辽宁省锦州市2021年七年级下学期数学期中考试试卷(I)卷
辽宁省锦州市2021年中考数学试卷(解析版)
C组:9h≤睡眠时间<10h
D组:睡眠时间≥10h
如图1和图2是根据调查结果绘制的不完整的统计图,请根据图中提供的信息,解答下列问题:
(1)被调查 学生有人;
(2)通过计算补全条形统计图;
(3)请估计全校1200名学生中睡眠时间不足9h 人数.
19.为庆祝建党100周年,某校开展“唱爱国歌曲,扬红船精神”大合唱活动.规律是:将编号为A,B,C 3张卡片(如图所示,卡片除编号和内容外,其他完全相同)背面朝上洗匀后放在桌面上,参加活动的班级从中随机抽取1张,按照卡片上的曲目演唱.
22.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,过点C作CE⊥AD交AD的延长线于点E,延长EC,AB交于点F,∠ECD=∠BCF.
(1)求证:CE为⊙O的切线;
(2)若DE=1,CD=3,求⊙O的半径.
23.某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m=50+0.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示.
A. B. C. D.
二、填空题(本大题共8道小题,每小题3分,共24分)
9.若二次根式 有意义,则x的取值范围是___
10.甲、乙两名射击运动员参加预选赛,他们每人10次射击成绩的平均数都是9环,方差分别是s2甲=1.2,s2乙=2.4,如果从这两名运动员中选取成绩稳定的一人参赛,那么应选____(填“甲”或“乙”).
∴AG=6﹣3x,BG=6+3x,
∵∠ADB=∠AGD=90°,
A. B. C. D.
【答案】C
【解析】
【分析】方程组利用代入消元法求出解即可.
2022-2023学年第一学期七年级数学期中复习冲刺卷(含答案解析)
2022-2023学年第一学期七年级数学期中复习冲刺卷(10)(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章、第二章、第三章、第四章第1节。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中只有一项符合题目要求。
1.(2022·射阳月考)在数﹣,1.010010001,,0,﹣2π,﹣2.62662666…,3.1415中,无理数的个数是()A.1 B.2 C.3 D.42.(2021·永川期末)下列各组数中,相等的是()A.(﹣3)2与﹣32 B.|﹣3|2与﹣32 C.(﹣3)3与﹣33 D.|﹣3|3与﹣333.(2022·南京模拟)在方程①x+1=0;②1﹣x2=0;③﹣3=0;④x﹣y=6中,为一元一次方程的有()A.4个B.3个C.2个D.1个4.(2021·东莞期末)下列化简过程,正确的是()A.3x+3y=6xy B.x+x=x2C.﹣9y2+6y2=﹣3 D.﹣6xy2+6y2x=05.(2022·沙坪期末)按如图所示的运算程序,若输入a=1,b=﹣2,则输出结果为()A.﹣3 B.1 C.5 D.96.(2022·南京模拟)下列等式的变形,不正确的是()A.若a=b,则a+c=b+cB.若x2=5x,则x=5C.若m+n=2n,则m=nD.若x=y,则=7.(2021·江油期末)已知代数式x+2y的值是3,则1﹣2x﹣4y的值是()A.﹣2 B.﹣4 C.﹣5 D.﹣68.(2021·江阴期中)下列说法中正确的是()A.x2﹣是整式B.a和0都是单项式C.单项式﹣πa2b的系数为﹣D.多项式﹣3a2b+7a2b2+1的次数是39.(2021·江阴期末)一种商品每件成本为a元,原来按成本增加40%定出售价,现在由于库存积压减价,打八折出售,则每件盈利()元.A.0.1a B.0.12a C.0.15a D.0.2a10.(2022·西山二模)观察下列图形:它们是按一定规律排列的,依照此规律,第100个图形中共有()个点.A.297 B.300 C.303 D.306第Ⅱ卷二、填空题:本题共8小题,每题3分,共24分。
2020-2021学年辽宁省沈阳市沈河区七年级(下)期中数学试卷
2020-2021学年辽宁省沈阳市沈河区七年级(下)期中数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题2分,共20分)1.(2分)计算230的结果是()A.23B.1C.0D.322.(2分)如图,下列说法正确的是()A.∠2与∠3是同旁内角B.∠1与∠2是同位角C.∠1与∠3是同位角D.∠1与∠2是内错角3.(2分)下列运算正确的是()A.a5÷a2=a3B.a2•a3=a6C.3a2﹣2a=a2D.(a+b)2=a2+b24.(2分)下列各组线段能组成一个三角形的是()A.2cm,3cm,6cm B.6cm,8cm,10cmC.5cm,5cm,10cm D.4cm,6cm,10cm5.(2分)如图,某单位要在河岸l上建一个水泵房引水到C处,他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是()A.两点之间,线段最短B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.两点确定一条直线D.直线外一点与直线上所有点的连线中,垂线段最短6.(2分)华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣8C.0.7×10﹣9D.0.7×10﹣8 7.(2分)如果将一副三角板按如图方式叠放,那么∠1的度数是()A.90°B.100°C.105°D.135°8.(2分)二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关,如图是一年中部分节气所对应的白昼时长示意图.则夏至与秋分白昼时长相差()A.2小时B.3小时C.2.5小时D.4小时9.(2分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,添加的一组条件不正确的是()A.BC=DC,∠A=∠D B.BC=EC,AC=DCC.∠B=∠E,∠BCE=∠ACD D.BC=EC,∠B=∠E10.(2分)研究表明,当每公顷钾肥和磷肥的施用量一定时,氮肥施用量与土豆的产量有如表所示的关系:氮肥施用量/千克03467101135202259336404471土豆产量/吨15.1821.3625.7232.2934.0539.4543.1543.4640.8330.75下列说法错误的是()A.氮肥施用量是自变量,土豆产量是因变量B.当氮肥的施用量是101千克/公顷时,土豆的产量是32.29吨/公顷C.如果不施氮肥,土豆的产量是15.18吨/公顷D.氮肥施用量404千克/公顷比氮肥施用量336千克/公顷时的土豆的产量更高二、填空题(每小题3分,共18分)11.(3分)已知a m=3,a n=2,则a m+n=.12.(3分)如图,一张宽度相等的长方形纸条,如图所示折叠一下,那么∠1=°.13.(3分)将长为23cm、宽为10cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为2cm,设x张白纸粘合后的总长度为ycm,y与x的函数关系式为.14.(3分)如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC 于点E.若∠C=26°,则∠DAE的度数为.15.(3分)如图的瓶子中盛满了水,则水的体积是.(用代数式表示)16.(3分)如图,∠CAD和∠CBD的平分线相交于点P.请写出∠C、∠D、∠P的数量关系.三、解答题(第17小题16分,18小题6分,19小题6分,20小题8分,共36分)17.(16分)计算:(1)(﹣3)0﹣2×23﹣()﹣2;(2)(﹣2a)3﹣(﹣a)•(3a)2;(3)(x+1)(2x﹣3);(4)199×201+1.(利用乘法公式)18.(6分)先化简,再求值:[(2x+y)(2x﹣y)﹣(2x﹣y)2]÷2y,其中x=﹣1,y=2.19.(6分)如图,在△ABC中,D是AB边上的一点.请用尺规作图法,在△ABC内,作出∠ADE,使∠ADE=∠B,DE交AC于点E.(保留作图痕迹不写作法)20.(8分)完成推理填空如图,已知∠B=∠D,∠BAE=∠E.将证明∠AFC+∠DAE=180°的过程填写完整.证明:∵∠BAE=∠E,∴∥().∴∠B=∠().又∵∠B=∠D,∴∠D=∠(等量代换).∴AD∥BC().∴∠AFC+∠DAE=180°().四、(本题8分)21.(8分)如图,BE⊥AE,CF⊥AE,垂足分别为E、F,D是EF的中点,CF=AF.(1)请说明CD=BD;(2)若BE=6,DE=3,请直接写出△ACD的面积.五、(本题8分)22.(8分)小明家距离学校8千米.一天早晨,小明骑车上学途中自行车出现故障,他于原地修车,车修好后,立即在确保安全的前提下以更快的速度匀速骑行到达学校.如图反映的是小明上学过程中骑行的路程(千米)与他所用的时间(分钟)之间的关系,请根据图象,解答下列问题:(1)小明骑行了千米时,自行车出现故障;修车用了分钟;(2)自行车出现故障前小明骑行的平均速度为千米/分,修好车后骑行的平均速度为千米/分;(3)若自行车不发生故障,小明一直按故障前的速度匀速骑行,与他实际所用时间相比,将早到或晚到学校多少分钟?六、(本题8分)23.(8分)劳动是财富的源泉,也是幸福的源泉.沈河区某中学对劳动教育进行积极探索和实践,创建学生劳动教育基地,让学生参与农耕劳作.如图,现计划利用校园围墙的一段MN(MN最长可用25m),用40m长的篱笆,围成一个长方形菜园ABCD.设AB 的长为xm(7.2≤x>20).(1)BC的长度为m(用含x的代数式表示),长方形菜园的面积S(m2)与AB的长x(m)的关系式为S=;(2)根据(1)中的关系式完成如表:AB的长x(m)89101112131415……菜园的面积S(m2)192198182168150……(3)请根据表中数据分析,S如何随x的变化而变化?(写出一个结论即可)七、(本题10分)24.(10分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、2、1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1、3、3、1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)根据上面的规律,(a+b)4展开式的各项系数中最大的数为;(2)求出25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5的值;(3)若(x﹣1)2020=a1x2020+a2x2019+a3x2018+……+a2019x2+a2020x+a2021,求出a1+a2+a3+……+a2019+a2020的值.八、(本题12分)25.(12分)已知直线MN∥PQ,点A在直线MN上,点B、C为平面内两点,AC⊥BC于点C.(1)如图1,当点B在直线MN上,点C在直线MN上方时,延长CB交直线PQ于点D,则∠CAB和∠CDP之间的数量关系是.(2)如图2,当点C在直线MN上且在点A左侧,点B在直线MN与PQ之间时,过点B作BD⊥AB交直线PQ于点D.为探究∠ABC与∠BDP之间的数量关系,小明过点B 作BF∥MN.请根据他的思路,写出∠ABC与∠BDP的关系,并说明理由;(3)如图3,在(2)的条件下,作∠ABD的平分线交直线MN于点E,当∠AEB=2∠ABC时,直接写出∠ABC的度数.(4)如图4,当点C在直线MN上且在点A左侧,点B在直线PQ下方时,过点B作BD⊥AB交直线PQ于点D.作∠ABD的平分线交直线MN于点E,当∠BDP=2∠BEN 时,请补充图形并直接写出∠ABC的度数.2020-2021学年辽宁省沈阳市沈河区七年级(下)期中数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题2分,共20分)1.(2分)计算230的结果是()A.23B.1C.0D.32【分析】根据零指数幂的运算法则进行计算即可得出答案.【解答】解:230=1.故选:B.2.(2分)如图,下列说法正确的是()A.∠2与∠3是同旁内角B.∠1与∠2是同位角C.∠1与∠3是同位角D.∠1与∠2是内错角【分析】根据同位角,内错角,同旁内角的定义逐个判断即可.【解答】解:A、∠2和∠3是同旁内角,故本选项符合题意;B、∠1和∠2不是同位角,故本选项不符合题意;C、∠1和∠3是内错角,不是同位角,故本选项不符合题意;D、∠2和∠3是同旁内角,不是内错角,故本选项不符合题意;故选:A.3.(2分)下列运算正确的是()A.a5÷a2=a3B.a2•a3=a6C.3a2﹣2a=a2D.(a+b)2=a2+b2【分析】分别根据同底数幂的除法法则,同底数幂的乘法法则,合并同类项法则以及完全平方公式逐一判断即可.【解答】解:A、a5÷a2=a3,故本选项符合题意;B、a2•a3=a5,故本选项不合题意;C、3a2与﹣2a不是同类项,所以不能合并,故本选项不合题意;D、(a+b)2=a2+2ab+b2,故本选项不合题意;故选:A.4.(2分)下列各组线段能组成一个三角形的是()A.2cm,3cm,6cm B.6cm,8cm,10cmC.5cm,5cm,10cm D.4cm,6cm,10cm【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、2+3<6,不能组成三角形,不符合题意;B、6+8=14>10,能组成三角形,符合题意;C、5+5=10,不能组成三角形,不符合题意;D、4+6=10,不能组成三角形,不符合题意;故选:B.5.(2分)如图,某单位要在河岸l上建一个水泵房引水到C处,他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是()A.两点之间,线段最短B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.两点确定一条直线D.直线外一点与直线上所有点的连线中,垂线段最短【分析】根据垂线段最短进行判断.【解答】解:因为CD⊥l于点D,根据垂线段最短,所以CD为C点到河岸l的最短路径.故选:D.6.(2分)华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣8C.0.7×10﹣9D.0.7×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数0.00 000 0007用科学记数法表示为7×10﹣9.故选:A.7.(2分)如果将一副三角板按如图方式叠放,那么∠1的度数是()A.90°B.100°C.105°D.135°【分析】直接利用一副三角板的内角度数,再结合三角形外角的性质得出答案.【解答】解:如图所示:由题意可得,∠2=90°﹣45°=45°,则∠1=∠2+60°=45°+60°=105°.故选:C.8.(2分)二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关,如图是一年中部分节气所对应的白昼时长示意图.则夏至与秋分白昼时长相差()A.2小时B.3小时C.2.5小时D.4小时【分析】根据图象,可以得出夏至与秋分白昼时长,然后即可解答本题.【解答】解:由图可得,夏至白昼时长15小时,秋分白昼时长12小时,15﹣12=3(小时).故选:B.9.(2分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,添加的一组条件不正确的是()A.BC=DC,∠A=∠D B.BC=EC,AC=DCC.∠B=∠E,∠BCE=∠ACD D.BC=EC,∠B=∠E【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A.AB=DE,BC=DC,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEC,故本选项符合题意;B.AC=DC,AB=DE,BC=EC,符合全等三角形的判定定理SSS,能推出△ABC≌△DEC,故本选项不符合题意;C.∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,即∠ACB=∠DCE,∵∠B=∠E,AB=DE,∴△ABC≌△DEC(AAS),故本选项不符合题意;D.AB=DE,∠B=∠E,BC=EC,符合全等三角形的判定定理SAS,能推出△ABC≌△DEC,故本选项不符合题意;故选:A.10.(2分)研究表明,当每公顷钾肥和磷肥的施用量一定时,氮肥施用量与土豆的产量有如表所示的关系:03467101135202259336404471氮肥施用量/千克土豆产量/吨15.1821.3625.7232.2934.0539.4543.1543.4640.8330.75下列说法错误的是()A.氮肥施用量是自变量,土豆产量是因变量B.当氮肥的施用量是101千克/公顷时,土豆的产量是32.29吨/公顷C.如果不施氮肥,土豆的产量是15.18吨/公顷D.氮肥施用量404千克/公顷比氮肥施用量336千克/公顷时的土豆的产量更高【分析】根据图表数据可得,土豆产量随氮肥施用量的变化而变化,并且氮肥施用量在小于或等于336千克/公顷时,土豆的产量是逐渐增加的,而氮肥施用量在大于或等于404千克/公顷时,土豆的产量是逐渐减少的,据此解对各选项分析判断即可.【解答】解:A、氮肥施用量是自变量,土豆产量是因变量,原说法正确,故选项不符合题意;B、当氮肥的施用量是101千克/公顷时,土豆的产量是32.29吨/公顷,原说法正确,故选项不符合题意;C、如果不施氮肥,土豆的产量是15.18吨/公顷,原说法正确,故选项不符合题意;D、氮肥施用量404千克/公顷比氮肥施用量336千克/公顷时的土豆的产量更低,原说法错误,故选项符合题意.故选:D.二、填空题(每小题3分,共18分)11.(3分)已知a m=3,a n=2,则a m+n=6.【分析】根据同底数幂的乘法,可得答案.【解答】解:a m+n=a m•a n=3×2=6,故答案为:6.12.(3分)如图,一张宽度相等的长方形纸条,如图所示折叠一下,那么∠1=65°.【分析】根据两直线平行,内错角相等与翻折的性质求出∠1.【解答】解:如图所示,∵AB∥CD,∴∠BEG=130°,由折叠可得,∠1=∠GEF=∠BEG=65°.故答案为|:65.13.(3分)将长为23cm、宽为10cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为2cm,设x张白纸粘合后的总长度为ycm,y与x的函数关系式为y=21x+2.【分析】等量关系为:纸条总长度=25×白纸张数﹣(白纸张数﹣1)×2,把相关数值代入即可求解.【解答】解:每张长方形白纸的长度是23cm,x张应是23xcm,由图中可以看出4张白纸之间有3个粘合部分,那么x张白纸之间有(x﹣1)个粘合,应从总长度中减去.∴y与x的函数关系式为:y=23x﹣(x﹣1)×2=21x+2.故答案为:y=21x+2.14.(3分)如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC 于点E.若∠C=26°,则∠DAE的度数为14°.【分析】利用垂直的定义得到∠ADC=90°,再根据三角形内角和计算出∠CAD=64°,接着利用角平分线的定义得到∠CAE=50°,然后计算∠CAD﹣∠CAE即可.【解答】解:∵AD⊥BC,∴∠ADC=90°,∴∠CAD=180°﹣∠ADC﹣∠C=180°﹣90°﹣26°=64°,∵AE平分∠BAC,∴∠CAE=∠BAC=×100°=50°,∴∠DAE=∠CAD﹣∠CAE=64°﹣50°=14°.故答案为14°.15.(3分)如图的瓶子中盛满了水,则水的体积是.(用代数式表示)【分析】水的体积等于两个容器的体积之和,根据圆柱体积公式即可求解.【解答】解:瓶子的体积为:+=,故答案为:.16.(3分)如图,∠CAD和∠CBD的平分线相交于点P.请写出∠C、∠D、∠P的数量关系2∠P=∠D+∠C.【分析】根据三角形的外角性质、角平分线的定义得到∠CAD+∠P=∠CBD+∠C,∠CAD+∠D=∠CBD+∠P,两式相减得到答案.【解答】解:∵∠BF A=∠P AC+∠P,∠BF A=∠PBC+∠C,∴∠P AC+∠P=∠PBC+∠C,∵∠CAD和∠CBD的平分线相交于点P,∴∠P AC=∠CAD,∠PBC=∠CBD,∴∠CAD+∠P=∠CBD+∠C①,同理:∠CAD+∠D=∠CBD+∠P②,①﹣②,得∠P﹣∠D=∠C﹣∠P,整理得,2∠P=∠D+∠C,故答案为:2∠P=∠D+∠C.三、解答题(第17小题16分,18小题6分,19小题6分,20小题8分,共36分)17.(16分)计算:(1)(﹣3)0﹣2×23﹣()﹣2;(2)(﹣2a)3﹣(﹣a)•(3a)2;(3)(x+1)(2x﹣3);(4)199×201+1.(利用乘法公式)【分析】(1)根据零指数幂,负指数幂的公式计算即可;(2)根据积的乘方公式计算;(3)根据多项式乘以多项式的法则计算;(4)根据平方差公式计算.【解答】解:(1)原式=1﹣2×8﹣=1﹣16﹣4=﹣19;(2)原式=﹣8a3﹣(﹣a)•9a2=﹣8a3﹣(﹣9a3)=﹣8a3+9a3=a3;(3)原式=2x2﹣3x+2x﹣3=2x2﹣x﹣3;(4)原式=(200﹣1)(200+1)+1=2002﹣1+1=40000.18.(6分)先化简,再求值:[(2x+y)(2x﹣y)﹣(2x﹣y)2]÷2y,其中x=﹣1,y=2.【分析】直接利用乘法公式以及整式的混合运算法则化简,再把已知数据代入得出答案.【解答】解:原式=(4x2﹣y2﹣4x2+4xy﹣y2)÷2y=(﹣2y2+4xy)÷2y=﹣y+2x,当x=﹣1,y=2时,原式=﹣2+2×(﹣1)=﹣2﹣2=﹣4.19.(6分)如图,在△ABC中,D是AB边上的一点.请用尺规作图法,在△ABC内,作出∠ADE,使∠ADE=∠B,DE交AC于点E.(保留作图痕迹不写作法)【分析】利用基本作图(作一个角等于已知角)作出∠ADE=∠B即可.【解答】解:如图,∠ADE即为所求.20.(8分)完成推理填空如图,已知∠B=∠D,∠BAE=∠E.将证明∠AFC+∠DAE=180°的过程填写完整.证明:∵∠BAE=∠E,∴AB∥DE(内错角相等,两直线平行).∴∠B=∠BCE(两直线平行,内错角相等).又∵∠B=∠D,∴∠D=∠BCE(等量代换).∴AD∥BC(同位角相等,两直线平行).∴∠AFC+∠DAE=180°(两直线平行,同旁内角互补).【分析】根据平行线的判定与性质即可完成证明.【解答】证明:∵∠BAE=∠E,∴AB∥DE(内错角相等,两直线平行).∴∠B=∠BCE(两直线平行,内错角相等).又∵∠B=∠D,∴∠D=∠BCE(等量代换).∴AD∥BC(同位角相等,两直线平行).∴∠AFC+∠DAE=180°(两直线平行,同旁内角互补).故答案为:AB,DE,内错角相等,两直线平行;BCE,两直线平行,内错角相等;BCE,同位角相等,两直线平行;两直线平行,同旁内角互补.四、(本题8分)21.(8分)如图,BE⊥AE,CF⊥AE,垂足分别为E、F,D是EF的中点,CF=AF.(1)请说明CD=BD;(2)若BE=6,DE=3,请直接写出△ACD的面积.【分析】(1)由BE⊥AE,CF⊥AE,得∠BED=∠CFD,再由D是EF的中点,得ED =FD,根据角边角公里可得出△BED与△CFD全等,进而可得结论;(2)由全等可得CF=EB=6,然后可得DF=3,再计算出AD的长,利用三角形面积公式可得答案.【解答】解:(1)∵BE⊥AE,CF⊥AE,∴∠BED=∠CFD,∵D是EF的中点,∴ED=FD,在△BED与△CFD中,,∴△BED≌△CFD(ASA),∴CD=BD;(2)由(1)得:CF=EB=6,∵AF=CF,∴AF=6,∵D是EF的中点,∴DF=DE=3,∴AD=9,∴△ACD的面积:AD•CF=×9×6=27.五、(本题8分)22.(8分)小明家距离学校8千米.一天早晨,小明骑车上学途中自行车出现故障,他于原地修车,车修好后,立即在确保安全的前提下以更快的速度匀速骑行到达学校.如图反映的是小明上学过程中骑行的路程(千米)与他所用的时间(分钟)之间的关系,请根据图象,解答下列问题:(1)小明骑行了3千米时,自行车出现故障;修车用了5分钟;(2)自行车出现故障前小明骑行的平均速度为0.3千米/分,修好车后骑行的平均速度为千米/分;(3)若自行车不发生故障,小明一直按故障前的速度匀速骑行,与他实际所用时间相比,将早到或晚到学校多少分钟?【分析】(1)根据自行车出现故障后路程s不变解答,修车的时间等于路程不变的时间;(2)利用速度=路程÷时间分别列式计算即可得解;(3)求出未出故障需用的时间,然后用实际情况的时间减正常行驶的时间即可进行判断.【解答】解:(1)由图可知,小明行了3千米时,自行车出现故障,修车用了15﹣10=5(分钟);故答案为:3;5;(2)修车前速度:3÷10=0.3(千米/分),修车后速度:5÷15=(千米/分);故答案为:0.3;;(3)8÷(分种),30﹣=(分钟),故他比实际情况早到分钟.