即x=+=.【点评】本题主要考查向量数量积的定义和坐标公式的应用,考查学生的计算能力,比较基础.17.(12分)某工厂36名工人年龄数据如图:工人编号年龄工人编号年龄工人编号年龄工人编号年龄1 2 3 4 404440411011121336313839192021222743413728293031343943385 6 7 8 9 3340454243141516171843453938362324252627344237444232333435364253374939(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的均值和方差s2;(3)36名工人中年龄在﹣s 和+s之间有多少人?所占百分比是多少(精确到0.01%)?【分析】(1)利用系统抽样的定义进行求解即可;(2)根据均值和方差公式即可计算(1)中样本的均值和方差s2;(3)求出样本和方差即可得到结论.【解答】解:(1)由系统抽样知,36人分成9组,每组4人,其中第一组的工人年龄为44,所以其编号为2,∴所有样本数据的编号为:4n﹣2,(n=1,2,…,9),其数据为:44,40,36,43,36,37,44,43,37.(2)由平均值公式得=(44+40+36+43+36+37+44+43+37)=40.由方差公式得s2=[(44﹣40)2+(40﹣40)2+…+(37﹣40)2]=.(3)∵s2=.∴s=∈(3,4),∴36名工人中年龄在﹣s 和+s之间的人数等于区间[37,43]的人数,即40,40,41,…,39,共23人.∴36名工人中年龄在﹣s 和+s 之间所占百分比为≈63.89%.【点评】本题主要考查统计和分层抽样的应用,比较基础.18.(14分)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG;(2)求二面角P﹣AD﹣C的正切值;(3)求直线PA与直线FG所成角的余弦值.【分析】(1)通过△PDC为等腰三角形可得PE⊥CD,利用线面垂直判定定理及性质定理即得结论;(2)通过(1)及面面垂直定理可得PG⊥AD,则∠PDC为二面角P﹣AD﹣C的平面角,利用勾股定理即得结论;(3)连结AC,利用勾股定理及已知条件可得FG∥AC,在△PAC中,利用余弦定理即得直线PA与直线FG所成角即为直线PA与直线AC所成角∠PAC的余弦值.【解答】(1)证明:在△PDC中PO=PC且E为CD中点,∴PE⊥CD,又∵平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PCD,∴PE⊥平面ABCD,又∵FG⊂平面ABCD,∴PE⊥FG;(2)解:由(1)知PE⊥平面ABCD,∴PE⊥AD,又∵CD⊥AD且PE∩CD=E,∴AD⊥平面PDC,又∵PD⊂平面PDC,∴AD⊥PD,又∵AD⊥CD,∴∠PDC为二面角P﹣AD﹣C的平面角,在Rt△PDE中,由勾股定理可得:PE===,∴tan∠PDC==;(3)解:连结AC,则AC==3,在Rt△ADP中,AP===5,∵AF=2FB,CG=2GB,∴FG∥AC,∴直线PA与直线FG所成角即为直线PA与直线AC所成角∠PAC,在△PAC中,由余弦定理得cos∠PAC===.【点评】本题考查线线垂直的判定、二面角及线线角的三角函数值,涉及到勾股定理、余弦定理等知识,注意解题方法的积累,属于中档题.19.(14分)设a>1,函数f(x)=(1+x2)ex﹣a.(1)求f(x)的单调区间;(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP 平行,(O是坐标原点),证明:m≤﹣1.【分析】(1)利用f′(x)>0,求出函数单调增区间.(2)证明只有1个零点,需要说明两个方面:①函数单调;②函数有零点.(3)利用导数的最值求解方法证明,思路较为复杂.【解答】解:(1)f′(x)=ex(x2+2x+1)=ex(x+1)2,∴f′(x)≥0,∴f(x)=(1+x2)ex﹣a在(﹣∞,+∞)上为增函数.(2)证明:∵f(0)=1﹣a,a>1,∴1﹣a<0,即f(0)<0,∵f()=(1+a)﹣a=+a(﹣1),a>1,∴>1,﹣1>0,即f()>0,且由(1)问知函数在(﹣∞,+∞)上为增函数,∴f(x)在(﹣∞,+∞)上有且只有一个零点.(3)证明:f′(x)=ex(x+1)2,设点P(x0,y0)则)f'(x)=ex0(x0+1)2,∵y=f(x)在点P处的切线与x轴平行,∴f′(x0)=0,即:ex0(x0+1)2=0,∴x0=﹣1,将x0=﹣1代入y=f(x)得y0=.∴,∴,要证m≤﹣1,即证(m+1)3≤a﹣,需要证(m+1)3≤em(m+1)2,即证m+1≤em,因此构造函数g(m)=em﹣(m+1),则g′(m)=em﹣1,由g′(m)=0得m=0.当m∈(0,+∞)时,g′(m)>0,当m∈(﹣∞,0)时,g′(m)<0,∴g(m)的最小值为g(0)=0,∴g(m)=em﹣(m+1)≥0,∴em≥m+1,∴em(m+1)2≥(m+1)3,即:,∴m≤.【点评】本题考查了导数在函数单调性和最值上的应用,属于综合应用,在高考中属于压轴题目,有较大难度.20.(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.【分析】(1)通过将圆C1的一般式方程化为标准方程即得结论;(2)设当直线l的方程为y=kx,通过联立直线l与圆C1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L与圆C1的方程,利用根的判别式△=0及轨迹C的端点与点(4,0)决定的直线斜率,即得结论.【解答】解:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组,消去y可得:(1+k2)x2﹣6x+5=0,由△=36﹣4(1+k2)×5>0,可得k2<由韦达定理,可得x1+x2=,∴线段AB的中点M的轨迹C的参数方程为,其中﹣<k<,∴线段AB的中点M的轨迹C的方程为:(x﹣)2+y2=,其中<x≤3;(3)结论:当k∈(﹣,)∪{﹣,}时,直线L:y=k(x﹣4)与曲线C只有一个交点.理由如下:联立方程组,消去y,可得:(1+k2)x2﹣(3+8k2)x+16k2=0,令△=(3+8k2)2﹣4(1+k2)•16k2=0,解得k=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=k(x﹣4)与曲线C只有一个交点时,k的取值范围为[﹣,]∪{﹣,}.【点评】本题考查求轨迹方程、直线与曲线的位置关系问题,注意解题方法的积累,属于难题.21.(14分)数列{an}满足:a1+2a2+…nan=4﹣,n∈N+.(1)求a3的值;(2)求数列{an}的前 n项和Tn;(3)令b1=a1,bn=+(1+++…+)an(n≥2),证明:数列{bn}的前n项和Sn满足Sn<2+2lnn.【分析】(1)利用数列的递推关系即可求a3的值;(2)利用作差法求出数列{an}的通项公式,利用等比数列的前n项和公式即可求数列{an}的前 n项和Tn;(3)利用构造法,结合裂项法进行求解即可证明不等式.【解答】解:(1)∵a1+2a2+…nan=4﹣,n∈N+.∴a1=4﹣3=1,1+2a2=4﹣=2,解得a2=,∵a1+2a2+…+nan=4﹣,n∈N+.∴a1+2a2+…+(n﹣1)an﹣1=4﹣,n∈N+.两式相减得nan=4﹣﹣(4﹣)=,n≥2,则an=,n≥2,当n=1时,a1=1也满足,∴an=,n≥1,则a3=;(2)∵an=,n≥1,∴数列{an}是公比q=,则数列{an}的前 n项和Tn==2﹣21﹣n.(3)bn=+(1+++…+)an,∴b1=a1,b2=+(1+)a2,b3=(1++)a3,∴bn=+(1+++…+)an,∴Sn=b1+b2+…+bn=(1+++…+)a1+(1+++…+)a2+…+(1+++…+)an =(1+++…+)(a1+a2+…+an)=(1+++…+)Tn=(1+++…+)(2﹣21﹣n)<2×(1+++…+),设f(x)=lnx+﹣1,x>1,则f′(x)=﹣.即f(x)在(1,+∞)上为增函数,∵f(1)=0,即f(x)>0,∵k≥2,且k∈N•时,,∴f()=ln+﹣1>0,即ln>,∴ln,,…,即=lnn,∴2×(1+++…+)=2+2×(++…+)<2+2lnn,即Sn<2(1+lnn)=2+2lnn.【点评】本题主要考查数列通项公式以及前n项和的计算,以及数列和不等式的综合,利用作差法求出数列的通项公式是解决本题的关键.考查学生的计算能力,综合性较强,难度较大.高考数学试卷解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合{124}A =,,,{246}B =,,,则A B =▲.【答案】{}1,2,4,6。

2010年湖北高考理科数学试题和答案

2010年湖北高考理科数学试题和答案

2010年普通高等学校招生全国统一考试(湖北卷)年普通高等学校招生全国统一考试(湖北卷)数学(理工类)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i 为虚数单位,则201111i i +æöç÷-èø= A .- iB .-1 C .iD .1 2.已知{}21|log ,1,|,2U y y x x P y yx x ìü==>==>íýîþ,则U C P = A .1[,)2+¥B .10,2æöç÷èøC .()0,+¥D .1(,0][,)2-¥+¥3.已知函数()3sin cos ,f x x x x R =-Î,若()1f x ³,则x 的取值范围为的取值范围为A .|,3x k x k k Z pp p p ìü+££+ÎíýîþB .|22,3x k x k k Z pp p p ìü+££+ÎíýîþC .5{|,}66x k x k k Z p p p p +££+ÎD .5{|22,}66x k x k k Z p pp p +££+Î 4.将两个顶点在抛物线22(0)y px p =>上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则,则A .n=0 B .n=1 C . n=2 D .n ³3 5.已知随机变量x 服从正态分布()22N ,a ,且P(x <4)=0.8,则P(0<x <2)=)=A.0.6 B .0.4 C .0.3 D .0.2 6.已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()222f x g x a a-+=-+(a >0,且0a ¹).若()2g a =,则()2f = A .2 B .154C . 174D .2a7.如图,用K 、1A 、2A 三类不同的元件连接成一个系统。

2010-2017高考数学全国卷分类汇编(解析几何)

2010-2017高考数学全国卷分类汇编(解析几何)

