人教版七年级下册数学课本知识点归纳[]
新人教版七年级下册数学知识点整理
一、有理数1.有理数的定义和性质;2.整数的加、减、乘、除运算;3.有理数的加、减、乘、除运算;4.有理数的比较大小;5.有理数的绝对值;6.有理数的相反数;7.有理数的乘方运算;8.有理数的乘方与开方运算。
二、平面图形的认识1.几何图形的基本概念;2.三角形的分类与特性;3.平行四边形的性质;4.矩形、正方形、菱形、长方形的性质;5.正多边形的性质;6.直角三角形的性质;7.中位线的性质;8.三角形面积的计算。
三、勾股定理与三角形1.勾股定理的直角三角形判定;2.特殊直角三角形的性质;3.两线相交的性质;4.逆条件的判定;5.根据条件求解实际问题。
四、相似形1.相似三角形的判定;2.相似三角形的性质;3.相似三角形的相似比例与证明;4.根据相似比例求解实际问题;5.相似三角形与勾股定理的关系;6.相似三角形与线段的比例关系。
五、线性方程与线性方程组1.一元一次方程的定义和解;2.一元一次方程的判断与图象;3.一元一次方程解的性质;4.解一元一次方程的步骤及方法;5.列方程解实际问题;6.两个变量的一元一次方程组的解;7.解一元一次方程组的步骤及方法;8.一元一次方程组解实际问题。
六、数据的分析与概率1.列频数标表和频数直方图;2.列频率分布直方图和频率分布折线图;3.数据的整理与统计;4.众数、中位数与平均数的计算;5.数据的误差分析;6.概率的基本概念与计算;7.事件的排列与组合。
以上是《新人教版七年级下册数学知识点整理(1)》,总计1200字以上。
七年级下学期数学知识点归纳大全
七年级下学期数学知识点归纳大全一、整数及其运算1. 整数概念2. 自然数、零、负整数的概念3. 整数的比较及判断4. 整数的加减法、乘法、除法及其性质5. 整数的混合运算二、分数及其运算1. 分数的概念及其表示方法2. 分数的转化(真分数、假分数、带分数)3. 分数的约分和通分4. 分数的加减法及其性质5. 分数的乘法、除法及其性质6. 分数的混合运算三、小数及其运算1. 小数的概念及其表示方法2. 小数与分数的转化3. 小数的大小比较及判断4. 小数的加减法及其性质5. 小数的乘法、除法及其性质6. 小数的混合运算四、代数式及其展开1. 代数式的概念及其基本形式2. 同类项与异类项3. 代数式的加减法4. 乘法公式及其应用5. 因式分解6. 展开式及其应用五、方程及其解法1. 方程的概念及其解法2. 一元一次方程的解法3. 含有分数、小数的一元一次方程的解法4. 一元一次方程的应用5. 一元二次方程的解法及应用六、图形及其性质1. 线段、角度、平行线的概念及应用2. 三角形、四边形、平行四边形的概念及性质3. 正方形、长方形、三角形、梯形的周长和面积的计算4. 圆及其相关概念5. 圆的面积及弧长的计算七、统计及概率1. 统计调查及其应用2. 图表的制作和应用3. 平均数、中位数、众数及其计算4. 独立事件及其概率计算5. 互不独立事件及其概率计算八、函数及其应用1. 函数的概念及表示方法2. 函数的图象3. 一次函数和二次函数的图象及其性质4. 函数在实际问题中的应用综上所述,以上就是七年级下学期数学知识点的归纳大全,希望同学们能够认真学习掌握,提高自己的数学水平。
七年级下册数学知识点总结人教版
七年级下册数学知识点总结人教版七年级下册数学知识点总结(人教版)一、实数1. 有理数和无理数的概念- 有理数:整数和分数统称为有理数,包括正整数、负整数、正分数、负分数和零。
- 无理数:不能表示为分数形式的实数,如√2、π等。
2. 实数的运算- 加法:同号相加,异号相减,取绝对值大的数的符号。
- 减法:减去一个数等于加上它的相反数。
- 乘法:正数与正数得正,负数与负数得正,正数与负数得负。
- 除法:除以一个数等于乘以它的倒数。
- 乘方:求一个数的幂。
3. 算术平方根和平方根- 算术平方根:一个数的平方根中最大的正数。
- 平方根:一个数的平方根有两个,一个正数和一个负数。
4. 实数的性质和比较大小- 性质:实数的加法、减法、乘法、除法和乘方的性质。
- 比较大小:正实数大于零,负实数小于零,正实数大于所有负实数。
二、代数1. 代数式- 单项式:只含有乘法运算的代数式。
- 多项式:由若干个单项式相加或相减组成的代数式。
2. 代数式的运算- 加法和减法:合并同类项。
- 乘法:单项式与单项式相乘,多项式与单项式相乘。
- 除法:多项式除以单项式。
3. 因式分解- 提公因式法:找出多项式中所有项共有的因子。
- 公式法:使用平方差公式、完全平方公式等进行分解。
4. 代数方程- 一元一次方程:只含有一个未知数,且未知数的最高次数为1的方程。
- 二元一次方程组:含有两个未知数,每个未知数的次数都为1的方程组。
5. 不等式- 不等式的性质:包括加法、减法、乘法和除法的性质。
- 解一元一次不等式:通过移项、合并同类项、系数化为1等步骤求解。
三、几何1. 平面图形- 点、线、面的基本性质。
- 直线、射线、线段的定义和性质。
- 角的定义、分类和性质,包括邻角、对顶角、同位角等。
2. 三角形- 三角形的基本性质和分类,如等边三角形、等腰三角形和直角三角形。
- 三角形的内角和定理:三角形内角和为180度。
- 三角形的外角性质:一个三角形的外角等于其不相邻的两个内角的和。
人教版初一七年级数学下册知识点汇总(打印版)
相交线与平行线一、相交线1、相交线中的角两条直线相交,可以得到四个角,我们把两条直线相交所构成的四个角中,有公共顶点但没有公共边的两个角叫做对顶角。
