教案§221用样本的频率分布预计总体分布 教案

合集下载

221用样本的频率分布估计总体分布导学案.doc

221用样本的频率分布估计总体分布导学案.doc

%1列频率分布表;%1_______________________________ 注:在频率分布直方图中,纵轴表示频率/组距,每一个小长方形的面积等于频率,伞频率/组距 0.03 一0.020.01各个小长方形的面积和等于1.2、 频率分布折线图、总体密度曲线频率分布折线图的定义:连接频率分布直方图屮各小长方形上端的 ______________ ,就得到 频率分布折线图。

总体密度曲线的定义:在样本频率分布直方图中,随着样本容量的增加,所分组数的 增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计屮称这条光 滑曲线为 。

它能够精确地反映了总体在各个范围内取值的百分比, 它能给我们提供更加精细的信息。

(见课木人Q3、 茎叶图茎叶图的概念:当数据是两位有效数字时,用中间的数字表示 ______________ ,即第一个有 效数字,两边的数字表示 _________ ,即第二个有效数字,它的屮间部分像植物的茎, 两边部分像植物茎上长出来的叶子,这样的图叫做茎叶图。

(见课本马。

例子)茎叶图的特征:用茎叶图表示数据的优点:一是既可以看出样木的分布情况乂能看到 原始数据;二是茎叶图屮的数据可以随时记录,随时添加,方便记录与表示。

二、深入学习 例1、木学期,大兴区有300名学生报名参加了北京市高一年级数学竞赛的初赛, 现随机抽取50名学生的成绩进行统计分析.完成频率分布表,并根据表屮数据画出频率分布盲方图;50 60 70 80 90 100 成绩三、迁移应用直方图(如图),图中从左到右各小长方形面积二小组频数为12. 本容量是多少?次)为达标,试估是多少?0.004得数据整理后,画岀频率分布直方图如图所示, 率分别是0.1, 0.3, 0.4,第一小组的频数为5.(1)求第四小组的频率;参加这次测试的学生人数是多少?已知图屮从左到右前三个小组的频0.016 0.012 0.0080.004频率•组距例2、为了了解高一学生的体能情况,蕃密腮部分学生进行一分钟跳绳次数次测试, 将所得数据整理后,画出频率分布0.036 Z 比为 2: 4: 17: 15: 9: 3,第 0.032(1) 第二小组的频率是多少?样28 (2)若次数在110以上(含1QQ24计该学校全体高一学生的达标解2° 0.0160.0120.00890例3、为了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所 ^49.5 74.5 99.5 124.5 149.5例4、从两个班屮各随机的抽取10名学生,他们的数学成绩如下: 甲班:76, 74, 82, 96, 66, 76, 78, 72, 52, 68乙班:86, 84, 62, 76, 78, 92, 82, 74, 88, 85画出茎叶图并分析两个班学生的数学学习情况。

用样本估计总体教案

用样本估计总体教案

用样本估计总体教案用样本估计总体教案一、教学目标1. 理解样本和总体的区别及样本统计量的意义。

2. 掌握点估计和区间估计的概念及计算方法。

3. 能够运用样本估计方法来进行总体参数的估计。

二、教学内容1. 样本与总体2. 点估计3. 区间估计4. 样本估计方法的应用三、教学过程1. 样本与总体总体是研究对象的全体,而样本是从总体中随机抽取的一部分个体。

研究者往往无法直接获得总体数据,因此需要通过对样本数据的研究来了解总体的性质。

样本统计量是通过对样本数据的测量和统计得到的,它可以用来估计总体参数。

常见的样本统计量包括样本均值、样本标准差、样本比例等。

2. 点估计点估计是根据样本数据来估计总体参数的一种方法。

它的基本思想是利用样本统计量来估计总体参数。

点估计的方法有很多种,其中最常用的是样本均值作为总体均值的估计值。

我们想要估计某个地区居民的平均年龄,可以随机抽取一部分居民作为样本,计算出样本的平均年龄,然后将样本平均年龄作为总体平均年龄的估计值。

点估计的优点是计算简单直观,但它忽略了估计误差的大小,因此在应用中需要注意。

如果样本容量较大,点估计的精度会更高。

3. 区间估计区间估计是根据样本数据来估计总体参数的一种方法,它相比于点估计更为准确和可靠。

区间估计的基本思想是利用样本统计量来对总体参数建立一个置信区间,从而给出总体参数的估计范围。

我们想要估计某个地区居民的平均年龄,可以随机抽取一部分居民作为样本,计算出样本平均年龄和样本标准差,根据置信水平和样本量计算出置信区间,从而得出总体平均年龄的估计范围。

区间估计的优点是考虑了估计误差的大小,能够给出总体参数的估计范围。

但它的计算比较复杂,需要考虑置信水平、样本量、样本标准差等因素。

4. 样本估计方法的应用样本估计方法广泛应用于社会科学、自然科学、医学等多个领域。

它可以用来估计总体平均值、标准差、比例、方差等参数。

在实际研究中,我们需要对样本的选取、样本量的确定、置信水平的选择等进行合理的设计,并结合对总体特征的了解来进行合理的样本估计。

用样本估计总体》课时教学设计

用样本估计总体》课时教学设计

用样本估计总体》课时教学设计本课主要介绍了用样本的频率分布来估计总体分布的方法。

首先通过讨论抽样方法和收集数据的目的来引出估计总体的两种手段:用样本的频率分布估计总体的分布和用样本的数字特征估计总体的数字特征。

然后介绍了频率分布直方图的作法,通过一个例子来说明如何采用抽样调查的方式得到本市的居民月均用水量,并用频率分布直方图来分析数据。

最后讨论了频率分布直方图的纵坐标为何取频率/组距的问题,得出结论:用矩形面积表示频率,总面积为1.本课的重点是会列频率分布表和画频率分布直方图,难点是能通过样本的频率分布估计总体的分布。

2.回顾:上节课我们研究了什么?样本数据分布的可视化方法有哪些?二、新知讲解:1.样本的数字特征1)众数:出现次数最多的数,可能有多个.2)中位数:将数据从小到大排列,位于中间的数.3)平均数:所有数据的总和除以数据的个数.2.样本数字特征的意义1)众数:反映数据的集中趋势,但容易受极端值影响.2)中位数:反映数据的集中趋势,不受极端值影响.3)平均数:反映数据的平均水平,但容易受极端值影响.3.样本数字特征对总体数字特征的估计1)众数:样本众数可以用来估计总体众数.2)中位数:样本中位数可以用来估计总体中位数.3)平均数:样本平均数可以用来估计总体平均数.4.样本数字特征的计算1)众数:出现次数最多的数.2)中位数:将数据从小到大排列,位于中间的数.3)平均数:所有数据的总和除以数据的个数.5.样本数字特征的比较1)众数、中位数、平均数的大小关系与数据的分布有关.2)当数据分布呈正态分布时,三者相等.3)当数据分布不对称时,三者大小关系为:众数<中位数<平均数.三、巩固练:1.练:计算以下数据的众数、中位数、平均数:12,15,18,20,20,25,28.2.作业:P72 3、4题,只计算数字特征.讨论:如何利用样本的频率分布直方图分析规律?下面给出一个图,试着分析。

