2019年德国不莱梅太空技术展览会SPACE TECH EXPO EU
欧洲机床展览(EMO)观感
欧洲机床展览(EMO)观感来源:数控机床网 作者:数控车床 栏目:行业动态 记者到德国参加9月17日到9月22日期间在德国汉诺威举办的欧洲机床展览(简称EMO),有2台设备也通过与2家德国当地企业合作的方式参加了此次机床展。
此次去的另外一个任务就是看看德国人在滚珠丝杠副的加工上有什么不同的思路。
EMO见闻 9月14日记者到达了德国,9月17日上午9点展会顺利开幕了。
据记者了解本次EMO展会再次以超容量轻松捍卫世界第一机床展。
来自48个国家的2118家参展商参加了这次展会,使得这次展会比上届扩大了12%,也使得2007年EMO展会,成为其创建30年来最大一次的展会。
开幕式期间德国总理 Koehler也亲自参加开幕式的致辞。
汉诺威的这个展馆(览)共有展馆30多个,此次的EMO展开放了20多个展馆,数量上是北京国际机床展的4倍左右。
因展区太大,展馆区有免费的红线巴士可供参观者在展馆间来会穿插。
各个展馆内部的空间还比较大,记者仔细观察了展馆建筑和展位布置的细节发现德国人做事还真是如传说中那样一丝不苟,各个展馆里面大小展位上百个,每个展位都要通水、通电、甚至通压缩空气,但你看不到走道上有一根管线,就是掀开地上铺的地毯也看不见,原来他们的管线全部通过地下走的,每个展位上都有一个大概1个平方左右面积的小屋,里面用来放置配电箱和杂物,里面甚至冰箱都有。
展馆上方沿着墙壁密布着各种管道,但都排放得整整齐齐的,不同的管道的颜色是不一样的,管道上方还标记了里面物体的性质和排布方向,每隔一段距离还有位置标示,真是有条不紊。
这次展会上所有国际上知名的大的机床厂商都来了,德国的德马吉集团、斯来福临集团、日本的马扎克、大隈、森精机、牧野等国际大厂都在展会上摆出了很大的展位展示了自己的产品。
在展会期间具(据)记者的观察和分析此次展会透露出来的数控技术和装备的发展趋势是: 高速化发展新趋势 目前高速加工中心进给速度最高可达80m/min,空运行速度可达100m/min左右。
航拍策划方案
航拍策划方案篇一:航拍工作室成立策划书(初稿)航拍工作室成立策划书(初稿)一、工作室人员职责定位工作室固定人员配备4人,包括工作室主任(主要负责人)1名,外宣1名,后台运维1名,内容编辑1名。
工作室主任:主持公司的日常经营管理工作,对公司负责,组织实施总的经营计划发展方向,拟定基本的管理制度以及奖励机制。
外宣:负责总体对外工作,包括具体的会员招募、企业洽谈等。
后台运维:负责平台的设计和第三方技术开发公司对接维护。
内容编辑:负责平台资源地统计、审核、整理。
(工作室初始建立时期,各职能人员可根据实际需要,给予最需要帮助的部分一起努力。
)二、工作室经营目标定位考虑到平台的搭建和推广需要一定的时间投入渗透,资源整合和业务探索都是一个全新的过程。
现在到年底无经营目标20XX年经营目标30万(包括宣传片的拍摄费用)三、网站政策支持1、人员分配a.按照第一部分规划需要配备4人全职维护运营平台的搭建。
B.在此期间,除承接原视频中心专题制作增值业务外,不参与网站及中心其他的附加工作。
c.可灵活聘用本网兼职拍摄手,进行相关项目的拍摄。
2、启动资金a.人员工资维持中心部门工资现有的“绩效+好稿+经营”考核方案,其中绩效工资部门按照中心的整体平均值(注:中心绩效总额/中心考核人数=绩效平均值)下发到工作室进行内部二次结算。
工作室承接宣传片拍摄制作相关费用提成上调至50%(其中除去拍摄成本,设备租赁和合作相关费用。
)B.平台搭建域名10万(预估)虚拟空间、网站搭建、维护200万(预估,后期根据调研情况具体制定)c.会员招募工作室拟采用多种奖励政策用于前期平台会员的招募工作,拟需要10万元的资金投入。
1)首次注册会员并上传5条满足条件的高质量航拍视频,奖励1000元。
2)注册会员除初次上传的5条视频之外,每上传1条视频,奖励100元,500元封顶。
3)注册会员上传总数大于10条以后,按每条50元对会员进行奖励。
4)注册会员上传的视频在平台被售出之后,会员将得到每条20元的分成。
《硅光子设计:从器件到系统》笔记
《硅光子设计:从器件到系统》阅读记录目录一、基础篇 (3)1.1 光子学基础知识 (4)1.1.1 光子的本质与特性 (4)1.1.2 光子的传播与相互作用 (5)1.2 硅光子学概述 (6)1.2.1 硅光子的定义与发展历程 (7)1.2.2 硅光子学的应用领域 (9)二、器件篇 (10)2.1 硅光子器件原理 (11)2.2 硅光子器件设计 (13)2.2.1 器件的结构设计 (14)2.2.2 器件的工艺流程 (15)2.3 硅光子器件的性能优化 (16)2.3.1 集成电路设计 (17)2.3.2 封装技术 (18)三、系统篇 (20)3.1 硅光子系统架构 (21)3.1.1 系统的整体结构 (22)3.1.2 系统的通信机制 (23)3.2 硅光子系统设计 (25)3.2.1 设计流程与方法 (26)3.2.2 设计实例分析 (27)3.3 硅光子系统的测试与验证 (29)3.3.1 测试平台搭建 (30)3.3.2 性能评估标准 (31)四、应用篇 (31)4.1 硅光子技术在通信领域的应用 (33)4.1.1 光纤通信系统 (34)4.1.2 量子通信系统 (35)4.2 硅光子技术在计算领域的应用 (36)4.2.1 软件定义光计算 (37)4.2.2 光子计算系统 (38)4.3 硅光子技术在传感领域的应用 (39)4.3.1 光学传感器 (40)4.3.2 生物传感与检测 (41)五、未来展望 (42)5.1 硅光子技术的发展趋势 (43)5.1.1 技术创新与突破 (44)5.1.2 应用领域的拓展 (45)5.2 硅光子技术的挑战与机遇 (47)5.2.1 人才培养与引进 (48)5.2.2 政策支持与产业环境 (49)一、基础篇《硅光子设计:从器件到系统》是一本深入探讨硅光子技术设计与应用的专著,涵盖了从基础理论到系统应用的全面知识。
在阅读这本书的基础篇时,我们可以对硅光子设计的核心概念有一个初步的了解。
航空航天科普知识竞赛
网 33、世界上首次尝试从舰上起飞和着落的飞行员是谁?
学习 34、1919 年,德国人容克设计的什么型号飞机成为世界上第一种专门设计的旅客机?
35、人类最早的载人航空器是什么?
才
圣 36、世界上第一架飞机是由谁发明的?他们是哪个国家的人?
37、世界上第一架飞机在哪一年试飞成功?试飞多远?留空 Nhomakorabea间多长?
51、DC-8-63 客机有几个发动机?
52、中国制造的第一种直升机是什么型号?
53、强-5 强击机有几门机炮?