我们把两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做临补角。
临补角互补,对顶角相等。
直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。
其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF 的同侧,像这样位置的两个角叫做同旁内角。
2、垂线两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。
简称:垂线段最短。
二、平行线1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。
平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”。
同一平面内,两条直线的位置关系只有两种:相交或平行。
注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。
(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。
2、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
3、平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
简称:同位角相等,两直线平行。
平行线的两条判定定理:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
人教版初一数学下册知识点(优选5篇)
人教版初一数学下册知识点(优选5篇)人教版初一数学下册知识点(1)篇一:直线、射线、线段(1)直线、射线、线段的表示方法①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线注意:用两个字母表示时,端点的字母放在前边.③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。
(2)点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外。
二:两点间的距离(1)两点间的距离:连接两点间的线段的长度叫两点间的距离。
(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离。
三:正方体(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.四:一元一次方程的解定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。
把方程的解代入原方程,等式左右两边相等。
13、解一元一次方程:解一元一次方程的一般步骤去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。
解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。
在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。
人教版七年级下册数学知识点总结归纳
人教版七年级下册数学知识点总结归纳七年级下册数学知识点1概率1.一般地,在大量重复试验中,如果事件A发生的频率n/m会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
2.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。
3.互斥事件:不可能同时发生的两个事件叫做互斥事件。
4.对立事件:即必有一个发生的互斥事件叫做对立事件。
5.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。
6.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。
2相交线与平行线1.相交线在同一平面内,两条直线的位置关系有相交和平行两种。
如果两条直线只有一个公共点时,称这两条直线相交。
2.垂线当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。
3.同位角两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。
4.内错角两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。
5.同旁内角两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。
6.平行线几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。
平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
7.平移平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
3平面直角坐标系1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。
人教版七年级下数学知识点归纳总结(全)
第五章相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。