高中数学必修二 (教案)用样本估计总体

高中数学必修二  (教案)用样本估计总体

用样本估计总体【第一课时】【教学目标】1.会画一组数据的频率分布表、频率分布直方图.2.会用频率分布表、频率分布直方图、条形图、扇形图、折线图等对总体进行估计.3.掌握求n个数据的第p百分位数的方法.【教学重难点】1.频率分布表、频率分布直方图.2.用样本估计总体.3.总体百分位数的估计.【教学过程】一、问题导入预习教材内容,思考以下问题:1.绘制频率分布表和频率分布直方图有哪些步骤?2.频率分布直方图有哪些特征?3.如何求n个数据的第p百分位数?二、基础知识1.频率分布表、频率分布直方图的制作步骤及意义2.百分位数(1)定义:一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.(2)计算步骤:计算一组n个数据的第p百分位数的步骤:第1步,按从小到大排列原始数据.第2步,计算i=n×p%.第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.三、合作探究1.频率分布表、频率分布直方图、频率分布折线图的绘制角度一:频率分布表、频率分布直方图的绘制为考查某校高二男生的体重,随机抽取44名高二男生,实测体重数据(单位:kg)如下:57,61,57,57,58,57,61,54,68,51,49,64,50,48,65,52,56,46,54,49,51,47,55,55,54,42,51,56,55,51,54,51,60,62,43,55,56,61,52,69,64,46,54,48将数据进行适当的分组,并画出相应的频率分布直方图和频率分布折线图.【解】以4频率累计频率分布直方图和频率分布折线图如图所示.(1)在列频率分布表时,极差、组距、组数有如下关系: ①若极差组距为整数,则极差组距=组数;②若极差组距不为整数,则极差组距的整数部分+1=组数.(2)组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,纵使数据的分布规律能较清楚地呈现出来,组数太多或太少,都会影响我们了解数据的分布情况,若样本容量不超过100,按照数据的多少常分为5~12组,一般样本量越大,所分组数越多.角度二:频率分布直方图的应用为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率是多少? (3)样本中不达标的学生人数是多少? (4)第三组的频数是多少?【解】(1)频率分布直方图以面积的形式反映数据落在各小组内的频率大小,因此第二小组的频率为42+4+17+15+9+3=0.08.又因为第二小组的频率=第二小组的频数样本量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由直方图可估计该校高一年级学生的达标率为17+15+9+32+4+17+15+9+3×100%=88%.(3)由(1)(2)知达标率为88%,样本量为150,不达标的学生频率为1-0.88=0.12. 所以样本中不达标的学生人数为150×0.12=18(人).(4)第三小组的频率为172+4+17+15+9+3=0.34.又因为样本量为150,所以第三组的频数为150×0.34=51.频率分布直方图的应用中的计算问题 (1)小长方形的面积=组距×频率组距=频率;(2)各小长方形的面积之和等于1;(3)频数样本量=频率,此关系式的变形为频数频率=样本量,样本量×频率=频数.2.条形统计图为了丰富校园文化生活,某校计划在午间校园广播台播放“百家讲坛”的部分内容.为了了解学生的喜好,抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如图所示.请根据统计图提供的信息回答以下问题: (1)求抽取的学生数;(2)若该校有3 000名学生,估计喜欢收听易中天《品三国》的学生人数;(3)估计该校喜欢收听刘心武评《红楼梦》的女学生人数约占全校学生人数的百分比. 【解】(1)从统计图上可以看出,喜欢收听于丹析《庄子》的男生有20人,女生有10人; 喜欢收听《故宫博物院》的男生有30人,女生有15人; 喜欢收听于丹析《论语》的男生有30人,女生有38人; 喜欢收听易中天《品三国》的男生有64人,女生有42人;喜欢收听刘心武评《红楼梦》的男生有6人,女生有45人.所以抽取的学生数为20+10+30+15+30+38+64+42+6+45=300(人).(2)喜欢收听易中天《品三国》的男生有64人,女生有42人,共有106人,占所抽取总人数的比例为106 300,由于该校有3 000名学生,因此可以估计喜欢收听易中天《品三国》的学生有106300×3 000=1 060(人).(3)该校喜欢收听刘心武评《红楼梦》的女学生人数约占全校学生人数的比例为45300×100%=15%.(1)绘制条形统计图时,第一步确定坐标系中横轴和纵轴上坐标的意义,第二步确定横轴上各部分的间距及位置,第三步根据统计结果绘制条形图.实际问题中,我们需根据需要进行分组,横轴上的分组越细,对数据的刻画(描述)就越精确.(2)在条形统计图中,各个矩形图的宽度没有严格要求,但高度必须以数据为准,它直观反映了各部分在总体中所占比重的大小.3.折线统计图小明同学因发热而住院,下图是根据护士为他测量的体温所绘制的体温折线图.根据图中的信息,回答以下问题:(1)护士每隔几小时给小明测量一次体温?(2)近三天来,小明的最高体温、最低体温分别是多少?(3)从体温看,小明的病情是在恶化还是在好转?(4)如果连续36小时体温不超过37.2摄氏度的话,可认为基本康复,那么小明最快什么出院?【解】(1)根据横轴表示的意义,可知护士每隔6小时给小明测量一次体温.(2)从折线统计图中的最高点和最低点对应的纵轴意义,可知最高体温是39.5摄氏度,最低体温是36.8摄氏度.(3)从图中可知小明的体温已经下降,并趋于稳定,因此病情在好转.(4)9月8日18时小明的体温是37摄氏度.其后的体温未超过37.2摄氏度,自9月8日18时起计算,连续36小时后对应的时间为9月10日凌晨6时.因此小明最快可以在9月10凌晨6时出院.(1)绘制折线统计图时,第一步,确定直角坐标系中横、纵坐标表示的意义;第二步,确定一个单位长度表示一定的数量,根据数量的多少描出各点;第三步,用直线段顺次连接即可.(2)在折线统计图中,从折线的上升、下降可分析统计数量的增减变化情况,从陡峭程度上,可分析数据间相对增长、下降的幅度.4.扇形统计图下图是A ,B 两所学校艺术节期间收到的各类艺术作品的情况的统计图: (1)从图中能否看出哪所学校收到的水粉画作品数量多?为什么?(2)已知A 学校收到的剪纸作品比B 学校的多20件,收到的书法作品比B 学校的少100件,请问这两所学校收到艺术作品的总数分别是多少件?【解】(1)不能.因为两所学校收到艺术作品的总数不知道.(2)设A 学校收到艺术作品的总数为x 件,B 学校收到艺术作品的总数为y 件,则⎩⎨⎧10%x -5%y =20,50%y -40%x =100,解得⎩⎨⎧x =500,y =600,即A 学校收到艺术作品的总数为500件,B 学校收到艺术作品的总数为600件.(1)绘制扇形统计图时,第一步计算各部分所占百分比以及对应圆心角的度数;第二步在圆中按照上述圆心角画出各个扇形并恰当标注.(2)扇形统计图表示总体的各部分之间的百分比关系,但不同总量下的扇形统计图,其不同的百分比不可以作为比较的依据.5.百分位数的计算试求甲、乙两组数的25%分位数与75%分位数.【解】因为数据个数为20,而且20×25%=5,20×75%=15.因此,甲组数的25%分位数为x5+x62=2+32=2.5;甲组数的75%分位数为x15+x162=9+102=9.5.乙组数的25%分位数为x5+x62=1+12=1,乙组的75%分位数为x15+x162=10+142=12.求百分位数时,一定要将数据按照从小到大的顺序排列.【课堂检测】1.下列四个图中,用来表示不同品种的奶牛的平均产奶量最为合适的是()解析:选D.用统计图表示不同品种的奶牛的平均产奶量,即从图中可以比较各种数量的多少,因此“最为合适”的统计图是条形统计图.注意B选项中的图不能称为统计图.2.观察新生儿的体重,其频率分布直方图如图所示,则新生儿体重在[2 700,3 000)g的频率为()A.0.1B.0.2C.0.3 D.0.4解析:选C.由题图可得,新生儿体重在[2 700,3 000)g的频率为0.001×300=0.3,故选C.3.观察下图所示的统计图,下列结论正确的是()A.甲校女生比乙校女生多B.乙校男生比甲校男生少C.乙校女生比甲校男生少D.甲、乙两校女生人数无法比较解析:选D.图中数据只是百分比,甲、乙两个学校的学生总数不知道,因此男生与女生的具体人数也无法得知.【第二课时】 【教学目标】1.理解样本数据标众数、中位数、平均数的意义和作用,学会计算数据的众数、中位数、平均数.2.理解样本数据方差、标准差的意义和作用,学会计算数据的方差、标准差.【教学重难点】会用样本的基本数字特征来估计总体的基本数字特征.【教学过程】一、基础知识1.众数、中位数、平均数 众数、中位数、平均数定义(1)众数:一组数据中出现次数最多的数.(2)中位数:把一组数据按从小到大(或从大到小)的顺序排列,处在中间位置的数(或中间两个数的平均数)叫做这组数据的中位数.(3)平均数:如果n 个数x 1,x 2,…,x n ,那么x =1n (x 1+x 2+…+x n )叫做这n 个数的平均数.思考:平均数、中位数、众数中,哪个量与样本的每一个数据有关,它有何缺点? 答案:平均数与样本的每一个数据有关,它可以反映出更多的关于样本数据总体的信息,但是平均数受数据中极端值的影响较大.2.方差、标准差标准差、方差的概念及计算公式(1)标准差是样本数据到平均数的一种平均距离,一般用s 表示.s =1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2].(2)标准差的平方s 2叫做方差.s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2](x n 是样本数据,n 是样本容量,x 是样本平均数).(3)标准差(或方差)越小,数据越稳定在平均数附近.s =0时,每一组样本数据均为x .二、合作探究1.众数、中位数、平均数的计算(1)某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各1人,则该小组数学成绩的平均数、众数、中位数分别为()A.85,85,85B.87,85,86C.87,85,85D.87,85,90(2)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为() A.2,5B.5,5C.5,8D.8,8答案(1)C(2)C解析(1)平均数为100+95+90×2+85×4+80+7510=87,众数为85,中位数为85.(2)结合茎叶图上的原始数据,根据中位数和平均数的概念列出方程进行求解.由于甲组数据的中位数为15=10+x,所以x=5.又乙组数据的平均数为9+15+10+y+18+245=16.8,所以y=8,所以x,y的值分别为5,8.【教师小结】平均数、众数、中位数的计算方法:平均数一般是根据公式来计算的;计算众数、中位数时,可先将这组数据按从小到大或从大到小的顺序排列,再根据各自的定义计算.2.标准差、方差的计算及应用甲、乙两名战士在相同条件下各打靶10次,每次命中的环数分别是:甲:8,6,7,8,6,5,9,10,4,7;乙:6,7,7,8,6,7,8,7,9,5.(1)分别计算以上两组数据的平均数;(2)分别求出两组数据的方差;(3)根据计算结果,估计两名战士的射击情况.若要从这两人中选一人参加射击比赛,选谁去合适?解(1)x甲=110×(8+6+7+8+6+5+9+10+4+7)=7(环),x 乙=110×(6+7+7+8+6+7+8+7+9+5)=7(环).(2)由方差公式s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],得s 2甲=3,s 2乙=1.2.(3)x 甲=x 乙,说明甲、乙两战士的平均水平相当.又s 2甲>s 2乙说明甲战士射击情况波动比乙大.因此,乙战士比甲战士射击情况稳定,从成绩的稳定性考虑,应选择乙参加比赛.【教师小结】(1)方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.(2)样本标准差反映了各样本数据围绕样本平均数波动的大小,标准差越小,表明各样本数据在样本平均数周围越集中;反之,标准差越大,表明各样本数据在样本平均数的两边越分散.(3)当样本的平均数相等或相差无几时,就要用样本数据的离散程度来估计总体的数据分布情况,而样本数据的离散程度是由标准差来衡量的.三、课堂总结1.标准差的平方s 2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.2.现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.3.在抽样过程中,抽取的样本是具有随机性的,因此样本的数字特征也有随机性,用样本的数字特征估计总体的数字特征,是一种统计思想,没有唯一答案.【课堂检测】1.某市2017年各月的平均气温(℃)数据的茎叶图如图:则这组数据的中位数是( )A .19B .20C .21.5D .23答案 B解析 由茎叶图知,平均气温在20℃以下的有5个月,在20℃以上的也有5个月,恰好是20℃的有2个月,由中位数的定义知,这组数据的中位数为20.故选B .2.下列关于平均数、中位数、众数的说法中正确的一个是( )A .中位数可以准确地反映出总体的情况B .平均数可以准确地反映出总体的情况C .众数可以准确地反映出总体的情况D .平均数、中位数、众数都有局限性,都不能准确地反映出总体的情况答案 D3.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得的数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差答案 D4.某校开展“爱我母校,爱我家乡”摄影比赛,七位评委为甲,乙两名选手的作品打出的分数的茎叶图如图所示(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲,乙两名选手得分的平均数分别为a 1,a 2,则一定有( )A .a 1>a 2B .a 2>a 1C .a 1=a 2D .a 1,a 2的大小与m 的值有关答案 B解析 由茎叶图知,a 1=80+1+5+5+4+55=84, a 2=80+4+4+6+4+75=85,故选B . 5.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为________.答案 16解析 设样本数据x 1,x 2,…,x 10的标准差为s ,则s =8,可知数据2x1-1,2x2-1,…,2x10-1的标准差为2s=16.。

