【精品】中考一模考试《数学试题》含答案解析
中考一模检测 数学试题 含答案解析
一、选择题(每小题3分,共计36分)1.如图,若数轴上不重合的A、B两点到原点的距离相等,则点B所表示的数为( )A.3 B.2 C.1 D.02.在探索因式分解的公式时,可以借助几何图形来解释某些公式.如图,从左图到右图的变化过程中,解释的因式分解公式是( )A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.a2+b2=(a+b)2D.(a﹣b)2=a2﹣2ab+b23.如果a2+2a﹣3=0,那么代数式(a4a-)•22aa-的值是( )A.3 B.﹣1 C.1 D.﹣34.x的取值范围在数轴上表示为( )A.B.C.D.5.《九章算术》中有”盈不足术”的问题,原文如下:”今有共買羊,人出五,不足四十五;人出七,不足三.问人数,羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元求人数和羊价各是多少?设买羊人数为x人,则根据题意可列方程为( )A .5x +45=7x +3B .5x +45=7x ﹣3C .5x ﹣45=7x +3D .5x ﹣45=7x ﹣36.在矩形ABCD 中,放入六个形状、大小相同的长方形,所标尺寸如图所示,设小长方形的长、宽分别为x cm,y cm,则下列方程组正确的是( )A .26314x y y x y -+=⎧⎨+=⎩B .31426x y x y +=⎧⎨+=⎩C .31426x y x y +=⎧⎨-=⎩D .3146x y x y +=⎧⎨+=⎩7.对于实数a 、b ,定义一种新运算”⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若(﹣3)⊗x =2⊗x ,则x 的值为( ) A .﹣2B .﹣1C .1D .28.已知a ,b 是一元二次方程x 2+3x ﹣1=0的两个根,则代数式a 2+b 2的值是( ) A .1B .9C .7D .119.光明文具店销售某品牌钢笔,当它的售价为14元/支时,月销量为180支,若每支钢笔的售价每涨价1元,月销量就相应减少15支,设每支钢笔涨价后的售价为x 元/支,若使该种钢笔的月销量不低于105支,则x 应满足的不等式为( ) A .180﹣15x ≥105 B .180﹣(x ﹣14)≤105C .180+15(x +14)≥105D .180﹣15(x ﹣14)≥10510.如图,若在象棋盘上建立平面直角坐标系xOy ,使”帅”的坐标为(﹣1,﹣2)”马”的坐标为(2,﹣2),则”兵”的坐标为( )A.(﹣3,1) B.(﹣2,1) C.(﹣3,0) D.(﹣2,3)11.直线y=﹣2x﹣1关于y轴对称的直线与直线y=﹣2x+m的交点在第四象限,则m的取值范围是( )A.m>﹣1 B.m<1 C.﹣1<m<1 D.﹣1≤m≤112.二次函数y12(x﹣4)2+5的图象的开口方向、对称轴、顶点坐标分别是( )A.向上,直线x=4,(4,5) B.向上,直线x=﹣4,(﹣4,5)C.向上,直线x=4,(4,﹣5) D.向下,直线x=﹣4,(﹣4,5)二、填空题(每小题3分,共计12分)13.将一张矩形纸片ABCD沿直线EF折成如图所示的形状,若∠HED=50°,则∠EFG=__________.14.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于点E,若BC=4,△AOE的面积为6,则BE=__________.15.若△ABC∽△DEF,且相似比是2:3,它们周长之和是40,则△ABC的周长是__________.16.如图,在△ABC中,DE∥BC,交AB于点D,交AC于点E,点F为BC边上一点,AF与DE交于点G.若13 DEBC=,则AGGF=__________.三、简答题(17-21每题8分,22-23每题10分,24题12分)17.先化简:(1-32x)÷244xx x-1,再将x=-1代入求值.18.如图所示,在菱形ABCD中,点E.F分别为A D.CD边上的点,DE=DF,求证:∠1=∠2.19.某初中学校餐厅为了解学生对早餐的要求,随即抽样调查了该校的部分学生,并根据其中两个单选问题的调查结果,绘制了如下尚不完整的统计图表.学生能接受的早餐价格统计表价格分组(单位:元) 频数频率0<x≤2 60 0.152<x≤4 180 c4<x≤6 92 0.236<x≤8 a0.12x>8 20 0.05合计b 1根据以上信息解答下列问题:(1)统计表中,a=__________,b=__________,c=__________.(2)扇形统计图中,m的值为__________,”甜”所对应的圆心角的度数是__________.(3)该餐厅计划每天提供早餐2000份,其中咸味大约准备多少份较好?20.如图是长沙九龙仓国际金融中心,位于长沙市黄兴路与解放路交会处的东北角,投资160亿元人民币,总建筑面积达98万平方米,中心主楼BC高452m,是目前湖南省第一高楼,大楼顶部有一发射塔AB,已知和BC处于同一水平面上有一高楼DE,在楼DE底端D点测得A的仰角为α,tanα247,在顶端E点测得A的仰角为45°,AE(1)求两楼之间的距离CD;(2)求发射塔AB的高度.21.一次函数y=kx+b的图象与反比例函数y2x-=的图象相交于A(﹣1,m),B(n,﹣1)两点.(1)求出这个一次函数的表达式.(2)求△OAB的面积.(3)直接写出使一次函数值大于反比例函数值的x的取值范围.22.网约车越来越受到大众的欢迎.某种网约车的总费用由里程费和耗时费组成,其中里程费按p元/千米计算,耗时费按q元/分钟计算(总费用不足10元按10元计价).李明、王刚两人用该打车方式出行,按上述计价规则,其行驶里程数、耗时以及打车总费用如表:里程数s(千米) 耗时t(分钟) 车费(元)李明8 8 12王刚10 12 16(1)求p,q的值;(2)若张华也用该打车方式出行,平均车速为50千米/时,行驶了15千米,那么张华的打车总费用为多少? 23.如图,AG 是∠HAF 的平分线,点E 在AF 上,以AE 为直径的⊙O 交AG 于点D,过点D 作AH 的垂线,垂足为点C,交AF 于点B .(1)求证:直线BC 是⊙O 的切线;(2)若AC=2CD,设⊙O 的半径为r,求BD 的长度.24.如图,抛物线62++=bx ax y 经过点A (-2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为)41(<<m m .连接AC ,BC ,DB ,D C.(1)求抛物线的函数表达式; (2)△BCD 的面积等于△AOC 的面积的43时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.答案与解析一、选择题(每小题3分,共计36分)1.如图,若数轴上不重合的A、B两点到原点的距离相等,则点B所表示的数为( )A.3 B.2 C.1 D.0【答案】B【解析】∵A、B两点到原点的距离相等,A为﹣2,则B为﹣2的相反数,即B表示2.2.在探索因式分解的公式时,可以借助几何图形来解释某些公式.如图,从左图到右图的变化过程中,解释的因式分解公式是( )A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.a2+b2=(a+b)2D.(a﹣b)2=a2﹣2ab+b2【答案】B【解析】如图,从左图到右图的变化过程中,解释的因式分解公式是:a2﹣b2=(a+b)(a﹣b).3.如果a2+2a﹣3=0,那么代数式(a4a-)•22aa-的值是( )A.3 B.﹣1 C.1 D.﹣3 【答案】A【解析】原式24a a -=•22a a - 22a a a +-=()()•22a a - =a (a +2)=a 2+2a ,∵a 2+2a ﹣3=0,∴a 2+2a =3, 故原式=3.4.x 的取值范围在数轴上表示为( ) A . B .C .D .【答案】A【解析】由题意可知:3010x x -≥⎧⎨-≠⎩,∴x ≤3且x ≠1. 5.《九章算术》中有”盈不足术”的问题,原文如下:”今有共買羊,人出五,不足四十五;人出七,不足三.问人数,羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元求人数和羊价各是多少?设买羊人数为x 人,则根据题意可列方程为( ) A .5x +45=7x +3 B .5x +45=7x ﹣3C .5x ﹣45=7x +3D .5x ﹣45=7x ﹣3【答案】A【解析】设买羊人数为x 人,则根据题意可列方程为5x +45=7x +3.6.在矩形ABCD 中,放入六个形状、大小相同的长方形,所标尺寸如图所示,设小长方形的长、宽分别为x cm,y cm,则下列方程组正确的是( )A .26314x y y x y -+=⎧⎨+=⎩B .31426x y x y +=⎧⎨+=⎩C .31426x y x y +=⎧⎨-=⎩D .3146x y x y +=⎧⎨+=⎩【答案】A【解析】设小长方形的长为x ,宽为y ,如图可知,31426x y x y y +=⎧⎨+-=⎩.7.对于实数a 、b ,定义一种新运算”⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若(﹣3)⊗x =2⊗x ,则x 的值为( ) A .﹣2 B .﹣1C .1D .2【答案】B【解析】根据题中的新定义化简得:339342x x=+-,去分母得:12﹣6x =27+9x , 解得:x =﹣1,经检验x =﹣1是分式方程的解.8.已知a ,b 是一元二次方程x 2+3x ﹣1=0的两个根,则代数式a 2+b 2的值是( ) A .1 B .9C .7D .11【答案】D【解析】∵a、b是一元二次方程x2+3x﹣1=0的两个根,∴a+b=﹣3,ab=﹣1,∴a2+b2=(a+b)2﹣2ab=(﹣3)2﹣2×(﹣1)=9+2=11.9.光明文具店销售某品牌钢笔,当它的售价为14元/支时,月销量为180支,若每支钢笔的售价每涨价1元,月销量就相应减少15支,设每支钢笔涨价后的售价为x元/支,若使该种钢笔的月销量不低于105支,则x应满足的不等式为( )A.180﹣15x≥105 B.180﹣(x﹣14)≤105C.180+15(x+14)≥105 D.180﹣15(x﹣14)≥105【答案】D【解析】依题意有180﹣15(x﹣14)≥105.10.如图,若在象棋盘上建立平面直角坐标系xOy,使”帅”的坐标为(﹣1,﹣2)”马”的坐标为(2,﹣2),则”兵”的坐标为( )A.(﹣3,1) B.(﹣2,1) C.(﹣3,0) D.(﹣2,3)【答案】A【解析】如图所示:可得”炮”是原点,则”兵”位于点:(﹣3,1).11.直线y=﹣2x﹣1关于y轴对称的直线与直线y=﹣2x+m的交点在第四象限,则m的取值范围是( )A.m>﹣1 B.m<1 C.﹣1<m<1 D.﹣1≤m≤1【答案】C【解析】联立212y x y x m =-⎧⎨=-+⎩,解得1412m x m y +⎧=⎪⎪⎨-⎪=⎪⎩, ∵交点在第四象限,∴104102m m +⎧>⎪⎪⎨-⎪<⎪⎩①②, 解不等式①得,m >﹣1,解不等式②得,m <1, 所以,m 的取值范围是﹣1<m <1. 12.二次函数y 12=(x ﹣4)2+5的图象的开口方向、对称轴、顶点坐标分别是( ) A .向上,直线x =4,(4,5) B .向上,直线x =﹣4,(﹣4,5) C .向上,直线x =4,(4,﹣5) D .向下,直线x =﹣4,(﹣4,5)【答案】A【解析】二次函数y 12=(x ﹣4)2+5的图象的开口向上、对称轴为直线x =4、顶点坐标为(4,5). 二、填空题(每小题3分,共计12分)13.将一张矩形纸片ABCD 沿直线EF 折成如图所示的形状,若∠HED =50°,则∠EFG =__________.【答案】65°【解析】设∠EFG =α,则由折叠可得∠BFE =α, ∵AD ∥BC ,∴∠DEF =∠BFE =α,∠FEH =α+50°,由折叠可得∠AEF=∠HEF=α+50°,又∵∠AED=180°,∴α+50°+α=180°,解得α=65°,∴∠EFG=65°.14.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于点E,若BC=4,△AOE的面积为6,则BE=__________.【答案】【解析】连接E C.∵四边形ABCD是矩形∴AO=CO,且OE⊥AC,∴OE垂直平分AC∴CE=AE,S△AOE=S△COE=6,∴S△AEC=2S△AOE=12.∴12AE•BC=12,又∵BC=4,∴AE=6,∴EC=6.∴BE==15.若△ABC∽△DEF,且相似比是2:3,它们周长之和是40,则△ABC的周长是__________.【答案】16【解析】∵△ABC与△DEF的相似比为2:3,∴△ABC的周长:△DEF的周长=2:3,∴△ABC的周长2 23 =⨯+40=16.16.如图,在△ABC 中,DE ∥BC ,交AB 于点D ,交AC 于点E ,点F 为BC 边上一点,AF 与DE 交于点G .若13DE BC =,则AGGF=__________.【答案】12. 【解析】∵DE ∥BC ,∴△ADE ∽△ABC ,∴13AD DE AB BC ==.同理:△ADG ∽△ABF , ∴13AG AD AF AB ==,又∵AF =AG +GF ,∴11312AG AG GF AF AG ===--. 三、简答题(17-21每题8分,22-23每题10分,24题12分)17.先化简:(1-32x )÷244x x x -1,再将x=-1代入求值. 【答案】见解析.【解析】先把括号内的分式进行通分相减,再把除法化为乘法进行约分化简,最后代入求值.原式=2x x -1×22x x -1=x+2.当x=-1时,原式=-1+2=1.18.如图所示,在菱形ABCD 中,点E.F 分别为A D.CD 边上的点,DE =DF , 求证:∠1=∠2.【答案】见解析.【解析】由菱形的性质得出AD=CD,由SAS证明△ADF≌△CDE,即可得出结论.证明:∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴∠1=∠2.19.某初中学校餐厅为了解学生对早餐的要求,随即抽样调查了该校的部分学生,并根据其中两个单选问题的调查结果,绘制了如下尚不完整的统计图表.学生能接受的早餐价格统计表价格分组(单位:元) 频数频率0<x≤2 60 0.152<x≤4 180 c4<x≤6 92 0.236<x≤8 a0.12x>8 20 0.05合计b 1根据以上信息解答下列问题:(1)统计表中,a=__________,b=__________,c=__________.(2)扇形统计图中,m的值为__________,”甜”所对应的圆心角的度数是__________.(3)该餐厅计划每天提供早餐2000份,其中咸味大约准备多少份较好?【解析】(1)b=60÷0.15=400,a=400×0.12=48,c=180÷400=0.45,故答案为:400,48,0.45;(2)m%=1﹣26%﹣12%﹣23%﹣9%=30%,即m的值是30,“甜”所对应的圆心角的度数是:360°×30%=108°,故答案为:30,108°;(3)2000×26%=520(份),答:该餐厅计划每天提供早餐2000份,其中咸味大约准备520份较好.20.如图是长沙九龙仓国际金融中心,位于长沙市黄兴路与解放路交会处的东北角,投资160亿元人民币,总建筑面积达98万平方米,中心主楼BC高452m,是目前湖南省第一高楼,大楼顶部有一发射塔AB,已知和BC处于同一水平面上有一高楼DE,在楼DE底端D点测得A的仰角为α,tanα247,在顶端E点测得A的仰角为45°,AE(1)求两楼之间的距离CD;(2)求发射塔AB的高度.【解析】(1)过点E作EF⊥AC于点F,∵∠AEF=45°,AE∴EF=140,由矩形的性质可知:CD=EF=140,故两楼之间的距离为140m;(2)在Rt△ADC中,tanαACCD=,∴AC=140247⨯=480,∴AB=AC﹣BC=480﹣452=28,故发射塔AB的高度为28m.21.一次函数y=kx+b的图象与反比例函数y2x-=的图象相交于A(﹣1,m),B(n,﹣1)两点.(1)求出这个一次函数的表达式.(2)求△OAB的面积.(3)直接写出使一次函数值大于反比例函数值的x的取值范围.【解析】(1)把A(﹣1,m),B(n,﹣1)分别代入y2x-=得﹣m=﹣2,﹣n=﹣2,解得m=2,n=2,所以A点坐标为(﹣1,2),B点坐标为(2,﹣1),把A(﹣1,2),B(2,﹣1)代入y=kx+b得221k bk b-+=⎧⎨+=-⎩,解得11kb=-⎧⎨=⎩,所以这个一次函数的表达式为y=﹣x+1;(2)设直线AB交y轴于P点,如图,当x=0时,y=1,所以P点坐标为(0,1),所以S△OAB=S△AOP+S△BOP12=⨯1×112+⨯1×232=;(3)使一次函数值大于反比例函数值的x的取值范围是x<﹣1或0<x<2.22.网约车越来越受到大众的欢迎.某种网约车的总费用由里程费和耗时费组成,其中里程费按p元/千米计算,耗时费按q元/分钟计算(总费用不足10元按10元计价).李明、王刚两人用该打车方式出行,按上述计价规则,其行驶里程数、耗时以及打车总费用如表:里程数s(千米) 耗时t(分钟) 车费(元)李明8 8 12王刚10 12 16(1)求p,q的值;(2)若张华也用该打车方式出行,平均车速为50千米/时,行驶了15千米,那么张华的打车总费用为多少?【解析】(1)小明的里程数是8km,时间为8min;小刚的里程数为10km,时间为12min.由题意得8812 101216p qp q+=⎧⎨+=⎩,解得112 pq=⎧⎪⎨=⎪⎩;(2)张华的里程数是15km,时间为18min.则总费用是:15p+18q=24(元).答:总费用是24元.23.如图,AG是∠HAF的平分线,点E在AF上,以AE为直径的⊙O交AG于点D,过点D作AH的垂线,垂足为点C,交AF于点B.(1)求证:直线BC是⊙O的切线;(2)若AC=2CD,设⊙O的半径为r,求BD的长度.【分析】(1)根据角平分线的定义和同圆的半径相等可得OD∥AC,证明OD⊥CB,可得结论;(2)在Rt△ACD中,设CD=a,则AC=2a,AD=a,证明△ACD∽△ADE,表示a=,由平行线分线段成比例定理得:,代入可得结论.【解答】(1)证明:连接OD,∵AG是∠HAF的平分线,∴∠CAD=∠BAD,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∵∠ACD=90°,∴∠ODB=∠ACD=90°,即OD⊥CB,∵D在⊙O上,∴直线BC是⊙O的切线;(4分)(2)解:在Rt△ACD中,设CD=a,则AC=2a,AD=a,连接DE,∵AE是⊙O的直径,∴∠ADE=90°,由∠CAD=∠BAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴,即,∴a=,由(1)知:OD ∥AC,∴,即,∵a=,解得BD=r .24.如图,抛物线62++=bx ax y 经过点A (-2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为)41(<<m m .连接AC ,BC ,DB ,D C.(4)求抛物线的函数表达式;(5)△BCD 的面积等于△AOC 的面积的43时,求m 的值; (6)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.【答案】见解析.【解析】(1)抛物线c bx ax y ++=2经过点A (-2,0),B (4,0),∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的函数表达式为233642y x x =-++ (2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F . ∵点A 的坐标为(-2,0),∴OA =2由0=x ,得6=y ,∴点C 的坐标为(0,6),∴OC =6∴S △OAC =1126622OA OC ⋅⋅=⨯⨯=,∵S △BCD =43S △AOC =29643=⨯ 设直线BC 的函数表达式为n kx y +=,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩,解得326k n ⎧=-⎪⎨⎪=⎩ ∴直线BC 的函数表达式为623+-=x y . ∴点G 的坐标为3(,6),2m m -+ ∴2233336(6)34224DG m m m m m =-++--+=-+ ∵点B 的坐标为(4,0),∴OB =4S △BCD =S △CDG +S △BDG =1111()2222DG CF DG BE DG CF BE DG BO ⋅⋅+⋅⋅=⋅+=⋅⋅ =22133346242m m m m -+⨯=-+() ∴239622m m -+=,解得11=m (舍),32=m ,∴m 的值为3(3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图 以BD 为边进行构图,有3种情况,采用构造全等发进行求解. ∵D 点坐标为)415,3(,所以21,N N 的纵坐标为415 233156424x x -++=,解得3,121=-=x x (舍) 可得2215(1,),(0,0)4N M -∴∴34,N N 的纵坐标为415-时,2123315611424x x x x -++=-==+,∴3315(1),4N M +-∴,4415(1),(4N M -∴ 以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解. ∵111151515(1,),(34(1),0),(8,0)444N M M -∴+--+-∴。
中考一模检测 数学卷 含答案解析
第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.–2020的倒数是 A .2020B .–2020C .12020D .12020-2.4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星”东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为 A .0.439×106B .4.39×106C .4.39×105D .439×1033.下列各式计算结果为1n(n 1)+的是A .11n n 1++ B .111n n-+ C .111n n -+ D .111n n-- 4.将一副三角板(含30︒、45︒的直角三角形)摆放成如图所示的形状,图中1∠的度数是A .120︒B .130︒C .135︒D .150︒5.如图,圆锥的底面半径r 为6cm,高h 为8cm,则圆锥的侧面积为A .80πcm 2B .60πcm 2C .48πcm 2D .30πcm 26.一个不透明的口袋中有4个除标号外其余均相同的小球,分别标有数字1,2,3,4,充分混合后随机摸出一个小球记下标号,放回后混合再随机摸出一个小球记下标号,则两次摸出的小球的标号之和等于5的概率是 A .12B .13C .14D .157.如图,已知△ABC 为直角三角形,90B ∠=︒,若沿图中虚线剪去∠B ,则∠1+∠2等于A .270°B .315°C .180°D .135°8.如图,ABC ∆中,AD 是角平分线,BE 是ABD ∆中的中线,若ABC ∆的面积是24,5AB =,3AC =,则ABE ∆的面积是A .6B .7.5C .12D .159.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,点D 是AB 的中点,点P 是直线BC 上一点,将△BDP 沿DP 所在的直线翻折后,点B 落在B 1处,若B 1D ⊥BC ,则点P 与点B 之间的距离为A .1B .54C .1或3D .54或5 10.在同一直角坐标系中,二次函数2y ax b =+(0a ≠,0b ≠)与反比例函数aby x=的图象可能是 A . B .C .D .第Ⅱ卷二、填空题(本大题共6小题,每小题5分,共30分) 11.分解因式:33a b ab -=_______________12.将一个圆分割成三个扇形,它们圆心角度数的比1:3:5,则最大扇形的圆心角的度数为_____.13.甲、乙两同学在最近的5次数学测验中数学成绩的方差分别为2S 甲 2.518=,2S 乙 3.69=,则数学成绩比较稳定的同学是____________14.济南大明湖畔的”超然楼”被称作”江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A 处仰望塔顶,测得仰角为30°,再往楼的方向前进60m 至B 处,测得仰角为60°,若学生的身高忽略不计,3≈1.7,结果精确到1m ,则该楼的高度CD 为_______.15.如图,已知双曲线12(0)y x x=<和(0)ky x x =>,直线OA 与双曲线12y x =交于点A ,将直线OA 向下平移与双曲线12y x =交于点B ,与y 轴交于点P ,与双曲线k y x=交于点C ,6ABC S =,:2:1BP CP =,,则k 的值为__________.16.如图,在菱形ABCD 中,tan A 43=,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,延长NF 交DC 于点H ,当EF ⊥AD 时,DHHC的值为_____.三、解答题(本大题共8小题,共80分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)(1)计算:()()-2201921-2 3.14---12π⎛⎫++ ⎪⎝⎭; (2)化简:(x +5)(2x -3)-2x (x 2-2x +3).18.(本小题满分8分)如图,△ABC 中,AB =AC ,点E ,F 在边BC 上,BE =CF ,点D 在AF 的延长线上,AD =AC .(1)求证:△ABE ≌△ACF ;(2)若∠BAE =30°,则∠ADC =__________°.19.(本小题满分8分)在下列网格图中,每个小正方形的边长均为1个单位长度.已知ABC ∆在网格图中的位置如图所示.(1)请在网格图中画出ABC ∆向右平移7单位后的图形111A B C ∆,并直接写出平移过程中线段BC 扫过的面积;(2)请在网格图中画出ABC ∆以P 为对称中心的图形222A B C ∆.(保留作图痕迹)20.(本小题满分8分)为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了名中学生,其中课外阅读时长”2~4小时”的有人;(2)扇形统计图中,课外阅读时长”4~6小时”对应的圆心角度数为°;(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.21.(本小题满分10分)如图,已知在矩形ABCD中,E是BC边上的一个动点,点F,G,H分别是AD,AE,DE的中点.(1)求证:四边形AGHF是平行四边形;(2)若BC=10cm,当四边形EHFG是正方形时,求矩形ABCD的面积.22.(本小题满分10分)在一条笔直的公路上有A、B两地.甲、乙两人同时出发,甲骑电动车从A地到B地,中途出现故障后停车维修,修好车后以原速继续行驶到B地;乙骑摩托车从B地到A地,到达A地后立即按原原速返回,结果两人同时到B地.如图是甲、乙两人与B地的距离y(km)与乙行驶时间x(h)之间的函数图象.(1)A、B两地间的距离为km;(2)求乙与B地的距离y(km)与乙行驶时间x(h)之间的函数关系式;(3)求甲、乙第一次相遇的时间;(4)若两人之间的距离不超过10km时,能够用无线对讲机保持联系,请求出乙在行进中能用无线对讲机与甲保持联系的x取值范围.23.(本小题满分12分)给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且点P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.在平面直角坐标系xOy中,⊙O的半径为1.(1)如图2,已知M(22,22),N(22,﹣22),在A(1,0),B(1,1),C2,0)三点中,是线段MN关于点O的关联点的是;(2)如图3,M(0,1),N 3﹣12),点D是线段MN关于点O的关联点.①∠MDN的大小为;②在第一象限内有一点E3,m),点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;③点F在直线y=﹣33x+2上,当∠MFN≥∠MDN时,求点F的横坐标x的取值范围.24.(本小题满分14分)如图1,抛物线y=34x2﹣94x﹣3,与x轴交于A和B两点(点A在点B的左侧),与y轴交于点C,过点A的直线与抛物线在第一象限的交点M的横坐标为163,直线AM与y轴交于点D,连接BC、A C.(1)求直线AD和BC的解折式;(2)如图2,E为直线BC下方的抛物线上一点,当△BCE的面积最大时,一线段FG2(点F在G的左侧)在直线AM上移动,顺次连接B、E、F、G四点构成四边形BEFG,请求出当四边形BEFG的周长最小时点F的坐标;(3)如图3,将△DAC绕点D逆时针旋转角度α(0°<α<180°),记旋转中的三角形为△DA′C′,若直线A′C′分别与直线BC、y轴交于M、N,当△CMN是等腰三角形时,请直接写出CM的长度.答案与解析1.【答案】D【解析】–2020的倒数是12020-,故选D.2.【答案】C【解析】将439000用科学记数法表示为4.39×105.故选C.3.【答案】C【解析】A、111211(1)(1)(1)n n nn n n n n n n n+++=+=++++,故A错误;B、1111(1)(1)(1)1nn n n n n n nnn+-=-=-++++,故B错误;C、11111(1)(1)(1)n nn n n n n n n n+-=-=++++,故C正确;D、111(1)(1))1(11n nn n n n n n n n-=-=-----,故D错误,故选C.4.【答案】A【解析】由三角形的外角性质得:∠1=30°+90°=120°.故答案为:A.5.【答案】B【解析】∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l圆锥侧面展开图的面积为:S侧=12×2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选B.6.【答案】C【解析】画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和等于5的有4种情况, ∴两次摸出的小球的标号之和等于5的概率是:41=164,故选C . 7.【答案】A【解析】∵90B ∠=︒,180A B C ∠+∠+∠=︒,∴90A C ∠+∠=︒, ∵12360A C ∠+∠+∠+∠=︒,∴1236090270∠+∠=︒-︒=︒,故选A . 8.【答案】B【解析】如图,过点D 作DF ⊥AB ,DG ⊥AC ,垂足分别为F 、G , ∵AD 是角平分线,∴DF =DG ,设DF =DG =h ,S △ABC =S △ABD +S △ADC ,即112422AB DF AC DG =⋅+⋅, ∴5h +3h =48,解得h =6,∴156152ABD S =⨯⨯=,∵BE 是△ABD 中的中线,∴7.512ABE BDE ABD S S S ===,故选B .9.【答案】D【解析】如图,若点B 1在BC 左侧,∵∠C =90°,AC =3,BC =4,∴AB =225AC BC +=, ∵点D 是AB 的中点,∴BD =12BA =52, ∵B 1D ⊥BC ,∠C =90°,∴B 1D ∥AC ,∴12BD BE DE AB BC AC ===, ∴BE =EC =12BC =2,DE =12AC =32,∵折叠,∴B 1D =BD =52,B 1P =BP ,∴B 1E =B 1D –DE =1,∴在Rt △B 1PE 中,B 1P 2=B 1E 2+PE 2, ∴BP 2=1+(2–BP )2,∴BP =54,如图,若点B 1在BC 右侧,∵B 1E =DE +B 1D =32+52,∴B 1E =4, 在Rt △EB 1P 中,B 1P 2=B 1E 2+EP 2,∴BP 2=16+(BP –2)2,∴BP =5,故选D . 10.【答案】B【解析】A .由二次函数图象可知,0,0a b >>,由反比例函数图象可知0ab <,错误; B .由二次函数图象可知,0,0a b >>,由反比例函数图象可知0ab >,正确; C .由二次函数图象可知,0,0a b ><,由反比例函数图象可知0ab >,错误; D .由二次函数图象可知,0,0a b <>,由反比例函数图象可知0ab >,错误; 故答案为:B .11.【答案】()()ab a b a b +-【解析】3322()()()a b ab ab a b ab a b a b -=-=+-,故答案为:()()ab a b a b +-. 12.【答案】200°【解析】最大扇形的圆心角的度数=360°×5135++=200°.故答案为200°. 13.【答案】甲【解析】由于2S 甲<2S 乙,则数学成绩较稳定的同学是甲.故答案为:甲. 14.【答案】51m【解析】根据题意得:∠A =30°,∠DBC =60°,DC ⊥AC ,∴∠ADB =∠DBC ﹣∠A =30°,∴∠ADB =∠A =30°,∴BD =AB =60m ,∴CD =BD •sin60°=6032⨯=303≈51(m ). 故答案为:51m . 15.【答案】3-【解析】如图,连接OB ,OC ,作BE ⊥OP 于E ,CF ⊥OP 于F .∵OA ∥BC ,∴S △OBC =S △ABC =6, ∵:2:1BP CP =,∴S △OPB =4,S △OPC =2,又由反比例函数的几何意义可知6OBE S ∆=,∴64=2PBE S ∆=-.∵△BEP ∽△CFP ,∴2()CFP PBE S PC S PB∆∆=, ∴11242CFP S ∆=⨯=,∴S △OCF =S △OPC –S △CFP =32,∴k =﹣3.故答案为:﹣3. 16.【答案】87【解析】如图,由翻折不变性可知:∠A =∠E ,∴tan A =tan E 4DM 3DE==, ∴可以假设:DM =4k ,DE =3k ,则EM =5k ,AD =EF =CD =9k .∵AD ∥BC ,∴∠A +∠B =180°, ∵∠DFH +∠EFN =180°,∠B =∠EFN ,∴∠A =∠DFH , ∵EF ⊥AD ,∴∠ADF =90°,∵AB ∥CD ,∴∠A +∠ADC =180°, ∴∠A +∠HDF =90°,∴∠HDF +∠DFH =90°, ∴tan ∠DFH =tan A DH 4FH 3==,设FH =3x ,则DH =4x 在R △DHF 中,DF =EF ﹣DE =6k ,根据勾股定理得,DH 2+FH 2=DF 2,∴16x 2+9x 2=36k 2,∴x 65=k ,∴DH 245=k , ∴CH =9k 245-k 215=k ,∴24kDH 8521HC 7k 5==.故答案为:87. 17.【解析】(1)()()-2201921-2 3.14---12π⎛⎫++ ⎪⎝⎭=414(1)++--- =2.(2)()2(5)(23)223+---+x x x x x232=231015246-+--+-x x x x x x 32=2615-++-x x x .18.【解析】(1)∵AB =AC ,∴∠B =∠ACF ,在△ABE 和△ACF 中,AB AC B ACF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACF (SAS );(2)∵△ABE ≌△ACF ,∠BAE =30°,∴∠CAF =∠BAE =30°, ∵AD =AC ,∴∠ADC =∠ACD , ∴∠ADC =280013︒-︒=75°,故答案为75. 19.