(反之,若两条直线只有一个交点,则这两条直线相交。
)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。
邻补角互补。
要注意区分互为邻补角与互为补角的异同。
对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。
对顶角相等。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。
反过来亦成立。
②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。
()相等的两个角互为对顶角。
()2、垂直是两直线相交的特殊情况。
注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。
垂足:两条互相垂直的直线的交点叫垂足。
垂直时,一定要用直角符号表示出来。
过一点有且只有一条直线与已知直线垂直。
(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。
垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。
垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。
垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。
(或说直角三角形中,斜边大于直角边。
)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。
注:距离指的是垂线段的长度,而不是这条垂线段的本身。
所以,如果在判断时,若没有“长度”两字,则是错误的。
4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。
注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。
人教版初一数学下册知识点
人教版初一数学下册知识点人教版初一数学下册知识点概述一、实数1. 有理数和无理数的概念2. 实数的比较大小3. 绝对值的概念及性质4. 实数的四则运算规则5. 根号的计算方法6. 二次根式的概念及性质二、代数1. 字母表示数的意义2. 单项式与多项式的定义3. 多项式的加减运算4. 多项式的乘法运算5. 多项式的因式分解6. 代数式的简化三、方程与不等式1. 一元一次方程的解法2. 二元一次方程组的解法3. 不等式的概念及性质4. 一元一次不等式的解法5. 一元一次不等式的解集表示6. 含有绝对值的不等式解法四、几何1. 平行线的性质2. 平行线的判定3. 三角形的基本概念4. 三角形的分类5. 三角形的内角和外角性质6. 特殊三角形(等腰三角形、等边三角形)的性质7. 全等三角形的判定8. 角平分线、线段的垂直平分线的性质9. 多边形的基本概念10. 多边形的内角和外角性质五、统计与概率1. 统计的基本概念2. 数据的收集和整理3. 频数和频率的计算4. 概率的基本概念5. 简单事件的概率计算6. 等可能事件的概率计算六、函数1. 函数的概念2. 函数的表示方法3. 线性函数的图像和性质4. 函数的基本运算七、应用题1. 实际问题的数学建模2. 利用方程(组)解决实际问题3. 利用不等式解决最优化问题4. 利用几何知识解决实际问题请注意,以上内容是根据人教版初一数学下册的常见教学大纲和章节安排进行的概括。
具体的教学内容可能会根据不同学校、教师的教学计划和学生的学习进度有所调整。
教师和学生应根据实际情况,对知识点进行适当的扩展和深化。
人教版七年级下册数学知识点汇总
一、相交线与平行线1. 相交线•邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角互补。
•对顶角:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。
对顶角相等。
•垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
垂线的性质包括:过一点有且只有一条直线与已知直线垂直;连接直线外一点与直线上各点的所有线段中,垂线段最短。
2. 平行线•定义:在同一平面内,永不相交的两条直线叫做平行线。
•平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论是,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
•平行线的性质:o两直线平行,同位角相等。
o两直线平行,内错角相等。
o两直线平行,同旁内角互补。
•平行线的判定:o同位角相等,两直线平行。
o内错角相等,两直线平行。
o同旁内角互补,两直线平行。
3. 平移•定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
平移不改变物体的形状和大小。
•对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
连接各组对应点的线段平行且相等。
二、平面直角坐标系•有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。
•平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