2010-2017高考数学全国卷分类汇编(解析几何)2010-2017新课标全国卷分类汇编(解析几何)1.(2017课标全国Ⅰ,理10)已知F 为抛物线C :24yx=的交点,过F 作两条互相垂直1l ,2l ,直线1l 与C 交于A 、B两点,直线2l 与C 交于D ,E 两点,ABDE +的最小值为()A .16B .14C .12D .10 【答案】A 【解析】设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴易知11cos 22⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩AF GF AK AK AF P P GP Pθ(几何关系)(抛物线特性)cos AF P AFθ⋅+=∴ 同理1cos P AF θ=-,1cos P BF θ=+,∴22221cos sin P PAB θθ==-又DE与AB垂直,即DE的倾斜角为π2θ+2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭,而24yx=,即2P =.∴22112sin cos AB DE P θθ⎛⎫+=+ ⎪⎝⎭2222sin cos 4sin cos θθθθ+=224sin cos θθ=241sin 24=θ21616sin 2θ=≥,当π4θ=取等号,即AB DE +最小值为16,故选A2.(2017课标全国Ⅰ,理15)已知双曲线2222:x y C ab-,(0a >,b >)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点,若60MAN ∠=︒,则C 的离心率为_______.【答案】23【解析】如图,OA a=,AN AM b ==∵60MAN ∠=︒,∴3AP ,222234OP OA PA a b =-=-∴2232tan 34AP OP a b θ==-又∵tan b aθ=223234b a a b =-,解得223ab =∴22123113b e a ++=3.(2017课标全国Ⅰ,理20)(12分)已知椭圆C :22221x y a b+=()0a b >>,四点()111P ,,()201P ,,331P ⎛- ⎝⎭,,431P ⎛ ⎝⎭,中恰有三点在椭圆C 上.(1)求C 的方程;4.(2017课标全国Ⅱ,理9)若双曲线)00(1:2222>>=-b a by a x C ,的一条渐近线被圆4)2(22=+-y x 所截得的弦长为2,则C 的离心率为 A .2 B .3 C .2 D .332 【答案】A【解析】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为d ==,则点()2,0到直线0bx ay +=的距离为2bd c=== 即2224()3c a c -=,整理可得224c a =,双曲线的离心率2e ===.故选A . 【考点】 双曲线的离心率;直线与圆的位置关系,点到直线的距离公式【名师点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a =;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).5.(2017课标全国Ⅱ,理16)已知F 是抛物线x y C 8:2=的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则=FN .【答案】6 【解析】试题分析:如图所示,不妨设点M 位于第一象限,设抛物线的准线与x 轴交于点F',作MB l ⊥与点B ,NA l ⊥与点A ,由抛物线的解析式可得准线方程为2x =-,则2,4AN FF'==,在直角梯形ANFF'中,中位线'32AN FF BM +==,由抛物线的定义有:3MF MB ==,结合题意,有3MN MF ==,故336FN FM NM =+=+=.【考点】抛物线的定义、梯形中位线在解析几何中的应用.【名师点睛】抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.6.(2017课标全国Ⅱ,理20)(12分)设O 为坐标原点,动点M 在椭圆12:22=+y x C 上,过M 作x 轴的垂线,垂足为N ,点P 满足NM 2=.(1)求点P 的轨迹方程;(2)设点Q 在直线3-=x 上,且1=⋅. 证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .解:(1)设)(y x P ,,则)22(y x M ,,将点M 代入C 中得12222=+y x ,所以点P 的轨迹方程为222=+y x .(2)由题可知)01(,-F ,设)()3(n m P t Q ,,,-,则)1( )3(n m t ---=-=,,,, )3( )(n t m n m ---==,,,.由1=⋅得1322=-+--n tn m m ,由(1)有222=+n m ,则有033=-+tn m ,所以033 =-+=⋅tn m ,即过点P 且垂直于OQ 的直线l 过C 的左焦点F .7.(2017课标全国Ⅲ,理1)已知集合A={}22(,)1x y xy +=│ ,B={}(,)x y y x =│,则A ⋂B 中元素的个数为A .3B .2C .1D .0【答案】B 【解析】A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,故A B 表示两直线与圆的交点,由图可知交点的个数为2,即A B 元素的个数为2,故选B.8.(2017课标全国Ⅲ,理5)已知双曲线C 22221x y a b-= (a >0,b >0)的一条渐近线方程为y x =,且与椭圆221123x y += 有公共焦点,则C 的方程为 A. 221810x y -= B. 22145x y -= C. 22154x y -= D. 22143x y -=【解析】∵双曲线的一条渐近线方程为y x =,则b a =①又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==②由①②解得2,a b ==C 的方程为22145x y -=,故选B.9.(2017课标全国Ⅲ,理10)已知椭圆C :22221xy ab+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为D.13【答案】A【解析】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离d 等于半径,∴d a==又∵0,0a b >>,则上式可化简为223a b =∵222b a c=-,可得()2223aa c=-,即2223c a =∴c e a =A10.(2017课标全国Ⅲ,理12)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为()A .3B .C D .2【解析】由题意,画出右图.设BD与C切于点E,连接CE.以A为原点,AD为x轴正半轴,AB为y轴正半轴建立直角坐标系,则C点坐标为(2,1).∵||1CD=,||2BC=.∴BD∵BD切C于点E.∴CE⊥BD.∴CE是Rt BCD△中斜边BD上的高.12||||22||||||BCDBC CDSECBD BD⋅⋅⋅====△即C.∵P在C上.∴P点的轨迹方程为224(2)(1)5x y-+-=.设P点坐标00(,)x y,可以设出P点坐标满足的参数方程如下:21xyθθ⎧=+⎪⎪⎨⎪=+⎪⎩而00(,)AP x y=,(0,1)AB =,(2,0)AD =.∵(0,1)(2,0)(2,)AP AB ADλμλμμλ=+=+=()A O D xyBPCE∴0112x μθ==+,01y λθ==.两式相加得:112)2sin()3λμθθθϕθϕ+=+=+=++≤(其中sin ϕ,cos ϕ) 当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值3.11.(2017课标全国Ⅲ,理20)(12分)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程. 解:(1)设()()11222A x ,y ,B x ,y ,l :x my =+由222x my y x=+⎧⎨=⎩可得212240则4y my ,y y --==- 又()22212121212==故=224y y y y x ,x ,x x =4 因此OA 的斜率与OB 的斜率之积为1212-4==-14y y x x 所以OA ⊥OB故坐标原点O 在圆M 上.(2)由(1)可得()2121212+=2+=++4=24y y m,x x m y y m + 故圆心M 的坐标为()2+2,m m ,圆M 的半径r =由于圆M 过点P (4,-2),因此0AP BP =,故()()()()121244220x x y y --+++= 即()()121212124+2200x x x x y y y y -++++=由(1)可得1212=-4,=4y y x x ,所以2210m m --=,解得11或2m m ==-.当m=1时,直线l 的方程为x-y-2=0,圆心M 的坐标为(3,1),圆M 10M 的方程为()()223110x y -+-=当12m =-时,直线l 的方程为240x y +-=,圆心M 的坐标为91,-42⎛⎫ ⎪⎝⎭,圆M 的半径为854,圆M 的方程为229185++4216x y ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭12.(2016课标全国Ⅰ,理5)已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A ))3,1(-(B ))3,1(-(C ))3,0((D ))3,0(【解析】:222213x y m n m n-=+-表示双曲线,则()()2230m n m n +->,∴223m n m -<<由双曲线性质知:()()222234c m n m n m =++-=,其中c 是半焦距,∴焦距2224c m =⋅=,解得1m =∴13n -<<,故选A .13.(2016课标全国Ⅰ,理10)以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为(A )2(B )4(C )6(D )8【解析】:以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=,如图:设(0,22A x ,52p D ⎛- ⎝,点()0,22A x 在抛物线22y px =上,∴082px =……①;点52pD ⎛- ⎝在圆222x y r +=上,∴2252p r ⎛⎫+= ⎪⎝⎭……②;点()0,22A x 在圆222x y r +=上,∴2208x r +=……③;联立①②③解得:4p =, F||M MN y =-焦点到准线的距离为4p =.故选B .14.(2016课标全国Ⅰ,理20)(本小题满分12分)设圆015222=-++x y x 的圆心为A ,直线l 过点)0,1(B 且与x 轴不重合,l 交圆A 于D C ,两点,过B 作AC 的平行线交AD 于点E . (Ⅰ)证明EB EA +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 于Q P ,两点,求四边形【解析】:⑴圆A BE AC ∥EBD ∴=∠AE EB ∴+=⑵221:43x y C +联立l 与椭圆圆心A 到所以||PQ =()2212111||||2234MPNQm S MN PQ m +⎡∴=⋅=⋅==⎣+15.(2016课标全国Ⅱ,理4)圆2228130xy x y +--+=的圆心到直线10ax y +-=的距离为1,则a=( )(A )43-(B )34-(C (D )216.(2016课标全国Ⅱ,理11)已知12,F F 是双曲线2222:1x y E a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )(A )2 (B )32(C )3 (D )217.(2016课标全国Ⅱ,理20)(本小题满分12分)已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积;(Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)先求直线的方程,再求点的纵坐标,最后求的面积;(Ⅱ)设,,将直线的方程与椭圆方程组成方程组,消去,用表示,从而表示,同理用表示,再由求.试题解析:(I )设,则由题意知,当时,的方程为,.由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为.将代入得.解得或,所以.因此的面积.(II )由题意,,.将直线的方程代入得.由得,故.由题设,直线的方程为,故同理可得,由得,即.当时上式不成立,因此.等价于,即.由此得,或,解得.因此的取值范围是.考点:椭圆的性质,直线与椭圆的位置关系. 18.(2016课标全国Ⅲ,理11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ba 或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .19.(2016课标全国Ⅲ,理16)已知直线l :330mx y m ++-=与圆2212x y +=交于,A B 两点,过,A B 分别做l 的垂线与x 轴交于,C D 两点,若23AB =,则||CD =__________________. 【答案】4考点:直线与圆的位置关系.【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.20.(2016课标全国Ⅲ,理20)(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.【答案】(Ⅰ)见解析;(Ⅱ)21y x =-.试题解析:由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且)2,21(),,21(),,21(),,2(),0,2(22b a R b Q a P b b B a A +---.记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x . .....3分(Ⅰ)由于F 在线段AB 上,故01=+ab . 记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b a aba ab a b a a b a k =-=-==--=+-=,所以AR FQ . ......5分(Ⅱ)设l 与x 轴的交点为)0,(1x D ,则2,2121211b a S x a b FD a b S PQF ABF -=--=-=∆∆. 由题设可得221211b a x a b -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE ABk k =可得)1(12≠-=+x x yb a .而y ba =+2,所以)1(12≠-=x x y .当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为12-=x y . ....12分考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法.【方法归纳】(1)解析几何中平行问题的证明主要是通过证明两条直线的斜率相等或转化为利用向量证明;(2)求轨迹的方法在高考中最常考的是直接法与代入法(相关点法),利用代入法求解时必须找准主动点与从动点.21.(2015课标全国Ⅰ,理5)已知00(,)M x y 是双曲线22:12x C y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的 取值范围是(A)33(,)33-(B) 33(,)66- (C) 2222(,)33- (D) 2323(,)33- 答案:A解析:由条件知F 1(-,0),F 2(,0),=(--x 0,-y 0),=(-x 0,-y 0), -3<0.① 又=1,=2+2.代入①得,∴-<y 0<22.(2015课标全国Ⅰ,理14)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为答案:+y 2=解析:由条件知圆经过椭圆的三个顶点分别为(4,0),(0,2),(0,-2),设圆心为(a ,0)(a >0),所以=4-a ,解得a =,故圆心为,此时半径r =4-,因此该圆的标准方程是+y 2=23.(2015课标全国Ⅰ,理20)在直角坐标系xOy 中,曲线2:4x C y =与直线:(0)l y kx a a =+>交于,M N 两点。

2010年高考数学湖北卷理科第19题评析

2010年高考数学湖北卷理科第19题评析

故 可得 向量关系


=0 ;若点在 圆内就有 厶4 B>9 。 F 0 ,故
菌 < ;若点在圆外就有 A <9。 0 阳 0 ,故 ・ > . 亩 0
离减去它到 Y轴距离的差都是 1 . ( ) 曲线 c的方程 ; 1求
( ) 否存 在 正 数 m,对 于 过 点 M( 0 且 与 曲 线 C有 两 个 2是 m, ) 交 点 A、B 的任 一 直 线 ,都 有 题 源 与解 法 ・ <0 7若 存 在 ,求 出 m 的
综观 2 1 00年各地 的高考数学试 题 ,多有推陈 出新的创新 型 题 是传 统形 式 ,而 2 1 0 0年 的考题是 向量形式 ,其实两者是完全
试 题 ,值 得 广 大教 师 认 真 研 究 、学 习 和 领 会 . 中也 有 一 些 是 常 等价 的. 其 规 性 考 题 , 对 这 些 考 题 , 教 师 同样 需 要 有 研 究 的 动 力 和 行 动 , 综 上 所 述 ,2 1 的考 题 实 际上 是考 查 点 与 圆 的 位 置 关 系 , 0 0年 在 圆 外 相 应 地 应 有 点 与 圆心 的 距 离 小 于 半 径 、等 于半 径 、大 于 因为 这 些 试 题 是 学 生 学 习和 考 试 的 主要 “ 阵地 ” ,通 过 研 究 此 类 其 实质 是 利 用 点 与 圆 的位 置关 系解 题 .点 在 圆 内 、点 在 圆上 、点
因 此 ,2 1 的考 题 与 2 0 00年 06年 的考 题 一 样 ,可 以 有两 种 不 同 的 解 法 ,如 下 面所 述 .
解 :( ) P ,y 是曲线 C上任意一点 , 1设 ( )
那 么点 尸 ,y满 足 、 = _ ( ) / 1 化 简得 =4 ( >0 . xx ) 一 =lx>0 , ( )

2011年湖北高考数学试题及答案(理科)

2011年湖北高考数学试题及答案(理科)

试卷类型:A2010年普通高等学校招生全国统一考试(湖北卷)数学(理工类)本试卷三大题21小题,全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名和考生号、准考证号填写在试题卷和答题卡上。

并将准考证号条形码粘贴在答题卡上的指定位置。

在用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷、草稿纸上无效。

3.填空题和解答题的作答:用0.5毫米黑色墨水签字笔直接在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将本试题和答题卡一并交上。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i为虚数单位,则201111ii+⎛⎫⎪-⎝⎭=A.- i B.-1 C.i D.12.已知{}21|log,1,|,2U y y x x P y y xx⎧⎫==>==>⎨⎬⎩⎭,则U C P=A.1[,)2+∞B.10,2⎛⎫⎪⎝⎭C.()0,+∞D.1(,0][,)2-∞+∞3.已知函数()cos,f x x x x R=-∈,若()1f x≥,则x的取值范围为A.|,3x k x k k Zππππ⎧⎫+≤≤+∈⎨⎬⎩⎭B.|22,3x k x k k Zππππ⎧⎫+≤≤+∈⎨⎬⎩⎭C5{|,}66x k x k k Zππππ+≤≤+∈D.5{|22,}66x k x k k Zππππ+≤≤+∈4.将两个顶点在抛物线22(0)y px p=>上,另一个顶点是此抛物线焦点的正三角形个数记为n,则A.n=0 B.n=1 C.n=2 D.n ≥35.已知随机变量ξ服从正态分布()22N,a,且P(ξ<4)=0.8,则P(0<ξ<2)=A.0.6 B.0.4 C.0.3 D.0.26.已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()222f x g x a a -+=-+(a >0,且0a ≠).若()2g a =,则()2f =A .2B .154C . 174D .2a 7.如图,用K 、1A 、2A 三类不同的元件连接成一个系统。

2010湖北高考数学卷(理科)附答案__free

2010湖北高考数学卷(理科)附答案__free

2010年普通高等学校招生全国统一考试(湖北卷)数学(理工类)一、选择题:本大题共10小题,每小题5分,共50 分.1.若i 为虚数单位,图中复平面内点Z表示复数z,则表示复数1zi的点是A. E B. FC. GD. H2.设合集A={(x,y)|24x+216y=1},B={(x,y)|y=3x},则BA 的子集的个数是A.4B.3C.2D.13.在△ABC中,a=15,b=10 ,A=60度,则cosB=A. -223B.223C.-63D.634.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是A.512B.12C.712D.345.已知△ABC和点M满足MA+MB+MC=0.若存在实数m使得AB+AC=m AM成立,则m=A.2 B.3 C.4 D.56.将参加夏令营的600名学生编号为:001,002…600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第I 营区,从301到495在第II营区,从496到600在第III营区.三个营区被抽中的人数依次为A.26,16,8 B.25,17,8 C.25,16,9 D.24,17,9注:考查系统抽样的概念,这里一定要弄清楚抽取的规则,属于简单题。

7.如图,在半径为r的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去,设ns为前n个圆的面积之和,则n n s ∞→lim =A .22r π B .283rπC .24r π D .6r π8.现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。

甲、乙不会开车但能从事业其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是 A .152 B .126 C .90 D .549.若直线b x y +=与曲线243x x y --=有公共点,则b 的取 值范围是A .[1,122]-+B . [122,122]-+C . ]3,221[-D .[12,3]-10.记实数12,,x x …,n x 中的最大数为max {12,,x x …,n x }, 最小数为min {12,,x x …,n x }.已知△ABC 的三边边长为,,a b c (a b c ≤≤), 定义它的倾斜度为L =max {,,a b c b c a }⨯min {,,a b cb c a},则“L =1” 是“△ABC 为等边三角形“的A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .既不充分也不必要的条件二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写.答错位置,书写不清,模棱两可均不得分.11.在204(3)x y +的展开式中,系数为有理数的项共有 项.12.已知Z =y x -2,式中变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≤21x y x x y ,则Z 的最大值=_________;13.圆柱形容器内部盛有高度为8cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示)。