【解析】(1)如图,△A 1B 1C 1为所作,线段BC 扫过的面积=7×4=28;(2)如图,△A 2B 2C 2为所作.20.【解析】(1)本次调查共随机抽取了:50÷25%=200(名)中学生, 其中课外阅读时长”2~4小时”的有:200×20%=40(人),故答案为:200,40;(2)扇形统计图中,课外阅读时长”4~6小时”对应的圆心角度数为:360°×(1﹣30200﹣20%﹣25%)=144°,故答案为:144;(3)20000×(1﹣30200﹣20%)=13000(人),答:该地区中学生一周课外阅读时长不少于4小时的有13000人.21.【解析】证明:(1)∵点F,G,H分别是AD,AE,DE的中点, ∴FH∥AE,GH∥AD,∴四边形AGHF是平行四边形;(2)当四边形EGFH是正方形时,连接EF,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=12BC=12AD=5cm,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC, ∴AB=EF=GH=5cm,∴矩形ABCD 的面积=211010502AB AD cm ⨯=⨯⨯=. 22.【解析】(1)由题意,得A 、B 两地间的距离为30km .故答案为30;(2)设乙前往A 地的距离y (km)与乙行驶时间x (h )之间的关系式为y 乙1=k 1x ,由题意,得30=k 1,∴y 乙1=30x ; 设乙返回B 地距离B 地的距离y (km)与乙行驶时间x (h )之间的关系式为y 乙2=k 2x +b 2,由题意,得22223002k b k b =+⎧⎨=+⎩,解得:223060k b =-⎧⎨=⎩,∴y =–30x +60. (3)由函数图象,得(30+20)x =30,解得x =0.6. 故甲、乙第一次相遇是在出发后0.6小时;(4)设甲在修车前y 与x 之间的函数关系式为y 甲1=kx +b ,由题意得30150.75b k b =⎧⎨=+⎩,解得:k 20b 30=-⎧⎨=⎩,y 甲1=﹣20x +30, 设甲在修车后y 与x 之间的函数关系式为y 甲2=k 3x +b 3,由题意,得333315 1.25k b 02k b =+⎧⎨=+⎩,解得:332040k b =-⎧⎨=⎩,∴y 甲2=﹣20x +40, 当20303010301510x x x -+-≤⎧⎨-⎩时,∴25≤x ≤56;306015102x x -+-⎧⎨⎩,解得:76≤x ≤2.∴25≤x ≤56或76≤x ≤2.23.【解析】(1)由题意线段MN 关于点O 的关联点的是以线段MN 的中点为圆心,22为半径的圆上,所以点C 满足条件,故答案为C .(2)①如图3–1中,作NH ⊥x 轴于H .∵N(32,–12),∴tan∠NOH=33,∴∠NOH=30°,∠MON=90°+30°=120°,∵点D是线段MN关于点O的关联点,∴∠MDN+∠MON=180°,∴∠MDN=60°.故答案为60°.②如图3–2中,结论:△MNE是等边三角形.理由:作EK⊥x轴于K.∵E(3,1),∴tan∠EOK=33,∴∠EOK=30°,∴∠MOE=60°,∵∠MON+∠MEN=180°,∴M、O、N、E四点共圆,∴∠MNE=∠MOE=60°, ∵∠MEN=60°,∴∠MEN=∠MNE=∠NME=60°,∴△MNE是等边三角形.③如图3–3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,易知E3∴点E 在直线y =–33x +2上,设直线交⊙O ′于E 、F ,可得F (32,32), 观察图象可知满足条件的点F 的横坐标x 的取值范围32≤x F ≤3. 24.【解析】(1)在抛物线y =239344x x --中,令x =0,得y =﹣3, ∴C (0,﹣3),令y =0,得239x x 3044--=,解得x 1=﹣1,x 2=4,∴A (﹣1,0),B (4,0),令x =163,得y =231691634343⎛⎫⨯-⨯- ⎪⎝⎭=193,∴M (163,193), 设直线AD 的解析式为y =k 1x +b 1,将A (﹣1,0),M(163,193)代入得1111k b 01619k b 33-+=⎧⎪⎨+=⎪⎩,解得11k 1b 1=⎧⎨=⎩, ∴直线AD 的解析式为y =x +1.设直线BC 的解析式为y =k 2x +b 2,将B (4,0),C (0,﹣3)代入,得2224k b 0b 3+=⎧⎨=-⎩,解得223k 4b 3⎧=⎪⎨⎪=-⎩,∴直线BC 的解析式为y =34x ﹣3;(2)如图2,过点E 作EH ∥y 轴交BC 于H ,设E (t ,239344t t --),H (t ,334t -), ∴HE =233933444t t t ⎛⎫---- ⎪⎝⎭=2334t t -+ ∴12BCESOB HE =⨯=2134324t t ⎛⎫⨯-+ ⎪⎝⎭=2362t t -+=23(2)62t --+∵32-<0, ∴当t =2时,S △BCE 的最大值=6,此时E (2,92-),作点B 关于直线y =x +1的对称点B 1,连接B 1G ,过点F 作B 2F ∥B 1G ,且B 2F =B 1G ,∴B 1(﹣1,5),∵FG 2,且FG 在直线y =x +1上,∴F 可以看作是G 向左平移4个单位,向下平移4个单位后的对应点, ∴B 2(﹣5,1),当B 2、F 、E 三点在同一直线上时,BEFG 周长最小,设直线B 2E 解析式为y =mx +n ,将B 2(﹣5,1),E (2,92-)分别代入,得5m n 192m n 2-+=⎧⎪⎨+=-⎪⎩,解得11144114m n ⎧=-⎪⎪⎨⎪=-⎪⎩, ∴直线B 2E 解析式为y =11411414x --, 联立方程组111411414y x y x =+⎧⎪⎨=-⎪⎩,解得11565x y ⎧=-⎪⎪⎨⎪=⎪⎩.∴F (115,65-). (3)如图,分三种情况:在1y x =+中,令0x =,则1y = (0,1)D ∴(1,0),(4,0)(0,3)A B C --,1,4,1,3,4AD OB OD OC DC ∴=====2210AC AO OC ∴=+=,设AC 边上的高为h ,根据等面积法得,1122AC h CD AO ⨯=⋅⋅ 210510AO DC h AC ⋅∴===4,3OB OC ==且OB ⊥OC ,4tan 3OB BCD OC ∴∠== ①CM =MN 时,如图,过点M 作MG ⊥OC ,过点D 作DP ⊥MN 于点P4tan 3BCD ∠=∴设3CG a =,则3,4NG a MG a ==, 由勾股定理得,5MN MC a ==,,MNO DNP DPN MGN ∠=∠∠=∠MGN DPN ∴∠MG MN DP PN∴=,即45246105a aa =- 解得,81012a -=,0a =(舍去) 40510512CM a -∴==②当MC CN =时,如图,过点M 作MG ⊥OC ,过点D 作DP ⊥MN 于点P4tan 3BCD ∠=设3CG a =,则4MG a =5CM CN a ∴== 2GN CN CG a ∴=-=25MN a ∴=45DN DC CN a ∴=-=-DPNMGN ∆DP DNMG MN ∴=210455425a a a-∴=,解得:0a =(舍去),425a -=, 42CM =-;③当CN MN =时,如图,作CQ MN ⊥,NG CM ⊥,4tan 3BCD ∠=设3CG a =,则4,5NG a CN MN a ===3,6MG a CM a ∴==45DN a ∴=-MN CQ CM NG ⋅=⋅245CQ a ∴=DPNCQN ∆DP DN QC CN ∴=,即2104552455a a a -=,解得,0a =(舍去),410512a =- 241065CM a ∴==-; ④当CM CN =时,过M 作MG DC ⊥,过点D 作DP ⊥MN 于点P4tan 3BCD ∠= 设3CG a =,则4,5MG a CM CN a === 45DN a ∴=+tan MG DP PND NG NP∴∠== 2104553a NP a a=+ 4105NP ∴= 在Rt DPN ∆中,222DN DP NP =+ 222241010(45)55a ∴+=+ 解得,42646,55a a -+--==(舍去) 5426CM a ∴==-+综上,CM 40510-,4224105或64。
中考一模数学试卷真题答案
一、选择题(每小题3分,共30分)1. 已知函数f(x) = x^2 - 4x + 3,则f(2)的值为()A. -1B. 1C. 3D. 5答案:B 解析:将x=2代入函数f(x),得f(2) = 2^2 - 42 + 3 = 4 - 8 + 3 = -1。
故选B。
2. 在直角坐标系中,点A(1,2),点B(-2,1)关于直线y=x对称的点的坐标为()A. (2,-1)B. (-1,2)C. (-2,1)D. (1,2)答案:A 解析:点A关于直线y=x对称的点的坐标可以通过交换横纵坐标得到,即(2,-1)。
故选A。
3. 若等差数列{an}的前n项和为Sn,首项为a1,公差为d,则Sn+1 - Sn = ()A. a1B. dC. 2dD. 2a1答案:C 解析:等差数列的前n项和Sn = n/2 (2a1 + (n-1)d),则Sn+1 =(n+1)/2 (2a1 + nd)。
相减得Sn+1 - Sn = (n+1)/2 (2a1 + nd) - n/2 (2a1+ (n-1)d) = d。
故选C。
4. 若a,b,c为等比数列,且a + b + c = 12,b^2 = ac,则a + c的值为()A. 3B. 6C. 9D. 12答案:B 解析:由等比数列的性质,得b^2 = ac。
又因为a + b + c = 12,设b= 4,则a + c = 12 - b = 8。
故选B。
5. 已知函数f(x) = log2(x+1) - 1,若f(x)的值域为()A. (-∞,0)B. [0,∞)C. (0,1)D. (-1,0)答案:B 解析:函数f(x) = log2(x+1) - 1,x+1 > 0,即x > -1。
当x=-1时,f(x)取得最小值-1,当x趋向于正无穷时,f(x)趋向于正无穷。
故值域为[0,∞)。
故选B。
二、填空题(每小题5分,共25分)6. 已知方程x^2 - 3x + 2 = 0的两个根为a和b,则a + b的值为______。
中考一模测试 数学试卷 附答案解析
1.下列各数中,比-4小的数是()
A. B. C.0D.2
2.下面有四个图案,其中不是轴对称图形的是()
A. B. C. D.
3.抛物线y=(x﹣2)2+3的顶点坐标是()
A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)
4.已知AB=AC.如图,D、E为∠BAC的平分线上的两点,连接BD、CD、BE、CE;如图4,D、E、F为∠BAC的平分线上的三点,连接BD、CD、BE、CE、BF、CF;如图5,D、E、F、G为∠BAC的平分线上的四点,连接BD、CD、BE、CE、BF、CF、BG、CG……依此规律,第17个图形中有全等三角形的对数是()
故选C.
考点:命题与定理.
6.下列整数中,与 最接近的是
A.4B.5C.6D.7
【答案】C【解析】【分析】由于9< <16,可判断 与4最接近,从而可判断与10− 最接近的整数为6.
(3)根据以上分析,你认为组(填”A”或”B”)的同学对今年”两会”知识的知晓情况更好一些,请写出你这样判断的理由(至少写两条):①②.
四.解答题(共5小题,满分40分)
22.问题呈现:我们知道反比例函数y= (x>0) 图象是双曲线,那么函数y= +n(k、m、n为常数且k≠0)的图象还是双曲线吗?它与反比例函数y= (x>0)的图象有怎样的关系呢?让我们一起开启探索之旅……
A组同学的测试成绩分别为:91 91 86 93 85 89 89 88 87 91
B组同学的测试成绩分别为:88 97 88 85 86 94 84 83 98 87
根据以上数据,回答下列问题:
(1)完成下表:
组别
平均数
中考数学一模试卷(附答案和解释)
中考数学一模试卷(附答案和解释)2019中考数学一模试卷(附答案和解释)中考复习最忌心浮气躁,急于求成。
指导复习的教师,应给学生一种乐观、镇定、自信的精神面貌。
要扎扎实实地复习,一步一步地前进,下文为大家准备了中考数学一模试卷。
A级基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a万人,则女生约有()A.(15+a)万人B.(15-a)万人C.15a万人D.15a万人2.若x=1,y=12,则x2+4xy+4y2的值是()A.2B.4C.32D.123.(2019年河北)如图15,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y=()A.2B.3C.6D.x+34.(2019年浙江宁波)已知实数x,y满足x-2+(y+1)2=0,则x-y=()A.3B.-3C.1D.-15.(2019年江苏常州)有3张边长为a的正方形纸片,4张边长分别为a,b(ba)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为()________.14.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a-b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是()A.①②B.①③C.②③D.①②③C级拔尖题X Kb 1. C om15.(2019年山东东营)若3x=4,9y=7,则3x-2y的值为()A.47B.74C.-3D.2716.(2019年广东深圳十校模拟二)如图17,对于任意线段AB,可以构造以AB为对角线的矩形ACBD.连接CD,与AB交于A1点,过A1作BC的垂线段A1C1,垂足为C1;连接C1D,与AB交于A2点,过A2作BC的垂线段A2C2,垂足为C2;连接C2D,与AB交于A3点,过A3作BC的垂线段A3C3,垂足为C3如此下去,可以依次得到点A4,A5,,An.如果设AB的长为1,依次可求得A1B,A2B,A3B的长,则AnB的长为(用n的代数式表示)()A.1nB.12nC.1n+1D.12n+1参考答案1.B2.B3.B4.A5.D6.17.58.4025x29.解:A2-B2=(2x+y)2-(2x-y)2=4x2y=8xy.10.解:当a=3,b=|-2|=2,c=12时,a2+b-4c=3+2-2=3.11.B 解析:a2-b2=(a+b)(a-b),得到14=12(a+b),即可得到a+b=12.12.m+43 1 解析:m2-163m-12=m+4m-43m-4=m+43;当m=-1时,原式=-1+43=1.13.9 14.A15.A 解析:∵3x=4,9y=7,3x-2y=3x32y=3x9y=47.16.C为大家推荐的中考数学一模试卷的内容,还满意吗?相信大家都会仔细阅读,加油哦!。
中考数学一模试题(含答案解析)
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________时间120分钟满分100分一.选择题(共8小题,满分16分,每小题2分)1.下面四个图形分别是可回收垃圾、其他垃圾、厨余垃圾、有害垃圾的标志,这四个标志中是轴对称图形的是()A.B.C.D.2.下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×1033.如图,数轴上的点A所表示的数为x,则x的值为()A.B.+1C.﹣1D.1﹣4.若正多边形的内角和是1260°,则该正多边形的一个外角为()A.30°B.40°C.45°D.60°5.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=()度.A.70B.150C.90D.1006.菲尔兹奖(FieldsMedal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家.对截至2014年获奖者获奖时的年龄进行统计,整理成下面的表格.组别第一组第二组第三组第四组年龄段(岁)27<x≤3131<x≤3434<x≤3737<x≤40频数(人)8111720则这56个数据的中位数落在()A.第一组B.第二组C.第三组D.第四组7.如果a﹣b=5,那么代数式(﹣2)•的值是()A.﹣B.C.﹣5D.58.如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=x2﹣x+9;②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<6时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④二.填空题(共8小题,满分16分,每小题2分)9.因式分解:4a3﹣16a=.10.设M=2x﹣3y,N=3x﹣2y,P=xy.若M=5,N=0,则P=.11.如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.12.如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于.13.在正方形网格中,A、B、C、D、E均为格点,则∠BAC﹣∠DAE=°.14.已知扇形的半径为6cm,弧长为5πcm,则扇形的圆心角为度.15.若关于x的一元二次方程x2+2x+k=0无实数根,则k的取值范围是.16.如图1,在△ABC中,AB>AC,D是边BC上一动点,设B,D两点之间的距离为x,A,D两点之间的距离为y,表示y与x的函数关系的图象如图2所示.则线段AC的长为,线段AB 的长为.三.解答题(共12小题,满分68分)17.(5分)计算:2sin45°+|﹣1|﹣tan60°+(π﹣2)0.18.(5分)解不等式:1﹣x≥﹣,并把它的解集在数轴上表示出来.19.(5分)已知x2﹣3x﹣1=0,求代数式(x+2)(x﹣2)﹣x(3x﹣6)的值.20.(5分)如图,AB为半圆O的直径,且AB=10,C为半圆上的一点,AC<BC.(1)请用尺规作图在BC上作一点D,使得BD=AC+CD;(不写作法,保留痕迹)(2)在(1)的条件下,连接OD,若OD=,求△ABC的面积.21.(6分)重庆是一个非常适合旅游打卡的城市,在渝中区有“洪崖洞”,南岸区有“南山一颗树”等等,为了解初三学生对重庆历史文化的了解程度,随机抽取了男、女各m名学生进行问卷测试,问卷共30道选择题,现将得分情况统计,并绘制了如图不完整的统计图(数据分组为A组:x<18,B组:18≤x<22,C组:22≤x<26,D组:26≤x≤30,x表示问卷测试的分数),其中男生得分处于C组的有14人,男生C组得分情况分别为:22,22,22,22,22,23,23,23,24,24,24,25,25,25.男生、女生得分的平均数、中位数、众数(单位:分)如表所示:组别平均数中位数众数男20n22女202320(1)直接写出m,n的值,并补全条形统计图;(2)通过以上数据分析,你认为成绩更好的是男生还是女生?说明理由(一条理由即可);(3)已知初三年级总人数为1800人,请估计参加问卷测试,成绩处于C组的人数.22.(5分)如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED =EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.23.(6分)探究一次函数y=kx+k﹣2(k是不为0的常数)图象的共同特点.(探究过程)小华尝试把x=﹣1代入时,发现可以消去k,竟然求出了y=﹣2.老师问:结合一次函数图象,这说明了什么?小组讨论得出:无论k取何值,一次函数y=kx+k﹣2的图象一定经过定点(﹣1,﹣2),老师:如果一次函数的图象是经过某一个定点的直线,那么我们把这样的一次函数图象称为“陀螺线”.若一次函数y=(k﹣1)x﹣(2k+3)的图象是“陀螺线”,(1)一次函数y=(k﹣1)x﹣(2k+3)的图象经过定点P的坐标是.(2)已知一次函数y=(k﹣1)x﹣(2k+3)的图象与x轴,y轴分别相交于点A、B.①若△OBP的面积为8,求k的值.②若S△AOB:S△OBP=3:2,求k的值.24.(6分)如图,P A、PB与⊙O相切于点A、B,过点B作BD∥AP交⊙O于点D.(1)求证:AD=AB;(2)若BD•BP=80,sin∠DAB=,求△ABP的面积.25.(5分)如图,已知△ABC中,BE平分∠ABC,且BE=BA,点F是BE延长线上一点,且BF=BC,过点F作FD⊥BC于点D.(1)求证:∠BEC=∠BAF;(2)判断△AFC的形状并说明理由.(3)若CD=2,求EF的长.26.(7分)如图,一次函数的图象y=ax+b(a≠0)与反比例函数y=(k≠0)的图象交于点A(,4),点B(m,1).(1)求这两个函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,点P是反比例函数图象上的一点,当S△OCP:S△BCD=1:3时,请直接写出点P的坐标.27.(6分)已抛物线y=x2+2x+m的顶点在x轴上.(1)求m的值;(2)若P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,求实数n的取值范围.28.(7分)在平面直角坐标系xOy中,对于△ABC,点P在BC边的垂直平分线上,若以点P为圆心,PB 为半径的⨀P与△ABC三条边的公共点个数之和不小于3,则称点P为△ABC关于边BC的“Math点”.如图所示,点P即为△ABC关于边BC的“Math点”.已知点P(0,4),Q(a,0).(1)如图1,a=4,在点A(1,0)、B(2,2)、C(,)、D(5,5)中,△POQ关于边PQ的“Math点”为.(2)如图2,,①已知D(0,8),点E为△POQ关于边PQ的“Math点”,请直接写出线段DE的长度的取值范围;②将△POQ绕原点O旋转一周,直线交x轴、y轴于点M、N,若线段MN上存在△POQ关于边PQ的“Math点”,求b的取值范围.参考答案一.选择题(共8小题,满分16分,每小题2分)1.下面四个图形分别是可回收垃圾、其他垃圾、厨余垃圾、有害垃圾的标志,这四个标志中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:B.2.下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×103【解答】解:数字2034000科学记数法可表示为2.034×106.故选:A.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.+1C.﹣1D.1﹣【解答】解:根据题意得:x=﹣1=﹣1,故选:C.4.若正多边形的内角和是1260°,则该正多边形的一个外角为() A.30°B.40°C.45°D.60°【解答】解:设该正多边形的边数为n,根据题意列方程,得(n﹣2)•180°=1260°解得n=9.∴该正多边形的边数是9,∵多边形的外角和为360°,360°÷9=40°,∴该正多边形的一个外角为40°.故选:B.5.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=()度.A.70B.150C.90D.100【解答】解:如图,延长AE交CD于点F,∵AB∥CD,∴∠BAE+∠EFC=180°,又∵∠BAE=120°,∴∠EFC=180°﹣∠BAE=180°﹣120°=60°,又∵∠DCE=30°,∴∠AEC=∠DCE+∠EFC=30°+60°=90°.故选:C.6.菲尔兹奖(FieldsMedal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家.对截至2014年获奖者获奖时的年龄进行统计,整理成下面的表格.组别第一组第二组第三组第四组年龄段(岁)27<x≤3131<x≤3434<x≤3737<x≤40频数(人)8111720则这56个数据的中位数落在()A.第一组B.第二组C.第三组D.第四组【解答】解:题目中数据共有56个,故中位数是按从小到大排列后第28、第29两个数的平均数,而第28、第29两个数均在第三组,故这组数据的中位数落在第三组.故选:C.7.如果a﹣b=5,那么代数式(﹣2)•的值是()A.﹣B.C.﹣5D.5【解答】解:∵a﹣b=5,∴原式=•=•=a﹣b=5,故选:D.8.如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=x2﹣x+9;②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<6时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④【解答】解:①从图象看,抛物线的顶点坐标为(2,9),抛物线和x轴的一个交点坐标为(8,0),则设抛物线的表达式为y=a(x﹣2)2+9,将(8,0)代入上式得:0=a(8﹣2)2+9,解得a=﹣,故抛物线的表达式为y=x2﹣x+8,故①错误,不符合题意;②从点A、B的横坐标看,点A距离抛物线对称轴远,故n>m正确,符合题意;③抛物线的对称轴为直线x=2,抛物线和x轴的一个交点坐标为(8,0),则另外一个交点为(﹣4,0),故③正确,符合题意;④从图象看,当0<x<6时,m<y≤9,故④错误,不符合题意;故选:C.二.填空题(共8小题,满分16分,每小题2分)9.因式分解:4a3﹣16a=4a(a+2)(a﹣2).【解答】解:原式=4a(a2﹣4)=4a(a+2)(a﹣2),故答案为:4a(a+2)(a﹣2)10.设M=2x﹣3y,N=3x﹣2y,P=xy.若M=5,N=0,则P=6.【解答】解:由题意得,①+②得5x﹣5y=5,即x﹣y=1③,①﹣③×2得﹣y=3,解得y=﹣3,把y=﹣3代入③得,x=﹣2,∴P=xy=﹣2×(﹣3)=6,故答案为6.11.如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件∠AFB=∠DEC或AB=DC,可以判断△ABF≌△DCE.【解答】解:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,又∵AF=DE,∴若添加∠AFB=∠DEC,可以利用“SAS”证明△ABF≌△DCE,若添加AB=DC,可以利用“SSS”证明△ABF≌△DCE,所以,添加的条件为∠AFB=∠DEC或AB=DC.故答案为:∠AFB=∠DEC或AB=DC.12.如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于25°.【解答】解:∵∠AOC与∠D是同弧所对的圆心角与圆周角,∠AOC=50°,∴∠D=∠AOC=25°.故答案为25°.13.在正方形网格中,A、B、C、D、E均为格点,则∠BAC﹣∠DAE=45°.【解答】解:连接AF、EF,则∠CAB=∠F AD,∵∠F AD﹣∠DAE=∠F AE,∴∠BAC﹣∠DAE=∠F AE,设小正方形的边长为1,则AF=,EF=,AE=,∴AF2+EF2=AE2,∴△AFE是等腰直角三角形,∴∠F AE=45°,即∠BAC﹣∠DAE=45°,故答案为:45.14.已知扇形的半径为6cm,弧长为5πcm,则扇形的圆心角为150度.【解答】解:设扇形的圆心角为n°,∵扇形的半径为6cm,弧长为5πcm,∴5π=,解得n=150,故答案为:150.15.若关于x的一元二次方程x2+2x+k=0无实数根,则k的取值范围是k>1.【解答】解:根据题意得△=b2﹣4ac=22﹣4k<0,解得k>1.故答案为:k>1.16.如图1,在△ABC中,AB>AC,D是边BC上一动点,设B,D两点之间的距离为x,A,D两点之间的距离为y,表示y与x的函数关系的图象如图2所示.则线段AC的长为,线段AB的长为2.【解答】解:从图象看,当x=1时,y=,即BD=1时,AD=,当x=7时,y=,即BD=7时,C、D重合,此时y=AD=AC=,则CD=6,即当BD=1时,△ADC为以点A为顶点腰长为的等腰三角形,如下图:过点A作AH⊥BC于点H,在Rt△ACH中,AC=,CH=DH=CD=3,则AH===2,在Rt△ABH中,AB===2,故答案为:,2.三.解答题(共12小题,满分68分)17.(5分)计算:2sin45°+|﹣1|﹣tan60°+(π﹣2)0.【解答】解:原式=2×+﹣1﹣+1==.18.(5分)解不等式:1﹣x≥﹣,并把它的解集在数轴上表示出来.【解答】解:去分母得,6﹣4x≥3﹣(2x+1),去括号得,6﹣4x≥3﹣2x﹣1,移项、合并同类项得,﹣2x≥﹣4,把x的系数化为1得,x≤2.在数轴上表示此不等式的解集如下:19.(5分)已知x2﹣3x﹣1=0,求代数式(x+2)(x﹣2)﹣x(3x﹣6)的值.【解答】解:原式=x2﹣4﹣3x2+6x=﹣2x2+6x﹣4,∵x2﹣3x﹣1=0,∴x2﹣3x=1,∴原式=﹣2(x2﹣3x)﹣4=﹣2×1﹣4=﹣6.20.(5分)如图,AB为半圆O的直径,且AB=10,C为半圆上的一点,AC<BC.(1)请用尺规作图在BC上作一点D,使得BD=AC+CD;(不写作法,保留痕迹)(2)在(1)的条件下,连接OD,若OD=,求△ABC的面积.【解答】解:(1)如图,点D即为所求作.(2)连接AE,OD.∵OA=OB,DE=DB,∴AE=2OD=6,∵AB是直径,∴∠ACE=∠ACB=90°,在Rt△ACE中,AC=EC,∴AC=AE=6,∴BC===6,∴S△ABC=•AC•BC=×6×8=24.21.(6分)重庆是一个非常适合旅游打卡的城市,在渝中区有“洪崖洞”,南岸区有“南山一颗树”等等,为了解初三学生对重庆历史文化的了解程度,随机抽取了男、女各m名学生进行问卷测试,问卷共30道选择题,现将得分情况统计,并绘制了如图不完整的统计图(数据分组为A组:x<18,B组:18≤x<22,C组:22≤x<26,D组:26≤x≤30,x表示问卷测试的分数),其中男生得分处于C组的有14人,男生C组得分情况分别为:22,22,22,22,22,23,23,23,24,24,24,25,25,25.男生、女生得分的平均数、中位数、众数(单位:分)如表所示:组别平均数中位数众数男20n22女202320(1)直接写出m,n的值,并补全条形统计图;(2)通过以上数据分析,你认为成绩更好的是男生还是女生?说明理由(一条理由即可);(3)已知初三年级总人数为1800人,请估计参加问卷测试,成绩处于C组的人数.【解答】解:(1)m=14÷28%=50(人),50×(2%+24%)=12(人),∴男生中位数n=(25+25)÷2=25,女生C组人数=50﹣2﹣13﹣20=15(人),条形图如图所示:(2)男生的成绩比较好,因为男生的中位数比女生的中位数大(也可以根据众数的大小判断);(3)1800×=522(人),答:估计成绩处于C组的人数约为522人.22.(5分)如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED =EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.【解答】解:(1)∵△ABC是等边三角形,E为AB的中点,∴∠BCE=30°,BE=AE,∵ED=EC,∴∠EDB=∠BCE=30°,∵∠ABD=120°,∴∠DEB=30°,∴DB=EB,∴AE=DB;(2)如图1,E在线段AB上时,∵AB=2,AE=1,∴点E是AB的中点,由(1)知,BD=AE=1,∴CD=BC+BD=3;如图2,E在线段AB的反向延长线上时,∵AE=1,AB=2,∴BE=3,∵△ABC是等边三角形,∴∠BAC=∠BCA=60°,AB=BC=AC=2,过E作EH∥AC交BC的延长线于H,∴∠BEH=∠BHE=60°,∴△BEH是等边三角形,∴BE=EH=BH=3,∠B=∠H=60°,∵ED=EC,∴∠EDC=∠ECD,∴∠B+∠BED=∠H+∠HEC,∴∠BED=∠HEC,在△BDE和△HCE中,,∴△BDE≌△HCE(SAS),∴BD=HC=BH﹣BC=3﹣2=1,∴CD=BH﹣BD﹣HC=3﹣1﹣1=1.综上所述,CD的长为1或3.23.(6分)探究一次函数y=kx+k﹣2(k是不为0的常数)图象的共同特点.(探究过程)小华尝试把x=﹣1代入时,发现可以消去k,竟然求出了y=﹣2.老师问:结合一次函数图象,这说明了什么?小组讨论得出:无论k取何值,一次函数y=kx+k﹣2的图象一定经过定点(﹣1,﹣2),老师:如果一次函数的图象是经过某一个定点的直线,那么我们把这样的一次函数图象称为“陀螺线”.若一次函数y=(k﹣1)x﹣(2k+3)的图象是“陀螺线”,(1)一次函数y=(k﹣1)x﹣(2k+3)的图象经过定点P的坐标是(2,﹣5).(2)已知一次函数y=(k﹣1)x﹣(2k+3)的图象与x轴,y轴分别相交于点A、B.①若△OBP的面积为8,求k的值.②若S△AOB:S△OBP=3:2,求k的值.【解答】解:(1)当x=2时,y=(k﹣1)x﹣(2k+3)=2(k﹣1)﹣(2k+3)=﹣5;∴P (2,﹣5),故答案为:(2,﹣5);(2)解:①当x=0时,y=﹣(2k+3)∴OB=|2k+3|,∵P(2,﹣5),∴;∴2k+3=±8,解得:;②当y=0时,,∴,∴,∵S△OAB:S△OBP=3:2,∴,即,∴,解得:k=0或k=6,即k=0或k=6.24.(6分)如图,P A、PB与⊙O相切于点A、B,过点B作BD∥AP交⊙O于点D.(1)求证:AD=AB;(2)若BD•BP=80,sin∠DAB=,求△ABP的面积.【解答】(1)证明:连接AO,并延长交DB于点E,∵P A是⊙O的切线,∴OA⊥AP,∵BD∥AP,∴OA⊥BD于点E,∴DE=BE,即AE是BD的垂直平分线,∴AD=BD;(2)解:连接OB,OP交AB于点F,∵∠DAB=2∠OAB=∠EOB,且sin∠DAB=,∴sin∠EOB=,在Rt△EOB中,,设EB=4a,则OB=OA=5a,OE=3a,∴AE=8a,∴tan∠EAB=,又∵P A,PB与⊙O相切于点A,B,∴P A=PB,且OP平分∠APB,∴OP⊥AB,∴∠OP A+∠P AB=90°,∵∠OAB+∠P AB=90°,∴∠OAB=∠OP A,即tan∠OAB=tan∠OP A=,∴,即AP=BP=10a,又∵BD•BP=80,∴2BE•BP=80,即BE•BP=4a×10a=40a2=40,∴a=1,∴AE=8,BE=4,∴AB===4,设AF=b,则PF=2b,∴b2+(2b)2=102,∴b=2,∴FP=4,∴S△ABP=AB•FP==40.25.(5分)如图,已知△ABC中,BE平分∠ABC,且BE=BA,点F是BE延长线上一点,且BF=BC,过点F作FD⊥BC于点D.(1)求证:∠BEC=∠BAF;(2)判断△AFC的形状并说明理由.(3)若CD=2,求EF的长.【解答】解:(1)∵BE平分∠ABC,∴∠EBC=∠ABF,在△BEC和△BAF中,,∴△BEC≌△BAF(SAS),∴∠BEC=∠BAF;(2)△AFC是等腰三角形.证明:过F作FG⊥BA,与BA的延长线交于点G,如图,∵BA=BE,BC=BF,∠ABF=∠CBF,∴∠AEB=∠BCF,∵∠BEC=∠BAF,∴∠GAF=∠AEB=∠BCF,∵BF平分∠ABC,FD⊥BC,FG⊥BA,∴FD=FG,在△CDF和△AGF中,,∴△CDF≌△AGF(AAS),∴FC=F A,∵△ACF是等腰三角形;(3)设AB=BE=x,∵△CDF≌△AGF,CD=2,∴CD=AG=2,∴BG=BA+AG=x+2,在Rt△BFD和Rt△BFG中,,∴△BFD≌△BFG(HL),∴BD=BG=x+2,∴BF=BC=BD+CD=x+4,∴EF=BF﹣BE=x+4﹣x=4.26.(7分)如图,一次函数的图象y=ax+b(a≠0)与反比例函数y=(k≠0)的图象交于点A(,4),点B(m,1).(1)求这两个函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,点P是反比例函数图象上的一点,当S△OCP:S△BCD=1:3时,请直接写出点P的坐标.【解答】解:(1)把点A(,4)代入y=(k≠0)得:k=×4=2,∴反比例函数的表达式为:y=,∵点B(m,1)在y=上,∴m=2,∴B(2,1),∵点A(,4)、点B(2,1)都在y=ax+b(a≠0)上,∴,解得:,∴一次函数的表达式为:y=﹣2x+5;(2)∵一次函数图象与y轴交于点C,∴y=﹣2×0+5=5,∴C(0,5),∴OC=5,∵点D为点C关于原点O的对称点,∴D(0,﹣5),∴OD=5,∴CD=10,∴S△BCD=×10×2=10,设P(x,),∴S△OCP=×5×|x|=|x|,∵S△OCP:S△BCD=1:3,∴|x|=×10,∴|x|=,∴P的横坐标为或﹣,∴P(,)或(﹣,﹣).27.(6分)已抛物线y=x2+2x+m的顶点在x轴上.(1)求m的值;(2)若P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,求实数n的取值范围.【解答】解:(1)∵抛物线y=x2+2x+m的顶点在x轴上,∴=0,解得,m=1.(2)(2)∵P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,n2+2n+1>(n+2)2+2(n+2)+1,化简整理得,4n+8<0,∴n<﹣2,∴实数n的取值范围是n<﹣2.28.(7分)在平面直角坐标系xOy中,对于△ABC,点P在BC边的垂直平分线上,若以点P为圆心,PB 为半径的⨀P与△ABC三条边的公共点个数之和不小于3,则称点P为△ABC关于边BC的“Math点”.如图所示,点P即为△ABC关于边BC的“Math点”.已知点P(0,4),Q(a,0).(1)如图1,a=4,在点A(1,0)、B(2,2)、C(,)、D(5,5)中,△POQ关于边PQ的“Math点”为B,C.(2)如图2,,①已知D(0,8),点E为△POQ关于边PQ的“Math点”,请直接写出线段DE的长度的取值范围;②将△POQ绕原点O旋转一周,直线交x轴、y轴于点M、N,若线段MN上存在△POQ关于边PQ的“Math点”,求b的取值范围.【解答】解:(1)根据“Math点”的定义,观察图象可知,△POQ关于边PQ的“Math点”为B、C.故答案为:B,C.(2)如图2中,∵P(0,4),Q(4,0),∴OP=4,OQ=4,∴tan∠PQO=,∴∠PQO=30°,①当点E与PQ的中点K重合时,点E是△POQ关于边PQ的“Math点”,此时E(2,2),∵D(0,8),∴DE==4,当⊙E′与x轴相切于点Q时,E′(4,8),∴DE′=4,观察图象可知,当点E在线段KE′上时,点E为△POQ关于边PQ的“Math点”,∵E′Q⊥OQ,∴∠E′QO=90°,∴∠E′QK=60°,∴∠E′KQ=90°,∴∠EE′Q=30°,∵DE′∥OQ,∴∠DE′K=60°,∵DE′=DK,∴△DE′K是等边三角形,∵点D到E′K的距离的最小值为4•sin60°=6,∴.②如图3中,分别以O为圆心,4和4为半径画圆,当线段MN与图中圆环(包括小圆,不包据大圆)有交点时,线段MN上存在△POQ关于边PQ的“Math 点”,当直线MN与小圆交于(0,4)或(0,﹣4)时,b=±4,当直线MN与大圆相切时,b=±8,观察图象可知,满足条件的b的值为:4≤b<8或﹣8<b≤﹣4.。