om 注:以上问题答案可在航宇科普中心室外停机坪、一楼展厅、二楼展厅寻找。 i.c 1、新中国在什么时候设计了我国的第一架喷气式飞机?(1956 年设计了歼教-1) uex 2、我国自行设计制造的第一架大型喷气旅客机是什么型号?(运十) 00x m 3、什么型号的飞机,第一次在战争中投掷了原子弹?(B-29 轰炸机) ww.1 i.co 4、目前世界上最大、最重的运输机是什么型号?(乌克兰生产的安-225) 网w uex 5、世界上曾有两种超音速旅客机投入航线使用,请说出它们的型号?(图-144、协和
IATA AHM目录
Airport Handling ManualEffective 1 January—31 December 201838NOTICEDISCLAIMER. The information contained in thispublication is subject to constant review in the lightof changing government requirements and regula-tions. No subscriber or other reader should act onthe basis of any such information without referringto applicable laws and regulations and/or withouttak ing appropriate professional advice. Althoughevery effort has been made to ensure accuracy, theInternational Air Transport Association shall not beheld responsible for any loss or damage caused byerrors, omissions, misprints or misinterpretation ofthe contents hereof. Furthermore, the InternationalAir Transport Association expressly disclaims anyand all liability to any person or entity, whether apurchaser of this publication or not, in respect ofanything done or omitted, and the consequencesof anything done or omitted, by any such person orentity in reliance on the contents of this publication.Opinions expressed in advertisements appearing inthis publication are the advertiser’s opinions and donot necessarily reflect those of IATA. The mentionof specific companies or products in advertisementdoes not imply that they are endorsed or recom-mended by IATA in preference to others of a simi-lar nature which are not mentioned or advertised.© International Air Transport Association. AllRights Reserved. No part of this publication maybe reproduced, recast, reformatted or trans-mitted in any form by any means, electronic ormechanical, including photocopying, record-ing or any information storage and retrieval sys-tem, without the prior written permission from:Senior Vice PresidentAirport, Passenger, Cargo and SecurityInternational Air Transport Association800 Place VictoriaP.O. Box 113Montreal, QuebecCANADA H4Z 1M1Airport Handling ManualMaterial No.: 9343-38ISBN 978-92-9229-505-9© 2017 International Air Transport Association. All rights reserved.TABLE OF CONTENTSPage Preface (xv)Introduction (xvii)General (1)AHM001Chapter0—Record of Revisions (1)AHM011Standard Classification and Numbering for Members Airport Handling Manuals (2)AHM012Office Function Designators for Airport Passenger and Baggage Handling (30)AHM020Guidelines for the Establishment of Airline Operators Committees (31)AHM021Guidelines for Establishing Aircraft Ground Times (34)AHM050Aircraft Emergency Procedures (35)AHM070E-Invoicing Standards (53)Chapter1—PASSENGER HANDLING (91)AHM100Chapter1—Record of Revisions (91)AHM110Involuntary Change of Carrier,Routing,Class or Type of Fare (92)AHM112Denied Boarding Compensation (98)AHM120Inadmissible Passengers and Deportees (99)AHM140Items Removed from a Passenger's Possession by Security Personnel (101)AHM141Hold Loading of Duty-Free Goods (102)AHM170Dangerous Goods in Passenger Baggage (103)AHM176Recommendations for the Handling of Passengers with Reduced Mobility(PRM) (105)AHM176A Acceptance and Carriage of Passengers with Reduced Mobility(PRM) (106)AHM180Carriage of Passengers with Communicable Diseases (114)AHM181General Guidelines for Passenger Agents in Case of SuspectedCommunicable Disease (115)Chapter2—BAGGAGE HANDLING (117)AHM200Chapter2—Record of Revisions (117)AHM210Local Baggage Committees (118)AHM211Airport Operating Rules (124)Airport Handling ManualPageChapter2—BAGGAGE HANDLING(continued)AHM212Interline Connecting Time Intervals—Passenger and Checked Baggage (126)AHM213Form of Interline Baggage Tags (128)AHM214Use of the10Digit Licence Plate (135)AHM215Found and Unclaimed Checked Baggage (136)AHM216On-Hand Baggage Summary Tag (138)AHM217Forwarding Mishandled Baggage (139)AHM218Dangerous Goods in Passengers'Baggage (141)AHM219Acceptance of Firearms and Other Weapons and Small Calibre Ammunition (142)AHM221Acceptance of Power Driven Wheelchairs or Other Battery Powered Mobility Aidsas Checked Baggage (143)AHM222Passenger/Baggage Reconciliation Procedures (144)AHM223Licence Plate Fallback Sortation Tags (151)AHM224Baggage Taken in Error (154)AHM225Baggage Irregularity Report (156)AHM226Tracing Unchecked Baggage and Handling Damage to Checked and UncheckedBaggage (159)AHM230Baggage Theft and Pilferage Prevention (161)AHM231Carriage of Carry-On Baggage (164)AHM232Handling of Security Removed Items (168)AHM240Baggage Codes for Identifying ULD Contents and/or Bulk-Loaded Baggage (169)Chapter3—CARGO/MAIL HANDLING (171)AHM300Chapter3—Record of Revisions (171)AHM310Preparation for Loading of Cargo (172)AHM311Securing of Load (174)AHM312Collection Sacks and Bags (177)AHM320Handling of Damaged Cargo (178)AHM321Handling of Pilfered Cargo (179)AHM322Handling Wet Cargo (180)AHM330Handling Perishable Cargo (182)AHM331Handling and Protection of Valuable Cargo (184)AHM332Handling and Stowage of Live Animals (188)AHM333Handling of Human Remains (190)Table of ContentsPageChapter3—CARGO/MAIL HANDLING(continued)AHM340Acceptance Standards for the Interchange of Transferred Unit Load Devices (191)AHM345Handling of Battery Operated Wheelchairs/Mobility AIDS as Checked Baggage (197)AHM350Mail Handling (199)AHM351Mail Documents (203)AHM353Handling of Found Mail (218)AHM354Handling of Damaged Mail (219)AHM355Mail Security (220)AHM356Mail Safety (221)AHM357Mail Irregularity Message (222)AHM360Company Mail (224)AHM380Aircraft Documents Stowage (225)AHM381Special Load—Notification to Captain(General) (226)AHM382Special Load—Notification to Captain(EDP Format and NOTOC Service) (231)AHM383Special Load—Notification to Captain(EDP NOTOC Summary) (243)AHM384NOTOC Message(NTM) (246)Chapter4—AIRCRAFT HANDLING AND LOADING (251)AHM400Chapter4—Record of Revisions (251)AHM411Provision and Carriage of Loading Accessories (252)AHM420Tagging of Unit Load Devices (253)AHM421Storage of Unit Load Devices (263)AHM422Control of Transferred Unit Load Devices (268)AHM423Unit Load Device Stock Check Message (273)AHM424Unit Load Device Control Message (275)AHM425Continued Airworthiness of Unit Load Devices (279)AHM426ULD Buildup and Breakdown (283)AHM427ULD Transportation (292)AHM430Operating of Aircraft Doors (295)AHM431Aircraft Ground Stability—Tipping (296)AHM440Potable Water Servicing (297)AHM441Aircraft Toilet Servicing (309)Airport Handling ManualPageChapter4—AIRCRAFT HANDLING AND LOADING(continued)AHM450Standardisation of Gravity Forces against which Load must be Restrained (310)AHM451Technical Malfunctions Limiting Load on Aircraft (311)AHM453Handling/Bulk Loading of Heavy Items (312)AHM454Handling and Loading of Big Overhang Items (313)AHM455Non CLS Restrained ULD (316)AHM460Guidelines for Turnround Plan (323)AHM462Safe Operating Practices in Aircraft Handling (324)AHM463Safety Considerations for Aircraft Movement Operations (337)AHM465Foreign Object Damage(FOD)Prevention Program (340)Chapter5—LOAD CONTROL (343)AHM500Chapter5—Record of Revisions (343)AHM501Terms and Definitions (345)AHM503Recommended Requirements for a New Departure Control System (351)AHM504Departure Control System Evaluation Checklist (356)AHM505Designation of Aircraft Holds,Compartments,Bays and Cabin (362)AHM510Handling/Load Information Codes to be Used on Traffic Documents and Messages (368)AHM513Aircraft Structural Loading Limitations (377)AHM514EDP Loading Instruction/Report (388)AHM515Manual Loading Instruction/Report (404)AHM516Manual Loadsheet (416)AHM517EDP Loadsheet (430)AHM518ACARS Transmitted Loadsheet (439)AHM519Balance Calculation Methods (446)AHM520Aircraft Equipped with a CG Targeting System (451)AHM530Weights for Passengers and Baggage (452)AHM531Procedure for Establishing Standard Weights for Passengers and Baggage (453)AHM533Passengers Occupying Crew Seats (459)AHM534Weight Control of Load (460)AHM536Equipment in