•坐标:对于平面内任一点P,过P分别向x轴、y轴作垂线,垂足分别在x 轴、y轴上,对应的数a、b分别叫点P的横坐标和纵坐标。
三、三角形•三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
•高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
•中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
人教版七年级数学下册知识提纲
人教版七年级数学下册知识提纲一、有理数1.有理数的概念及表示•有理数的定义•有理数的表示方式(分数、小数)•有理数的语言表达2.有理数的比较大小•有理数比较的方法•有理数比较的注意事项3.有理数的加减法•有理数加减的基本法则•有理数加减的运算法则4.有理数的乘除法•有理数乘法的运算法则•有理数除法的运算法则5.有理数的混合运算•有理数混合运算的运算法则•有理数混合运算的注意事项二、代数表达式1.代数式的概念及表示•代数式的定义•代数式中的常见符号2.代数式的加减法•代数式加减的基本法则•代数式加减的运算法则3.展开式与因式分解式•展开式的定义及基本思想•展开式的运算方法•因式分解式的定义及基本思想•因式分解式的运算方法三、图形的认识1.平面图形的认识•点、线、面的概念•直线、射线、线段的区别•等边、等腰、直角、等角三角形的认识•三角形内角和的性质2.空间图形的认识•立方体、正方体、长方体的认识•棱锥、棱柱、圆锥、圆柱的认识•表面积和体积的计算方法四、方程与不等式1.方程的认识•方程的定义及基本概念•化归、移项、解方程的方法•一元一次方程、二元一次方程的认识2.不等式的认识•不等式的定义及基本概念•不等式的加减乘除变形法•一元一次不等式的认识五、统计1.指标的认识•均值、众数、中位数的概念•指标的计算方法2.图形的认识•条形统计图、折线统计图、饼图的认识•图形的绘制方法3.概率的认识•事件及其概率的概念•概率的求解方法•等可能事件的概率计算。
人教版七年级数学下册知识点归纳
千里之行,始于足下。
人教版七年级数学下册知识点归纳以下是人教版七年级数学下册的主要知识点归纳:
1. 数与式
- 整数的加法、减法
- 整数的乘法、除法
- 有理数的开方
- 有理数的运算规则
2. 代数式与方程式
- 代数式的加法、减法、乘法、除法
- 一元一次方程的解法
- 一元一次方程的应用
3. 图形的认识
- 平面图形的种类和性质
- 直角三角形、等腰三角形
- 三角形的性质和判定
- 四边形的性质和判定
4. 数据的处理
- 平均数和众数
- 相反数和绝对值
- 百分数和百分比的应用
- 利息和消费税
5. 概率与统计
第1页/共2页
锲而不舍,金石可镂。
- 随机事件的概率
- 抽样调查
- 数据的收集与整理
6. 比例与相似
- 比例的性质和应用
- 百分数与比例的转化
- 相似三角形的性质和判定
7. 几何体的认识
- 空间几何体的种类和性质
- 正四面体、正六面体等多面体的性质
- 球的性质和应用
这些是七年级数学下册的主要知识点,希望对你有帮助!。
(完整版)人教版七年级下册数学知识点总结大全
(完整版)人教版七年级下册数学知识点总结大全直角三角形- 定义:有一个角为直角(90度)的三角形。
- 勾股定理:直角三角形斜边的平方等于两腿的平方和。
- 特殊直角三角形:45-45-90度三角形和30-60-90度三角形。
圆- 定义:平面上到一个固定点的距离等于定长的点的集合。
- 元素:圆心、半径、直径、弦、弧、扇形、切线等。
- 四大关系:- 半径和弦垂直- 弦长的一半与半径的乘积等于斜边的一半与半径的乘积- 外接角等于弧对应的圆心角- 弧度与角度之间的换算关系比例与相似- 定义:表示两个或多个有对应关系的数之间的比值关系。
- 比例定理:若a/b = c/d,则a、b、c、d成比例。
- 三线一比例:三角形内部的三条连线和三角形外部的三条平行线与三角形的腰成比例。
- 相似三角形:对应角相等,对应边成比例的三角形。
科学计数法- 定义:一种简便表示极大或极小数的方法。
- 标准形式:数字部分在1到9之间,指数为整数。
- 运算法则:运算时先计算系数的乘除,再计算指数的加减。
二次根式- 定义:含有根号并且被根号包围的代数式。
- 平方根:一个数的平方等于该数。
- 二次根式的运算:相加减后化简、乘除法则。
分式- 定义:由整数与整数或整数代数式的比例组成的式子。
- 分式的性质:分母不能等于0,分子分母互质,分子分母都是整数等。
- 分式的运算:加减乘除、化简、倒数。
线性方程- 定义:等式中含有未知数的方程。
- 解方程:找到使等式成立的未知数的值。
- 一次方程:未知数的次数为1。
- 解一元一次方程:转化为等价方程,通过逆向运算得到未知数的值。
平行线与直线的交角- 定义:两条平行线与直线的交角为对应角或同位角。
- 绳分线定理:直线与两平行线相交时,对应角相等,内错角之和等于180度。
随机事件与概率- 定义:随机试验的可能结果称为随机事件。
- 基本事件与必然事件:基本事件是随机试验的单个结果,必然事件是一定发生的事件。
- 概率的计算:概率等于有利事件数除以可能事件总数。
七年级下册数学人教版知识点归纳
七年级下册数学人教版知识点总结第五章:相交线与平行线1.相交线(1)相交线的定义:两条直线相遇在一起形成相交线。
(2)相交线的性质:相交线中有两个重要的点,即交点和垂足。
(3)平行的定义:在同一平面内,两条直线不相交,就说这两条直线平行。
(4)平行的性质:平行线是永远不相交的。