六、(本题8分)23.(8分)劳动是财富的源泉,也是幸福的源泉.沈河区某中学对劳动教育进行积极探索和实践,创建学生劳动教育基地,让学生参与农耕劳作.如图,现计划利用校园围墙的一段MN(MN最长可用25m),用40m长的篱笆,围成一个长方形菜园ABCD.设AB 的长为xm(7.2≤x>20).(1)BC的长度为(40﹣2x)m(用含x的代数式表示),长方形菜园的面积S(m2)与AB的长x(m)的关系式为S=﹣2x2+40x;(2)根据(1)中的关系式完成如表:AB的长x(m)89101112131415……菜园的面积S(m2)192198200198192182168150……(3)请根据表中数据分析,S如何随x的变化而变化?(写出一个结论即可)【分析】(1)由矩形的面积=长×宽求解.(2)分别代入x求解.(3)观察表格,找到S取最大值时x所对应的值,当x小于这个值时,S随x增大而增大.【解答】解:(1)BC=40﹣AB﹣CD=(40﹣2x)m,S=AB•BC=x(40﹣2x)=﹣2x2+40x,故答案为:(40﹣2x),﹣2x2+40x.(2)将x=9,10,12分别代入解析式可得S=198,200,192.故答案为:198,200,192.(3)当x<10时,S随x增大而增大.七、(本题10分)24.(10分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、2、1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1、3、3、1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)根据上面的规律,(a+b)4展开式的各项系数中最大的数为6;(2)求出25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5的值;(3)若(x﹣1)2020=a1x2020+a2x2019+a3x2018+……+a2019x2+a2020x+a2021,求出a1+a2+a3+……+a2019+a2020的值.【分析】(1)按规律写出系数即可;(2)根据系数关系写出完全平方式即可;(3)根据已知用特值法即可求出.【解答】解:(1)第五行即为1 4 6 4 1对应(a+b)4的系数,故答案为6;(2)∵(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,......∴25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5=[2+(﹣3)]5=(2﹣3)5=﹣1;(3)当x=1时,(x﹣1)2020=a1x2020+a2x2019+a3x2018+……+a2019x2+a2020x+a2021,即a1+a2+a3+……+a2019+a2020+a2021=0,当x=0时,(x﹣1)2020=a1x2020+a2x2019+a3x2018+……+a2019x2+a2020x+a2021,即a2021=1,∴a1+a2+a3+……+a2019+a2020=0﹣1=﹣1.八、(本题12分)25.(12分)已知直线MN∥PQ,点A在直线MN上,点B、C为平面内两点,AC⊥BC于点C.(1)如图1,当点B在直线MN上,点C在直线MN上方时,延长CB交直线PQ于点D,则∠CAB和∠CDP之间的数量关系是∠CAB+∠PDC=180°.(2)如图2,当点C在直线MN上且在点A左侧,点B在直线MN与PQ之间时,过点B作BD⊥AB交直线PQ于点D.为探究∠ABC与∠BDP之间的数量关系,小明过点B 作BF∥MN.请根据他的思路,写出∠ABC与∠BDP的关系,并说明理由;(3)如图3,在(2)的条件下,作∠ABD的平分线交直线MN于点E,当∠AEB=2∠ABC时,直接写出∠ABC的度数.(4)如图4,当点C在直线MN上且在点A左侧,点B在直线PQ下方时,过点B作BD⊥AB交直线PQ于点D.作∠ABD的平分线交直线MN于点E,当∠BDP=2∠BEN 时,请补充图形并直接写出∠ABC的度数.【分析】(1)利用平行线的性质条件三角形的内角和定理求解即可.(2)结论:∠ABC=∠PDB.构造平行线,利用平行线的性质求解即可.(3)设∠ABC=x,则∠AEB=2x,根据∠CBE+∠AEB=90°,构建方程求解即可.(4)设BE交PQ于J.设∠BEN=x,则∠BDP=2x,利用三角形内角和定理,构建方程求解即可.【解答】解:(1)如图1中,∵AC⊥CD,∴∠C=90°,∴∠CAB+∠ABC=90°,∵MN∥PQ,∴∠PDB=∠ABC,∴∠CAB+∠PDC=180°.故答案为:∠CAB+∠PDC=180°.(2)结论:∠ABC=∠PDB.理由:如图2中,∵MN∥PQ,BF∥MN,∴BF∥PQ,∴∠PDB=∠DBF,∵AC⊥BC,AB⊥BD,∴∠ACB=∠ABD=90°,∵∠CBF+∠ACB=180°,∴∠CBF=∠ABD=90°,∴∠ABC=∠DBF,∴∠ABC=∠PDB.(3)如图3中,∵∠AEB=2∠ABC,∴可以假设∠ABC=x,则∠AEB=2x,∵∠ABD=90°,BE平分∠ABD,∴∠ABE=∠EBD=45°,∵∠BCE=90°,∴∠CBE+∠AEB=90°,∴x+45°+2x=90°,∴x=15°,∴∠ABC=15°.(4)如图4中,图形如图所示,设BE交PQ于J.∵∠BDP=2∠BEN,∴可以假设∠BEN=x,则∠BDP=2x,∵MN∥PQ,∴∠BEN=∠PJE=x,∵∠ABD=90°,BE平分∠ABD,∴∠ABE=∠EBD=45°,∵∠BDJ+∠BJD+∠DBJ=180°,∴180°﹣2x+180°﹣x+45°=180°,∴x=75°,∵∠BCE=90°,∴∠EBC=90°﹣75°=15°,∴∠ABC=∠ABE﹣∠EBC=45°﹣15°=30°.。
期中模拟测试卷(一)七年级数学下学期期中期末满分必刷常考压轴题人教版
七年级下册期中模拟测试(一)数学学科(考试时间:120分钟满分:120分)注意:本试卷分试题卷和答题卡(卷)两部分,答案一律填写在答题卡(卷)上,在试题卷上作答无效.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.36的平方根是()A.±6 B.6 C.﹣6 D.±【答案】A【解答】解:∵(±6)2=36,∴36的平方根是±6.故选:A.2.如图,小手盖住的点的坐标可能为()A.(4,3)B.(4,﹣3)C.(﹣4,3)D.(﹣4,﹣3)【答案】D【解答】解:小手盖住的点的坐标在第三象限,点横坐标与纵坐标都是负数,只有(﹣4,﹣3)符合.故选:D.3.如图,直线AB、CD相交于点O,OE平分∠BOD,若∠AOE=150°,则∠AOC的度数为()A.50°B.60°C.70°D.80°【答案】B【解答】解:∵∠AOE=150°,∴∠BOE=180°﹣150°=30°,∵OE平分∠BOD,∴∠BOD=2∠BOE=60°,∴∠AOC=∠BOD=60°,故选:B.4.如图,点A为直线BC外一点,AC⊥BC,垂足为C,AC=3,点P是直线BC上的动点,则线段AP长不可能是()A.2 B.3 C.4 D.5【答案】A【解答】解:∵AC⊥BC,∴AP≥AC,即AP≥3.故选:A.5.下列各数3.1415926,﹣,0.202202220…,π,,﹣中,无理数的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:3.1415926,﹣是分数,属于有理数;,是整数,属于有理数;无理数有﹣,0.202202220…,π,共3个.故选:C.6.下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.【答案】B【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.7.下列命题是真命题的有()①过直线外一点有且只有一条直线平行于已知直线;②同位角相等,两直线平行;③内错角相等;④在同一平面内,同垂直于一条直线的两条直线平行.A.1个B.2个C.3个D.4个【答案】C【解答】解:①过直线外一点有且只有一条直线平行于已知直线,正确,为真命题;②同位角相等,两直线平行,正确,为真命题;③两直线平行,内错角相等,故原命题为假命题;④在同一平面内,同垂直于一条直线的两条直线平行,正确,为真命题;故真命题的个数为3个,故选:C.8.若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对【答案】A【解答】解:由题意得,a﹣2=0,3﹣b=0,解得,a=2,b=3,则b﹣a=1,故选:A.9.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)【答案】D【解答】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.10.如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270°C.360°D.540°【答案】C【解答】解:过点P作P A∥a,则a∥b∥P A,∴∠1+∠MP A=180°,∠3+∠NP A=180°,∴∠1+∠2+∠3=360°.故选:C.11.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米【答案】C【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,图是矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,则小明从出口A到出口B所走的路线长为50+(25﹣1)×2=98米.故选:C.12.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2021次,点P依次落在点P1、P2、P3…,P2021的位置,由图可知P1(1,1),P2(2,0),P3(2,0),P4(3,1),则P2021的坐标为()A.(2020,0)B.(2020,1)C.(2021,0)D.(2021,1)【答案】D【解答】解:根据图形可得,正方形旋转4次为一个周期,即P→P4为一周期,且相差3﹣(﹣1)=4,∴一个周期P向右移动4个单位长度.∵2021÷4=505…1,∴到P2021有505个周期再旋转一次,505×4﹣1=2019,∴P2020(2019,1),由P2020→P2021与P→P1类似,∴P2021(2021,1).故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.把命题“对顶角相等”改写成“如果…那么…”的形式:.【答案】如果两个角是对顶角,那么这两个角相等【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.14.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为.【答案】110°【解答】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣70°=110°,故答案为:110°.15.如图,△ABC沿着由点B到点E的方向平移,得到△DEF,若BC=4,EC=1,那么平移的距离是.【答案】3【解答】解:根据平移的性质,平移的距离=BE=4﹣1=3,故答案为:3.16.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是.【答案】35°【解答】解:如图,∵AB∥CD,∴∠AEF=∠1=25°,∵∠MEF=60°,∴∠2=∠MEF﹣∠AEF=60°﹣25°=35°,故答案为35°.17.若第三象限内的点P(x,y)、满足|x|=3,y2=25.则P点的坐标是.【答案】(﹣3,﹣5)【解答】解:∵|x|=3,y2=25,∴x=±3,y=±5,∵P在第三象限,∴点P的坐标是(﹣3,﹣5).故答案为:(﹣3,﹣5).18.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的横坐标为.【答案】45【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的横坐标为45.故答案为:45.三、解答题(本大题共8小题,共66分.解答题应写出文字说明,证明过程或演算步骤.)19.计算下列各式的值:【答案】6【解答】解:=+(﹣5)+9﹣(﹣2)=+(﹣5)+9﹣+2=6.20.求满足下列各式x的值(1)2x2﹣8=0;(2)(x﹣1)3=﹣4.【答案】(1)x=±2;(2)x=﹣1【解答】解:(1)2x2﹣8=0,2x2=8,x2=4,x=±2;(2)(x﹣1)3=﹣4,(x﹣1)3=﹣8,x﹣1=﹣2,x=﹣1.21.一个正数的平方根是2a﹣1与﹣a+2,求a和这个正数.【答案】9【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9.22.如图,已知单位长度为1的方格中有个三角形ABC.(1)将三角形ABC向上平移3格再向右平移2格所得三角形A'B'C',在所给的网格中画出三角形A'B'C'的位置;(2)求出三角形A'B'C'的面积;(3)如果点C的坐标为(3,﹣1),请在所给的网格中建立平面直角坐标系.填空:①BC与B'C'的关系是;②BB'与CC'的关系是.【答案】(1)略(2)(3)平行且相等,平行且相等.【解答】解:(1)如图所示,三角形A'B'C'即为所求;(2)S△A'B'C'=3×3﹣=;(3)坐标系如图所示,①BC与B'C'的关系是:平行且相等,②BB'与CC'的关系是:平行且相等,故答案为:平行且相等,平行且相等.23.如图,AB,CD相交于点O,OM平分∠BOD.(1)若∠AOC=50°,求∠AOM的度数;(2)若2∠AOD=3∠AOC,求∠COM的度数.【答案】(1)160°(2)144°【解答】解:(1)由题意可得∠BOD=∠AOC=50°,∠AOD=180°﹣∠AOC=130°,∵OM平分∠BOD,∴∠DOM==25°,∴∠AOM=∠AOD+∠DOM=135°+25°=160°;(2)∵2∠AOD=3∠AOC,∠AOD+∠AOC=180°,∴∠AOD+∠AOD=180°,解得∠AOD=108°,∴∠BOD=180°﹣108°=72°,∠COB=∠AOD=108°,∵OM平分∠BOD,∴∠BOM==36°,∴∠COM=∠COB+∠BOM=108°+36°=144°.24.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.【答案】(1)略(2)25°【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF,∴∠2=∠A,∵∠1=∠2,∴∠1=∠A,∴AB∥CD;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°,∵AB∥CD,∴∠C=∠3=25°.25.我们知道:无理数是无限不循环的小数.下面是探究无理数的大小过程:因为12=1,22=4,所以1<<2;因为1.42=1.96,1.52=2.25,所以1.4<<1.5;因为1.412=1.9881,1.422=2.0164,所以1.41<<1.42;因为1.4142=1.999396,1.4152=2.002225,所以1.414<<1.415;……如此进行下去,可以得到的更加精确的近似值.(1)请仿照上面的思考过程,请直接写出无理数的大致范围?(精确到0.01)(2)填空:①比较大小:32(填“>、<或=”);②若a、b均为正整数,a>,b<,则a+b的最小值是.(3)现有一块长4.1dm,宽为3dm的长方形木板,要想在这块木板上截出两个面积分别为2dm2和5dm2的正方形木板,张师傅准备采用如图的方式进行,请你帮助分析一下,他的方法可行吗?【答案】(1)2.23<<2.24(2)>,4(3)可行【解答】解:(1)∵2.232<5<2.242,∴2.23<<2.24;(2)①∵(3)2=18,(2)2=12,∴3>2;故答案为:>;②∵a、b均为正整数,a>,b<,∴a最小为3,b=1,∴a+b最小为4;故答案为:4;(3)他的方法可行,理由如下:∵面积分别为2dm2的正方形边长是dm,面积分别为5dm2的正方形是dm,≈2,236<3,+≈3.65<4.1,∴他的方法可行.26.如图,在平面直角坐标系,点A、B的坐标分别为(a,0),(0,b),且|a﹣26|+=0,将点B向右平移24个单位长度得到C.(1)求A、B两点的坐标;(2)点P、Q分别为线段BC、OA两个动点,P自B点向C点以2个单位长度/秒向右运动,同时点Q自A点向O点以4个单位长度/秒向左运动,设运动的时间为t,连接PQ,当PQ恰好平分四边形BOAC的面积时,求t的值;(3)点D是直线AC上一点,连接QD,作∠QDE=120°,边DE与BC的延长线相交于点E,DM平分∠CDE,DN平分∠ADQ,当点Q运动时,∠MDN的度数是否变化?请说明理由.【答案】(1)A(26,0),B(0,8)(2)t=(3)不变【解答】解:(1)∵|a﹣26|+=0,∴a﹣26=0,且8﹣b=0,∴a=26,b=8,∴A(26,0),B(0,8);(2)∵BC∥x轴,BC=24,∴C(24,8),由题意得:BC∥OA,BP=2t,AQ=4t,则PC=24﹣2t,OQ=26﹣4t,BO=8,∴S梯形AOBC=×(24+26)×8=200,当PQ恰好平分四边形BOAC时,S梯形OBPQ=×200=100,∴:×(2t+26﹣4t)×8=100,解得:t=;(3)当点Q运动时,∠MDN的度数不变,理由如下:如图1,当点D在线段CA的延长线上或AC的延长线上时,∵DM平分∠CDE,DN平分∠ADQ,∴∠NDC=,∠QDA,∠MDC=∠CDE,∴∠MDN=∠NDC+∠MDC=(∠QDA+∠CDE)=∠QDE=60°;如图2,当点D在线段AC上时,∵DM平分∠CDE,DN平分∠ADQ,∴∠NDQ=∠ADQ,∠MDC=∠CDE,设∠CDE=α,∴∠QDC=120°﹣α,∠ADQ=180°﹣(120°﹣α)=60°+α,∴∠MDN=∠MDC+∠QDC+∠NDC=α+120°﹣α+(60°+α)=150°;综上所述,∠MDN的度数为150°或60°,∴当点Q运动时,∠MDN的度数不变化.。
2020-2021学年度七年级下学期期中考试数学试卷(含答案)
七年级下学期期中考试数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第三章《变量之间的关系》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。
在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.某数学兴趣小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表),下列说法错误的是()温度/℃−20−100102030声速/(m/s)318324330336342348A. 在这个变化中自变量是温度,因变量是声速B. 当温度每升高10℃,声速增加6m/sC. 当空气温度为20℃,5s的时间声音可以传播1740mD. 温度越高声速越快2.体育课上,老师测量跳远成绩的依据是()A. 平行线间的距离相等B. 两点之间,线段最短C. 垂线段最短D. 两点确定一条直线3.下列各项中,两个幂是同底数幂的是()A. x2与a2B. (−a)5与a3C. (x−y)2与(y−x)2D. −x2与x34.若(x−1)0−2(2x−6)−2有意义,那么x的取值范围是()A. x>1B. x<3C. x≠1或x≠3D. x≠1且x≠35.如图,∠B的同位角可以是()A. ∠1B. ∠2C. ∠3D. ∠46.一蓄水池中有水50m3,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分1234…水池中水量/m348464442…下列说法不正确的是()A. 蓄水池每分钟放水2m3B. 放水18分钟后,水池中水量为14m3C. 蓄水池一共可以放水25分钟D. 放水12分钟后,水池中水量为24m37.某商场为了增加销售额,推出优惠活动,其活动内容为凡活动期间一次购物超过50元,超过50元的部分按9折优惠.在活动期间,李明到该商场为单位购买单价为30元的办公用品x(件)(x>2),则应付款y(元)与商品件数x的关系式为()A. y=27x(x>2)B. y=27x+5(x>2)C. y=27x+50(x>2)D. y=27x+45(x>2)8.如图 ①,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的关系的图象如图 ②,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的关系的图象大致是()A. B.C. D.9.如图,将一副三角尺按下列位置摆放,使∠α和∠β互余的摆放方式是()A.B.C.D.10.如图,直线AB,CD相交于点O,射线OM平分∠BOD.若∠AOC=42∘,则∠AOM等于()A. 159∘B. 161∘C. 169∘D. 138∘11.小萌在利用完全平方公式计算一个二项整式的平方时,得到正确结果4x2+20xy+■,不小心把最后一项染黑了,你认为这一项是()A. 5y2B. 10y2C. 100y2D. 25y212.某同学在计算−3x2乘一个多项式时错误的计算成了加法,得到的答案是x2−x+1,由此可以推断正确的计算结果是()A. 4x2−x+1B. x2−x+1C. −12x4+3x3−3x2D. 无法确定13.若多项式x2+x+m能被x+5整除,则此多项式也能被下列哪个多项式整除()A. x−6B. x+6C. x−4D. x+414.如图所示,与∠α构成同位角的角的个数为()A. 1B. 2C. 3D. 415.某人要在规定的时间内加工100个零件,则工作效率η与时间t之间的关系中,下列说法正确的是()A.数100和η、t都是变量B. 数100和η都是常量C. η和t是变量D. 数100和t都是常量卷Ⅱ二、填空题(本大题共5小题,共25.0分)16.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是_________________.17.如图,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车距离最近,请你在铁路边选一点来建火车站(位置已选好),理由是.18.已知2x=a,3x=b,则6x=.19.如图,直线EF与CD相交于点O,OA⊥OB,且OC平分∠AOF.若∠AOE=40∘,则∠BOD的度数为.20.观察下列图形及表格:梯形个数n123456⋯周长l5811141720⋯则周长l与梯形个数n之间的关系式为.三、解答题(本大题共7小题,共80.0分)21.(8分)计算:(1)(x2y−12xy2−2xy)÷12xy;(2)[2(x+y)3−4(x+y)2−x−y]÷(x+y).22.(8分)如图,直线a、b被直线l所截,已知∠1=40°,试求∠2的同位角及同旁内角的度数.23.(12分)(1)表示汽车性能的参数有很多,例如:长宽高、轴距、排量、功率、扭矩、转速、百公里油耗等等.为了了解某种车的耗油量,某专业检测人员对这种车在高速公路上做了耗油试验,并把试验的数据记录下米,制成下表:汽车行驶时间t(ℎ)0123…油箱剩余油量Q(L)100948882…①上表反映的两个变量中,白变量是______;②根据上表可知,每小时耗油______升;③根据上表的数据,写出用t表示Q的关系式:______④若汽车油箱中剩余油量为55L,则汽车行驶了多少小时?(2)年龄与手机号码的秘密:①选取你家里任意一部手机的最后一位:②把这个数字乘上2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥最后用这个数目减去你出生的那一年(例如2004年).现在你看到一个三位数的数字.第一位数字是你家手机号的最后一位,接下来就是你的实际年龄!你能否用你所选数字按照上述步骤验证下?你能用所学知识解释这一问题吗?(计算年龄时按照农历现在为2017年)24.(10分)观察下列式:(x2−1)÷(x−1)=x+1;(x3−1)÷(x−1)=x2+x+1;(x4−1)÷(x−1)=x3+x2+x+1;(x5−1)÷(x−1)=x4+x3+x2+x+1;(1)猜想:(x7−1)÷(x−1)=______;(27−1)÷(2−1)=______;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27.25.(12分)如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=72∘,求∠BOD的度数;(2)若∠DOE=2∠AOC,判断射线OE,OD的位置关系,并说明理由.26.(14分)2018年5月14日川航3U8633航班挡风玻璃在高空爆裂,机组临危不乱,果断应对,正确处置,顺利返航,避免了一场灾难的发生,下面表格是成都当日海拔ℎ(千米)与相应高度处气温t(℃)的关系(成都地处四川盆地,海拔较低,为方便计算,在此题中近似为0米).