全国高考数学理科(全国I卷)试题及答案

全国高考数学理科(全国I卷)试题及答案

普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:1、设z=, 则∣z∣=()A.0B. 12C.1D.√22、已知集合A={x|x2-x-2>0}, 则C R A =()A、{x|-1<x<2}B、{x|-1≤x≤2}C、{x|x<-1}∪{x|x>2}D、{x|x≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建设, 农村的经济收入增加了一倍, 实现翻番, 为更好地了解该地区农村的经济收入变化情况, 统计了该地区新农村建设前后农村的经济收入构成比例, 得到如下饼图:则下面结论中不正确的是()A.新农村建设后, 种植收入减少B.新农村建设后, 其他收入增加了一倍以上C.新农村建设后, 养殖收入增加了一倍D.新农村建设后, 养殖收入与第三产业收入的总和超过了经济收入的一半4、记Sn为等差数列{an}的前n项和, 若3S3= S2+ S4, a1=2, 则a5=()A、-12B、-10C、10D、125、设函数f(x)=x³+(a-1)x²+ax .若f(x)为奇函数, 则曲线y= f(x)在点(0, 0)处的切线方程为()A.y= -2xB.y= -xC.y=2xD.y=x6、在∆ABC中, AD为BC边上的中线, E为AD的中点, 则EB→=()A.34AB→ - 14AC→ B. 14AB→ - 34AC→ C. 34AB→ + 14AC→ D. 14AB→ + 34AC→建设前经济收入构成比例建设后经济收入构成比例7、某圆柱的高为2, 底面周长为16, 其三视图如右图。

圆柱表面上的点M 在正视图上的对应点为A, 圆柱表面上的点N 在左视图上的对应点为B, 则在此圆柱侧面上, 从M 到N 的路径中, 最短路径的长度为( )A. 2√17B. 2√5C. 3D. 28.设抛物线C :y ²=4x 的焦点为F, 过点(-2, 0)且斜率为23的直线与C 交于M, N 两点, 则FM→ ·FN→ =( )A.5B.6C.7D.8 9.已知函数f (x )= g (x )=f (x )+x+a, 若g (x )存在2个零点, 则a 的取值范围是( )A. [-1, 0)B. [0, +∞)C. [-1, +∞)D. [1, +∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。

高考数学 典型例题16 三角函数式的化简与求值 试题

高考数学 典型例题16 三角函数式的化简与求值 试题

卜人入州八九几市潮王学校高考数学典型例题详解三角函数化简与求值三角函数式的化简和求值是高考考察的重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍. ●难点磁场(★★★★★)2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________. ●案例探究 [例1]不查表求sin 220°+cos 280°+3cos20°cos80°的值.★★★★级题目. 知识依托:熟知三角公式并能灵敏应用.错解分析:公式不熟,计算易出错.技巧与方法:解法一利用三角公式进展等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会.解法一:sin 220°+cos 280°+3sin 220°cos80° =21(1-cos40°)+21(1+cos160°)+3sin20°cos80° =1-21cos40°+21cos160°+3sin20°cos(60°+20°) =1-21cos40°+21(cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20°-sin60°sin20°)=1-21cos40°-41cos40°-43sin40°+43sin40°-23sin 220° =1-43cos40°-43(1-cos40°)=41 解法二:设x =sin 220°+cos 280°+3sin20°cos80°y =cos 220°+sin 280°-3cos20°sin80°,那么x +y =1+1-3sin60°=21,x -y =-cos40°+cos160°+3sin100° =-2sin100°sin60°+3sin100°=0 ∴x =y =41,即x =sin 220°+cos 280°+3sin20°cos80°=41. [例2]设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值.★★★★★级题目知识依托:二次函数在给定区间上的最值问题.错解分析:考生不易考察三角函数的有界性,对区间的分类易出错. 技巧与方法:利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座等.解:由y =2(cos x -2a )2-2242+-a a 及cos x ∈[-1,1]得: f (a )⎪⎪⎩⎪⎪⎨⎧≥-<<-----≤)2( 41)22( 122)2( 12a a a a a a ∵f (a )=21,∴1-4a =21⇒a =81∉[2,+∞) 故-22a -2a -1=21,解得:a =-1,此时, y =2(cos x +21)2+21,当cos x =1时,即x =2k π,k ∈Z ,y max =5. [例3]函数f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x(1)求函数f (x )的最小正周期;(2)求f (x )的最小值及获得最小值时相应的x 的值;(3)假设当x ∈[12π,127π]时,f (x )的反函数为f -1(x ),求f --1(1)的值.★★★★★级题目.知识依托:熟知三角函数公式以及三角函数的性质、反函数等知识.错解分析:在求f --1(1)的值时易走弯路.技巧与方法:等价转化,逆向思维.解:(1)f (x )=2cos x sin(x +3π)-3sin 2x +sin x cos x =2cos x (sin x cos3π+cos x sin 3π)-3sin 2x +sin x cos x =2sin x cos x +3cos2x =2sin(2x +3π) ∴f (x )的最小正周期T =π(2)当2x +3π=2k π-2π,即x =k π-125π(k ∈Z )时,f (x )获得最小值-2. (3)令2sin(2x +3π)=1,又x ∈[27,2ππ], ∴2x +3π∈[3π,23π],∴2x +3π=65π,那么 x =4π,故f --1(1)=4π. ●锦囊妙计本难点所涉及的问题以及解决的方法主要有:1.求值问题的根本类型:1°给角求值,2°给值求值,3°给式求值,4°求函数式的最值或者值域,5°化简求值.2.技巧与方法:1°要寻求角与角关系的特殊性,化非特角为特殊角,纯熟准确地应用公式.2°注意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用.3°对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的打破口,很难入手的问题,可利用分析法.4°求最值问题,常用配方法、换元法来解决.●歼灭难点训练一、选择题1.(★★★★★)方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈ (-2,2ππ),那么tan 2βα+的值是() A.21 B.-2 C.34 D.21或者-2 二、填空题2.(★★★★)sin α=53,α∈(2π,π),tan(π-β)=21,那么tan(α-2β)=_________. 3.(★★★★★)设α∈(43,4ππ),β∈(0,4π),cos(α-4π)=53,sin(43π+β)=135,那么sin(α+β)=_________.三、解答题4.不查表求值:.10cos 1)370tan 31(100sin 130sin 2︒+︒+︒+︒5.cos(4π+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值. 6.(★★★★★)α-β=38π,且α≠k π(k ∈Z ).求)44(sin 42sin 2csc )cos(12βπαααπ-----的最大值及最大值时的条件.7.(★★★★★)如右图,扇形OAB 的半径为1,中心角60°,四边形PQRS是扇形的内接矩形,当其面积最大时,求点P 的位置,并求此最大面积.8.(★★★★★)cos α+sin β=3,sin α+cos β的取值范围是D ,x ∈D ,求函数y =10432log 21++x x 的最小值,并求获得最小值时x 的值.参考答案难点磁场解法一:∵2π<β<α<43π,∴0<α-β<4π.π<α+β<43π,∴sin(α-β)=.54)(sin 1)cos(,135)(cos 122-=+--=+=--βαβαβα ∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β)解法二:∵sin(α-β)=135,cos(α+β)=-54, ∴sin2α+sin2β=2sin(α+β)cos(α-β)=-6572 sin2α-sin2β=2cos(α+β)sin(α-β)=-6540 ∴sin2α=6556)65406572(21-=-- 歼灭难点训练一、1.解析:∵a >1,tan α+tan β=-4a <0.tan α+tan β=3a +1>0,又α、β∈(-2π,2π)∴α、β∈(-2π,θ),那么2βα+∈(-2π,0),又tan(α+β)=342tan 12tan 2)tan(,34)13(14tan tan 1tan tan 2=β+α-β+α=β+α=+--=βα-β+α又a a , 整理得2tan 222tan 32-β+α+β+α=0.解得tan 2β+α=-2. 答案:B2.解析:∵sin α=53,α∈(2π,π),∴cos α=-54 那么tan α=-43,又tan(π-β)=21可得tan β=-21, 答案:247 3.解析:α∈(43,4ππ),α-4π∈(0,2π),又cos(α-4π)=53. 答案:6556 三、4.答案:2π≠αk 〔k ∈Z 〕,322322π-π≠π-α∴k 〔k ∈Z 〕 ∴当,22322π-π=π-αk 即34π+π=αk 〔k ∈Z 〕时,)322sin(π-α的最小值为-1.7.解:以OA 为x 轴.O 为原点,建立平面直角坐标系,并设P 的坐标为(cos θ,sin θ),那么 |PS |=sin θ.直线OB 的方程为y =3x ,直线PQ 的方程为y =sin θ.联立解之得Q (33sin θ;sin θ),所以|PQ |=cos θ-33sin θ. 于是S PQRS =sin θ(cos θ-33sin θ)=33(3sin θcos θ-sin 2θ)=33(23sin2θ-22cos 1θ-)=33(23sin2θ+21cos2θ-21)=33sin(2θ+6π)-63. ∵0<θ<3π,∴6π<2θ+6π<65π.∴21<sin(2θ+6π)≤1. ∴sin(2θ+6π)=1时,PQRS 面积最大,且最大面积是63,此时,θ=6π,点P 为的中点,P (21,23). 8.解:设u =sin α+cos β.那么u 2+(3)2=(sin α+cos β)2+(cos α+sin β)2=2+2sin(α+β)≤4.∴u 2≤1,-1≤u ≤D =[-1,1],设t =32+x ,∵-1≤x ≤1,∴1≤t ≤5.x =232-t .。

高考数学试卷理科023182

高考数学试卷理科023182

高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+12.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=15.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.327.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.28.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c <010.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f (2)D.f(2)<f(0)<f(﹣2)二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前n项和等于.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)设n∈N*,xn是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(Ⅰ)求数列{xn}的通项公式;(Ⅱ)记Tn=x12x32…x2n﹣12,证明:Tn≥.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM 的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.高考数学试卷(理科)参考答案与试题解析一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先化简复数,再得出点的坐标,即可得出结论.【解答】解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.【点评】本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.2.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+1【分析】利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.【解答】解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;故选:A.【点评】本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f(﹣x)与f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x轴的交点以及与对应方程的解的个数是一致的.3.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】运用指数函数的单调性,结合充分必要条件的定义,即可判断.【解答】解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选:A.【点评】本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=1【分析】对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.【解答】解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选:C.【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.5.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【分析】利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.【解答】解:对于A,若α,β垂直于同一平面,则α与β不一定平行,例如墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选:D.【点评】本题考查了空间线面关系的判断;用到了面面垂直、线面平行的性质定理和判定定理.6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.32【分析】根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.【解答】解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.【点评】本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.7.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.2【分析】根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.【解答】解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××+×2×1=2+.故选:B.【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.8.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥【分析】由题意,知道,,根据已知三角形为等边三角形解之.【解答】解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,∴的方向应该为的方向.所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选:D.【点评】本题考查了向量的数量积公式的运用;注意:三角形的内角与向量的夹角的关系.9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c <0【分析】分别根据函数的定义域,函数零点以及f(0)的取值进行判断即可.【解答】解:函数在P处无意义,由图象看P在y轴右边,所以﹣c>0,得c<0,f(0)=,∴b>0,由f(x)=0得ax+b=0,即x=﹣,即函数的零点x=﹣>0,∴a<0,综上a<0,b>0,c<0,故选:C.【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及f(0)的符号是解决本题的关键.10.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f (2)D.f(2)<f(0)<f(﹣2)【分析】依题意可求ω=2,又当x=时,函数f(x)取得最小值,可解得φ,从而可求解析式f(x)=Asin(2x+),利用正弦函数的图象和性质及诱导公式即可比较大小.【解答】解:依题意得,函数f(x)的周期为π,∵ω>0,∴ω==2.又∵当x=时,函数f(x)取得最小值,∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,∴f(x)=Asin(2x+2kπ+)=Asin(2x+).∴f(﹣2)=Asin(﹣4+)=Asin(﹣4+2π)>0.f(2)=Asin(4+)<0,f(0)=Asin=Asin>0,又∵>﹣4+2π>>,而f(x)=Asinx在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0).故选:A.【点评】本题主要考查了三角函数的周期性及其求法,三角函数的图象与性质,用诱导公式将函数值转化到一个单调区间是比较大小的关键,属于中档题.二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是35(用数字填写答案)【分析】根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为5求得r,再代入系数求出结果.【解答】解:根据所给的二项式写出展开式的通项,Tr+1==;要求展开式中含x5的项的系数,∴21﹣4r=5,∴r=4,可得:=35.故答案为:35.【点评】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是6.【分析】圆ρ=8sinθ化为ρ2=8ρsinθ,把代入可得直角坐标方程,直线θ=(ρ∈R)化为y=x.利用点到直线的距离公式可得圆心C(0,4)到直线的距离d,可得圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r.【解答】解:圆ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16.直线θ=(ρ∈R)化为y=x.∴圆心C(0,4)到直线的距离d==2,∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6.故答案为:6.【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为4【分析】模拟执行程序框图,依次写出每次循环得到的a,n的值,当a=时不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.【解答】解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故答案为:4.【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的a,n的值是解题的关键,属于基础题.14.(5分)已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前n项和等于2n﹣1.【分析】利用等比数列的性质,求出数列的首项以及公比,即可求解数列{an}的前n项和.【解答】解:数列{an}是递增的等比数列,a1+a4=9,a2a3=8,可得a1a4=8,解得a1=1,a4=8,∴8=1×q3,q=2,数列{an}的前n项和为:=2n﹣1.故答案为:2n﹣1.【点评】本题考查等比数列的性质,数列{an}的前n项和求法,基本知识的考查.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.【分析】对五个条件分别分析解答;利用数形结合以及导数,判断单调区间以及极值.【解答】解:设f(x)=x3+ax+b,f'(x)=3x2+a,①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=﹣5,f(﹣1)=﹣1;并且x>1或者x<﹣1时f'(x)>0,所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数,所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;如图②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=0,f(﹣1)=4;如图③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f(1)=﹣2+b>0,函数图象形状如图②,所以方程x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x)=x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;⑤a=1,b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;综上满足使得该三次方程仅有一个实根的是①③④⑤.故答案为:①③④⑤.【点评】本题考查了函数的零点与方程的根的关系;关键是数形结合、利用导数解之.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.【分析】由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD的长.【解答】解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分【点评】本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基本知识的考查.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)【分析】(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,利用古典概型的概率求解即可.(Ⅱ)X的可能取值为:200,300,400.求出概率,得到分布列,然后求解期望即可.【解答】解:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)==.(Ⅱ)X的可能取值为:200,300,400P(X=200)==.P(X=300)==.P(X=400)=1﹣P(X=200)﹣P(X=300)=.X的分布列为:X 200 300 400PEX=200×+300×+400×=350.【点评】本题考查离散型随机变量的分布列以及期望的求法,考查计算能力.18.(12分)设n∈N*,xn是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(Ⅰ)求数列{xn}的通项公式;(Ⅱ)记Tn=x12x32…x2n﹣12,证明:Tn≥.【分析】(1)利用导数求切线方程求得切线直线并求得横坐标;(2)利用放缩法缩小式子的值从而达到所需要的式子成立.【解答】解:(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y﹣2=(2n+2)(x﹣1)令y=0,解得切线与x轴的交点的横坐标为,(2)证明:由题设和(1)中的计算结果可知:Tn=x12x32…x2n﹣12=,当n=1时,,当n≥2时,因为x2n﹣12==>==,所以Tn;综上所述,可得对任意的n∈N+,均有.【点评】本题主要考查切线方程的求法和放缩法的应用,属基础题型.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.【分析】(Ⅰ)通过四边形A1B1CD为平行四边形,可得B1C∥A1D,利用线面平行的判定定理即得结论;(Ⅱ)以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz,设边长为2,则所求值即为平面A1B1CD的一个法向量与平面A1EFD的一个法向量的夹角的余弦值的绝对值,计算即可.【解答】(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面B1CD1=EF,∴EF∥B1C;(Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵AD1⊥平面A1B1CD,∴=(0,2,2)为平面A1B1CD的一个法向量,设平面A1EFD的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos<,>==,∴二面角E﹣A1D﹣B1的余弦值为.【点评】本题考查空间中线线平行的判定,求二面角的三角函数值,注意解题方法的积累,属于中档题.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM 的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.【分析】(I)由于点M在线段AB上,满足|BM|=2|MA|,即,可得.利用,可得.(II)由(I)可得直线AB的方程为:=1,利用中点坐标公式可得N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,可得b,解得即可.【解答】解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,∵A(a,0),B(0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴a=3.∴椭圆E的方程为:.【点评】本题考查了椭圆的标准方程及其性质、线段的垂直平分线性质、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.【分析】(Ⅰ)设t=sinx,f(t)=t2﹣at+b(﹣1<t<1),讨论对称轴和区间的关系,即可判断极值的存在;(Ⅱ)结合不等式的性质求得最大值;(Ⅲ)由(Ⅱ)结合不等式的性质求得z=b﹣的最大值.【解答】解:(Ⅰ)设t=sinx,在x∈(﹣,)递增,即有f(t)=t2﹣at+b(﹣1<t<1),f′(t)=2t﹣a,①当a≥2时,f′(t)≤0,f(t)递减,即f(sinx)递减;当a≤﹣2时,f′(t)≥0,f(t)递增,即f(sinx)递增.即有a≥2或a≤﹣2时,不存在极值.②当﹣2<a<2时,﹣1<t<,f′(t)<0,f(sinx)递减;<t<1,f′(t)>0,f(sinx)递增.f(sinx)有极小值f()=b﹣;(Ⅱ)﹣≤x≤时,|f(sinx)﹣f0(sinx)|=|(a﹣a0)sinx+b﹣b0|≤|a﹣a0|+|b﹣b0| 当(a﹣a0)(b﹣b0)≥0时,取x=,等号成立;当(a﹣a0)(b﹣b0)≤0时,取x=﹣,等号成立.由此可知,|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值为D=|a﹣a0|+|b﹣b0|.(Ⅲ)D≤1即为|a|+|b|≤1,此时0≤a2≤1,﹣1≤b≤1,从而z=b﹣≤1取a=0,b=1,则|a|+|b|≤1,并且z=b﹣=1.由此可知,z=b﹣满足条件D≤1的最大值为1.【点评】本题考查函数的性质和运用,主要考查二次函数的单调性和极值、最值,考查分类讨论的思想方法和数形结合的思想,属于难题.高考数学模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案) (6)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3iB.2﹣3iC.3+2iD.3﹣2i2.(5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}3.(5分)已知a=,b=log2,c=log,则()A.a>b>cB.a>c>bC.c>a>bD.c>b>a4.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α5.(5分)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A.p∨qB.p∧qC.(¬p)∧(¬q)D.p∨(¬q)6.(5分)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144B.120C.72D.247.(5分)某几何体三视图如图所示,则该几何体的体积为()A.8﹣2πB.8﹣πC.8﹣D.8﹣8.(5分)设等差数列{an}的公差为d,若数列{}为递减数列,则()A.d<0B.d>0C.a1d<0D.a1d>09.(5分)将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,]上单调递减C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增10.(5分)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A. B. C. D.11.(5分)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3]B.[﹣6,﹣]C.[﹣6,﹣2]D.[﹣4,﹣3]12.(5分)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为()A. B. C. D.二、填空题:本大题共4小题,每小题5分。