用样本的频率分布估计总体分布教案

用样本的频率分布估计总体分布教案

用样本的频率分布估计总体分布教案教案:用样本的频率分布估计总体分布一、教学目标:1.了解频率分布的概念和作用;2.学会使用频率分布来估计总体分布;3.掌握构建频率分布表的方法;4.能够利用频率分布表对总体进行估计。

二、教学内容:1.频率分布的概念和作用2.构建频率分布表的方法3.利用频率分布表对总体进行估计三、教学过程:一、频率分布的概念和作用(10分钟)1.频率分布是指对一组数据中各个数值出现的次数进行统计,从而得到数值的分布情况。

2.频率分布的作用是可以帮助我们了解数据的分布规律,从而对总体进行估计。

二、构建频率分布表的方法(30分钟)1.确定数据的分组区间:首先需要确定分组的宽度,即把数据分为若干个区间。

常用的方法有等宽分组和等频分组。

2.计算各个分组的频数:统计每个区间内数据的个数。

3.计算各个分组的频率:将各个分组的频数除以总样本数量,得到各个分组的频率。

4.制作频率分布表:将各个分组的上界、下界、频数和频率列成表格。

三、利用频率分布表对总体进行估计(40分钟)1.利用频率分布表进行估计的方法有两种:直接估计和间接估计。

2.直接估计是通过频率分布表直接读取各个分组的频率来估计总体分布。

3.间接估计是通过频率分布表的图形化表示来估计总体分布,常用的图形有直方图和折线图。

4.对于直方图,可以通过观察分布的形状和峰值来估计总体的分布情况。

5.对于折线图,可以通过观察分布曲线的形状来估计总体的分布情况。

四、练习和小结(20分钟)1.让学生根据给定的数据,完成频率分布表的构建。

2.让学生根据给定的频率分布表,进行总体分布的估计。

3.对学生进行小结和概念回顾,检查他们对于频率分布和总体估计的理解程度。

四、教学反思:通过本节课的教学,学生能够了解频率分布的概念和作用,掌握构建频率分布表的方法,以及利用频率分布表对总体进行估计的方法。

在教学过程中,可以利用实际案例和练习来加深学生对于频率分布和总体估计的理解。

用样本的频率分布估计总体教案

用样本的频率分布估计总体教案

用样本的频率分布估计总体教案一、教学目标1. 理解频率分布的概念及作用。

2. 学会如何用样本数据来估计总体数据的频率分布。

3. 掌握用样本频率分布估计总体频率分布的方法和技巧。

二、教学内容1. 频率分布的定义及表示方法。

2. 样本数据与总体数据的关系。

3. 用样本频率分布估计总体频率分布的方法。

4. 实例分析:用样本数据估计总体数据的频率分布。

三、教学重点与难点1. 教学重点:频率分布的概念、用样本频率分布估计总体频率分布的方法。

2. 教学难点:如何正确处理样本数据,估计总体数据的频率分布。

四、教学过程1. 导入:通过实例引入频率分布的概念,让学生了解频率分布的作用。

2. 讲解:讲解频率分布的定义及表示方法,阐述样本数据与总体数据的关系。

3. 演示:用具体例子演示如何用样本频率分布估计总体频率分布。

4. 练习:让学生尝试用样本数据估计总体数据的频率分布。

5. 总结:总结用样本频率分布估计总体频率分布的方法和技巧。

五、课后作业1. 练习题:让学生独立完成练习题,巩固所学知识。

2. 研究性作业:让学生选取一个感兴趣的主题,用样本数据估计总体数据的频率分布,培养学生的实际应用能力。

六、教学策略与方法1. 实例分析:通过分析现实生活中的具体例子,让学生更好地理解频率分布的概念和作用。

2. 小组讨论:组织学生进行小组讨论,分享彼此的想法和经验,提高学生的合作能力和口头表达能力。

3. 练习与反馈:布置适量的练习题,及时给予学生反馈,帮助学生巩固所学知识。

七、教学评价1. 课堂参与度:观察学生在课堂上的参与程度,了解学生对频率分布概念的理解程度。

2. 练习题的正确率:收集学生作业,分析学生对用样本频率分布估计总体频率分布的掌握情况。

3. 研究性作业的完成质量:评估学生在研究性作业中的表现,了解学生对知识的应用能力。

八、教学资源1. 教学课件:制作精美的教学课件,帮助学生直观地理解频率分布的概念和估计方法。

2. 实例材料:收集与生活相关的实例材料,用于讲解和练习。

必修三2.2.用样本估计总体(教案)

必修三2.2.用样本估计总体(教案)