海拔ℎ(千米)012345…气温t(℃)201482−4−10…根据上表,回答以下问题:(1)由上表可知海拔5千米的上空气温约为________℃;(2)由表格中的规律请写出当日气温t与海拔高度h的关系式为________;如图表示当日飞机下降过程中海拔与玻璃爆裂后立即返回地面所用的时间关系.根据图象回答以下问题:(3)挡风玻璃在高空爆裂时飞机所处的高度为________千米,返回地面用了________分钟;(4)飞机在2千米高空水平面上大约盘旋了________分钟;(5)求挡风玻璃在高空爆裂时,飞机所处高空的气温.27.(16分)已知:如图是一个跳棋棋盘,其游戏规则是:一个棋子从某一个起始角开始,经过若干步跳动以后,到达终点角.跳动时,每一步只能跳到它的同位角或内错角或同旁内角的位置上,例如:从起始位置∠1跳到终点位置∠3写出其中两种不同路径,路径1:∠1−同旁内角→∠9−内错角→∠3.路径2:∠1一内错角→∠12一内错角→∠6−同位角→∠10−同旁内角→∠3.试一试:(1)从起始∠1跳到终点角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能否跳到终点∠8?答案1.C2.C3.D4.D5.D6.D7.B8.C9.A10.A11.D12.C13.C14.C15.C16.y=4−x2(0<x<2)17.垂线段最短18.ab19.20∘20.l=3n+221.解:(1)(x2y−12xy2−2xy)÷12xy=x2y÷12xy−12xy2÷12xy−2xy÷12xy=2x−y−4;(2)[2(x+y)3−4(x+y)2−x−y]÷(x+y)=2(x+y)3÷(x+y)−4(x+y)2÷(x+y)−(x+y)÷(x+y) =2(x+y)2−4(x+y)−1.22.解:如图,由图可知,∠4是∠2的同位角,∠3是∠2的同旁内角,∵∠1=40°,∴∠3=∠1=40°,∠4=180°−∠1=140°,即∠2的同位角是140°,∠2的同旁内角是40°.23.解:(1)①自变量是t,②据上表可知,每小时耗油100−94=6升;③Q=100−6t;④当Q=55时,55=100−6t,6t=45,t=7.5.答:汽车行使了7.5小时;(2)比如:我选择数字为9,出生时间为2004年,我的年龄为13岁,由题意得(9×2+5)×50+1767−2004=900+2017−2004=913,解释:假设选取数字为m,出生时间为n年,由题意得(m×2+5)×50+1767−n=100m+(2017−n)因为m为个位数字,(2017−n)两位数,所以100m+(2017−n)三位数,而且第一位数字就所选数字,后两位恰好为年龄.24.(1)x6+x5+x4+x3+x2+x+1;26+25+24+23+22+2+1;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27=(28−1)÷(2−1)=28−1=255.25.解:(1)因为OA平分∠EOC,∠EOC=72∘,∠EOC=36∘.所以∠AOC=12所以∠BOD=∠AOC=36∘.(2)OE⊥OD.理由如下:因为∠DOE=2∠AOC,OA平分∠EOC,所以∠DOE=2∠AOC=∠EOC.又因为∠DOE +∠EOC =180∘, 所以∠DOE =∠EOC =90∘. 所以OE ⊥OD .26.解:(1)−10;(2)t =20−6ℎ; (3)9.8,20; (4)2;(5)根据图象可知,当ℎ=9.8时,挡风玻璃爆裂,此时t =20−6×9.8=−38.8, 所以挡风玻璃在高空爆裂时,飞机所处高空的气温为−38.8℃.27.解:(1)路径∠1→内错角∠12→同旁内角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能跳到终点∠8.其路径为: 路径:∠1→同位角∠10→内错角∠5→同旁内角∠8.。
期中模拟测试卷(二)七年级数学下学期期中期末满分必刷常考压轴题人教版
七年级下册期中模拟测试(二)数学学科(考试时间:120分钟满分:120分)注意:本试卷分试题卷和答题卡(卷)两部分,答案一律填写在答题卡(卷)上,在试题卷上作答无效.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.的算术平方根为()A.B.C.D.﹣【答案】C【解答】解:的算术平方根为.故选:C.2.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【答案】D【解答】解:观察图形可知图案D通过平移后可以得到.故选:D.3.下列坐标中,是第二象限的坐标是()A.(1,﹣5)B.(﹣2,4)C.(﹣1,﹣5)D.(5,7)【答案】B【解答】解:A、(1,﹣5)在第四象限,故本选项不合题意;B、(﹣2,4)在第二象限,故本选项符合题意;C、(﹣1,﹣5)在第三象限,故本选项不合题意;D、(5,7)在第一象限,故本选项不合题意;故选:B.4.下列图形中,∠1与∠2是同位角的是()A.B.C.D.【答案】B【解答】解:A选项,∠1与∠2是对顶角,不是同位角,故该选项不符合题意;B选项,∠1与∠2是同位角,故该选项符合题意;C选项,∠1与∠2是内错角,不是同位角,故该选项不符合题意;D选项,∠1与∠2是同旁内角,不是同位角,故该选项不符合题意;故选:B.5.若点P在x轴的下方,y轴的左方,且到每条坐标轴的距离都是4,则点P的坐标为()A.(4,4)B.(﹣4,4)C.(﹣4,﹣4)D.(4,﹣4)【答案】C【解答】解:∵点P在x轴的下方y轴的左方,∴点P在第三象限,∵点P到每条坐标轴的距离都是4,∴点P的坐标为(﹣4,﹣4).故选:C.6.如图,把河AB中的水引到C,拟修水渠中最短的是()A.CM B.CN C.CP D.CQ【答案】C【解答】解:如图,CP⊥AB,垂足为P,在P处开水渠,则水渠最短.因为直线外一点与直线上各点连线的所有线段中,垂线段最短.故选:C.7.如图,下列条件:①∠1=∠3;②∠DAB=∠BCD;③∠ADC+∠BCD=180°;④∠2=∠4,其中能判定AB∥CD的有()A.1个B.2个C.4个D.3个【答案】A【解答】解:①由∠1=∠3可判定AD∥BC,不符合题意;②由∠DAB=∠BCD不能判定AB∥CD,不符合题意;③由∠ADC+∠BCD=180°可判定AD∥BC,不符合题意;④由∠2=∠4可判定AB∥CD,符合题意.故选:A.8.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点A B.点B C.点C D.点D【答案】B【解答】解:根据如图所建的坐标系,易知(10,20)表示的位置是点B,故选:B.9.下列说法中,正确的是()①两点之间的所有连线中,线段最短;②过一点有且只有一条直线与已知直线垂直;③平行于同一直线的两条直线互相平行;④直线外一点到这条直线的垂线段叫做点到直线的距离.A.①②B.①③C.①④D.②③【答案】B【解答】解:①两点之间的所有连线中,线段最短,说法正确;②在同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;③平行于同一直线的两条直线互相平行,说法正确;④直线外一点到这条直线的垂线段的长度叫做点到直线的距离,说法错误.故选:B.10.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠ABC+∠ACB=120°,则∠ABD+∠ACD的值为()A.60°B.50°C.40°D.30°【答案】D【解答】解:在△ABC中,∠ABC+∠ACB=120°,在△DBC中,∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=120°﹣90°=30°.故选:D.11.一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带①沿AB折叠,量得∠1=∠2=50°;小丽对纸带②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A.纸带①的边线平行,纸带②的边线不平行B.纸带①、②的边线都平行C.纸带①的边线不平行,纸带②的边线平行D.纸带①、②的边线都不平行【答案】C【解答】解:如图①所示:∵∠1=∠2=50°,∴∠3=∠2=50°,∴∠4=∠5=180°﹣50°﹣50°=80°,∴∠2≠∠4,∴纸带①的边线不平行;如图②所示:∵GD与GC重合,HF与HE重合,∴∠CGH=∠DGH=90°,∠EHG=∠FHG=90°,∴∠CGH+∠EHG=180°,∴纸带②的边线平行.故选:C.12.如图,点A(1,0)第一次跳动至点A1(﹣1,1),第二次跳动至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次跳动至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是()A.(50,51)B.(51,50)C.(49,50)D.(50,49)【答案】B【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故选:B二、填空题(本大题共6小题,每小题3分,共18分)13.5的平方根是.【答案】±【解答】解:∵(±)2=5,∴5的平方根是±.故答案为:±.14.如图,AB、CD相交于点O,OE是∠AOC的平分线,∠BOD=70°,∠EOF=65°,则∠AOF的度数为°.【答案】30【解答】解:∵∠BOD=70°,∴∠AOC=∠BOD=70°,∵OE是∠AOC的平分线,∴∠AOE=∠AOC=70°=35°,∵∠EOF=65°,∴∠AOF=65°﹣35°=30°,故答案为:30.15.已知≈4.496,≈14.22,则≈.【答案】44.96【解答】解:==10≈10×4.496=44.96,故答案为:44.96.16.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2=.【答案】45°【解答】解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+∠2=∠3+∠4=45°.故答案是:45°.17.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为m2.【答案】540【解答】解:如图,把两条”之”字路平移到长方形地块ABCD的最上边和最左边,则余下部分EFGH是矩形.∵CF=32﹣2=30(米),CG=20﹣2=18(米),∴矩形EFCG的面积=30×18=540(平方米).答:绿化的面积为540m2.故答案为:540.18.在平面直角坐标系中,点P位于原点,第1秒钟向右移动1个单位,第2秒钟向上移动2个单位,第3秒钟向左移动3个单位,第4秒钟向下移动4个单位,第5秒钟向右移动5个单位,…依此类推,经过2021秒钟后,点P的坐标是.【答案】(1011,﹣1010)【解答】解:观察图形可知经过2017秒钟后,点P在第四象限的直线y=﹣x+1上,∵2021÷4=505余1,∴P2021的横坐标为1+2×505=1011,∴y=﹣1011+1=﹣1010,∴P(1011,﹣1010).故答案为(1011,﹣1010)三、解答题(本大题共8小题,共66分.解答题应写出文字说明,证明过程或演算步骤.)19.计算:+﹣(﹣1).【答案】1﹣【解答】解:+﹣(﹣1)=3﹣3﹣+1=1﹣20.已知正数m的两个不同平方根分别是2a﹣7和a+4,又b﹣7的立方根为﹣2.(1)求a和正数m及b的值;(2)求3a+2b的算术平方根.【答案】(1)a=1,m=25,b=﹣1 (2)1【解答】解:(1)∵正数m的两个不同平方根分别是2a﹣7和a+4,∴(2a﹣7)+(a+4)=0,∴a=1,2a﹣7=﹣5,∴m=25,∵b﹣7的立方根为﹣2,∴b﹣7=﹣8,∴b=﹣1,∴a=1,m=25,b=﹣1;(2)由(1)有a=1,b=﹣1,∴3a+2b=3×1+2×(﹣1)=1,∴3a+2b的算术平方根为1.21.补全下列题目的解题过程.如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证DF∥AC.证明:∵∠1=∠2(已知),且∠2=∠3,∠1=∠4(),∴∠3=∠4(等量代换),∴DB∥(),∴∠C=∠ABD(),∵∠C=∠D(已知),∴∠D=∠ABD(),∴DF∥AC().【答案】对顶角相等;CE;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.【解答】证明:∵∠1=∠2(已知),且∠2=∠3,∠1=∠4(对顶角相等),∴∠3=∠4(等量代换),∴DB∥CE(内错角相等,两直线平行),∴∠C=∠ABD(两直线平行,同位角相等),∵∠C=∠D(已知),∴∠D=∠ABD(等量代换),∴DF∥A C(内错角相等,两直线平行),故答案为:对顶角相等;CE;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.22.如图,在平面直角坐标系中,三角形ABC的顶点都在网格点上,其中点C的坐标为(1,2).(1)点A的坐标是点B的坐标是.(2)画出将三角形ABC先向左平移2个单位长度,再向上平移1个单位长度所得到的三角形A'B'C'.请写出三角形A'B'C'的三个顶点坐标;(3)求三角形ABC的面积.【答案】(1)(2,﹣1);(4,3)(2)略(3)5【解答】解:(1)A(2,﹣1),B(4,3);故答案为(2,﹣1);(4,3);(2)如图,三角形A'B'C'为所作;A′(0,0),B′(2,4),C′(﹣1,3);(3)三角形ABC的面积=3×4﹣×3×1﹣×3×1﹣×2×4=5.23.已知点P(2m﹣4,m+4),解答下列问题:(1)若点P在y轴上,则点P的坐标为;(2)若点P的纵坐标比横坐标大7,求出点P坐标;(3)若点P在过A(2,3)点且与x轴平行的直线上,则AP的长为多少?【答案】(1)(0,6)(2) (﹣2,5)(3)8【解答】解:(1)令2m﹣4=0,解得m=2,所以P点的坐标为(0,6),故答案为:(0,6);(2)令m+4﹣(2m﹣4)=7,解得m=1,所以P点的坐标为(﹣2,5);(3)∵点P在过A(2,3)点且与x轴平行的直线上,∴m+4=3,解得m=﹣1.∴P点的坐标为(﹣6,3),∴AP=2+6=8.24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,例如:数轴上表示﹣1与﹣2的两点间的距离=|﹣1﹣(﹣2)|=﹣1+2=1;而|x+2|=|x﹣(﹣2)|,所以|x+2|表示x与﹣2两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和5两点之间的距离.(2)若数轴上表示点x的数满足|x﹣1|=3,那么x=.(3)若数轴上表示点x的数满足﹣4<x<2,则|x﹣2|+|x+4|=.【答案】(1)76(2)﹣2或4(3)6【解答】解:(1)根据题意知数轴上表示﹣2和5两点之间的距离为5﹣(﹣2)=7,故答案为:7;(2)∵|x﹣1|=3,即在数轴上到表示1和x的点的距离为3,∴x=﹣2或x=4,故答案为:﹣2或4;(3)∵|x﹣2|+|x+4|表示在数轴上表示x的点到﹣4和2的点的距离之和,且x位于﹣4到2之间,∴|x﹣2|+|x+4|=2﹣x+x+4=6,故答案为:6.25如图①.已知AM∥CN,点B为平面内一点,AB⊥BC于点B,过点B作BD⊥AM于点D,设∠BCN=α.(1)若α=30°,求∠ABD的度数;(2)如图②,若点E、F在DM上,连接BE、BF、CF,使得BE平分∠ABD、BF平分∠DBC,求∠EBF的度数;(3)如图③,在(2)问的条件下,若CF平分∠BCH,且∠BFC=3∠BCN,求∠EBC 的度数.【答案】(1)30°(2)45°(3)97.5°.【解答】解:(1)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α=30°,∴∠HBC=90°﹣∠BCN=60°.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=30°;(2)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α,∴∠HBC=90°﹣α.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=α.∵BE平分∠ABD,∴∠DBE=∠ABE=α.∵∠HBC=90°﹣α,∴∠DBC=180°﹣∠HBC=90°+α.∵BF平分∠DBC,∴∠DBF=∠CBF=∠DBC=45°+α.∴∠EBF=∠DBF﹣∠DBE=45°+α﹣α=45°;(3)∵∠BCN=α,∴∠HCB=180°﹣∠BCN=180°﹣α.∵CF平分∠BCH,∴∠BCF=∠HCF=∠HCB=90°﹣α.∵AM∥CN,∴∠DFC=∠HCF=90°﹣α.∵∠BFC=3∠BCN,∴∠BFC=3α.∴∠DFB=∠DFC﹣∠BFC=90°﹣α.由(2)知:∠DBF=45°+α.∵BD⊥AM,∴∠D=90°.∴∠DBF+∠DFB=90°.∴45°+α+90°﹣α=90°.解得:α=15°.∴∠FBC=∠DBF=45°+α=52.5°.∴∠EBC=∠FBC+∠EBF=52.5°+45°=97.5°.26.如图1,在平面直角坐标系中,点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)写出点C,D的坐标并求出四边形ABDC的面积.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.(3)如图2,点F是直线BD上一个动点,连接FC、FO,当点F在直线BD上运动时,请直接写出∠OFC与∠FCD,∠FOB的数量关系.【答案】(1) 12(2)存在(3)当点F在线段BD上,∠OFC=∠FOB+∠FCD;;当点F在线段BD的延长线上,∠OFC=∠FOB﹣∠FCD.【解答】解:(1)∵点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度得到A,B的对应点C,D,∴点C的坐标为(0,2),点D的坐标为(6,2);四边形ABDC的面积=2×(4+2)=12;(2)存在.设点E的坐标为(x,0),∵△DEC的面积是△DEB面积的2倍,∴×6×2=2××|4﹣x|×2,解得x=1或x=7,∴点E的坐标为(1,0)和(7,0);(3)当点F在线段BD上,作FM∥AB,如图1,∵MF∥AB,∴∠2=∠FOB,∵CD∥AB,∴CD∥MF,∴∠1=∠FCD,∴∠OFC=∠1+∠2=∠FOB+∠FCD;当点F在线段DB的延长线上,作FN∥AB,如图2,∵FN∥AB,∴∠NFO=∠FOB,∵CD∥AB,∴CD∥FN,∴∠NFC=∠FCD,∴∠OFC=∠NFC﹣∠NFO=∠FCD﹣∠FOB;同样得到当点F在线段BD的延长线上,得到∠OFC=∠FOB﹣∠FCD.。
2020-2021学年七年级下学期期中数学试卷及答案解析 (31)
2020-2021学年七年级下学期期中数学试卷一、选择题(每小题3分,共30分)1.计算(2x)2的结果是()A.2x2B.4x2C.4x D.2x解:(2x)2=22×x2=4x2.故选:B.2.下列语句中正确的是()A.相等的角是对顶角B.有公共顶点且相等的角是对顶角C.有公共顶点的两个角是对顶角D.角的两边互为反向延长线的两个角是对顶角解:A、相等的角不一定是对顶角,是假命题;B、有公共顶点且相等的角不一定是对顶角,错误;C、有公共顶点的两个角不一定是对顶角,错误;D、角的两边互为反向延长线的两个角是对顶角,正确;故选:D.3.下列运算正确的是()A.a2•a3=a6B.(ab)2=a2b2C.(a2)3=a5D.a2+a2=a4解:A、a2•a3=a2+3=a5,故本选项错误;B、(ab)2=a2b2,故本选项正确;C、(a2)3=a2×3=a6,故本选项错误;D、a2+a2=2a2,故本选项错误.故选:B.4.如果一个角的余角是30°,那么这个角的补角的度数是()A.30°B.60°C.90°D.120°解:由题意,得:180°﹣(90°﹣30°)=180°﹣60°=120°.故这个角的补角的度数是120°.故选:D.5.若物体运动的路程s(米)与时间t(秒)的关系式为s=3t2+2t+1,则当t=4秒时,该物体所经过的路程为()A.28米B.48米C.57米D.88米解:把t=4代入s=3t2+2t+1,得s=3×42+2×4+1=57(米).故选:C.6.在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图象表示;⑤y与x的关系还可以用列表法和图象法表示,其中说法正确的是()A.①②⑤B.①②④C.①③⑤D.①④⑤解:①x是自变量,y是因变量;正确;②x的数值可以任意选择;正确;③y是变量,它的值与x无关;而y随x的变化而变化;错误;④用关系式表示的不能用图象表示;错误;⑤y与x的关系还可以用列表法和图象法表示,正确;故选:A.7.若(x﹣2)(x+3)=x2+ax+b,则a、b的值分别为()A.a=5,b=6B.a=1,b=﹣6C.a=1,b=6D.a=5,b=﹣6解:∵(x﹣2)(x+3)=x2+x﹣6=x2+ax+b,∴a=1,b=﹣6.故选:B.8.如图,已知B、C、E在同一直线上,且CD∥AB,若∠A=105°,∠B=40°,则∠ACE 为()A.35°B.40°C.105°D.145°解:∵CD∥AB,∠B=40°,∠A=105°,∴∠DCE=∠B=40°,∠ACD=∠A=105°,∴∠ACE=∠ACD+∠DCE=145°.故选:D.9.张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系()A.B.C.D.解:依题意,0~20min散步,离家路程从0增加到900m,20~30min看报,离家路程不变,30~45min返回家,离家从900m路程减少为0m.故选:D.10.设a=x﹣2017,b=x﹣2019,c=x﹣2018,若a2+b2=34,则c2的值是()A.16B.12C.8D.4解:∵a=x﹣2017,b=x﹣2019,a2+b2=34,∴(x﹣2017)2+(x﹣2019)2=34,∴(x﹣2018+1)2+(x﹣2018﹣1)2=34,∴(x﹣2018)2+2(x﹣2018)+1+(x﹣2018)2﹣2(x﹣2018)+1=34,∴2(x﹣2018)2=32,∴(x﹣2018)2=16,又c=x﹣2018,∴c2=16.故选:A.二、填空题(每小题4分,6小题共24分)11.(4分)如果a x•a3=a5,那么x=2.解:由题意,得x+3=5,解得x=2,故答案为:2.12.(4分)在关系式y=3x﹣1中,当x由1变化到5时,y由2变化到14.解:当x=1时,代入关系式y=3x﹣1中,得y=3﹣1=2;当x=5时,代入关系式y=3x﹣1中,得y=15﹣1=14.故答案为:2,14.13.(4分)如图,直线l1∥l2,被直线l所截,如果∠1=60°,那么∠2的度数为120°.解:∵直线l1∥l2,被直线l所截,∠1=60°,∴∠2=180°﹣60°=120°.故答案为:120°.14.(4分)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行80米.解:通过读图可知:小明家距学校800米,小明从学校步行回家的时间是15﹣5=10(分),所以小明回家的速度是每分钟步行800÷10=80(米).故答案为:80.15.(4分)已知:如图,OC⊥AB,OD⊥OE,则与∠AOD互余的角是∠COD,∠BOE.解:∵OC⊥AB,OD⊥OE,∴∠DOE=∠COB=∠AOC=90°,∴∠AOD+∠COD=∠AOD+∠BOE=90°,∴与∠AOD互余的角是∠COD,∠BOE.故答案为:∠COD,∠BOE.16.(4分)设4x2+mx+121是一个完全平方式,则m=±44.解:∵4x2+mx+121是一个完全平方式,∴mx=±2×11•2x,∴m=±44.故答案为:±44.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:(﹣2x3y2)3÷(2x2y)解:原式=﹣8x9y6÷2x2y=﹣4x7y5.18.(6分)先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=1 4.解:(a+2)(a﹣2)+a(4﹣a)=a2﹣4+4a﹣a2=4a﹣4,当a=14时,原式=4×14−4=1−4=−3.19.(6分)如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,求∠3的度数.解:∵a∥b,∠1=40°,∴∠4=∠1=40°,∴∠3=∠2+∠4=70°+40°=110°.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)若一个角的补角是这个角的余角的3倍,求这个角的度数.解:设这个角是x,则这个角的补角为180°﹣x,余角为90°﹣x,所以3(90°﹣x)=180°﹣x,整理,可得2x=90°,解得:x=45°,即这个角的度数为45°.21.(7分)已知y=﹣x2+(a﹣1)x+2a﹣3,当x=﹣1时,y=0,(1)求a的值;(2)当x=1时,求y的值.解:(1)由y=﹣x2+(a﹣1)x+2a﹣3,当x=﹣1时,y=0,得﹣1﹣(a﹣1)+2a﹣3=0,解得a=3;(2)函数解析式为y=﹣x2+2x+3,当x=1时,y=﹣1+2+3=4.22.(7分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.解:阴影部分的面积=(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,当a=3,b=2时,原式=5×32+3×3×2=63(平方米).五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=105°,求∠ACB的度数.解:(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴EF∥CD;(2)∵EF∥CD,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=105°.24.(9分)小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?解:(1)设函数的解析式是y=kx,把x=40,y=64代入得:40k=64,解得k=1.6.则函数的解析式是y=1.6x.(2)∵价前西瓜售价每千克1.6元.降价0.4元后西瓜售价每千克1.2元.降价后销售的西瓜为(76﹣64)÷1.2=10(千克)∴小明从批发市场共购进50千克西瓜.(3)76﹣50×0.8=76﹣40=36(元).即小明这次卖瓜赚了36元钱.25.(9分)小学四年级我们已经知道三角形三个内角和是180°,对于如图1中,AC,BD 交于O点,形成的两个三角形中的角存在以下关系:①∠DOC=∠AOB②∠D+∠C=∠A+∠B.试探究下面问题:已知∠BAD的平分线AE与∠BCD的平分线CE交于点E,(1)如图2,若AB∥CD,∠D=30°,∠B=40°,则∠E=35°;(2)如图3,若AB不平行CD,∠D=30°,∠B=50°,则∠E=40°;(3)在总结前两问的基础上,借助图3,探究∠E与∠D、∠B之间是否存在某种等量关系?若存在,请说明理由;若不存在,请举例说明.解:(1)∠E=12(∠D+∠B)=35°;(2)∠E=12(∠D+∠B)=40°;(3)∠D+∠B=2∠E.简单说明:∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=12∠BCD,∠EAD=∠EAB=12∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E.故答案为:35°;40°.。