高考数学试卷理科02312

高考数学试卷理科02312

高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+12.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=15.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.327.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.28.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c <010.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f (2)D.f(2)<f(0)<f(﹣2)二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前n项和等于.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)设n∈N*,xn是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(Ⅰ)求数列{xn}的通项公式;(Ⅱ)记Tn=x12x32…x2n﹣12,证明:Tn≥.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM 的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.高考数学试卷(理科)参考答案与试题解析一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先化简复数,再得出点的坐标,即可得出结论.【解答】解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.【点评】本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.2.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+1【分析】利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.【解答】解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;故选:A.【点评】本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f(﹣x)与f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x轴的交点以及与对应方程的解的个数是一致的.3.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】运用指数函数的单调性,结合充分必要条件的定义,即可判断.【解答】解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选:A.【点评】本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=1【分析】对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.【解答】解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选:C.【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.5.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【分析】利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.【解答】解:对于A,若α,β垂直于同一平面,则α与β不一定平行,例如墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选:D.【点评】本题考查了空间线面关系的判断;用到了面面垂直、线面平行的性质定理和判定定理.6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.32【分析】根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.【解答】解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.【点评】本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.7.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.2【分析】根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.【解答】解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××+×2×1=2+.故选:B.【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.8.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥【分析】由题意,知道,,根据已知三角形为等边三角形解之.【解答】解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,∴的方向应该为的方向.所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选:D.【点评】本题考查了向量的数量积公式的运用;注意:三角形的内角与向量的夹角的关系.9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c <0【分析】分别根据函数的定义域,函数零点以及f(0)的取值进行判断即可.【解答】解:函数在P处无意义,由图象看P在y轴右边,所以﹣c>0,得c<0,f(0)=,∴b>0,由f(x)=0得ax+b=0,即x=﹣,即函数的零点x=﹣>0,∴a<0,综上a<0,b>0,c<0,故选:C.【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及f(0)的符号是解决本题的关键.10.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f (2)D.f(2)<f(0)<f(﹣2)【分析】依题意可求ω=2,又当x=时,函数f(x)取得最小值,可解得φ,从而可求解析式f(x)=Asin(2x+),利用正弦函数的图象和性质及诱导公式即可比较大小.【解答】解:依题意得,函数f(x)的周期为π,∵ω>0,∴ω==2.又∵当x=时,函数f(x)取得最小值,∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,∴f(x)=Asin(2x+2kπ+)=Asin(2x+).∴f(﹣2)=Asin(﹣4+)=Asin(﹣4+2π)>0.f(2)=Asin(4+)<0,f(0)=Asin=Asin>0,又∵>﹣4+2π>>,而f(x)=Asinx在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0).故选:A.【点评】本题主要考查了三角函数的周期性及其求法,三角函数的图象与性质,用诱导公式将函数值转化到一个单调区间是比较大小的关键,属于中档题.二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是35(用数字填写答案)【分析】根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为5求得r,再代入系数求出结果.【解答】解:根据所给的二项式写出展开式的通项,Tr+1==;要求展开式中含x5的项的系数,∴21﹣4r=5,∴r=4,可得:=35.故答案为:35.【点评】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是6.【分析】圆ρ=8sinθ化为ρ2=8ρsinθ,把代入可得直角坐标方程,直线θ=(ρ∈R)化为y=x.利用点到直线的距离公式可得圆心C(0,4)到直线的距离d,可得圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r.【解答】解:圆ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16.直线θ=(ρ∈R)化为y=x.∴圆心C(0,4)到直线的距离d==2,∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6.故答案为:6.【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为4【分析】模拟执行程序框图,依次写出每次循环得到的a,n的值,当a=时不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.【解答】解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故答案为:4.【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的a,n的值是解题的关键,属于基础题.14.(5分)已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前n项和等于2n﹣1.【分析】利用等比数列的性质,求出数列的首项以及公比,即可求解数列{an}的前n项和.【解答】解:数列{an}是递增的等比数列,a1+a4=9,a2a3=8,可得a1a4=8,解得a1=1,a4=8,∴8=1×q3,q=2,数列{an}的前n项和为:=2n﹣1.故答案为:2n﹣1.【点评】本题考查等比数列的性质,数列{an}的前n项和求法,基本知识的考查.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.【分析】对五个条件分别分析解答;利用数形结合以及导数,判断单调区间以及极值.【解答】解:设f(x)=x3+ax+b,f'(x)=3x2+a,①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=﹣5,f(﹣1)=﹣1;并且x>1或者x<﹣1时f'(x)>0,所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数,所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;如图②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=0,f(﹣1)=4;如图③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f(1)=﹣2+b>0,函数图象形状如图②,所以方程x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x)=x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;⑤a=1,b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;综上满足使得该三次方程仅有一个实根的是①③④⑤.故答案为:①③④⑤.【点评】本题考查了函数的零点与方程的根的关系;关键是数形结合、利用导数解之.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.【分析】由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD的长.【解答】解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分【点评】本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基本知识的考查.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)【分析】(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,利用古典概型的概率求解即可.(Ⅱ)X的可能取值为:200,300,400.求出概率,得到分布列,然后求解期望即可.【解答】解:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)==.(Ⅱ)X的可能取值为:200,300,400P(X=200)==.P(X=300)==.P(X=400)=1﹣P(X=200)﹣P(X=300)=.X的分布列为:X 200 300 400PEX=200×+300×+400×=350.【点评】本题考查离散型随机变量的分布列以及期望的求法,考查计算能力.18.(12分)设n∈N*,xn是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(Ⅰ)求数列{xn}的通项公式;(Ⅱ)记Tn=x12x32…x2n﹣12,证明:Tn≥.【分析】(1)利用导数求切线方程求得切线直线并求得横坐标;(2)利用放缩法缩小式子的值从而达到所需要的式子成立.【解答】解:(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y﹣2=(2n+2)(x﹣1)令y=0,解得切线与x轴的交点的横坐标为,(2)证明:由题设和(1)中的计算结果可知:Tn=x12x32…x2n﹣12=,当n=1时,,当n≥2时,因为x2n﹣12==>==,所以Tn;综上所述,可得对任意的n∈N+,均有.【点评】本题主要考查切线方程的求法和放缩法的应用,属基础题型.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.【分析】(Ⅰ)通过四边形A1B1CD为平行四边形,可得B1C∥A1D,利用线面平行的判定定理即得结论;(Ⅱ)以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz,设边长为2,则所求值即为平面A1B1CD的一个法向量与平面A1EFD的一个法向量的夹角的余弦值的绝对值,计算即可.【解答】(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面B1CD1=EF,∴EF∥B1C;(Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵AD1⊥平面A1B1CD,∴=(0,2,2)为平面A1B1CD的一个法向量,设平面A1EFD的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos<,>==,∴二面角E﹣A1D﹣B1的余弦值为.【点评】本题考查空间中线线平行的判定,求二面角的三角函数值,注意解题方法的积累,属于中档题.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM 的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.【分析】(I)由于点M在线段AB上,满足|BM|=2|MA|,即,可得.利用,可得.(II)由(I)可得直线AB的方程为:=1,利用中点坐标公式可得N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,可得b,解得即可.【解答】解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,∵A(a,0),B(0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴a=3.∴椭圆E的方程为:.【点评】本题考查了椭圆的标准方程及其性质、线段的垂直平分线性质、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.【分析】(Ⅰ)设t=sinx,f(t)=t2﹣at+b(﹣1<t<1),讨论对称轴和区间的关系,即可判断极值的存在;(Ⅱ)结合不等式的性质求得最大值;(Ⅲ)由(Ⅱ)结合不等式的性质求得z=b﹣的最大值.【解答】解:(Ⅰ)设t=sinx,在x∈(﹣,)递增,即有f(t)=t2﹣at+b(﹣1<t<1),f′(t)=2t﹣a,①当a≥2时,f′(t)≤0,f(t)递减,即f(sinx)递减;当a≤﹣2时,f′(t)≥0,f(t)递增,即f(sinx)递增.即有a≥2或a≤﹣2时,不存在极值.②当﹣2<a<2时,﹣1<t<,f′(t)<0,f(sinx)递减;<t<1,f′(t)>0,f(sinx)递增.f(sinx)有极小值f()=b﹣;(Ⅱ)﹣≤x≤时,|f(sinx)﹣f0(sinx)|=|(a﹣a0)sinx+b﹣b0|≤|a﹣a0|+|b﹣b0| 当(a﹣a0)(b﹣b0)≥0时,取x=,等号成立;当(a﹣a0)(b﹣b0)≤0时,取x=﹣,等号成立.由此可知,|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值为D=|a﹣a0|+|b﹣b0|.(Ⅲ)D≤1即为|a|+|b|≤1,此时0≤a2≤1,﹣1≤b≤1,从而z=b﹣≤1取a=0,b=1,则|a|+|b|≤1,并且z=b﹣=1.由此可知,z=b﹣满足条件D≤1的最大值为1.【点评】本题考查函数的性质和运用,主要考查二次函数的单调性和极值、最值,考查分类讨论的思想方法和数形结合的思想,属于难题.高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.(5分)设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1) B.(0,1)C.(﹣1,+∞)D.(0,+∞)2.(5分)若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i3.(5分)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.1404.(5分)若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.125.(5分)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π6.(5分)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(5分)函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是()A.B.πC.D.2π8.(5分)已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣9.(5分)已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f (﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.1 C.0 D.210.(5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=ex D.y=x3二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为.12.(5分)若(ax2+)5的展开式中x5的系数是﹣80,则实数a=.13.(5分)已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E 上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是.14.(5分)在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为.15.(5分)已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.三、解答题,:本大题共6小题,共75分.16.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.17.(12分)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(Ⅱ)已知EF=FB=AC=2,AB=BC,求二面角F﹣BC﹣A的余弦值.18.(12分)已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1.(Ⅰ)求数列{bn}的通项公式;(Ⅱ)令cn=,求数列{cn}的前n项和Tn.19.(12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.20.(13分)已知f(x)=a(x﹣lnx)+,a∈R.(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.21.(14分)平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.(I)求椭圆C的方程;(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.(5分)设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1) B.(0,1)C.(﹣1,+∞)D.(0,+∞)【分析】求解指数函数的值域化简A,求解一元二次不等式化简B,再由并集运算得答案.【解答】解:∵A={y|y=2x,x∈R}=(0,+∞),B={x|x2﹣1<0}=(﹣1,1),∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).故选:C.【点评】本题考查并集及其运算,考查了指数函数的值域,考查一元二次不等式的解法,是基础题.2.(5分)若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【分析】设出复数z,通过复数方程求解即可.【解答】解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.故选:B.【点评】本题考查复数的代数形式混合运算,考查计算能力.3.(5分)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.140【分析】根据已知中的频率分布直方图,先计算出自习时间不少于22.5小时的频率,进而可得自习时间不少于22.5小时的频数.【解答】解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,故自习时间不少于22.5小时的频率为:0.7×200=140,故选:D.【点评】本题考查的知识点是频率分布直方图,难度不大,属于基础题目.4.(5分)若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.12【分析】由约束条件作出可行域,然后结合x2+y2的几何意义,即可行域内的动点与原点距离的平方求得x2+y2的最大值.【解答】解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1).∵,∴x2+y2的最大值是10.故选:C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.5.(5分)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π【分析】由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,进而可得答案.【解答】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得2R=.故R=,故半球的体积为:=π,棱锥的底面面积为:1,高为1,故棱锥的体积V=,故组合体的体积为:+π,故选:C.【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.6.(5分)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”⇒“平面α和平面β相交”,反之不成立.【解答】解:直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”⇒“平面α和平面β相交”,反之不成立.∴“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选:A.【点评】本题考查了空间位置关系、简易逻辑的判定方法,考查了推理能力,属于基础题.7.(5分)函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是()A.B.πC.D.2π【分析】利用和差角及二倍角公式,化简函数的解析式,进而可得函数的周期.【解答】解:函数f(x)=(sinx+cosx)(cosx﹣sinx)=2sin(x+)•2cos (x+)=2sin(2x+),∴T=π,故选:B.【点评】本题考查的知识点是和差角及二倍角公式,三角函数的周期,难度中档.8.(5分)已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣【分析】若⊥(t+),则•(t+)=0,进而可得实数t的值.【解答】解:∵4||=3||,cos<,>=,⊥(t+),∴•(t+)=t•+2=t||•||•+||2=()||2=0,解得:t=﹣4,故选:B.【点评】本题考查的知识点是平面向量数量积的运算,向量垂直的充要条件,难度不大,属于基础题.9.(5分)已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f (﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.1 C.0 D.2【分析】求得函数的周期为1,再利用当﹣1≤x≤1时,f(﹣x)=﹣f(x),得到f(1)=﹣f (﹣1),当x<0时,f(x)=x3﹣1,得到f(﹣1)=﹣2,即可得出结论.【解答】解:∵当x>时,f(x+)=f(x﹣),∴当x>时,f(x+1)=f(x),即周期为1.∴f(6)=f(1),∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),∴f(1)=﹣f(﹣1),∵当x<0时,f(x)=x3﹣1,∴f(﹣1)=﹣2,∴f(1)=﹣f(﹣1)=2,∴f(6)=2.故选:D.【点评】本题考查函数值的计算,考查函数的周期性,考查学生的计算能力,属于中档题.10.(5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=ex D.y=x3【分析】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,进而可得答案.【解答】解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,当y=sinx时,y′=cosx,满足条件;当y=lnx时,y′=>0恒成立,不满足条件;当y=ex时,y′=ex>0恒成立,不满足条件;当y=x3时,y′=3x2>0恒成立,不满足条件;故选:A.【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度中档.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为3 .。