2.2 用样本估计总体教案 A第1课时教学内容§2.2.1 用样本的频率分布估计总体分布教学目标一、知识及技能1. 通过实例体会分布的意义和作用.2. 在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图.3.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.二、过程及方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识及现实世界的联系.教学重点、难点重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图.难点:能通过样本的频率分布估计总体的分布.教学设想一、创设情境在NBA的2004赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布.二、探究新知探究1:我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,第 1 页为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚的看到整个样本数据的频率分布情况.(一)频率分布的概念频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为:1.计算一组数据中最大值及最小值的差,即求极差;2.决定组距及组数;3.将数据分组;4.列频率分布表;5.画频率分布直方图.以教材P65制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图.(让学生自己动手作图)频率分布直方图的特征:1.从频率分布直方图可以清楚的看出数据分布的总体趋势.2.从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.探究2:同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同.不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0.1和1为组距重新作图,然后谈谈你对图的印象?(把学生分成两大组进行,分别作出两种组距的图,然后组织同学们对所作图的不同看法进行交流……)接下来请同学们思考下面这个问题:思考:如果当地政府希望使85%以上的居民每月的用水量不超出标准,根据频率分布表2-2和频率分布直方图2.2-1,(见教材P67)你能对制定月用水量标准提出建议吗?(让学生仔细观察表和图)(二)频率分布折线图、总体密度曲线1.频率分布折线图的定义:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线的定义:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.思考:1.对于任何一个总体,它的密度曲线是不是一定存在?为什么?2.对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么?实际上,尽管有些总体密度曲线是客观存在的,但一般很难像函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确.(三)茎叶图1.茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把第 3 页这样的图叫做茎叶图.(见教材P70例子)2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录及表示.(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.三、例题精析例1 下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm ):(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134cm的人数占总人数的百分比.分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:(2)其频率分布直方图如下:(3)由样本频率分布表可知身高小于134cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134cm 的人数占总人数的19%.cm )例2 为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高及频数成正比,各组频数之和等于样本容量,频率之和等于1.解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小, 因此第二小组的频率为:40.0824171593=+++++, 又因为频率=.第二小组频数样本容量所以,12150.0.08===第二小组频数样本容量第二小组频率 (2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.四、课堂小结1. 总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2. 总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.五、评价设计1.P81习题2.2 A组1、2.第2课时教学内容§2.2.2 用样本的数字特征估计总体的数字特征教学目标一、知识及技能1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差.2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.3. 会用样本的基本数字特征估计总体的基本数字特征.4. 形成对数据处理过程进行初步评价的意识.二、过程及方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辩证地理解数学知识及现实世界的联系.教学重点、难点教学重点:用样本平均数和标准差估计总体的平均数及标准差.教学难点:能应用相关知识解决简单的实际问题.教学设想一、创设情境在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究——用样本的数字特征估计总体的数字特征(板出课题).二、探究新知(一)众数、中位数、平均数探究(1)怎样将各个样本数据汇总为一个数值,并使它成为样本数据的“中心点”?(2)能否用一个数值来描写样本数据的离散程度?(让学生回忆初中所学的一些统计知识,思考后展开讨论)初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供第 5 页关于样本数据的特征信息.例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t (最高的矩形的中点)(图见教材第72页)它告诉我们,该市的月均用水量为2. 25t 的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.提问:请大家翻回到教材第66页看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,在频率分布直方图中,矩形的面积大小正好表示频率的大小,即中位数左边和右边的直方图的面积应该相等.由此可以估计出中位数的值为2.02.(图略见教材73页图2.2-6)思考:2.02这个中位数的估计值,及样本的中位数值2.0不一样,你能解释其中的原因吗?(原因同上:样本数据的频率分布直方图把原始的一些数据给遗失了)图2.2-6显示,大部分居民的月均用水量在中部(2.02t 左右),但是也有少数居民的月均用水量特别高,显然,对这部分居民的用水量作出限制是非常合理的.思考:中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点,你能举例说明吗?(让学生讨论,并举例)(二)标准差、方差1.标准差平均数为我们提供了样本数据的重要信息,可是,有时平均数也会使我们作出对总体的片面判断.某地区的统计显示,该地区的中学生的平均身高为176cm ,给我们的印象是该地区的中学生生长发育好,身高较高.但是,假如这个平均数是从五十万名中学生抽出的五十名身高较高的学生计算出来的话,那么,这个平均数就不能代表该地区所有中学生的身体素质.因此,只有平均数难以概括样本数据的实际状态.例如,在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?如果你是教练,选哪位选手去参加正式比赛? 我们知道,77x x ==乙甲,.两个人射击的平均成绩是一样的.那么,是否两个人就没有水平差距呢?(观察P74图2.2-7)直观上看,还是有差异的.很明显,甲的成绩比较分散,乙的成绩相对集中,因此我们从另外的角度来考察这两组数据.考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s 表示.样本数据1,2,,n x x x 的标准差的算法:第 7 页(1) 算出样本数据的平均数x .(2) 算出每个样本数据及样本数据平均数的差:(1,2,)i x x i n -= (3) 算出(2)中(1,2,)i x x i n -=的平方.(4) 算出(3)中n 个平方数的平均数,即为样本方差.(5) 算出(4)中平均数的算术平方根,即为样本标准差.其计算公式为:显然,标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较小.提问:标准差的取值范围是什么?标准差为0的样本数据有什么特点?从标准差的定义和计算公式都可以得出:s ≥0.当0s =时,意味着所有的样本数据都等于样本平均数.2.方差从数学的角度考虑,人们有时用标准差的平方2s (即方差)来代替标准差,作为测量样本数据分散程度的工具:在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差.三、例题精析例1 画出下列四组样本数据的直方图,说明他们的异同点.(1)5,5,5,5,5,5,5,5,5(2)4,4,4,5,5,5,6,6,6(3)3,3,4,4,5,6,6,7,7(4)2,2,2,2,5,8,8,8,8分析:先画出数据的直方图,根据样本数据算出样本数据的平均数,利用标准差的计算公式即可算出每一组数据的标准差.解:(图见教材P76)四组数据的平均数都是5.0,标准差分别为:0.00,0.82,1.49,2.83.他们有相同的平均数,但他们有不同的标准差,说明数据的分散程度是不一样的.例2 甲乙两人同时生产内径为25.40mm 的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm ):甲 25.46 25.32 25.45 25.39 25.36 25.34 25.42 25.3825.42 25.39 25.43 25.39 25.40 25.44 25.40 25.4225.45 25.35 25.41 25.39乙 25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.3625.34 25.49 25.33 25.43 25.43 25.32 25.47 25.3125.32 25.32 25.32 25.48从生产的零件内径的尺寸看,谁生产的质量较高?分析:比较两个人的生产质量,只要比较他们所生产的零件内径尺寸所组成的两个总体的平均数及标准差的大小即可,根据用样本估计总体的思想,我们可以通过抽样分别获得相应的样本数据,然后比较这两个样本数据的平均数、标准差,以此作为两个总体之间的差异的估计值.解:四、课堂小结1. 用样本的数字特征估计总体的数字特征分两类:(1)用样本平均数估计总体平均数.(2)用样本标准差估计总体标准差.样本容量越大,估计就越精确.2. 平均数对数据有“取齐”的作用,代表一组数据的平均水平.3. 标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度.五、评价设计P81 习题 2.2 A组 3、4.教案 B第1课时教学内容§2.2.1 用样本的频率分布估计总体分布教学目标一、知识及技能1.通过实例体会分布的意义和作用.2.在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图.3.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.二、过程及方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识及现实世界的联系.教学重点、难点教学重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图.教学难点:能通过样本的频率分布估计总体的分布.教学设想一、创设情境,导入新课我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚的看到整个样本数据的频率分布情况.二、新课探知(一)频率分布的概念频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为:1. 计算一组数据中最大值及最小值的差,即求极差;2. 决定组距及组数;第 9 页cm ) 3. 将数据分组;4. 列频率分布表;5. 画频率分布直方图.以教材P65制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图.(让学生自己动手作图)例1 下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm ):(1)列出样本频率分布表;(2)一画出频率分布直方图;(3)估计身高小于134C m的人数占总人数的百分比.分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:(2)其频率分布直方图:(3134cm 的男孩出现的,所以我们估计身高小 (1趋势. (2把数据抹掉了.曲线 1.频率分布折线图连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线的定义:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.(见教材P69)(三)茎叶图1.茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.(见教材P70例子)2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录及表示.(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.例2某赛季甲、乙两名篮球运动员每场比赛的得分情况如下:甲运动员得分:13,51,23,8,26,38,16,33,14,28,39;乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39.用茎叶图表示,你能通过该图说明哪个运动员的发挥更稳定吗?解:“茎”指的是中间的一列数,表示得分的十位数;“叶”指的是从茎的旁边生长出来的数,分别表示两人得分的个位数.画这组数据的茎叶图的步骤如下第一步,将每个数据分为“茎”(高位)和“叶”(低位)两部分;第二步,茎是中间的一列数,按从小到大的顺序排列;第三步,将各个数据的叶按大小次序写在茎右(左)侧.甲乙8 04 6 3 1 2 53 6 8 2 5 43 8 9 3 1 6 1 6 7 94 4 91 5 0从图中可以看出,乙运动员的得分基本上是对称的,页的分布是“单峰”的,有的叶集中在茎2,3,4上,中位数为36;甲运动员的得分除一个特殊得分(51分)外,也大致对称,叶的分布也是“单峰”的,有的叶主要集中在茎1,2,3上,中位数是26.由此可以看出,乙运动员的成绩更好. 另外i,从叶在茎上的分布情况看,乙运动员的得分更集中于峰值附近,这说明乙运动员的发挥更稳定.练习:在NBA的2010赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33学生画出茎叶图(略)三、巩固练习为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(见下页图示),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.第 11 页(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高及频数成正比,各组频数之和等于样本容量,频率之和等于1.解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:40.08 24171593=+++++,又因为频率=第二小组频数样本容量,所以,121500.08===第二小组频数样本容量第二小组频率.(2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.四、小结1. 总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2. 总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.五、布置作业P71练习1、2、3.第2课时教学内容§2.2.2 用样本的数字特征估计总体的数字特征教学目标一、知识及技能1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差.2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.3. 会用样本的基本数字特征估计总体的基本数字特征.4. 形成对数据处理过程进行初步评价的意识.二、过程及方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辩证地理解数学知识及现实世界的联系.教学重点、难点教学重点:用样本平均数和标准差估计总体的平均数及标准差.教学难点:能应用相关知识解决简单的实际问题.教学设想一、创设情境导入新课在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究——用样本的数字特征估计总体的数字特征.二、新课探究(一)众数、中位数、平均数初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供关于样本数据的特征信息.例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t(最高的矩形的中点)(图略见教材第72页)它告诉我们,该市的月均用水量为2. 25t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.提问:请大家翻回到教材第66页看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,第 13 页。