Compartments Procedure (461)AHM537Ballast (466)Table of ContentsPageChapter5—LOAD CONTROL(continued)AHM540Aircraft Unit Load Device—Weight and Balance Control (467)AHM550Pilot in Command's Approval of the Loadsheet (468)AHM551Last Minute Changes on Loadsheet (469)AHM561Departure Control System,Carrier's Approval Procedures (471)AHM562Semi-Permanent Data Exchange Message(DEM) (473)AHM564Migration from AHM560to AHM565 (480)AHM565EDP Semi-Permanent Data Exchange for New Generation Departure Control Systems (500)AHM570Automated Information Exchange between Check-in and Load Control Systems (602)AHM571Passenger and Baggage Details for Weight and Balance Report(PWR) (608)AHM580Unit Load Device/Bulk Load Weight Statement (613)AHM581Unit Load Device/Bulk Load Weight Signal (615)AHM583Loadmessage (619)AHM587Container/Pallet Distribution Message (623)AHM588Statistical Load Summary (628)AHM590Load Control Procedures and Loading Supervision Responsibilities (631)AHM591Weight and Balance Load Control and Loading Supervision Training and Qualifications (635)Chapter6—MANAGEMENT AND SAFETY (641)AHM600Chapter6—Record of Revisions (641)AHM610Guidelines for a Safety Management System (642)AHM611Airside Personnel:Responsibilities,Training and Qualifications (657)AHM612Airside Performance Evaluation Program (664)AHM615Quality Management System (683)AHM616Human Factors Program (715)AHM619Guidelines for Producing Emergency Response Plan(s) (731)AHM620Guidelines for an Emergency Management System (733)AHM621Security Management (736)AHM633Guidelines for the Handling of Emergencies Requiring the Evacuation of an Aircraft During Ground Handling (743)AHM650Ramp Incident/Accident Reporting (745)AHM652Recommendations for Airside Safety Investigations (750)AHM660Carrier Guidelines for Calculating Aircraft Ground Accident Costs (759)Airport Handling ManualChapter7—AIRCRAFT MOVEMENT CONTROL (761)AHM700Chapter7—Record of Revisions (761)AHM710Standards for Message Formats (762)AHM711Standards for Message Corrections (764)AHM730Codes to be Used in Aircraft Movement and Diversion Messages (765)AHM731Enhanced Reporting on ATFM Delays by the Use of Sub Codes (771)AHM780Aircraft Movement Message (774)AHM781Aircraft Diversion Message (786)AHM782Fuel Monitoring Message (790)AHM783Request Information Message (795)AHM784Gate Message (797)AHM785Aircraft Initiated Movement Message(MVA) (802)AHM790Operational Aircraft Registration(OAR)Message (807)Chapter8—GROUND HANDLING AGREEMENTS (811)AHM800Chapter8—Record of Revisions (811)AHM801Introduction to and Comments on IATA Standard Ground Handling Agreement(SGHA) (812)AHM803Service Level Agreement Example (817)AHM810IATA Standard Ground Handling Agreement (828)AHM811Yellow Pages (871)AHM813Truck Handling (872)AHM815Standard Transportation Documents Service Main Agreement (873)AHM817Standard Training Agreement (887)AHM830Ground Handling Charge Note (891)AHM840Model Agreement for Electronic Data Interchange(EDI) (894)Chapter9—AIRPORT HANDLING GROUND SUPPORT EQUIPMENT SPECIFICATIONS (911)AHM900Chapter9—Record of Revisions (911)AHM901Functional Specifications (914)AHM904Aircraft Servicing Points and System Requirements (915)AIRBUS A300B2320-/B4/C4 (917)A300F4-600/-600C4 (920)A310–200/200C/300 (926)A318 (930)A319 (933)Table of ContentsPageChapter9—AIRPORT HANDLING GROUND SUPPORT EQUIPMENT SPECIFICATIONS(continued) AHM904Aircraft Doors,Servicing Points and System Requirements for the Use of Ground Support Equipment(continued)A320 (936)A321 (940)A330-200F (943)A330-300 (948)A340-200 (951)A340-300 (955)A340-500 (959)A340-600 (962)Airbus350900passenger (965)AIRBUS A380-800/-800F (996)ATR42100/200 (999)ATR72 (1000)AVRO RJ70 (1001)AVRO RJ85 (1002)AVRO RJ100 (1003)B727-200 (1004)B737–200/200C (1008)B737-300,400,-500 (1010)B737-400 (1013)B737-500 (1015)B737-600,-700,-700C (1017)B737-700 (1020)B737-800 (1022)B737-900 (1026)B747–100SF/200C/200F (1028)B747–400/400C (1030)B757–200 (1038)B757–300 (1040)Airport Handling ManualPageChapter9—AIRPORT HANDLING GROUND SUPPORT EQUIPMENT SPECIFICATIONS(continued) AHM904Aircraft Doors,Servicing Points and System Requirements for the Use of Ground Support Equipment(continued)B767—200/200ER (1041)B767—300/300ER (1044)B767—400ER (1048)B777–200/200LR (1051)B777–300/300ER (1055)Boeing787800passenger (1059)BAe ATP(J61) (1067)Bombardier CS100 (1068)Bombardier CS300 (1072)CL-65(CRJ100/200) (1076)DC8–40/50F SERIES (1077)DC8–61/61F (1079)DC8–62/62F (1081)DC8–63/63F (1083)DC9–15/21 (1085)DC9–32 (1086)DC9–41 (1087)DC9–51 (1088)DC10–10/10CF (1089)DC10–30/40,30/40CF (1091)EMBRAER EMB-135Regional Models (1092)EMBRAER EMB-145Regional Models (1094)Embraer170 (1096)Embraer175 (1098)Embraer190 (1100)Embraer195 (1102)FOKKER50(F27Mk050) (1104)FOKKER50(F27Mk0502) (1106)Chapter9—AIRPORT HANDLING GROUND SUPPORT EQUIPMENT SPECIFICATIONS(continued) AHM904Aircraft Doors,Servicing Points and System Requirements for the Use of Ground Support Equipment(continued)FOKKER70(F28Mk0070) (1108)FOKKER100(F28Mk0100) (1110)FOKKER100(F28Mk0100) (1112)IL-76T (1114)MD-11 (1116)MD–80SERIES (1118)SAAB2000 (1119)SAAB SF-340 (1120)TU-204 (1122)AHM905Reference Material for Civil Aircraft Ground Support Equipment (1125)AHM905A Cross Reference of IATA Documents with SAE,CEN,and ISO (1129)AHM909Summary of Unit Load Device Capacity and Dimensions (1131)AHM910Basic Requirements for Aircraft Ground Support Equipment (1132)AHM911Ground Support Equipment Requirements for Compatibility with Aircraft Unit Load Devices (1136)AHM912Standard Forklift Pockets Dimensions and Characteristics for Forkliftable General Support Equipment (1138)AHM913Basic Safety Requirements for Aircraft Ground Support Equipment (1140)AHM914Compatibility of Ground Support Equipment with Aircraft Types (1145)AHM915Standard Controls (1147)AHM916Basic Requirements for Towing Vehicle Interface(HITCH) (1161)AHM917Basic Minimum Preventive Maintenance Program/Schedule (1162)AHM920Functional Specification for Self-Propelled Telescopic Passenger Stairs (1164)AHM920A Functional Specification for Towed Passenger Stairs (1167)AHM921Functional Specification for Boarding/De-Boarding Vehicle for Passengers withReduced Mobility(PRM) (1169)AHM922Basic Requirements for Passenger Boarding Bridge Aircraft Interface (1174)AHM923Functional Specification for Elevating Passenger Transfer Vehicle (1180)AHM924Functional Specification for Heavy Item Lift Platform (1183)AHM925Functional Specification for a Self-Propelled Conveyor-Belt Loader (1184)AHM925A Functional Specification for a Self-Propelled Ground Based in-Plane LoadingSystem for Bulk Cargo (1187)Chapter9—AIRPORT HANDLING GROUND SUPPORT EQUIPMENT SPECIFICATIONS(continued) AHM925B Functional Specification for a Towed Conveyor-Belt Loader (1190)AHM926Functional Specification for Upper Deck Catering Vehicle (1193)AHM927Functional Specification for Main Deck Catering Vehicle (1197)AHM930Functional Specification for an Upper Deck Container/Pallet Loader (1201)AHM931Functional Specification for Lower Deck Container/Pallet Loader (1203)AHM932Functional Specification for a Main Deck Container/Pallet Loader (1206)AHM933Functional Specification of a Powered Extension Platform to Lower Deck/Container/ Pallet Loader (1209)AHM934Functional Specification for a Narrow Body Lower Deck Single Platform Loader (1211)AHM934A Functional Specification for a Single Platform Slave Loader Bed for Lower DeckLoading Operations (1213)AHM936Functional Specification for a Container Loader Transporter (1215)AHM938Functional Specification for a Large Capacity Freighter and Combi Aircraft TailStanchion (1218)AHM939Functional Specification for a Transfer Platform Lift (1220)AHM941Functional Specification for Equipment Used for Establishing the Weight of aULD/BULK Load (1222)AHM942Functional Specification for Storage Equipment Used for Unit Load Devices (1224)AHM950Functional Specification for an Airport Passenger Bus (1225)AHM951Functional Specification for