高考数学试卷理科023132

高考数学试卷理科023132

高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+12.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=15.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.327.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.28.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c <010.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f (2)D.f(2)<f(0)<f(﹣2)二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前n项和等于.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)设n∈N*,xn是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(Ⅰ)求数列{xn}的通项公式;(Ⅱ)记Tn=x12x32…x2n﹣12,证明:Tn≥.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM 的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.高考数学试卷(理科)参考答案与试题解析一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先化简复数,再得出点的坐标,即可得出结论.【解答】解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.【点评】本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.2.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+1【分析】利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.【解答】解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;故选:A.【点评】本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f(﹣x)与f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x轴的交点以及与对应方程的解的个数是一致的.3.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】运用指数函数的单调性,结合充分必要条件的定义,即可判断.【解答】解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选:A.【点评】本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=1【分析】对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.【解答】解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选:C.【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.5.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【分析】利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.【解答】解:对于A,若α,β垂直于同一平面,则α与β不一定平行,例如墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选:D.【点评】本题考查了空间线面关系的判断;用到了面面垂直、线面平行的性质定理和判定定理.6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.32【分析】根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.【解答】解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.【点评】本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.7.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.2【分析】根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.【解答】解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××+×2×1=2+.故选:B.【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.8.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥【分析】由题意,知道,,根据已知三角形为等边三角形解之.【解答】解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,∴的方向应该为的方向.所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选:D.【点评】本题考查了向量的数量积公式的运用;注意:三角形的内角与向量的夹角的关系.9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c <0【分析】分别根据函数的定义域,函数零点以及f(0)的取值进行判断即可.【解答】解:函数在P处无意义,由图象看P在y轴右边,所以﹣c>0,得c<0,f(0)=,∴b>0,由f(x)=0得ax+b=0,即x=﹣,即函数的零点x=﹣>0,∴a<0,综上a<0,b>0,c<0,故选:C.【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及f(0)的符号是解决本题的关键.10.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f (2)D.f(2)<f(0)<f(﹣2)【分析】依题意可求ω=2,又当x=时,函数f(x)取得最小值,可解得φ,从而可求解析式f(x)=Asin(2x+),利用正弦函数的图象和性质及诱导公式即可比较大小.【解答】解:依题意得,函数f(x)的周期为π,∵ω>0,∴ω==2.又∵当x=时,函数f(x)取得最小值,∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,∴f(x)=Asin(2x+2kπ+)=Asin(2x+).∴f(﹣2)=Asin(﹣4+)=Asin(﹣4+2π)>0.f(2)=Asin(4+)<0,f(0)=Asin=Asin>0,又∵>﹣4+2π>>,而f(x)=Asinx在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0).故选:A.【点评】本题主要考查了三角函数的周期性及其求法,三角函数的图象与性质,用诱导公式将函数值转化到一个单调区间是比较大小的关键,属于中档题.二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是35(用数字填写答案)【分析】根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为5求得r,再代入系数求出结果.【解答】解:根据所给的二项式写出展开式的通项,Tr+1==;要求展开式中含x5的项的系数,∴21﹣4r=5,∴r=4,可得:=35.故答案为:35.【点评】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是6.【分析】圆ρ=8sinθ化为ρ2=8ρsinθ,把代入可得直角坐标方程,直线θ=(ρ∈R)化为y=x.利用点到直线的距离公式可得圆心C(0,4)到直线的距离d,可得圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r.【解答】解:圆ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16.直线θ=(ρ∈R)化为y=x.∴圆心C(0,4)到直线的距离d==2,∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6.故答案为:6.【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为4【分析】模拟执行程序框图,依次写出每次循环得到的a,n的值,当a=时不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.【解答】解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故答案为:4.【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的a,n的值是解题的关键,属于基础题.14.(5分)已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前n项和等于2n﹣1.【分析】利用等比数列的性质,求出数列的首项以及公比,即可求解数列{an}的前n项和.【解答】解:数列{an}是递增的等比数列,a1+a4=9,a2a3=8,可得a1a4=8,解得a1=1,a4=8,∴8=1×q3,q=2,数列{an}的前n项和为:=2n﹣1.故答案为:2n﹣1.【点评】本题考查等比数列的性质,数列{an}的前n项和求法,基本知识的考查.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.【分析】对五个条件分别分析解答;利用数形结合以及导数,判断单调区间以及极值.【解答】解:设f(x)=x3+ax+b,f'(x)=3x2+a,①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=﹣5,f(﹣1)=﹣1;并且x>1或者x<﹣1时f'(x)>0,所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数,所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;如图②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=0,f(﹣1)=4;如图③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f(1)=﹣2+b>0,函数图象形状如图②,所以方程x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x)=x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;⑤a=1,b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;综上满足使得该三次方程仅有一个实根的是①③④⑤.故答案为:①③④⑤.【点评】本题考查了函数的零点与方程的根的关系;关键是数形结合、利用导数解之.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.【分析】由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD的长.【解答】解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分【点评】本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基本知识的考查.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)【分析】(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,利用古典概型的概率求解即可.(Ⅱ)X的可能取值为:200,300,400.求出概率,得到分布列,然后求解期望即可.【解答】解:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)==.(Ⅱ)X的可能取值为:200,300,400P(X=200)==.P(X=300)==.P(X=400)=1﹣P(X=200)﹣P(X=300)=.X的分布列为:X 200 300 400PEX=200×+300×+400×=350.【点评】本题考查离散型随机变量的分布列以及期望的求法,考查计算能力.18.(12分)设n∈N*,xn是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(Ⅰ)求数列{xn}的通项公式;(Ⅱ)记Tn=x12x32…x2n﹣12,证明:Tn≥.【分析】(1)利用导数求切线方程求得切线直线并求得横坐标;(2)利用放缩法缩小式子的值从而达到所需要的式子成立.【解答】解:(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y﹣2=(2n+2)(x﹣1)令y=0,解得切线与x轴的交点的横坐标为,(2)证明:由题设和(1)中的计算结果可知:Tn=x12x32…x2n﹣12=,当n=1时,,当n≥2时,因为x2n﹣12==>==,所以Tn;综上所述,可得对任意的n∈N+,均有.【点评】本题主要考查切线方程的求法和放缩法的应用,属基础题型.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.【分析】(Ⅰ)通过四边形A1B1CD为平行四边形,可得B1C∥A1D,利用线面平行的判定定理即得结论;(Ⅱ)以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz,设边长为2,则所求值即为平面A1B1CD的一个法向量与平面A1EFD的一个法向量的夹角的余弦值的绝对值,计算即可.【解答】(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面B1CD1=EF,∴EF∥B1C;(Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵AD1⊥平面A1B1CD,∴=(0,2,2)为平面A1B1CD的一个法向量,设平面A1EFD的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos<,>==,∴二面角E﹣A1D﹣B1的余弦值为.【点评】本题考查空间中线线平行的判定,求二面角的三角函数值,注意解题方法的积累,属于中档题.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM 的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.【分析】(I)由于点M在线段AB上,满足|BM|=2|MA|,即,可得.利用,可得.(II)由(I)可得直线AB的方程为:=1,利用中点坐标公式可得N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,可得b,解得即可.【解答】解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,∵A(a,0),B(0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴a=3.∴椭圆E的方程为:.【点评】本题考查了椭圆的标准方程及其性质、线段的垂直平分线性质、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.【分析】(Ⅰ)设t=sinx,f(t)=t2﹣at+b(﹣1<t<1),讨论对称轴和区间的关系,即可判断极值的存在;(Ⅱ)结合不等式的性质求得最大值;(Ⅲ)由(Ⅱ)结合不等式的性质求得z=b﹣的最大值.【解答】解:(Ⅰ)设t=sinx,在x∈(﹣,)递增,即有f(t)=t2﹣at+b(﹣1<t<1),f′(t)=2t﹣a,①当a≥2时,f′(t)≤0,f(t)递减,即f(sinx)递减;当a≤﹣2时,f′(t)≥0,f(t)递增,即f(sinx)递增.即有a≥2或a≤﹣2时,不存在极值.②当﹣2<a<2时,﹣1<t<,f′(t)<0,f(sinx)递减;<t<1,f′(t)>0,f(sinx)递增.f(sinx)有极小值f()=b﹣;(Ⅱ)﹣≤x≤时,|f(sinx)﹣f0(sinx)|=|(a﹣a0)sinx+b﹣b0|≤|a﹣a0|+|b﹣b0| 当(a﹣a0)(b﹣b0)≥0时,取x=,等号成立;当(a﹣a0)(b﹣b0)≤0时,取x=﹣,等号成立.由此可知,|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值为D=|a﹣a0|+|b﹣b0|.(Ⅲ)D≤1即为|a|+|b|≤1,此时0≤a2≤1,﹣1≤b≤1,从而z=b﹣≤1取a=0,b=1,则|a|+|b|≤1,并且z=b﹣=1.由此可知,z=b﹣满足条件D≤1的最大值为1.【点评】本题考查函数的性质和运用,主要考查二次函数的单调性和极值、最值,考查分类讨论的思想方法和数形结合的思想,属于难题.高考数学试卷一.填空题1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是.5.(5分)若tan(α﹣)=.则tanα=.6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.9.(5分)等比数列{an}的各项均为实数,其前n项和为Sn,已知S3=,S6=,则a8=.10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是.11.(5分)已知函数f(x)=x3﹣2x+ex﹣,其中e是自然对数的底数.若f(a﹣1)+f (2a2)≤0.则实数a的取值范围是.12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=.13.(5分)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是.二.解答题15.(14分)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.18.(16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.19.(16分)对于给定的正整数k,若数列{an}满足:an﹣k+an﹣k+1+…+an﹣1+an+1+…+an+k﹣1+an+k=2kan对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”.(1)证明:等差数列{an}是“P(3)数列”;(2)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(Ⅰ)求b关于a的函数关系式,并写出定义域;(Ⅱ)证明:b2>3a;(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求实数a的取值范围.二.非选择题,附加题(2124选做题)【选修41:几何证明选讲】(本小题满分0分)21.如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.[选修42:矩阵与变换]22.已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.[选修44:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C 的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.[选修45:不等式选讲]24.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【必做题】25.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).1 2 3 …m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.高考数学试卷参考答案与试题解析一.填空题1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,当a=1时,A={1,1},B={1,4},成立;a2+3=1无解.综上,a=1.故答案为:1.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用.2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取18件.【分析】由题意先求出抽样比例即为,再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件,而抽取60件进行检验,抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取.4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是﹣2.【分析】直接模拟程序即得结论.【解答】解:初始值x=,不满足x≥1,所以y=2+log2=2﹣=﹣2,故答案为:﹣2.【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.5.(5分)若tan(α﹣)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.【点评】本题考查了两角差的正切公式,属于基础题6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力.7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0,得﹣2≤x≤3,则D=[﹣2,3],则在区间[﹣4,5]上随机取一个数x,则x∈D的概率P==,故答案为:【点评】本题主要考查几何概型的概率公式的计算,结合函数的定义域求出D,以及利用几何概型的概率公式是解决本题的关键.8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=,双曲线渐近线方程为:y=±x,所以P(,),Q(,﹣),F1(﹣2,0).F2(2,0).则四边形F1PF2Q的面积是:=2.故答案为:2.【点评】本题考查双曲线的简单性质的应用,考查计算能力.9.(5分)等比数列{an}的各项均为实数,其前n项和为Sn,已知S3=,S6=,则a8= 32.【分析】设等比数列{an}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{an}的公比为q≠1,∵S3=,S6=,∴=,=,。