用样本的频率分布估计总体教案

用样本的频率分布估计总体教案

用样本的频率分布估计总体教案一、教学目标1. 理解频率分布的概念,掌握频率分布表的绘制方法。

2. 学会用样本数据估计总体分布,了解样本容量对估计结果的影响。

3. 能够运用频率分布估计总体,解决实际问题。

二、教学内容1. 频率分布的定义及意义2. 频率分布表的绘制方法3. 用样本频率分布估计总体分布4. 样本容量对估计结果的影响5. 实际问题中的应用三、教学重点与难点1. 教学重点:频率分布的概念、频率分布表的绘制方法、用样本频率分布估计总体分布。

2. 教学难点:样本容量对估计结果的影响。

四、教学方法1. 讲授法:讲解频率分布的概念、频率分布表的绘制方法以及用样本频率分布估计总体分布的方法。

2. 案例分析法:分析实际问题,引导学生运用频率分布估计总体。

3. 讨论法:分组讨论,探讨样本容量对估计结果的影响。

五、教学过程1. 导入:通过一个具体例子,引入频率分布的概念。

2. 讲解:讲解频率分布的定义、意义以及频率分布表的绘制方法。

3. 案例分析:分析实际问题,引导学生用样本频率分布估计总体分布。

4. 讨论:分组讨论,探讨样本容量对估计结果的影响。

5. 总结:总结本节课的主要内容,强调频率分布在实际问题中的应用。

6. 作业布置:布置相关练习题,巩固所学知识。

六、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的参与度。

2. 练习题:通过课后作业和课堂练习,评估学生对频率分布的理解和应用能力。

3. 小组讨论:评估学生在讨论中的表现,了解学生对样本容量对估计结果影响的理解。

七、教学资源1. 教材:提供相关章节,供学生自学。

2. 实际案例:收集相关实际问题,用于课堂分析和讨论。

3. 练习题:准备相关练习题,巩固学生对知识点的掌握。

八、教学进度安排1. 第一课时:讲解频率分布的概念和意义,教授频率分布表的绘制方法。

2. 第二课时:用样本频率分布估计总体分布,探讨样本容量对估计结果的影响。

3. 第三课时:分析实际问题,运用频率分布估计总体。

用样本的频率分布估计总体教案

用样本的频率分布估计总体教案

用样本的频率分布估计总体教案一、教学目标1. 让学生理解频率分布的概念,掌握频率分布表的绘制方法。

2. 让学生学会用样本的频率分布来估计总体,提高对总体的认识和理解。

3. 培养学生的实际操作能力,使他们在实际问题中能灵活运用频率分布估计总体。

二、教学内容1. 频率分布的概念及意义。

2. 频率分布表的绘制方法。

3. 用样本的频率分布估计总体。

三、教学重点与难点1. 教学重点:频率分布的概念,频率分布表的绘制方法,用样本的频率分布估计总体。

2. 教学难点:频率分布表的绘制方法,用样本的频率分布估计总体。

四、教学方法1. 采用案例分析法,让学生在实际问题中理解频率分布的概念和意义。

2. 采用分组讨论法,培养学生的团队协作能力,提高他们对频率分布表绘制方法的理解。

3. 采用练习法,让学生在实际操作中掌握用样本的频率分布估计总体的方法。

五、教学准备1. 教师准备案例材料,用于讲解频率分布的概念和意义。

2. 教师准备频率分布表的绘制方法的相关资料,用于引导学生掌握该方法。

3. 教师准备用样本的频率分布估计总体的相关练习题,用于巩固学生对该方法的理解。

六、教学过程1. 引入:通过一个具体案例,如调查某班级学生的身高分布,引出频率分布的概念。

2. 讲解:详细讲解频率分布的概念,让学生理解在不同区间内,数据的频率分布情况。

3. 示范:以教师为例,展示如何绘制频率分布表,让学生在这个过程中理解频率分布表的绘制方法。

4. 练习:学生分组讨论,每组选择一个案例,尝试绘制频率分布表,教师在这个过程中提供指导。

七、课堂练习1. 让学生独立完成一个案例,绘制频率分布表,并以此估计总体。

2. 学生之间互相检查,教师进行点评,指出其中的错误和不足。

3. 针对学生的练习情况,进行针对性的讲解和辅导。

八、拓展与应用1. 让学生思考:在实际生活中,哪些问题可以用频率分布来解决?2. 学生分组讨论,分享自己的观点和案例,教师进行点评和指导。

初中数学用样本估计总体优秀教案

初中数学用样本估计总体优秀教案

初中数学用样本估计总体优秀教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、发言致辞、自我鉴定、合同协议、条据文书、规章制度、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts for everyone, such as work plans, work summaries, speeches, self-evaluation, contract agreements, documents, rules and regulations, experiences, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!初中数学用样本估计总体优秀教案初中数学用样本估计总体优秀教案(通用5篇)在教学工作者开展教学活动前,常常要写一份优秀的教案,教案有助于学生理解并掌握系统的知识。