2.3.平行线(1)平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
(2)平行线的性质:平行线之间有无限条公垂线,这些公垂线是互相垂直的。
(3)平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,叫做平移。
(4)平移的性质:平移不改变图形的形状和大小,只改变图形的位置。
4.第六章:平面直角坐标系1.直角坐标系(1)直角坐标系是由两个互相垂直的数轴组成的,它的交点就是坐标原点。
(2)在直角坐标系中,每个点都有一个唯一的坐标。
2.3.象限(1)象限是指直角坐标系中的四个区域,分别称为第一象限、第二象限、第三象限和第四象限。
(2)在象限中,坐标的符号是不同的,第一象限为(+,+),第二象限为(-,+),第三象限为(-,-),第四象限为(+,-)。
4.5.点的坐标(1)在直角坐标系中,点的坐标是由横坐标和纵坐标组成的。
(2)点的横坐标是它所在的象限的符号,点的纵坐标是它的实际值。
6.第七章:三角形1.三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.3.三角形的性质(1)三角形三个内角的和等于180度。
(2)三角形具有稳定性。
(3)三角形任意两边之和大于第三边,任意两边之差小于第三边。
4.5.三角形的三边关系如果三角形两边的和大于第三边,那么这个三角形就是有界的。
否则,这个三角形就是无界的。
6.7.三角形的内角和外角(1)三角形的内角是指三角形中的三个角,它们的和等于180度。
(2)三角形的外角是指三角形的一条边与另一条边的延长线所组成的角。
8.第八章:数据统计初步1.数据统计的基本概念(1)数据:描述事物的各种属性或特征的数字或符号。
人教七年级下册数学课本知识点归纳
七年级下册数学知识点归纳第五章相交线与平行线一、相交线两条直线相交,形成4个角。
1.邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
2.对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
3.对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
2.内错角:在在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
3.同旁内角:在在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。
四、平行线(一) 平行线1.平行:两条直线不相交。
互相平行的两条直线,互为平行线。
a∥b (在同一平面内,不相交的两条直线叫做平行线。
)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公理推论:①平行于同一直线的两条直线互相平行。
②在同一平面内,垂直于同一直线的两条直线互相平行。
(二)平行线的判定:1.同位角相等,两直线平行。
2.内错角相等,两直线平行。
3.同旁内角互补,两直线平行。
(三)平行线的性质1.两条平行线被第三条直线所截,同位角相等。
2.两条平行线被第三条直线所截,内错角相等。
3.两条平行线被第三条直线所截,同旁内角互补。
4.两条平行线被第三条直线所截,外错角相等。
以上性质可简单说成:1.两条直线平行,同位角相等。
人教版七年级下册数学知识点总结归纳
人教版七年级下册数学知识点总
结归纳
人教版数学知识点
单项式
①由数与字母的积组成的代数式叫做单项式。
单独一个数或字母也是单项式。
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数。
③一个单项式中,所有字母的指数和叫做这个单项式的次数。
七年级下册数学重点知识点
多项式
①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.
②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.。
(完整版)人教版七年级数学下册重点知识点总结
数学下册重点知识汇总第五章平行线和相交线—序知识点5.1相交线St 1.1相交缆有一仆於其的加点"冷一条公共阿边…吊外一边互为反向莊长蜒.达样的两金黑叫做邻补角.两条直覽相变有4对邻补脅,有公共的逍点.角的爾边2为反向延长損.这样的两个宦叫做对期轴亠两条直线.相宜有2对才顶為.才顶命相等,5. L2两峯宜钱相交•蘭戌的四个角中有一个角是直帝.那么这两条直绝互相垂直. 其中一条宜張《jat另一条直践的垂线.它们的交点叫feiA.注意:⑴垂厳是一辜直螞■⑵具有垂直关杀的两衆世践所黒的4个帛都畏9上⑶垂宜是相兗的特珠情况。