2010年湖北省高考数学试卷(理科)及答案

2010年湖北省高考数学试卷(理科)及答案

2010年湖北省高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)若i为虚数单位,图中复平面内点Z表示复数Z,则表示复数的点是()A.E B.F C.G D.H2.(5分)设集合,B={(x,y)|y=3x},则A∩B的子集的个数是()A.4 B.3 C.2 D.13.(5分)在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.4.(5分)投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是()A.B.C.D.5.(5分)已知△ABC和点M满足.若存在实数m使得成立,则m=()A.2 B.3 C.4 D.56.(5分)将参加夏令营的600名学生编号为:001,002,…600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8,B.25,17,8 C.25,16,9 D.24,17,97.(5分)如图,在半径为r的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去,设S n为前n个圆的面积之和,则S n=()A.2πr2 B.πr2C.4πr2 D.6πr28.(5分)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙丁戊都能胜任四项工作,则不同安排方案的种数是()A.152 B.126 C.90 D.549.(5分)若直线y=x+b与曲线有公共点,则b的取值范围是()A.[,]B.[,3]C.[﹣1,]D.[,3] 10.(5分)记实数x1,x2,…x n中的最大数为max{x1,x2,…x n},最小数为min{x1,x2,…x n}.已知△ABC的三边边长为a、b、c(a≤b≤c),定义它的倾斜度为t=max{,,}•min{,,},x,则“t=1”是“△ABC为等边三角形”的()A.充分但不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件二、填空题(共5小题,每小题5分,满分25分)11.(5分)在(x+)20的展开式中,系数为有理数的项共有项.12.(5分)已知z=2x﹣y,式中变量x,y满足约束条件,则z的最大值为.13.(5分)圆柱形容器内部盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是cm.14.(5分)某射手射击所得环数ξ的分布列如表,已知ξ的期望Eξ=8.9,则y的值为.ξ78910P x0.10.3y 15.(5分)设a>0,b>0,称为a,b的调和平均数.如图,C为线段AB 上的点,且AC=a,CB=b,O为AB中点,以AB为直径做半圆.过点C作AB的垂线交半圆于D.连接OD,AD,BD.过点C作OD的垂线,垂足为E.则图中线段OD的长度是a,b的算术平均数,线段的长度是a,b的几何平均数,线段的长度是a,b的调和平均数.三、解答题(共6小题,满分75分)16.(12分)已知函数f(x)=cos(+x)cos(﹣x),g(x)=sin2x﹣(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数h(x)=f(x)﹣g(x)的最大值,并求使h(x)取得最大值的x 的集合.17.(12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k的值及f(x)的表达式.(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.18.(12分)如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1(Ⅰ)设为P为AC的中点,Q为AB上一点,使PQ⊥OA,并计算的值;(Ⅱ)求二面角O﹣AC﹣B的平面角的余弦值.19.(12分)已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.(Ⅰ)求曲线C的方程;(Ⅱ)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有<0?若存在,求出m的取值范围;若不存在,请说明理由.20.(13分)已知数列{a n}满足:,a n a n+1<0(n≥1),数列{b n}满足:b n=a n+12﹣a n2(n≥1).(Ⅰ)求数列{a n},{b n}的通项公式(Ⅱ)证明:数列{b n}中的任意三项不可能成等差数列.21.(14分)已知函数f(x)=ax++c(a>0)的图象在点(1,f(1))处的切线方程为y=x﹣1.(1)用a表示出b,c;(2)若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范围.2010年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2010•湖北)若i为虚数单位,图中复平面内点Z表示复数Z,则表示复数的点是()A.E B.F C.G D.H【分析】首先在图形上看出复数z的代数形式,再进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,在坐标系中看出对应的点.【解答】解:观察图形可知z=3+i,∴,即对应点H(2,﹣1),故选D.2.(5分)(2010•湖北)设集合,B={(x,y)|y=3x},则A∩B的子集的个数是()A.4 B.3 C.2 D.1【分析】由题意集合,B={(x,y)|y=3x},画出A,B集合所表示的图象,看图象的交点,来判断A∩B的子集的个数.【解答】解:∵集合,∴为椭圆和指数函数y=3x图象,如图,可知其有两个不同交点,记为A1、A2,则A∩B的子集应为∅,{A1},{A2},{A1,A2}共四种,故选A.3.(5分)(2010•湖北)在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.【分析】根据正弦定理先求出sinB的值,再由三角形的边角关系确定∠B的范围,进而利用sin2B+cos2B=1求解.【解答】解:根据正弦定理可得,,解得,又∵b<a,∴B<A,故B为锐角,∴,故选D.4.(5分)(2010•湖北)投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是()A.B.C.D.【分析】根据题意,“事件A,B中至少有一件发生”与“事件A、B一个都不发生”互为对立事件,由古典概型的计算方法,可得P(A)、P(B),进而可得P(),由对立事件的概率计算,可得答案.【解答】解:根据题意,“事件A,B中至少有一件发生”与“事件A、B一个都不发生”互为对立事件,由古典概型的计算方法,可得P(A)=,P(B)=,则P()=(1﹣)(1﹣)=,则“事件A,B中至少有一件发生”的概率为1﹣=;故选C.5.(5分)(2010•湖北)已知△ABC和点M满足.若存在实数m 使得成立,则m=()A.2 B.3 C.4 D.5【分析】解题时应注意到,则M为△ABC的重心.【解答】解:由知,点M为△ABC的重心,设点D为底边BC的中点,则==,所以有,故m=3,故选:B.6.(5分)(2010•湖北)将参加夏令营的600名学生编号为:001,002,…600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8,B.25,17,8 C.25,16,9 D.24,17,9【分析】根据系统抽样的方法的要求,先随机抽取第一数,再确定间隔.【解答】解:依题意可知,在随机抽样中,首次抽到003号,以后每隔12个号抽到一个人,则分别是003、015、027、039构成以3为首项,12为公差的等差数列,故可分别求出在001到300中有25人,在301至495号中共有17人,则496到600中有8人.故选B7.(5分)(2010•湖北)如图,在半径为r的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去,设S n为前n 个圆的面积之和,则S n=()A.2πr2 B.πr2C.4πr2 D.6πr2【分析】依题意可知,图形中内切圆面积依次为:,由此可以求出则S n的值.【解答】解:依题意分析可知,图形中内切圆半径分别为:r,r•cos30°,(r•cos30°)cos30°,(r•cos30°,cos30°)cos30°,即,则面积依次为:,所以.故选C.8.(5分)(2010•湖北)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙丁戊都能胜任四项工作,则不同安排方案的种数是()A.152 B.126 C.90 D.54【分析】根据题意,按甲乙的分工情况不同分两种情况讨论,①甲乙一起参加除了开车的三项工作之一,②甲乙不同时参加一项工作;分别由排列、组合公式计算其情况数目,进而由分类计数的加法公式,计算可得答案.【解答】解:根据题意,分情况讨论,①甲乙一起参加除了开车的三项工作之一:C31×A33=18种;②甲乙不同时参加一项工作,进而又分为2种小情况;1°丙、丁、戊三人中有两人承担同一份工作,有A32×C32×A22=3×2×3×2=36种;2°甲或乙与丙、丁、戊三人中的一人承担同一份工作:A32×C31×C21×A22=72种;由分类计数原理,可得共有18+36+72=126种,故选B.9.(5分)(2010•湖北)若直线y=x+b与曲线有公共点,则b的取值范围是()A.[,]B.[,3]C.[﹣1,]D.[,3]【分析】本题要借助图形来求参数b的取值范围,曲线方程可化简为(x﹣2)2+(y﹣3)2=4(1≤y≤3),即表示圆心为(2,3)半径为2的半圆,画出图形即可得出参数b的范围.【解答】解:曲线方程可化简为(x﹣2)2+(y﹣3)2=4(1≤y≤3),即表示圆心为(2,3)半径为2的半圆,如图依据数形结合,当直线y=x+b与此半圆相切时须满足圆心(2,3)到直线y=x+b 距离等于2,即解得或,因为是下半圆故可知(舍),故当直线过(0,3)时,解得b=3,故,故选D.10.(5分)(2010•湖北)记实数x1,x2,…x n中的最大数为max{x1,x2,…x n},最小数为min{x1,x2,…x n}.已知△ABC的三边边长为a、b、c(a≤b≤c),定义它的倾斜度为t=max{,,}•min{,,},x,则“t=1”是“△ABC为等边三角形”的()A.充分但不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件【分析】观察两条件的互推性即可求解.【解答】解:若△ABC为等边三角形时,即a=b=c,则则t=1;假设△ABC为等腰三角形,如a=2,b=2,c=3时,则,此时t=1仍成立,但△ABC不为等边三角形,所以“t=1”是“△ABC为等边三角形”的必要而不充分的条件.故选B.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2010•湖北)在(x+)20的展开式中,系数为有理数的项共有6项.【分析】利用二项展开式的通项公式求出展开式的第r+1项,系数为有理数,r 必为4的倍数.【解答】解:二项式展开式的通项公式为要使系数为有理数,则r必为4的倍数,所以r可为0,4,8,12,16,20共6种,故系数为有理数的项共有6项.故答案为612.(5分)(2010•湖北)已知z=2x﹣y,式中变量x,y满足约束条件,则z的最大值为5.【分析】先根据约束条件画出可行域,设z=2x﹣y,再利用z的几何意义求最值,只需求出直线z=2x﹣y过可行域内的点A时,从而得到z=2x﹣y的最大值即可.【解答】解:依题意,画出可行域(如图示),则对于目标函数y=2x﹣z,当直线经过A(2,﹣1)时,z取到最大值,Z max=5.故答案为:5.13.(5分)(2010•湖北)圆柱形容器内部盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是4cm.【分析】设出球的半径,三个球的体积和水的体积之和,等于柱体的体积,求解即可.【解答】解:设球半径为r,则由3V球+V水=V柱可得3×,解得r=4.故答案为:414.(5分)(2010•湖北)某射手射击所得环数ξ的分布列如表,已知ξ的期望Eξ=8.9,则y的值为0.4.ξ78910P x0.10.3y【分析】根据分布列的概率之和是1,得到关于x和y之间的一个关系式,由变量的期望值,得到另一个关于x和y的关系式,联立方程,解出要求的y的值.【解答】解:由表格可知:x+0.1+0.3+y=1,7x+8×0.1+9×0.3+10×y=8.9解得y=0.4.故答案为:0.4.15.(5分)(2010•湖北)设a>0,b>0,称为a,b的调和平均数.如图,C为线段AB上的点,且AC=a,CB=b,O为AB中点,以AB为直径做半圆.过点C作AB的垂线交半圆于D.连接OD,AD,BD.过点C作OD的垂线,垂足为E.则图中线段OD的长度是a,b的算术平均数,线段CD的长度是a,b的几何平均数,线段DE的长度是a,b的调和平均数.【分析】在直角三角形中,由DC为高,根据射影定理可得CD2=AC•CB,变形两边开方,得到CD长度为a,b的几何平均数;根据a,b与OC之间的关系,表示出OC的长度,根据直角三角形OCE和直角三角形CDE之间边的关系得到CE 的长,得到OE进而ED,得到结果.【解答】解:在Rt△ADB中DC为高,则由射影定理可得CD2=AC•CB,∴,即CD长度为a,b的几何平均数,将OC=代入OD•CE=OC•CD可得故,∴ED=OD﹣OE=,∴DE的长度为a,b的调和平均数.故选CD;DE三、解答题(共6小题,满分75分)16.(12分)(2010•湖北)已知函数f(x)=cos(+x)cos(﹣x),g(x)=sin2x﹣(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数h(x)=f(x)﹣g(x)的最大值,并求使h(x)取得最大值的x 的集合.【分析】(Ⅰ)对于求函数f(x)的最小正周期,可以先将函数按照两角和,两角差的余弦公式展开后,再利用降幂公式化成一个角一个函数的形式后,用公式T=周期即可求出.(Ⅱ)对于函数h(x)=f(x)﹣g(x),把f(x)与g(x)解析式代入后,依照两角和余弦公式的逆用化成一个角一个函数为h(x)=cos(2x+),由于定义域为全体实数R,故易知最值为,而此时角2x+应为x轴正半轴的所有角的取值,即2x+=2kπ,k∈Z.由此确定角x的取值几何即可.【解答】解:(1)f(x)=cos(+x)cos(﹣x)=(cosx﹣sinx)(cosx+sinx)=cos2x﹣=﹣=cos2x﹣,∴f(x)的最小正周期为=π(2)h(x)=f(x)﹣g(x)=cos2x﹣sin2x=(cos2x﹣sin2x)=(cos cox2x﹣sin sin2x)=cos(2x+)∴当2x+=2kπ,k∈Z,即x=kπ﹣,k∈Z时,h(x)取得最大值,且此时x取值集合为{x|x=kπ﹣,k∈Z}17.(12分)(2010•湖北)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k的值及f(x)的表达式.(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.【分析】(I)由建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=,若不建隔热层,每年能源消耗费用为8万元.我们可得C(0)=8,得k=40,进而得到.建造费用为C1(x)=6x,则根据隔热层建造费用与20年的能源消耗费用之和为f(x),我们不难得到f(x)的表达式.(II)由(1)中所求的f(x)的表达式,我们利用导数法,求出函数f(x)的单调性,然后根据函数单调性易求出总费用f(x)的最小值.【解答】解:(Ⅰ)设隔热层厚度为x cm,由题设,每年能源消耗费用为.再由C(0)=8,得k=40,因此.而建造费用为C1(x)=6x,最后得隔热层建造费用与20年的能源消耗费用之和为(Ⅱ),令f'(x)=0,即.解得x=5,(舍去).当0<x<5时,f′(x)<0,当5<x<10时,f′(x)>0,故x=5是f(x)的最小值点,对应的最小值为.当隔热层修建5cm厚时,总费用达到最小值为70万元.18.(12分)(2010•湖北)如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1(Ⅰ)设为P为AC的中点,Q为AB上一点,使PQ⊥OA,并计算的值;(Ⅱ)求二面角O﹣AC﹣B的平面角的余弦值.【分析】解法一:(1)要计算的值,我们可在平面OAB内作ON⊥OA交AB 于N,连接NC.则根据已知条件结合平面几何中三角形的性质我们易得NB=ON=AQ,则易求出的值.(2)要求二面角O﹣AC﹣B的平面角的余弦值,我们可连接PN,PO,根据三垂线定理,易得∠OPN为二面角O﹣AC﹣B的平面角,然后解三角形OPN得到二面角O﹣AC﹣B的平面角的余弦值.解法二:取O为坐标原点,分别以OA,OC所在的直线为x轴,z轴,建立空间直角坐标系O﹣xyz,我们易根据已知给出四面体中各点的坐标,利用向量法进行求解,(1)由A、Q、B三点共线,我们可设,然后根据已知条件,构造关于λ的方程,解方程即可得到λ的值,即的值;(2)要求二面角O﹣AC﹣B的平面角的余弦值,我们可以分别求出平面OAC及平面ABC的法向量,然后根据求二面角O﹣AC﹣B的平面角的余弦值等于两个法向量夹角余弦的绝对值进行求解.【解答】解:法一:(Ⅰ)在平面OAB内作ON⊥OA交AB于N,连接NC.又OA⊥OC,∴OA⊥平面ONC∵NC⊂平面ONC,∴OA⊥NC.取Q为AN的中点,则PQ∥NC.∴PQ⊥OA在等腰△AOB中,∠AOB=120°,∴∠OAB=∠OBA=30°在Rt△AON中,∠OAN=30°,∴在△ONB中,∠NOB=120°﹣90°=30°=∠NBO,∴NB=ON=AQ.∴解:(Ⅱ)连接PN,PO,由OC⊥OA,OC⊥OB知:OC⊥平面OAB.又ON⊂平面OAB,∴OC⊥ON又由ON⊥OA,ON⊥平面AOC.∴OP是NP在平面AOC内的射影.在等腰Rt△COA中,P为AC的中点,∴AC⊥OP根据三垂线定理,知:∴AC⊥NP∴∠OPN为二面角O﹣AC﹣B的平面角在等腰Rt△COA中,OC=OA=1,∴在Rt△AON中,,∴在Rt△PON中,.∴解法二:(I)取O为坐标原点,分别以OA,OC所在的直线为x轴,z轴,建立空间直角坐标系O﹣xyz(如图所示)则∵P为AC中点,∴设,∵.∴,∴.∵,∴即,.所以存在点使得PQ⊥OA且.(Ⅱ)记平面ABC的法向量为=(n1,n2,n3),则由,,且,得,故可取又平面OAC的法向量为=(0,1,0).∴cos<,>=.两面角O﹣AC﹣B的平面角是锐角,记为θ,则19.(12分)(2010•湖北)已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.(Ⅰ)求曲线C的方程;(Ⅱ)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有<0?若存在,求出m的取值范围;若不存在,请说明理由.【分析】(Ⅰ)设P(x,y)是曲线C上任意一点,然后根据等量关系列方程整理即可.(Ⅱ)首先由于过点M(m,0)的直线与开口向右的抛物线有两个交点A、B,则设该直线的方程为x=ty+m(包括无斜率的直线);然后与抛物线方程联立方程组,进而通过消元转化为一元二次方程;再根据韦达定理及向量的数量积公式,实现•<0的等价转化;最后通过m、t的不等式求出m的取值范围.【解答】解:(Ⅰ)设P(x,y)是曲线C上任意一点,那么点P(x,y)满足:化简得y2=4x(x>0).(Ⅱ)设过点M(m,0)(m>0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2).设l的方程为x=ty+m,由得y2﹣4ty﹣4m=0,△=16(t2+m)>0,于是①又.⇔(x1﹣1)(x2﹣1)+y1y2=x1x2﹣(x1+x2)+1+y1y2<0②又,于是不等式②等价于③由①式,不等式③等价于m2﹣6m+1<4t2④对任意实数t,4t2的最小值为0,所以不等式④对于一切t成立等价于m2﹣6m+1<0,解得.由此可知,存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有,且m的取值范围.20.(13分)(2010•湖北)已知数列{a n}满足:,a n a n+1<0(n≥1),数列{b n}满足:b n=a n+12﹣a n2(n≥1).(Ⅰ)求数列{a n},{b n}的通项公式(Ⅱ)证明:数列{b n}中的任意三项不可能成等差数列.【分析】(1)对化简整理得,令c n=1﹣a n2,进而可推断数列{c n}是首项为,公比为的等比数列,根据等比数列通项公式求得c n,则a2n可得,进而根据a n a n+1<0求得a n.(2)假设数列{b n}存在三项b r,b s,b t(r<s<t)按某种顺序成等差数列,由于数列{b n}为等比数列,于是有b r>b s>b t,则只有可能有2b s=b r+b t成立,代入通项公式,化简整理后发现等式左边为2,右边为分数,故上式不可能成立,导致矛盾.【解答】解:(Ⅰ)由题意可知,令c n=1﹣a n2,则又,则数列{c n}是首项为,公比为的等比数列,即,故,又,a n a n+1<0故因为=,故(Ⅱ)假设数列{b n}存在三项b r,b s,b t(r<s<t)按某种顺序成等差数列,由于数列{b n}是首项为,公比为的等比数列,于是有2b s=b r+b t成立,则只有可能有2b r=b s+b t成立,∴化简整理后可得,2=()r﹣s+()t﹣s,由于r<s<t,且为整数,故上式不可能成立,导致矛盾.故数列{b n}中任意三项不可能成等差数列.21.(14分)(2010•湖北)已知函数f(x)=ax++c(a>0)的图象在点(1,f (1))处的切线方程为y=x﹣1.(1)用a表示出b,c;(2)若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范围.【分析】(Ⅰ)根据导数的几何意义求出函数f(x)在x=1处的导数,从而求得切线的斜率,以及切点在函数f(x)的图象上,建立方程组,解之即可;(Ⅱ)先构造函数g(x)=f(x)﹣lnx=ax++1﹣2a﹣lnx,x∈[1,+∞),利用导数研究g(x)的最小值,讨论a的范围,分别进行求解即可求出a的取值范围.【解答】解:(Ⅰ),则有,解得.(Ⅱ)由(Ⅰ)知,,令g(x)=f(x)﹣lnx=ax++1﹣2a﹣lnx,x∈[1,+∞)则g(1)=0,(i)当,若,则g′(x)<0,g(x)是减函数,所以g(x)<g(1)=0,f(x)>lnx,故f(x)≤lnx在[1,+∞)上恒不成立.(ii)时,若f(x)>lnx,故当x≥1时,f(x)≥lnx综上所述,所求a的取值范围为。