用样本估计总体教案

用样本估计总体教案

2.2.1用样本的频率分布估计总体分布一、教学目标分析1.知识与技能目标(1)通过实例体会分布的意义和作用。

(2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图。

(3)通过实例体会频率分布直方图的特征,能准确地做出总体估计。

2、过程与方法目标:通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法。

3、情感态度与价值观目标:通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系。

二、教学的重点和难点重点:会列频率分布表,画频率分布直方图。

难点:能通过样本的频率分布估计总体的分布。

三、教法与学法分析1、教法:遵循观察、探究、发现、总结式的教学模式。

重点以引导学生为主,让他们能积极、主动的进行探索,获取知识。

由于内容较繁琐,所以要借助多媒体辅助教学。

2、学法:根据本节知识的特点,由于学生已具备一定的基础知识,可采取研究性学习的学习方法。

四、教学过程(一)情境引入1.随机抽样有哪几种基本的抽样方法?简单随机抽样、系统抽样、分层抽样.2.随机抽样是收集数据的方法,如何通过样本数据所包含的信息,估计总体的基本特征,即用样本估计总体,是我们需要进一步学习的内容.3.高二某班有50名学生,在数学必修②结业考试后随机抽取10名,其考试成绩如下:82,75,61,93,62,55,70,68,85,78.如果要求我们根据上述抽样数据,估计该班对数学模块②的总体学习水平,就需要有相应的数学方法作为理论指导,本节课我们将学习用样本的频率分布估计总体分布.(二)新课讲解知识探究(一):频率分布表【问题】我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.通过抽样调查,获得100位居民2007年的月均用水量如下表(单位:t):3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.6 3.4 2.6 2.2 2.2 1.5 1.2 0.20.4 0.3 0.4 3.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.8 3.3 2.8 2.3 2.21.7 1.3 3.6 1.7 0.6 4.1 3.22.9 2.4 2.3 1.8 1.43.5 1.9 0.84.3 3.02.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.0 2.5 2.8 2.3 2.3 1.8 1.3 1.3 1.60.9 2.3 2.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.4 2.5 2.6 2.3 2.1 1.61.0 1.0 1.7 0.82.4 2.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2思考1:上述100个数据中的最大值和最小值分别是什么?由此说明样本数据的变化范围是什么?0.2~4.3思考2:样本数据中的最大值和最小值的差称为极差.如果将上述100个数据按组距为0.5进行分组,那么这些数据共分为多少组?(4.3-0.2)÷0.5=8.2思考3:以组距为0.5进行分组,上述100个数据共分为9组,各组数据的取值范围可以如何设定?[0,0.5),[0.5,1),[1,1.5),…,[4,4.5].思考4:如何统计上述100个数据在各组中的频数?如何计算样本数据在各组中的频率?你能将这些数据用表格反映出来吗?分组频数累计频数频率[0,0.5) 4 0.04[0.5,1)8 0.08[1,1.5)正正正15 0.15[1.5,2)正正正正22 0.22[2,2.5)正正正正正25 0.25[2.5,3)正正14 0.14[3,3.5)正一 6 0.06[3.5,4) 4 0.04[4,4.5] 2 0.02合计100 1.00思考5:上表称为样本数据的频率分布表,由此可以推测该市全体居民月均用水量分布的大致情况,给市政府确定居民月用水量标准提供参考依据,这里体现了一种什么统计思想?用样本的频率分布估计总体分布.思考6:如果市政府希望85%左右的居民每月的用水量不超过标准,根据上述频率分布表,你对制定居民月用水量标准(即a的取值)有何建议?88%的居民月用水量在3t以下,可建议取a=3思考7:在实际中,取a=3t一定能保证85%以上的居民用水不超标吗?哪些环节可能会导致结论出现偏差?分组时,组距的大小可能会导致结论出现偏差,实践中,对统计结论是需要进行评价的.思考8:对样本数据进行分组,其组数是由哪些因素确定的?思考9:对样本数据进行分组,组距的确定没有固定的标准,组数太多或太少,都会影响我们了解数据的分布情况.数据分组的组数与样本容量有关,一般样本容量越大,所分组数越多.按统计原理,若样本的容量为n,分组数一般在(1+3.3lg n)附近选取.当样本容量不超过100时,按照数据的多少,常分成5~12组.若以0.1或1.5为组距对上述100个样本数据分组合适吗?思考10:一般地,列出一组样本数据的频率分布表可以分哪几个步骤进行?第一步,求极差.(极差=样本数据中最大值与最小值的差)第二步,决定组距与组数.(设k=极差÷组距,若k为整数,则组数=k,否则,组数=k+1)第三步,确定分点,将数据分组.第四步,统计频数,计算频率,制成表格.(频数=样本数据落在各小组内的个数,频率=频数÷样本容量)知识探究(二):频率分布直方图思考1:为了直观反映样本数据在各组中的分布情况,我们将上述频率分布表中的有关信息用下面的图形表示:上图称为频率分布直方图,其中横轴表示月均用水量,纵轴表示频率/组距. 频率分布直方图中各小长方形的和高度在数量上有何特点?思考2:频率分布直方图中各小长方形的面积表示什么?各小长方形的面积之和为多少?各小长方形的面积=频率各小长方形的面积之和=1思考3:频率分布直方图非常直观地表明了样本数据的分布情况,使我们能够看到频率分布表中看不太清楚的数据模式,但原始数据不能在图中表示出来.你能根据上述频率分布直方图指出居民月均用水量的一些数据特点吗?(1)居民月均用水量的分布是“山峰”状的,而且是“单峰”的;(2)大部分居民月均用水量集中在一个中间值附近,只有少数居民月均用水量很多或很少;(3)居民月均用水量的分布有一定的对称性等.思考4:样本数据的频率分布直方图是根据频率分布表画出来的,一般地,频率分布直方图的作图步骤如何?第一步,画平面直角坐标系.第二步,在横轴上均匀标出各组分点,在纵轴上标出单位长度.第三步,以组距为宽,各组的频率与组距的商为高,分别画出各组对应的小长方形.思考5:对一组给定的样本数据,频率分布直方图的外观形状与哪些因素有关?在居民月均用水量样本中,你能以1为组距画频率分布直方图吗?(三)例题讲解例1、 某地区为了了解知识分子的年龄结构,随机抽样50名,其年龄分别如下:42,38,29,36,41,43,54,43,34,44,40,59,39,42,44,50,37,44,45,29, 48,45,53,48,37,28,46,50,37,44,42,39,51,52,62,47,59,46,45,67, 53,49,65,47,54,63,57,43,46,58.(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计年龄在32~52岁的知识分子所占的比例约是多少.(1)极差为67-28=39,取组距为5,分为8组.样本频率分布表:分 组 频数 频率[27,32) 3 0.06[32,37) 3 0.06[37,42) 9 0.18[42,47) 16 0.32[47,52) 7 0.14[52,57) 5 0.10[57,62) 4 0.08[62,67) 3 0.06合 计 50 1.00(2)样本频率分布直方图:频率(3)因为0.06+0.18+0.32+0.14=0.7, 故年龄在32例 2、为了了解小学生的体能情况,抽取了某小 学同年级部分学生进行跳绳测试,将所得的数据 整理后画出频率分布直方图(如图),已知图中从 左到右的前三个小组的频率分别是0.1,0.3,0.4。

《通过数据的频率分布估计总体的分布》教案

《通过数据的频率分布估计总体的分布》教案

《通过数据的频率分布估计总体的分布》教案通过数据的频率分布估计总体的分布教案1. 引言本教案旨在介绍如何通过数据的频率分布来估计总体的分布。

频率分布是一种描述数据集中值出现频率的统计工具,通过观察数据的频率分布,我们可以初步了解数据的特征及其分布情况。

掌握频率分布的估计方法,对于分析数据、制定决策以及进行预测都具有重要意义。

2. 频率分布的概念频率分布是指对一组数据进行分组,并统计每个组别中数据值的出现频率。

频率分布图通常以横轴表示数据的不同组别,纵轴表示对应组别中数据值的频率。

通过频率分布图,我们可以观察到数据的集中趋势、变异程度以及可能存在的特殊模式。

3. 构建频率分布构建频率分布的步骤如下:1. 确定数据集的最小值和最大值,并计算数据的范围;2. 根据需要确定分组区间的数量和宽度;3. 将数据按照分组区间进行分类,并计算每个组别中数据值的频率;4. 绘制频率分布图。