辽宁省锦州市中考数学试题
锦州市年中等学校招生考试数学试题及参考答案、评分标准数学试题*考试时间120分钟,试卷满分120分.一、选择题(下列各题的备选答案中,只有一个是正确的,将正确答案的序号填入题后的括号内.每小题2分,本题共20分)1.下列根式不是最简二次根式的是( )A. B. C. D.2.设方程x2+x-2=0的两个根为α,β,那么(α-1)(β-1)的值等于( )A.-4B.-2C.0D.23.边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( )A.正方形与正三角形B.正五边形与正三角形C.正六边形与正三角形D.正八边形与正方形4.如图,⊙O和⊙O′都经过点A和点B,点P在BA的延长线上,过P作⊙O的割线PCD 交⊙O于C、D,作⊙O′的切线PE切⊙O′于E,若PC=4,CD=5,则PE等于( )A.6B.2C.20D.365.若反比例函数y=的图象在每一象限内,y随x的增大而增大,则有( )A.k≠0B.k≠3C.k<3D.k>36.抛物线=x2-4x+3的顶点坐标和对称轴分别是( )A.(1,2),x=1B.(-1,2),x=-1C.(-4,-5),x=-4D.(4,-5),x=47.已知在直角坐标系中,以点A(0,3)为圆心,以3为半径作⊙A,则直线y=kx+2(k≠0)与⊙A的位置关系是( )A.相切B.相交C.相离D.与k值有关8.如图,一个圆柱形笔筒,量得笔筒的高是20cm,底面圆的半径为5cm,那么笔筒的侧面积为( )A.200cm2B.100πcm2C.200πcm2D.500πcm29.用换元法解方程,若设,则原方程可化为( )A.y2-7y+6=0B.y2+6y-7=0C.6y2-7y+1=0D.6y2+7y+1=010.苹果熟了,从树上落下所经过的路程s与下落的时间t满足s=gt2(g是不为0的常数),则s与t的函数图象大致是( )二、填空题(每小题2分,本题共20分)11.函数y=中自变量x的取值范围是_____.12.若关于x的方程x2+5x+k=0有实数根,则k的取值范围是______.13.圆和圆有不同的位置关系.与下图不同的圆和圆的位置关系是_____.(只填一种)14.若点A(2,m)在函数y=x2-1的图象上,则点A关于x轴的对称点的坐标是_____.15.方程组的解是______.16.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3.5cm,则此光盘的直径是_____cm.17.如图,点A在反比例函数y=的图象上,AB垂直于x轴,若S△AOB=4,那么这个反比例函数的解析式为_____.18.如图,这是某市环境监测中心监测统计的年该市市区空气中二氧化硫各季节日均值的统计图,空气中二氧化硫含量最高的季节与最低的季节的浓度之差等于______毫克/立方米.19.如图,在Rt△ABC中,∠C=90°,CA=CB=2.分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是______.20.已知⊙O的直径为6,弦AB的长为2,由这条弦及弦所对的弧组成的弓形的高是_____.三、解答题(21题6分,22题8分,23题10分,本题共24分)21.计算:.22.某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系.观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析式.23.某校初三学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总分甲班1009811089103500乙班891009511997500经统计发现两班总分相等.此时有学生建议,可以通过考查数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)估计两班比赛数据的方差哪一个小?(4)根据以上三条信息,你认为应该把冠奖状发给哪一个班级?简述理由.四、解答题(本题共10分)24.某乡薄铁社厂的王师傅要在长为25cm,宽为18cm的薄铁板上裁出一个最大的圆和两个尽可能大的小圆.他先画出了如下的草图,但他在求小圆半径时遇到了困难,请你帮助王师傅计算出这两个小圆的半径.五、解答题(本题共10分)25.一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?六、解答题(本题共10分)26.某食品批发部准备用10000元从厂家购进一批出厂价分别为16元和20元的甲、乙两种酸奶,然后将甲、乙两种酸奶分别加价20%和25%向外销售.如果设购进甲种酸奶为x(箱),全部售出这批酸奶所获销售利润为y(元).(1)求所获销售利润y(元)与x(箱)之间的函数关系式;(2)根据市场调查,甲、乙两种酸奶在保质期内销售量都不超过300箱,那么食品批发部怎样进货获利最大,最大销售利润是多少?七、解答题(本题共12分)27.如图,⊙O与⊙P相交于B、C两点,BC是⊙P的直径,且把⊙O分成度数的比为1:2的两条弧,A是上的动点(不与B、C重合),连结AB、AC分别交⊙P于D、E两点.(1)当△ABC是锐角三角形(图①)时,判断△PDE的形状,并证明你的结论;(2)当△ABC是直角三角形、钝角三角形时,请你分别在图②、图③中画出相应的图形(不要求尺规作图),并按图①标记字母;(3)在你所画的图形中,(1)的结论是否成立?请就钝角的情况加以证明.八、解答题(本题共14分)28.如图,点P是x轴上一点,以P为圆心的圆分别与x轴、y轴交于A、B、C、D四点,已知A(-3,0)、B(1,0),过点C作⊙P的切线交x轴于点E.(1)求直线CE的解析式;(2)若点F是线段CE上一动点,点F的横坐标为m,问m在什么范围时,直线FB与⊙P 相交?(3)若直线FB与⊙P的另一个交点为N,当点N是的中点时,求点F的坐标;(4)在(3)的条件下,CN交x轴于点M,求CM·CN的值.参考答案及评分标准(此答案仅供参考,如有其它不同答案,只要正确,可参照此标准赋分)一、选择题1.D2.C3.B4.A5.C6.D7.B8.C9.A 10.B二、填空题11.x≥-且x≠112.k≤13.内切或外切或相切14.(2,-3)15.16.717.y=-18.0.15119.2-20.3+和3-(注:15题写出一个解给1分,20题答对一个给1分)三、解答题21.解法一:原式=……3分=……5分=……6分解法二:原式====22.(1)2月份每千克销售价是3.5元;(2)7月份每千克销售价是0.5元;(3)1月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价相同;答对一条给2分(注:此题答案不唯一,以上答案仅供参考.若有其它答案,只要是根据图象得出的信息,并且叙述正确请酌情给分)23.(1)甲班的优秀率是60%(或0.6);乙班的优秀率是40%(或0.4);……2分(2)甲班5名学生比赛成绩的中位数是100个,乙班5名学生的比赛成绩的中位数是97个;……4分(3)估计甲班5名学生比赛成绩的方差小;……6分(4)将冠奖状发给甲班,因为甲班5人比赛成绩的优秀率比乙班高、中位数比乙班大、方差比乙班小,综合评定甲班比较好. ……10分四、解答题24.解法一:如图(1)连结OO1、O1O2、O2O,则△OO1O2是等腰三角形.作OA⊥O1O2,垂足为A,则O1A=O2A. ……2分由图可知大圆的半径是9cm.设小圆的半径为xcm,在Rt△OAO1中,依题意,得(9+x)2=(9-x)2+(25-9-x)2. ……5分整理,得x2-68x+256=0.解得x1=4,x2=64. ……8分∵x2=64>9,不合题意,舍去.∴x=4.答:两个小圆的半径是4cm. ……10分解法二:如图(2)设⊙O1、⊙O2与长方形的一边相切于B、C,连结OB、O1C,作O1A⊥OB,垂足为A,则△OO1A是直角三角形,以下同解法一.五、解答题25.解法一:过点B作BM⊥AH于M,∴BM∥AF.∴∠ABM=∠BAF=30°.在△BAM中,AM=AB=5,BM=5. ……2分过点C作CN⊥AH于N,交BD于K.在Rt△BCK中,∠CBK=90°-60°=30°设CK=x,则BK=x. ……5分在Rt△ACN中,∵∠CAN=90°-45°=45°,∴AN=NC.∴AM+MN=CK+KN.又NM=BK,BM=KN.∴x+5=5+x.解得x=5. ……8分∵5海里>4.8海里,∴渔船没有进入养殖场的危险. ……9分答:这艘渔船没有进入养殖场危险. ……10分解法二:过点C作CE⊥BD,垂足为E,∴CE∥GB∥FA.∴∠BCE=∠GBC=60°.∠ACE=∠FAC=45°.∴∠BCA=∠BCE-∠ACE=60°-45°=15°.又∠BAC=∠FAC-∠FAB=45°-30°=15°,∴∠BCA=∠BAC.∴BC=AB=10.在Rt△BC E中,CE=BC·cos∠BCE=BC·cos60°=10×=5(海里).∵5海里>4.8海里,∴渔船没有进入养殖场的危险.答:这艘渔船没有进入养殖场的危险.六、解答题26.(1)解法一:根据题意,得y=16×20%·x+20×25%×=-0.8x+2500. ……4分解法二:y=16·x·20%+(10000-16x)·25%=-0.8x+2500.(2)解法一:由题意知,解得250≤x≤300.由(1)知y=-0.8x+2500,∵k=-0.8<0,∴y随x的增大而减小.∴当x=250时,y值最大,此时y=-0.8×250+2500=2300(元).∴==300(箱). ……9分答:当购进甲种酸奶250箱,乙种酸奶300箱时,所获销售利润最大,最大销售利润为2300元. ……10分解法二:因为16×20%<20×25%,即乙种酸奶每箱的销售利润大于甲种酸奶的销售利润,因此最大限度的购进乙种酸奶时所获销售利润最大,即购进乙种酸奶300箱,则x==250(箱).由(1)知y=-0.8x+2500,∴当x=250时,y值最大,此时y=-0.8×250+2500=2300(元).七、解答题27.(1)△PDE是等边三角形. ……1分证法一:连DC.∵弦BC把⊙O分成度数的比为1:2的两条弧,∴的度数为120°.∴∠BAC=60°.……3分又∵BC为⊙P的直径,∴∠BDC=90°.又∵∠A=60°,∴∠DCA=30°.∴∠DPE=60°.又PD=PE,∴△PDE是等边三角形. ……5分证法二:连DC.∵弦BC把⊙O分成度数的比为1:2的两条弧,∴的度数为120°.∴∠BAC=60°.∴∠ABC+∠ACB=120°.又∵PB=PD=PC=PE,∴∠BDP=∠ABC,∠CEP=∠ACB.∴∠BDP+∠CEP=120°.∴∠BPD+∠CPE=120°.∴∠DPE=60°.又PD=PE,∴△PDE是等边三角形.(2)如图②、图③即为所画图形.画出示意图且正确标记字母即可.画出直角三角形的情形给1分,画出钝角三角形的情形给2分. ……8分(3)图②和图③中△PDE仍为等边三角形.证明:如图③.连结BE、DC.∵BC为⊙P的直径,∴∠BDC=90°.又∵∠A=60°,∴∠ACD=30°.又∵四边形DBEC是⊙P的内接四边形,∴∠DBE=∠DCA=30°.∠DPE=60°.又∵PD=PE,∴△PDE是等边三角形. ……12分八、解答题28.解:(1)连PC.∵A(-3,0),B(1,0),∴⊙P的直径是4,∴半径R=2,OP=1.又∵CD⊥AB,AB是直径.∴OC2=OA·OB=3×1=3.∴OC=.∴C(0,). ……1分又∵⊙P的半径是2,OP=1.∴∠PCO=30°.又CE是⊙P的切线,∴PC⊥CE.∴∠PEC=30°.∴PE=2PC=4.EO=PE-MP=3.∴E(3,0).……2分设直线CE的解析式为y=kx+b,将C、E两点坐标代入解析式,得解得∴直线CE的解析式为y=-x+①.……4分(2)当0≤m≤3且m≠1时,直线FB与⊙P相交. ……6分(3)解法一:∵点N是的中点,∴N(-1,-2)设直线NB的解析式为y=kx+b,把N、B两点坐标代入解析式,得解得∴直线NB的解析式为y=x-1 ②由①,②式得解得∴F(,-1). ……10分解法二:过点F作FH⊥BE于H,∵N是的中点,则∠ABN=∠FBE=45°. ∴∠BFH=45°.∴BH=FH.由(1)知∠CEP=30°,∴HE=FH.∵OE=OB+BH+HE,∴1+FH+FH=3,FH=-1.∴OH=OB+BH=1+(-1)=.∴F(,-1).(4)连结AC、BC. ∵点N是的中点,∴∠NCB=∠CAN.又∠CAB=∠CNB, ∴△AMC∽△NBC.∴.∴MC·NC=BC·AC.∵OA=OE=3, ∴△ACE为等腰三角形.∴AC=CE=.BC=. ∴MC·NC=BC·AC=4. ……14分。
辽宁省锦州市2022-2023学年七年级上学期期末质量检测数学试卷(含解析)
2022-2023学年辽宁省锦州市七年级(上)期末数学试卷一、选择题(本大题共10小题,共20.0分。
在每小题列出的选项中,选出符合题目的一项)1. ―7的相反数是( )A. ―7B. 7C. ―17D. 172.如图,这是一个由5个大小相同的小立方块搭成的几何体,则从它的左面看到该几何体的形状图是( )A.B.C.D.3. 习近平总书记在中国共产党第二十次全国代表大会上的报告中指出:十年来,我国经济实力实现历史性跃升,国内生产总值从54万亿元增长到114万亿元,我国经济总量占世界经济的比重达18.5%,提高7.2个百分点,稳居世界第二位.数据114万亿用科学记数法表示为( )A. 114×1012B. 11.4×1012C. 1.14×1014D. 0.114×10154.如图,这是一副有一个锐角分别为30°,45°的三角尺,不能借助这副三角尺画出的角的度数是( )A. 15°B. 35°C. 75°D. 105°5. 如图,这是2022年12月1日—10日,甲、乙两人的手机“微信运动”中步数的统计图,则根据统计图提供的信息,下列结论错误的是( )A. 1日—10日,甲的步数逐天增加B. 第9日,甲、乙两人的步数正好相等C. 1日—5日,乙的步数逐天减少D. 第5日起乙的步数都少于甲的步数6. 下列四个考察对象中,选择的调查方式比较合理的是( )A. 了解“双十一”期间所有电商销售商品的质量情况,选择全面调查方式B. 对神舟十五号载人飞船发射前的设备和零部件的检查,选择抽样调查方式C. 为了了解某一品牌家具的甲醛含量情况,选择抽样调查方式D. 为了检测我市锦凌水库的水质情况,采用全面调查的方式7. 我国是最早进行负数运算的国家,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹《小棍形状的记数工具)分别表示正数和负数(白色为正,黑色为负),如图1表示的是(―13)+(+23)=10的计算过程,则图2表示的计算过程是( )A. (+31)+(―43)=―12B. (―31)+(+43)=12C. (+13)+(+34)=47D. (―13)+(+34)=―218. 为了进一步推进“双减”政策的落实,提升学校课后服务水平,某校开设了选修课程.已知参加“学科类选修课程”的有m 人,参加“体音美选修课程”的人数比参加“学科类选修课程”的人数多6人,参加“科技类选修课程”的人数比参加“体音美选修课程”人数的12多2人,则参加“科技类选修课程”的人数为( )A. 12m +4 B. 12m +5 C. m +6 D. 2m +29. 如图,数轴上A ,B ,C 三点表示的有理数分别为a ,b ,c ,下列四个结论:①|a|>2;②abc <0;③a +c <0;④b ―a >0.其中正确结论的序号为( )A. ①②③B. ①②④C. ①③④D. ②③④10. 如图,一个长方形ABCD 内部恰好能用一些大小不等的正方形纸片P ,Q ,M ,N 铺满(每两个正方形纸片之间既不重叠,也无空隙),如果长方形ABCD 的周长为72,那么正方形纸片M 的面积为( )A. 16B. 36C. 64D. 121二、填空题(本大题共8小题,共16.0分)11. 单项式―2xy 2z 的次数是______ .12. 如果关于x 的一元一次方程2x ―a =x +1的解是x =6,那么a 的值是______ .13.如图,这是一个各面都写有汉字的正方体的平面展开图,那么该正方体写有“值”字的面相对的面上的汉字是______ .14.如图,∠AOC 和∠BOD 都是直角,若∠DOC =31°40′,则∠AOB = ______ .15. 下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②筑路公司修建一条隧道缩短了甲、乙两地的路程;③建筑工人在砌墙时,时常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳子;④从A地到B地架设电线,总是尽可能沿着线段AB架设.其中能用基本事实“两点之间,线段最短”来解释的现象有______ .16. 如图,已知点C在线段AB的延长线上,且BC=13AB,D为AC的中点,若CD=2cm,则AB=______ cm.17. 一组按规律排列的两项式:a―b,a2―b3,a3―b5,a4―b7,…,则第2023个两项式为______ .18.如图,已知线段m,n,射线AM.如果按如下步骤进行尺规作图:①在射线AM上顺次截取AD=DB=m;②在射线AM上截取BC=n,那么AC的长为______ .三、解答题(本大题共8小题,共64.0分。
辽宁省锦州市中考数学试卷及答案
辽宁省锦州市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题2 分,共20 分)1.下列二次根式中与是同类二次根式的是()2.若∠ A 是锐角,有sin A =cos A ,则∠ A 的度数是()A.30°B.45°C.60°D.90°3.函数中,自变量x 的取值范围是()A.x ≥-1 B.x >-1 且x ≠2C.x ≠2 D.x ≥-1 且x ≠24.在Rt△ ABC 中,C =90°,∠ A =30°,b=,则此三角形外接圆半径为()5.半径分别为1 cm 和5 cm 的两个圆相交,则圆心距d 的取值范围是()A.d <6 B.4<d <6 C.4≤ d <6 D.1<d <56.面积为2 的△ ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是()7.已知关于x 的方程x2-2 x +k =0 有实数根,则k 的取值范围是()A.k <1 B.k ≤1 C.k ≤-1 D.k ≥18.如图,PA 切⊙ O 于点A ,PBC 是⊙ O 的割线且过圆心,PA =4,PB =2,则⊙ O 的半径等于()A.3 B.4 C.6 D.89.两个物体A 、B 所受压强分别为P A(帕)与P B(帕)(P A、P B为常数),它们所受压力F (牛)与受力面积S(米2)的函数关系图象分别是射线l A、l B,如图所示,则()A.P A<P B B.P A=P B C.P A>P B D.P A≤ P B10.若x1,x 2是方程2x2-4x+1=0 的两个根,则的值为()A.6 B.4 C.3 D.二、填空题(每小题 2 分,共20 分)11.看图,描出点A 关于原点的对称点A′ ,并标出坐标.12.解方程时,设y=,则原方程化成整式方程是__________.13.计算=__________.14.如图,在Rt△ABC中,∠ C=90°,以AC 所在直线为轴旋转一周所得到的几何体是__________.15.一组数据6,2,4,2,3,5,2,3 的众数是__________.16.已知圆的半径为6.5 cm ,圆心到直线l 的距离为4 cm,那么这条直线l 和这个圆的公共点的个数有_____个.17.要用圆形铁片截出边长为4 cm的正方形铁片,则选用的圆形铁片的直径最小要_____cm.18.圆内两条弦AB和CD 相交于P 点,AB 把CD分成两部分的线段长分别为2和6,那么AP =__________ .19.△ ABC 是半径为2 cm的圆内接三角形,若BC =,则∠A 的度数为_______.20.如图,已知OA、OB 是⊙ O的半径,且OA =5,∠ AOB =15°,AC ⊥ OB 于C ,则图中阴影部分的面积(结果保留π )S =__________.三、(第21 小题6 分,第22、23 小题各10 分,共26 分)21.对于题目“化简并求值:甲.乙两人的解答不同.甲的解答是:乙的解答是:谁的解答是错误的?为什么?22.看图,解答下列问题.(1)求经过A 、B 、C 三点的抛物线解析式;(2)通过配方,求该抛物线的顶点坐标和对称轴;(3)用平滑曲线连结各点,画出该函数图象.23.初中生的视力状况受到全社会的广泛关注,某市有关部门对全市3 万名初中生视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图(长方形的高表示该组人数),根据图中提供的信息回答下列问题:(1)本次调查共抽测了解多少名学生;(2)在这个问题中的样本指什么;(3)如果视力在4.9∽5.1(含4.9、 5.1)均属正常,那么全市有多少初中生的视力正常?四、(8 分)24.如图,在小山的东侧A 处有一热气球,以每分钟28 米的速度沿着与垂直方向夹角为30°的方向飞行,半小时后到达C 处,这时气球上的人发现,在A 处的正西方向有一处着火点B ,5 分钟后,在D 处测得着火点B 的俯角是15°,求热气球升空点A 与着火点B 的距离.(结果保留根号,参照数据:sin15°=,cos15°=,)五、(10 分)25.已知:如图,AB 是⊙ O 的半径,C 是⊙ O 上一点,连结AC ,过点C 作直线CD ⊥ AB 于D(AD<DB ),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙ O 于点 F ,连结AF 与直线CD 交于点G .(1)求证:AC2=AG · AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.六、(10 分)26.随着我国人口增加速度的减慢,小学入学儿童数量有所减少,下表中的数据近似地呈现了某地区入学儿童的变化趋势.试用你所学的函数知识解决下列问题:(1)求入学儿童人数y (人)与年份x (年)的函数关系试;(2)利用所求函数关系式,预测试地区从哪一年起入学儿童的人数不超过1000 人?七、(12 分)27.某书店老板去批发市场购买某种图书,第一次购用100 元,按该书定价2.8 元现售,并快售完.由于该书畅销,第二次购书时,每本的批发价已比第一次高0.5 元,用去了150 元,所购数量比第一次多10 本.当这批书售出4/5时,出现滞销,便以定价的5 折售完剩余的图书,试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?八、(14 分)28.已知:如图,⊙ P 与x 轴相切于坐标原点O ,点A (0,2)是⊙ P 与x 轴的交点,点B (,0)在x 轴上,连结BP 交⊙ P 于点C ,连结AC 并延长交际x 轴于点D .(1)求线段BC 的长;(2)求直线AC 的函数解析式;(3)当点B 在x 轴上移动时,是否存在点B,使△BOP 相似于△AOD?若存在,求出符合条件的点的坐标;若不存在,说明理由.参照答案及评分标准一、选择题(每题2 分,共20 分)二、填空题(每题2 分,共20 分)11.A ′ (3,-2)(图略)12.2 y2-5y+2=013.114.圆锥15.216.217.18.3 或419.60°或120°20.注:两个答案的,答出一个给1 分.三、(26 分)21.(6 分)解:乙的解答是错误的.23.(10 分)解:(1)本次调查共抽测了240 名学生(2)样本是指240 名学生的视力(3)全市有7500 名初中生的视力正常四、(8 分)24.解:由解可知AD=(30+5)×28=980 过D 作DH ⊥ BA 于H在Rt△ DAH 中,DH =AD · sin 60°=五、(10 分)25.(1)证明:六、(10 分)(1)解法一:设y =kx+b由于直线y =kx + b 过(2000,2520),(2001,2330)两点∴ y =-190x +382520又因为y =190 x+382520 过点(2002,2140),所以y =-190 x +382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.解法二:设y =ax2+bx +c由于y =ax2+bx +c 过(2000,2520),(2001,2330),(2002,2140)三点,解得a =0,b=-190,c =382520,∴y=-190 x +382520因为y =-190 x +382520 过(2000,2520),(2001,2330),(2002,2140)三点,所以y =-190 x+382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.(2)设x年时,入学人数为1000 人,由题意得:-190 x +382520=1000 人,解得x =2008答:从2008 年起入学儿童的人数不超过1000 人.七、(12 分)27.。