a Crew Transportation Vehicle (1227)AHM953Functional Specifications for a Valuable Cargo Vehicle (1229)AHM954Functional Specification for an Aircraft Washing Machine (1230)AHM955Functional Specification for an Aircraft Nose Gear Towbar Tractor (1232)AHM956Functional Specification for Main Gear Towbarless Tractor (1235)AHM957Functional Specification for Nose Gear Towbarless Tractor (1237)AHM958Functional Specification for an Aircraft Towbar (1240)AHM960Functional Specification for Unit Load Device Transport Vehicle (1242)AHM961Functional Specification for a Roller System for Unit Load Device Transportation on Trucks (1245)AHM962Functional Specification for a Rollerised Platform for the Transportation of Twenty Foot Unit Load Devices that Interfaces with Trucks Equipped to Accept Freight ContainersComplying with ISO668:1988 (1247)AHM963Functional Specification for a Baggage/Cargo Cart (1249)AHM965Functional Specification for a Lower Deck Container Turntable Dolly (1250)AHM966Functional Specification for a Pallet Dolly (1252)Chapter9—AIRPORT HANDLING GROUND SUPPORT EQUIPMENT SPECIFICATIONS(continued) AHM967Functional Specification for a Twenty Foot Unit Load Device Dolly (1254)AHM968Functional Specification for Ramp Equipment Tractors (1256)AHM969Functional Specification for a Pallet/Container Transporter (1257)AHM970Functional Specification for a Self-Propelled Potable Water Vehicle with Rear orFront Servicing (1259)AHM971Functional Specification for a Self-Propelled Lavatory Service Vehicle with Rear orFront Servicing (1262)AHM972Functional Specifications for a Ground Power Unit for Aircraft Electrical System (1265)AHM973Functional Specification for a Towed Aircraft Ground Heater (1269)AHM974Functional Specification for Aircraft Air Conditioning(Cooling)Unit (1272)AHM975Functional Specifications for Self-Propelled Aircraft De-Icing/Anti-Icing Unit (1274)AHM976Functional Specifications for an Air Start Unit (1278)AHM977Functional Specification for a Towed De-Icing/Anti-Icing Unit (1280)AHM978Functional Specification for a Towed Lavatory Service Cart (1283)AHM979Functional Specification for a Towed Boarding/De-Boarding Device for Passengers with Reduced Mobility(PRM)for Commuter-Type Aircraft (1285)AHM980Functional Specification for a Self-Propelled Petrol/Diesel Refueling Vehicle forGround Support Equipment (1287)AHM981Functional Specification for a Towed Potable Water Service Cart (1289)AHM990Guidelines for Preventative Maintenance of Aircraft Towbars (1291)AHM994Criteria for Consideration of the Investment in Ground Support Equipment (1292)AHM995Basic Unit Load Device Handling System Requirements (1296)AHM997Functional Specification for Sub-Freezing Aircraft Air Conditioning Unit (1298)Chapter10—ENVIRONMENTAL SPECIFICATIONS FOR GROUND HANDLING OPERATIONS (1301)AHM1000Chapter10—Record of Revisions (1301)AHM1001Environmental Specifications for Ground Handling Operations (1302)AHM1002Environmental Impact on the Use of Ground Support Equipment (1303)AHM1003GSE Environmental Quality Audit (1305)AHM1004Guidelines for Calculating GSE Exhaust Emissions (1307)AHM1005Guidelines for an Environmental Management System (1308)Chapter11—GROUND OPERATIONS TRAINING PROGRAM (1311)AHM1100Chapter11—Record of Revisions (1311)AHM1110Ground Operations Training Program (1312)Appendix A—References (1347)Appendix B—Glossary (1379)Alphabetical List of AHM Titles (1387)IATA Strategic Partners..............................................................................................................................SP–1。
中文说明书_翻译 IPG
遵循的法规标准(仅适用产品) ........................................................................................................................................................................ 3 EMC 电磁兼容性.................................................................................................................................................................................................... 3 激光等级 .................................................................................................................................................................................................................. 3 钥匙控制 .................................................................................................................................................................................................................. 4 安全标识的位置 ..................................................................................................................................................................................................... 4 激光辐射警示灯 ..................................................................................................................................................................................................... 6
湖北省商务厅关于2019年俄罗斯国际轻工纺织展组展工作的通知
湖北省商务厅关于2019年俄罗斯国际轻工纺织展组展工作的通知文章属性•【制定机关】湖北省商务厅•【公布日期】2018.12.26•【字号】•【施行日期】2018.12.26•【效力等级】地方规范性文件•【时效性】现行有效•【主题分类】商务综合规定正文湖北省商务厅关于2019年德国慕尼黑国际应用激光、光电技术博览会组展工作的通知各市、州、直管市、神农架林区商务局(委),各相关企业:为进一步帮助我省相关企业面向全球开拓产品和服务市场、寻求合作和建立渠道。
我厅拟将继续组织应用激光、光电技术相关企业参加2019年德国慕尼黑国际应用激光、光电技术博览会,现将有关组展工作通知如下:一、展览名称中文名称:2019年德国慕尼黑国际应用激光、光电技术博览会英文名称:LASER-World of Photonics 2019二、展览时间、地点时间:2019年6月24-27日地点:德国慕尼黑新国际博览中心三、展会介绍慕尼黑国际应用激光、光电技术贸易博览会(LASER-World of Photonics 2019)系由德国著名的慕尼黑国际博览会集团公司(MMI)主办的全球唯一覆盖整个光电子行业所有门类、展示最尖端科技的专业光电博览会。
届时将有来自世界各地的上千家光电子企业及全球72个国家的约3万名专业买家和观众齐聚慕尼黑新国际博览中心。
各种设计新颖、科技领先的新产品、全新的解决方案和紧跟世界潮流的应用技术将纷纷登台亮相。
同时为数众多的投资、贸易商的进场观展将为先进的科学技术转换成现实的生产力铺平道路。
是激光光电行业展会TOP1.四、展品范围激光及光电子、光学元件、光学制造技术、传感器、光学测试测量技术、光通信、光学成像、激光生产和加工技术、生物光子学及医疗工程、激光在医疗行业的应用技术、照明技术等。
五、工作要求请各地商务主管部门把国际市场开拓工作作为贯彻落实省委省政府高质量经济发展部署的重要举措,高度重视,认真落实,积极动员、组织企业参展。
德国博物馆交通分馆楼宇自动化
德国博物馆交通分馆楼宇自动化PC 控制也是“博物馆里的艺术品”?提及 Beckhoff 的嵌入式控制器 CX1000 的表现时,答案显然是肯定的。
在德国博物馆交通分馆的新大厅中,CX1000 的控制任务覆盖到了楼宇的各个角落。
俨然,CX1000 已成为了博物馆里的一件“高科技艺术品” 。
2003 年 5 月 11 日,“Mobility and Technology” 展览在德国博物 馆新附属的三号大厅中开幕,标志着德国博物馆第一阶段的扩建完 工。
在接下来的几年中,Verkehrszentrum (交通馆)将继续扩建, 最终成为慕尼黑载入史册的三幢标志性展馆建筑之一。
第1页 共3页德国博物馆交通分馆采用了 Beckhoff 基于 PC 和以太网的 控制技术。
每套 CX1000 分别控制约 180 个总线端子,总线端子则用于控制 照明、暖气、通风等设施。
德国博物馆原慕尼黑展览中心第三大厅,离“博物馆岛” 有些距离,如今,新第三大厅建筑占地 2200 平米,加上 二层走廊面积,可展出面积达到了 3000 平米。
德国博物 馆的交通分馆已搬迁至那里,到 2005 年,交通馆还将延 伸至一号和二号展厅。
随新址落成,整套楼宇自动化系统 也焕然一新。
系统包含 PC 接口、照明、采暖和通风设备 的将近 1000 个接点,全部由 Beckhoff 的控制技术来实 现。
该楼宇自动化系统由三套 Beckhoff 的嵌入式 PC CX1000 构成。
每套 CX1000 通过总线扩展连接大约 180 个总线 端子。
Peter Traut,负责交通分馆的安全、技术和 EDP, 他阐述了使用该套配置的原因: “使用三个控制站的解决 方案是因为不同的空间位置, 其中一个站负责服务于总体 的建筑,比如气象站等。
此外,根据展品不同的敏感度, 展厅被划分成两个空间区域。
我们需要一种冗余的设备来 保护我们的展览品,换句话说,只是半个厅的暖气、照明的异常不至于使全部展览品受损。
微型空中飞行器系统(MAV)的自动室内飞行的说明书
Quadrotor Using Minimal Sensing For AutonomousIndoor FlightJames F.Roberts*,Timothy S.Stirling†,Jean-Christophe Zufferey‡and Dario Floreano§Ecole Polytechnique Fédérale de Lausanne(EPFL),Lausanne,1015,Switzerland Abstract—This paper presents a Miniature Aerial Vehicle(MAV)capable of hands-off autonomous operation within indoor environments.Our prototype is a Quadrotorweighing approximately600g,with a diameter of550mm,which carries the necessaryelectronics for stability control,altitude control,collision avoidance and anti-driftcontrol.This MAV is equipped with three rate gyroscopes,three accelerometers,oneultrasonic sensor,four infrared sensors,a high-speed motor controller and a flightcomputer.Autonomous flight tests have been carried out in a7x6-m room.I.IntroductionTHERE are currently no Vertical Take-Off and Landing(VTOL)flying robots capable of hands-off autonomous operation within cluttered environments such as houses or offices.A robot with this capability could be useful for many applications including search and rescue,exploration in hazardous environments, surveillance,etc.However,there are many challenges that engineers must face before developing such a robot, including the strict limitations in sensing technologies,power consumption,platform size and embedded processing.In order to safely manoeuvre within these environments it would be beneficial