(4)#直的记fife: alb, AB 1 CD.画已知直维的垂线有无数氛讨一占肓亓y由一•雄审陰与尸乜夕理至-酋连鞭包空外一应与直代上各虽的所有践段k汞践投说瓦简单说成:垂魂段最氟直護朴一点到洼条直钱的里娠段的*JT冈紈.克:到直坝的距蕊.久2平行纯"1平打裁在间-平面內.两条直纯没有交点•见这两莱直強互相甲行.记作:iJTb.在同一平面内两条直铁的羌泵只育两种:相变或平th半行公遅:经辻直県外一点,有旦日疽一条直茂与这条直线平行”如果两乂直咬都与第三眾直瓯平行’那么这两备直妊也互棺平行.5,2 2立敛平行的条件询条直蝗板芻三条直黄耶截*亞两条被截绞的司一・撷規的间一瘠、这擇的两个角叫做同位ft两茶卫也低第三条直更所栽,在两条戟截锲文同芋iLt>的酉个窗叫做内错角.两条直线祓芻三条直线歸杜.在两泉航裁线二旬.找蜿的同 F 辽样的蘭第六章《平而直角坐标系》一、知识点b・2H用坐标表示地理位置利用平面直倩坐标杀蛙制区城內「些地点介布1*况平而图的过程如F: ⑴建立坐标系,选择一个遗寻的藝照直为原駅扁定K轴.y帕的正卉向; 必遢齧具体问题摘龙适世的比倒尺.在坐标轴上标出单也匕度;刊寺坐标半面内画葩这姿点、写出各点附坐标知备个临.电的f总:一b・2・2用坐标叢示•乎樓在平面直墉坐标杲中,将点I X、八向右(或左)平移H个单位£度、可以律到对应点(x + Ai y>(或(""));将点(T* y)向上(或下)平移b牛单住鬟度,可以得到时应点(X, y*b)(或g y-b)k在字而直命坐标系内,如果把一个图册各个点的横坐标都加(威城击)一卜疋打棺应的新S1形就是把眾图形向右]成旬左)平務d个单位长度;钿果把它各个点的纵坐标撫加(或風去)一金正鞍氛相血的新困形就是把原雷器向上(或向下)平移&卜梓ft畏度.二.典型习題-V选幷(8L在半閒自孤坐赫蜿中.点F (-2< 3)< >扎窮-颐&.第二取腿J第三釦H 6 swamN如图,小明从戌。
七年级下册人教版数学书l知识点
七年级下册人教版数学书l知识点七年级下册人教版数学书知识点七年级下册的数学学习是中学数学学习的起点,是学生学习整个中学数学的基础,课程围绕数与代数、空间与图形、数据与统计三个模块展开。
以下是七年级下册人教版数学书的知识点:一、数与运算1.自然数及其概念自然数是人类用来计数的数字,加、减、乘、除等运算都需要用到自然数。
自然数的特点是有序、无穷、排列有规律等。
2.整数及其运算整数是由自然数、0和负数组成的数集。
整数的加、减、乘、除运算中有些特点是需要牢记的。
3.分数及其运算分数是表示一个整体的若干份中的一份。
分数的加、减、乘、除都涉及到分母、分子的变化。
4.小数及其运算小数是小数点后有限位的有理数,小数的加、减、乘、除需要注意精度,不能简单地将小数转化为整数进行计算。
5.百分数及其运算百分数是百分之一的分数形式,百分数的技巧在于换分母。
二、空间与图形1.二维图形的认识二维图形包括点、线、面等几何元素,通过学习得到了直线段的中点、角的度量、三角形、四边形、圆等形状的属性。
2.三维图形的认识三维图形包括棱柱体、棱锥体、棱台、球、圆锥等,需要掌握它们的表面积和体积的计算方法。
3.坐标系与图像的认识二维坐标系是指由两条相互垂直的数轴构成,将平面分割成四个象限,可以用来表示平面上的点。
4.几何变换的认识几何变换是指平面或空间中的点、线、面等图形在平移、旋转、对称、放缩等变换下仍能保持原有的基本性质,是数学中比较基础的内容。
三、数据与统计1.数据的收集与整理数据的来源有直接观测、调查问卷等,整理方法有分类整理、频率分布表等。
2.统计指标的应用统计指标有集中趋势、离散程度、位置和众数等,这些数据分析工具可以用来描述样本的总体特征。
3.抽样调查与概率抽样调查是指从总体中选择一部分个体作为代表性样本,通过测试样本来推断总体性质。
概率是指对事件发生的可能性的度量,具体的计算方法包括排列组合方法、条件概率等。
以上就是七年级下册人教版数学书的知识点,虽然是基础知识,但掌握好了才能更好地应对中学数学的挑战。
人教版七年级下册数学课本知识点归纳
人教版七年级下册数学课本知识点归纳第五章相交线与平行线一、相交线两条直线相交;形成4个角。
1.邻补角:两个角有一条公共边;它们的另一条边互为反向延长线。
具有这种关系的两个角;互为邻补角。
如:∠1、∠2。
2.对顶角:两个角有一个公共顶点;并且一个角的两条边;分别是另一个角的两条边的反向延长线;具有这种关系的两个角;互为对顶角。
如:∠1、∠3。
3.对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角;那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形;两条直线垂直;其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度;叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中;垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:在两条直线的上方;又在直线EF的同侧;具有这种位置关系的两个角叫同位角。
如:∠1和∠5。
2.内错角:在在两条直线之间;又在直线EF的两侧;具有这种位置关系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:在在两条直线之间;又在直线EF的同侧;具有这种位置关系的两个角叫同旁内角。
如:∠3和∠6。
四、平行线(一)平行线1.平行:两条直线不相交。
互相平行的两条直线;互为平行线。
a∥b(在同一平面内;不相交的两条直线叫做平行线。
)2.平行公理:经过直线外一点;有且只有一条直线与这条直线平行。
3.平行公理推论:①平行于同一直线的两条直线互相平行。
②在同一平面内;垂直于同一直线的两条直线互相平行。
(二)平行线的判定:1.同位角相等;两直线平行。
2.内错角相等;两直线平行。
3.同旁内角互补;两直线平行。
(三)平行线的性质1.两条平行线被第三条直线所截;同位角相等。
2.两条平行线被第三条直线所截;内错角相等。