2021-2022学年下学期七年级数学期中考试试卷
2021-2022学年第二学期七年级期中考试数学试卷一.选择题(共10小题,每小题4分,满分40分)1.下列实数中,无理数是()A.3.1415926 B.﹣0.202002000C.D.2.某微生物的直径为0.0000403m,数字0.0000403可以用科学记数法表示为()A.4.03×10﹣5 B.4.03×10﹣4 C.4.03×105D.4.03×1043.若6x>﹣6y,则下列不等式中一定成立的是()A.x+y>0 B.x﹣y>0 C.x+y<0 D.x﹣y<04.下列运算正确的是()A.(x﹣y)2=x2﹣y2B.x6÷x2=x4C.x2y+xy2=x3y3D.x2•y2=(xy)45.不等式组的解集在数轴上表示为()6.某商品的标价比成本价高m%,根据市场行情,该商品需降价n%出售,为了不亏本,则m、n应满足()A.(1+m%)(1+n%)≥1 B.(1+m%)(1﹣n%)≥1C.(1﹣m%)(1+n%)≥1 D.(1﹣m%)(1﹣n%)≥17.计算(x﹣y)(﹣x﹣y)的结果是()A.﹣x2+y2B.﹣x2﹣y2C.x2﹣y2D.x2+y28.已知x的二次三项式x2+kx+9可以写成一个完全平方式,则k的值是()A.3 B.±3 C.6 D.±69.已知a=2﹣55,b=3﹣44,c=4﹣33,d=5﹣22,则这四个数从小到大排列顺序是()A.a<b<c<d B.d<a<c<b C.a<d<c<b D.b<c<a<d10.已知,则的值为()A.B.C.D.或1二.填空题(共4小题,每小题5分,满分20分)11.27的立方根是.12.若x,y为实数,且|x+2|+=0,则x﹣y=.13.若不等式(1﹣a)x>1﹣a的解集是x<1,则a的取值范围是.14.若a﹣b=3,b﹣c=2,那么a2+b2+c2﹣ab﹣ac﹣bc=.三.解答题(共9小题)15.计算:(﹣1)0+()﹣1﹣+.16.解不等式组.17.已知(a+b)2=17,(a﹣b)2=13,求:(1)a2+b2的值;(2)ab的值.18.先化简,再求值(x﹣2)2+2(x+2)(x﹣4)﹣(x﹣3)(x+3);其中x=1.19.在实数范围内定义一种新运算“⊕”其运算规则为:a⊕b=2a﹣(a+b),如1⊕5=2×1﹣(1+5)=﹣7.(1)若x⊕4=0,则x=.(2)若关于x的方程x⊕m=﹣2⊕(x+4)的解为非负数,求m的取值范围.20.分解因式(1)2a3﹣8a;(2)(x﹣y)2+4xy.21.倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某垃圾处理厂计划向机器人公司购买A型号和B型号垃圾分拣机器人共60台,其中B型号机器人不少于A型号机器人的1.4倍.设该垃圾处理厂购买x台A型号机器人.(1)该垃圾处理厂最多购买几台A型号机器人?(2)机器人公司报价A型号机器人6万元/台,B型号机器人10万元/台,要使总费用不超过510万元,则共有几种购买方案?22.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22﹣02,12=42﹣22,20=62﹣42.因此,4、12、20这三个数都是神秘数.(1)28和2016这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?23.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a、b的代数式分别表示S1、S2;(2)若a+b=10,ab=23,求S1+S2的值;(3)当S1+S2=29时,求出图3中阴影部分的面积S3.安庆市外国语学校2021-2022学年第二学期七年级期中考试数学试卷参考答案与试题解析一.选择题(共10小题)1.下列实数中,无理数是()A.3.1415926 B.﹣0.202002000C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.3.1415926是有限小数,属于有理数;B﹣0.202002000是有限小数,属于有理数;C.,是整数,属于有理数;D.是无理数.故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.某微生物的直径为0.0000403m,数字0.0000403可以用科学记数法表示为()A.4.03×10﹣5 B.4.03×10﹣4 C.4.03×105D.4.03×104【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000403=4.03×10﹣5.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.若6x>﹣6y,则下列不等式中一定成立的是()A.x+y>0 B.x﹣y>0 C.x+y<0 D.x﹣y<0【分析】根据不等式的性质逐个判断即可.【解答】解:∵6x>﹣6y,∴x>﹣y,∴x+y>0,故本选项符合题意;根据6x>﹣6y能推出x+y>0,不能推出x﹣y>0,故本选项不符合题意;即只有选项A符合题意;选项B、C、D都不符合题意;故选:A.【点评】本题考查了不等式的性质,能熟记不等式的性质是解此题的关键,注意:①不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;②不等式的性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式的性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.4.下列运算正确的是()A.(x﹣y)2=x2﹣y2B.x6÷x2=x4C.x2y+xy2=x3y3D.x2•y2=(xy)4【分析】根据完全平方公式,可判断A,根据同底数幂的除法,可判断B,根据合并同类项,可判断C,根据积的乘方,可判断D.【解答】解:A、差的平方等于平方和减积的2倍,故A错误;B、同底数幂的除法,底数不变指数相减,故B正确;C、不是同底数幂的乘法,指数不能相加,故C错误;D、积的乘方等于乘方的积,故D错误;故选:B.【点评】本题考查了同底数幂的除法,同底数幂的除法,底数不变指数相减.5.不等式组的解集在数轴上表示为()【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>1,由②得,x≥2,故此不等式组的解集为:x≥2.在数轴上表示为:.故选:A.【点评】本题考查的是在数轴上表示不等式组得解集,熟知“小于向左,大于向右”是解答此题的关键.6.某商品的标价比成本价高m%,根据市场行情,该商品需降价n%出售,为了不亏本,则m、n应满足()A.(1+m%)(1+n%)≥1 B.(1+m%)(1﹣n%)≥1C.(1﹣m%)(1+n%)≥1 D.(1﹣m%)(1﹣n%)≥1【分析】设进价为a元,根据最大的降价率即是保证售价大于等于成本价,进而得出不等式即可.【解答】解:设进价为a元,由题意可得:a(1+m%)(1﹣n%)﹣a≥0,则(1+m%)(1﹣n%)≥1.故选:B.【点评】此题主要考查了一元一次不等式的应用,得出正确的不等关系是解题关键.7.计算(x﹣y)(﹣x﹣y)的结果是()A.﹣x2+y2B.﹣x2﹣y2C.x2﹣y2D.x2+y2【分析】本题是平方差公式的应用,﹣y是相同的项,互为相反项是﹣x与x,对照平方差公式计算.【解答】解:原式=(﹣y)2﹣x2=y2﹣x2,=﹣x2+y2,故选:A.【点评】本题考查了平方差公式的应用.运用平方差公式(a+b)(a﹣b)=a2﹣b2计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.8.已知x的二次三项式x2+kx+9可以写成一个完全平方式,则k的值是()A.3 B.±3 C.6 D.±6【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【解答】解:∵x的二次三项式x2+kx+9可以写成一个完全平方式,∴x2+kx+9=(x±3)2=x2±6x+9,∴k=±6.故选:D.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.9.已知a=2﹣55,b=3﹣44,c=4﹣33,d=5﹣22,则这四个数从小到大排列顺序是()A.a<b<c<d B.d<a<c<b C.a<d<c<b D.b<c<a<d【分析】直接利用幂的乘方运算法则以及负指数幂的性质、分数的性质统一各数指数,进而比较即可.【解答】解:∵a=2﹣55=(2﹣5)11=,b=3﹣44=(3﹣4)11=,c=4﹣33=(4﹣3)11=,d=5﹣22=(5﹣2)11=∴b<c<a<d.故选:D.【点评】此题主要考查了幂的乘方运算以及负指数幂的性质、分数的性质,正确将各数统一指数是解题关键.10.已知,则的值为()A.B.C.D.或1【分析】|x|一定是非负数,,那么一定为正数,进而先求得()2的值,最后求得其算术平方根即为所求的值.【解答】解:∵﹣|x|=1,∴x>0∴+|x|>0,∵()2=(﹣|x|)2+4=5,∴+|x|=,故选:B.【点评】综合考查了绝对值及完全平方公式的知识;得到x的取值是解决本题的突破点;求两数的和,先求得两数的和的平方是解决本题的基本思路.二.填空题(共4小题)11.27的立方根是3.【分析】根据立方根的定义,直接求解.【解答】解:∵33=27,∴27的立方根为3.故答案为:3.【点评】本题考查立方根.解题关键是熟记立方根的概念.12.若x,y为实数,且|x+2|+=0,则x﹣y=﹣3.【分析】直接利用非负数的性质得出x,y的值,进而得出答案.【解答】解:∵|x+2|+=0,∴x+2=0,y﹣1=0,解得:x=﹣2,y=1,∴x﹣y=﹣2﹣1=﹣3.故答案为:﹣3.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.13.若不等式(1﹣a)x>1﹣a的解集是x<1,则a的取值范围是a>1.【分析】根据不等式的基本性质确定出a的范围即可.【解答】解:∵不等式(1﹣a)x>1﹣a的解集是x<1,∴1﹣a<0,解得:a>1.故答案为:a>1.【点评】此题考查了解一元一次不等式,熟练掌握不等式的基本性质是解本题的关键.14.若a﹣b=3,b﹣c=2,那么a2+b2+c2﹣ab﹣ac﹣bc=19.【分析】根据已知条件求出a﹣c的值,再构造完全平方公式,整体代入即可求解.【解答】解:若a﹣b=3,b﹣c=2,则a﹣c=5.a2+b2+c2﹣ab﹣ac﹣bc=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=(9+25+4)=×38=19.故答案为19.【点评】本题考查了因式分解的应用,解决本题的关键是构造完全平方公式,善于利用整体思想.三.解答题(共9小题)15.计算:(1)++|1﹣|﹣;(2)(﹣1)0+()﹣1﹣+.【分析】(1)依据实数运算法则进行运算即可;(2)依据实数运算法则进行运算即可.【解答】解:(1)原式=7+(﹣3)+﹣1﹣=7﹣3﹣1+﹣=3.(2)原式=1+﹣+4=1+﹣2+4=1+3﹣2+4=6.【点评】本题主要考查了实数的运算,零指数幂,负整数指数幂,绝对值、算术平方根、立方根等知识点,熟练运用实数的运算法则是解题的关键.16.解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集【解答】解:解不等式3x﹣2<x+1,得:x<,解不等式x+5>4x+1,得:x<,∴不等式组的解集为x<.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.已知(a+b)2=17,(a﹣b)2=13,求:(1)a2+b2的值;(2)ab的值.【分析】已知两等式利用完全平方公式展开,相加求出a2+b2的值;相减求出ab的值.【解答】解:(1)∵(a+b)2=a2+2ab+b2=17①,(a﹣b)2=a2﹣2ab+b2=13②,∴①+②得:2(a2+b2)=30,即a2+b2=15;(2)①﹣②得:4ab=4,即ab=1.【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.18.先化简,再求值(x﹣2)2+2(x+2)(x﹣4)﹣(x﹣3)(x+3);其中x=1.【分析】先算乘法,再合并同类项,最后代入求出即可【解答】解:原式=x2﹣4x+4+2(x2﹣2x﹣8)﹣(x2﹣9)=x2﹣4x+4+2x2﹣4x﹣16﹣x2+9=2x2﹣8x﹣3,当x=1时,原式=2﹣8﹣3=﹣9.【点评】本题考查了整数的混合运算和求值,能正确运用整式运算法则进行化简是解此题的关键.19.在实数范围内定义一种新运算“⊕”其运算规则为:a⊕b=2a﹣(a+b),如1⊕5=2×1﹣(1+5)=﹣7.(1)若x⊕4=0,则x=12.(2)若关于x的方程x⊕m=﹣2⊕(x+4)的解为非负数,求m的取值范围.【分析】(1)根据所给的运算列出关于x的方程,解方程即可.(2)根据所给的运算列出关于x的一元一次方程,解方程后得到关于m的不等式,求出m的取值范围即可.【解答】解:(1)∵a⊕b=2a﹣(a+b),∴x⊕4=2x﹣(x+4)=x﹣6,∵x⊕4=0,∴x﹣6=0,解得x=12,故答案为:12;(2)∵a⊕b=2a﹣(a+b),∴x⊕m=2x﹣(x+m)=x﹣m,﹣2⊕(x+4)=2×(﹣2)﹣(﹣2+x+4)=﹣4+3﹣x﹣6=﹣x﹣7,∴x﹣m=﹣x﹣7,解得x=m﹣,∵关于x的方程(x⊕m)=[﹣2⊕(x+4)]的解为非负数,∴m﹣≥0,∴m≥,∴m的取值范围为m≥.【点评】本题考查的是解一元一次方程,解一元一次不等式,根据所给的新运算列出关于x的一元一次方程是解答此题的关键.20.分解因式(1)2a3﹣8a;(2)(x﹣y)2+4xy.【分析】(1)先提公因式,再利用平方差公式进行因式分解;(2)先根据乘法公式展开,再利用完全平方公式进行因式分解.【解答】解:(1)原式=2a(a2﹣4)=2a(a+2)(a﹣2);(2)原式=x2﹣2xy+y2+4xy=x2+2xy+y2=(x+y)2.【点评】本题考查提公因式法、公式法因式分解,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.21.倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某垃圾处理厂计划向机器人公司购买A型号和B型号垃圾分拣机器人共60台,其中B型号机器人不少于A型号机器人的1.4倍.设该垃圾处理厂购买x台A型号机器人.(1)该垃圾处理厂最多购买几台A型号机器人?(2)机器人公司报价A型号机器人6万元/台,B型号机器人10万元/台,要使总费用不超过510万元,则共有几种购买方案?【分析】(1)设该垃圾处理厂购买x台A型号机器人,则购买(60﹣x)台B型号机器人,根据购进B 型号机器人的数量不少于A型号机器人的1.4倍,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;(2)根据总价=单价×数量,结合总价不超过510万元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,结合x为整数且x≤25,即可得出各购买方案.【解答】解:(1)设该垃圾处理厂购买x台A型号机器人,则购买(60﹣x)台B型号机器人,依题意得:60﹣x≥1.4x,解得:x≤25.答:该垃圾处理厂最多购买25台A型号机器人.(2)依题意得:6x+10(60﹣x)≤510,解得:x≥.又∵x为整数,且x≤25,∴x可以取23,24,25,∴共有3种购买方案,方案1:购买23台A型号机器人,37台B型号机器人;方案2:购买24台A型号机器人,36台B型号机器人;方案3:购买25台A型号机器人,35台B型号机器人.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.22.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22﹣02,12=42﹣22,20=62﹣42.因此,4、12、20这三个数都是神秘数.(1)28和2016这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?【分析】(1)根据“神秘数”的定义,只需看能否把28和2012这两个数写成两个连续偶数的平方差即可判断;(2)运用平方差公式进行计算,进而判断即可;(3)运用平方差公式进行计算,进而判断即可.【解答】解:(1)28是“神秘数”;2016不是“神秘数”,理由如下:∵28=82﹣62,2016不能表示为两个连续偶数的平方差,∴28是“神秘数”;2016不是“神秘数”;(2)“神秘数”是4的倍数.理由如下:(2k+2)2﹣(2k)2=(2k+2+2k)(2k+2﹣2k)=2(4k+2)=4(2k+1),∴“神秘数”是4的倍数;(3)设两个连续的奇数为:2k+1,2k﹣1,则(2k+1)2﹣(2k﹣1)2=8k,而由(2)知“神秘数”是4的倍数,但不是8的倍数,所以两个连续的奇数的平方差不是神秘数.【点评】此题主要考查了平方差公式的应用,此题是一道新定义题目,熟练记忆平方差公式是解题关键.23.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a、b的代数式分别表示S1、S2;(2)若a+b=10,ab=23,求S1+S2的值;(3)当S1+S2=29时,求出图3中阴影部分的面积S3.【分析】(1)根据正方形的面积之间的关系,即可用含a、b的代数式分别表示S1、S2;(2)根据S1+S2=a2﹣b2+2b2﹣ab=a2+b2﹣ab,将a+b=10,ab=23代入进行计算即可;(3)根据S3=(a2+b2﹣ab),S1+S2=a2+b2﹣ab=29,即可得到阴影部分的面积S3.【解答】解:(1)由图可得,S1=a2﹣b2,S2=2b2﹣ab;(2)S1+S2=a2﹣b2+2b2﹣ab=a2+b2﹣ab,∵a+b=10,ab=23,∴S1+S2=a2+b2﹣ab=(a+b)2﹣3ab=100﹣3×23=31;(3)由图可得,S3=a2+b2﹣b(a+b)﹣a2=(a2+b2﹣ab),∵S1+S2=a2+b2﹣ab=29,∴S3=×29=.【点评】本题主要考查了完全平方公式的几何背景的应用,解决问题的关键是根据图形之间的面积关系进行推导计算.。
2021-2022学年七年级数学上学期期中检测卷(含答案)
2021-2022学年七年级数学上学期期中检测卷(含答案)注意事项:1、本试卷共4页,三大题,满分120分,考试时间100分钟。
请用钢笔或圆珠笔直接答在答题卡上,答在试卷上的答案无效。
2、不准使用计算器。
一、选择题(每小题3分,共30分)1.若气温为零上10℃记作+10℃,则-3℃表示气温为( )A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.︱-6︱的相反数是( )A. -6B.6C.-61D.61 3.如图,数轴上一个动点A 先向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C ,若点C 表示的数为1,则点A 表示的数为( )A.7B.3C.-3D.-24.43-的绝对值是( ) A.43- B.43 C.34- D.34 5.有理数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A.b a >B.b a <C. 0>+b aD.ba <0 6. 已知1-a + (b+3)2=0,则b a +的值为( )A.-4B. -2C.2D.47. 2020年2月7日国家发改委紧急下达第二批中央预算内投资2亿元人民币,专项补助承担重症感染患者救治任务的湖北多家医院重症治疗病区建设,其中数据2亿用科学记数法表示为( )A.2×107B.2×108C. 20×107D.0.2×1088.在下列表述中,不能表示“4a ”的意义的是( )A.4的a 倍B.a 的4倍C.4个a 相加D.4个a 相乘9.当x 分别等于2和-2时,代数式356642+-+x x x 对应的两个值( )A. 互为相反数B.互为倒数C.相等D.异号10. 如图,将边长为3a 的正方形沿虚线剪成两个正方形和两个长方形,若拿掉边长为2b 的小正方形后,再将剩下的图形拼成一个长方形,则这个长方形较长的边长为( )。
A.b a 23+B. b a 43+C. b a 26+D.b a 46+二、填空题(每小题3分,共15分)11. 比较大小-76________-67. 12. 数轴上点A,B 表示的数分别是5,-3.它们之间的距离为________.13. 用四舍五入法对数字1657900精确到千位的结果是________________.14.已知a =5,b =2,且b a +<0,则ab 的值是_______________.15.购买一个足球需要m 元 ,购买一个篮球需要n 元,则购买4个足球和7个篮球的总费用为____________元.三、解答题(共75分)16.计算下列各题(每小题5分,共15分)(1)2-253+341-52+243(2)2×2)23(-÷(41-)-(-11)(3)-12020-(1-21)÷3×[]3)2(2-+-17.(8分)把下列五个数0,2-,-(+3),21-,3.5 (1)画出数轴,分别在数轴上表示出来.(2)按从小到大的顺序,用“<”号把这些数连接起来.(3)填入相应的大括号内.正数集⎩⎨⎧ …⎭⎬⎫ 负数集⎩⎨⎧ …⎭⎬⎫18.(6分)莹莹家里今年种植的猕猴桃获得了大丰收,星期六从外地来了一位客商到村子里收购猕猴桃。
2020—2021 学年上学期七年级数学期中考试试卷(含答案)