高考数学试卷理科023355

高考数学试卷理科023355

高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+12.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=15.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.327.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.28.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c <010.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f (2)D.f(2)<f(0)<f(﹣2)二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前n项和等于.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)设n∈N*,xn是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(Ⅰ)求数列{xn}的通项公式;(Ⅱ)记Tn=x12x32…x2n﹣12,证明:Tn≥.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM 的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.高考数学试卷(理科)参考答案与试题解析一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先化简复数,再得出点的坐标,即可得出结论.【解答】解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.【点评】本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.2.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+1【分析】利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.【解答】解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;故选:A.【点评】本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f(﹣x)与f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x轴的交点以及与对应方程的解的个数是一致的.3.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】运用指数函数的单调性,结合充分必要条件的定义,即可判断.【解答】解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选:A.【点评】本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=1【分析】对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.【解答】解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选:C.【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.5.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【分析】利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.【解答】解:对于A,若α,β垂直于同一平面,则α与β不一定平行,例如墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选:D.【点评】本题考查了空间线面关系的判断;用到了面面垂直、线面平行的性质定理和判定定理.6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.32【分析】根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.【解答】解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.【点评】本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.7.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.2【分析】根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.【解答】解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××+×2×1=2+.故选:B.【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.8.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥【分析】由题意,知道,,根据已知三角形为等边三角形解之.【解答】解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,∴的方向应该为的方向.所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选:D.【点评】本题考查了向量的数量积公式的运用;注意:三角形的内角与向量的夹角的关系.9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c <0【分析】分别根据函数的定义域,函数零点以及f(0)的取值进行判断即可.【解答】解:函数在P处无意义,由图象看P在y轴右边,所以﹣c>0,得c<0,f(0)=,∴b>0,由f(x)=0得ax+b=0,即x=﹣,即函数的零点x=﹣>0,∴a<0,综上a<0,b>0,c<0,故选:C.【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及f(0)的符号是解决本题的关键.10.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f (2)D.f(2)<f(0)<f(﹣2)【分析】依题意可求ω=2,又当x=时,函数f(x)取得最小值,可解得φ,从而可求解析式f(x)=Asin(2x+),利用正弦函数的图象和性质及诱导公式即可比较大小.【解答】解:依题意得,函数f(x)的周期为π,∵ω>0,∴ω==2.又∵当x=时,函数f(x)取得最小值,∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,∴f(x)=Asin(2x+2kπ+)=Asin(2x+).∴f(﹣2)=Asin(﹣4+)=Asin(﹣4+2π)>0.f(2)=Asin(4+)<0,f(0)=Asin=Asin>0,又∵>﹣4+2π>>,而f(x)=Asinx在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0).故选:A.【点评】本题主要考查了三角函数的周期性及其求法,三角函数的图象与性质,用诱导公式将函数值转化到一个单调区间是比较大小的关键,属于中档题.二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是35(用数字填写答案)【分析】根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为5求得r,再代入系数求出结果.【解答】解:根据所给的二项式写出展开式的通项,Tr+1==;要求展开式中含x5的项的系数,∴21﹣4r=5,∴r=4,可得:=35.故答案为:35.【点评】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是6.【分析】圆ρ=8sinθ化为ρ2=8ρsinθ,把代入可得直角坐标方程,直线θ=(ρ∈R)化为y=x.利用点到直线的距离公式可得圆心C(0,4)到直线的距离d,可得圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r.【解答】解:圆ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16.直线θ=(ρ∈R)化为y=x.∴圆心C(0,4)到直线的距离d==2,∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6.故答案为:6.【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为4【分析】模拟执行程序框图,依次写出每次循环得到的a,n的值,当a=时不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.【解答】解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故答案为:4.【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的a,n的值是解题的关键,属于基础题.14.(5分)已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前n项和等于2n﹣1.【分析】利用等比数列的性质,求出数列的首项以及公比,即可求解数列{an}的前n项和.【解答】解:数列{an}是递增的等比数列,a1+a4=9,a2a3=8,可得a1a4=8,解得a1=1,a4=8,∴8=1×q3,q=2,数列{an}的前n项和为:=2n﹣1.故答案为:2n﹣1.【点评】本题考查等比数列的性质,数列{an}的前n项和求法,基本知识的考查.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.【分析】对五个条件分别分析解答;利用数形结合以及导数,判断单调区间以及极值.【解答】解:设f(x)=x3+ax+b,f'(x)=3x2+a,①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=﹣5,f(﹣1)=﹣1;并且x>1或者x<﹣1时f'(x)>0,所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数,所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;如图②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=0,f(﹣1)=4;如图③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f(1)=﹣2+b>0,函数图象形状如图②,所以方程x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x)=x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;⑤a=1,b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;综上满足使得该三次方程仅有一个实根的是①③④⑤.故答案为:①③④⑤.【点评】本题考查了函数的零点与方程的根的关系;关键是数形结合、利用导数解之.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.【分析】由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD的长.【解答】解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分【点评】本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基本知识的考查.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)【分析】(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,利用古典概型的概率求解即可.(Ⅱ)X的可能取值为:200,300,400.求出概率,得到分布列,然后求解期望即可.【解答】解:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)==.(Ⅱ)X的可能取值为:200,300,400P(X=200)==.P(X=300)==.P(X=400)=1﹣P(X=200)﹣P(X=300)=.X的分布列为:X 200 300 400PEX=200×+300×+400×=350.【点评】本题考查离散型随机变量的分布列以及期望的求法,考查计算能力.18.(12分)设n∈N*,xn是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(Ⅰ)求数列{xn}的通项公式;(Ⅱ)记Tn=x12x32…x2n﹣12,证明:Tn≥.【分析】(1)利用导数求切线方程求得切线直线并求得横坐标;(2)利用放缩法缩小式子的值从而达到所需要的式子成立.【解答】解:(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y﹣2=(2n+2)(x﹣1)令y=0,解得切线与x轴的交点的横坐标为,(2)证明:由题设和(1)中的计算结果可知:Tn=x12x32…x2n﹣12=,当n=1时,,当n≥2时,因为x2n﹣12==>==,所以Tn;综上所述,可得对任意的n∈N+,均有.【点评】本题主要考查切线方程的求法和放缩法的应用,属基础题型.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.【分析】(Ⅰ)通过四边形A1B1CD为平行四边形,可得B1C∥A1D,利用线面平行的判定定理即得结论;(Ⅱ)以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz,设边长为2,则所求值即为平面A1B1CD的一个法向量与平面A1EFD的一个法向量的夹角的余弦值的绝对值,计算即可.【解答】(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面B1CD1=EF,∴EF∥B1C;(Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵AD1⊥平面A1B1CD,∴=(0,2,2)为平面A1B1CD的一个法向量,设平面A1EFD的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos<,>==,∴二面角E﹣A1D﹣B1的余弦值为.【点评】本题考查空间中线线平行的判定,求二面角的三角函数值,注意解题方法的积累,属于中档题.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM 的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.【分析】(I)由于点M在线段AB上,满足|BM|=2|MA|,即,可得.利用,可得.(II)由(I)可得直线AB的方程为:=1,利用中点坐标公式可得N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,可得b,解得即可.【解答】解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,∵A(a,0),B(0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴a=3.∴椭圆E的方程为:.【点评】本题考查了椭圆的标准方程及其性质、线段的垂直平分线性质、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.【分析】(Ⅰ)设t=sinx,f(t)=t2﹣at+b(﹣1<t<1),讨论对称轴和区间的关系,即可判断极值的存在;(Ⅱ)结合不等式的性质求得最大值;(Ⅲ)由(Ⅱ)结合不等式的性质求得z=b﹣的最大值.【解答】解:(Ⅰ)设t=sinx,在x∈(﹣,)递增,即有f(t)=t2﹣at+b(﹣1<t<1),f′(t)=2t﹣a,①当a≥2时,f′(t)≤0,f(t)递减,即f(sinx)递减;当a≤﹣2时,f′(t)≥0,f(t)递增,即f(sinx)递增.即有a≥2或a≤﹣2时,不存在极值.②当﹣2<a<2时,﹣1<t<,f′(t)<0,f(sinx)递减;<t<1,f′(t)>0,f(sinx)递增.f(sinx)有极小值f()=b﹣;(Ⅱ)﹣≤x≤时,|f(sinx)﹣f0(sinx)|=|(a﹣a0)sinx+b﹣b0|≤|a﹣a0|+|b﹣b0| 当(a﹣a0)(b﹣b0)≥0时,取x=,等号成立;当(a﹣a0)(b﹣b0)≤0时,取x=﹣,等号成立.由此可知,|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值为D=|a﹣a0|+|b﹣b0|.(Ⅲ)D≤1即为|a|+|b|≤1,此时0≤a2≤1,﹣1≤b≤1,从而z=b﹣≤1取a=0,b=1,则|a|+|b|≤1,并且z=b﹣=1.由此可知,z=b﹣满足条件D≤1的最大值为1.【点评】本题考查函数的性质和运用,主要考查二次函数的单调性和极值、最值,考查分类讨论的思想方法和数形结合的思想,属于难题.高考数学试卷解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合{124}A =,,,{246}B =,,,则A B =▲.【答案】{}1,2,4,6。