for such a robot to be able to hover.This alone introduces many difficult problems including stability control,altitude control,platform drift, collision avoidance and platform design,all being important for successful operation.The system must also be able to sense its environment,prevent collisions and manoeuvre accordingly.Platform drift on hovering systems is an interesting and challenging problem for an indoor VTOL flying robot. Drift outdoors can be compensated1by using a Global Positioning System(GPS)however within indoor environments the task becomes much more difficult as GPS will not function due to the diminished reception. Recently there has been research done using visual tracking systems2to monitor and control a platform within a three dimensional flight space.These systems are extremely accurate and allow for complex control of trajectory however they place strict limitations on where the platform can fly due to the fact that they are confined to the space in which the tracking system is installed,consequently making them impractical.Matsue and collaborators have presented a system using a toy helicopter that has shown the capability of autonomous hovering near walls3.This is achieved by using three infrared range sensors to measure the height above the ground and the distances to two perpendicular walls.The MAV has also shown the capability of autonomously following an infrared beacon as the beacon is moved along the ground beneath it4.The maximum range of the infrared sensors used on this system is80cm,which means that the platform has to fly quite close to a corner,presented by two perpendicular walls,or the system will fail.Moreover,as there are only two sensors representing one quadrant of the360ºflight space the platform must also continue to face the correct direction, presenting a yaw rotational alignment problem.Furthermore,the helicopter is mechanically stabilised which greatly simplifies the task as there are simple requirements for inertial sensing or stability control.However we have observed that these mechanical stabilisation systems can limit the controllability of the platform and tend to introduce low frequency oscillations when trying to manoeuvre causing an undesirable and skewed trajectory.*PhD Student,Laboratory of Intelligent Systems(LIS),ELE115,Station11,Lausanne1015.†PhD Student,Laboratory of Intelligent Systems(LIS),ELE115,Station11,Lausanne1015.‡1st Assistant,Laboratory of Intelligent Systems(LIS),ELE138,Station11,Lausanne1015.§Associate Professor,Laboratory of Intelligent Systems(LIS),ELE132,Station11,Lausanne1015.Holland and collaborators have also been working with toy helicopters towards developing a swarm of hovering MAVs for implementation of a wireless cluster computer network5-6.The orientation and attitude of the helicopter is perceived by using a downward facing camera that looks at coloured circular patches placed on the ground.However,currently no autonomous flight results have yet been presented and the method places strict limitations on where the system can operate.Green and collaborators have been working on an autonomous hovering fixed wing platform that is capable of following a wall and entering an open door way7-9.The system has an Inertial Measurements Unit(IMU) providing an attitude estimation for stability control,an ultrasonic sensor provides a stable altitude and an infrared sensor is used to detect the wall.The system has also shown collision avoidance capabilities10. However,these experiments have not shown that the platform is capable of hands-off automatic take-off, constant position control and automatic landing.In this paper we present a Quadrotor weighing approximately600g,with a diameter of550mm,which includes three rate gyroscopes,three accelerometers,one ultrasonic sensor,four infrared triangulation-based sensors,a high speed motor controller and a flight computer.The prototype is capable of autonomous control indoors including:automatic take-off,constant altitude control,collision avoidance,anti-drift control and automatic landing.These capabilities have been demonstrated in an obstacle free7x6-m room.To the best of our knowledge,our platform is the first Quadrotor capable of autonomous operation indoors,from take-off to landing,without the use of an external positioning system.In the following section,we present the platform design,electronics and sensors.We then introduce the proposed control strategy,describe individual experiments and provide the results from the autonomous flight testing.II.PlatformA.Platform Design and Propulsion SystemThe custom built platform in“Fig.1”is based on a conventional Quadrotor design with some structural modifications.The entire body is fabricated from printed circuit board(PCB).The idea is to have a tight integration between the structure,electronics and sensors to reduce weight,minimise wiring,and improve manufacturability.The PCB body is extended out to support a carbon fibre ring that allows the MAV to survive small collisions with walls and other large objects including people.The system is designed so that additional control boards and/or sensors can be stacked in its centre with minimal effort.The propulsion system consists of two pairs of brushless out-runner motors,each pair fitted with200mm contra-rotating plastic propellers which are powered by a single2100mAH Lithium Polymer battery.This configuration provides approximately350g of thrust for each motor,giving a total thrust of~1400g.As the system is actively stabilised a thrust overhead of 100%is recommended for stable flight,thus allowing for a total take-off weight of~700g.When fitted with the sensors and electronics the system could also carry an additional100g payload however this would reduce the current endurance of7minutes to approximately3minutes.In the future we intend to drastically reduce the weight and optimise the structure of the platform to improve the flight time.B.Sensors and Stability ControlThe Quadrotor is naturally a highly non-linear and unstable platform which requires stability controllers to deal with its fast dynamics.If you are a skilled pilot it is possible to fly the Quadrotor with only rotational dampening control using three rate gyroscopes.However as this system is aimed at removing the pilot from the loop,a chip containing three accelerometers has been added to calculate and align with the gravity component of the earth,thus providing automatic levelling.In order to fuse this information together we implement a complementary filter that takes the integrated angular rate of the gyroscope and the measured Euler angle from the accelerometers11.The output of the filter is then fed into a proportional-integral-derivative controller.This is done for both pitch and roll stability control,yaw stability control is simply implemented using the rate gyroscope and a proportional controller.However even with automatic levelling the platform still has a tendency to drift due to the gyro run-away and external accelerations introduced by the motion of the platform. To correct for this drifting four perpendicular infrared distance sensors with a maximum range of3m have been used“Fig.2”.These sensors can also provide a reference for manoeuvring in a two-dimensional space and allowfor collision detection of large objects.The infrared sensors have been characterised as seen in“Fig.4”to determine their transfer function by taking the10-bit Analogue to Digital Converter(ADC)readings over a range from0m to4.5m in100mm steps.The response of this sensor is comparable to a logarithmic function. The altitude of the platform is measured using an ultrasonic sensor“Fig.3”,this sensor has a minimum range of 152.4mm and a maximum range of6477mm with a resolution of25.4mm.This sensor has an onboard microcontroller that calculates the distance and converts it to an analogue voltage,PWM signal and USART.Figure1.Custom