I-1I-22020-2021学年上学期七年级期中考试试卷数学I 卷时间:90分钟满分:100分一、选择题(每小题3分共30分)1.2019年暑期爆款国产动漫《哪吒之魔童降世》票房已斩获49.3亿,开启了国漫市场崛起新篇章,49.3亿用科学记数法可表示为()A.849.310⨯B.94.9310⨯C.84.9310⨯D.749310⨯2.桌上摆着一个由若干个相同小正方体组成的几何体,其三视图如图所示,则组成此几何体需要的小正方体的个数是()A.5B.6C.7D.83.下列计算正确的是()A.347a b ab+= B.321a a -= C.22232a b ab a b -=D.222235a a a +=4.在数(3)--,0,2(3)-,|9|-,41-中,正数的有()个.A.2B.3C.4D.55.下列说法中,不正确的个数有()①有理数分为正有理数和负有理数,②绝对值等于本身的数是正数,③平方等于本身的数是1±,④只有符号不同的两个数是相反数,⑤多项式2531x x --是二次三项式,常数项是1.A.2个B.3个C.4个D.5个6.若单项式12m a b -与212na b 的和仍是单项式,则2m n -的值是()A.3B.4C.6D.87.下列各式中,不能由3a ﹣2b +c 经过变形得到的是()A.3a ﹣(2b +c )B.c ﹣(2b ﹣3a )C.(3a ﹣2b )+c D.3a ﹣(2b ﹣c )8.若数轴上,点A 表示﹣1,AB 距离是3,点C 与点B 互为相反数,则点C 表示()A.﹣2B.2C.﹣4或2D.4或﹣29.设232A x x =--,2231B x x =--,若x 取任意有理数.则A 与B 的大小关系为()A.A B<B.A B=C.A B>D.无法比较10.程序框图的算法思路源于我国古代数学名著《九章算术》,如图所示的程序框图,当输入x 的值是17时,根据程序,第一次计算输出的结果是10,第二次计算输出的结果是5,……,这样下去第2020算输出的结果是()A .-2B .-1C .-8D .-4二、填空题(每小题3分共15分)11.243a b π-的系数是.12.若49a +与35a +互为相反数,则a 的值为13.若2(2)|2|0a b -++=,则a b =.14.多项式()22321m x y m x y ++-是关于x,y 的四次三项式,则m 的值为15.将边长为1的正方形纸片按如图所示方法进行对折,第1次对折后得到的图形面积为1S ,第2次对折后得到的图形面积为2S ,依此类推,则3S =;若123n nA S S S S =+++⋯+,则352A A A =-.I-3I-4三、解答题16.(每题4分共8分)()()2020131312+24512864⎡⎤⎛⎫⨯÷⨯ ⎪⎢⎥⎝⎭⎣⎦-()223123(2)|1|6(2)3-÷-⨯-⨯+-17.(8分)先化简下式,再求值:22221132224a ab b a ab b ⎛⎫⎛⎫-+---+- ⎪ ⎪⎝⎭⎝⎭,其中1,12ab ==,18.(6分)若用点A ,B ,C 分别表示有理数a ,b ,c,它们在数轴上的位置如图所示.(1)请在横线上填上>,<或=:a +b 0,b ﹣c 0;(2)化简:2c +|a +b |+|c ﹣b |﹣|c ﹣a |.19.(8)如图,是由12个大小相同的小正方体组合成的简单几何体.(1)请在下面方格纸中分别画出它的左视图和俯视图;(2)若小正方体的棱长为1,求出该几何体的表面积。
最新2022-2021年七年级下期中数学试题(含答案)
第二学期期中调研测试七年级数学试卷(时间:120分钟 满分:120分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑。
1.求22的值是 A.2 B.2 C.22 D.322.点(5,-6)在第儿象限?A.第一象限B.第二象限C.第三象限D.第四象限3.如图,三角形ABC 中,∠C=90°,则点B 到直线AC 的距离是第3题 第6题 第9题A.线段ABB.线段ACC.线段BCD.无法确定4.将点A(-2,-3)向右平移5个单位长度,得到A 1,则A 1的坐标是A.(-2,8)B.(-2,2)C.(一7,-3)D.(3,-3)5.写出14.3-π的相反数是A.3.14-πB.0C.π+31.4D.-π-3.146.如图,直线a ∥b,∠1=54°,则∠2的度数是A.54°B.126C.36°D.136°7.在平面直角坐标系中,点C 在x 轴上方且y 轴右侧,距离每条坐标轴都是3个单位长度,则点C 的坐标为A.(3,-3)B.(-3,3)C.(3,3)D.(-3,-3)8.比较3,350,16的大小,正确的是 A.350163<< B.163503<< C.350316<< D.165033<<9.在平面直角坐标系中,一只电子狗从原点O 出发,按向上→向右→向下→向右的方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,则2018A 的坐标为A.(1009,1)B.(1009,0)C.(2022,1)D.(2022,0)10.如图,直线a 、b 分别截∠AOB 的两边,且a ∥b,∠1=∠3-∠4,根据图中标示的角,判断下列各角的度数关系中正确的有?①∠2+∠5>180° ②∠2+∠3<180° ③∠1+∠6>180°④∠2+∠7=180° ⑤∠3+∠4<180°A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,共18分)11.若8x 3 ,则x=____________.12.命题:“同位角相等”是真命题还是假命题?答:__________.13.若点A(一6,y)在第三象限,则y 的取值范围是_______________.14.如图,∠1:∠2:∠3=3:4:5,EF ∥BC,DF ∥AB,则∠A:∠B:∠C=__________.15.设与40最接近的两个整数分别为a 、b(其中a <b),计算()=++5-b -a 1a a _.16.在平面直角坐标系中,任意两点A(a,b),B(c,d),定义一种运算:()[]3bd a c 3*,-=B A ,若A(9,-1),且A*B=(12,-2),则点B 的坐标是_______. 三、解答题(共8小题,共72分)17.(本题8分)计算: (1)()3-35+ (2)34-3218.(本题8分)在下面的括号内,填上推理的根据如图,AB 和CD 相交于点O,∠A=∠B.求证∠C=∠D证明:∵∠A=∠B,∴AC ∥BD( )∴∠C=∠D( )19.(本题8分)如图,将平行四边形ABCD 向左平移2个单位长度,然后再向上平移3个单位长度,可以得到平行四边形''''D C B A ,画出平移后的图形,并指出其各个顶点的坐标。
2020-2021学年辽宁省锦州八中七年级(上)期中数学试卷 解析版
2020-2021学年辽宁省锦州八中七年级(上)期中数学试卷一.选择题(共8小题)1.若﹣(﹣2)表示一个数的相反数,则这个数是()A.B.﹣C.2D.﹣22.下列运算正确的是()A.﹣5+3=8B.(﹣3)2=﹣9C.(﹣1)2019×1=﹣1D.﹣|﹣2|=23.下面是一个正方体,用一个平面去截这个正方体截面形状不可能为下图中的()A.B.C.D.4.下列说法中,正确的有()①0是最小的整数;②若|a|=|b|,则a=b;③互为相反数的两数之和为零;④数轴上表示两个有理数的点,较大的数表示的点离原点较远.A.0个B.1个C.2个D.3个5.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108C.3.5×109D.3.5×10106.下列变形正确的是()A.﹣(a+2)=a﹣2B.﹣(2a﹣1)=﹣2a+1C.﹣a+1=﹣(a﹣1)D.1﹣a=﹣(a+1)7.小明经销一种服装,进货价为每件a元,经测算先将进货价提高200%进行标价,元旦前夕又按标价的4折销售,这件服装的实际价格()A.比进货价便宜了0.52a元B.比进货价高了0.2a元C.比进货价高了0.8a元D.与进货价相同8.如图,下列各式能够表示图中阴影部分的面积的是()①at+(b﹣t)t;②at+bt﹣t2;③ab﹣(a﹣t)(b﹣t);④(a﹣t)t+(b﹣t)t+t2.A.只有①B.①②C.①②③D.①②③④二.填空题(共8小题)9.一个棱柱有16个顶点,则这个棱柱有个面,有条棱.10.一个月内,小明体重减小2kg,这个月小明的体重增加kg.11.单项式的系数和次数分别是.12.已知15m x+y和是同类项,则|2﹣4x|+|4y﹣1|的值是.13.合并同类项:﹣5a2b+6ab2﹣4ab+2ba2+4ba+3=.14.若|x﹣2|与(y+3)4互为相反数,则(x+y)2020=.15.定义:对任意有理数a,b都有a∇b=﹣a﹣b2,例如:2∇1=﹣2﹣12=﹣3,求(2027∇1)∇3=.16.下列说法中:①几个有理数相乘,负因数的个数是奇数时积为负;②比﹣1大6的数是7;③如果a+|a|=0,则a是负数;④若a<0时,a3=﹣a3;⑤若,则a,b互为相反数,其中说法正确的有.三.解答题(共7小题)17.(1)(+16)﹣(+11)﹣(﹣18)+(﹣15);(2)6;(3);(4);(5)﹣(﹣1)3﹣(1﹣0.5)÷;(6).18.(1)小明准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图1所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接的图形经过折叠后能称为一个封闭的正方体盒子.(添加的正方形用阴影表示.)(2)如图2所示的几何体是由几个相同的正方体搭成的,请画出它的主视图.(3)如图3是几个正方体所组成的几何体的俯视图,小正方形中的数字表示该位置小正方块的个数,请画出这个几何体的左视图.19.如图①是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a、b、c,其中a、b是直角边,正方形的边长分别是a、b.(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图②).用两种不同的方法列代数式表示图②中的大正方形面积:方法一:;方法二:;(2)观察图②,试写出(a+b)2,a2,2ab,b2这四个代数式之间的等量关系:;(3)请利用(2)中等量关系解决问题:已知图①中一个三角形面积是6,图②的大正方形面积是64,求a2+b2的值;(4)求4.132+8.26×5.87+5.872的值.20.阅读计算:阅读下列各式:(ab)2=a2b2,(ab)3=a3b3,(ab)4=a4b4…回答下列三个问题:(1)验证:(4×0.25)100=;4100×0.25100=.(2)通过上述验证,归纳得出:(ab)n=;(abc)n=.(3)请应用上述性质计算:(﹣0.125)2015×22014×42014.21.当今,人们对健康愈加重视,跑步锻炼成了人们的首要选择,许多与运动有关的手机APP(即手机应用小程序)应运而生.小明的爸爸给自己定了减肥目标,每天跑步a公里.以目标路程为基准,超过的部分记为正,不足的部分记为负,他记下了七天的跑步路程:日期18日19日20日21日22日23日24日+1.72+3.20﹣1.91﹣0.96﹣1.88+3.30+0.07路程(公里)(1)分别用含a的代数式表示22日及23日的跑步路程;(2)如果小明的爸爸24日跑步路程是7.07公里,求a的值;(3)在(2)的条件下,若跑步一公里消耗的热量为60千卡,请问小明的爸爸跑步七天一共消耗了多少热量?22.如今,网上购物已成为一种新的消费时尚,精品书店想买一种贺年卡在元旦,在互联网上搜索了甲、乙两家网店,已知两家网店的这种贺年卡的质量相同,请阅读相关信息回答问题:甲网店:贺年卡1元/张,运费8元,超过30张全部打6折乙网店:贺年卡0.8元/张,运费8元,超过30张免运费(1)假若精品书店想购买x张贺年卡,那么在甲、乙两家网店分别需要花多少钱(用含有x的式子表示)?(提示:如需付运费时,运费只需付一次,即8元)(2)精品书店打算购买300张贺年卡,选择哪家网店更省钱?23.如图,相距5km的A、B两地间有一条笔直的马路,C地位于AB两地之间且距A地2km,小明同学骑自行车从A地出发沿马路以每小时5km的速度向B地匀速运动,当到达B地后立即以原来的速度返回.到达A地停止运动,设运动时间为t(小时),小明的位置为点P.若以点C为坐标原点,以从A到B为正方向,用1个单位长度表示1km,解答下列各问:(1)指出点A所表示的有理数;(2)求t=0.5时,点P表示的有理数;(3)当小明距离C地1km时,直接写出所有满足条件的t值;(4)在整个运动过程中,求点P与点A的距离(用含t的代数式表示);(5)用含t的代数式表示点P表示的有理数.2020-2021学年辽宁省锦州八中七年级(上)期中数学试卷参考答案与试题解析一.选择题(共8小题)1.若﹣(﹣2)表示一个数的相反数,则这个数是()A.B.﹣C.2D.﹣2【分析】直接利用互为相反数的定义得出答案.【解答】解:﹣(﹣2)=2,2的相反数是:﹣2.故选:D.2.下列运算正确的是()A.﹣5+3=8B.(﹣3)2=﹣9C.(﹣1)2019×1=﹣1D.﹣|﹣2|=2【分析】根据有理数的加法、乘法和乘方的计算法则,绝对值的性质计算即可求解.【解答】解:A、﹣5+3=﹣2,故选项错误;B、(﹣3)2=9,故选项错误;C、(﹣1)2019×1=﹣1×1=﹣1,故选项正确;D、﹣|﹣2|=﹣2,故选项错误.故选:C.3.下面是一个正方体,用一个平面去截这个正方体截面形状不可能为下图中的()A.B.C.D.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.无论如何去截,截面也不可能有弧度,因此截面不可能是圆.【解答】解:无论如何去截,截面也不可能有弧度,因此截面不可能是圆.故选:D.4.下列说法中,正确的有()①0是最小的整数;②若|a|=|b|,则a=b;③互为相反数的两数之和为零;④数轴上表示两个有理数的点,较大的数表示的点离原点较远.A.0个B.1个C.2个D.3个【分析】直接利用有理数的加法运算法则以及互为相反数、数轴等定义分别分析得出答案.【解答】解:①0是最小的整数,错误,没有最小的整数;②若|a|=|b|,则a=±b,故此选项错误;③互为相反数的两数之和为零,正确;④数轴上表示两个有理数的点,较大的数表示的点离原点较远,只有都是正数时较大的数表示的点离原点较远,故此选项错误.故选:B.5.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108C.3.5×109D.3.5×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于350 000 000有9位,所以可以确定n=9﹣1=8.【解答】解:350 000 000=3.5×108.故选:B.6.下列变形正确的是()A.﹣(a+2)=a﹣2B.﹣(2a﹣1)=﹣2a+1C.﹣a+1=﹣(a﹣1)D.1﹣a=﹣(a+1)【分析】根据去括号和添括号法则解答.【解答】解:A、原式=﹣a﹣2,故本选项变形错误.B、原式=﹣a+,故本选项变形错误.C、原式=﹣(a﹣1),故本选项变形正确.D、原式=﹣(a﹣1),故本选项变形错误.故选:C.7.小明经销一种服装,进货价为每件a元,经测算先将进货价提高200%进行标价,元旦前夕又按标价的4折销售,这件服装的实际价格()A.比进货价便宜了0.52a元B.比进货价高了0.2a元C.比进货价高了0.8a元D.与进货价相同【分析】直接利用标价以及打折之间的关系得出关系式即可.【解答】解:由题意可得,这件服装的实际价格是:(1+200%)a×40%=1.2a元.则1.2a﹣a=0.2a(元)比进货价高了0.2a元.故选:B.8.如图,下列各式能够表示图中阴影部分的面积的是()①at+(b﹣t)t;②at+bt﹣t2;③ab﹣(a﹣t)(b﹣t);④(a﹣t)t+(b﹣t)t+t2.A.只有①B.①②C.①②③D.①②③④【分析】根据题意可以画出相应的图形,从而求出阴影部分的面积,从而判断题目中的结论正确与否.【解答】解:根据题目可以分以下几种情况:(1)如下图所示:则阴影部分的面积为:at+(b﹣t)t,故①正确.(2)如下图所示:则阴影部分的面积为;at+bt﹣t2,故②正确.(3)如下图所示:则阴影部分的面积为:ab﹣(a﹣t)(b﹣t),故③正确.(4)如下图所示:则阴影部分的面积为:(a﹣t)t+(b﹣t)t+t2,故④正确.由上可得,选项A错误,选项B错误,选项C错误,选项D正确.故选:D.二.填空题(共8小题)9.一个棱柱有16个顶点,则这个棱柱有10个面,有24条棱.【分析】根据棱柱的顶点数、面数、棱数之间的关系得出答案.【解答】解:∵棱柱有16个顶点,∴这个棱柱是八棱柱,∴八棱柱有8+2=10个面,有8×3=24条棱,故答案为:10,24.10.一个月内,小明体重减小2kg,这个月小明的体重增加﹣2kg.【分析】增加和减少具有相反意义,根据正负数可以表示一对具有相反意义的量即可求解.【解答】解:一个月内,小明体重减小2kg,这个月小明的体重增加﹣2kg.故答案为:﹣2.11.单项式的系数和次数分别是﹣,6.【分析】利用单项式系数和次数定义可得答案.【解答】解:单项式的系数是﹣,次数是6,故答案为:,6.12.已知15m x+y和是同类项,则|2﹣4x|+|4y﹣1|的值是15.【分析】同类项的相同字母的指数相同,由此可得x,y的值,继而代入可得出正确答案.【解答】解:∵15m x+y和是同类项,∴,解得,∴|2﹣4x|+|4y﹣1|=|2﹣16|+|﹣1|=14+1=15.故答案为:15.13.合并同类项:﹣5a2b+6ab2﹣4ab+2ba2+4ba+3=﹣3a2b+6ab2+3.【分析】把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此可得.【解答】解:原式=(﹣5+2)a2b+(﹣4+4)ab+6ab2+3=﹣3a2b+6ab2+3,故答案为:﹣3a2b+6ab2+3.14.若|x﹣2|与(y+3)4互为相反数,则(x+y)2020=1.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:∵|x﹣2|与(y+3)4互为相反数,∴|x﹣2|+(y+3)4=0,∴x﹣2=0,y+3=0,解得x=2,y=﹣3,故(x+y)2020=(2﹣3)2020=1.故答案为:1.15.定义:对任意有理数a,b都有a∇b=﹣a﹣b2,例如:2∇1=﹣2﹣12=﹣3,求(2027∇1)∇3=2019.【分析】先利用新定义得到2027∇1=﹣2027﹣12,利用乘方的意义计算得到2027∇1=﹣2028,再计算(﹣2028)∇3=﹣(﹣2028)﹣32即可.【解答】解:2027∇1=﹣2027﹣12=﹣2028,(2027∇1)∇3=(﹣2028)∇3=﹣(﹣2028)﹣32=2028﹣9=2019.故答案为2019.16.下列说法中:①几个有理数相乘,负因数的个数是奇数时积为负;②比﹣1大6的数是7;③如果a+|a|=0,则a是负数;④若a<0时,a3=﹣a3;⑤若,则a,b互为相反数,其中说法正确的有1个.【分析】利用零乘以任何数得零对①进行判断;利用﹣1+6=5可对②进行判断;利用绝对值的意义对③进行判断;利用乘方的意义对④进行判断;利用相反数的定义对⑤进行判断.【解答】解:几个非零的有理数相乘,负因数的个数是奇数时积为负,所以①的说法错误;比﹣1大6的数是5,所以②的说法错误;如果a+|a|=0,则a是负数或0,所以③的说法错误;(﹣a)3=﹣a3,所以④的说法错误;若=﹣1,所以a=﹣b,则a,b互为相反数,所以⑤的说法正确.故答案为1个.三.解答题(共7小题)17.(1)(+16)﹣(+11)﹣(﹣18)+(﹣15);(2)6;(3);(4);(5)﹣(﹣1)3﹣(1﹣0.5)÷;(6).【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用减法法则变形,结合后相加即可求出值;(3)原式从左到右依次计算即可求出值;(4)原式利用乘法分配律计算即可求出值;(5)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(6)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=16﹣11+18﹣15=5+3=8;(2)原式=6+3﹣3.3+3.3+6+4=10+10=20;(3)原式=﹣81×(﹣)××(﹣)=﹣1;(4)原式=﹣72×﹣72×(﹣)﹣72×﹣72×(﹣)=﹣322+27﹣+24=7;(5)原式=﹣(﹣1)﹣×5×(﹣2)=1+5=6;(6)原式=﹣1+16×﹣0.28+=﹣1+2﹣0.28+0.01=0.73.18.(1)小明准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图1所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接的图形经过折叠后能称为一个封闭的正方体盒子.(添加的正方形用阴影表示.)(2)如图2所示的几何体是由几个相同的正方体搭成的,请画出它的主视图.(3)如图3是几个正方体所组成的几何体的俯视图,小正方形中的数字表示该位置小正方块的个数,请画出这个几何体的左视图.【分析】(1)在第二行3个正方形的下方的任意一个位置添加一个正方形可经过折叠后能成为一个封闭的正方体盒子;(2)由图可知,主视图有3列,每列小正方数形数目分别为1,2,1,据此可画出图形;(3)由图可知,左视图有2列,每列小正方形数目分别为2,3,据此可画出图形.【解答】解:(1)如图1所示:(2)如图2所示:(3)如图3所示:19.如图①是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a、b、c,其中a、b是直角边,正方形的边长分别是a、b.(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图②).用两种不同的方法列代数式表示图②中的大正方形面积:方法一:(a+b)2;方法二:a2+b2+2ab;(2)观察图②,试写出(a+b)2,a2,2ab,b2这四个代数式之间的等量关系:(a+b)2=a2+b2+2ab;(3)请利用(2)中等量关系解决问题:已知图①中一个三角形面积是6,图②的大正方形面积是64,求a2+b2的值;(4)求4.132+8.26×5.87+5.872的值.【分析】(1)直接利用图形面积求法得出答案;(2)利用面积关系得出代数式之间关系;(3)利用已知得出a,b的值,进而得出答案;(4)直接利用完全平方公式计算得出答案.【解答】解:(1)方法一:(a+b)2;方法二:a2+b2+2ab;(2)(a+b)2=a2+b2+2ab;(3)∵ab=6,(a+b)2=64,∴2ab=24,∴a2+b2=(a+b)2﹣2ab=40;(4)4.132+8.26×5.87+5.872的=(4.13+5.87)2=100.故答案为:(1)(a+b)2;a2+b2+2ab;(2)(a+b)2=a2+b2+2ab.20.阅读计算:阅读下列各式:(ab)2=a2b2,(ab)3=a3b3,(ab)4=a4b4…回答下列三个问题:(1)验证:(4×0.25)100=1;4100×0.25100=1.(2)通过上述验证,归纳得出:(ab)n=a n b n;(abc)n=a n b n c n.(3)请应用上述性质计算:(﹣0.125)2015×22014×42014.【分析】①先算括号内的,再算乘方;先乘方,再算乘法.②根据有理数乘方的定义求出即可;③根据同底数幂的乘法计算,再根据积的乘方计算,即可得出答案.【解答】解:①:(4×0.25)100=1100=1;4100×0.25100=1,故答案为:1,1.②(a•b)n=a n b n,(abc)n=a n b n c n,故答案为:a n b n,(abc)n=a n b n c n.③原式=(﹣0.125)2012×22012×42012×(﹣0.125)=(﹣0.125×2×4)2012×(﹣0.125)=(﹣1)2012×(﹣0.125)=1×(﹣0.125)=﹣0.125.21.当今,人们对健康愈加重视,跑步锻炼成了人们的首要选择,许多与运动有关的手机APP(即手机应用小程序)应运而生.小明的爸爸给自己定了减肥目标,每天跑步a公里.以目标路程为基准,超过的部分记为正,不足的部分记为负,他记下了七天的跑步路程:日期18日19日20日21日22日23日24日路程(公+1.72+3.20﹣1.91﹣0.96﹣1.88+3.30+0.07里)(1)分别用含a的代数式表示22日及23日的跑步路程;(2)如果小明的爸爸24日跑步路程是7.07公里,求a的值;(3)在(2)的条件下,若跑步一公里消耗的热量为60千卡,请问小明的爸爸跑步七天一共消耗了多少热量?【分析】(1)直接结合表格中数据表示出22日及23日的跑步路程;(2)直接利用小明的爸爸24日跑步路程是7.07公里,得出a+0.07=7.07,进而得出答案;(3)首先求出七天一共跑步的公里数,进而得出答案.【解答】解:(1)22日跑步路程为(a﹣1.88)公里,23日跑步路程为(a+3.30)公里;(2)a+0.07=7.07,所以a=7公里;(3)七天一共跑步(a+1.72)+(a+3.20)+(a﹣1.91)+(a﹣0.96)+(a﹣1.88)+(a+3.30)+(a+0.07)=7a+3.54=7×7+3.54=52.54(公里),52.54×60=3152.4(千卡).22.如今,网上购物已成为一种新的消费时尚,精品书店想买一种贺年卡在元旦,在互联网上搜索了甲、乙两家网店,已知两家网店的这种贺年卡的质量相同,请阅读相关信息回答问题:甲网店:贺年卡1元/张,运费8元,超过30张全部打6折乙网店:贺年卡0.8元/张,运费8元,超过30张免运费(1)假若精品书店想购买x张贺年卡,那么在甲、乙两家网店分别需要花多少钱(用含有x的式子表示)?(提示:如需付运费时,运费只需付一次,即8元)(2)精品书店打算购买300张贺年卡,选择哪家网店更省钱?【分析】(1)分购买数量不足30和超过30张两种情况求解可得;(2)求出x=300时,在甲、乙网店购买贺卡所需费用,比较大小即可得.【解答】解:(1)当x不超过30时,在甲网店需要花(x+8)元,在乙网店需要花(0.8x+8)元;当x超过30时,在甲网店需要花(0.6x+8)元,在乙网店需要花0.8x元;(2)当x=300时,甲网店:0.6×300+8=188(元),乙网店:0.8×300=240(元),∵188<240,∴选择甲网店更省钱.23.如图,相距5km的A、B两地间有一条笔直的马路,C地位于AB两地之间且距A地2km,小明同学骑自行车从A地出发沿马路以每小时5km的速度向B地匀速运动,当到达B地后立即以原来的速度返回.到达A地停止运动,设运动时间为t(小时),小明的位置为点P.若以点C为坐标原点,以从A到B为正方向,用1个单位长度表示1km,解答下列各问:(1)指出点A所表示的有理数;(2)求t=0.5时,点P表示的有理数;(3)当小明距离C地1km时,直接写出所有满足条件的t值;(4)在整个运动过程中,求点P与点A的距离(用含t的代数式表示);(5)用含t的代数式表示点P表示的有理数.【分析】(1)根据以点C为坐标原点,以从A到B为正方向,而且AC=2km,可得点A 所表示的有理数是﹣2.(2)首先根据速度×时间=路程,用小明骑自行车的速度乘以0.5,求出小明0.5小时骑的路程是多少;然后用它减去2,求出t=0.5时点P表示的有理数是多少即可.(3)根据题意,分两种情况:①当小明在C点的左边时;②当小明在C点的右边时;然后根据路程÷速度=时间,求出小明距离C地1km时,所有满足条件的t值是多少即可.(4)根据题意,分两种情况:①小明从A地到B地时;②小明从B地到A地时;然后分类讨论,求出点P与点A的距离是多少即可.(5)根据题意,用点P与点A的距离减去2,用含t的代数式表示点P表示的有理数即可.【解答】解:(1)因为AC=2km,且1个单位长度表示1km,所以点A所表示的有理数是﹣2.(2)5×0.5﹣2=2.5﹣2=0.5.所以t=0.5时点P表示的有理数是0.5.(3)①当小明在C点的左边时,(2﹣1)÷5=1÷5=0.2;②当小明在C点的右边时,(2+1)÷5=3÷5=0.6.③返回时,同法可得,(5+2)÷5=1.4,(5+4)÷5=1.8答:当小明距离C地1km时,t的值是0.2或0.6或1.4或1.8.(4)①小明从A地到B地时,点P与点A的距离是5t千米.②5÷5=1(小时),所以小明从B地到A地时,点P与点A的距离是:5﹣5(t﹣1)=5﹣5t+5=10﹣5t(千米).所以在整个运动过程中,求点P与点A的距离是5t千米或(10﹣5t)千米.(5)因为点P与点A的距离是5t千米或(10﹣5t)千米,所以点P表示的有理数是5t﹣2或8﹣5t.。