4. 通过频率分布估计总体的分布通过观察数据的频率分布,我们可以初步了解总体的分布情况。

一些常见的总体分布包括正态分布、均匀分布和偏态分布等。

根据频率分布的形状和特征,我们可以对总体的分布做出初步估计。

需要注意的是,频率分布只能提供总体分布的估计,而不能给出确切的总体分布。

要获得更准确的总体分布估计,通常需要进行更复杂的统计分析,如参数估计等。

5. 实例演示为了帮助学生更好地理解通过频率分布估计总体的分布的方法,我们将在课堂上进行实例演示。

首先,我们将给出一个数据集,要求学生根据给定的数据构建频率分布,并通过频率分布图初步判断数据的总体分布。

然后,我们将讨论频率分布估计总体分布的局限性,并引导学生思考如何进一步提高估计的准确性。

6. 总结通过本教案的研究,学生将掌握通过数据的频率分布来估计总体的分布的基本方法。

频率分布是一种简单而有效的统计工具,可以帮助我们初步了解数据的特征及其分布情况。

通过实例演示和讨论,学生将能够运用频率分布来对总体分布进行初步估计,并了解估计的局限性。

用样本估计总体教案

用样本估计总体教案

用样本估计总体教案教案标题:用样本估计总体教学目标:1. 理解样本和总体的概念,并能够解释样本估计总体的原理。

2. 掌握样本估计总体的方法和计算步骤。

3. 能够应用样本估计总体解决实际问题。

教学资源:1. 教材:包含有关样本估计总体的理论知识和实例的教材。

2. 计算器或电脑:用于进行样本估计总体的计算。

教学步骤:引入(5分钟):1. 向学生介绍样本和总体的概念,并解释它们在统计学中的重要性。

2. 引出样本估计总体的概念,解释为什么我们需要使用样本来估计总体参数。

讲解理论(15分钟):1. 解释样本估计总体的原理:样本是从总体中抽取出来的一部分数据,通过对样本数据进行分析和计算,可以推断出总体的特征。

2. 介绍样本估计总体的方法:a. 点估计:使用样本数据计算出一个具体的数值作为总体参数的估计值。

b. 区间估计:使用样本数据计算出一个区间,该区间内的数值作为总体参数的估计范围。

3. 解释如何选择合适的样本大小和抽样方法,以确保样本能够代表总体。

示例演练(20分钟):1. 给出一个实际问题,例如:某市场调查公司想要估计某产品在全国范围内的平均销售额。

请设计一个样本估计总体的方案,并计算出估计值和置信区间。

2. 引导学生根据问题的要求,选择合适的样本大小和抽样方法。

3. 指导学生使用样本数据计算出估计值和置信区间,并解释结果的意义。

讨论和总结(10分钟):1. 学生讨论他们设计的样本估计总体方案和计算结果。

2. 引导学生思考样本估计总体的优缺点,以及在实际应用中可能遇到的问题。

3. 总结样本估计总体的关键概念和方法。

作业(5分钟):布置作业,要求学生根据给定的问题,设计样本估计总体的方案,并计算出估计值和置信区间。

要求学生在作业中解释他们的思路和计算过程。

扩展活动:1. 提供更多的实际问题,让学生继续练习样本估计总体的设计和计算。

2. 鼓励学生使用统计软件或编程语言进行样本估计总体的计算,以提高计算效率和准确性。

《使用样本的频率分布评估总体分布》教案

《使用样本的频率分布评估总体分布》教案

《使用样本的频率分布评估总体分布》教案课题:使用样本的频率分布评估总体分布目标:学生将了解如何使用样本数据的频率分布来评估总体数据的分布情况,并能够利用统计方法进行分析和解释。

课时安排:2课时教学内容:第一课时:1.引言(10分钟)-简要介绍本节课的主题和目标-解释为什么需要通过样本数据评估总体数据的分布2.总体分布与样本分布(15分钟)-解释什么是总体分布和样本分布-引导学生理解样本数据与总体数据之间的关系3.频率分布表(20分钟)-介绍频率分布表的基本概念-演示如何根据样本数据创建频率分布表-讨论频率分布表的作用和意义4.统计图表(15分钟)-引导学生绘制频率分布直方图和频率分布线图-分析不同的统计图表对于展现数据的优缺点第二课时:1.分析样本数据(20分钟)-分配给学生一些样本数据-引导学生根据样本数据创建频率分布表和绘制统计图表-学生通过分析样本数据,评估总体数据的分布情况2.统计方法应用(20分钟)-讲解如何使用统计方法对样本数据进行分析-给学生几个实际案例,让他们运用统计方法进行数据分析和解释3.总结与练习(15分钟)-回顾本节课的内容和重点-提供练习题目让学生自行解答,巩固所学知识教学方法:1.问题导向教学法:通过提出问题引导学生思考,激发学生的兴趣和思维能力。

2.视觉辅助教学法:通过使用图表和实例演示来帮助学生更好地理解概念和方法。

3.合作学习法:鼓励学生合作讨论,共同解决问题,提高学生的团队合作能力。

评估方法:1.课堂表现评估:观察学生在课堂上的表现,包括参与讨论、解决问题的能力等。

2.练习题考核:通过练习题考核学生对于课堂知识的掌握程度和应用能力。

3.实际数据分析作业:布置实际数据分析作业让学生独立完成,评估学生对于统计方法的理解和应用能力。

教学资源:1. PowerPoint演示文稿2.样本数据集3.频率分布表和统计图表示例4. 统计软件(如Excel)课后作业:1.阅读相关统计学知识,进一步加深对总体分布与样本分布的理解。

用样本的频率分布估计总体教案

用样本的频率分布估计总体教案

用样本的频率分布估计总体教案一、教学目标1. 理解频率分布的概念,掌握频率分布表的绘制方法。

2. 学会用样本的频率分布估计总体,了解样本容量对估计结果的影响。

3. 能够运用频率分布估计总体,解决实际问题。

二、教学内容1. 频率分布的概念:频率、频数、数据分组、频率分布表。

2. 用样本的频率分布估计总体:样本容量、抽样调查、样本估计总体。

3. 估计总体方法的运用:实际问题分析、计算、解释。

三、教学过程1. 导入:通过实例引入频率分布的概念,引导学生思考如何用样本的频率分布估计总体。

2. 新课:讲解频率分布的概念,演示如何绘制频率分布表。

讲解用样本的频率分布估计总体的方法,分析样本容量对估计结果的影响。

3. 练习:让学生运用频率分布估计总体,解决实际问题。

四、教学评价1. 课堂提问:检查学生对频率分布概念的理解,以及对用样本的频率分布估计总体的方法的掌握。

2. 课后作业:布置相关练习题,巩固所学知识。

3. 实践应用:评估学生在解决实际问题时,对频率分布估计总体的运用能力。

五、教学资源1. 教学PPT:展示频率分布的概念、绘制频率分布表的方法,以及用样本的频率分布估计总体的方法。

2. 实际问题案例:提供一些实际问题,供学生练习运用频率分布估计总体。

3. 练习题:设计相关练习题,巩固所学知识。

4. 数据分析软件:如有需要,可以使用数据分析软件进行频率分布的绘制和分析。

六、教学活动设计1. 小组讨论:让学生分组讨论如何从样本数据中得出总体的频率分布,并分享他们的发现。

2. 案例分析:提供一些实际案例,让学生运用所学的频率分布知识进行分析,并提出解决方案。

3. 练习与反馈:为学生提供一系列练习题,让他们独立完成,给予反馈和指导。

七、教学策略1. 互动式教学:通过提问、讨论等方式,激发学生的思考,提高他们的参与度。

2. 实践操作:让学生通过实际操作,加深对频率分布概念的理解。

3. 差异化教学:针对不同学生的学习水平和需求,提供不同难度的教学内容和练习题。

《用样本的频率分布估算总体的分布》教案

《用样本的频率分布估算总体的分布》教案

《用样本的频率分布估算总体的分布》教案用样本的频率分布估算总体的分布教案一、教学目标在本课程结束后,学生将能够:1. 理解频率分布的概念和作用;2. 运用频率分布来估算总体的分布;3. 分析和解读频率分布图和统计指标。