精品中考一模测试《数学试题》含答案解析
中考数学仿真模拟测试题一、选择题1.下列各数中,比﹣2小的数是( ) A. ﹣3B. ﹣1C. 0D. 12.在平面直角坐标系中,点()2,3A --与点B 关于y 轴对称,则点B 的坐标为( )A. ()2,3-B. ()2,3--C. ()2,3-D. ()3,2--3.下列计算正确的是 ( ) A. 7a-a=6B. a 2·a 3=a 5C. (a 3)3=a 6D. (ab)4=ab 4 4.下面立体图形的左视图是( )A.B.C .D.5.菱形的两条对角线长分别为6,8,则它的周长是( ) A. 5B. 10C. 20D. 246.布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是( ) A.49B.29C.23 D.137.如图,AF 是∠BAC 的平分线,DF ∥AC ,若∠1=35°,则∠BAF 的度数为( )A. 17.5°B. 35°C. 55°D. 70°8.《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x 两、y 两,则可列方程组为( )A. 5210258x y x y +=⎧⎨+=⎩B. 5210258x y x y -=⎧⎨-=⎩C. 5210258x y x y +=⎧⎨-=⎩D. 5282510x y x y +=⎧⎨+=⎩9.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下: 册数 0 1 2 3 人数 13352923关于这组数据,下列说法正确的是( ) A. 众数是2册B. 中位数是2册C. 极差是2册D. 平均数是2册10.如图,矩形OABC 的边OA 在x 轴上,8OA =,4OC =,把ABC 沿直线AC 折叠,得ADC ,CD 交x 轴于点E ,则点E 的坐标是( )A. ()4,0B. ()3,0C. ()0,3D. ()5,0二、填空题11.因式分解:34x x -=__________.12.上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款.将300亿元用科学记数法表示为___________________元.13.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为 .14.如图,扇形的半径为6,圆心角θ为120︒,用这个扇形围成一个圆锥的侧面,所得圆的底面半径为__________.15.如图,将Rt ABC 绕直角顶点C 顺时针旋转90,得到DEC ,连接AD ,若25BAC ∠=,则BAD ∠=______.16.如图,某景区的两个景点A 、B 处于同一水平地面上、一架无人机在空中沿MN 方向水平飞行进行航拍作业,MN 与AB 在同一铅直平面内,当无人机飞行至C 处时、测得景点A 的俯角为45°,景点B 的俯角为30°,此时C 到地面的距离CD 为100米,则两景点A 、B 间的距离为__米(结果保留根号).三、解答题17.)()1201205155-⎛⎫+-+- ⎪⎝⎭.18.解不等式组:()31531152x x x x ⎧-->⎪⎨-+-<⎪⎩.19.如图,已知ABCD 中,F 是BC 边的中点,连接DF 并延长,交AB 的延长线于点E .求证:AB=BE .20.某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有 人,最喜欢篮球的学生数占被调查总人数的百分比为 %; (2)被调查学生的总数为 人,其中,最喜欢篮球的有 人,最喜欢足球的学生数占被调查总人数的百分比为 %;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.21.A 、B 两种机器人都被用来搬运化工原料,A 型机器人比 B 型机器人每小时多搬运 60kg.A 型机器人搬运 1200kg 所用时间与 B 型机器入搬运 900kg 所用时间相等,两种机器人每小时分别搬运多少化工原料? 22.如图,一次函数y kx b =+的图象与反比例函数my x=的图象经过点()2,6A -和点()4,B n , (1)求这两个函数的解折式; (2)直接写出不等式mkx b x+≤解集.23.已知:在ABC 中,以AC 边为直径的O 交BC 于点D ,在劣弧AD 上取一点E 使EBC DEC ∠=∠,延长BE 依次交AC 于点G ,交O 于H .(1)求证:AC BH ⊥; (2)若45ABC ∠=︒,O 的直径等于10,8BD =,求CE 的长.24.如图,在ABC 中,5AB AC ==,D 为AB 上一动点,D 点从A 点以1个单位/秒的速度向B 点运动,远动到B 点即停止,经过D 点作//DE BC ,交AC 于点E ,以DE 为一边在BC 一侧作正方形DEFG ,在D 点运动过程中,设正方形DEFG 与ABC 的重叠面积为S ,运动时间为t 秒,如图2是s 与t 的函数图象.(1)求BC 的长; (2)求a的值;(3)求s 与t 的函数关系式.25.在ABC 中,以AB 为斜边,作直角ABD △,使点D 落在ABC 内,90ADB ∠=︒.(1)如图1,若AB AC =,30BAD ∠=︒,3AD =P 、M 分别为BC ,AB 的中点,连接PM ,求线段PM 的长;(2)如图2,若AB AC =,把ABD △绕点A 递时针旋转一定角度,得到ACE △,连接ED 并延长变BC 于点P ,求证:PB CP =;(3)如图3,若AD BD =,过点D 的直线交AC 于点E ,交BC 于点F ,EF AC ⊥,且AE EC =,请直接写出线段BF 、FC 、AD 之间的关系(不需要证明).26.如图,二次函数y=ax2+bx﹣12的图象交x轴于A(﹣3,0),B(5,0)两点,与y轴交于点C.点D是抛物线上的一个动点.(1)求抛物线的解析式;(2)设点D横坐标为m,并且当m≤x≤m+5时,对应的函数值y 满足﹣64855y m,求m的值;(3)若点D在第四象限内,过点D作DE∥y轴交BC于E,DF⊥BC于F.线段EF的长度是否存在最大值?若存在,请求出这个最大值及相应点D的坐标;若不存在,请说明理由.答案与解析一、选择题1.下列各数中,比﹣2小的数是( ) A. ﹣3 B. ﹣1C. 0D. 1【答案】A 【解析】 【分析】先根据正数都大于0,负数都小于0,可排除C 、D ,再根据两个负数,绝对值大的反而小,可得比-2小的数是-3.【详解】解:根据两个负数,绝对值大的反而小可知-3<-2. 故选:A .【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.2.在平面直角坐标系中,点()2,3A --与点B 关于y 轴对称,则点B 的坐标为( ) A. ()2,3- B. ()2,3--C. ()2,3-D. ()3,2--【答案】C 【解析】 【分析】由关于y 轴对称的点横坐标互为相反数,纵坐标不变可得答案. 【详解】解:关于y 轴对称的点横坐标互为相反数,纵坐标不变,()2,3A --.(2,3).B ∴-故选C .【点睛】本题考查的是关于y 轴对称的点的坐标特点,掌握对称时的坐标特点是解题关键. 3.下列计算正确的是 ( ) A. 7a-a=6 B. a 2·a 3=a 5 C. (a 3)3=a 6D. (ab)4=ab 4【答案】B 【解析】 【分析】根据合并同类项法则、同底数幂的乘法、幂的乘方、积的乘方的运算法则依次计算各项后,即可解答.【详解】选项A,根据合并同类项法则可得7a-a=6a;选项B,根据同底数幂的乘法运算法则可得, a2·a3=a5;选项C,根据幂的乘方运算法则可得(a3)3=a9;选项D,根据积的乘方的运算法则可得(ab)4=a4b4.由此可得,只有选项B正确.故选B.【点睛】本题主要考查了合并同类项法则、同底数幂的乘法、幂的乘方、积的乘方的运算法则,熟记法则是解题的关键.4.下面立体图形的左视图是()A. B.C. D.【答案】C【解析】【分析】直接利用几何体的形状得出其左视图即可.【详解】解:圆台的左视图是:.故选:C.【点睛】此题主要考查了简单几何体的三视图,正确掌握左视图的观察角度是解题关键.5.菱形的两条对角线长分别为6,8,则它的周长是( )A. 5B. 10C. 20D. 24【答案】C【解析】【分析】根据菱形的对角线互相垂直且平分这一性质解题即可.【详解】解:∵菱形的对角线互相垂直且平分,∴勾股定理求出菱形的边长=5,∴菱形的周长=20,故选C.【点睛】本题考查了菱形对角线的性质,属于简单题,熟悉概念是解题关键.6.布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是( )A. 49B.29C.23D.13【答案】A【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得两次都摸到白球的情况,再利用概率公式求解即可求得答案.【详解】解:画树状图得:则共有9种等可能的结果,两次都摸到白球的有4种情况,∴两次都摸到白球的概率为49.故选A.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.7.如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF的度数为( )A. 17.5°B. 35°C. 55°D. 70°【答案】B【解析】 【分析】根据两直线平行,同位角相等,可得∠F AC =∠1,再根据角平分线的定义可得∠BAF =∠F AC . 【详解】解:∵DF ∥AC , ∴∠F AC =∠1=35°, ∵AF 是∠BAC 的平分线, ∴∠BAF =∠F AC =35°, 故选B .【点睛】本题考查了平行线的性质,角平分线的定义,熟记平行线的性质是解题的关键.8.《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x 两、y 两,则可列方程组为( ) A. 5210258x y x y +=⎧⎨+=⎩B. 5210258x y x y -=⎧⎨-=⎩C. 5210258x y x y +=⎧⎨-=⎩D. 5282510x y x y +=⎧⎨+=⎩【答案】A 【解析】【分析】每头牛、每只羊分别值金x 两、y 两,根据“5头牛,2只羊,值金10两;2头牛,5只羊,值金8两”列出方程组即可得答案. 【详解】由题意可得,5210258x y x y +=⎧⎨+=⎩, 故选A .【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找准等量关系列出相应的方程组.9.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:关于这组数据,下列说法正确的是( ) A. 众数2册B. 中位数是2册C. 极差是2册D. 平均数是2册【答案】B【解析】【分析】根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.【详解】解:A 、众数是1册,所以众数是2册,结论错误,故A 不符合题意;B 、一共100个数据,最中间的两个是第50,第51个,两个数据都是2,所以中位数是2册,结论正确,故B 符合题意;C 、极差=3-0=3册,结论错误,故C 不符合题意;D 、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,结论错误,故D 不符合题意.故选:B .【点睛】本题考查了极差、平均数、中位数及众数的知识,属于基础题,掌握它们的定义及计算方法是解题关键.10.如图,矩形OABC 的边OA 在x 轴上,8OA =,4OC =,把ABC 沿直线AC 折叠,得ADC ,CD 交x 轴于点E ,则点E 的坐标是( )A. ()4,0B. ()3,0C. ()0,3D. ()5,0【答案】B【解析】【分析】 由矩形的性质与轴对称的性质得到ECA ∆是等腰三角形,设,OE m =利用勾股定理建立方程求m 即可得到答案. 【详解】解:矩形,OABC 8OA =,4OC =,4,8,AB BC ∴==矩形,OABC//OA BC ∴,,BCA OAC ∴∠=∠由对折知:,ACB ACE ∠=∠,ACE EAC ∴∠=∠,EC EA ∴=设,OE m = 则8,AE m CE =-=222,CE CO OE =+222(8)4,m m ∴-=+3,m ∴=(3,0).E ∴故选B .【点睛】本题考查的是矩形的性质,轴对称的性质,等腰三角形的判定,勾股定理及坐标平面内的点的坐标,掌握以上知识点是解题关键.二、填空题11.因式分解:34x x -=__________.【答案】()()22x x x +-【解析】【分析】先提公因式,再根据平方差因式分解即可.【详解】解:原式=()24x x -=()()22x x x +-,故答案为:()()22x x x +-.【点睛】本题是对因式分解的考查,熟练掌握因式分解的提公因式法及公式法是解决本题的关键. 12.上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款.将300亿元用科学记数法表示为___________________元.【答案】10310⨯【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时用原数的整数位数减1,由此即可解答.【详解】∵300亿=30 000 000 000,∴30 000 000 000=3×1010.故答案为3×1010.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为.【答案】(35﹣2x)(20﹣x)=600【解析】把阴影部分分别移到矩形的上边和左边,可得种植面积为一个矩形,根据种植的面积为600列出方程即可.解:把阴影部分分别移到矩形的上边和左边可得矩形的长为(35-2x)米,宽为(20-x)米,∴可列方程为(35-2x)(20-x)=600(或2x2-75x+100=0),故答案为(35-2x)(20-x)=600(或2x2-75x+100=0).14.如图,扇形的半径为6,圆心角θ为120︒,用这个扇形围成一个圆锥的侧面,所得圆的底面半径为__________.【答案】2.【解析】【分析】先计算扇形的弧长,除以2π即为圆锥的底面半径.【详解】解:扇形的弧长12064,180ππ⨯==∴圆锥的底面半径为4π÷2π=2.故答案为:2.【点睛】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.15.如图,将Rt ABC绕直角顶点C顺时针旋转90,得到DEC,连接AD,若25∠=,则BAC∠=______.BAD【答案】70【解析】【分析】根据旋转的性质可得AC=CD,再判断出△ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CAD=45°,由∠BAD=∠BAC+∠CAD可得答案.【详解】∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,则∠BAD=∠BAC+∠CAD=25°+45°=70°,故答案为70°∘.【点睛】本题考查了旋转的性质、等腰直角三角形的判定与性质,熟练掌握相关性质并准确识图是解题的关键.16.如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A、B间的距离为__米(结果保留根号).【答案】3【解析】【分析】由已知可得∠ACD=∠MCA=45°,∠B=∠NCB=30°,继而可得∠DCB=60°,从而可得AD=CD=100米,DB=AB=AD+DB 计算即可得.【详解】∵MN//AB ,∠MCA=45°,∠NCB=30°,∴∠ACD=∠MCA=45°,∠B=∠NCB=30°,∵CD ⊥AB ,∴∠CDA=∠CDB=90°,∠DCB=60°,∵CD=100米,∴AD=CD=100米,DB=CD•tan60°米,∴(米),故答案为【点睛】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,解题的关键是借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.三、解答题17.)()1201155-⎛⎫+-+- ⎪⎝⎭.【答案】10.【解析】【分析】先计算二次根式的乘方与化简及整数指数幂,再按实数的加减法则进行运算即可得到答案.)()1201155-⎛⎫+-+- ⎪⎝⎭(51)51=--+64=-+10.=【点睛】本题考查的是二次根式的化简,二次根式的乘法运算,合并同类二次根式,整数指数幂的应用,掌握相关知识点是解题关键.18.解不等式组:()31531152x x x x ⎧-->⎪⎨-+-<⎪⎩. 【答案】7 1.x -<<-【解析】【分析】分别解两个不等式得到不等式的解集,取两个解集的公共部分即可得到答案.【详解】解:()31531152x x x x ⎧-->⎪⎨-+-<⎪⎩①② 由①得:335,x x -+>解得: 1.x -< 由②得:2(3)105(1),x x --+<21655,x x ∴-+<321,x ∴-<7.x ∴->∴ 不等式组的解集为:7 1.x -<<-【点睛】本题考查的是不等式组的解法,掌握其解法是解题关键.19.如图,已知ABCD 中,F 是BC 边的中点,连接DF 并延长,交AB 的延长线于点E .求证:AB=BE .【答案】详见解析【解析】【分析】根据平行四边形性质得出AB=DC ,AB ∥CD ,推出∠C=∠FBE ,∠CDF=∠E ,证△CDF ≌△BEF ,推出BE=DC 即可.【详解】证明:∵F 是BC 边的中点,∴BF=CF .∵四边形ABCD 平行四边形,∴AB=DC ,AB ∥CD .∴∠C=∠FBE ,∠CDF=∠E .∵△CDF和△BEF中,C FBECDF ECF BF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDF≌△BEF(AAS).∴BE=DC.∵AB=DC,∴AB=BE.【点睛】平行四边形的性质,全等三角形的判定和性质.20.某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有人,最喜欢篮球的学生数占被调查总人数的百分比为%;(2)被调查学生的总数为人,其中,最喜欢篮球的有人,最喜欢足球的学生数占被调查总人数的百分比为%;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.【答案】(1)4;32;(2)50;16;24;(3)根据调查结果,估计该校最喜欢排球的学生数为54人.【解析】分析:(1)依据统计图表中的数据即可得到结果;(2)依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比;(3)依据最喜欢排球的学生数占被调查总人数的百分比,即可估计该校最喜欢排球的学生数.详解:(1)由题可得:被调查的学生中,最喜欢乒乓球的有4人,最喜欢篮球的学生数占被调查总人数的百分比为32%.故答案为4;32;(2)被调查学生的总数为10÷20%=50人,最喜欢篮球的有50×32%=16人,最喜欢足球的学生数占被调查总人数的百分比=50104166250-----×100%=24%; 故答案为50;16;24; (3)根据调查结果,估计该校最喜欢排球的学生数为650×450=54人. 点睛:本题考查统计表、扇形统计图、样本估计总体等知识,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.解题的关键是灵活运用所学知识解决问题.21.A 、B 两种机器人都被用来搬运化工原料,A 型机器人比 B 型机器人每小时多搬运 60kg.A 型机器人搬运 1200kg 所用时间与 B 型机器入搬运 900kg 所用时间相等,两种机器人每小时分别搬运多少化工原料?【答案】A 型机器人每小时搬运240kg ,则B 型机器人每小时搬运180kg .【解析】【分析】设B 型机器人每小时搬运xkg ,则A 型机器人每小时搬运()60x + kg ,根据A 型机器人搬运 1200kg 所用时间与 B 型机器入搬运 900kg 所用时间相等,列方程求解.【详解】设B 型机器人每小时搬运xkg ,则A 型机器人每小时搬运()60x + kg120090060x x=+, 方程两边乘()60x x +,得120090054000x x =+,解得:180x =校验:当600x =时,()600x x +≠所以,原分式方程的解为180x =60240x +=,答:A 型机器人每小时搬运240kg ,则B 型机器人每小时搬运180kg .【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.如图,一次函数y kx b =+的图象与反比例函数m y x =的图象经过点()2,6A -和点()4,B n , (1)求这两个函数的解折式;(2)直接写出不等式m kx b x+≤解集.【答案】(1)12.y x =-3 3.2y x =-+(2)20x -≤<或 4.x ≥ 【解析】【分析】 (1)由()2,6A -在m y x =求解m ,利用求得的m y x=求B 的坐标,利用待定系数法求y kx b =+, (2)由,A B 的坐标结合图像直接写不等式的解集. 【详解】解:m y x=经过()2,6A -, 12,m ∴=-12.y x∴=- ()4,B n 反比例函数上, 412,n ∴=-3,n ∴=-(4,3),B ∴-把()2,6A -,(4,3)B -代入y kx b =+,26,43k b k b -+=⎧∴⎨+=-⎩ 解得:323k b ⎧=-⎪⎨⎪=⎩ ,3 3.2y x ∴=-+ (2)由()2,6A -,(4,3)B -,结合图像可得:m kx b x+≤的解集是:20x -≤<或 4.x ≥ 【点睛】本题考查的是用待定系数法求一次函数与反比例函数的解析式,利用函数图像观察一次函数值小于反比例函数值时自变量的取值范围,掌握方法是解题关键.23.已知:在ABC 中,以AC 边为直径的O 交BC 于点D ,在劣弧AD 上取一点E 使EBC DEC ∠=∠,延长BE 依次交AC 于点G ,交O 于H .(1)求证:AC BH ⊥;(2)若45ABC ∠=︒,O 的直径等于10,8BD =,求CE 的长.【答案】(1)证明见解析,(2)221.【解析】【分析】(1)连接AD ,由圆周角定理即可得出∠DAC=∠DEC ,∠ADC=90°,再根据直角三角形的性质即可得出结论;(2)由∠BDA=180°-∠ADC=90°,∠ABC=45°可求出∠BAD=45°,利用勾股定理即可得出DC 的长,进而求出BC 的长,由已知的一对角相等和公共角,根据两对对应角相等的两三角形相似可得三角形BCE 与三角形EDC 相似,由相似得比例即可求出CE 的长.【详解】证明:(1)连接AD ,∵∠DAC=∠DEC ,∠EBC=∠DEC ,∴∠DAC=∠EBC ,∵AC 是⊙O 的直径,∴∠ADC=90°,∴∠DCA+∠DAC=90°,∴∠EBC+∠DCA=90°,∴∠BGC=180°-(∠EBC+∠DCA )=180°-90°=90°,∴AC ⊥BH ;(2)∵∠BDA=180°-∠ADC=90°,∠ABC=45°,∴∠BAD=45°,∴BD=AD ,∵BD=8,∴AD=8,在直角三角形ADC 中,AD=8,AC=10,根据勾股定理得:DC=6,则BC=BD+DC=14,∵∠EBC=∠DEC ,∠BCE=∠ECD ,∴△BCE ∽△ECD ,∴ BC CE CE CD=, 即214684,CE BC CD =•=⨯=∴CE 84221.==【点睛】本题考查的是圆周角定理,相似三角形的判定与性质及勾股定理,根据题意作出辅助线是解答此题的关键.24.如图,在ABC 中,5AB AC ==,D 为AB 上一动点,D 点从A 点以1个单位/秒的速度向B 点运动,远动到B 点即停止,经过D 点作//DE BC ,交AC 于点E ,以DE 为一边在BC 一侧作正方形DEFG ,在D 点运动过程中,设正方形DEFG 与ABC 的重叠面积为S ,运动时间为t 秒,如图2是s 与t 的函数图象.(1)求BC的长;(2)求a的值;(3)求s与t的函数关系式.【答案】(1)6,(2)144, 25(3)2236(02)252424(25).255t tSt t t⎧≤⎪⎪=⎨⎪-+≤⎪⎩<<【解析】【分析】(1)根据图中信息得到t=2时,正方形DEFG的边FG在BC边上,设DE=4x,在△BDG中表示出DG,BG 利用勾股定理解决即可.(2)a的值就是图1中的正方形面积.(3)分两种情形①0<t≤2,②2<t≤5求出重叠部分面积即可.【详解】解:(1)由题意t=2时,正方形DEFG在如图位置,此时AD=2,BD=3,设DE=4x,∵DE∥BC,,ADE ABC∴∆∆∴,DE ADBC AB=∴42,5xBC=∴10,BC x=根据等腰三角形的对称性可知:BG=FC=3x,在RT △BDG 中,∵222,BD DG BG =+∴229(3)(4),x x =+∵x >0, ∴3,5x =∴BC=10x=6,(2)由图1可知t=2时,a 的值就是图1中的正方形面积,即223144(4),525a DE ==⨯= (3)在图2中,作AH ⊥BC 于H ,交DE 于K ,由(1)可知AH 2222534,AB BH =-=-=∵DK ∥BH , ,ADKABH ∴∆∆ ∴ ,AD DK AB BH= ,AD t =∴,53t DK = ∴3,5DK t =DE=2DK=6,5t 当0<t ≤2时,2236,25S DE t == 当2<t ≤5时,∵DM ∥AH ,BDMBAH ∴∆∆, ∴ ,DM BD AH BA=∴5, 45 DM t-=∴4(5),5DM t=-∴2462424(5).55255S t t t t=-•=-+综上所述:2236(02)252424(25).255t tSt t t⎧≤⎪⎪=⎨⎪-+≤⎪⎩<<.【点睛】本题考查了勾股定理、平行线分线段成比例定理、等腰三角形的判定与性质、正方形的性质以及面积的计算,本题难度较大,解题的关键理解题意是画出图形.25.在ABC中,以AB为斜边,作直角ABD△,使点D落在ABC内,90ADB∠=︒.(1)如图1,若AB AC=,30BAD∠=︒,63AD=,点,P、M分别为BC,AB的中点,连接PM,求线段PM的长;(2)如图2,若AB AC=,把ABD△绕点A递时针旋转一定角度,得到ACE△,连接ED并延长变BC于点P,求证:PB CP=;(3)如图3,若AD BD=,过点D的直线交AC于点E,交BC于点F,EF AC⊥,且AE EC=,请直接写出线段BF、FC、AD之间的关系(不需要证明).【答案】(1)6,(2)见解析,(3)2222.BF FC AD+=【解析】【分析】(1)在直角三角形中,利用锐角三角函数求出AB,得到,AC利用三角形中位线的性质即可得到答案;(2)先利用互余判断出,∠BDP=∠PEC,得到△BDP和△CEQ全等,再用三角形的外角得到∠EPC=∠PQC,即可得到答案;(3)连接AF,,CD利用线段垂直平分线上的点到两端点的距离相等,判断出∠AFB=90°,利用勾股定理即可得到答案.【详解】解:(1)∵∠ADB=90°,∠BAD=30°,63AD=,∴cos∠BADADAB=,6312,cos303ADAB∴===︒∴AC=AB=12,∵点P、M分别为BC、AB边的中点,∴PM=12AC=6,(2)如图2,在ED上截取EQ=PD,∵∠ADB=90°,∴∠BDP+∠ADE=90°,∵AD=AE,∴∠ADE=∠AED,∵把△ABD绕点A逆时针旋转一定角度,得到△ACE,∴∠AEC=∠ADB=90°∵∠AED+∠PEC=90°,∴∠BDP=∠PEC,在△BDP和△CEQ中,PD QEBDP PECBD CE⎧⎪∠∠⎨⎪⎩===,∴△BDP≌△CEQ,∴BP=CQ,∠DBP=∠QCE,∵∠CPE=∠BDP+∠DBP,∠PQC=∠PEC+∠QCE ,∴∠EPC=∠PQC ,∴PC=CQ ,∴BP=CP(3)2222.BF FC AD +=理由:如图3,连接AF ,,CD∵EF ⊥AC ,且AE=EC ,∴FA=FC ,∠FAC=∠FCA ,∵EF ⊥AC ,且AE=EC ,∴∠DAC=∠DCA ,DA=DC ,∵AD=BD ,∴BD=DC ,∴∠DBC=∠DCB ,∵∠FAC=∠FCA ,∠DAC=∠DCA ,∴∠DAF=∠DCB ,∴∠DAF=∠DBC ,∴∠AFB=∠ADB=90°,在Rt △ADB 中,DA=DB ,∴222,AB AD =在Rt △ABF 中,22222,BF FA AB AD +==∵FA=FC∴2222.BF FC AD +=【点睛】此题是三角形综合题,主要考查了锐角三角函数的意义,同角或等角的余角相等,三角形的性质,全等三角形的性质和判定,线段垂直平分线上的点到两端点的距离相等以及等腰三角形的性质,(1)利用三角形的中位线是解它的关键,(2)判断∠BDP=∠PEC,是解它的关键,(3)线段垂直平分线的性质是解它的关键.26.如图,二次函数y=ax2+bx﹣12的图象交x轴于A(﹣3,0),B(5,0)两点,与y轴交于点C.点D是抛物线上的一个动点.(1)求抛物线的解析式;(2)设点D的横坐标为m,并且当m≤x≤m+5时,对应的函数值y满足﹣64855y m,求m的值;(3)若点D在第四象限内,过点D作DE∥y轴交BC于E,DF⊥BC于F.线段EF的长度是否存在最大值?若存在,请求出这个最大值及相应点D的坐标;若不存在,请说明理由.【答案】(1)y=45x2﹣85x﹣12;(2)m150.(3)点D坐标为(52,﹣11)时,线段EF长度的最大值为60 13.【解析】【分析】(1)已知抛物线过点A、B,用待定系数法即可求其解析式.(2)把二次函数配方求得顶点为(1,﹣645),当x=1时,二次函数有最小值y=﹣645.而在m≤x≤m+5范围,函数值y对应的最小值也为﹣645,故x=1在m≤x≤m+5的范围内,即m≤1≤m+5,解得﹣4≤m≤1.因为不确定x=m还是x=m+5时取得相应的最大值,故需分类讨论.若x=m离对称轴较远,则x=m时取得最大值﹣85m,代入计算即求得m的值;若x=m+5离对称轴距离较远,则x=m+5时取得最大值,代入计算即求得m的值.(3)由DE∥y轴可得∠DEF=∠BCO,点D与点E横坐标相同.设点D横坐标为d,用d表示点D纵坐标.求出直线BC解析式后,即能用d表示点E坐标,进而能用d表示DE的长度.由于DF⊥BC于E,所以cos∠DEF=EFDE.在Rt△BOC中易求cos∠BCO的值,由∠DEF=∠BCO得cos∠DEF=cos∠BCO,能用含d的二次式表示EF,配方即求得EF的最大值.【详解】解:(1)∵二次函数y=ax2+bx﹣12的图象过点A(﹣3,0),B(5,0)∴93120255120a ba b--=⎧⎨+-=⎩解得:4585ab⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线的解析式为y=45x2﹣85x﹣12(2)∵y=45x2﹣85x﹣12=45(x﹣1)2﹣645∴当x=1时,二次函数有最小值y=﹣64 5∵当m≤x≤m+5时,对应的函数值y满足﹣645≤y≤85m∴对称轴:x=1在m≤x≤m+5的范围内,即m≤1≤m+5 解得:﹣4≤m≤1取点(m,0)与点(m+5,0)的中点M(m+52)①当m+52≤1时,即﹣4≤m≤﹣32,点M在对称轴左侧∴x=m到对称轴的距离比x=m+5到对称轴的距离远∴x=m时,y取得最大值∴45m2﹣85m﹣12=﹣85m解得:m1舍去),m2②当m+52>1时,即﹣32<m≤1,点M在对称轴右侧∴x=m+5到对称轴的距离比x=m到对称轴的距离远∴x =m +5时,y 取得最大值 ∴45(m +5)2﹣85(m +5)﹣12=﹣85m 解得:m 1=﹣10(舍去),m 2=0综上所述,m 0.(3)∵当x =0时,y =45x 2﹣85x ﹣12=﹣12 ∴C (0,﹣12) ∵B (5,0),∠BOC =90°∴直线BC :y =125x ﹣12,BC 13= ∴Rt △BOC 中,cos ∠BCO =1213OC BC = ∵DE ∥y 轴∴∠DEF =∠BCO ,x E =x D设D (d ,45d 2﹣85d ﹣12)(0<d <5),则E (d ,125d ﹣12) ∴DE =125d ﹣12﹣(45d 2﹣85d ﹣12)=﹣45d 2+4d =﹣45(d ﹣52)2+5 ∵DF ⊥BC∴∠DFE =90°∴cos ∠DEF =EF DE =cos ∠BCO =1213∴EF =1213DE =﹣4865(d ﹣52)2+6013 ∴当d =52时,EF 最大值为6013 此时,y D =45×(52)2﹣85×52﹣12=﹣11 ∴点D 坐标为(52,﹣11)时,线段EF 长度的最大值为6013. 【点睛】考查了二次函数的图象与性质,求二次函数最大值,解一元二次方程,三角函数的应用.第(2)题在指定范围内求函数最值,一般以对称轴为分界、结合想取值范围的两个端点与对称轴的距离作分类讨论.。