辽宁省2021-2022学年七年级下学期数学第一次月考试卷A卷
辽宁省2021-2022学年七年级下学期数学第一次月考试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)解方程,去分母正确的是()A . 2-(x-1)=1B . 2-3(x-1)=6C . 2-3(x-1)=1D . 3-2(x-1)=62. (2分) (2017八下·阳信期中) 已知实数x,y满足 +x2+4y2=4xy,则(x﹣y)2017的值为()A . 0B . ﹣1C . 1D . 20163. (2分) (2019八下·昭通期中) 平行四边形的两条对角线长分别为6和10,则平行四边形的一条边的长x的取值范围为()A . 4<x<6B . 2<x<8C . 0<x<10D . 0<x<64. (2分)一元一次不等式x-1≥0的解集在数轴上表示正确的是()A .B .C .D .5. (2分)下列各题正确的是()A . 由7x=4x﹣3移项得7x﹣4x=36B . 由=1+去分母得2(2x﹣1)=1+3(x﹣3)C . 由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D . 由2(x+1)=x+7去括号、移项、合并同类项得x=56. (2分)如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD等于()A . 15°B . 25°C . 35°D . 45°7. (2分) (2015七下·卢龙期中) 已知是方程组的解,则a+b的值是()A . ﹣7B . ﹣1C . 1D . 78. (2分)如图,已知点A是函数y=x与y=的图象在第一象限内的交点,点B在x轴负半轴上,且OA=OB,则△AOB的面积为()A . 2B .C . 2D . 4二、填空题 (共6题;共7分)9. (1分) (2016七上·吴江期末) 将一个边长为10 cm正方形,沿粗黑实线剪下4个边长为________ cm的小正方形,拼成一个大正方形,余下部分按虚线折叠成一个无盖长方体;最后把两部分拼在一起,组成一个完整的长方体,它的表面积等于原正方形的面积.10. (1分)(2020·朝阳模拟) 下图中的四边形都是矩形,根据图形,写出一个正确的等式:________.11. (1分)(2017·黄冈模拟) 若关于x的方程 =3的解为非负数,则m的取值范围是________.12. (1分) (2020七下·偃师期中) 关于,的二元一次方程组的解为,则的值为________13. (2分) (2020·张家界) 如图,的一边为平面镜,,一束光线(与水平线平行)从点C射入经平面镜反射后,反射光线落在上的点E处,则的度数是________度.14. (1分) (2020七下·灌云月考) 如图,将正方形ABCD的一角折叠,折痕为AE,点B恰好落在点处,∠ AD比∠BAE大45°.设∠BAE和∠ AD的度数分别为x°和y°,那么所适合的一个方程组是________.三、解答题 (共9题;共55分)15. (10分) (2020七上·重庆月考) 解方程:(1) y-3(20-2y)=10(2)(x-2)=1- (4-3x)16. (10分) (2019七下·桂平期末)(1)解方程组:(2)因式分解:﹣4x2+8x﹣417. (5分) (2019八上·萧山期中) 解不等式:,并把解表示在数轴上。
2023年辽宁省锦州市中考数学真题及答案
2023年锦州市初中学业水平考试数学试卷考试时间120分钟试卷满分120分※考生注意:请在答题卡各题目规定答题区域内作答,答在本试卷上无效.一、选择题(本大题共8道小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2023的相反数是()A.12023 B.2023- C.2023 D.12023-【答案】B【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2023的相反数是2023-,故选:B.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.如图所示的几何体是由5个完全相同的小正方体搭成的,它的俯视图是()A. B. C. D.【答案】B【解析】【分析】从上面看:共有3列,从左往右分别有1,2,1个小正方形,据此可画出图形.【详解】解:如图所示的几何体的俯视图是:.故选:B.【点睛】此题主要考查了简单组合体的三视图;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.下列运算正确的是()A.235a a a += B.235a a a ⋅= C.()325a a = D.()32626a a -=【答案】B【解析】【分析】根据幂的运算法则判断选项的正确性即可.【详解】对于A ,235a a a +≠,故A 选项错误,对于B ,235a a a ⋅=,故B 选项正确,对于C ,()3265a a a =≠,故C 选项错误,对于D ,()3266286a a a -=-≠,故D 选项错误,故选:B .【点睛】本题考查了同底数幂的乘法,幂的乘方和积的乘方,掌握相关运算法则是解答本题的关键.4.如图,将一个含45︒角的直角三角板按如图所示的位置摆放在直尺上.若128∠=︒,则2∠的度数为()A.152︒B.135︒C.107︒D.73︒【答案】C【解析】【分析】由平角的定义可得3107∠=︒,由平行线的性质可得23107∠=∠=︒.【详解】如图,∵128∠=︒,∴31802845107∠=︒-︒-︒=︒.∵直尺的对边平行,∴23107∠=∠=︒,故选:C .【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.5.在一次跳绳测试中,参与测试的10名学生一分钟跳绳成绩如下表所示:成绩/次129130132135137人数/人13222这10名学生跳绳成绩的中位数和众数分别为()A.132,130B.132,132C.130,130D.130,132【答案】A【解析】【分析】中位数:是指将所有数从小到大或从大到小排列后,如果总数为奇数个,中位数就是排在最中间的那个数;如果总数为偶数个,中位数就是排在最中间的两个数的平均数;众数∶一组数据中,出现次数最多的数据.根据定义即可求解.【详解】解:这组数据的中位数为1321321322+=,这组数据中130出现次数最多,则众数为130,故选:A .【点睛】本题考查中位数、众数,熟知中位数、众数的计算方法,数据较大,正确计算是解答的关键.6.若关于x 的一元二次方程2230kx x -+=有两个实数根,则k 的取值范围是()A.13k < B.13k ≤ C.13k <且0k ≠ D.13k ≤且0k ≠【答案】D【解析】【分析】根据一元二次方程的定义及根的判别式即可解答.【详解】解:∵2230kx x -+=为一元二次方程,∴0k ≠,∵该一元二次方程有两个实数根,∴()22430k ∆=--⨯≥,解得13k ≤,∴13k ≤且0k ≠,故选:D .【点睛】本题考查了一元二次方程的定义及根的判别式,解题的关键是熟知当判别式的值大于0时,方程有两个不相等的实数根,同时要满足二次项的系数不能是0.7.如图,点A ,B ,C 在O 上,40ABC ∠=︒,连接OA ,OC .若O 的半径为3,则扇形AOC (阴影部分)的面积为()A.23πB.πC.43πD.2π【答案】D【解析】【分析】先利用圆周角定理求出AOC ∠的度数,然后利用扇形面积公式求解即可.【详解】解:∵40ABC ∠=︒,∴280AOC ABC ∠=∠=︒,又O 的半径为3,∴扇形AOC (阴影部分)的面积为28032360ππ⨯=.故选:D .【点睛】本题考查的是圆周角定理,扇形面积公式等,掌握“同弧所对的圆周角是它所对的圆心角的一半”是解题的关键.8.如图,在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,在DEF 中,5DE DF ==,8EF =,BC 与EF 在同一条直线上,点C 与点E 重合.ABC 以每秒1个单位长度的速度沿线段EF 所在直线向右匀速运动,当点B 运动到点F 时,ABC 停止运动.设运动时间为t 秒,ABC 与DEF 重叠部分的面积为S ,则下列图象能大致反映S 与t 之间函数关系的是()A. B.C. D.【答案】A【解析】【分析】分04t ≤<,48t ≤<,812t ≤<三种情况,分别求出函数解析即可判断.【详解】解:过点D 作DH CB ⊥于H ,,∵5DE DF ==,8EF =,∴142EH FH EF ===,∴223DH DE EH =-=当04t ≤<时,如图,重叠部分为EPQ △,此时EQ t =,PQ DH ∥,,∴EPQ EDH ∽ ,∴PQ EQDH EH =,即34PQ t =,∴34PQ t=∴2133248S t t t =⨯=;当48t ≤<时,如图,重叠部分为四边形PQC B '',此时BB CC t ''==,PB DE '∥,∴12B F BC CF BB t ''=+-=-,8FC t '=-,∵PB DE '∥,∴PB F DCF '∽ ,∴2PB F DCF S B F S CF''⎛⎫= ⎪⎝⎭ ,又183122DCF S =⨯⨯= ,∴212128PB F S t '-⎛⎫= ⎪⎝⎭,∴()231216PB F S t '=- ,∵DH BC ⊥,90A B C '''∠=︒,∴A C DH ''∥,∴C QF HFD '∽ ,∴2C QFHFD S C F S HF ''⎛⎫= ⎪⎝⎭ ,即2814432C QF St'-⎛⎫= ⎪⎝⎭⨯⨯ ,∴()2388C QF S t '=- ,∴()()22233331283168162PB F C QF S S S t t t t ''=-=---=-++ ;当812t ≤<时如图,重叠部分为四边形PFB ' ,此时BB CC t ''==,PB DE '∥,∴12B F BC CF BB t ''=+-=-,∵PB DE '∥,∴PB F DCF '∽ ,∴2PB F DCF S B F S CF ''⎛⎫= ⎪⎝⎭ ,即212128PB F S t '-⎛⎫= ⎪⎝⎭∴()231216PB F S S t '==- ,综上,()()()()22230483334816231281216t t S t t t t t ⎧≤<⎪⎪⎪=-++≤<⎨⎪⎪-≤<⎪⎩,∴符合题意的函数图象是选项A .故选:A .【点睛】此题结合图像平移时面积的变化规律,考查二次函数相关知识,根据平移点的特点列出函数表达式是关键,有一定难度.二、填空题(本大题共8道小题,每小题3分,共24分)9.近年来,跑步成为越来越多人的一种生活方式.据官方数据显示,2023年上海半程马拉松报名人数达到78922人.将数据78922用科学记数法表示为______________.【答案】47.892210⨯【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:4789227.892210=⨯;故答案为47.892210⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.因式分解:224x x -=_________.【答案】2(2)x x -【解析】【分析】直接提取公因式即可.【详解】2242(2)x x x x -=-.故答案为:2(2)x x -.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.11.甲、乙、丙三名运动员在5次射击训练中,平均成绩都是8.5环,方差分别是20.78s =甲,20.20s =乙,2 1.28s =丙,则三名运动员中这5次训练成绩最稳定的是______________.(填“甲”或“乙”或“丙”)【答案】乙【解析】【分析】根据方差越小,波动性越小,越稳定即可判断.【详解】∵20.78s =甲,20.20s =乙,2 1.28s =丙,平均成绩都是8.5环,,∴222s s s <<乙甲丙∴三名运动员中这5次训练成绩最稳定的是乙.故答案为乙.【点睛】本题考查方差.根据方差是反应一组数据的波动大小,方差越大,波动性越大,越不稳定.反之方差越小,波动性越小,越稳定是解答本题关键.12.一个不透明的盒子中装有若干个红球和5个黑球,这些球除颜色外均相同.经多次摸球试验后发现,摸到黑球的频率稳定在0.25左右,则盒子中红球的个数约为______________.【答案】15【解析】【分析】设袋子中红球有x 个,根据摸到黑球的频率稳定在0.25左右,可列出关于x 的方程,求出x 的值,从而得出结果.【详解】解:设袋子中红球有x 个,根据题意,得50.255x =+,15,x ∴=∴盒子中红球的个数约为15,故答案为:15.【点睛】本题主要考查了利用频率估计概率,熟练掌握求概率公式是解此题的关键.13.如图,在ABC 中,BC 的垂直平分线交BC 于点D .交AB 于点E .连接CE .若CE CA =,40ACE ∠=︒,则B ∠的度数为______________.【答案】35︒##35度【解析】【分析】先在ACE △中利用等边对等角求出AEC ∠的度数,然后根据垂直平分线的性质可得BE CE =,再利用等边对等角得出B BCE ∠=∠,最后结合三角形外角的性质即可求解.【详解】解:∵CE CA =,40ACE ∠=︒,∴180702ACE A AEC ︒-∠∠=∠==︒,∵DE 是BC 的垂直平分线,∴BE CE =,∴B BCE ∠=∠,又AEC B BCE ∠=∠+∠,∴35B ∠=︒.故答案为:35︒.【点睛】本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形外角的性质等知识,掌握等腰三角形的等边对等角是解题的关键.14.如图,在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,4AC =,按下列步骤作图:①在AC 和AB 上分别截取AD 、AE ,使AD AE =.②分别以点D 和点E 为圆心,以大于12DE 的长为半径作弧,两弧在BAC ∠内交于点M .③作射线AM 交BC 于点F .若点P 是线段AF 上的一个动点,连接CP ,则12CP AP +的最小值是______________.【答案】23【解析】【分析】过点P 作PQ AB ⊥于点Q ,过点C 作CH AB ⊥于点H ,先利用角平分线和三角形的内角和定理求出30BAF ∠=︒,然后利用含30︒的直角三角的性质得出12PQ AP =,则12CP AP CP PQ CH +=+≥,当C 、P 、Q 三点共线,且与AB 垂直时,12CP AP +最小,12CP AP +最小值为CH ,利用含30︒的直角三角的性质和勾股定理求出AB ,BC ,最后利用等面积法求解即可.【详解】解:过点P 作PQ AB ⊥于点Q ,过点C 作CH AB ⊥于点H ,,由题意知:AF 平分BAC ∠,∵90ACB ∠=︒,30ABC ∠=︒,∴60BAC ∠=︒,∴1302BAF BAC ∠=∠=︒,∴12PQ AP =,∴12CP AP CP PQ CH +=+≥,∴当C 、P 、Q 三点共线,且与AB 垂直时,12CP AP +最小,12CP AP +最小值为CH ,∵90ACB ∠=︒,30ABC ∠=︒,4AC =,∴28AB AC ==,∴223BC AB AC =-=∵2211ABC S AC B BC A CH =⋅⋅= ,∴48AC BC CH AB ⋅⨯===即12CP AP +最小值为.故答案为:【点睛】本题考查了尺规作图-作角平分线,含30︒的直角三角形的性质,勾股定理等知识,注意掌握利用等积法求三角形的高或点的线的距离的方法.15.如图,在平面直角坐标系中,AOC 的边OA 在y 轴上,点C 在第一象限内,点B 为AC 的中点,反比例函数()0ky x x=>的图象经过B ,C 两点.若AOC 的面积是6,则k 的值为______________.【答案】4【解析】【分析】过B ,C 两点分别作y 轴的垂线,垂足分别为D ,E ,设B 点坐标为k m m ⎛⎫ ⎪⎝⎭,,则BD m =,由点B为AC 的中点,推出C 点坐标为22k m m ⎛⎫⎪⎝⎭,,求得直线BC 的解析式,得到A 点坐标,根据AOC 的面积是6,列式计算即可求解.【详解】解:过B ,C 两点分别作y 轴的垂线,垂足分别为D ,E ,∴BD CE ∥,∴ABD ACE ∽,∴BD ABCE AC=,设B 点坐标为k m m ⎛⎫ ⎪⎝⎭,,则BD m =,∵点B 为AC 的中点,∴12BD AB CE AC ==,∴22CE BD m ==,∴C 点坐标为22k m m ⎛⎫ ⎪⎝⎭,,设直线BC 的解析式为y ax b =+,∴22k ma b m k ma b m ⎧+=⎪⎪⎨⎪+=⎪⎩,解得2232k a m k b m ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为2322k k y x m m=-+,当0x =时,32ky m =,∴A 点坐标为302k m ⎛⎫ ⎪⎝⎭,,根据题意得132622k m m⋅⋅=,解得4k =,故答案为:4.【点睛】本题考查了反比例函数的性质、相似三角形的判定及性质、求一次函数解析式、坐标与图形,解题关键是熟练掌握反比例函数的性质及相似三角形的性质.16.如图,在平面直角坐标系中,四边形1121A B B C ,2232A B B C ,3343A B B C ,4454A B B C ,…都是平行四边形,顶点1B ,2B ,3B ,4B ,5B ,…都在x 轴上,顶点1C ,2C ,3C ,4C ,…都在正比例函数14y x =(0x ≥)的图象上,且21212B C A C =,32322B C A C =,43432B C A C =,…,连接12A B ,23A B ,34A B ,45A B ,…,分别交射线1OC 于点1O ,2O ,3O ,4O ,…,连接12O A ,23O A ,34O A ,…,得到122O A B ∆,233O A B ∆,344O A B ∆,….若()12,0B ,()23,0B ,()13,1A ,则202320242024O A B ∆的面积为______________.【答案】2023202494【解析】【分析】根据题意和图形可先求得12312290A B B B B A ∠∠=︒=,34323290A B B B B A ∠∠=︒=,45434390A B B B B A ∠∠=︒=, ,11190n n n n n n B A B B A B +--∠∠=︒=,333,02B ⎛⎫⨯ ⎪⎝⎭2433,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭,3533,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭, ,233,02n n B -⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭,从而得2022202433,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭,2023202533,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭,2023202220232024202533333222B B ⎛⎫⎛⎫⎛⎫=⨯-⨯= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,2022202220232024143332342O n B ⎛⎫⎛⎫=== ⎪⎪⨯⎝⎭⨯⨯⎭⎝,利用三角形的面积公式即可得解.【详解】解:∵()12,0B ,()23,0B ,()13,1A ,∴点()13,1A 与点()23,0B 的横坐标相同,12OB =,12321B B =-=,121A B =,23OB =,∴12A B x ⊥轴,∴1290A B O ∠=︒,∵21212B C A C =,∴21212B C A C =,∵四边形1121A B B C ,2232A B B C ,3343A B B C ,4454A B B C ,…都是平行四边形,∴1122A B A B ∥,222A C OB ∥,233A B OB ∥,2223A B C B =,1121A B B C =∴112223A B B A B B ∠=∠,12212C A C C B O ∠=∠,12212C C A C OB ∠=∠,2222111232B A B A B A BC ==,∴12212C C A C OB ∠V ∽,∴21222212232OB C B OB C A C A B B ===,∴23211322B B OB ==⨯,∴1222123232B B B B B A B C ==,3233322OB OB ==⨯,∴212312A A B B B B ∽ ,∴12312290A B B B B A ∠∠=︒=,∴333,02B ⎛⎫⨯⎪⎝⎭,同理可得34323290A B B B B A ∠∠=︒=,45434390A B B B B A ∠∠=︒=, 11190n n n n n n B A B B A B +--∠∠=︒=,2433,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭,3533,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭, ,233,02n n B -⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭,∴2022202433,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭,2023202533,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭,∴2023202220232024202533333222B B ⎛⎫⎛⎫⎛⎫=⨯-⨯= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,∵2022202333,2O n ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭在14y x =上,∴2022202220232024143332342O n B ⎛⎫⎛⎫=== ⎪⎪⨯⎝⎭⨯⨯⎭⎝,∴20232024202420232023240464220242025404820240211333222223944OA B S B O A B ⎛⎫⎛⎫=⋅=⨯⨯== ⎪ ⎪⎝⨯⎭⎝⎭ ,故答案为:2023202494.