Quadrotor platform:A.)protection ring,B.)brushless motor,C.)contra-rotating propellers,D.)LIPO battery,E.)high-speed motor controller,F.)flight computer,G.)infrared sensorsFigure2.Infrared sensors Figure3.Ultrasonic sensorFigure4.Infrared sensor transfer functionC.Embedded ElectronicsThe high-speed brushless motor controller board“Fig.5”uses four,8-bit ATMEL microcontrollers,one for each sensor-less out-runner motor.Schematics and PCB have been custom designed in-house however the source code has been provided by the Mikrokopter project11.Feedback for speed control is provided by the low pass filtered back EMF spikes produced when the motor is running.The three phase PWM signals run at16 KHz to control the motor.Each motor can be updated at a rate of500Hz,this allows for a high update rate of the entire stability control system,from sensor to actuator.By implementing an update rate an order of magnitude higher than the dynamics of the system a simple linear controller can be used to control the non-linear system. The four channel high speed motor controller communicates with the flight computer via I C.Figure5.High speed brushless motor controller:left–top-view,right–bottom-viewThe flight computer board“Fig.6”consists of two microcontrollers,one8-bit ATMEL allocated for low-level stability control(inspired by the Mikrokopter project11)and another faster16-bit dsPIC for high-level autonomous control.This minimizes the risk of affecting the stability and manual controls when implementing new higher-level control strategies.The board houses the three gyroscopes and three accelerometers as well as an additional pressure sensor and two-axis magnetometer for altitude and heading control respectively. However,the later two sensors are not active in these experiments.Figure6.Flight computerD.ConnectivityThe ultrasonic sensor is connected via a UART interface and the four infrared sensors are connected directly to the dsPICs analogue inputs.A radio control receiver is connected through a PPM input to allow for manual flight control and switching between the autonomous and manual modes.The board also has extended connectivity for adding additional sensors and/or controllers via a serial interface.The serial interface can be configured for SPI or UART plus I C,in this experiment a wireless,“XBeePro”,downlink has been connected here for data analysis.Additionally the board has a1MB EEPROM for storing experimental and/or configuration data.III.Experiment RoomThe room where the experiments were conducted is6m wide,7m long and3m high“Fig.7”.A dome camera has been installed on the roof to track the platforms trajectory.This camera has a180ºfield of view and is capable of seeing anywhere in the room below.To allow the platform to be seen clearly,the floor of the room was covered with white vinyl and all obstacles in the room were removed.A desk was left in one of the corners to hold a laptop computer,the computer is used to record the data from the camera and to allow quick re-programming of the control gains.When experiments are conducted a safety pilot sits along the centre of the bottom wall,the pilot has the ability to activate and deactivate the system to start/stop an experiment or in the case of a failure,control the platform manually.A script was written for MATLAB to extract the trajectory of the platform from a pre-recorded video.The initial position of the platform for each experiment is in the centre of the room.Figure7.Camera view of experiment roomNOTE:The view from the camera is highly distorted.Because the platform flies closer to the camera the perceived position of the platform is worse than it actually is in reality.Due to this the following plots will include a dotted box defining the limits where the platform would collide with the wall at the pre-determined altitude.IV.In-Flight ExperimentsAt this stage,the goal is to enable the Quadrotor to fly in the experiment room,with no obstacles, automatically take-off,fly at a constant altitude of one meter,achieve constant anti-drift control,and automatically land after one minute.This must be achieved without any human intervention.We present three experiments that show the progression towards achieving this goal.The first experiment was designed to observe the altitude control capability.The aim was to achieve automatic take-off,altitude control and automatic landing with the pitch and roll controlled manually.The second experiment was designed to observe the hands-off capability by implementing the four infrared sensors.The aim was to use both altitude control and infrared collision avoidance to achieve a fully autonomous flight.The third experiment was designed to observe the hands-off capability by implementing the infrared anti-drift control.The aim was toachieve both altitude control and anti-drift control to have a fully autonomous stable hover in the centre of the room.A.Altitude ControlIn the first experiment,altitude control is achieved by means of a standard proportional-integral-derivative controller using the down-pointed ultrasonic sensor.To enable automatic take-off the set-point of the controller is slowly increased until the height is equal to one meter,this is done at a rate of approximately150mm per second.Similarly,automatic landing is achieved by slowly decreasing the height set-point until the platform is on the ground.As shown in“Fig.8”,the altitude sensor data was logged during an autonomous take-off,hover and landing sequence.The platform takes-off slowly then proceeds to a stable hover at the set-point of one meter.After30seconds the system comes down slowly and lands.The response has been logged for ten independent flights to show the systems repeatability and robustness“Fig.9”.The mean altitude during stable hover was calculated to be974.13mm,with a standard deviation of30.46mm.The sensor resolution is25.4mm therefore the deviation is well within two measurement steps.The26mm offset is approximately equal to the sensor resolution.This suggests that the gravity component acting on the platform tends to push the altitude to the lower of the two sensor increments about the1m setpoint.Figure8.Altitude response during the first run-take-off,hover and landingFigure9.Mean altitude response of ten independent runs–take-off and hoverB.Collision AvoidanceIn the second experiment,collision avoidance is achieved by means of a proportional-derivative controller and a distance balancing algorithm,one for pitch and one for roll.This algorithm simply calculates the difference in distance between the two opposing walls.The difference is then fed into the controller,the output then alters the attitude angle of the platform to turn away from the wall.The range of the infrared sensors has been limited to1.5meters by adding input limits on the ADC values within the acquisition code.As shown in “Fig.10”,the initial position of the platform is in the centre of the room.In the middle of the room,due to thelimits placed on the sensor range,the sensors cannot detect a wall in any direction so the platform takes-off and flies in a random direction depending on its initial attitude.As it approaches the first wall the controllers act to prevent a collision and the platform flies off in another direction.This simple control approach allows the platform to fly safely avoiding the walls for as long as the battery permits.Figure10.Collision avoidance trajectory plot–control gains:kp=5and kd=200C.Anti-Drift ControlIn the third experiment,by keeping the same control strategy,reducing the controller gains and not limiting the range of the infrared sensors,a method to achieve anti-drifting has been demonstrated.As shown in“Fig. 11”,the initial position of the platform is in the centre of the room.In the middle of the room the sensors can just detect the four walls however any reading below two meters is not accurate.The walls are between3and 9.2meters