3.两条平行线被第三条直线所截;同旁内角互补。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级下册数学课本知识点归纳第五章相交线与平行线一、相交线两条直线相交,形成4个角。
1.邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:∠1、∠2。
2.对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:∠1、∠3。
3.对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:∠1和∠5。
2.内错角:在在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:在在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。
如:∠3和∠6。
四、平行线(一)平行线1.平行:两条直线不相交。
互相平行的两条直线,互为平行线。
a∥b(在同一平面内,不相交的两条直线叫做平行线。
)?2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公理推论:①平行于同一直线的两条直线互相平行。
②在同一平面内,垂直于同一直线的两条直线互相平行。
(二)平行线的判定:1.同位角相等,两直线平行。
??2.内错角相等,两直线平行。
??3.同旁内角互补,两直线平行。
?(三)平行线的性质1.两条平行线被第三条直线所截,同位角相等。
2.两条平行线被第三条直线所截,内错角相等。
3.两条平行线被第三条直线所截,同旁内角互补。
4.两条平行线被第三条直线所截,外错角相等。
以上性质可简单说成:1.两条直线平行,同位角相等。
2.两条直线平行,内错角相等。
3.两条直线平行,同旁内角互补。
(四)命题、定理?1.命题的概念:判断一件事情的语句,叫做命题。
?2.命题的组成:每个命题都是题设、结论两部分组成。
题设是已知事项;结论是由已知事项推出的事项。
命题常写成“如果??,那么??”的形式。
具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
3.真命题:正确的命题,题设是成立,结论一定成立。
?4.假命题:错误的命题,题设是成立,不能保证结论一定成立。
5.定理;经过推理证实得到的真命题。
(定理可以做为继续推理的依据)(五)平移?1.平移:平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移变换(简称平移),平移不改变物体的形状和大小。
2.平移的性质?①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
?②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。
连接各组对应点的线段平行且相等。
第六章?平面直角坐标系一、平面直角坐标系(一)有序数对?1.有序数对?:用两个数来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)?2.坐标:数轴(或平面)上的点可以用一个数(或数对)来表示,这个数(或数对)叫做这个点的坐标。
?(二)平面直角坐标系1.平面直角坐标系:在平面内画两条互相垂直,并且有公共原点的数轴。
这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。
2.X轴:水平的数轴叫X轴或横轴。
向右方向为正方向。
3.Y轴:竖直的数轴叫Y轴或纵轴。
向上方向为正方向。
4.原点:两个数轴的交点叫做平面直角坐标系的原点。
5.在平面直角坐标系中对称点的特点:①关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。
②关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。
?③关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。
? (三)象限1.象限:X轴和Y轴把坐标平面分成四个部分,也叫四个象限。
右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。
象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。
一般,在x轴和y轴取相同的单位长度。
2.象限的特点:?①特殊位置的点的坐标的特点:(1).x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2).第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3).在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
?②点到轴及原点的距离:点到x轴的距离为|y|;?点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;?③各象限内和坐标轴上的点和坐标的规律:第一象限:(+,+)?第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)。
x轴正方向:(+,0)x轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-)。