【点睛】本题考查相似三角形的判定及性质,平行四边形的性质,坐标与图形,坐标规律,熟练掌握相似三角形的判定及性质以及平行四边形的性质是解题关键.三、解答题(本大题共2道题,第17题6分,第18题8分,共14分)17.化简,再求值:2141122a a a -⎛⎫+÷⎪++⎝⎭,其中3a =.【答案】22a -,2【解析】【分析】先把括号里的式子通分相减,然后把除数的分子、分母分解因式,再把除数分子分母颠倒后与前面的结果相乘,最后约成最简分式或整式;求值时把a 值代入化简的式子算出结果.【详解】解:原式()()()21111122a a a a a a ++⎛⎫=+⋅ ⎪+++-⎝⎭()()()212122a a a a a ++=⋅++-22a =-.当3a =时,原式2232==-.【点睛】本题主要考查了分式的化简求值,熟练掌握分式的混合运算的顺序和运算法则,是解题的关键.18.2023年,教育部等八部门联合印发了《全国青少年学生读书先去实施方案》,某校为落实该方案,成立了四个主题阅读社团:A .民俗文化,B .节日文化,C .古曲诗词,D .红色经典.学校规定:每名学生必须参加且只能一个社团.学校随机对部分学生选择社团的情况进了调查.下面是根据调查结果绘制的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次随机调查的学生有名,在扇形统计图中“A ”部分圆心角的度数为;(2)通过计算补全条形统计图;(3)若该校共有1800名学生,请根据以上调查结果,估计全校参加“D ”社团的人数.【答案】(1)60,36︒;(2)见解析(3)540名【解析】【分析】(1)由C 组的人数及其所占百分比可得总人数,用360︒乘以A 人数所占比例即可得其对应圆心角度数;(2)根据各类型人数之和等于总人数求得B组的人数,补全图形即可得;(3)总人数乘以D组人数和所占比例即可.【小问1详解】本次调查的总人数2440%60÷=(名),扇形统计图中,C所对应的扇形的圆心角度数是6 3603660⨯=︒︒,故答案为:60,36︒;【小问2详解】606241812---=(人);补全条形统计图如答案图所示.【小问3详解】18180054060⨯=(名).答:全校1800名学生中,参加“D”活动小组的学生约有540名.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.四、解答题(本大题共2道题,每题8分,共16分)19.垃圾分类工作是今年全国住房和城乡建设工作会议部署的重点工作之一.为营造人人参与垃圾分类的良好氛围,某市环保部门开展了“让垃圾分类成为低碳生活新时尚”宣传活动,决定从A,B,C三名志愿者中通过抽签的方式确定两名志愿者到社区进行垃圾分类知识宣讲,抽签规则:将三名志愿者的名字分别写在三张完全相同且不透明卡片的正面,把三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的两张卡片中随机抽取第二张卡片,记下名字.(1)从三张卡片中随机抽取一张,恰好是“B志愿者”的概率是;(2)按照抽签规则,请你用列表法或画树状图法表示出两次抽签所有可能的结果,并求出A,B两名志愿者同时被抽中的概率.【答案】(1)13(2)13【解析】【分析】(1)从三张卡片中随机抽取一张,恰好是“B 志愿者”的概率是13;(2)利用画树状图或列表法求概率即可.【小问1详解】解:从三张卡片中随机抽取一张,恰好是“B 志愿者”的概率是13,故答案为:13;【小问2详解】解:方法一:根据题意可画树状图如下:由树状图可知共有6种结果,每种结果出现的可能性相同,其中A ,B 两名志愿者同时被选中的有2种,∴P (A ,B 两名志愿者同时被选中)2163==.方法二:根据题意可列表如下:ABCA (),A B (),A C B (),B A (),B C C(),C A (),C B 由表格可知共有6种结果,每种结果出现的可能性相同,其中A ,B 两名志愿者同时被选中的有2种,∴P (A ,B 两名志愿者同时被选中)2163==.【点睛】本题考查列表法和树状图法求概率,掌握概率的求法是解题的关键.20.2023年5月15日,辽宁男篮取得第三次CBA 总冠军,辽篮运动员的拼搏精神感染了众多球迷.某校篮球社团人数迅增,急需购进A ,B 两种品牌篮球,已知A 品牌篮球单价比B 品牌篮球单价的2倍少48元,采购相同数量的A ,B 两种品牌篮球,分别需要花费9600元和7200元.求A ,B 两种品牌篮球的单价分别是多少元?【答案】A 品牌篮球单价为96元,B 品牌篮球单价为72元【解析】【分析】设B 品牌篮球单价为x 元,则A 品牌篮球单价为()248x -元,,再利用“采购相同数量的A ,B 两种品牌篮球,分别需要花费9600元和7200元”,列方程,解方程即可.【详解】解:设B 品牌篮球单价为x 元,则A 品牌篮球单价为()248x -元,根据题意,得96007200248x x=-.解这个方程,得72x =.经检验,72x =是所列方程的根.2724896⨯-=(元).所以,A 品牌篮球单价为96元,B 品牌篮球单价为72元.【点睛】本题考查的是分式方程的应用,设出恰当的未知数,确定相等关系是解题的关键.五、解答题(本大题共2道题,每题8分,共16分)21.如图1,是某校教学楼正厅一角处摆放的“教学楼平面示意图”展板,数学学习小组想要测量此展板的最高点到地面的高度.他们绘制了图2所示的展板侧面的截面图,并测得120cm AB =,80cm BD =,105ABD ∠=︒,60BDQ ∠=︒,底座四边形EFPQ 为矩形,5cm EF =.请帮助该数学学习小组求出展板最高点A 到地面PF 的距离.(结果精确到1cm 1.41≈ 1.73≈)【答案】159cm 【解析】【分析】过点A 作AG PF ⊥于点G ,与直线QE 交于点H ,过点B 作BM AG ⊥于点M ,过点D 作DN BM ⊥于点N ,分别解作出的直角三角形即可解答.【详解】解:如图,过点A 作AG PF ⊥于点G ,与直线QE 交于点H ,过点B 作BM AG ⊥于点M ,过点D 作DN BM ⊥于点N ,∴四边形DHMN ,四边形EFGH 均为矩形,∴MH ND =,5EF HG ==,BM DH ∥,∴60NBD BDQ ∠=∠=︒,∴1056045ABM ABD NBD ∠=∠-∠=︒-︒=︒,在Rt ABM 中,90AMB ∠=︒,∵sin sin 45AMABM AB∠=︒=,∴sin 451202AM AB =⋅︒=⨯=在Rt BDN △中,90BND ∠=︒,∵sin sin 60NDNBD BD∠=︒=,∴sin 60802ND BD =⋅︒=⨯=,∴MH ND ==∴()560 1.4140 1.735159cm AG AM MH GH =++=≈⨯+⨯+≈,答:展板最高点A 到地面PF 的距离为159cm .【点睛】本题考查解直角三角形的应用,正确作出辅助线构造出直角三角形,熟练通过解直角三角形求相应未知量是解题的关键.22.如图,AE 为O 的直径,点C 在O 上,AB 与O 相切于点A ,与OC 延长线交于点B ,过点B 作BD OB ⊥,交AC 的延长线于点D .(1)求证:AB BD =;(2)点F 为O 上一点,连接EF ,BF ,BF 与AE 交于点G .若45E ∠=︒,5AB =,3tan 7ABG ∠=,求O 的半径及AD 的长.【答案】(1)见解析(2)O 的半径为154;5AD =【解析】【分析】(1)根据AB 与O 相切于点A 得到90OAC BAD ∠+∠=︒,再根据BD OB ⊥得到90BCD D ∠+∠=︒,再根据OA OC =得到OAC OCA ∠=∠即可根据角的关系解答;(2)连接OF ,过点D 作DM AB ⊥,交AB 延长线于点M ,在Rt ABG △等多个直角三角形中运用三角函数的定义求出O 半径154r =,再根据勾股定理求出3BM =,4DM =即可解答.【小问1详解】证明:如图,∵AE 为O 的直径,AB 与O 相切于点A ,∴OA AB ⊥,∴90OAB ∠=︒,∴90OAC BAD ∠+∠=︒,∵BD OB ⊥,∴90OBD ∠=︒,∴90BCD D ∠+∠=︒,∵OA OC =,∴OAC OCA ∠=∠,∵BCD OCA ∠=∠,∴OAC BCD ∠=∠,∴BAD D ∠=∠,∴AB AD =.【小问2详解】连接OF ,过点D 作DM AB ⊥,交AB 延长线于点M,如图,在Rt ABG △中,90GAB ∠=︒,∴3tan 7AG ABG AB ∠==,∴15tan 7AG AB ABG =⋅∠=,∵45E ∠=︒,∴290AOF E ∠=∠=︒,∴AOF OAB ∠=∠,∴OF AB ∥,∴OFG ABG ∠=∠,∴3tan tan 7OFG ABG ∠=∠=,设O 的半径为r ,∴15377r r -=,∴154r =,∴3tan 4OAOBA AB ∠==,∵DM AB ⊥,∴90M ∠=︒,∴90BDM DBM ∠+∠=︒,∵BD OB ⊥,∴90OBD ∠=︒,∴90OBA DBM ∠+∠=︒,∴BDM OBA ∠=∠,即3tan tan 4BDM OBA ∠=∠=,∴设3BM x =,4DM x =,在Rt DBM △中,90M ∠=︒,∵222BM DM BD +=,5BD AB ==,∴()()222345x x +=,解得1x =,∴3BM =,4DM =,∴8AM AB BM =+=,∴AD ==.【点睛】本题考查了圆与三角形的综合问题,解题的关键是熟练掌握圆、三角形的线段、角度关系并运用数学结合思想.六、解答题(本题共10分)23.端午节前夕,某批发部购入一批进价为8元/袋的粽子,销售过程中发现:日销量y (袋)与售价x (元/袋)满足如图所示的一次函数关系.(1)求y 与x 之间的函数关系式;(2)每袋粽子的售价定为多少元时,所获日销售利润最大,最大日销售利润是多少元?【答案】(1)40680y x =-+(2)当粽子的售价定为12.5元/袋时,日销售利润最大,最大日销售利润是810元【解析】【分析】(1)直接应用待定系数法即可求出一次函数解析式;(2)根据题意列出获日销售利润与x 的函数关系式,然后利用二次函数的性质即可求解.【小问1详解】解:设一次函数的解析式为y kx b =+,将()10,280,()14,120代入得:2801012014k b k b =+⎧⎨=+⎩,解得:40680k b =-⎧⎨=⎩,∴求y 与x 之间的函数关系式为40680y x =-+;【小问2详解】解:设日销售利润为w ,由题意得:()()()8840680w x y x x =-=--+24010005440x x =-+-()24012.5810x =--+,∴当12.5x =时,w 有最大值,最大值为810,∴当粽子的售价定为12.5元/袋时,日销售利润最大,最大日销售利润是810元.【点睛】本题考查了二次函数的应用,二次函数的最值,理解掌握题意,正确的找出题目中的等量关系,列出方程或函数关系式是解题的关键.七、解答题(本大题共2道题,每题12分,共24分)24.【问题情境】如图,在ABC 中,AB AC =,ACB α∠=.点D 在边BC 上将线段DB 绕点D 顺时针旋转得到线段DE (旋转角小于180︒),连接BE ,CE ,以CE 为底边在其上方作等腰三角形FEC ,使FCE α∠=,连接AF .【尝试探究】(1)如图1,当60α=︒时,易知AF BE =;如图2,当45α=︒时,则AF 与BE 的数量关系为;(2)如图3,写出AF 与BE 的数量关系(用含α的三角函数表示).并说明理由;【拓展应用】(3)如图4,当30α=︒,且点B ,E ,F 三点共线时.若7BC =15BD BC =,请直接写出AF 的长.【答案】(1)2BE =;(2)2cos BE AF α=,理由见解析;(3)433AF =【解析】【分析】(1)先证明ABC FEC △△∽,可得BC EC AC FC =,再证BCE ACF ∽ 得出BE BC AF AC=,利用等腰三角形三线合一的性质得出2BC CH =,在Rt AHC 中,利用余弦定义可求cos cos CH ACH AC α∠==,即可得出2cos BE AF α=,然后把45α=︒代入计算即可;(2)仿照(1)的思路即可解答;(3)方法一:如图,过点D 作DM BF ⊥于点M ,过点C 作CH BF ⊥,交BF 延长线于点H ,可求30HCF =︒∠,得出2FC FE FH ==,设BM x =,则2BE x =,利用平行线分线段成比例得出15BM BD BH BC ==,则可求5BH x =,3EH x =,2FE FC x ==,FH x =,3HC x =,在Rt BHC △中,利用勾股定理构建方程())(222537x x +=,求出2x =.证明BEC AFC ∽ ,利用相似三角形的性质即可求解;方法二:如图,过点C 作CG BF ∥交ED 延长线于点G ,过点D 作DM CG ⊥于点M ,过点E 作EH CG ⊥于点H ,利用等腰三角形的性质与判断,平行线的性质可证明DG DC =,GM CM =,证明BDE CDG ∽△△,可得出14BE ED BD CG DG DC ===.设2GE x =,则8GC x =,设2GE x =,则8GC x =,利用平行线分线段成比例得出14HM ED MG DG ==,求出HM x =,3HC x =,5GH x =,HE =.然后在Rt EHG △中,利用勾股定理构建方程())(2225x +=,求出2x =,证明BEC AFC ∽ ,利用相似三角形的性质即可求解.【详解】(1)如图,过点A 作AH BC ⊥于点H ,∵AB AC =,ACB α∠=,∴ABC ACB α∠=∠=,∴1802BAC α∠=︒-.∵FEC 是以CE 为底边的等腰三角形,FCE α∠=,∴FEC FCE α∠=∠=,ACB FCE α∠=∠=.∴1802EFC α∠=︒-.∴BAC EFC ∠=∠.∴ABC FEC △△∽.∴BC AC EC FC =.∴BC ECAC FC =.∵ACB FCE α∠=∠=,∴BCE ACF ∠=∠.∴BCE ACF ∽ .∴BE BC AF AC =.∵AB AC =,H 为BC 的中点,∴2BC CH =.在Rt AHC 中,90AHC ∠=︒,∴cos cos CHACH AC α∠==.∴22cos BE CHAF AC α==.∴2cos BE AF α=.又45α=︒,∴BE =;(2)解:2cos BE AF α=;如图,过点A 作AH BC ⊥于点H ,∵AB AC =,ACB α∠=,∴ABC ACB α∠=∠=,∴1802BAC α∠=︒-.∵FEC 是以CE 为底边的等腰三角形,FCE α∠=,∴FEC FCE α∠=∠=,ACB FCE α∠=∠=.∴1802EFC α∠=︒-.∴BAC EFC ∠=∠.∴ABC FEC ∆∆∽.∴BC AC EC FC =.∴BC EC AC FC =.∵ACB FCE α∠=∠=,∴BCE ACF ∠=∠.∴BCE ACF ∽ .∴BE BC AF AC =.∵AB AC =,H 为BC 的中点,∴2BC CH =.在Rt AHC 中,90AHC ∠=︒,∴cos cos CHACH AC α∠==.∴22cos BE CHAF AC α==.∴2cos BE AF α=.(3)433AF =.方法一:如图,过点D 作DM BF ⊥于点M ,过点C 作CH BF ⊥,交BF 延长线于点H ,∴90BMD H ∠=∠=︒.∴DM CH ∥.∵线段DB 绕点D 顺时针旋转得到线段DE ,∴DB DE =.∴BM EM =.∵FEC 是以CE 为底边的等腰三角形,30FCE ∠=︒,∴FE FC =,30∠=∠=︒FEC FCE .∴60HFC FEC FCE ∠=∠+∠=︒.∴18030HCF H HFC ∠=︒-∠-∠=︒.∴2FC FH =.∵FE FC =,∴2FE FH =.设BM x =,则2BE x =,∴15BM BD BH BC ==,∴55BH BM x ==.∴3EH BH BE x =-=.∵2FE FH =,∴2FE FC x ==,FH x =.∴HC =.在Rt BHC △中,90BHC ∠=︒,BC =∴222+=BH CH BC .∴())(2225x +=,解得2x =.∴24BE x ==.∵BEC AFC ∽ ,∴33AF BE ==.方法二:如图,过点C 作CG BF ∥交ED 延长线于点G ,过点D 作DM CG ⊥于点M ,过点E 作EH CG ⊥于点H ,∴90DMG EHG ∠=∠=︒.∴DM EH ∥.∵线段DB 绕点D 顺时针旋转得到线段DE ,∴DB DE =.∴DBE DEB ∠=∠.∴DBE DCG ∠=∠,DEB G ∠=∠.∴DG DC =.∵DM CG ⊥,∴GM CM =.∵FEC 是以CE 为底边的等腰三角形,30FCE ∠=︒,∴30∠=∠=︒FEC FCE .∵CG BF ∥,∴30ECG FEC ∠=∠=︒,BDE CDG ∆∆∽.∴14BE ED BD CG DG DC ===.设2GE x =,则8GC x =,∵DM EH ∥,∴14HM ED MG DG ==.∴HM x =.∴3HC x =.∴5GH GM HM x =+=.在Rt EHC △中,30ECH ∠=︒,∴HE =.在Rt EHG △中,90EHG ∠=︒,GE BC ==,∴222GH EH GE +=.∴())(2225x +=,解得2x =.∴24BE x ==.∵BEC AFC ∽ ,∴33AF BE ==.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判断与性质,勾股定理,锐角三角函数等知识,解决问题的关键是作辅助线,构造相似三角形.25.如图,抛物线2y bx c =++交x 轴于点()1,0A -和B ,交y 轴于点(C ,顶点为D .(1)求抛物线的表达式;(2)若点E 在第一象限内对称右侧的抛物线上,四边形ODEB 的面积为,求点E 的坐标;(3)在(2)的条件下,若点F 是对称轴上一点,点H 是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G ,使以E ,F ,G ,H 为顶点的四边形是菱形,且60EFG ∠=︒,如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)2y =++(2)(E(3)存在,点G 的坐标为73⎛ ⎝或53⎛ ⎝【解析】【分析】(1)根据待定系数法求解即可;(2)方法一:连接DB ,过点E 作EP y ∥轴交BD 于点P .先求得直线BD 的表达式为:y =-+.再设(2,E x ++,(,P x -+,则2EP =+-,利用面积构造一元二次方程求解即可得解;方法二:令抛物线的对称轴与x 轴交于点M ,过点E 作EN x ⊥轴于点N ,设(2,E x ++,利用面积构造一元二次方程求解即可得解;(3)如下图,连接CG ,DG ,由菱形及等边三角形的性质证明CEG DEF ∆∆≌得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁省锦州市 2021 年七年级下学期数学期中考试试卷(I)卷
姓名:________
班级:________
成绩:________
一、 单选题 (共 14 题;共 28 分)
1. (2 分) (2018 七上·酒泉期末) 解方程 A. B. C. D.
,去分母正确的是( )
2. (2 分) (2015 四下·宜兴期末) 把方程
-1= 的分母化为整数的方程是( )
A.
B.
C.
D. 3. (2 分) (2020 七上·西安期末) 下列等式变形正确的是( )
A . 若-3x=5,则 x=
B.若
,则 2x+3(x-1)=1
C . 若 5x-6=2x+8,则 5x+2x=8+6
D . 若 3(x+1)-2x=1 则 3x+3-2x=1
4. (2 分) (2017 七下·石景山期末) 对有理数
定义新运算:x y=ax+by+1 其中 , 是
常数.若
,
,则
的值分别为( )
A.
B.
C.
D.
5. (2 分) 如图,为做一个试管架,在 acm 长的木条上钻了 4 个圆孔,每个孔的直径为 2cm,则 x 等于( )
A . cm
第1页共8页
B . cm C . cm D . cm
6. (2 分) 已知方程组 A . m>﹣1
的解满足 x+y<0,则 m 的取值范围是( )
B . m>1
C . m<﹣1
D . m<1
7. (2 分) 下列方程组中是二元一次方程组的是( )
A. B.
C. D. 8. (2 分) 如图,宽为 50cm 的矩形图案由 10 个全等的小长方形拼成,其中一个小长方形的面积为( )
A . 400cm2 B . 500cm2 C . 600cm2 D . 4000cm2
9. (2 分) (2016 七下·澧县期中) 已知 A . ﹣1 B.3 C.4 D.6
10. (2 分) (2017·深圳模拟) 不等式组
是方程组
的解,则 a﹣b 的值是( )
的解集在数轴上表示为( ).
第2页共8页
A.
B.
C.
D. 11. (2 分) 已知 a,b,c 都是实数,并且 a>b>c,那么下列式子中正确的是( ) A . ab>bc B . a+b>b+c C . a-b>b-c
D.
12. (2 分) 使不等式
≤
立的最小整数是( )
A.1
B . -1
C.0
D.2
13. (2 分) 不等式 1﹣x>0 的解集在数轴上表示正确的是( )
A.
B. C. D. 14. (2 分) 甲乙两人同时解方程组 a,c 的值是( ) A. B.
时,甲正确解得
第3页共8页
, 乙因抄错 c 而解得
,则
C.
D.
二、 填空题 (共 4 题;共 4 分)
15. (1 分) (2019 七下·苏州期末) 已知
,若用含 的代数式表示 ,则 =________.
16. (1 分) (2019 八上·永登期末) 已知方程组
的解是
,则 a+b 的值为________.
17. (1 分) (2019 八上·南浔期中) 如图所示的不等式组的解集是________.
18. (1 分) (2016 七下·辉县期中) 不等式 3x﹣2≥4(x﹣1)的所有非负整数解的和为________.
三、 解答题 (共 6 题;共 50 分)
19. (15 分) (2019 七上·滨湖期中) 解方程 (1) 5x-4=3x+2. (2) 关于 x 的一元一次方程(k-1)x=1 的解为整数,求整数 k 的值.
20. (5 分) (2016·连云港) 解不等式
,并将解集在数轴上表示出来.
21. (10 分) (2019 七下·翁牛特旗期中) 已知关于 x,y 的二元一次方程组 求 m 的取值范围。
,若 x+y>3,
22. (5 分) (2013·海南) 为迎接 6 月 5 日的“世界环境日”,某校团委开展“光盘行动”,倡议学生遏制
浪费粮食行为.该校七年级(1)、(2)、(3)三个班共 128 人参加了活动.其中七(3)班 48 人参加,七(1)班参
加的人数比七(2)班多 10 人,请问七(1)班和七(2)班各有多少人参加“光盘行动”?
23. (5 分) 根据下列条件列出方程
(1)x 比它的 大 15 (2)2xy 与 5 的差的 3 倍等于 24
(3)y 的 与 5 的差等于 y 与 1 的差. 24. (10 分) 某服装店出售货 A,B 两种规格服装,A 种服装的销量比 B 种低 20%,但 A 种服装质地好,价格 比 B 种高.已知 B 种服装的单价为每件 80 元. (1) 当 A 种服装的单价是多少时,在各方面均等的情况下分别销售 A,B 两种规格的服装收益相同? (2) 若九月该服装店经营 A,B 两种规格服装的过程中,把 A 种服装定价为每件 120 元,而 B 种服装定价不
第4页共8页
变,这样在各方面均等的情况下销售 A 种服装比 B 种服装要多收入 1600 元,问 A,B 两种规格服装九月共销售多少 件?
第5页共8页
一、 单选题 (共 14 题;共 28 分)
1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、 12-1、 13-1、 14-1、
二、 填空题 (共 4 题;共 4 分)
15-1、 16-1、 17-1、 18-1、
三、 解答题 (共 6 题;共 50 分)
参考答案
第6页共8页
19-1、 19-2、
20-1、 21-1、 22-1、
第7页共8页
23-1、 24-1、 24-2、
第8页共8页
。