away depending on the rotational orientation of the platform,so there is a2x3-m rectangular boundary in the centre where the sensors cannot accurately detect the position of the platform.The drift during position hold is due to this uncertainty.When the platform takes-off it instantly begins to correct for drift and keep the platform in the centre of the room.This simple control approach allows the platform to hold its position safely close to the centre of the room for as long as the battery permits.Figure11.Anti-drift trajectory plot–control gains:kp=2.2and kd=100These experiments were carried out several times with the same control strategy and the platform demonstrated good robustness.As most rooms within houses or offices are less than6-m in dimensions this sensing is considered adequate for such a system.V.Conclusion and OutlookThis paper describes a Quadrotor system capable of autonomous operation within obstacle free indoor environments.The results show that the Quadrotor is capable of automatic take-off,constant altitude control, obstacle avoidance,anti-drift control and automatic landing.This has been achieved using simple sensing and control strategies.In the future,we plan to improve the sensing capabilities and perform more experiments with the current system,such as corridor following or autonomous flight in populated rooms.VI.AcknowledgementsWe would like to thank Guido de Croon for creating the MATLAB script for tracking the trajectory of the platform.This work is part of the Swarmanoid project funded by the Future and Emergent Technologies Division of the European Commission.References1Microdrones GmbH,“Microdrone MD4-200”,URL:,Accessed July2007.2Gurdan,D.,Stumpf,J.,Achtelik,M.,Doth,K-M.,Hirzinger,G.,Rus,D.,“Energy-efficient Autonomous Four-rotor Flying Robot Controlled at1kHz”,2007IEEE International Conference on Robotics and Automation,Roma,Italy,April2007.3Matsue,A.,Hirosue,W.,Tokutake,H.,Sundada,S.,Ohkura,A.,“Navigation of Small and Lightweight Helicopter”,Trans.Japan Society Aeronautical and Space Sciences.Vol.48,NO.161,pp.177-179,2005.4Ohkura,A.,Tokutake,H.,Sundada,S.,“Autonomous Hovering of a Small Helicopter”,Trans.Japan Society Aeronautical and Space Sciences.Vol.53,NO.619,pp.376-378,2005.5Holland,O.,Woods,J.,Nardi,R.D.,Clark,A.,“Beyond Swarm Intelligence:The Ultraswarm”,IEEE Swarm Intelligence Symposium2005.6Nardi,R.D.,Holland,O.,Woods,J.,Clark,A.,“SwarMAV:A swarm of Miniature Aerial Vehicles”,21st Bristol UAV Systems Conference,April20067Green,W.E.,Oh,P.Y.,“A Fixed-Wing Aircraft for Hovering in Caves,Tunnels,and Buildings,”IEEE American Control Conference,Minneapolis,MN,pp.1092-1097,June2006.8Green,W.E.,Oh,P.Y.,“Autonomous Hovering of a Fixed-Wing Micro Air Vehicle,”IEEE International Conference on Robotics and Automation,Orlando,FL,pp.2164-2169,May2006.9Green,W.E.,Oh,P.Y.,“A MAV That Flies Like an Airplane and Hovers Like a Helicopter,”IEEE/ASME International Conference on Advanced Intelligent Mechatronics,Monterey,California,pp.699-704,July2005.10Green,W.E.,Oh,P.Y.,“Optic Flow Based Collision Avoidance on a Hybrid MAV,”IEEE Robotics and Automation Magazine,(in press).11Holger,B.,Mikrokopter Open Source Quadrotor,“WIKI:MikroKopter.de”,URL:,Accessed July2007.。
IFS系统介绍
IFS 应用系统介绍................................................................................................................................................9
ifs系统介绍ifs系统win8系统功能介绍微信广告系统介绍系统介绍ppt系统介绍系统介绍ppt模板图书管理系统介绍linux系统介绍小米v6系统介绍
IFS 应用系统
功能方案
广州万迅电脑软件有限公司
广州万迅电脑软件有限公司 Tel:020-83283115 Fax:020-83283054
IFS 应用系统功能概要......................................................................................................................................10 IFS 应用系统 ......................................................................................................................................................10
施耐德自动化产品介绍
ሏႜ ᆫࣅ
ፌׂิࢅీׂࣅٷၳ୲ ॔੦߾ሏႜጒLjۨᆫ ံपਦ֧փీࠕेᅜํแԍኤ߾ڟڥᆶၳڦ੦
具有规模可延展性、灵活性、集成性、协同性四大特性 规模可延展性 协同性
适应系统改造和升级需求
灵活性
您的系统对于我们来说 都是独一无二的 支持各种客户需要的系统 构架,可以实现从单站点 控制,多站点控制,分布 式控制,集中式控制,离 散控制,过程控制,安全 控制到批量控制的多种控 制方式。
3
Modicon Quantum-性能卓越的高端 自动化平台
概述
Unity Pro
a Socollaborative software
Modicon Quantum 是 PLC 的发明者 Modicon 推出的高端自动化平 台,一经推出,就以其无与伦比的可靠性和稳定性,在全球范围内, 特别是中国市场上取得了巨大的成功。2005 年初施耐德电气推出全 新的 Unity 自动化平台,作为该平台的重要组成部分之一,Modicon Quantum 获得了全面的升级。 作为工厂自动化和过程自动化领域最理想的高端自动化平台, Modicon Quantum 广泛应用于以下领域:
海事组织的认证:
■ 美国 ABS 认证 ■ 法国 BV 认证 ■ 挪威 DNV 认证 ■ 德国 GL 认证 ■ CEI GOST 认证 ■ 英国 LR 认证 ■ CIS 的 RRS 认证
等
4
全面升级的 CPU 的技术特征
随着 Unity 自动化平台的发布, Modicon Quantum 推出 6 款基于 Unity 平台的 CPU。这些 CPU 在指令执行速度,内存容量,通讯性能 和热备性能等方面获得了巨大的突破:
依爱EIN70型气体灭火控制系统安装使用说明书V14.1
2.主要技术指标………….……............................................……….....................................................21
1.概述……………………………………………………………………………………………………1
概述……………………………………………………………………………………………...…1
使用要求..….………………………………………………………………………………………1
2.技术参数和结构特征…………………………………………………………………………………2
服务咨询 、
传 真
网 址 电子信箱
地 址 安徽省蚌埠市长征路726号
邮 编 233006
本手册介绍了蚌埠依爱消防电子有限责任公司生产的JB-QB-EIN70型气体灭火控制器及其配套产品的工作原理、性能特点、技术指标、结构尺寸、使用方法、注意事项等,以帮助您尽快熟悉和掌握该控制器的操作方法和使用要点。
1.概述………….……............................................………......................................................................20
2.技术指标………….……............................................………..............................................................20
洗礼
miITMA201 9的精彩技术余温尚在,它带来的惊艳与震撼依旧是圏内人近来的必谈话题。
立达推出了用于立达环锭细纱机的接头机械手ROBOspin,解决了细纱自动接头这一纺纱人翘首以盼、亟待解决的痛点;印度拉克西米也有接头机的样机封闭展示;丰田更是推出了未来纺紗技术,神秘到严格控制参观对象,据参观者透露是一种无钢领钢丝圏的环锭纺高速纺紗技术;意大利意达公司推出的DISCOVERY片梭织机样机大胆抛弃了其一直以来的核心技术扭轴驱动而采用电磁弹射技术引纬,无论引纬力度还是时间都更为精准,同时,其在梭子飞行引导上也摒弃了传统的导梭齿形式,采用了磁悬浮技术,无疑是一种革命性创新性的设计……确实,丨TMA2019上一些颠度性的技术让我们不管在感性还是理性上都需要一段时间去消化。
冷静下 来仔细分析,展会上释放出的信息给我们带来新思路和想法的同时也能够让我们更加客观地去看待创新及中国纺机业的发展方向。
我们不会盲目乐观地唱好,也不会危言耸听地唱衰。
但我们必须承认的是,在技术领域从来没有什么相同的起跑线,也没有轻而易举和理所当然。
为什么区区8000万人口的德国会有2300多个世界 品牌?而提到我们的MADE IN CHINA仍会有人质疑。
有 人说市场没给我们精雕细琢的机会,有人说我们被同 行裹挟着顾不得太多,理由很多,其中是否包含“浮 躁”?是时候放下赚快钱的心态,勇敢地做个“慢公司”“精公司”了。
别急,市场上跑得快的金业未必能跑得久;别 惧,每一分投入未必都会以销量提高来证明值得。
任 正非就曾说过,“科学研究,没有浪费就不可能有成功,华为走到今天,产品研究的成功率应该还没有超过50%,相当于我们每年有几十亿美金被浪费了,但是培养了一大批高级将领。
”经验才是我们无可复制却可持续的资源。
失之东喁收之桑榆,未必不值。
在ITMA2019期间,中国纺织机械协会组织了 140 多位相关院校专家、企业家参观考察了欧洲的纺机企业,欧洲精湛制造工艺、先进管理理念给参观者的印象同样深刻。
SSFG将与城市建设和治理融为一体
行业资讯INDUSTRY INFORMATION科技竭冷SSFG 将与城市建设和治理融为一体在建筑科技创新领域,SSGF 髙质量建造体系已成为行 业的一面旗帜。
作为一种新型装配和建筑工业化解决方案,SSGF 高质量建造体系以装配、现浇、机电、内装等工业化为基础,有效解决了渗漏、开裂、空鼓等传统建造方式中的痛 点,在行业首创“全天候工地开放”,把建造技术纳人到社会 治理和公众参与过程中,受到了行业、社会和客户的广泛关 注与肯定。
据悉,SSGF 高质量建造体系正在质量提升、标准引领、 品牌带动等方面发力,不仅成为一套先进的建造技术,而且 正在从研发到设计、生产、运输、安装、维护等转化为一体化 的全产业链条,并与城市建设和治理融为一体。
碧桂园集团 助理总裁、筑梦高科建筑有限公司总经理孙军认为,民用建 筑科技创新、品质提升直接关系着老百姓的美好生活,无论 是房地产企业还是建筑企业都要把科技创新作为责任和使 命杠在肩上。
Alphabet 公司有望扩大无人机商用规模据报道,谷歌母公司Alphabet 旗下无人机配送服务部门Wing 和另夕卜两家公司表示,他们已经测试了一种识别无人机的新系统,有可能为无人机大规模投人商用铺平道路。
这些 无人机使用由通用网络系统链接的不同软件应用,共享数 据,可以很容易地在笔记本电脑、手机或其他数字设备上同 时捕获无人机的位置和运营商的身份等信息。
在这一概念下,运营商、政府机构和公民个人都将可以 获得数据。
然而,美国航空安全和执法官员表示,在没有可 靠识别技术的情况下,他们将拒绝批准广泛的商业无人机使 用,支持者则希望说服联邦航空管理局(FAA )放松对无人 机飞行的限制。
美国斥巨资开启量子“登月计划”美国总统特朗普日前正式签署国家量子法案,全方位加 速量子科技的研发与应用,确保美国量子科技的领先地位,开启量子领域的“登月计划”。
根据法案,美国将制定量子科 技长期发展战略,实施为期10年的“国家量子计划”。
2019中国工业机器人市场现状及发展展望
2019中国工业机器人市场现状及发展展望扫码发现更多精彩机器人是“制造业皇冠顶端的明珠”,其研发、制造、应用是衡量一个国家科技创新和高端制造业水平的重要标志。
最近几年以来,美、欧、日、韩先后都推出了发展机器人产业的国家规划,将发展机器人产业上升到国家战略层面。
中国也在积极布局机器人产业的发展,从2012年以来中国政府陆续推出了一系列相关产业政策,对工业机器人产业的发展进行引导、促进和规范。
现在离2020年“十三五”规划结束还有一年时间,让我们来看看工业机器人产业目前的一些发展情况。
一、2018年工业机器人销量继续增长但2019年的增长势头出现转折随着国家政策发力,中国机器人产业获得巨大的进步。
2013年至2018年中国市场连续6年成为全球最大的工业机器人应用市场。
在2018年中国工业机器人销售量达到15.4万台,占到全球市场(42.2万台)的36%(注释①),超过欧洲和美洲总和。
但工业机器人应用数量受下游产业的影响较大,因下游多个行业需求放缓,从2018年9月开始中国工业机器人的产销量首次出现下降。
2019年年中继续延续了下降趋势,截止到2019年10月,中国工业机器人产销累计量比去年同期下降约9%(注释②)。
二、工业机器人产品结构受不同行业影响有较大的变化从工业机器人的类型方面看,目前中国市场应用最多的类型仍然是多关节机器人。
根据中国机器人产业联盟公布的数据,2018年中国市场销售的多关节机器人高达9.7万台,排名第一。
但多关节机器人在持续多年的高速增长之后,2018年的增长趋势已经放缓。
取而代之快速增长的类型是水平多关节(SCARA)机器人。
SCARA机器人以精度高,体积小,灵活性强的特点,主要应用在3C电子业、LED行业、机械密封等行业中。
受3C和轻工行业生产自动化需求拉动,在2018年中获得超过50%的增长量。
虽然2019年受3C需求放缓可能会影响当年水平多关节机器人的产销量,但相信未来随着汽车电子、物联网、5G基站、柔性屏等需求的增长,水平多关节机器人这一细分市场仍然有较大增长空间。
浮空器之最系列(二)气球究竟能飞多高?