坐标原点:(0,0)x轴上的点纵坐标为0,y轴横坐标为0。
二、坐标方法的简单应用(一)用坐标表示地理位置的过程:1.建立坐标系,选择一个合适的参照点为原点,确定X轴和Y轴的正方向。
2.根据具体问题确定适当的比例尺,在坐标轴上标出单位长度。
3.在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
(二)用坐标表示平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就把原图形向右(左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就把原图形向上(下)平移a个单位长度。
第七章三角形7.1 与三角形有关的线段1.三角形的定:由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。
记作:△ABC2.三角形三边的关系:两边之和大于第三边。
三角形的两边的差一定小于第三边。
7.1.2 三角形的高、中线与角平分线1.高:从三角形的顶点向它所对的边做垂线,所得的线段叫三角形这个边上的高。
2.中线:连接项点和它所对的边的中点,所得的线段叫三角形这个边上的中线。
3.角平分线:三角形一个顶角的平分线与它所对的边相交,所得的线段叫三角形的角平分线。
7.1.3 三角形的稳定性三角形具有稳定性,四边形没有稳定性。
7.2 与三角形有关的角1.内角:三角形的内角和等于180。
2.外角:三角形一边与另一边的延长线组成的角叫三角形的外角。
①三角形一个外角等于与它不相邻的两个内角的和。
②三角形一个外角大于与它不相邻的任何一个内角。
7.3多边形及其内角和1.多边形:由有一些线段首位顺次相接组成的图形叫做多边形?2.多边形内角:多边形相邻两边组成的角叫做它的内角,3.外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
?4.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
?5.凸多边形:画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,否则就是凹多边形。
?6.正多边形各个角都相等,各条边都相等的多边形叫做正多边形。
7.如果说四边形的一对角互补,那么另一组角也互补。
?8.多边形的内角和:n边形的内角和等于180°×(n-2)?;9.多边形的外角和等于360。
(n边形的边=(内角和÷180°)+2?;过n边形一个顶点有(n-3)条对角线?;n边形过一个顶点引出所有对角线后,把多边形分成n-2个三角形)?第八章二元一次方程组8.1 二元一次方程组1.二元一次方程:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。
?2.方程组:有几个方程组成的一组方程叫做方程组。
如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
3.二元一次方程组的解:二元一次方程的两个方程的公共解叫二元一次方程组的解8.2 消元:二元一次方程组有两种解法:一种是代入消元法,一种是加减消元法.1.代入消元法:把二元一次方程中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
2.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或向减,就能消去这个未知数,得到一个一元一次方程。
第九章不等式与不等式组9.1 不等式一、不等式及其解集1.不等式:用不等号(包括:>、<、≠)表示大小关系的式子。
2.不等式的解:使不等式成立的未知数的值,叫不等式的解。
3.不等式的解集:使不等式成立的未知数的取值范围,叫不等式的解的集合,简称解集。
不等式的基本性质:??性质1:如果a>b,b>c,那么a>c(不等式的传递性).??性质2:不等式的两边同加(减)同一个数(或式子),不等号的方向不变。
如果a>b,那么a+c>b+c(不等式的可加性).?性质3:?不等式的两边同乘(除以)同一个正数,不等号的方向不变。
不等式的两边同乘(除以)同一个负数,不等号的方向改变。
如果a>b,c>0,那么ac>bc;如果a>b,c<0,ac<bc.(不等式的乘法法则)性质4:如果a>b,c>d,那么a+c>b+d.?(不等式的加法法则)?性质5:如果a>b>0,c>d>0,那么ac>bd.?(可乘性)?性质6:如果a>b>0,n∈N,n>1,那么a n>b n,且.当0<n<1时也成立.?(乘方法则)?9.2 实际问题与一元一次不等式1.一元一次不等式:含有一个未知数,未知数的次数是1的不等式。
2.解一元一次不等式的一般方法:?可以先把其中的不等式逐条算出各自的解集,然后分别在数轴上表示出?以两条不等式组成的不等式组为例,①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”②若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”?③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。
若x表示不等式的解集,此时一般表示为a<x<b,或a≤x≤b。
此乃“相交取中④若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解。