2022年中考第一次模拟考试《数学试题》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(共10小题)1.12-的倒数是( )A. B. C.12- D.122.据报道,2020年全国硕士研究生招生规模比去年增加18.9万左右,数据”18.9万”用科学记数法表示为( )A. 1.89×103B. 1.89×104C. 1.89×105D. 18.9×1033.一个几何体的三视图如图所示,该几何体是()A. 直三棱柱B. 长方体C. 圆锥D. 立方体4.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=115°,则∠4度数为()A. 55°B. 60°C. 65°D. 75°5.已知甲、乙两数的和是7,甲数比乙数的2倍少2,设甲数为x,乙数为y,根据题意列方程组正确的是( )A.722x yx y+=⎧⎨=-⎩B.722x yy x+=⎧⎨=-⎩C.722x yx y=+⎧⎨-=⎩D.722x yx y=+⎧⎨+=⎩6.关于”可能性是1%的事件在100次试验中发生的次数”,下列说法错误的是( )A. 可能一次也不发生B. 可能发生一次C. 可能发生两次D. 一定发生一次7.下列计算正确的是( )A. b3÷b3=bB. b3•b3=b6C. a2+a2=2a4D. (a3)3=a68.抽样调查某班10名同学身高(单位:厘米)如下:165,152,165,152,165,160,170,160,165,159.则这组数据的众数是( )A. 152B. 160C. 165D. 1709.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是( )A. ∠AED=∠BB. ∠ADE=∠CC. AD ACAE AB= D.AD AEAB AC=10.关于二次函数y=﹣(x﹣m)2﹣m+1(m为常数),下列描述错误的是( )A. 当m=2时,函数的最大值是﹣1B. 函数图象的顶点始终在直线y=﹣x+1的图象上C. 当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≤2D. 当m=0时,函数图象的顶点及函数图象与x轴的两个交点构成的三角形是等腰直角三角形二.填空题(共6小题)11.因式分解:24ab a-=___________________.12.分别写有数字23、5、﹣4、0、﹣2五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是_____.13.在平面直角坐标系中,点P在直线y=x+b的图象上,且点P在第二象限,P A⊥x轴于点A,PB⊥y轴于点B,四边形OAPB是面积为25的正方形,则直线y=x+b的函数表达式是_____.14.如图,点A,B,C在同一个圆上,∠ACB<90°,弦AB的长度等于该圆半径的2倍,则cos∠ACB的值是_____.15.已知二次函数y=ax2+bx+c(a,b,c是常数)的图象如图所示,则反比例函数y=a b cx++的图象所在的象限是第_____象限.16.如图,菱形ABCD边长为10,sin A=45,点M为边AD上的一个动点且不与点A和点D重合,点A关于直线BM的对称点为点A',点N为线段CA'的中点,连接DN,则线段DN长度的最小值是_____.三.解答题(共9小题)17.计算:|﹣23|+(2020﹣1)0﹣4sin60°﹣(﹣2)2.18.某校为了做好”营造清洁生活环境”活动宣传,对本校学生进行了有关知识的测试,测试后随机抽取了部分学生的测试成绩,按”优秀、良好、及格、不及格”四个等级进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:(1)求抽取的学生总人数;(2)抽取的学生中,等级为”优秀”的人数为人;扇形统计图中等级为”不合格”部分的圆心角的度数为°;(3)补全条形统计图;(4)若该校有学生3500人,请根据以上统计结果估计成绩等级为”优秀”和”良好”的学生共有多少人.19.如图,在▱ABCD中,AE平分∠BAD交BC边于点E,CE=2,BE=4,求▱ABCD的周长.20.学校组织学生开展志愿者服务活动,甲、乙两名学生从”图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,用字母A、B、C分别表示”图书馆”、”博物馆”、”科技馆”三个场馆,请用树状图或列表法求甲、乙两名学生恰好选择同一场馆的概率.21.某公司需要采购A、B两种笔记本,A种笔记本单价高出B种笔记本的单价10元,并且花费300元购买A种笔记本和花费100元购买B种笔记本的数量相等.(1)求A种笔记本和B种笔记本的单价各是多少元;(2)该公司准备采购A、B两种笔记本共80本,若A种笔记本的数量不少于60本,并且采购A、B两种笔记本的总费用不高于1100元,那么该公司有种购买方案.22.如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA =∠OAC=30°.(1)求证:BD是⊙O的切线;(2)图中线段AD、BD和AB围成的阴影部分的面积=.23.如图,在平面直角坐标系中,直线y=kx+b与x轴交于点A(5,0),与y轴交于点B;直线y═45x+6过点B和点C,且AC⊥x轴.点M从点B出发以每秒2个单位长度的速度沿y轴向点O运动,同时点N从点A 出发以每秒3个单位长度的速度沿射线AC向点C运动,当点M到达点O时,点M、N同时停止运动,设点M运动的时间为t(秒),连接MN.(1)求直线y=kx+b的函数表达式及点C的坐标;(2)当MN∥x轴时,求t的值;(3)MN与AB交于点D,连接CD,在点M、N运动过程中,线段CD的长度是否变化?如果变化,请直接写出线段CD长度变化的范围;如果不变化,请直接写出线段CD的长度.24.如图,已知△ABC中,AC=BC,∠ACB=90°,将△ABC绕点B逆时针方向旋转得到△PBQ,旋转角为α,且45°<α<90°.(1)连接AP,CQ,则APCQ=;(2)若QD⊥BC,垂足为点D,∠BQD=15°,QD与PB交于点E,∠BEQ的平分线EF交AB的延长线于点F.①求旋转角α的大小;②求∠F的度数;③求证:EQ+EB=EF.25.如图,在平面直角坐标系中,抛物线y=ax2+x+c与直线3344y x=+交于点A和点E,点A在x轴上.抛物线y=ax2+x+c与x轴另一个交点为点B,与y轴交于点C(0,43),直线3344y x=+与y轴交于点D.(1)求点D的坐标和抛物线y=ax2+x+c的函数表达式;(2)动点P从点B出发,沿x轴以每秒2个单位长度的速度向点A运动,动点Q从点A出发沿射线AE以每秒1个单位长度的速度向点E运动,当点P到达点A时,点P、Q同时停止运动.设运动时间为t秒,连接AC、CQ、PQ.①当△APQ是以AP为底边的等腰三角形时,求t的值;②在点P、Q运动过程中,△ACQ的面积记为S1,△APQ的面积记为S2,S=S1+S2,当S=602675时,请直接写出t的值.答案与解析一.选择题(共10小题)1.12-的倒数是( )A. B. C.12- D.12【答案】A【解析】【分析】根据倒数的概念求解即可.【详解】根据乘积等于1的两数互为倒数,可直接得到-12的倒数为.故选A2.据报道,2020年全国硕士研究生招生规模比去年增加18.9万左右,数据”18.9万”用科学记数法表示为( )A. 1.89×103B. 1.89×104C. 1.89×105D. 18.9×103【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将数据”18.9万”用科学记数法表示为1.89×105,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.一个几何体的三视图如图所示,该几何体是()A 直三棱柱 B. 长方体 C. 圆锥 D. 立方体【答案】A【解析】【分析】根据三视图的形状可判断几何体的形状.【详解】观察三视图可知,该几何体是直三棱柱.故选A.本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.4.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=115°,则∠4的度数为()A. 55°B. 60°C. 65°D. 75°【答案】C【解析】【分析】根据平行线判定定理得出a∥b,再根据平行线的性质得到结果.【详解】如图:∵∠1=∠2,∴a∥b(同位角相等,两直线平行),∴∠3=∠5(两直线平行,同位角相等),∴∠4=180º-∠5=180º-∠3=180º-115º=65º.故选C.5.已知甲、乙两数的和是7,甲数比乙数的2倍少2,设甲数为x,乙数为y,根据题意列方程组正确的是( )A.722x yx y+=⎧⎨=-⎩B.722x yy x+=⎧⎨=-⎩C.722x yx y=+⎧⎨-=⎩D.722x yx y=+⎧⎨+=⎩【答案】A【解析】【分析】根据题意可得等量关系:①甲数+乙数=7,②甲数=乙数×2-2,根据等量关系列出方程组即可.【详解】设甲数为x,乙数为y,根据题意可列方程组:722 x yx y+=⎧⎨=-⎩,故选:A.【点睛】本题主要考查了由实际问题抽象出二元一次方程组,关键是把已知量和未知量联系起来,找出题目中的相等关系.6.关于”可能性是1%的事件在100次试验中发生的次数”,下列说法错误的是( )A. 可能一次也不发生B. 可能发生一次C. 可能发生两次D. 一定发生一次【答案】D【解析】【分析】直接利用概率的意义分别分析得出答案.【详解】关于”可能性是1%的事件在100次试验中发生的次数”,一定发生一次错误,符合题意.故选:D.【点睛】本题主要考查了概率意义,概率只表示可能性的大小,并不表示事件一定为必然事件.正确掌握概率的意义是解题关键.7.下列计算正确的是( )A. b3÷b3=bB. b3•b3=b6C. a2+a2=2a4D. (a3)3=a6【答案】B【解析】【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别计算得出答案.【详解】解:A、b3÷b3=1,故此选项错误;B、b3•b3=b6,正确;C、a2+a2=2a2,故此选项错误;D、(a3)3=a9,故此选项错误.故选:B.【点睛】此题考查合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.8.抽样调查某班10名同学身高(单位:厘米)如下:165,152,165,152,165,160,170,160,165,159.则这组数据的众数是( )A. 152B. 160C. 165D. 170【答案】C【解析】【分析】根据众数定义:一组数据中出现次数最多的数据叫众数,可知165出现的次数最多.【详解】这组数据中165出现次数最多,有4次,所以这组数据的众数为165,故选:C.【点睛】此题主要考查了众数,关键是把握众数定义,难度较小.9.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是( )A. ∠AED=∠BB. ∠ADE=∠CC. AD ACAE AB= D.AD AEAB AC=【答案】D【解析】【分析】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.根据此,分别进行判断即可.【详解】解:由题意得∠DAE=∠CAB ,A 、当∠AED=∠B 时,△ABC ∽△AED ,故本选项不符合题意;B 、当∠ADE=∠C 时,△ABC ∽△AED ,故本选项不符合题意;C 、当AD AE =AC AB时,△ABC ∽△AED ,故本选项不符合题意; D 、当AD AB =AE AC 时,不能推断△ABC ∽△AED ,故本选项符合题意; 故选D .【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.10.关于二次函数y =﹣(x ﹣m )2﹣m +1(m 为常数),下列描述错误的是( )A. 当m =2时,函数的最大值是﹣1B. 函数图象的顶点始终在直线y =﹣x +1的图象上C. 当﹣1<x <2时,y 随x 的增大而增大,则m 的取值范围为m ≤2D. 当m =0时,函数图象的顶点及函数图象与x 轴的两个交点构成的三角形是等腰直角三角形【答案】C【解析】【分析】根据二次函数的图象与性质(最值、增减性、与x 轴的交点坐标)、等腰三角形的定义、勾股定理的逆定理逐项判断即可.【详解】∵二次函数2()1y x m m =---+(m 为常数)∴当x m =时,y 取得最大值,最大值为1m -+则当2m =时,最大值为211-+=-,选项A 正确∵此抛物线的顶点(,1)m m -+∴将x m =代入直线1y x =-+得:1y m =-+则顶点(,1)m m -+在直线1y x =-+上,选项B 正确由二次函数的性质可知,当x m ≤时,y 随x 的增大而增大;当x m >时,y 随x 的增大而减小则当12x -<<时,y 随x 的增大而增大,可得m 的取值范围为2m ≥,选项C 错误当0m =时,二次函数的解析式为21y x =-+此函数的顶点坐标为(0,1),与x 轴的交点分别为(1,0)-,(1,0)由等腰三角形的定义、勾股定理的逆定理得:这三个点构成等腰直角三角形,选项D 正确故选:C .【点睛】本题考查了二次函数的图象与性质(最值、增减性、与x 轴的交点坐标)、等腰三角形的定义、勾股定理的逆定理等知识点,熟练掌握二次函数的图象与性质是解题关键.二.填空题(共6小题)11.因式分解:24ab a - =___________________.【答案】(2)(2)a b b +-【解析】【分析】先提公因式a ,再利用平方差公式即可因式分解.【详解】解:224(4)(2)(2)ab a a b a b b -=-=+-,故答案为:(2)(2)a b b +-.【点睛】本题考查了提公因式法和公式法因式分解,解题的关键是灵活运用两种方法,熟悉平方差公式.12.分别写有数字23、4、0的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是_____. 【答案】25 【解析】【分析】直接利用无理数的定义结合概率求法得出答案.【详解】解:∵在标有23﹣4、0、这2张, ∴从中任意抽取一张,抽到无理数的概率是25, 故答案为:25. 【点睛】此题主要考查了概率公式以及无理数的定义,正确把握相关定义是解题关键.13.在平面直角坐标系中,点P 在直线y =x +b 的图象上,且点P 在第二象限,P A ⊥x 轴于点A ,PB ⊥y 轴于点B ,四边形OAPB 是面积为25的正方形,则直线y =x +b 的函数表达式是_____.【答案】y =x +10.【解析】【分析】用正方形的面积,求得正方形的边长,得到PA ,PB 的长度,P 在第二象限,得点P 的坐标,代入直线解析式,可求得值,进而得到直线的表达式.【详解】解:∵四边形OAPB 是面积为25的正方形,P A ⊥x 轴于点A ,PB ⊥y 轴于点B ,∴P A =PB =5,∵点P 在第二象限,∴P (﹣5,5),∵点P 在直线y =x +b 的图象上,∴5=﹣5+b ,∴b =10,∴直线y =x +b 的函数表达式是y =x +10,故答案为:y =x +10.【点睛】本题考查了坐标系中线段长度与坐标之间的转化关系,待定系数法求解析式,求出点P 的坐标是解题的关键.14.如图,点A ,B ,C 在同一个圆上,∠ACB <90°,弦AB 的长度等于该圆半径的2倍,则cos ∠ACB 的值是_____.【答案】22. 【解析】【分析】 作直径AD ,连接BD ,通过同圆中同弧所对的圆周角相等,得ACB ADB ∠=∠,在Rt ABD ∆完成计算即可.【详解】解:作直径AD,连接BD,如图,∵AD为直径,∴∠ABD=90°,∵弦AB的长度等于该圆半径的2倍,∴22 ABAD=,在Rt△ADB中,sin∠ADB=22 ABAD=,∴∠ADB=45°,∴∠ACB=∠ADB=45°,∴cos∠ACB=22.故答案为22.【点睛】本题考查了圆周角定理的应用,直角三角形中三角函数值得计算,将ACB∠利用圆周角定理转化到直角三角形中,是解题的关键.15.已知二次函数y=ax2+bx+c(a,b,c是常数)的图象如图所示,则反比例函数y=a b cx++的图象所在的象限是第_____象限.【答案】二、四.【解析】【分析】根据函数图象,由1x =时,得到a b c ++的正负,即可得到答案.【详解】解:由二次函数的图象可知,当x =1时,y <0,即a +b +c <0,∴反比例函数y =a b c x++的图象所在的象限是第二、四象限, 故答案为:二、四.【点睛】本题考查了二次函数中a b c ++的正负判断,反比例函数系数对于图象象限的影响,熟练掌握这些知识点是解题的关键.16.如图,菱形ABCD 的边长为10,sin A =45,点M 为边AD 上的一个动点且不与点A 和点D 重合,点A 关于直线BM 的对称点为点A ',点N 为线段CA '的中点,连接DN ,则线段DN 长度的最小值是_____.【答案】65﹣5.【解析】【分析】通过构造三边关系来求DN 的最小值,根据A ,A'关于直线BM 对称,BA ′=10,取BC 的中点K ,NK 是A BC'∆的中位线,NK=5,作DH⊥BC,根据sin A =45可求出DH=8,CH=6,在Rt △DHK 中,由勾股定理求得DK 的值,看△DNK 根据三角形的三边关系即可求出答案.【详解】解:如图,连接BA ′,取BC 的中点K ,连接NK ,作DH ⊥BC 于H .∵四边形ABCD 是菱形,∴AB =BC =CD =AD =10,∠A =∠DCB ,∵A ,A ′关于BM 对称,∴BA′=BA=10,∵CN=NA′,CK=BK,∴NK=12BA′=5,∵sin∠A=sin∠DCH=45=DHCD,∴DH=8,∴CH6,∴CK=KB=5,∴HK=CH=CK=1,∴DK∵DN≥DK﹣NK,∴DN5,∴DN5,5.【点睛】本题考查了线段最值问题,属于压轴题,构造三角形三边关系方法是:①两边为定值,第三边是要求的线段;②往往取特殊点中点构造三角形,解决本题的关键是构造三角形,利用三角形三边关系.三.解答题(共9小题)17.计算:|﹣1)0﹣4sin60°﹣(﹣2)2.【答案】-3【解析】【分析】利用去绝对值,零指数幂,三角函数,乘方运算法则进行计算即可得到答案.【详解】解:|﹣1)0﹣4sin60°﹣(﹣2)2=﹣4×24= 3=﹣3.【点睛】本题考查实数的混合运算,熟练掌握运算法则是解题的关键.18.某校为了做好”营造清洁生活环境”活动的宣传,对本校学生进行了有关知识的测试,测试后随机抽取了部分学生的测试成绩,按”优秀、良好、及格、不及格”四个等级进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:(1)求抽取的学生总人数;(2)抽取的学生中,等级为”优秀”的人数为人;扇形统计图中等级为”不合格”部分的圆心角的度数为°;(3)补全条形统计图;(4)若该校有学生3500人,请根据以上统计结果估计成绩等级为”优秀”和”良好”的学生共有多少人.【答案】(1)100;(2)20、7.2;(3)见解析;(4)2450人【解析】【分析】(1)根据”及格”人数及其所占百分比可得总人数;(2)总人数乘以”优秀”对应的百分比可得其人数,再求出”不及格”人数,继而用360°乘以”不合格”人数所占比例即可得;(3)根据以上所求结果即可补全图形;(4)用总人数乘以样本中”优秀”和”良好”人数和所占比例.【详解】(1)抽取的学生总人数为28÷28%=100(人);(2)抽取的学生中,等级为”优秀”的人数为100×20%=20(人),则”不及格”人数为100−(28+50+20)=2(人),所以扇形统计图中等级为”不合格”部分圆心角的度数为360°×2100=7.2°,故答案为:20、7.2;(2)补全条形图如下:(4)估计成绩等级为”优秀”和”良好”的学生共有3500×5020100=2450(人).【点睛】本题考查的是样本估计总体、条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.如图,在▱ABCD中,AE平分∠BAD交BC边于点E,CE=2,BE=4,求▱ABCD的周长.【答案】20【解析】【分析】根据角平分线的定义和平行四边形的性质证出∠BAE=∠BEA,得出AB=BE=4,求出BC=6,即可得出结论.【详解】解:∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=4,∵BE=3,EC=2,∴BC=BE+EC=4+2=6,∴▱ABCD的周长=2(AB+BC)=2(4+6)=20.【点睛】本题考查了平行四边形的性质、平行线的性质、等腰三角形的判定等知识;熟练掌握平行四边形的性质和等腰三角形的判定是解题的关键.20.学校组织学生开展志愿者服务活动,甲、乙两名学生从”图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,用字母A、B、C分别表示”图书馆”、”博物馆”、”科技馆”三个场馆,请用树状图或列表法求甲、乙两名学生恰好选择同一场馆的概率.【答案】1 3【解析】【分析】画树状图(用A、B、C分别表示”图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【详解】解:画树状图为:(用A、B、C分别表示”图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中甲、乙两名学生恰好选择同一场馆的结果数为3,所以甲、乙两名学生恰好选择同一场馆的概率=39=13.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.某公司需要采购A、B两种笔记本,A种笔记本的单价高出B种笔记本的单价10元,并且花费300元购买A种笔记本和花费100元购买B种笔记本的数量相等.(1)求A种笔记本和B种笔记本的单价各是多少元;(2)该公司准备采购A、B两种笔记本共80本,若A种笔记本的数量不少于60本,并且采购A、B两种笔记本的总费用不高于1100元,那么该公司有种购买方案.【答案】(1)A种笔记本和B种笔记本的单价各是15元和5元;(2)11.【解析】【分析】(1)设A种笔记本的单价是x元,则B种笔记本的单价是(x﹣10)元,根据题意列方程即可得到结论;(2)设该公司准备采购A种笔记本a本,采购B种笔记本(80﹣a)本,根据题意列不等式即可得到结论.【详解】解:(1)设A种笔记本的单价是x元,则B种笔记本的单价是(x﹣10)元,根据题意得,30010010 x x=-,解得:x=15,经检验:x=15是原方程的根,∴x﹣10=5,答:A种笔记本和B种笔记本的单价各是15元和5元;(2)设该公司准备采购A种笔记本a本,采购B种笔记本(80﹣a)本,根据题意得,15a+5(80﹣a)≤1100,解得:a≤70,∵A种笔记本的数量不少于60本,∴60≤a≤70,(a为正整数),∴该公司有11种购买方案.故答案为:11.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.22.如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA =∠OAC=30°.(1)求证:BD是⊙O的切线;(2)图中线段AD、BD和AB围成的阴影部分的面积=.【答案】(1)证明见解析;(2)32 3233π.【解析】【分析】(1)连接OB,交CA于E,,根据圆周角定理求出∠BOA=60°,根据∠BCA=∠OAC=30°和三角形内角和定理求出∠AEO=90°,即OB⊥AC,根据BD∥AC,得到∠DBE=∠AEO=90°,可得BD是⊙O的切线; (2)根据平行线的性质得到∠D=30°,解直角三角形求出BD,分别求出△BOD的面积和扇形AOB的面积,即可得出答案.【详解】(1)证明:如图示,连接OB ,交CA 于E ,∵∠C =30°,∠C =12∠BOA , ∴∠BOA =60°, ∵∠BCA =∠OAC =30°,∴∠AEO =90°,即OB ⊥AC ,∵BD ∥AC ,∴∠DBE =∠AEO =90°,∴BD 是⊙O 的切线;(2)解:∵AC ∥BD ,∠OCA =90°,∴∠D =∠CAO =30°,∵∠OBD =90°,OB =8,∴BD 3=3,∴S 阴影=S △BDO ﹣S 扇形AOB =12×8×3﹣2608360π⨯=3323π, 故答案为:323233π. 【点睛】本题考查了切线的判定,平行线的性质,圆周角定理,扇形的面积,三角形的面积,解直角三角形等知识点的综合运用,熟悉相关性质是解题的关键.23.如图,在平面直角坐标系中,直线y =kx +b 与x 轴交于点A (5,0),与y 轴交于点B ;直线y ═45x +6过点B 和点C ,且AC ⊥x 轴.点M 从点B 出发以每秒2个单位长度的速度沿y 轴向点O 运动,同时点N 从点A 出发以每秒3个单位长度的速度沿射线AC 向点C 运动,当点M 到达点O 时,点M 、N 同时停止运动,设点M 运动的时间为t (秒),连接MN .(1)求直线y=kx+b的函数表达式及点C的坐标;(2)当MN∥x轴时,求t的值;(3)MN与AB交于点D,连接CD,在点M、N运动过程中,线段CD的长度是否变化?如果变化,请直接写出线段CD长度变化的范围;如果不变化,请直接写出线段CD的长度.【答案】(1)y=﹣65x+6,点C的坐标为(5,10);(2)t=65;(3)线段CD的长度不变化,CD=12495由见解析【解析】【分析】(1)先求出点C和点B的坐标,再根据待定系数法,即可求得答案;(2)分别用含t的代数式表示OM和AN的长,列出关于t的方程,即可求解;(3)过点D作EF∥x轴,交OB于E,交AC于F,由△BDM∽△ADN,得23DE BMDF AN==,从而得DF的长,由△BDE∽△ADF,得EO=F A=185,从而得CF的长,进而即可求解.【详解】(1)∵AC⊥x轴,点A(5,0),∴点C的横坐标为5,对于y═45x+6,当x=5时,y=45×5+6=10,对于x=0,y=6,∴点C的坐标为(5,10),点B的坐标为(0,6),∵直线y=kx+b与x轴交于点A(5,0),与y轴交于点B(0,6),∴5k b0b6+=⎧⎨=⎩,解得,6k5b6⎧=-⎪⎨⎪=⎩,∴直线y=kx+b的函数表达式为:y=﹣65x+6,综上所述,直线y=kx+b的函数表达式为y=﹣65x+6,点C的坐标为(5,10);(2)由题意得,BM=2t,AN=3t,∴OM=6﹣2t,∵当OM=AN时,OM∥AN,∴四边形EOAF为平行四边形,∴MN∥x轴,∴6﹣2t=3t,解得,t=65,∴当MN∥x轴时,t=65;(3)线段CD的长度不变化,理由如下:过点D作EF∥x轴,交OB于E,交AC于F,∵EF∥x轴,BM∥AN,∠AOE=90°,∴四边形EOAF为矩形,∴EF=OA=5,EO=F A,∵BM∥AN,∴△BDM∽△ADN,∴23 DE BMDF AN==∵EF=5,∴DE=2,DF=3,∵BM∥AN,∴△BDE∽△ADF,∴23 BE DEFA DF==,∴23 BEEO=,∵OB=6,∴EO=F A=185,∴CF=AC﹣F A=325,∴CD=22DF CF=12495.【点睛】本题主要考查一次函数的图象和待定系数法,矩形的判定和性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质,添加合适的辅助线,构造相似三角形,是解题的关键.24.如图,已知△ABC中,AC=BC,∠ACB=90°,将△ABC绕点B逆时针方向旋转得到△PBQ,旋转角为α,且45°<α<90°.(1)连接AP,CQ,则APCQ=;(2)若QD⊥BC,垂足为点D,∠BQD=15°,QD与PB交于点E,∠BEQ的平分线EF交AB的延长线于点F.①求旋转角α的大小;②求∠F的度数;③求证:EQ+EB=EF.【答案】22)①75°;②15°;③证明见解析【解析】【分析】(1)根据题意利用相似三角形的判定与性质通过证明△ABP ∽△CBQ ,可得AB AP BC CQ =; (2)①根据题意由直角三角形的性质可求∠CBQ=75°,即可求解;②根据题意直接由三角形的外角性质进行分析即可求解;③由题意在EF 上截取EH=EB ,连接BH ,由”AAS ”可证△BHF ≌△BEQ ,可得EQ=HF ,进而即可得出结论.【详解】解:(1)∵AC =BC ,∠ACB =90°,∴AB BC ,∠ABC =45°=∠BAC∵将△ABC 绕点B 逆时针方向旋转得到△PBQ ,∴∠ABC =∠PBQ =45°,AB =BP ,BC =BQ ,∴∠ABP =∠CBQ ,AB BP BC BQ==, ∴△ABP ∽△CBQ ,∴AB AP BC CQ=,;(2)①∵QD ⊥BC ,∴∠QDB =90°,且∠BQD =15°,∴∠CBQ =75°,∴旋转角α为75°;②∵∠DBE =∠CBQ ﹣∠PBQ =75°﹣45°=30°,∴∠DEB =60°,∠ABP =75°,∴∠BEQ =120°,∵EF 平分∠BEQ ,∴∠BEF =60°,∵∠ABP =∠F+∠BEF ,∴∠F =75°﹣60°=15°;③如图,在EF 上截取EH =EB ,连接BH ,∵EB=EH,∠BEF=60°,∴△BEH是等边三角形,∴BE=BH=EH,∠BHE=60°,∴∠BHF=∠BEQ=120°,且∠F=∠BQD=15°,BE=BH,∴△BHF≌△BEQ(AAS)∴EQ=HF,∴EQ+EB=HF+EH=EF.【点睛】本题是四边形综合题,考查全等三角形的判定和性质,相似三角形的判定和性质,等边三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是解答本题的关键.25.如图,在平面直角坐标系中,抛物线y=ax2+x+c与直线3344y x=+交于点A和点E,点A在x轴上.抛物线y=ax2+x+c与x轴另一个交点为点B,与y轴交于点C(0,43),直线3344y x=+与y轴交于点D.(1)求点D的坐标和抛物线y=ax2+x+c的函数表达式;(2)动点P从点B出发,沿x轴以每秒2个单位长度的速度向点A运动,动点Q从点A出发沿射线AE以每秒1个单位长度的速度向点E运动,当点P到达点A时,点P、Q同时停止运动.设运动时间为t秒,连接AC、CQ、PQ.①当△APQ是以AP为底边的等腰三角形时,求t的值;②在点P、Q运动过程中,△ACQ的面积记为S1,△APQ的面积记为S2,S=S1+S2,当S=602675时,请直接写出t的值.【答案】(1)抛物线的函数表达式为21433y x x =-++;(2)①2518;②13159±. 【解析】【分析】 (1)根据题意首先求出A 、D 的坐标,再利用待定系数法即可解决问题;(2)①如图1,过点Q 作QF ⊥AP 于点F ,则AF =PF =12AP =12(5﹣2t ),AQ =t ,证得OD ∥QF ,得出AO AD AF AQ=,可求出t 的值; ②如图2,过点C 作CM ⊥AQ 于点M ,过点Q 作QN ⊥x 轴于点N ,证明△AOD ∽△CMD ,求出CM ,则S 1可用t 表示,证明△AOD ∽△AQN ,求出QN ,则S 2可用t 表示,则可得出t 的方程,解方程即可得出答案.【详解】解:(1)∵直线3344y x =+与y 轴交于点D , ∴x =0时,y =34, ∴D (0,34), ∵直线3344y x =+与x 轴交于点A , ∴y =0时,3344x +=0, ∴x =﹣1,∴A (﹣1,0),∵抛物线y =ax 2+x+c 经过点A (﹣1,0),C (0,43),∴1043a c c -+=⎧⎪⎨=⎪⎩, 解得:1343a c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的函数表达式为21433y x x =-++; (2)①如图1,过点Q 作QF ⊥AP 于点F ,若AQ =PQ ,则AF =PF =12AP =12(5﹣2t ),AQ =t , ∵OD ⊥AP ,QF ⊥AP ,∴OD ∥QF , ∴AO AD AF AQ=, ∵D (0,34),A (﹣1,0), ∴OD =34,AO =1, ∴AD 220A DO +22314⎛⎫+ ⎪⎝⎭54, ∴5141(52)2tt =-, 解得:t =2518.∴t=2518时,△APQ是以AP为底边的等腰三角形.②如图2,过点C作CM⊥AQ于点M,过点Q作QN⊥x轴于点N,∵∠ADO=∠CDM,∠AOD=∠CMD=90°,∴△AOD∽△CMD,∴AD AO CD CM=,∵CD=OC﹣OD=4373412-=,AD=54,OA=1,∴514712CM=,∴CM=7 15,∴S△ACQ=S1=12AQ×CM=17215t⨯⨯=730t,∵OD⊥x轴,QN⊥x轴,∴OD∥QN,∴△AOD∽△AQN,∴AD OD AQ ON=,∴5344t QN =,∴QN=35t,∴S△APQ=S2=12AP×QN=13(52)25t t-=23325t t-,∵S 1+S 2=602675, ∴27336023025675t t t +-=, ∴213395t ⎛⎫-= ⎪⎝⎭,解得:t =139即当S =602675时,t 的值为139±. 【点睛】本题考查二次函数综合题,考查待定系数求函数解析式,等腰三角形的性质,三角形的面积,相似三角形的判定与性质等知识,熟练掌握相似三角形的判定与性质及方程思想是解题的关键.。
中考一模真题数学试卷答案
一、选择题1. 答案:D解析:本题考查了实数的运算。
由题意可知,|x-2|表示x与2的距离,因此x的取值范围应包括2,故选D。
2. 答案:B解析:本题考查了整式的乘法。
由题意可知,(a+b)(a-b)可以化简为a^2-b^2,故选B。
3. 答案:C解析:本题考查了分式的运算。
由题意可知,分子分母同时除以x^2,可得1/x,故选C。
4. 答案:A解析:本题考查了一元一次方程的解法。
将方程2x+5=9移项,得2x=4,再除以2,得x=2,故选A。
5. 答案:D解析:本题考查了二次函数的性质。
由题意可知,当x=0时,y=1;当x=2时,y=3。
因此,该二次函数的对称轴为x=1,故选D。
二、填空题6. 答案:-1解析:本题考查了整式的除法。
由题意可知,(-6a^3b^2c)÷(2a^2b^3c^2)可以化简为-3abc,故答案为-1。
7. 答案:4解析:本题考查了一元二次方程的解法。
由题意可知,(x-2)^2=1,开方得x-2=±1,解得x=3或x=1,故答案为4。
8. 答案:y=2x-1解析:本题考查了一次函数的解析式。
由题意可知,当x=0时,y=1;当x=2时,y=3。
因此,一次函数的解析式为y=2x-1,故答案为y=2x-1。
9. 答案:x=3解析:本题考查了解直角三角形。
由题意可知,cosA=3/5,由勾股定理可得BC=4,AC=5,再利用勾股定理可得AB=3,故答案为x=3。
10. 答案:π解析:本题考查了圆的性质。
由题意可知,圆的半径为r,圆心角为90°,因此圆的周长为2πr,故答案为π。
三、解答题11. 解答:(1)将x=3代入方程2x+5=9,得23+5=9,计算得x=3。
(2)将x=1代入方程2x-3=5,得21-3=5,计算得x=4。
12. 解答:(1)设一次函数的解析式为y=kx+b,由题意可知,当x=0时,y=1,代入解析式得b=1。
又因为当x=2时,y=3,代入解析式得k=1。
中考模拟考试数学试卷及答案解析(共五套)
19.(8分)为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75g的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:
(4)某外贸公司从甲厂采购了20000只鸡腿,并将质量(单位:g)在71≤x<77的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少只?