课标全国卷,高考数学试卷理科

课标全国卷,高考数学试卷理科

2010年普通高等学校招生全国统一考试·理科数学(课标全国卷)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2010课标全国卷,理1)已知集合A={x||x|≤2,x∈R},B={x|错误!未找到引用源。

≤4,x∈Z},则A∩B=A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}答案:D2.(2010课标全国卷,理2)已知复数z=错误!未找到引用源。

,错误!未找到引用源。

是z 的共轭复数,则z·错误!未找到引用源。

=A.错误!未找到引用源。

B.错误!未找到引用源。

C.1D.2答案:A3.(2010课标全国卷,理3)曲线y=错误!未找到引用源。

在点(-1,-1)处的切线方程为A.y=2x+1B.y=2x-1C.y=-2x-3D.y=-2x-2答案:A4.(2010课标全国卷,理4)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(错误!未找到引用源。

,-错误!未找到引用源。

),角速度为1,那么点P到x轴的距离d关于时间t的函数图像大致为答案:C5.(2010课标全国卷,理5)已知命题:p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x在R上为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(错误!未找到引用源。

p1)∨p2和q4:p1∧(错误!未找到引用源。

p2)中,真命题是A.q1,q3B.q2,q3C.q1,q4D.q2,q4答案:C6.(2010课标全国卷,理6)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为A.100B.200C.300D.400答案:B7.(2010课标全国卷,理7)如果执行右面的框图,输入N=5,则输出的数等于A.错误!未找到引用源。

B.错误!未找到引用源。

2010年湖北卷(理科数学)

2010年湖北卷(理科数学)

2010年普通高等学校招生全国统一考试理科数学(湖北卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数1zi+的点是 A .E B .F C .G D .H2.设集合22{(,)|1}416x y A x y =+=,{(,)|3}x B x y y ==,则A B 的子集的个数是 A .4 B .3 C .2 D .1 3.在ABC ∆中,15a =,10b =,60A ∠=,则cos B = A.223-B.22366- 4.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰于向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是 A.512 B.12 C.712 D.34 5已知ABC ∆和点M 满足0MA MB MC ++=.若存在实数m 使得AB AC +=mAM 成立,则m =A .2B .3C .4D .5 6将参加夏令营的600名学生编号为:001,002,,600.采用系统抽样疗法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第1营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为A .26,16,8B .25,17,8C .25,16,9D .24,17,9x y o FE G H117如图,在半径为r 的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去.设n S 为前n 个圆的面积之和,则lim n x S →∞=A .22r π B.283r π C.24r π D.26r π8现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、 导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事 其他三项工作,丙、丁、戊都能胜四项工作,则不同安排方案的种数是A .152B .126C .90D .54 9.若直线y x b =+与曲线234y x x =--有公共点,则b 的取值范围是 A.[1,122]-+ B.[122,122]-+ C.[122,3]- D.[12,3]- 10.记实数1x ,2x ,…,n x 中的最大数为{}12max ,,n x x x …,,最小数为 {}12min ,,n x x x …,.已知ABC ∆的三边长为a ,b ,c (a b c ≤≤),定义它的倾斜度为max{,,}min{,,}a b c a b cl b c a b c a=⋅则“1l =”是“ABC ∆为等边三角形”A.必要而不充分的条件B.充分而不必要的条件C.充要条件D.既不充分也不必要的条件 二、填空题:本大题共5小题,每小题5分,共25分.11.在204(3)x +展开式中,系数为有理数的项共有 项.12己知2z x y =-,式中变量,x y 满足约束条件12y xx y x ≤⎧⎪+≥⎨⎪≤⎩,则z 的最大值为 .13.圆柱形容器内部盛有高度为8cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm .Or14.某射手射击所得环数ξ的分布列如下:ξ 78 9 10Px0.10.3y已知ξ的期望8.9E ξ=,则y 的值为 . 15.设0a >,0b >,称2aba b+为a ,b 的调和平均数.如图,C 为线殴AB 上的点,且AC a =,CB b =,O 为AB 中点,以AB 为直径作半圆.过点C 作OD 的垂线,垂足为E .连结OD ,AD ,BD .过点C 作OD 的垂线,垂足为E .则图中线段OD 的长度是a ,b 的算术平均数,线段 的长度是a ,b 的几何平均数,线段 的长度是a ,b 的调和平均数.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数()cos()cos()33f x x x ππ=+-,11()sin 224g x x =-.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()()()h x f x g x =-的最大值,并求使()h x 取得最大值的x 的集合. 17.(本小题满分12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万ABDOE元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm )满足关系:()35kC x x =+(010x ≤≤),若不建隔热层,每年能源消耗费用为8万元.设()f x 为隔热层建造费用与20年的能源消耗费用之和. (Ⅰ)求k 的值及()f x 的表达式;(Ⅱ)隔热层修建多厚对,总费用()f x 达到最小,并求最小值. 18.(本小题满分12分)如图,在四面体ABOC 中,OC OA ⊥,OC OB ⊥,120AOB ∠=,且OA OB =1OC ==.(Ⅰ)设P 为AC 的中点.证明:在AB 上存在一点Q ,使PQ OA ⊥,并计算ABAQ的值;(Ⅱ)求二面角O AC B --的平面角的余弦值.19.(本小题满分12分)已知一条曲线C 在y 轴右边,C 上没一点到点(1,0)F 的距离减去它到y 轴距离的差是1.(Ⅰ)求曲线C 的方程;(Ⅱ)是否存在正数m ,对于过点(,0)M m 且与曲线C 有连个交点A ,B 的任一直线,都有0FA FB ⋅<?若存在,求出m 的取值范围;若不存在,请说明理由. 20.(本小题满分13分)已知数列{}n a 满足:112a =,()()11312111n n n n a a a a ++++=--, 10n n a a +⋅<(1n ≥);数列{}n b 满足:221n n n b a a +=-(1n ≥).AOBC(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)证明:数列{}n b 中的任意三项不可能成等差数列.21.(本小题满分14分)已知函数()bf x ax c x =++(0a >)的图象在点(1,(1))f 处的切线方程为1y x =-y.(Ⅰ)用a 表示出b ,c ;(Ⅱ)若()ln f x x >在[1,)+∞上恒成立,求a 的取值范围;(Ⅲ)证明:1+1111ln(1)232(1)n n n n ++++>+++(1n ≥).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.现安排甲、乙、丙、丁、戊 5 名同学参加上海世博会志愿者服务活动,每人从事翻
译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。甲、乙不会开车但能
从事业其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是
A.152
B.126
C.90
D.54
9.若直线 y x b 与曲线 y 3 4x x 2 有公共点,则 b 的取
在此内切圆内作内接正六边形,如此无限继续下去,设 sn 为前 n 个圆的面积
之和,则
lim
n
sn

A. 2 r2
B. 8 r2 C. 4 r2 3
D. 6 r
1) B2Ak+22+12=+15+c51mc+=5m=2c111++m+12+21+++2=12=2+1+2+1+2+2+22+32k+1+2
数 学(理工类)
本试题卷共 4 页,三大题 21 小题,全卷满分 150 分,考试用时 120 分钟。 *祝考试顺利* 注意事项: 1. 答题前,考生务必将自己的姓名、准考证号走宝在试题卷和答题卡上,并将准考证号
条形码粘贴在答题卡上的指定位置。用 2B 铅笔将答题卡上试卷类型 A(或 B)后的方 框涂黑。 2. 选择题的作答:每小题迁出答案后,用 2B 铅笔把答题卡上的对应题目的答案标号涂黑。 如需改动,用橡皮擦干净后。再选涂其他答案标号。答在试题卷、草稿纸上无效。 3. 填空题和解答题用 0.5 毫米黑色墨水签字笔将答案直接答在答题卡上对应的答题区域内, 答在试题卷、草稿纸上无效。 4. 考生必须保持答题卡的整洁,考试结束后,请将本试题卷和答题卡一并上交。
5
A.
1
B.
7
C.
3
D.
12
2
12
4
5.已知△ABC 和点 M 满足 MA + MB + MC =0.若存在实数 m 使得 AB + AC =m
AM 成立,则 m=
A.2
B.3 C.4
D.5
6.将参加夏令营的 600 名学生编号为:001,002…600.采用系统抽样方法抽取一个容量
为 50 的样本,且随机抽得的号码为 003.这 600 名学生分住在三个营区,从 001 到 300 在
4.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件 A,“骰子向上 的点数是 3”为事件 B,则事件 A,B 中至少有一件发生的概率是
3
3
C.- D.
6
6
22
B.
3
22
A. -
3
A.4 B.3 C.2 D.1 3.在△ABC 中,a=15,b=10 ,A=60 度,则 cosB=
则 A B 的子集的个数是
4 16
=1},B={(x,y)|y= 3x },
y2

2.设合集 A={(x,y)|
x2
D. H
C. G
B. F
A. E
z
的点是
1 i
88.8918÷1.2990÷.1=4214÷3922=.0034=1÷15251371=8535.78.208÷023.2173c00÷1*m=29030.3922c=.1÷20m3=2÷120252.=3535=42314c)*523m240341*31.252=31*.1.535.*031342.*9205221.04.455=+213*05*2022.02.854850.3150.*+58c12*5m1*202+.050+0.014*85.20*051000+0+03/8T.+0÷+=55+1*011+010+91÷01454050*0010200+5+0+080+400*+4**1*1510.3910%*C%-*6+÷M(=*M=5÷50)*30*31(÷3110*5+**÷4*1m243.%71e=78%n0)8=8s.5=77.93c.6c0mmc.4*m1*31,0w199o.k2.m4c-cem.5mn2csp26m659*.0.34-50.60c5*pm.3c85m9,c05g.m.05i0rp-l.s.85p6/c50bcm0.om7py.c.6spm5c+mc;0m..7.cmk ; 1+1k+12+1+k2234=1c+m1++4ᄫ 在第 II 营区,从 496 到 600 在第 III 营区.三个营区被抽中的人数
依次为
A.26,16,8
B.25,17,8 C.25,16,9
D.24,17,9
注:考查系统抽样的概念,这里一定要弄清楚抽取的规则,属于简单题。
7.如图,在半径为 r 的圆内作内接正六边形,再作正六边形的内切圆,又
1) B2Ak+22+1=2+15+c51mc+=m5=21c11+m++12+2+1++=212=2+1+2+1+2+2+22+32k+1+2
1.若 i 为虚数单位,图中复平面内点 Z 表示复数 z,则表示复数
分.
一、选择题:本大题共 10 小题,每小题 5 分,共 50
2010 年普通高等学校招生全国统一考试(湖北卷)
88.8918÷.12990.÷1=4214÷3922=.0034=1÷15251371=8.535.78208÷.0232173c0*0÷1=m920.30392.2c=1÷203m=2÷1202.52=3535=42314)c*5232m40341*.31252=3.*1.153.5*03134.2*920522..104455=+21*3*50202.2.0285.4850.13*50+5c8*125*12m0.2+050.+0*014.852*0051000+0+/038.T+0÷+=55*+1011+010+91÷0145405*00010200+5+0+080+40*04+***115.103910*-%*C%6(+÷*M==5M÷5)0*3*0(31÷3110**5*+*÷414.m2371e=%7)8n08%.=s8.5=77.93cc60.mc*m4*m13,101w9.9o.k24mc-.cem5nm2csp2665m*9..03-4.50c60*5.pc3m85,9cm0.5g.i50mr0l-.p.s85p/6c50bc.0om7m.yp.cs6pc5m+;c0m..m7.ckm; 1+1k+12+1+k2234=1c+m1++4+4+2
相关文档
最新文档