浮空器之最系列(二)气球究竟能飞多高?人类自古就有飞天的梦想,从明朝万户飞天,到达·芬奇扑翼机草图,再到莱特兄弟“飞行者1号”,人类的飞天梦经过一代代人的大胆设想与不懈努力已最终实现。
随着科技的进步,人类借助飞行器抵达的高度记录被不断刷新。
随着太空时代的到来,对于突破了卡门线的航天器来说,高度似乎对它们没有什么意义了,但是对于航空器来说,天空的极限到底是多少呢?有资料显示,世界上飞得最高的飞机是美国的X-15 A研究试验机。
1961年3月30日,美国航空航天局的试飞员约瑟夫·沃尔克驾驶该机飞到了5.1695万米的高度,1962年 4月30日飞到了7.5195万米的高度,7月17日,他又飞到9.5936万米高度,被世界航空组织正式批准为世界绝对纪录。
由此他成为世界第一位“驾驶飞机的宇航员”。
美国航空航天局规定:超过8万米飞行高度便可称为宇航员。
1963年8月22日,他在爱德华空军基地上空,再次飞到了10.8万米的高度。
X-15 A是北美航空公司研制的以火箭为动力的有人驾驶高空高速研究机。
该机装有一台锡奥科耳化学公司的 X L R99- R M-2型单腔可调液体推进剂火箭发动机,在1.37万米高空时的推力为253.85千牛,机舱上涂有可耐1648℃高温的物质。
该种机共生产3架,试验于 1968年11月结束,共计飞行199次。
该机还是飞得最快的飞机,1967年10月3日曾创造了飞行马赫数6.72的纪录。
这张照片的寓意非常明显:X-15创造了世界飞行速度纪录,一骑绝尘之后,后来者难以望其项背。
而先驱者们,则调皮地把头盔反戴,回望和鼓励追随者与挑战者。
X-15后来被称为高超声速亚轨道空天飞机,它为航天飞机的发展奠定了基础。
因为它采用的是火箭发动机,而且借助了B-52载机空中发放,对于采用吸气燃烧发动机的航空飞行器来说,有点太欺负人了。
毕竟看看谁曾经参加过X-15的试飞你就明白这么说一点都不过分了。
2019年美国帕萨迪纳太空技术展览会SPACE TECH EXPO USA
2019年美国帕萨迪纳太空技术展览会
SPACE TECH EXPO USA
展会介绍
展会时间:2019年05月21日
举办周期:一年一届
主办单位:SMARTER SHOWS
展会地址:美国-帕萨迪纳-图拉尔国际农业展中心INTERNATIONAL AGRI-CENTER
展会详情
美国帕萨迪纳太空技术展览会SPACETECHEXPOUSA由SMARTERSHOWS主办是世界上规模最大和最负盛名的国际航空航天展览会之一,会场设在帕萨迪纳。
大范围地向人们展示航空航天工业的研发结果、先进技术、最新材料、复杂的飞行器和太空飞船研究设计和检验技术等。
中国的航空业也在迅速发展。
中国与美国之间的航空业市场潜力巨大。
中国目前承认共同体航空法律,有利于两个地区间的合作。
目前技术领域的合作规模显著,形成全面的航空服务协定以满足双方各自的利益将是水到渠成的目标。
展品范围
飞行器、导弹推进单元、机载电子装备及站台和导弹、火力装备、飞行控制和海军援助、机场设备、空中反击防御系统,战斗机、教练机、运输机、加油机、特种飞机、无人驾驶飞行器,直升机、飞行模拟器及训练设备、太空技术、军事航空与防务技术、防卫系统、推进系统、零配件、局部装配、原材料、电子登机和着陆系统设备、航空工具制造所需的机械设备及安装、维修设备和维修服务、机场技术、太空探索、卫星技术、无线通讯、综合运输系统等。
飞行器发展史
1.5英里。乘坐蒙戈菲尔兄弟制造的气球的第一批乘客是一只公鸡、
一只山羊还有一只丑小鸭。同年9月19日,在巴黎凡尔赛宫前,蒙戈
菲尔兄弟为国王、王后、宫廷大臣及13万巴黎市民进行 了热气球的
升空表演。11月21日下午,蒙戈菲尔兄弟又在巴黎穆埃特堡进行了
世界上第一次载人空中航行,热气球飞行了二十五分钟,在飞越半
识到了航空气在军事领域里的发展前景,欧
洲的各个强国开始搜罗各种各样的飞机以供
陆军使用。不过,这时的飞机还主要用于侦 察,飞机的研制工作大多也由私人进行,因
二战时期的军用飞机
而进展相当缓慢。在德国,在人们的兴趣还
主要集中在体积庞大的齐柏林飞艇上,因为此前公众的捐款使齐柏林得以继续以飞艇
先驱者的身份从事研制工作,并最终向德国人证明了这种飞艇的实用价值。在另外两
个巴黎之后降落在意大利广场附近。这次飞行比莱特兄弟的飞机飞
行整整早了120年。
目录
2021/7/1
2
热气球的原理
整个热气球受到内部气体的重力,球皮重力,空气浮力。 热气球内部的气体温度高,密度比外面的空气小,内部的 气体密度小所以重力小,内部气体的重力与球皮重力之和 小于空气浮力,就会上升。
2021/7/1
德国之间,运送旅客1000多人。后来,英、美多艘大型飞艇大都相继失事,此后飞艇
的发展陷于停滞状态。
70年代以来,由于科学技术的进步,飞艇改用安全的氦气,其发展又呈活跃。采
用多种新技术的新型飞艇被 用于空中摄影摄像、巡逻等方面,洛杉矶、汉城和巴塞罗
那奥运会和北京亚运会都可在会场上空看见它的身影。
2021/7/1
载重量可达8吨,机上装有红外观察仪或微光电视等光电搜
索瞄准设备和激光测距器等。有的强击机具有垂直/短距起落
2019年天文领域大事件回顾
2019年天文领域大事件回顾撰文 | 王善钦来源:蔻享学术2019年就要结束了。
在过去的一年中,有哪些非常重要甚至刷屏的天文大事?细数一下,其实不少。
这一年,诺贝尔物理学奖又一次花落天文领域:宇宙学大佬皮伯斯因为告诉我们宇宙如何演化而获得了诺贝尔物理学家奖的一半;系外行星探测的先驱麦耶与奎洛兹因为告诉我们还有一个行星绕着和太阳类似的行星转而获得了诺贝尔物理学家奖的另一半。
这一年,射电天文学又下一城,震撼全世界:全球200多个天文学家参与、8台射电望远镜联合成一个地球那么大的望远镜拍摄出的黑洞照片被公布,从此人类看到了神秘的黑洞。
这一年,“嫦娥”继续飞月,“隼鸟”进龙宫探宝:中国的嫦娥4号成为人类第一个在月球背面软着陆的探测器并放出了玉兔2号月球车,成为月球上最长命的月球车;日本的隼鸟2号则跑到小行星“龙宫”上采集岩石与泥土,创下多个记录,然后朝着返回地球的路上奔跑。
这一年,NASA的两个探测器朝着几乎相反的两个方向自由飞:新视野太空船飞掠冥王星之外的冰冷小行星“海角天涯”,帕克太阳探测器则朝着炽热的太阳继续进发;这一年,位于中国西藏的羊八井高能粒子探测器与位于中国河北兴隆的郭守敬望远镜(LAMOST)分别探测到破纪录的“怪物”:中日高能物理学家用羊八井探测器探测到破记录的高能量光子;中外天文学家用郭守敬望远镜与Keck望远镜、GTC望远镜搜寻并确认破纪录的恒星级黑洞。
这一年,与引力波有关的研究依然炙手可热,人们在探索重元素产生之谜与致密星并合的现象方面又有新进展:丹麦天文学家在两颗中子星并合之后的“灰烬”里找到了锶元素存在的证据;中国团队发现双中子星并合后可能形成大质量磁星的证据;引力波探测器LIGO可能发现了黑洞与中子星并合发出的引力波。
纷纷扰扰的2019年,天文学家们、航天专家与物理学家们给我们献出了一个又一个惊喜。
本文梳理以上12大天文有关的进展,以飨读者。
由于选择标准的差异,有些读者认为的重要进展这里未列入,在此先说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年德国不莱梅太空技术展览会SPACE
TECH EXPO EU
展会介绍
展会时间:2019年11月19日
举办周期:一年一届
主办单位:SMARTER SHOWS
展会地址:德国-不莱梅-不莱梅国际展览中心
展会详情
德国不莱梅太空技术展览会SPACETECHEXPOEU由SMARTERSHOWS主办是世界上规模最大和最负盛名的国际航空航天展览会之一.大范围地向人们展示航空航天工业的研发结果、先进技术、最新材料、复杂的飞行器和太空飞船研究设计和检验技术等。
中国的航空业也在迅速发展。
中国与欧盟之间的航空业市场潜力巨大。
中国目前承认共同体航空法律,有利于两个地区间的合作。
欧盟希望加强欧盟与中国在各领域的航空合作以实现真正的合作伙伴关系。
目前技术领域的合作规模显著,形成全面的欧盟-中国航空服务协定以满足双方各自的利益将是水到渠成的目标。
展品范围
飞行器、导弹推进单元、机载电子装备及站台和导弹、火力装备、飞行控制和海军援助、机场设备、空中反击防御系统,战斗机、教练机、运输机、加油机、特种飞机、无人驾驶飞行器,直升机、飞行模拟器及训练设备、太空技术、军事航空与防务技术、防卫系统、推进系统、零配件、局部装配、原材料、电子登机和着陆系统设备、航空工具制造所需的机械设备及安装、维修设备和维修服务、机场技术、太空探索、卫星技术、无线通讯、综合运输系统等。