20.(8分)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身BA=8.5cm.
18.(8分)甲,乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.
(1)求这种商品的单价;
(2)甲,乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是元/件,乙两次购买这种商品的平均单价是元/件.
C.三四线城市购买新能源汽车用户达到11万
D.四线城市以下购买新能源汽车用户最少
【分析】根据扇形统计图中的数据一一分析即可判断.
【解答】解:A、一线城市购买新能源汽车的用户最多,故本选项正确,不符合题意;
B、二线城市购买新能源汽车用户达37%,故本选项正确,不符合题意;
C、由扇形统计图中的数据不能得出三四线城市购买新能源汽车用户达到11万,故本选项错误,符合题意;
中考数学一模测试卷(附答案解析)
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(本卷满分150分,考试时间120分钟)一、选择题 (本大题共8小题,每小题3分,共24分.每小题只有一个选项是符合题意的) 1.下列计算正确的是( ) A .=2B .=±2 C .=2D .=±2 2.实数a 、b 在数轴上的对应点的位置如图所示,下列关系式不成立的是( )A .55a b ->-B .66a b >C .a b ->-D .0a b ->3.32()xy -的计算结果是( ) A .26x yB .26x y -C .29x yD .29x y -4.小刚在解关于x 的方程ax 2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=–1.他核对时发现所抄的c 比原方程的c 值小2,则原方程的根的情况是( ) A .不存在实数根 B .有两个不相等的实数根 C .有一个根是x=–1D .有两个相等的实数根5.如图所示的工件的主视图是( )A. B. C. D.6.如图,将长方形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上过点E 处,若32AGE ∠=︒,则GHC ∠等于 ︒7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折8.如图,在平面直角坐标系中,矩形ABCD 四个顶点的坐标分别为A(﹣1,2),B(﹣1,﹣1,),C(3,﹣1),D(3,2),当双曲线y =(k >0)与矩形有四个交点时,k 的取值范围是( )A .0<k <2B .1<k <4C .k >1D .0<k <1二.填空题(本大题共8小题,每小题3分,共24分.)9.某人近期加强了锻炼,用”微信运动”记录下了一天的行走的步数为12400,将12400用科学记数法表示应为 .10.分解因式3x 2-27y 2=__________.11.某班甲、乙、丙三名同学20天的体温数据记录如表: 甲的体温 乙的体温丙的体温温度℃36.136.436.5 36.8 温度℃36.1 36.4 36.5 36.8 温度℃ 36.1 36.4 36.5 36.8频数5555频数6446频数4 6 6 4则在这20天中,甲、乙、丙三名同学的体温情况最稳定的是 .12.小明先将图1中的矩形沿虚线剪开分成四个全等的小矩形,再将这四个小矩形拼成如图2的正方形,那么图1中矩形的面积为 .13.已知直线a ∥b ,将一块含30°角的直角三角板ABC 按如图所示方式放置(∠BAC =30°),并且顶点A ,C 分别落在直线a ,b 上,若∠1=18°,则∠2的度数是 .14.如图,点C 、D 是以线段AB 为直径的O 上两点,若CA CD =,且25CAB ∠=︒,则ACD ∠的度数 为 ︒.15.如图,点A 是反比例函数y =﹣(x <0)图象上一点,AB ⊥x 轴于点B ,点C 是y 轴上的一动点,则△ABC的面积为.16.如果直线l 把ABC ∆分割后的两个部分面积相等,且周长也相等,那么就把直线l 叫做ABC ∆的”完美分割线”,已知在ABC ∆中,AB AC =,ABC ∆的一条”完美分割线”为直线l ,且直线l 平行于BC ,若2AB =,则BC 的长等于 .三、解答题(本大题共11小题,共102分.) 17.(6分)计算:(a+2)(a ﹣3)﹣(a ﹣1)(a ﹣4) 18.(6分)解方程:.19.(8分)先化简,再求值:221(1)11x x x x -÷-+-+,其中x =20.(8分)解不等式组,并把它的解集表示在数轴上:3(1)72513x x xx --≤⎧⎪-⎨-⎪⎩< ①② 21.(8分)如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB 交ED 的延长线于点F .(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.22.(10分)如图,四边形ABCD是菱形,请仅用无刻度的直尺按要求画图.(不写画法,保留作图痕迹).(1)在图1中,画出∠A的平分线;(2)在图2中,AE⊥CD,过点C画出AD边上的高CF;(3)在图3中,AE⊥CD,过点C画出AB边上的高CG.23.(10分)小明参加某网店的”翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品.(1)如果随机翻1张牌,那么抽中20元奖品的概率为(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30元的概率为多少?24.(10分)如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线上的一点,过⊙O上一点C作⊙O 的切线交DF于点E,CE⊥DF.(1)求证:AC平分∠FAB;(2)若AE=1,CE=2,求⊙O的半径.25.(10分)每年5月的第二个星期日即为母亲节,”父母恩深重,恩怜无歇时”,许多市民喜欢在母亲节为母亲送花,感恩母亲,祝福母亲.今年节日前夕,某花店采购了一批鲜花礼盒,经分析上一年的销售情况,发现该鲜花礼盒的该周销售量y(盒)是销售单价x(元)的一次函数,已知销售单价为70元/盒时,销售量为160盒;销售单价为80元/盒时,销售量为140盒.(1)求该周销售量y(盒)关于销售单价x(元)的一次函数解析式;(2)若按去年方式销售,已知今年该鲜花礼盒的进价是每盒50元,商家要求该周至少要卖110盒,请你帮店长算一算,要完成商家的销售任务,销售单价不能超过多少元?(3)在(2)的条件下,试确定销售单价x为何值时,花店该周销售鲜花礼盒获得的利润最大?并求出获得的最大利润.26(12分)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.27.(14分)问题提出:(1)如图①,在Rt△ABC中,∠C=90°,AB=13,BC=5,则tanA的值是.(2)如图②,在正方形ABCD中,AB=5,点E是平面上一动点,且BE=2,连接CE,在CE上方作正方形EFGC,求线段CF的最大值.问题解决:(3)如图③,⊙O半径为6,在Rt△ABC中,∠B=90°,点A,B在⊙O上,点C在⊙O内,且tanA=.当点A在圆上运动时,求线段OC的最小值.参考答案一、选择题 (本大题共8小题,每小题3分,共24分.每小题只有一个选项是符合题意的) 1.下列计算正确的是( ) A .=2B .=±2 C .=2D .=±2 【答案】A 【解析】A 、=2,故原题计算正确;B 、=2,故原题计算错误;C 、=4,故原题计算错误;D 、=4,故原题计算错误;故选:A .2.实数、在数轴上的对应点的位置如图所示,下列关系式不成立的是A .B .C .D .【答案】C【解析】由图可知,,且,,,,, ∴关系式不成立的是选项C .故选:C . 3.的计算结果是( ) A . B . C . D .【答案】A【解析】原式=.故选A .4.小刚在解关于x 的方程ax 2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=–1.他核对时发现所抄的c 比原方程的c 值小2,则原方程的根的情况是( ) A .不存在实数根 B .有两个不相等的实数根 C .有一个根是x=–1D .有两个相等的实数根【答案】A【解析】∵小刚在解关于x 的方程ax 2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=–1, ∴(–1)2–4+c=0,解得:c=3,故原方程中c=5,则b 2–4ac=16–4×1×5=–4<0,则原方程的根的情况是不存在实数根.故选A .5.如图所示的工件的主视图是( )a b ()55a b ->-66a b >a b ->-0a b ->0b a <<||||b a <55a b ∴->-66a b >a b -<-0a b ->32()xy -26x y 26x y -29x y 29x y -26x yA. B. C. D.【答案】B【解析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形. 故选:B .6.如图,将长方形沿折叠,点落在点处,点落在处,若,则等于【答案】106【解析】,,由折叠可得,,,.故答案为.7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A .6折 B .7折 C .8折 D .9折【答案】B【解析】设可打x 折,则有800≥800×5%,解得x≥7.即最多打7折.故选B .8.如图,在平面直角坐标系中,矩形ABCD 四个顶点的坐标分别为A(﹣1,2),B(﹣1,﹣1,),C(3,﹣1),D(3,2),当双曲线y =(k >0)与矩形有四个交点时,k 的取值范围是( )ABCD GH C Q D AB CD AB CA CD =25CAB ∠=︒ACD ∠︒A.0<k<2 B.1<k<4 C.k>1 D.0<k<1【答案】D【解析】根据反比例函数的对称性,双曲线y=(k>0)与矩形有四个交点,只要反比例函数在第四象限的图象与矩形有2个交点即可,当反比例函数过点B(﹣1,﹣1)时,此时k=1,反比例函数图象与矩形有三个交点,当反比例函数图象与AB有交点时,则当x=﹣1时,y=﹣k>﹣1,即k<1;当反比例函数图象与BC有交点时,则当y=﹣1时,x=﹣k>﹣1,即k<1;又∵k>0,∴0<k<1,故选:D.二.填空题(本大题共8小题,每小题3分,共24分.)9.某人近期加强了锻炼,用”微信运动”记录下了一天的行走的步数为12400,将12400用科学记数法表示应为.【答案】1.24×104.【解析】12400=1.24×104.故答案为:1.24×104.10.分解因式3x2-27y2=__________.【答案】3(x+3y)(x-3y)【解析】原式=3(x2-9y2)=3(x+3y)(x-3y),故答案为:3(x+3y)(x-3y).11.某班甲、乙、丙三名同学20天的体温数据记录如表:甲的体温乙的体温丙的体温温度℃36.1 36.4 36.5 36.8 温度℃36.1 36.4 36.5 36.8 温度℃36.1 36.4 36.5 36.8频数 5 5 5 5 频数6 4 4 6 频数4 6 6 4则在这20天中,甲、乙、丙三名同学的体温情况最稳定的是.【答案】丙【解析】甲的平均数为:(36.1×5+36.4×5+36.5×5+36.8×5)=36.45;乙的平均数为:(36.1×6+36.4×4+36.5×4+36.8×6)=36.45; 丙的平均数为:(36.1×4+36.4×6+36.5×6+36.8×4)=36.45;甲的方差为:[5×(36.1﹣36.45)2+5×(36.4﹣36.45)2+5×(36.5﹣36.45)2+5×(36.8﹣36.45)2]=0.0625; 乙的方差为:[6×(36.1﹣36.45)2+4×(36.4﹣36.45)2+4×(36.5﹣36.45)2+6×(36.8﹣36.45)2]=0.0745; 丙的方差为:[4×(36.1﹣36.45)2+6×(36.4﹣36.45)2+6×(36.5﹣36.45)2+4×(36.8﹣36.45)2]=0.064;∵0.064<0.625<0.0745,∴在这20天中,甲、乙、丙三名同学的体温情况最稳定的是丙,故答案为:丙.12.小明先将图1中的矩形沿虚线剪开分成四个全等的小矩形,再将这四个小矩形拼成如图2的正方形,那么图1中矩形的面积为 .【答案】12【解析】设四个小矩形的长为x ,宽为y , 根据题意得,,解得:,∴图1中矩形的面积为4×(3×1)=12,故答案为:12.13.已知直线a ∥b ,将一块含30°角的直角三角板ABC 按如图所示方式放置(∠BAC =30°),并且顶点A ,C 分别落在直线a ,b 上,若∠1=18°,则∠2的度数是 .【答案】48°【解析】 ∵a ∥b ,∴∠2=∠1+∠CAB =18°+30°=48°,故答案为:48° 14.如图,点、是以线段为直径的,且,则为.l BC 2AB =BC 221(1)11x x x x -÷-+-+2x =3(1)--≤--<【答案】50【解析】为直径,,,,,,.故答案为:50.15.如图,点A是反比例函数y=﹣(x<0)图象上一点,AB⊥x轴于点B,点C是y轴上的一动点,则△ABC 的面积为.【答案】2【解析】连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB,而S△OAB=|k|=2,∴S△CAB=2,故答案为:2.16.如果直线把分割后的两个部分面积相等,且周长也相等,那么就把直线叫做的”完美分割线”,已知在中,,的一条”完美分割线”为直线,且直线平行于,若,则的长等于.【解析】如图,设直线与、分别交于点、,则由”完美分割线”的定义可知,,,,设,则,,,.故答案为三、解答题(本大题共11小题,共102分.)17.(6分)计算:(a+2)(a﹣3)﹣(a﹣1)(a﹣4)【答案】4a﹣10.【解析】(a+2)(a﹣3)﹣(a﹣1)(a﹣4)=a2﹣a﹣6﹣(a2﹣5a+4)18.(6分)解方程:.【答案】x=﹣.【解析】解:方程两边都乘3(x+1),得:3x﹣2x=3(x+1),解得:x=﹣,经检验x=﹣是方程的解,∴原方程的解为x=﹣.19.(8分)先化简,再求值:,其中..【解析】解:原式当时,原式.20.(8分)解不等式组,并把它的解集表示在数轴上:【解析】解不等式①,得;解不等式②,得.在同一条数轴上表示不等式①②的解集,21.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.【答案】(1)证明见解析;(2)3【解析】(1)∵,∵是边上的中线,∴,.(2)∵,,.∵,.22.(10分)如图,四边形ABCD是菱形,请仅用无刻度的直尺按要求画图.(不写画法,保留作图痕迹).(1)在图1中,画出∠A的平分线;(2)在图2中,AE⊥CD,过点C画出AD边上的高CF;(3)在图3中,AE⊥CD,过点C画出AB边上的高CG.【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)如图1所示;(2)如图2所示;(3)如图3所示;23.(10分)小明参加某网店的”翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品.(1)如果随机翻1张牌,那么抽中20元奖品的概率为(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30元的概率为多少?【答案】(1)25%,(2)【解析】解:(1)∵1÷4=0.25=25%,∴抽中20元奖品的概率为25%.故答案为:25%.(2),∵所获奖品总值不低于30元有4种情况:30元、35元、30元、35元,∴所获奖品总值不低于30元的概率为:4÷12==.24.(10分)如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线上的一点,过⊙O上一点C作⊙O的切线交DF于点E,CE⊥DF.(1)求证:AC平分∠FAB;(2)若AE=1,CE=2,求⊙O的半径.【答案】(1)证明见解析;【解析】(1)证明:连接OC.∵CE是⊙O的切线,∴∠OCE =90°∵CE⊥DF,∴∠CEA=90°,∴∠ACE+∠CAE=∠ACE+∠OCA=90°,∴∠CAE=∠OCA ∵OC=OA,∴∠OCA=∠OAC. ∴∠CAE=∠OAC,即AC平分∠FAB(2)连接BC.∵AB是⊙O的直径,∴∠ACB =∠AEC =90°. 又∵∠CAE=∠OAC,∴△ACB∽△AEC, ∴. =2,∠AEC =90°,∴,∴⊙O.25.(10分)每年5月的第二个星期日即为母亲节,”父母恩深重,恩怜无歇时”,许多市民喜欢在母亲节为母亲送花,感恩母亲,祝福母亲.今年节日前夕,某花店采购了一批鲜花礼盒,经分析上一年的销售情况,发现该鲜花礼盒的该周销售量y(盒)是销售单价x(元)的一次函数,已知销售单价为70元/盒时,销售量为160盒;销售单价为80元/盒时,销售量为140盒.(1)求该周销售量y(盒)关于销售单价x(元)的一次函数解析式;(2)若按去年方式销售,已知今年该鲜花礼盒的进价是每盒50元,商家要求该周至少要卖110盒,请你帮店长算一算,要完成商家的销售任务,销售单价不能超过多少元?(3)在(2)的条件下,试确定销售单价x为何值时,花店该周销售鲜花礼盒获得的利润最大?并求出获得的最大利润.【答案】(1)y=-2x+300;(2)销售单价不能超过95元;(3)销售单价定为95元时,每周的利润最大,最大利润为4 950元.【解析】(1)y=-2x+300;(2)由题意可得y≥110,∴-2x+300≥110,解得x≤95,∴销售单价不能超过95元;(3)设销售利润为w元,则w=(x-50)(-2x+300)=-2x2+400x-15 000=-2(x-100)2+5 000.∵-2<0,对称轴为x=100,∴当50≤x≤95时,w随x的增大而增大.∴当x=95时,w取得最大值,最大值为4950.∴销售单价定为95元时,每周的利润最大,最大利润为4950元.26(12分)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.【答案】(1)y=x2﹣4x+3;(2)点P(4,3)或(0,3)或(2,﹣1);(3)当x=,其最大值为,此时点E(,﹣).【解析】(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PF=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:,即:=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S四边形AEBD=AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,∵﹣1<0,故四边形AEBD面积有最大值,当x=,其最大值为,此时点E(,﹣).27.(14分)问题提出:(1)如图①,在Rt△ABC中,∠C=90°,AB=13,BC=5,则tanA的值是.(2)如图②,在正方形ABCD中,AB=5,点E是平面上一动点,且BE=2,连接CE,在CE上方作正方形EFGC,求线段CF的最大值.问题解决:(3)如图③,⊙O半径为6,在Rt△ABC中,∠B=90°,点A,B在⊙O上,点C在⊙O内,且tanA=.当点A在圆上运动时,求线段OC的最小值.【答案】(1);,(2)7; (3)3【解析】(1)∵Rt△ABC中,∠C=90°,AB=13,BC=5,∴AC===12,∴tanA==,故答案为:;(2)∵BE=2,点B为定点,∴点E在以B为圆心,BE长为半径的圆上运动,∴当C、B、E三点共线,且E在CB的延长线上时,线段CE取得最大值,∵在正方形ABCD中,AB=5,∴BC=AB=5,∴CE最大=BC+BE=5+2=7,∵四边形EFGC是正方形,∴CE最大时,CF最大,CF=CE,∴线段CF的最大值为:×7=7;(3)延长BC交⊙O于点F,连接AF,如图③所示:∵∠B=90°,∴AF为⊙O的直径经过点O,AF=2×6=12,∵tanA=,∴∠CAB、∠ACB为定值,∴∠ACF为定值,∴当OC⊥AF时,OC值最小,设BC=3x,则AB=4x,x>0,∵OC⊥AF,OA=OF,∴FC=AC===5x,∴BF=CF+BC=5x+3x=8x,在Rt△ABF中,AF2=AB2+BF2,即122=(4x)2+(8x)2,解得:x2=,∴AC2=(5x)2=25×=45,∴在Rt△AOC中,OC===3,∴线段OC的最小值是3.。
中考第一次模拟测试《数学试题》含答案解析
一、选择题(每小题3分,共12小题,满分36分)1.(2019•湖北黄石)下列四个数:,,,中,绝对值最大的数是( ) A.B.C.D.2.(2019•云南)下列图形既是轴对称图形,又是中心对称图形的是A .B .C .D .3.(2019·安徽)2019年”五一”假日期间,某省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为 A .1.61×109B .1.61×1010C .1.61×1011D .1.61×10124.(2019•山西)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与”点”字所在面相对面上的汉字是A .青B .春C .梦D .想5.(2019•宁夏)为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:阅读时间/小时0.5及以下0.7 0.9 1.1 1.3 1.5及以上人数296544则本次调查中阅读时间的中位数和众数分别是 A .0.7和0.7B .0.9和0.7C .1和0.7D .0.9和1.16.(2019•湖南长沙)下列计算正确的是( ) A. 325a b ab += B. 326()a a = C 632a a a ÷=D. 222()a b a b +=+7. (2019•宿迁)一副三角板如图摆放(直角顶点C 重合),边AB 与CE 交于点F ,DE BC ∥,则BFC ∠等于A .105︒B .100︒C .75︒D .60︒8.(2019•河南)如图,在四边形ABCD 中,AD ∥BC ,∠D =90°,AD =4,BC =3.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为A .B .4C .3D 9.(2019•湖州)已知,a b 是非零实数,a b >,在同一平面直角坐标系中,二次函数21y ax bx =+与一次函数2y ax b =+的大致图象不可能是A .B .C .D .10.(2019•江苏)若一次函数y kx b =+(k b 、为常数,且0k ≠)的图象经过点()01A -,,()11B ,,则不等式1kx b +>的解为( )A. 0x <B. 0x >C. 1x <D. 1x >11.(2019•宁波)不等式32xx ->的解为 A .1x <B .1x <-C .1x >D .1x >-12.(2019•广东)如图,正方形ABCD 的边长为4,延长CB 至E 使EB =2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM ,AF ,H 为AD 的中点,连接FH 分别与AB ,AM 交于点N 、K ,则下列结论:①△ANH ≌△GNF ;②∠AFN =∠HFG ;③FN =2NK ;④S △AFN ∶S △ADM =1∶4.其中正确的结论有A .1个B .2个C .3个D .4个二、填空题(每小题3分,共4小题,满分12分)13.(2019•绍兴)因式分解:x 2-1=__________.14. (2019•新疆)同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是__________.15.(2019•海南)如图,将Rt △ABC 的斜边AB 绕点A 顺时针旋转α(0°<α<90°)得到AE ,直角边AC 绕点A逆时针旋转β(0°<β<90°)得到AF ,连接EF .若AB =3,AC =2,且α+β=∠B ,则EF =__________.16.(2019•山西)如图,在平面直角坐标中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(–4,0),点D 的坐标为(–1,4),反比例函数y =kx(x >0)的图象恰好经过点C ,则k 的值为__________.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22、23题9分,满分52分)17.(2019·济宁)计算:016sin 60()|2018|2+︒.18.(2019•河南)先化简,再求值:2212(1)244x x xx x x +--÷--+,其中x 19.(2019•河南)某校为了解七、八年级学生对”防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70;72;74;75;76;76;77;77;77;78;79c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9 m八79.2 79.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有__________人;(2)表中m的值为__________;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.20.(2019•天津)如图,海面上一艘船由西向东航行,在A处测得正东方向上一座灯塔的最高点C的仰角为31°,再向东继续航行30m到达B处,测得该灯塔的最高点C的仰角为45°,根据测得的数据,计算这座灯塔的高度CD(结果取整数).参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60.21.(2019•哈尔滨)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元.(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?22.(2019·海南)如图,已知抛物线y=ax2+bx+5经过A(–5,0),B(–4,–3)两点,与x轴的另一个交点为C,顶点为D,连结C D.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.23.(2019·浙江湖州)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(﹣3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x﹣3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.答案与解析一、选择题(每小题3分,共12小题,满分36分)1.(2019•湖北黄石)下列四个数:,,,中,绝对值最大的数是()A. B. C. D.【答案】A【解析】∵|-3|=3,|-0.5|=0.5,||=,||=且0.5<<<3,∴所给的几个数中,绝对值最大的数是-3.故选:A.2.(2019•云南)下列图形既是轴对称图形,又是中心对称图形的是A.B.C.D.【答案】B【解析】A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形旋转180°后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选B.3.(2019·安徽)2019年”五一”假日期间,某省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为A.1.61×109B.1.61×1010C.1.61×1011D.1.61×1012【答案】B【解析】161亿=16100000000=1.61×1010.故选B.4.(2019•山西)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与”点”字所在面相对面上的汉字是A .青B .春C .梦D .想【答案】B【解析】展开图中”点”与”春”是对面,”亮”与”想”是对面,”青”与”梦”是对面; 故选B .5.(2019•宁夏)为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:阅读时间/小时0.5及以下0.7 0.9 1.1 1.3 1.5及以上人数296544则本次调查中阅读时间的中位数和众数分别是 A .0.7和0.7 B .0.9和0.7C .1和0.7D .0.9和1.1【答案】B【解析】由表格可得,30名学生平均每天阅读时间的中位数是:0.90.92+=0.9, 30名学生平均每天阅读时间的众数是0.7,故选B . 6.(2019•湖南长沙)下列计算正确的是( ) A. 325a b ab += B. 326()a a = C 632a a a ÷= D. 222()a b a b +=+【答案】B【解析】A 、3a 与2b 不是同类项,故不能合并,故选项A 不合题意; B 、(a 3)2=a 6,故选项B 符合题意; C 、a 6÷a 3=a 3,故选项C 不符合题意;D 、(a +b )2=a 2+2ab +b 2,故选项D 不合题意. 故选B .7. (2019•宿迁)一副三角板如图摆放(直角顶点C 重合),边AB 与CE 交于点F ,DE BC ∥,则BFC ∠等于A .105︒B .100︒C .75︒D .60︒【答案】A【解析】由题意知45E ∠=︒,30B ∠=︒,∵DE CB ∥,∴45BCF E ∠=∠=︒, 在CFB △中,1801803045BFC B BCF ∠=︒-∠-∠=︒-︒-︒105=︒,故选A .8.(2019•河南)如图,在四边形ABCD 中,AD ∥BC ,∠D =90°,AD =4,BC =3.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为A .B .4C .3D【答案】A【解析】如图,连接FC ,则AF =FC .∵AD ∥BC ,∴∠FAO =∠BCO .在△FOA 与△BOC 中,FAO BCO OA OCAOF COB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FOA ≌△BOC (ASA), ∴AF =BC =3,∴FC =AF =3,FD =AD -AF =4-3=1.在△FDC 中,∵∠D =90°,∴CD 2+DF 2=FC 2,∴CD 2+12=32,∴CD =.故选A . 9.(2019•湖州)已知,a b 是非零实数,a b >,在同一平面直角坐标系中,二次函数21y ax bx =+与一次函数2y ax b =+的大致图象不可能是A .B .C .D .【答案】D【解析】解答本题可采用赋值法,取2,1a b ==,可知A 选项是可能的;取2,1a b ==-,可知B 选项是可能的;取2,1a b =-=-,可知C 选项是可能的,那么根据排除法,可知D 选项是不可能的,故选D .10.(2019•江苏)若一次函数y kx b =+(k b 、为常数,且0k ≠)的图象经过点()01A -,,()11B ,,则不等式1kx b +>的解为( )A. 0x <B. 0x >C. 1x <D. 1x >【答案】D 【解析】如下图图象,易得1kx b +>时,1x > 故选D11.(2019•宁波)不等式32xx ->的解为 A .1x <B .1x <-C .1x >D .1x >-【答案】A【解析】32xx->,3-x>2x,3>3x,x<1,故选A.12.(2019•广东)如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N、K,则下列结论:①△ANH ≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN∶S△ADM=1∶4.其中正确的结论有A.1个B.2个C.3个D.4个【答案】C【解析】∵四边形EFGB是正方形,EB=2,∴FG=BE=2,∠FGB=90°,∵四边形ABCD是正方形,H为AD的中点,∴AD=4,AH=2,∠BAD=90°,∴∠HAN=∠FGN,AH=FG, ∵∠ANH=∠GNF,∴△ANH≌△GNF(AAS),故①正确;∴∠AHN=∠HFG,∵AG=FG=2=AH,∴AF==,∴∠AFH≠∠AHF,∴∠AFN≠∠HFG,故②错误;∵△ANH≌△GNF,∴AN12=AG=1,∵GM=BC=4,∴AH GMAN AG==2,∵∠HAN=∠AGM=90°,∴△AHN∽△GMA,∴∠AHN=∠AMG, ∵AD∥GM,∴∠HAK=∠AMG,∴∠AHK=∠HAK,∴AK=HK,∴AK=HK=NK,∵FN=HN,∴FN=2NK,故③正确;∵延长FG交DC于M,∴四边形ADMG是矩形,∴DM=AG=2,∵S△AFN12=AN·FG12=⨯2×1=1,S△ADM12=AD·DM12=⨯4×2=4,∴S△AFN∶S△ADM=1∶4,故④正确,故选C.二、填空题(每小题3分,共4小题,满分12分) 13.(2019•绍兴)因式分解:x2-1=__________.【答案】(x+1)(x-1)【解析】原式=(x+1)(x-1).故答案为:(x+1)(x-1).15.(2019•新疆)同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是__________.【答案】1 6【解析】画树状图为:共有36种等可能的结果数,其中两枚骰子点数的和是小于5的结果数为6,∴两枚骰子点数之和小于5的概率是16,故答案为:16.15.(2019•海南)如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A 逆时针旋转β(0°<β<90°)得到AF,连接EF.若AB=3,AC=2,且α+β=∠B,则EF=__________.【解析】由旋转的性质可得AE=AB=3,AC=AF=2,∵∠B+∠BAC=90°,且α+β=∠B,∴∠BAC+α+β=90°,∴∠EAF=90°,∴EF16.(2019•山西)如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(–4,0),点D的坐标为(–1,4),反比例函数y=kx(x>0)的图象恰好经过点C,则k的值为__________.【答案】16【解析】过点C 、D 作CE ⊥x 轴,DF ⊥x 轴,垂足为E 、F ,∵四边形ABCD 是菱形,∴AB =BC =CD =DA , 易证△ADF ≌△BCE , ∵点A (–4,0),D (–1,4),∴DF =CE =4,OF =1,AF =OA –OF =3,在Rt △ADF 中,AD 5,∴OE =EF –OF =5–1=4,∴C (4,4),∴k =4×4=16, 故答案为:16.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22、23题9分,满分52分)17.(2019·济宁)计算:016sin 60()|2018|2+︒.【解析】原式6120182019=+-=.18.(2019•河南)先化简,再求值:2212(1)244x x xx x x +--÷--+,其中x 【解析】原式=212(2)()22(2)x x x x x x x +---÷--- =322x x x-⋅-=3x,当x ,. 19.(2019•河南)某校为了解七、八年级学生对”防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下: a .七年级成绩频数分布直方图:b .七年级成绩在70≤x <80这一组的是:70;72;74;75;76;76;77;77;77;78;79c .七、八年级成绩的平均数、中位数如下:年级 平均数 中位数 七 76.9 m 八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有__________人; (2)表中m 的值为__________;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数. 【答案】(1)23;(2)77.5;【解析】(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79,∴m =77782=77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数77.5分,其名次在该年级抽查的学生数的25名之前, 八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生数的25名之后, ∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×515850++=224(人). 20.(2019•天津)如图,海面上一艘船由西向东航行,在A 处测得正东方向上一座灯塔的最高点C 的仰角为31°,再向东继续航行30m 到达B 处,测得该灯塔的最高点C 的仰角为45°,根据测得的数据,计算这座灯塔的高度CD (结果取整数).参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60.【答案】这座灯塔的高度CD 约为45m . 【解析】在Rt △CAD 中,tan ∠CAD =CDAD, 则AD =tan 31CD ︒≈53CD , 在Rt △CBD 中,∠CBD =45°,∴BD =CD , ∵AD =AB +BD ,∴53CD =CD +30,解得CD =45, 答:这座灯塔的高度CD 约为45m .21.(2019•哈尔滨)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元. (1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?【解析】(1)设每副围棋x 元,每副中国象棋y 元,根据题意得: 359883158x y x y +=⎧⎨+=⎩, ∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z副,则购买象棋(40-z)副,根据题意得:16z+10(40-z)≤550,∴z≤25,∴最多可以购买25副围棋.22.(2019·海南)如图,已知抛物线y=ax2+bx+5经过A(–5,0),B(–4,–3)两点,与x轴的另一个交点为C,顶点为D,连结C D.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.【答案】(1)y=x2+6x+5.(2)①△PBC的面积的最大值为278.②存在满足条件的点P的坐标为(0,5)和(–3 2,–74).【解析】(1)将点A、B坐标代入二次函数表达式得:2555016453a ba b-+=⎧⎨-+=-⎩,解得16ab=⎧⎨=⎩,故抛物线的表达式为:y=x2+6x+5.(2)①如图1,过点P作PE⊥x轴于点E,交直线BC于点F.在抛物线y =x 2+6x +5中, 令y =0,则x 2+6x +5=0, 解得x =–5,x =–1, ∴点C 的坐标为(–1,0). 由点B (–4,–3)和C (–1,0),可得 直线BC 的表达式为y =x +1.设点P 的坐标为(t ,t 2+6t +5),由题知–4<t <–1, 则点F (t ,t +1),∴FP =(t +1)–(t 2+6t +5)=–t 2–5t –4, ∴S △PBC =S △FPB +S △FPC =12·FP ·3 =()23542t t --- =2315622t t ---=23527228t ⎛⎫-++⎪⎝⎭. ∵–4<–52<–1, ∴当t =–52时,△PBC 的面积的最大值为278. ②存在.∵y =x 2+6r +5=(x +3)2–4, ∴抛物线的顶点D 的坐标为(–3,–4). 由点C (–l ,0)和D (–3,–4),可得 直线CD 的表达式为y =2x +2.分两种情况讨论:(i)当点P在直线BC上方时,有∠PBC=∠BCD,如图2.若∠PBC=∠BCD,则PB∥CD,∴设直线PB的表达式为y=2x+b.把B(–4,–3)代入y=2x+b,得b=5,∴直线PB的表达式为y=2x+5.由x2+6x+5=2x+5,解得x1=0,x2=–4(舍去),∴点P的坐标为(0,5).(ii)当点P在直线BC下方时,有∠PBC=∠BCD,如图3.设直线BP与CD交于点M,则MB=M C.过点B作BN⊥x轴于点N,则点N(–4,0),∴NB=NC=3,∴MN垂直平分线段B C.设直线MN与BC交于点G,则线段BC的中点G的坐标为53,22⎛⎫--⎪⎝⎭,由点N(–4,0)和G53,22⎛⎫--⎪⎝⎭,得直线NG的表达式为y=–x–4.∵直线CD:y=2x+2与直线NG:y=–x–4交于点M, 由2x+2=–x–4,解得x=–2,∴点M的坐标为(–2,–2).由B(–4,–3)和M(–2.–2),得直线BM的表达式为y=11 2x-.由x2+6x+5=112x-,解得x1=–32,x2=–4(含去),∴点P的坐标为(–32,–74).综上所述,存在满足条件的点P的坐标为(0,5)和(–32,–74).23.(2019·浙江湖州)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(﹣3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x﹣3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)⊙P的直径长为;(2)【解析】(1)如图1,连接BC,∵∠BOC=90°,∴点P在BC上,∵⊙P与直线l1相切于点B,∴∠ABC=90°,而OA=OB,∴△ABC为等腰直角三角形,则⊙P的直径长=BC=AB=(2)①过点C作CE⊥AB于点E,如图2.将y=0代入y=3x–3,得x=1,∴点C的坐标为(1,0).∴AC=4,AC=,∵∠CAE=45°,∴CE=2∵点Q与点C重合,又⊙Q的半径为,直线l1与⊙Q相切.②假设存在这样的点Q,使得△QMN是等腰直角三角形, ∵直线l1经过点A(–3,0),B(0,3),∴l1的函数解析式为y=x+3.记直线l2与l1的交点为F,情况一:当点Q在线段CF上时,由题意,得∠MNQ=45°, 延长NQ交x轴于点G,如图3,∵∠BAO=45°,∴∠NGA=180°–45°–45°=90°,即NG⊥x轴,∴点Q与N有相同的横坐标,设Q(m,3m–3),则N(m,m+3),∴QN=m+3–(3m–3),∵⊙Q的半径为,∴m+3–(3m–3)=,解得m=3,3m–3=6–,∴Q的坐标为(3,6–情况二:当点Q在线段CF的延长线上时,如图4,同理可得m=3,Q的坐标为(3,6+).∴存在这样的点Q1(3,6–)和Q2(3,6+),使得△QMN是等腰直角三角形。