二、教学内容1. 频率分布的概念和计算方法;2. 构建频率分布表和直方图;3. 利用频率分布进行总体分布的估计;4. 解读频率分布图和统计指标的意义。

三、教学过程步骤一:引入1. 利用实例引入频率分布的概念,说明其在统计学中的重要性。

步骤二:基本概念和计算方法1. 介绍频率分布的基本概念,包括频数、频率和累积频率等;2. 说明如何计算频率分布表和直方图。

步骤三:频率分布的应用1. 解释频率分布在估计总体分布中的作用;2. 介绍如何利用频率分布来估计总体的分布。

步骤四:频率分布图的解读1. 分析和解读频率分布图中的峰度、偏度和分布形态等统计指标;2. 给出实际案例,让学生进行频率分布图的解读。

四、教学评估1. 设计课堂练,要求学生构建频率分布表和直方图,并解答相关问题;2. 实施小组讨论,让学生分析和解读给定的频率分布图。

五、教学资源1. PowerPoint课件,包含教学内容的示例和图表;2. 实例数据集,供学生进行频率分布分析。

六、拓展阅读提供相关的书籍和学术论文,让学生深入了解频率分布的应用领域和进一步研究方向。

以上是《用样本的频率分布估算总体的分布》教案的内容大纲。

希望通过本课的研究,学生能够掌握频率分布的基本概念和计算方法,理解如何利用频率分布来估计总体的分布,以及学会分析和解读频率分布图和统计指标。

同时,通过课堂练和小组讨论的方式,帮助学生提高他们的统计分析能力。

备注:本文档内容仅供参考,具体教学过程请根据实际情况进行调整与安排。

《用样本的频率分布估计总体分布》第一课时参考教案

《用样本的频率分布估计总体分布》第一课时参考教案

2.2.1用样本的频率分布估计总体分布(一)教学要求1.通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2.在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布.教学重点会列频率分布表,画频率分布直方图.教学难点能通过样本的频率分布估计总体的分布.教学过程:一、复习准备:1.讨论:我们要了解我校学生每月零花钱的情况, 应该怎样进行抽样.2.提问:学习了哪些抽样方法?一般在什么时候选取什么样的抽样方法呢?3.讨论:通过抽样方法收集数据的目的是什么?(从中寻找所包含的信息,用样本去估计总体)指出两种估计手段:一是用样本的频率分布估计总体的分布;二是用样本的数字特征(平均数、标准差等)估计总体的数字特征.二、讲授新课:(一)教学频率分布直方图的作法:1.引例:确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a 的部分按议价收费. 如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?为了了较为合理地确定出这个标准,需要做哪些工作?2.讨论:如何采用抽样调查的方式,得到本市的居民月均用水量?3.给出100位居民的月均用水量表,讨论:如何分析数据?分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息4.频率分布的概率:频率分布是指一个样本数据在各个小范围内所占比例的大小. 一般用频率分布直方图反映样本的频率分布.5.作频率分布直方图的步骤:(1)求极差(数据组中最大值与最小值的差距);(2)决定组距与组数(强调取整);(3)将数据分组;(4)列频率分布表(包括分组、频数累计、频数、频率);(5)作频率分布直方图(在频率分布表的基础上绘制,横坐标为样本数据尺寸,纵坐标为频率/组距.)(7)讨论:纵坐标为何取频率/组距?(用矩形面积表示频率)结论:用矩形面积表示频率,总面积为1.注:频率分布表列出的是在名个不同区间内取值的频率,直方图是用小长方形面积的大小来表示在各个区间内取值的频率.(二)分析对比频率分布直方图:1.将组距确定为1,作出教材P58页钢管内径尺寸的频率分布直方图.2.讨论:谈谈两种组距下,你对图的印象?同一个样本数据,绘制出来的分布图是唯一的吗?(当取不同的组距,得到不同形状的图形,不同的图形给人的感觉也不同. )3.讨论:频率分布图有没有保留我们收集的数据?根据钢管内径的频率分布直方图,你能得到一些怎样的结论?(集中范围、变化趋势、直观表明分布特征、用样本推测总体)⑤练习:P61页第3题的数据,若要绘制成频率图,你打算分几组、极值是多少、组距多少?(三)课堂小结:处理样本数据,绘制频率分布直方图的五个步骤.理解面积表示频率.。

导学案221用样本的频率分布估计总体的分布.doc

导学案221用样本的频率分布估计总体的分布.doc

《样本的频率分布估计总体的分布》(预习案)使用时间:6月13 口主备人:苍安江知识目标:1、能列出频率分布表,能画出频率分布的条形图、直方图、茎叶图和折线图;2、会用样本频率分布去估计总体分布。

学习重点:列出频率分布表、画频率分布直方图、折线图、茎叶图。

学习难点:能通过样本的频率分布估计总体的分布。

新课导学阅读教材58页-63页%1.绘制样本数据的频率分布表,频率分布直方图的步骤:为了解一大片经济林生长情况,随机测量其中100株的底部周长,得到如下数据表(单位:cm)1.计算极差:_____________2.决定组数,组距。

按11组算,组距为:3.决定分点:第一组的起点为,组距为:4.列频率分布表:(分别填上空白单元格的数字)A 、 100B 、 802. 列样本频率分布表时, A 、任意确定 C 、由组距和组数决定下列叙述中正确的是[120,125)11 0.11 0.022 [125,130)0.060.012 1130,135]2 0.020.004合计0.2直方图每个小矩形的高度的含义是:矩形面积的含义是: 所有长方形面积之和等于.估计该片经济林中底部周长小于100c 加的树木约占 周长不小于120两的树木约占 %1. 频率分布折线图,总体密度曲线把上面的频率分布直方图各个长方形上边中点用线段连接起来;就得到. 总体密度曲线的定义与反映数据的特点是什么? %1. 茎叶图一般地,当数据是一位和两位有效数字时,两竖线中间的数字表示,即第一个有 效数字,两边的数字表示,即第二个有效数字. 预习自测1. 从一群学生中收取一个一定容量的样本对他们的学习成绩进行分析,前三组是不超过80分的人,其频数之和为20人,其频率之和(乂称累积频率)为0、4,则所抽取的样本的容量是 ()C 、 40D 、 50决定组数的正确方法是 ()B 、一般分为5—12组D、根据经验法则,灵活掌握A、从频率分布表可以看出样本数据对于平均数的波动大小B、频数是指落在各个小组内的数据C、每小组的频数与样本容量之比是这个小组的频率D、组数是样本平均数除以组距《样本的频率分布估计总体的分布》(课堂案)%1.预习检测:1.在频率分布直方图中,各个小长方形的面积表示()A、落在相应各组的数据的频数B、相应各组的频率C、该样本所分成的组数D、该样本的容量2.一个容量为n的样本,分成若干组,已知某组的频数和频率分别为40, 0. 125,则n的值为()A、640B、320C、240D、160%1.课内探究例1下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位c m)(1)列出样本频率分布表;(2)画出频率分布直方图;(3)画出频率分布折线图;(4)估计身高小于134cm的人数占总人数的百分比变式训练:为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2: 4: 17: 15: 9: 3,第2.已知一个样本 75, 71, 73, 75, 77, 79, 75, 78, 80, 79, 76, 74, 75, 77, 76, 72, 74, 75,二小组频数为12.(1) 第二小组的频率是多少?样本容量是多少?(2) 若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少? (3) 在这次测试中,学生跳绳次数的中位数落在哪个小组内?清说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.2.1 用样本的频率分布估计总体分布
【教材分析】 本节课的主要内容是学习画样本的频率分布直方图和用样本的频率分布直 方图估计总体分布这一统计思想方法,在本章中占有非常重要的地位,也是高 考考察的重点。通过本节的学习,应使学生感受分布的意义与作用,初步体会 统计知识在解决实际问题中的作用,初步感受统计思维的特点。 【学情分析】 学生在初中就知道了分布的初步概念,在前面也刚学习过概率及抽样的相 关知识,对用样本估计总体有一定的认识,对用表和图来反映知识有很强的意 识,具有一定的作图能力和较为周全的分析问题能力,而学生的理解能力不足, 发现问题能力上可能很难满足本节课的要求,但学生对新知识兴趣高,肯下功 夫,思维活跃,会为本节课的顺利推进提供一定的保障。 【教学目标】 1.知识与技能 (1)通过实例体会分布的意义和作用。 (2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图。 (3)通过实例体会频率分布直方图,并准确地做出总体估计。 2.过程与方法 通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结 合的数学思想和逻辑推理的数学方法。 3.情感态度与价值观 通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到 数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系。 【教学重点】 1.体会分布的意义与作用,学会列频率分布表、画频率分布直方图并体会 各自的特点。 2.体会用样本估计总体的思想。 【教学难点】 1.能通过样本的频率分布估计总体的分布。 2.体会分布的意义与作用。 【课型】 新授课 【教学方法】 按照本课的重点和难点,我打算以学习任务驱动,以问题探究与动手操作 为方式,以问题解决为主线,通过各种展示方式创设情景,引导学生通过对问 题的交流讨论和实验探究,学会画图和表并理解分布的作用和意义,了解学习 统计知识的基本研究方法。 【教具】 小黑板 直尺 【教学导图】
通过“探究”激发学生求知欲望教学过程

探究过程中引出画图的必要性
1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

随即得出画频率分布直方图的步骤

引导学生用频率分布直方图估计总体的分布特征

引出频率分布折线图

进Hale Waihona Puke 得到总体密度曲线↓练习反馈

课下作业
【教学过程】 一.复习旧知 1.我们前面学习了哪些抽样方法?他们有什么共同点? 2.抽样的目的是什么? 二.创设情境引入 问题 我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市 政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个 居民月用水量标准 a,用水量不超过 a 的部分按平价收费,超出 a 的部分按议价 收费。如果希望大部分居民的日常生活不受影响,那么标准 a 定为多少比较合 理呢 ?你认为,为了了较为合理地确定出这个标准,需要做哪些工作?(让学 生展开讨论) 为了制定一个较为合理的标准 a,必须先了解全市居民日常用水量的分布 情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况 等。因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分 布情况。 分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数 据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图 形传递信息。表格则是通过改变数据的构成形式,为我们提供解释数据的新方 式。 下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容 量中所占比例大小的角度,来表示数据分布的规律。可以让我们更清楚的看到 整个样本数据的频率分布情况。 三.讲授新课 频率分布的概念以及画频率分布直方图的一般步骤: 频率分布是指一个样本数据在各个小范围内所占比例的大小。一般用频率 分布直方图反映样本的频率分布。
相关文档
最新文档