人教版中考一模测试《数学试题》含答案解析
人教版数学中考模拟测试学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题)1. 8的倒数是()A. ﹣8B. 8C. 18D. ﹣182. 若x 2在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A. B. C.D.3. 下列成语描述的事件为随机事件的是()A. 水涨船高B. 守株待兔C. 水中捞月D. 缘木求鱼4. 下列四个图形中,是轴对称图形的是()A. B. C. D.5. 下列几何体的左视图为长方形的是()A. B. C. D.6. 某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则( )A. x-y=20B. x+y=20C. 5x-2y=60D. 5x+2y=607. 将分别标有“青”“春”“仪”“式”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他分别,每次摸球前先搅拌均匀,随机摸出一球后放回;再随机摸出一球,两次摸出的球上的汉字组成“青春”的概率是()A. 18B.16C.14D.128. 课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在( )A. 第3天B. 第4天C. 第5天D. 第6天9. 如图,直线y n =交y 轴于点A ,交双曲线(0)ky x x=>于点B ,将直线y n =向下平移4个单位长度后与y轴交于点C ,交双曲线(0)ky x x =>于点D ,若13AB CD =,则n 的值( ) .A 4 .B 6 .C 2 .D 510. 如图,在△ABC 中,AB =AC ,BC =6,E 为AC 边上的点且AE =2EC ,点D 在BC 边上且满足BD =DE ,设BD =y ,S △ABC =x ,则y 与x 的函数关系式为( )A. y =1810x 2+52 B. y =4810x 2+52 C. y =1810x 2+2D. y =4810x 2+2二.填空题(共6小题)11. 16的平方根是 .12. 对于一组统计数据3,3,6,5,3.这组数据的中位数是__.13. 计算2111a a a ⎛⎫-• ⎪-⎝⎭=______________ 14. 在等腰△ABC 中,AD ⊥BC 交直线BC 于点D ,若AD =12BC ,则△ABC 的顶角的度数为_____. 15. 已知函数y =|x 2﹣2x ﹣3|的大致图象如图所示,如果方程|x 2﹣2x ﹣3|=m (m 为实数)有2个不相等的实数根,则m 的取值范围是__.16. 如图△ABC 中,AB =AC ,∠BAC =120°,D 是AB 上一点,且23AD BD =,E 为CB 延长线上一点,且∠BAE =∠BCD ,若BE =5,则BC 的长是_.三.解答题(共8小题)17. 计算:﹣a 4•a 3•a +(a 2)4﹣(﹣2a 4)2.18. 如图,已知BE 平分∠ABD ,DE 平分∠CDB ,且∠1与∠2互余,求证:AB ∥CD.19. 为提升学生的艺术素养,学校计划开设四门艺术选修课:A .书法;B .绘画;C .乐器;D .舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A .书法;B .绘画;C .乐器;D .舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.20. 已知:如图,在每个小正方形的边长为1的网格中,△ABC 的顶点A 、B 、C 均在格点上,点D 为AC 边上的一点.(1)线段AC 的长为 .(2)在如图所示的网格中,AM 是△ABC 的角平分线,在AM 上求一点P ,使CP +DP 的值最小,请用无刻度的直尺,画出AM 和点P ,并简要说明AM 和点P 的位置.21. 如图,在△ABC 中,AB =AC ,⊙O 分别切AB 于M ,BC 于N ,连接BO 、CO ,BO =CO .(1)求证:AC 是⊙O 的切线; (2)连接MC ,若1tan 2MCB ∠=,求sin ∠B 的值. 22. 某年五月,我国南方某省A 、B 两市遭受严重洪涝灾害,邻近县市C 、D 决定调运物资支援A 、B 两市灾区.已知C 市有救灾物资240吨,D 市有救灾物资260吨,现将这些救灾物资全部调往A 、B 两市,A 市需要的物资比B 市需要的物资少100吨.已知从C 市运往A 、B 两市的费用分别为每吨20元和25元,从D 市运往往A 、B 两市的费用分别为每吨15元和30元,设从D 市运往B 市的救灾物资为x 吨. (1)A 、B 两市各需救灾物资多少吨?(2)设C 、D 两市的总运费为w 元,求w 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)经过抢修,从D 市到B 市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m >0),其余路线运费不变.若C 、D 两市的总运费的最小值不小于10320元,求m 的取值范围. 23. 已知:△ABC 中,点D 在边AC 上,且AB 2=AD •AC .(1)如图1.求证:∠ABD=∠C.(2)如图2.在边BC上截取BE=BD,ED、BA的延长线交于点F,求证:FA FD AB FE=.(3)在(2)的条件下,若AD=4,CD=5,cos∠BAC=13,试直接写出△FBE的面积.24. 已知:抛物线y=a(x2﹣2mx﹣3m2)(m˃0)交x轴于A、B两点(其中A点在B点左侧),交y轴于点C.(1)若A点坐标为(﹣1,0),则B点坐标为.(2)如图1,在(1)的条件下,且am=1,设点M在y轴上且满足∠OCA+∠AMO=∠ABC,试求点M坐标.(3)如图2,在y轴上有一点P(0,n)(点P在点C的下方),直线P A、PB分别交抛物线于点E、F,若23 PAPE=,求PFPB的值.答案与解析一、选择题(共10小题)1. 8的倒数是( ) A. ﹣8 B. 8C.18D. ﹣18【答案】C 【解析】 【分析】根据乘积为1的两个数互为倒数进行求解即可得. 【详解】解:因为8×18=1, 所以8的倒数是18, 故选C .【点睛】本题考查了倒数的概念,熟练掌握倒数的概念是解题的关键.2. 若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A.B.C.D.【答案】D 【解析】 【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可. 2x +, ∴被开方数x+2为非负数, ∴x+2≥0, 解得:x ≥-2. 故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件. 3. 下列成语描述的事件为随机事件的是( ) A. 水涨船高 B. 守株待兔C. 水中捞月D. 缘木求鱼【答案】B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B.考点:随机事件.4. 下列四个图形中,是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义逐一进行判断即可得解.【详解】A、不是轴对称图形,故不符合题意;B、不是轴对称图形,故不符合题意;C、不是轴对称图形,故不符合题意;D、是轴对称图形,故符合题意,故选D.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5. 下列几何体的左视图为长方形的是()A. B. C. D.【答案】C【解析】分析:找到每个几何体从左边看所得到的图形即可得出结论.详解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.故选C.点睛:此题主要考查了简单几何体的三视图,关键是掌握每个几何体从左边看所得到的图形.6. 某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则( )A. x-y=20B. x+y=20C. 5x-2y=60D. 5x+2y=60【答案】C【解析】【分析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分”列出方程.【详解】设圆圆答对了x道题,答错了y道题,依题意得:5x-2y+(20-x-y)×0=60.故选C.【点睛】此题考查了由实际问题抽象出二元一次方程.关键是读懂题意,根据题目中的数量关系,列出方程.7. 将分别标有“青”“春”“仪”“式”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他分别,每次摸球前先搅拌均匀,随机摸出一球后放回;再随机摸出一球,两次摸出的球上的汉字组成“青春”的概率是()A. 18B.16C.14D.12【答案】A【解析】【分析】画树状图展示所以16种等可能的结果数,再找出两次摸出的球上的汉字组成“青春”的结果数,然后根据概率公式求解.【详解】根据题意画图如下:共有16种等可能的结果数,其中两次摸出的球上的汉字组成“青春”的结果数为2,所以两次摸出的球上的汉字组成“青春”的概率是21168=. 故选:A .【点睛】题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.8. 课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在( )A. 第3天B. 第4天C. 第5天D. 第6天【答案】C 【解析】解:由图和题意可知,第一天产生新的微生物有6个标号, 第二天产生新的微生物有12个标号,以此类推,第三天、第四天、第五天产生新的微生物分别有24个,48个,96个, 而前四天所有微生物的标号共有3+6+12+24+48=93个, 所以标号为100的微生物会出现在第五天. 故选C .9. 如图,直线y n =交y 轴于点A ,交双曲线(0)ky x x=>于点B ,将直线y n =向下平移4个单位长度后与y轴交于点C ,交双曲线(0)ky x x =>于点D ,若13AB CD =,则n 的值( ) .A 4 .B 6 .C 2 .D 5【答案】B 【解析】 【分析】先根据平移的性质求出平移后直线的解析式,由于13AB CD =,故可得出设B (a ,n ),D (3a ,n-4),再根据反比例函数中k=xy 为定值求出n .【详解】∵将直线y =n 向下平移4个单位长度后, ∴平移后直线的解析式为y =n ﹣4, ∵13AB CD =, ∴CD =3AB ,设B (a ,n ),D (3a ,n ﹣4),∵B 、D 在反比例函数(0)ky x x=>的图象上,∴an =3a •(n ﹣4) ∴n =6 故选:B .【点睛】本题考查的是反比例函数图象上点的坐标特征,根据k=xy 的特点列出关于n 的方程是解题的关键. 10. 如图,在△ABC 中,AB =AC ,BC =6,E 为AC 边上的点且AE =2EC ,点D 在BC 边上且满足BD =DE ,设BD =y ,S △ABC =x ,则y 与x 的函数关系式为( )A. y =1810x 2+52 B. y =4810x 2+52 C. y =1810x 2+2 D. y =4810x 2+2 【答案】A【解析】【分析】过A 点作△ABC 的高AH ,过E 点作EG 垂直于BC ,垂足为G. Rt △EDG 中根据勾股定理可用x 来表示EG=1025y -,由已知可知AH=3EG ,即可得到△ABC 的面积S △ABC =x=91025y -,通过变形即可得到答案.【详解】解:过A 点作△ABC 的高AH ,过E 点作EG 垂直于BC ,垂足为G.∴EG ∥AH ,∴GC CE EG CH AC AH==, 又∵AE =2EC ,∴GC=13CH ,EG=13AH ∵AB=AC ,BC =6,∴CH=BH=3,GC=1,BG=5,在Rt △EDG 中,222EG DG ED +=,∵设BD =y ,则DG=5-y ,BD=DE=y , ∴()225y y -- 1025y -∴AH=31025y -∴△ABC 的面积S △ABC =12BC AH ⨯⨯=16310252y ⨯⨯-91025y -, 即:1025x y =-,∴y =1810x 2+52故选A【点睛】本题考查了几何动点问题,利用勾股定理找到三角形高与BD 的数量关系是解题关键.再利用三角形面积公式转化即可得到函数解析式.二.填空题(共6小题)11. 16的平方根是 .【答案】±4. 【解析】【详解】由(±4)2=16,可得16的平方根是±4. 12. 对于一组统计数据3,3,6,5,3.这组数据的中位数是__.【答案】3.【解析】【分析】把这一列数按从小到大排列,按中位数的定义求解即可.【详解】把这些数从小到大排列3,3,3,5,6, 则这组数据的中位数是3;故答案为:3.【点睛】本题考查的是中位数的定义,掌握中位数的定义是解题关键.13. 计算2111a a a ⎛⎫-• ⎪-⎝⎭=______________ 【答案】11a + 【解析】【分析】首先把括号里的式子进行通分,然后因式分解,再约分化简即可求解. 【详解】2111a a a ⎛⎫- ⎪-⎝⎭ =1(1)(1)a a a a a -⎛⎫⎪+-⎝⎭ =11a + 【点睛】考查分式的混合运算,通分、因式分解和约分是解答的关键.同时考查了实数的运算,解决此类题目的关键是熟练掌握特殊角的三角函数值、零指数幂、绝对值等考点的运算.14. 在等腰△ABC 中,AD ⊥BC 交直线BC 于点D ,若AD =12BC ,则△ABC 的顶角的度数为_____. 【答案】30°或150°或90°【解析】试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.解:①BC为腰,∵AD⊥BC于点D,AD=12 BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=12 BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=12×180°=90°,∴顶角∠BAC=90°,综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.故答案为30°或150°或90°.点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.15. 已知函数y =|x 2﹣2x ﹣3|的大致图象如图所示,如果方程|x 2﹣2x ﹣3|=m (m 为实数)有2个不相等的实数根,则m 的取值范围是__.【答案】m =0或m >4.【解析】【分析】有2个不相等的实数根,其含义是当y =m 时,对应的x 值有两个不同的数值,根据图象可以看出与x 轴有两个交点,所以此时m =0;当y 取的值比抛物线顶点处值大时,对应的x 值有两个,所以m 值应该大于抛物线顶点的纵坐标.综合表述即可.【详解】从图象可以看出当y =0时,y =|x 2﹣2x ﹣3|的x 值对应两个不等实数根,即m =0时,方程|x 2﹣2x ﹣3|=m (m 为实数)有2个不相等的实数根;从图象可出y 的值取其抛物线部分的顶点处纵坐标值时,在整个函数图象上对应的x 的值有三个, 当y 的值比抛物线顶点处纵坐标的值大时,对于整个函数图象上对应的x 值有两个不相等的实数根. |x 2﹣2x ﹣3|=|(x ﹣1)2﹣4|,其最大值为4,所以当m >4时,方程|x 2﹣2x ﹣3|=m (m 为实数)有2个不相等的实数根,综上所述当m =0或m >4时,方程|x 2﹣2x ﹣3|=m (m 为实数)有2个不相等的实数根.故答案为m =0或m >4.【点睛】本题主要考查抛物线与x 轴交点问题,解题的关键是根据图象分析判断函数值与自变量之间的关系. 16. 如图△ABC 中,AB =AC ,∠BAC =120°,D 是AB 上一点,且23AD BD =,E 为CB 延长线上一点,且∠BAE =∠BCD ,若BE =5,则BC 的长是_.5【解析】【分析】 注意到∠BAE=∠BCD ,于是作DF ∥AC 交BC 于F ,可得△ABE ∼CFD ∆,再根据相似三角形的性质列出比例方程解决问题.【详解】如图,作DF∥AC交BC于F.∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∴∠DFB=∠ACB=30°,∴BD=FD,∠ABE=∠CFD=120°, ∵∠BAE=∠BCD,∴△ABE∼CFD,∴DF CF BE AB=∵23 AD BD=∴设AD=2x,BD=3x,∴AB=5x,DF=3x,BF=3,BC=3,CF=323 5x=解得x=15 15,∴535BC x==.【点睛】本题主要考查了相似三角形的判定与性质、顶角为120度的等腰三角形的性质.作平行线构造相似三角形是解答的关键.三.解答题(共8小题)17. 计算:﹣a4•a3•a+(a2)4﹣(﹣2a4)2.【答案】﹣4a8.【解析】【分析】先按照幂的运算法则计算,再合并同类项即可.【详解】原式=﹣a8+a8﹣4a8=﹣4a8.【点睛】本题考查幂的运算与合并同类项,掌握运算法则是解题关键.18. 如图,已知BE 平分∠ABD ,DE 平分∠CDB ,且∠1与∠2互余,求证:AB ∥CD.【答案】见解析【解析】【分析】先用角平分线的性质得到21ABD ∠=∠,22BDC ∠=∠,再用1∠与2∠互余,即可得到ABD ∠与BDC ∠互余.【详解】证明:∵∠1与∠2互余,∴∠1+∠2=90°. ∵BE 平分∠ABD ,DE 平分∠CDB ,∴∠ABD =2∠1,∠BDC =2∠2.∴∠ABD +∠BDC =2∠1+2∠2=2(∠1+∠2)=180°. ∴AB ∥DC.【点睛】此题主要考查了平行线的判定,角平分线的意义,解本题的关键是用角平分线的意义得到21ABD ∠=∠,22BDC ∠=∠.19. 为提升学生的艺术素养,学校计划开设四门艺术选修课:A .书法;B .绘画;C .乐器;D .舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A .书法;B .绘画;C .乐器;D .舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.【答案】(1)本次调查的学生总人数为40人,∠α=108°;(2)补图见解析;(3)书法与乐器组合在一起的概率为16.【解析】【分析】(1)用A科目人数除以其对应的百分比可得总人数,用360°乘以C对应的百分比可得∠α的度数;(2)用总人数乘以C科目的百分比即可得出其人数,从而补全图形;(3)画树状图展示所有12种等可能的结果数,再找出恰好是“书法”“乐器”的结果数,然后根据概率公式求解.【详解】(1)本次调查的学生总人数为4÷10%=40人,∠α=360°×(1﹣10%﹣20%﹣40%)=108°;(2)C科目人数为40×(1﹣10%﹣20%﹣40%)=12人,补全图形如下:(3)画树状图为:共有12种等可能的结果数,其中恰好是书法与乐器组合在一起的结果数为2,所以书法与乐器组合在一起的概率为21 126.【点睛】本题考查了条形统计图、扇形统计图、列表法与树状图法求概率,读懂统计图、熟练掌握列表法或树状图法求概率是解题的关键.20. 已知:如图,在每个小正方形的边长为1的网格中,△ABC的顶点A、B、C均在格点上,点D为AC边上的一点.(1)线段AC的长为.(2)在如图所示的网格中,AM是△ABC的角平分线,在AM上求一点P,使CP+DP的值最小,请用无刻度的直尺,画出AM 和点P ,并简要说明AM 和点P 的位置.【答案】(1)5;(2)见解析.【解析】【分析】(1)依据勾股定理即可得到AC 的长;(2)取格点H 、G ,连AH 交BC 于点M ,依据△ACH 与△AGH 全等,即可得到HA 是∠CHG 的平分线,连DG 交AM 于点P ,利用三角形全等可得CP+DP 的最小值等于线段DG 的长.【详解】(1)由图可得,AC =22345+=;故答案为:5;(2)如图取格点H 、G ,且满足,HC HG = ,AC AG =,AH AH =ACH ∆∴∆≌AGH,,CHA GHA ∴∠=∠连AH 交BC 于点M ,连DG 交AM 于点P ,连,CP,,,HC HG AHC AHG HP HP =∠=∠=,PCH PGH ∴∆∆≌,PC PG ∴=,DP PC DP PG DG ∴+=+=则CP +DP 最小.【点睛】本题主要考查了勾股定理以及最短距离问题,凡是涉及最短距离的问题,一般要考虑两点之间线段最短的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.21. 如图,在△ABC 中,AB =AC ,⊙O 分别切AB 于M ,BC 于N ,连接BO 、CO ,BO =CO .(1)求证:AC 是⊙O 的切线;(2)连接MC ,若1tan 2MCB ∠=,求sin ∠B 的值. 【答案】(1)见解析;(2)3sin 5ABC ∠=. 【解析】【分析】(1)连接NO ,过点O 作OE ⊥AC 于点E ,由,AB AC = 可得∠ABC=∠ACB ,结合OB OC =,证明,OBC OCB ∠=∠利用角平分线的性质可得NO=EO ,则结论得证;(2)过点M 作MF ⊥BC 于点F ,连结OM ,ON ,证得BM=BN=12BC ,设BC=a ,CF=b ,则MF=12b ,BF=a-b ,BM=12a ,可得22211()44a b b a -+=,解方程得b=35a ,可求出答案. 【详解】(1)证明:如图1,连接NO ,过点O 作OE ⊥AC 于点E ,∵AB =AC ,∴∠ABC =∠ACB ,∵⊙O 分别切AB 于M ,BC 于N ,,ON BC ∴⊥ ∠ABO =∠CBO ,,OB OC =,OBC OCB ∴∠=∠∴,OCB OCA ∠=∠∵ON ⊥BC ,OE ⊥AC ,∴NO =EO ,∴AC 是⊙O 的切线;(2)解:如图2,过点M 作MF ⊥BC 于点F ,连结OM ,ON,∵OM =ON ,OB =OB ,90BMO BNO ∠=∠=︒,∴Rt △BOM ≌Rt △BON (HL ),∴BM =BN ,∵OB =OC ,ON ⊥BC ,∴BN =CN =12BC , ∴12BM BC = ∵1tan 2MF MCB CF ∠== ∴12MF CF =, ∴12sin 12CF MF CF ABC BM BCBC ∠===, 设BC =a ,CF =b ,则MF =12b ,BF =a ﹣b ,BM =12a , ∵222,BF MF BM += ∴22211()44ab b a -+=,解得b =3,5a 或b =a (舍去). ∴335sin .5a ABC a ∠== 【点睛】本题考查了切线的判定、等腰三角形的性质、勾股定理、全等三角形的判定与性质、解直角三角形等知识;熟练掌握切线的判定方法,并能进行推理计算是解决问题的关键.22. 某年五月,我国南方某省A 、B 两市遭受严重洪涝灾害,邻近县市C 、D 决定调运物资支援A 、B 两市灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市,A市需要的物资比B市需要的物资少100吨.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)A、B两市各需救灾物资多少吨?(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.【答案】(1)A市需救灾物资200吨,B市需救灾物资300吨;(2)w=10x+10200(60≤x≤260);(3)0<m≤8【解析】【分析】(1)根据题意,可以列出相应的方程,从而可以求得A、B两市各需救灾物资多少吨;(2)根据题意,可以写出w与x之间的函数关系式,并写出自变量x的取值范围;(3)根据题意,可以得到w与x的函数关系式,然后根据一次函数的性质和分类讨论的方法可以解答m的取值范围.【详解】(1)设A市需救灾物资a吨,a+a+100=260+240解得,a=200,则a+100=300,答:A市需救灾物资200吨,B市需救灾物资300吨;(2)由题意可得,w=20[200﹣(260﹣x)]+25(300﹣x)+15(260﹣x)+30x=10x+10200,∵260﹣x≤200且x≤260,∴60≤x≤260,即w与x的函数关系式为w=10x+10200(60≤x≤260);(3)∵经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变,∴w=10x+10200﹣mx=(10﹣m)x+10200,①当10﹣m>0,m>0时,即0<m<10时,则w随x的增大而增大,∴x=60时,w有最小值,w最小值是(10﹣m)×60+10200,∴(10﹣m)×60+10200≥10320,解得m≤8,又∵0<m<10,∴0<m≤8;②当10﹣m =0,即m =10时无论如何调运,运费都一样.w =10200<10320,不合题意舍去;③当10﹣m <0,即m >10时,则w 随x 的增大而减小,∴x =260时,w 有最小值,此时最小值是(10﹣m )×260+10200, ∴(10﹣m )×260+10200≥10320,解得,12413m ≤, 又∵m >10,∴12413m ≤不合题意,舍去. 综上所述,0<m≤8,即m 的取值范围是0<m≤8.【点睛】本题考查一次函数的应用、一元一次方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的方法解答.23. 已知:△ABC 中,点D 在边AC 上,且AB 2=AD •AC .(1)如图1.求证:∠ABD =∠C .(2)如图2.在边BC 上截取BE =BD ,ED 、BA 的延长线交于点F ,求证:FA FD AB FE =. (3)在 (2)的条件下,若AD =4,CD =5,cos ∠BAC =13,试直接写出△FBE 的面积. 【答案】(1)见解析;(2)见解析;(3)S △BEF =202.【解析】【分析】(1)根据两边成比例夹角相等两三角形相似证明△ABD ∽△ACB 即可解决问题.(2)过点B 作BG ∥AC 交FE 的延长线于点G .证明△BDF ≌△BEG (ASA ),推出DF=EG ,推出EF=GD ,由BG ∥AC 推出,FA FD AB DG= 可得答案 . (3)如图2中,过点B 作BG ∥AC 交FE延长线于点G ,作CH ⊥AB 于H ,FJ ⊥BE 于J .利用相似三角形的性质求出AB ,再证明CA=CB ,再利用相似三角形的性质求出BD ,解直角三角形求出FJ 即可解决问题.【详解】(1)证明:如图1中,∵AB2=AD•AC即AB AC AD AB=,又∵∠A=∠A∴△ABD∽△ACB,∴∠ABD=∠C.(2)解:过点B作BG∥AC交FE的延长线于点G.∵BG∥AC,∴∠C=∠GBE,∵∠ABD=∠C,∴∠GBE=∠C=∠ABD,∵BD=BE,∴∠BDE=∠BED,∴∠BDF=∠BEG,∴△BDF≌△BEG(ASA),∴DF=EG,∴EF=GD,∵BG∥AC,∴FA FD AB DG=,即FA FD AB FE=.(3)解:如图2中,过点B作BG∥AC交FE的延长线于点G,作CH⊥AB于H,FJ⊥BE于J.∵AB2=AD•AC,AD=4.CD=5, ∴AB2=4×9,∴AB=6,在Rt△AHC中,∵cos∠CAH=13 AHAC=,∴AH=3,∴BH=AH=3,∵CH⊥AB,∴CA=CB,∴∠CAB=∠CBA, ∵AD∥BG,∴FA ADFB BG=,△BDF≌△BEG∴FB=BG,∴AF=AD=4,∴BF=AB+AF=6+4=10,∵cos∠FBJ=cos∠BAC=13 BJBF=,∴BJ=103,∴FJ222210202103BF BJ⎛⎫-=- ⎪⎝⎭∵△ABD∽△ACB,∴BD AD BC AB=,∴496BD=,∴BD=BE=6,∴S△BEF=12•BE•FJ=120262022⨯⨯=.【点睛】本题属于相似形综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.24. 已知:抛物线y=a(x2﹣2mx﹣3m2)(m˃0)交x轴于A、B两点(其中A点在B点左侧),交y轴于点C.(1)若A点坐标为(﹣1,0),则B点坐标为.(2)如图1,在(1)的条件下,且am=1,设点M在y轴上且满足∠OCA+∠AMO=∠ABC,试求点M坐标.(3)如图2,在y轴上有一点P(0,n)(点P在点C 的下方),直线P A、PB分别交抛物线于点E、F,若23PA PE=,求PFPB的值.【答案】(1)(3,0);(2)满足要求的M点的坐标有(0,﹣2)、(0,2);(3)16PFPB=.【解析】【分析】(1)将A点坐标代入抛物线解析式中求出m的值,然后可将抛物线解析式写成交点式即可知道B点坐标.(2)先考虑M在y轴负半轴的情况,在y轴负半轴上截取OG=OA=1,连AG,可证△GMA∽△GAC,然后根据相似三角形的性质列方程即可求出M点坐标,由对称性可直接写出另一种情况.(3)作EG⊥x轴于点G,FH⊥y轴于点H,由△EAG∽PAO得到线段比例等式推出OP的长度,得出P点坐标,算出直线PB解析式,与抛物线解析式联立可求出F点横坐标,再由△PFH∽△PBO即可得到所求线段比.【详解】(1)将(﹣1,0)代入y=a(x2﹣2mx﹣3m2)得:1+2m﹣3m2=0,解得:m =1或m =﹣13(舍), ∴y =a (x 2﹣2mx ﹣3m 2)=a (x +1)(x ﹣3),∴B (3,0).故答案为:(3,0).(2)当am =1,1m =时,抛物线解析式为y =x 2﹣2x ﹣3,∴C (0,﹣3)(3,0),B∴OB =OC =3,∠ABC =45°,如图1,M 在y 轴负半轴上,在y 轴负半轴上截取OG =OA =1,连AG ,则∠AGO =45°=∠ABC ,AG 2,∠OCA +∠AMO =∠ABC ,∴∠OCA +∠AMO =45°,又∵∠OCA +∠GAC =∠AGO =45°,∴∠AMG =∠GAC ,又∵∠AGM =∠CGA ,∴△GMA ∽△GAC ,,GA GM GC GA∴= ∴AG 2=MG •GC ,(0,3),C - GC =OC ﹣OG =2,设M (0,a )1,MG OM OG a ∴=-=--∴2=(﹣1﹣a )•2,∴a =﹣2,∴M 的坐标为(0,﹣2).根据对称性可知(0,2)也符合要求.综上所述,满足要求的M 点的坐标有:(0,﹣2)、(0,2).(3)由抛物线解析式可得:A (﹣m ,0),B (3m ,0). ∵23PA PE =, ∴12AE AP =, 如图2,作EG ⊥x 轴于点G ,FH ⊥y 轴于点H ,则//EG y 轴,//FH x 轴,∴ △EAG ∽P AO ,△PFH ∽△PBO ,∴12AG EG AE AO PO AP ===, ∴AG =12AO =12m ,OP =2EG , ∴x E =﹣32m ,y E =94am 2,即EG =94am 2, ∴OP =92am 2,∴P(0,﹣92am2),又∵B(3m,0),∴直线PB的解析式为:y=32amx﹣92am2,∴32amx﹣92am2=a(x2﹣2mx﹣3m2),∴2x2﹣7mx+3m2=0,∴x1=3m(舍),x2=12 m,∴FH=12 m,△PFH∽△PBO,∴11236mPF FHPB BO m===.【点睛】本题为二次函数综合题,主要考查了抛物线与坐标轴交点坐标的求法、相似三角形的判定与性质、待定系数法求函数解析式、解一元二次方程等知识点.巧妙构造出相似三角形是解答的关键.。
中考一模测试 数学卷 附答案解析
5.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()
A.3,2B.3,4C.5,2D.5,4
6.如图,△ABC内接于⊙O,AD是⊙O的直径, ,则 的度数是()
A 25°B. 60°C. 65°D. 75°
7.某厂接到加工720件衣服的订单,预计每天做48件,正好能按时完成,后因客户要求提前5天交货,设实际每天做 件,则 应满足的方程为()
13.关于 的一元二次方程 有两个相等的实数根,则 的值是______.
【答案】2
【解析】
【分析】
由于关于x的一元二次方程 有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.
故选:C.
【点睛】本题考查了圆周角定理及其推论和直角三角形的性质,属于基本题型,熟练掌握圆周角定理及其推论是解题的关键.
7.某厂接到加工720件衣服的订单,预计每天做48件,正好能按时完成,后因客户要求提前5天交货,设实际每天做 件,则 应满足的方程为()
A. B. C. D.
【答案】C
【解析】
【分析】
5.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()
A.3,2B.3,4C.5,2D.5,4
【答案】B
【解析】
试题分析:平均数为 (a−2 + b−2 + c−2)= (3×5-6)=3;原来的方差: ;新的方差: ,故选B.
考点:平均数;方差.
6.如图,△ABC内接于⊙O,AD是⊙O的直径, ,则 的度数是()
A.25°B.60°C.65°D.75°
【答案】C
【解析】
中考一模考试 数学试卷 含答案解析
【答案】C
【解析】
【分析】
根据平行线的性质和角平分线的定义求解.
【详解】∵AB∥CD,
∴∠BEF=180°﹣∠1=180°﹣48°=132°,
∵EG平分∠BEF,
∴∠BEG=132°÷2=66°,
∴∠2=∠BEG=66°.
故选C.
【点睛】此题主要考查平行线的性质:两直线平行,同旁内角互补;两直线平行,内错角相等,以及角平分线的定义.
∴∠APF=∠EBF,
∵AB∥CD,
∴∠APD=∠FDC,
∴∠EBF=∠FDC,
∵BE=DF,BF=CD,
∴△BEF≌△DFC,
∴CF=EF,∠DFC=∠FEB=90°,
∴③正确;④正确;
故选D.
【点睛】本题主要考查对正方形的性质,等腰直角三角形,直角三角形斜边上的中线性质,全等三角形的性质和判定,三角形的内角和定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.
(2)当函数表达式是分式时,考虑分式的分母不能为0;
∴AM⊥EF,AM=EM=FM,
∴BE∥AM,
∵AP=BP,
∴AM=BE=DF,
∴∠EMB=∠EBM=45°,
∴∠AMB=90°+45°=135°=∠FMB,
∵BM=BM,AM=MF,
∴△ABM≌△FBM,
∴AB=BF,∴②正确;
∴∠BAM=∠BFM,
∵∠BEF=90°,AM⊥EF,
∴∠BAM+∠APM=90°,∠EBF+∠EFB=90°,
23.如图,直线 与反比例函数 的图象交于点 与 轴交于点 平行于 轴的直线 交反比例函数的图象于点 交线段 于点 连接 .
【精品】中考一模检测《数学卷》含答案解析
中考数学模拟测试卷一、选择题(每题3分,共24分)1. 全球可被人类利用的淡水总量约占地球上总水量的0.00003,因此珍惜水,保护水是每个公民的责任.其中数字0.00003用科学计数法表示为( )A . 3×10-5 B. 3×10-4 C. 0.3×10-5 D. 0.3×10-42. 一元二次方程x 2-3x=0的解是( )A. 0B. 3C. 0,3D. 0,-23. 一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A. 108°B. 90°C. 72°D. 60°4. 若不等式组0422x a x x +≥⎧⎨->-⎩有解,则实数a 的取值范围是( ). A. 2a ≥- B. 2a <- C. 2a ≤- D. 2a >- 5. 已知函数y=k x的图像经过点(1,-1),则函数y=kx-2的图像是( ) A. B. C. D. 6. 下列调查方式中适合的是( )A. 要了解一批节能灯的使用寿命,采用普查方式B. 调查你所在班级同学身高,采用抽样调查方式C. 环保部门调查长江某段水域的水质情况,采用抽样调查方式D. 调查全市中学生每天的就寝时间,采用普查方式7. 如图,点E ,F 分别在菱形ABCD 的边AB ,AD 上,且AE = DF ,BF 交DE 于G ,延长BF 交CD 的延长线于H ,若2AF DF =,则HF BG的值为( )A.712B.23C.12D.5128. 如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2016B2017C2017的顶点B2017的坐标是.A. (21008,0)B. (21008 ,21008)C. (0, 21008)D. (21007, 21007)二.填空题(每题3分,共24分)9. 分解因式:228ax a=_______.10. 在式子21x+中自变量x 的取值范围是__________11. 若关于x的分式方程7311mxx x+=--无解,则实数m=_______.12. 若小张投掷两次一枚质地均匀的硬币,则两次出现正面朝上的概率是________.13. 一个射击运动员连续射靶5次所得环数分别为8,6,10,7,9,则这个运动员所得环数的方差为______.14.如图,直线a∥b,∠1=45°,∠2=30°,则∠P=_______°.15. 如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1,①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述判断中,正确的是________.16. 如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点.点E在CD上,且DE=2CE,连接BE.过点C作CF⊥BE,垂足是F,连接OF,则OF的长为.三.解答题(共102分)17. -14+3tan30°-3+(2017+π)0+(12)-218.先化简,再求值:(1-32a+)÷22214a aa-+-其中a=(-13)-119. 如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底仰角为60°,沿坡度为1:3的坡面AB向上行走到B处,测得广告牌顶部C的仰角为45°,又知AB=10m,AE=15m,求广告牌CD 的高度(精确到0.1m,测角仪的高度忽略不计)20. 某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.21. 2008京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图.根据上述信息解答下列问题:(1)m=______,n=_________;(2)在扇形统计图中,D组所占圆心角的度数为_____________;(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有多少名.22. 九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元[(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.23. 某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.24. 如图在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作DE⊥AC 于E 交AB 的延长线于点F ,(1)求证:EF 是⊙O 的切线;(2)若AE=6,FB=4,求⊙O 的面积.25. 菱形ABCD 中,两条对角线AC ,BD 相交于点O ,∠MON+∠BCD=180°,∠MON 绕点O 旋转,射线OM 交边BC 于点E ,射线ON 交边DC 于点F ,连接EF .(1)如图1,当∠ABC=90°时,△OEF 的形状是 ;(2)如图2,当∠ABC=60°时,请判断△OEF 的形状,并说明理由;(3)在(1)的条件下,将∠MON 的顶点移到AO 的中点O′处,∠MO′N 绕点O′旋转,仍满足∠MO′N+∠BCD=180°,射线O′M 交直线BC 于点E ,射线O′N 交直线CD 于点F ,当BC=4,且ΔO'EF 98ABCD S S 四边形时,直接写出线段CE 的长.26. 如图,直线y=x+4交于x 轴于点A ,交y 轴于点C ,过A 、C 两点的抛物线F 1交x 轴于另一点B (1,0).(1)求抛物线F 1所表示的二次函数的表达式及顶点Q 的坐标;(2)在抛物线上是否存在点P ,使△BPC 的内心在y 轴上,若存在,求出点P 的坐标,若不存在写出理由;(3)直线y=kx-6与y 轴交于点N,与直线AC 的交点为M,当△MNC 与△AOC 相似时,求点M 坐标.答案与解析一、选择题(每题3分,共24分)1. 全球可被人类利用的淡水总量约占地球上总水量的0.00003,因此珍惜水,保护水是每个公民的责任.其中数字0.00003用科学计数法表示为()A. 3×10-5B. 3×10-4C. 0.3×10-5D. 0.3×10-4【答案】A【解析】由科学计数法的定义得:0.00003=3×10−5,故选A.2. 一元二次方程x2-3x=0的解是()A. 0B. 3C. 0,3D. 0,-2【答案】C【解析】原方程变形为:x(x-3)=0,x1=0,x2=3.故答案为x1=0,x2=3.点睛:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.3. 一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A. 108°B. 90°C. 72°D. 60°【答案】C【解析】分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.4. 若不等式组0422x a x x +≥⎧⎨->-⎩有解,则实数a 的取值范围是( ). A. 2a ≥-B. 2a <-C. 2a ≤-D. 2a >- 【答案】D【解析】【详解】试题解析:0422x a x x +≥⎧⎨->-⎩①②由①得:x a ≥-.由②得:224x x -->--36x ->-2x <.因不等式组有解:可画图表示为:由图可得使不等式组有解的a 的取值范围为:2a -<. ∴2a >-.故选D .5. 已知函数y=kx 的图像经过点(1,-1),则函数y=kx-2的图像是( )A. B. C. D. 【答案】A【解析】将(1,-1),代人y=kx ,得k=-1,所以一次函数的解析式为y=-x-2.根据k=-1<0,且过点(0,-2),可判断图像经过二、三、四象限.故选A.6. 下列调查方式中适合的是( )A. 要了解一批节能灯的使用寿命,采用普查方式B. 调查你所在班级同学的身高,采用抽样调查方式C. 环保部门调查长江某段水域的水质情况,采用抽样调查方式D. 调查全市中学生每天的就寝时间,采用普查方式【答案】C【解析】【分析】利用抽样调查,全面普查适用范围直接判断即可【详解】A. 要了解一批节能灯的使用寿命,应采用抽样调查方式,故A 错B. 调查你所在班级同学的身高,应采用全面普查方式,故B 错C. 环保部门调查沱江某段水域的水质情况,应采用抽样调查方式,故C 对D. 调查全市中学生每天的就寝时间,应采用抽样调查方式,故D 错【点睛】本题主要全面普查和抽样调查应用范围,基础知识牢固是解题关键7. 如图,点E ,F 分别在菱形ABCD 的边AB ,AD 上,且AE = DF ,BF 交DE 于G ,延长BF 交CD 的延长线于H ,若2AF DF ,则HF BG的值为( )A. 712B. 23C. 12D. 512【答案】A【解析】设DF=a ,则DF=AE=a ,AF=EB=2a ,由△HFD∽△BFA,得===,求出FH ,再由HD∥EB,得△DGH∽△EGB,得===,求出BG 即可解决问题.解:∵四边形ABCD 是菱形,∴AB=BC=CD=AD,∵AF=2DF,设DF=a ,则DF=AE=a ,AF=EB=2a ,∵HD∥AB,∴△HFD∽△BFA,∴===,∴HD=1.5a ,=,∴FH=BH,∵HD∥EB,∴△DGH∽△EGB,∴===,∴=,∴BG=HB,∴.故选A.“点睛”本题考查相似三角形的性质和判定、菱形的性质、比例的选择等知识,解题的关键是利用相似三角形的性质解决问题,学会设参数,属于中考常考题型.8. 如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2016B2017C2017的顶点B2017的坐标是.A. (21008,0)B. (21008 ,21008)C. (0, 21008)D. (21007, 21007)【答案】B【解析】观察,发现:B1(1,1),B2(0,2),B3(−2,2),B4(−4,0),B5(−4,−4),B6(0,−8),B7(8,−8),B8(16,0),B9(16,16),…,∴B8n+1(24n,24n)(n为自然数).∵2017=8×252+1,∴点B2017的坐标为(21008,21008).故答案为(21008,21008).点睛:本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点的坐标规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同.2倍.二.填空题(每题3分,共24分)9. 分解因式:2ax a=_______.28【答案】2(2)(2)a x x +-【解析】【分析】首先提公因式2a ,再利用平方差公式分解即可.【详解】原式=2a (x 2﹣4)=2a (x +2)(x ﹣2).故答案为2a (x +2)(x ﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.10. 在式子2x +中自变量x 的取值范围是__________ 【答案】2x ≠-【解析】根据分式的意义和二次根式的意义,列不等式组求解.根据题意得210{20x x +≥+≠,解得x≠-2. 故填:x≠-211. 若关于x 的分式方程7311mx x x +=--无解,则实数m =_______. 【答案】3或7.【解析】解:方程去分母得:7+3(x ﹣1)=mx ,整理得:(m ﹣3)x =4.①当整式方程无解时,m ﹣3=0,m =3; ②当整式方程的解为分式方程的增根时,x =1,∴m ﹣3=4,m =7.综上所述:∴m 的值为3或7.故答案为3或7.12. 若小张投掷两次一枚质地均匀的硬币,则两次出现正面朝上的概率是________. 【答案】14 【解析】随机掷一枚均匀的硬币两次,可能的结果有:正正,正反,反正,反反, ∴两次正面都朝上的概率是14.故填:14.13. 一个射击运动员连续射靶5次所得环数分别为8,6,10,7,9,则这个运动员所得环数的方差为______.【答案】2【解析】数据8,6,10,7,9,的平均数=15(8+6+10+7+9)=8,方差=15[(8−8)2+(6−8)2+(10−8)2+(7−8)2+(9−8)2]=2.故填2.14. 如图,直线a∥b,∠1=45°,∠2=30°,则∠P=_______°.【答案】75.【解析】【详解】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,故答案为75.【点睛】本题考查平行线的性质,正确添加辅助线是解题关键.15. 如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1,①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述判断中,正确的是________.【答案】①④【解析】∵抛物线与x轴有2个交点,∴b2−4ac>0,即b2>4ac,所以①正确;∵抛物线的对称轴是直线x=1,但不能确定抛物线与x轴的交点坐标,∴4a−2b+c<0不确定;不等式ax2+bx+c>0的解集x>3错误,所以②③错误;∵点(−2,y1)比点(5,y2)到直线x=1的距离小,而抛物线开口向上,∴y1<y2,所以④正确.故答案为①④.点睛:根据抛物线与x轴的交点个数对①进行判断;由于不能确定抛物线与x轴的交点坐标,于是可对②③进行判断;当抛物线开口向上,抛物线上的点到对称轴的距离越远,对应的函数值越大,由此可对④进行判断.16. 如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点.点E在CD上,且DE=2CE,连接BE.过点C作CF⊥BE,垂足是F,连接OF,则OF的长为.65.【解析】【分析】在BE上截取BG=CF,连接OG,证明△OBG≌△OCF,则OG=OF,∠BOG=∠COF,得出等腰直角三角形GOF,在RT△BCE中,根据射影定理求得GF的长,即可求得OF的长.【详解】如图,在BE上截取BG=CF,连接OG,∵Rt△BCE中,CF⊥BE,∴∠EBC=∠ECF,∵∠OBC=∠OCD=45°,∴∠OBG=∠OCF,∵OB=OC,∴△OBG≌△OCF(SAS),∴OG=OF,∠BOG=∠COF,∴OG⊥OF,在RT△BCE中,BC=DC=6,DE=2EC,∴EC=2,∴222262210+=+=BC CE∵BC2=BF•BE,则62=BF210,解得:BF=105,∴EF=BE﹣BF=105,∵CF2=BF•EF,∴310,∴GF=BF﹣BG=BF﹣CF=105,在等腰直角△OGF中OF2=GF2,∴OF=65.65.三.解答题(共102分)17. -14+3tan30°3π)0+(12)-2【答案】4【解析】试题分析:原式利用乘方、特殊角的三角函数值、零指数幂、负整数指数幂计算即可得到结果.试题解析:原式=-1+33318. 先化简,再求值:(1-32a+)÷22214a aa-+-其中a=(-13)-1【答案】21aa--,54【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.试题解析:原式=-()()2a2a2a1a2(a1)+--⨯+-=a2a1--,当11a a33-⎛⎫=-=-⎪⎝⎭即时,原式=5419. 如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底仰角为60°,沿坡度为1:3的坡面AB向上行走到B处,测得广告牌顶部C的仰角为45°,又知AB=10m,AE=15m,求广告牌CD 的高度(精确到0.1m,测角仪的高度忽略不计)【答案】广告牌CD的高度约为2.7米【解析】试题分析:过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH,在△ADE 解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长,然后根据CD=CG+GE-DE即可求出宣传牌的高度.试题解析:过B作BG⊥DE于G,Rt△ABH中,i=tan∠BAH=33∴∠BAH=30°,∴BH=12AB=5;∵BH⊥HE,GE⊥HE,BG⊥DE,∴四边形BHEG是矩形.∵BH=5,AH=53,∴BG=AH+AE=53+15,Rt△BGC中,∠CBG=45°,∴CG=BG=53+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=3AE=153.∴CD=CG+GE−DE=53+15+5−153=20−103≈2.7(m).答:宣传牌CD高约2.7米.20. 某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.【答案】(1)12;(2)转动转盘1更优惠.【解析】试题分析:(1)根据转盘1,利用概率公式求得获得优惠的概率即可;(2)分别求得转动两个转盘所获得优惠,然后比较即可得到结论.试题解析:(1)∵整个圆被分成了12个扇形,其中有6个扇形能享受折扣,∴P(得到优惠)=612=12;(2)转盘1能获得的优惠为:0.33000.230020.1300312⨯+⨯⨯+⨯⨯=25元,转盘2能获得的优惠为:40×24=20元,所以选择转动转盘1更优惠.考点:列表法与树状图法.21. 2008京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图.根据上述信息解答下列问题:(1)m=______,n=_________;(2)在扇形统计图中,D组所占圆心角的度数为_____________;(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有多少名.【答案】(1)8,4;(2)1440;(3)2340人.【解析】【分析】(1)利用总数和C所占的百分比即可求出m,进而求出n;(2)求出D组所占的百分比,再求D组所占圆心角的度数即可;(3)利用样本估计总体,先求出该校平均每周体育锻炼时间不少于6小时的学生所占的百分比,即可求出答案.【详解】解:(1)由统计表和扇形图可知:m=50×16%=8人;n=50-8-15-20-1-2=4人;故答案为:8;4;(2)扇形统计图中,D组所占圆心角的度数=360×2050=144度;故答案为:144°;(3)该校平均每周体育锻炼时间不少于6小时的学生站的百分比=20+15+450=78%,则3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有3000×78%=2340人.【点睛】本题考查频数和扇形统计图,解决这类问题的关键是要弄清楚频数的意义,理解频数分布表与扇形统计图的对应关系,还要掌握用样本估计总体的统计思想.22. 九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y 元[(1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【答案】(1)()()221802000150120120005090x x x y x x ⎧-++≤⎪=⎨-+≤≤⎪⎩<;(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.【解析】【分析】(1)根据单价乘以数量,可得利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于4800,可得不等式,根据解不等式组,可得答案.【详解】(1)当1≤x <50时,()()2200240302180200y x x x x =-+-=-++, 当50≤x≤90时,()()2002903012012000y x x =--=-+,综上所述:()()221802000150120120005090x x x y x x ⎧-++≤⎪=⎨-+≤≤⎪⎩<. (2)当1≤x <50时,二次函数开口下,二次函数对称轴为x=45,当x=45时,y 最大=-2×452+180×45+2000=6050, 当50≤x≤90时,y 随x 的增大而减小,当x=50时,y 最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.(3)解2218020004800x x -++≥,结合函数自变量取值范围解得2050x ≤<,解120120004800x -+≥,结合函数自变量取值范围解得5060x ≤≤所以当20≤x≤60时,即共41天,每天销售利润不低于4800元.【点睛】本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3. 二次函数和一次函数的性质;4.分类思想的应用.23. 某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成. (1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.【答案】(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.【解析】【分析】(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需2x 天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.【详解】(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需2x 天. 根据题意得:101012x x+= 方程两边同乘以2x ,得230x =解得:15x =经检验,15x =是原方程的解.∴当15x =时,230x =.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.(2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:方案一:由甲工程队单独完成.所需费用为:41560⨯=(万元);方案二:由乙工程队单独完成.所需费用为:2.53075⨯=(万元);方案三:由甲乙两队合作完成.所需费用为:(4 2.5)1065+⨯=(万元).∵756560>>∴应该选择甲工程队承包该项工程.【点睛】本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24. 如图在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作DE⊥AC 于E 交AB 的延长线于点F ,(1)求证:EF 是⊙O 的切线;(2)若AE=6,FB=4,求⊙O 的面积.【答案】(1)证明见解析(2)16π【解析】试题分析:(1)连结AD 、OD ,如图,根据圆周角定理由AB 为⊙O 的直径得到∠ADB=90°,即AD⊥BC,再根据等腰三角形的性质得BD=CD ,则OD 为△ABC 的中位线,所以OD∥AC,加上EF⊥AC,于是OD⊥EF,然后根据切线的判定定理得EF 是⊙O 的切线;(2)设⊙O 的半径为R ,利用OD∥AE 得到△FOD∽△FAE,根据相似比可得 6R =442R R++,解得R=4,然后利用圆的面积公式求解. 试题解析:(1)连结AD 、OD ,如图,∵AB 为⊙O 的直径,∴∠ADB=90°,即AD ⊥BC ,∵AB=AC,∴BD=CD,而OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切线;(2)设⊙O的半径为R,∵OD∥AE,∴△FOD∽△FAE,∴ODAE=FODA,即6R=442RR++,解得R=4,∴⊙O的面积=π•42=16π.25.菱形ABCD中,两条对角线AC,BD相交于点O,∠MON+∠BCD=180°,∠MON绕点O旋转,射线OM交边BC于点E,射线ON交边DC于点F,连接EF.(1)如图1,当∠ABC=90°时,△OEF的形状是;(2)如图2,当∠ABC=60°时,请判断△OEF的形状,并说明理由;(3)在(1)的条件下,将∠MON的顶点移到AO的中点O′处,∠MO′N绕点O′旋转,仍满足∠MO′N+∠BCD=180°,射线O′M交直线BC于点E,射线O′N交直线CD于点F,当BC=4,且ΔO'EF98ABCDSS=四边形时,直接写出线段CE的长.【答案】(1)△OEF是等腰直角三角形;(2)△OEF是等边三角形;(3)333+333.【解析】试题分析:(1)先证四边形ABCD 是正方形,得出∠EBO=∠FCO=45°,OB=OC ,得出∠BOE=∠COF ,进一步得到△BOE ≌△COF ,从而得到结论;(2)过O 点作OG ⊥BC 于G ,作OH ⊥CD 于H ,根据菱形的性质可得CA 平分∠BCD ,∠ABC+BCD=180°,求得OG=OH ,∠BCD=120°,∠GOH=∠EOF=60°,进一步得出∠EOG=∠FOH ,得出△EOG ≌△FOH ,从而得到结论;(3)过O 点作OG ⊥BC 于G ,作OH ⊥CD 于H ,先求得四边形O′GCH 是正方形,从而求得GC=O′G=3,∠GO′H=90°,得到△EO′G ≌△FO′H 全等,得到△O′EF 是等腰直角三角形,根据已知求得等腰直角三角形的直角边O′E 的长,然后根据勾股定理求得EG ,即可求得CE 的长.试题解析:(1)△OEF 是等腰直角三角形;如图1,∵菱形ABCD 中,∠ABC=90°,∴四边形ABCD 是正方形,∴OB=OC ,∠BOC=90°,∠BCD=90°,∠EBO=∠FCO=45°,∴∠BOE+∠COE=90°,∵∠MON+∠BCD=180°,∴∠MON=90°,∴∠COF+∠COE=90°,∴∠BOE=∠COF ,在△BOE 与△COF 中,∵∠BOE=∠COF ,OB=OC ,∠EBO=∠FCO ,∴△BOE ≌△COF (ASA ),∴OE=OF ,∴△OEF 是等腰直角三角形;(2)△OEF 是等边三角形;如图2,过O 点作OG ⊥BC 于G ,作OH ⊥CD 于H ,∴∠OGE=∠OGC=∠OHC=90°,∵四边形ABCD 是菱形,∴CA 平分∠BCD ,∠ABC+BCD=180°,∴OG=OH ,∠BCD=180°﹣60°=120°,∵∠GOH+∠OGC+∠BCD+∠OHC=360°,∴∠GOH+∠BCD=180°,∴∠MON+∠BCD=180°,∴∠GOH=∠EOF=60°,∵∠GOH=∠GOF+∠FOH ,∠EOF=∠GOF+∠EOG ,∴∠EOG=∠FOH ,在△EOG与△FOH 中,∵∠EOG=∠FOH ,OG=OH ,∠EGO=∠FHO ,∴△EOG ≌△FOH (ASA ),∴OE=OF ,∴△OEF 是等边三角形;(3)如图3,∵菱形ABCD 中,∠ABC=90°,∴四边形ABCD 是正方形,∴'34O C AC =,过O 点作O′G ⊥BC 于G ,作O′H ⊥CD 于H ,∴∠O′GC =∠O′HC=∠BCD=90°,∴四边形O′GCH 是矩形,∴O′G ∥AB ,O′H ∥AD ,∴'''34O G O H O C AB AD AC ===,∵AB=BC=CD=AD=4,∴O′G=O′H=3,∴四边形O′GCH 是正方形,∴GC=O′G=3,∠GO′H=90°,∵∠MO′N+∠BCD=180°,∴∠EO′F=90°,∴∠EO′F=∠GO′H=90°,∵∠GO′H=∠GO′F+∠FO′H ,∠EO′F=∠GO′F+∠EO′G ,∴∠EO′G=∠FO′H ,在△EO′G 与△FO′H 中,∵∠EO′G=∠FO′H ,O′G= O′H ,∠EG O′=∠FH O′,∴△EO′G ≌△FO′H (ASA ),∴O′E=O′F ,∴△O′EF 是等腰直角三角形;∵S 正方形ABCD =4×4=16,ΔO'EF98ABCD S S =四边形,∴S △O′EF =18,∵S △O′EF =21'2O E ,∴O′E=6,在RT △O′EG 中,∴CE=CG+EG=3+∠M′ON′旋转到如图所示位置时,CE′=E′G ﹣CG=3.综上可得,线段CE 的长为333+或333-.考点:1.四边形综合题;2.正方形的判定与性质;3.等边三角形的判定;4.等腰直角三角形;5.分类讨论;6.综合题;7.压轴题.26. 如图,直线y=x+4交于x 轴于点A ,交y 轴于点C ,过A 、C 两点的抛物线F 1交x 轴于另一点B (1,0).(1)求抛物线F 1所表示的二次函数的表达式及顶点Q 的坐标;(2)在抛物线上是否存在点P ,使△BPC 的内心在y 轴上,若存在,求出点P 的坐标,若不存在写出理由;(3)直线y=kx-6与y 轴交于点N,与直线AC 的交点为M,当△MNC 与△AOC 相似时,求点M 坐标.【答案】(1)y=﹣x 2﹣x+4,Q 20(1,)3-(2)(﹣5,﹣16)(3)①2414(,)55M --②15(,6)2M -- 【解析】 试题分析:(1)利用一次函数的解析式求出点A 、C 的坐标,然后再利用B 点坐标即可求出二次函数的解析式;(2)由于M 在抛物线F 1上,所以可设M (a ,-248433a a a -+),然后分别计算S 四边形MAOC 和S △BOC ,过点M 作MP⊥x 轴于点P ,则S 四边形MAOC 的值等于△APM 的面积与梯形POCM 的面积之和.(3)由于没有说明点P 的具体位置,所以需要将点P 的位置进行分类讨论,当点P 在A′的右边时,此情况是不存在;当点P 在A′的左边时,此时∠DA′P=∠CAB′,若以A′、D 、P 为顶点的三角形与△AB′C 相似,则分为以下两种情况进行讨论:①AC A B ''=DA PA '';②AB AC '=DA PA ''. 试题解析:(1)令y=0代入y=43x+4, ∴x=﹣3,A (﹣3,0),令x=0,代入y=43x+4,∴y=4,∴C (0,4), 设抛物线F 1的解析式为:y=a (x+3)(x ﹣1), 把C (0,4)代入上式得,a=﹣43, ∴y=﹣43x 2﹣83x+4,Q 201,3⎛⎫- ⎪⎝⎭(2)∵点B 的坐标为(1,0),取点B 关于y 轴的对称点B′(﹣1,0),连接CB′,则∠BCO=∠B′CO ,∴△BPC 的内心在y 轴上,直线B′C 的解析式为y=4x+4,联立,2y 4x 448y x x 433{=+=--+∴点P 的坐标为(﹣5,﹣16);N(0,-6),直线AC 的表达式为4y x 43=+, 当△MNC ∽△AOC 时,①∠CMN 为直角设 4M x,x 43⎛⎫+ ⎪⎝⎭,根据勾股定理可得2414M ,55⎛⎫-- ⎪⎝⎭ ②当∠CNM 直角时,MN ∥x 轴,∴15M ,62⎛⎫-- ⎪⎝⎭点睛:本题主要考查对待定系数法求一次函数的解析式,二次函数图象上的点的坐标的特征,函数和坐标轴的交点,二次函数的三种形式,相似三角形的判定,对称性质等知识的连接和掌握,熟练运用性质进行推理是解决此题的关键所在,要注意分类讨论思想的在此题中的运用.。
河南省开封市2024届九年级下学期中考一模数学试卷(含解析)
2024年中招第一次模拟考试数学试题注意事项:1.本试题卷共6页,三个大题,满分120分,考试时间100分钟.2.试题卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试题卷上的答案无效,3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面指定的位置.一、选择题(每小题3分,共30分,下列各题均有四个答案,其中只有一个是正确的.)1. 的相反数是()A. 正有理数B. 负有理数C. 正无理数D. 负无理数答案:B解析:解:的相反数是,是负的有理数,故选:B .2. 如图所示几何体,其主视图是()A. B. C. D.答案:A解析:解:根据题意可得,该几何体是一个长方体挖去半个圆柱体,∴其主视图是“”,故选:A.3. 年我国经济回升向好,国内生产总值超过万亿元,增长,增速居世界主要经济体前列.数据万亿用科学记数法可以表示为的形式,则n的值为()A. B. C. D.答案:B解析:解:万亿,故选:B .4. 提高全民安全意识,倡导安全文明风尚.下列安全提示标志既是轴对称图形又是中心对称图形的是()A. 紧急出口B. 避险处C. 小心地滑D. 急救药箱答案:D解析:解:A、不是轴对称图形,也不是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,符合题意;故选:D .5. 传统文化如同一颗璀璨的明珠,熠熠生辉.为增强学生体质,同时让学生感受中国传统文化,某校将国家非物质文化遗产“抖空竹”引入阳光特色大课间.如图①是某同学“抖空竹”时的一个瞬间,小红同学把它抽象成数学问题:如图②,已知,,,则的度数为()A. B. C. D.答案:C解析:解:如图所示,过点作,∵,∴,∴,∴,∴,故选:C .6. 下列计算正确的是()A. B.C. D.答案:D解析:解:A、,原式计算错误,不符合题意;B、,原式计算错误,不符合题意;C、,原式计算错误,不符合题意;D、,原式计算正确,符合题意;故选;D.7. 如图,把两个边长为的小正方形沿对角线剪开,用得到的个直角三角形拼成一个大正方形,则大正方形的边长最接近的整数为()A. B. C. D.答案:A解析:解:根据题意,小正方形的对角线为,∵,∴,∴,∴大正方形的边长最接近的整数是3, 故选:A .8. 已知二次函数(是常数,),当时,,若此一元二次方程有两个不相等的实数根,则该二次函数的图象可能是()A. B. C. D.答案:C 解析:解:当时,有两个不相等的实根,∴,即二次函数图象与轴有两个交点,∴根据图示可得,A 、与轴无交点,不符合题意;B 、与轴有一个交代,不符合题意;C 、与轴有两个交点,符合题意;D 、与轴有一个交代,不符合题意; 故选:C .9. “准、绳、规、矩”是古代使用的测量工具, 一个简单结构的“矩”(如图①),由于使用时安放的位置不同,能测定物体的高低远近及大小,把矩放置在如图②所示的位置,令(单位:),(单位:),若,则关于的函数解析式为( )A. B. C. D.答案:A解析:解:根据题意,,∴,∵四边形是矩形,∴,,,,∴,∴,故选:A .10. 如图,在平面直角坐标系中,的顶点A,B,O的坐标分别为、、.点,,,…中的相邻两点关于的其中一个顶点对称.如:点,关于点A对称;点,关于点B对称;点,关于点O对称;点,关于点A对称;点,关于点B对称;点,关于点O对称,…,对称中心分别是A,B,O,…,且这些对称中心依次循环,若的坐标是,则点的坐标是()A. B. C. D.答案:B解析:解:∵的坐标是,A的坐标为,∴的坐标是同理可得:的坐标是,的坐标是,的坐标是,的坐标是,的坐标是,由此可知:与的坐标相同∵∴与的坐标相同故选:B二、填空题(每小题3分,共15分)11. 实数在数轴上的位置如图所示,请把按从小到大的顺序用“”号连接为______________.答案:解析:解:如图所示,∴,故答案为:.12. 用配方法解方程时,配方后得到的方程为________________.答案:解析:解:,移项得,,等式两边同时加上1得,,∴,故答案:.13. 在某市初中升学体育终结性评价考试的素质类项目中,小明从“1分钟跳绳”、“立定跳远”、“双手正面掷实心球”、“50米跑”四个项目中随机选择两项,则他选择“立定跳远”与“50 米跑”两个项目的概率是_________________.答案:解析:解:将“1分钟跳绳”,“立定跳远”,“双手正面掷实心球”,“50米跑”表示为A,B,C,D,列表把所有等可能结果表示出来,如表所示,A B C DA----B----C----D----共有种等可能结果,出现“立定跳远”,“50米跑”的结果为,共种,∴选择“立定跳远”与“50 米跑”两个项目的概率是,故答案为:.14. 如图①是清明上河园中供人们游玩的古代的马车.如图②是马车的侧面示意图,车轮的直径为,车架经过圆心,地面水平线与车轮相切于点,连接,.小明测出车轮的直径米,米,则的长为__________米答案:解析:解:如图所示,连接,延长,作延长线于点,∵与切与点,∴,且,∴,∴,∴,∵是直径,∴,则,,∴,在中,,在中,,∴,∴在中,,∴的长为,故答案为:.15. 如图1,点P从矩形的顶点A出发,沿A→D→B以的速度匀速运动到点B,图2是点P 运动时,的面积y()随时间x(s)变化的关系图象,则a的值为_____.答案:4解析:解:∵矩形中,,∴当点P在边上运动时,y的值不变,由图像可知,当时,点与点重合,,∴,即矩形的长是,∴,即.当点P在上运动时,y逐渐减小,由图像可知:点从点运动到点共用了,∴,在中,,∴,解得.故选:C.三、解答题(本大题共8个小题,共75分)16. (1)计算:(2)化简:答案:(1),(2)解析:(1)解:;(2)17. 今年春节期间,开封跻身全国热门文旅目的地前五名,人们常常穿着汉服进入各大景区,汉服的销售成为热门,某汉服商店计划购进A ,B 两款汉服,为调研顾客对两款汉服的满意度,调整进货方案,设计了下面的调查表.序号维度分值A 款得分B 款得分满意度打分标准1舒适性202性价比203时尚性20不满意基本满意满意非常满意商店随机抽取了20名顾客试穿两款汉服,并对其进行评分,收回全部问卷,并将调查结果绘制成如下统计图和统计表.A 、B 两款汉服性价比满意度人数分布统计图A 、B 两款汉服各项得分平均数统计表舒适性得分平均数性价比得分平均数时尚性得分平均数综评平均数A B注:将舒适性、性价比和时尚性三个方面得分的平均数按的权重计算,可得出综评平均数.(表中数据精确到)B 款汉服性价比满意度得分在范围的数据是:11 12131313 14 1414请根据以上信息,回答下列问题:(1)此次调研中A 款汉服性价比满意度达到“非常满意”的人数为;(2)补全条形统计图,根据图、表中信息可得出:B 款汉服性价比得分的中位数为分;(3)根据统计图、表中数据,请计算 B 款汉服综评平均数,并参照调查问卷中的满意度打分标准,分析并写出顾客对B 款汉服的满意度情况;(4)综合以上信息,请你给该汉服商店进货方面提一条建议,并说明理由.答案:(1)6(2)补全条形图见解析:,(3)顾客对B 款的满意情况良好,尤其是对B 款的时尚性方面满意度良好(4)汉服商店在进货时,可考虑A 款汉服在数量比B 款汉服的数量多一些(答案不唯一)小问1解析:解:根据题意,非常满意的百分比为,∴(人),故答案为:6;小问2解析:解:共有人,∴基本满意的人数为:(人),补全条形统计图如下,B款汉服性价比得分的中位数是第10,11位顾客分数的平均值,∴,故答案为:;小问3解析:解:B款基本满意的占,满意的占,非常满意的占,在舒适性和性价比方面,B款的平均分小于A款的平均分;在时尚性方面,B款的平均分高于A款的平均分;∴顾客对B款的满意情况良好,尤其是对B款的时尚性方面满意度良好;小问4解析:解:根据题意,A款基本满意的占,满意的占,非常满意的占,∴汉服商店在进货时,可考虑A款汉服在数量比B款汉服的数量多一些(答案不唯一).18. 如图所示是小华完成的尺规作图题,已知:矩形.作法:①分别以点为圆心,以大于长为半径,在两侧作弧,分别交于点;②作直线;③以点为圆心,以长为半径作弧,交直线于点,连接.根据小华的尺规作图步骤,解决下列问题.(1)填空:.(2)过点作,交直线于点.①求证:四边形是平行四边形;②请直接写出平行四边形的面积和矩形的面积的数量关系.答案:(1)(2)①证明过程见解析:;②小问1解析:解:根据作图可得,是线段的垂直平分线,,∴,∴,即是等边三角形,∴,∴,故答案为:;小问2解析:解:∵四边形是矩形,∴,,∴,①∵是的垂直平分线,∴,∴,即,∵,∴四边形是平行四边形;②如图所示,设与交于点,∴,∴平行四边形的面积为,矩形的面积为,∴.19. “黄河风”雕塑位于开封市金明广场,寓意着开封像一艘巨轮,开足马力,永往直前. 某数学小组开展综合与实践数学活动,以“测量黄河风雕塑高度”为课题,制定了测量方 案.为了减小测量误差,该小组在测量仰角以及两点间的距离时,都分别测量了两次并取它 们的平均值作为测量结果,测量数据如下表:课题测量黄河风雕塑的高度实物图成员组长:×××组员:×××,×××,×××测量工具卷尺、测角仪 …测量示意图说明:表示黄河风雕塑的高度,测角仪的高度,点C ,F 与点B 在同一直线上,点C ,F 之间的距离可直接测得,且点A ,B ,C ,D ,E ,F 在同一平面内测量项目第一次第二次平均值的度数的度数测量数据C,F之间的距离参考数据(1)请帮助该小组的同学根据上表中的测量数据,求黄河风雕塑的高度.(结果精确到)(2)为测量结果更加准确,你认为在本次方案的实行过程中,该小组成员应该注意的事项有哪些.(写出一条即可)答案:(1)黄河风雕塑的高度约为(2)测角仪测量时要与地面垂直(答案不唯一,合理即可)小问1解析:解:设,交于G,如图,由题意知,,,在中,,,在中,,,,,解得,,即黄河风雕塑的高度约为.小问2解析:解:该小组成员应该注意的事项有:测角仪测量时要与地面垂直;测量时卷尺要拉直(答案不唯一,合理即可).20. 某数学活动小组研究一款如图①简易电子体重秤,当人踏上体重秤的踏板后,读数器可以显示人的质量(单位:).图②是该秤的电路图,已知串联电路中,电流(单位:)与定值电阻.可变电阻(单位:)之间关系为,电电压恒为,定值电阻的阻值为.根据与之间的关系得出一组数据如下:…123q6…4p2(1)填空:,;(2)该小组把上述问题抽象为数学模型,请根据表中数据在图③中描出实数对的对应点,画出函数的图象,并写出一条此函数图象关于增减性的性质.(3)若电流表量程是,可变电阻与踏板上人的质量之间函数关系如图④所示,为保护电流表,求电子体重秤可称的最大质量为多少千克?答案:(1),(2)作图见解析:,电流随可变电阻的增大而减小(3)电子体重秤可称的最大质量为千克小问1解析:解:已知电流(单位:)与定值电阻.可变电阻(单位:)之间关系为,电电压恒为,定值电阻的阻值为,∴当时,,即;当时,,解得,,即;故答案为:,;小问2解析:解:根据题意,…12346…432根据表格数据在平面直角坐标系中描点如下,∴根据图示,电流随可变电阻的增大而减小;小问3解析:解:根据题意,设可变电阻与人的质量的函数关系为,且该直线过,,∴,解得,,∴可变电阻与人的质量的函数关系为:,∴可变电阻随人质量增大而减小,当时,,∴;当时,,∴;∵,∴不能超过;当时,,解得,,∴,解得,,∴电子体重秤可称的最大质量为千克.21. 近年来,市民交通安全意识逐步增强,头盔需求量增大.某生产厂家销售的甲、乙两种头盔,已知甲种头盔比乙种头盔的单价多元,购进甲种头盔个,乙种头盔个,共需元.(1)求甲、乙两种头盔的单价;(2)某商店欲购进两种头盔共个,正好赶上厂家进行促销活动,其方式如下:甲种头盔按单价的八折出售,乙种头盔每个降价元出售.如果此次购买甲种头盔的数量不低于乙种头盔的数量,那么应购买多少个甲种头盔可以使此次购买头盔的总费用最少?最少费用是多少元?答案:(1)甲种头盔的单价是元,乙种头盔的单价是元(2)应购买个甲种头盔可以使此次购买头盔的总费用最少,最少费用是元小问1解析:解:设购买乙种头盔的单价为元,则甲种头盔的单价为元,根据题意,得,解得:,,答:甲种头盔的单价是元,乙种头盔的单价是元;小问2解析:解:设购只甲种头盔,则购只乙种头盔,设总费用为元,则,解得:,,∵,∴随的增大而增大,∴时,取最小值,最小值,答:应购买个甲种头盔可以使此次购买头盔的总费用最少,最少费用是元.22. 开封黑岗口引黄调蓄水库上的东京大桥,又名“彩虹桥”.夜晚在桥上彩灯的映衬下好似彩虹般绚丽.主景观由三个抛物线型钢拱组成(如图①所示),其中最高的钢拱近似看成二次函数的图象抛物线,钢拱最高处C点与路面的距离为50米,若以点O为原点,所在的直线为y轴,建立如图②所示的平面直角坐标系,抛物线与x轴相交于A、B两点,且两点间的距离为80米.(1)求这条抛物线的解析式;(2)钢拱最高处C点与水面的距离为72米,请求出此时这条钢拱之间水面的宽度;(3)当时,求y的取值范围.答案:(1)(2)(3)小问1解析:解:∵,,∴,,设抛物线解析式为,把代入得:,解得:,∴抛物线解析式为.小问2解析:解:∵,∴,∴,把代入得:,解得:,∴此时这条钢拱之间水面的宽度为;小问3解析:解:∵,∴抛物线的定做坐标为,∴当时,y取最大值50,∵,∴抛物线开口向下,则离对称轴越远,函数值越小,∵,∴当时,y取最小值,,∴当时,.23. 问题情境:在数学课上,张老师带领学生以“图形的平移”为主题进行教学活动.在菱形纸片中,,对角线,将菱形沿对角线剪开,得到和.将沿射线方向平移一定的距离,得到.观察发现:(1)如图①,菱形中,;如图②,连接,四边形的形状是;操作探究:(2)将沿直线翻折,得,如图③,然后沿射线方向进行平移,连接,若添加一个条件,能否使得四边形是一个特殊的四边形?若能,请写出添加的条件和这个特殊的四边形,并写出证明过程,若不能,说明理由.拓展应用:(3)在(2)的条件下,设和相交于点,当是的三等分点时,直接写出的面积.答案:(1),平行四边形;(2)添加点为中点,可得四边形是矩形,证明见解析:;(3)的面积为或解析:解:如图所示,连接与交于点,∵四边形是菱形,∴,,,且,在直角中,,∴,如图所示,连接,∵四边形是菱形,图形平移,∴,,∴,∴四边形是平行四边形,故答案为:,平行四边形;(2)如图所示,连接,根据题意,,添加点为中点,可得四边形是矩形,证明如下,∵四边形菱形,∴,,∴,,且,∴,∴,,,∴四边形是矩形;(3)当是的三等分点,第一种情况,如图所示,过点作于点,过点作于点,,根据题意,,∴,,∴,∴,∴,根据(1)的证明可得,,∴,∴,则,∴的面积为;第二种情况,如图所示,,∴由上述证明可得,,∴,则,∴的面积为;综上所,的面积为或.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考全真综合模拟测试数 学 试 题学校________ 班级________ 姓名________ 成绩________一、选择题(共12题36分,每题3分) 1.(2019·宿迁)2019的相反数是 A .12019B .-2019C .12019-D .20192.(2019·重庆A 卷)下列各数中,比1-小的数是 A .2B .1C .0D .-23.(2019•河南)成人每天维生素D 的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为 A .46×10-7B .4.6×10-7C .4.6×10-6D .0.46×10-54.(2019·浙江杭州)在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则A .m =3,n =2B .m =﹣3,n =2C .m =2,n =3D .m =﹣2,n =﹣35.(2019·浙江温州)计算:(–3)×5的结果是A .–15B .15C .–2D .26.(2019•山西)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面上的汉字是 A .青B .春C .梦D .想7.(2019•甘肃)甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是 A .甲、乙两班的平均水平相同 B .甲、乙两班竞赛成绩的众数相同 C .甲班的成绩比乙班的成绩稳定D .甲班成绩优异的人数比乙班多8.(2019年广东省深圳市福田区中考数学三模试卷)下列命题是真命题的是 A .对角线互相平分的四边形是平行四边形 B .对于反比例函数y =kx,y 随x 的增大而增大 C .有一个角是直角的四边形是矩形 D .一元二次方程一定有两个实数根9.(2019·山西)如图,在△ABC 中,AB=AC ,△A=30°,直线a△b ,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若△1=145°,则△2的度数是( )参加人数 平均数 中位数 方差 甲 45 94 93 5.3 乙 4594954.8A. 30°B. 35°C. 40°D. 45°10.(2019•河北)如图,函数y =1(0)1(0)x xx x⎧>⎪⎪⎨⎪-<⎪⎩的图象所在坐标系的原点是A .点MB .点NC .点PD .点Q第9题图 第10题图 第11题图 第12题图 11.(2019·益阳)如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是( )A. PA =PBB. △BPD =∠APDC. AB△PDD. AB 平分PD12.(2019•张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45°后得到正方形OA 1B 1C 1,依此方式,绕点O 连续旋转2019次得到正方形OA 2019B 2019C 2019,那么点A 2019的坐标是 A .(22,-22) B .(1,0) C .(-22,-22)D .(0,-1)二、填空题(共6题18分,每题3分) 13.(2019·娄底市)函数y x 3=-中,自变量x 的取值范围是 .14.(2019•江西)设x 1,x 2是一元二次方程x 2–x –1=0的两根,则x 1+x 2+x 1x 2= . 15.(2019•新疆)同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是__________. 16.(2019·浙江金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s 关于行走时间t 的函数图象,则两图象交点P 的坐标是__________.17.(2019•青岛)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走__________个小立方块.18.(2019·广东省广州市增城区一模)如图,点P 为等边ABC △内一点,若3PC =,4PB =,5PA =,则BPC ∠的度数是__________.三、解答题(共8题66分)19.(6分)(2019·浙江绍兴)计算:4sin60°+(π﹣2)0﹣(﹣12)-2﹣12.20.(6分)(2019·浙江台州)先化简,再求值:22332121x x x x x --+-+,其中x =12.21.(6分)(2019·浙江金华)如图,在7×6的方格中,△ABC 的顶点均在格点上.试按要求画出线段EF (E ,F 均为格点),各画出一条即可.22. (8分)为了扎实推进精准扶贫工作,某地出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种、4种和5种帮扶措施的贫困户分别称为A、B、C、D类贫困户.为检査帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成下面两幅不完整的统计图:请根据图中信息回答下面的问题:(1)本次抽样调查了多少户贫困户?(2)抽查了多少户C类贫困户?并补全统计图;(3)若该地共有13000户贫困户,请估计至少得到4项帮扶措施的大约有多少户?(4)为更好地做好精准扶贫工作,现准备从D类贫困户中的甲、乙、丙、丁四户中随机选取两户进行重点帮扶,请用树状图或列表法求出恰好选中甲和丁的概率.23.(9分)(2019·浙江衢州)如图,在等腰△AB C中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线.,∠C=30°,求»AD的长.(2)若DE324.(9分)(2019·广东)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个? (2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?25.(10分)(2019·山东滨州)如图,矩形ABCD 中,点E 在边CD 上,将BCE △沿BE 折叠,点C落在AD 边上的点F 处,过点F 作FG CD P 交BE 于点G ,连接CG . (1)求证:四边形CEFG 是菱形;(2)若6,10AB AD ==,求四边形CEFG 的面积.26.(12分)(2019·海南)如图,已知抛物线y =ax 2+bx +5经过A (–5,0),B (–4,–3)两点,与x 轴的另一个交点为C ,顶点为D ,连结C D . (1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为t .①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.答案与解析一、选择题(共12题36分,每题3分)1.(2019·宿迁)2019的相反数是A.12019B.-2019 C.12019-D.2019【答案】B【解析】2019的相反数是-2019.故选B.2.(2019·重庆A卷)下列各数中,比1-小的数是A.2 B.1 C.0 D.-2【答案】D【解析】根据负数小于0,0小于正数,且负数的绝对值越大,本身就越小,即可确定-2最小,故选D.3.(2019•河南)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为A.46×10-7B.4.6×10-7C.4.6×10-6D.0.46×10-5【答案】C【解析】0.0000046=4.6×10-6.故选C.4.(2019·浙江杭州)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则A.m=3,n=2 B.m=﹣3,n=2C.m=2,n=3 D.m=﹣2,n=﹣3【答案】B【解析】∵点A(m,2)与点B(3,n)关于y轴对称,∴m=﹣3,n=2.故选B.【名师点睛】(1)一般地,点P与点P1关于x轴(横轴)对称,则横坐标相同,纵坐标互为相反数;(2)点P与点P2关于y轴(纵轴)对称,则纵坐标相同,横坐标互为相反数;(3)点P与点P3关于原点对称,则横、纵坐标分别互为相反数.简单记为“关于谁谁不变,关于原点都改变”.5.(2019·浙江温州)计算:(–3)×5的结果是A.–15 B.15 C.–2 D.2【答案】A【解析】(–3)×5=–15;故选A.【名师点睛】本题考查有理数的乘法;熟练掌握正数与负数的乘法法则是解题的关键.6.(2019•山西)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面上的汉字是A.青B.春C.梦D.想【答案】B【解析】展开图中“点”与“春”是对面,“亮”与“想”是对面,“青”与“梦”是对面;故选B.【名师点睛】本题考查正方体的展开图;熟练掌握正方体展开图找对面的方法是解题的关键.7.(2019•甘肃)甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是参加人数平均数中位数方差甲45 94 93 5.3乙45 94 95 4.8A.甲、乙两班的平均水平相同B.甲、乙两班竞赛成绩的众数相同C.甲班的成绩比乙班的成绩稳定D.甲班成绩优异的人数比乙班多【答案】A【解析】A、由表格信息可得甲、乙两班的平均水平相同;A选项正确;B、由表格信息无法得出甲、乙两班竞赛成绩的众数相同;B选项不正确;C、由表格信息可以得出乙班的成绩比甲班的成绩稳定;C选项不正确;D、由表格信息可以得出甲班中位数小于乙班的中位数,所以乙班成绩优异的人数比甲班多,D选项不正确;故选A.【名师点睛】本题考查了平均数,众数,中位数,方差;正确的读懂题目中所给出的信息,理解各个统计量的意义是解题的关键.8.(2019年广东省深圳市福田区中考数学三模试卷)下列命题是真命题的是A.对角线互相平分的四边形是平行四边形B.对于反比例函数y=kx,y随x的增大而增大C.有一个角是直角的四边形是矩形D.一元二次方程一定有两个实数根【答案】A【解析】A、对角线互相平分的四边形是平行四边形,正确,是真命题;B、对于反比例函数y=kx,当k<0时,在每一象限y随x的增大而增大,故错误,是假命题;C、有一个角是直角的平行四边形是矩形,故错误,是假命题;D、一元二次方程不一定有两个实数根,故错误,是假命题,故选A.【名师点睛】本题考查平行四边形的性质、反比例函数的性质、矩形的性质和一元二次方程的根与系数的关系,解题的关键是熟练掌握平行四边形的性质、反比例函数的性质、矩形的性质和一元二次方程的根与系数的关系.9.(2019·山西)如图,在△ABC中,AB=AC,△A=30°,直线a△b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若△1=145°,则△2的度数是( )A. 30°B. 35°C. 40°D. 45°【答案】C【解析】【分析】根据等边对等角可得△ACB=∠B=75°,再根据三角形外角的性质可得△AED=△1-△A=115°,继而根据平行线的性质即可求得答案.【详解】∵AB=AC,△A=30°,∴△ACB=∠B=(180°-30°)÷2=75°,∵△1=△A+△AED,∴△AED=△1-△A=145°-30°=115°,△a//b,∴∠2+∠ACB=△AED=115°(两直线平行,同位角相等),∴△2=115°-△ACB=115°-75°=40°,故选C.【点睛】本题考查了等腰三角形的性质,三角形外角的性质,平行线的性质等知识,熟练掌握相关知识是解题的关键.10.(2019•河北)如图,函数y =1(0)1(0)x xx x⎧>⎪⎪⎨⎪-<⎪⎩的图象所在坐标系的原点是A .点MB .点NC .点PD .点Q【答案】A【解析】由已知可知函数y =1(0)1(0)x xx x⎧>⎪⎪⎨⎪-<⎪⎩关于y 轴对称,所以点M 是原点;故选A .【名师点睛】本题考查反比例函数的图象及性质;熟练掌握反比例函数的图象及性质是解题的关键. 11.(2019·益阳)如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是( )A. PA =PBB. △BPD =∠APDC. AB△PDD. AB 平分PD【答案】D 【解析】先根据切线长定理得到PA =PB ,∠APD =∠BPD ;再根据等腰三角形的性质得OP ⊥AB ,根据菱形的性质,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,由此可判断D 不一定成立. 【详解】∵PA ,PB 是⊙O 的切线, ∴PA =PB ,所以A 成立; ∠BPD =∠APD ,所以B 成立;∴AB ⊥PD ,所以C 成立; ∵PA ,PB 是⊙O 的切线, ∴AB ⊥PD ,且AC =BC ,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,所以D 不一定成立, 故选D .【点睛】本题考查了切线长定理,垂径定理,等腰三角形的性质等,熟练掌握相关知识是解题的关键. 12.(2019•张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45°后得到正方形OA 1B 1C 1,依此方式,绕点O 连续旋转2019次得到正方形OA 2019B 2019C 2019,那么点A 2019的坐标是A .(2,-2)B .(1,0)C .(-2,-2)D .(0,-1)【答案】A【解析】∵四边形OABC 是正方形,且OA =1,∴A (0,1), ∵将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,∴A 1),A 2(1,0),A 3),…,发现是8次一循环,所以2019÷8=252……3,∴点A 2019,),故选A .【名师点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.二、填空题(共6题18分,每题3分)13.(2019·娄底市)函数y=x的取值范围是.【答案】x3≥.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【详解】依题意,得x-3≥0,解得:x≥3.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.14.(2019•江西)设x1,x2是一元二次方程x2–x–1=0的两根,则x1+x2+x1x2=__________.【答案】0【解析】∵x1、x2是方程x2–x–1=0的两根,∴x1+x2=1,x1x2=–1,∴x1+x2+x1x2=1–1=0.故答案为:0.【名师点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两根为x1,x2,则x1+x2=–ba,x1•x2=ca.15.(2019•新疆)同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是__________.【答案】1 6【解析】画树状图为:共有36种等可能的结果数,其中两枚骰子点数的和是小于5的结果数为6,∴两枚骰子点数之和小于5的概率是16,故答案为:16.【名师点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.16.(2019·浙江金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s 关于行走时间t 的函数图象,则两图象交点P 的坐标是__________.【答案】(32,4800) 【解析】令150t =240(t –12), 解得t =32,则150t =150×32=4800, ∴点P 的坐标为(32,4800), 故答案为:(32,4800).【名师点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答. 17.(2019•青岛)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走__________个小立方块.【答案】16【解析】若新几何体与原正方体的表面积相等,最多可以取走16个小正方体,只需留11个,分别是正中心的3个和四角上各2个,如图所示:故答案为:16.【名师点睛】本题主要考查了几何体的表面积.18.(广东省广州市增城区2019届九年级综合测试一模数学试题)如图,点P 为等边ABC △内一点,若3PC =,4PB =,5PA =,则BPC ∠的度数是__________.【答案】150°【解析】以BP 为边作等边BPD △,连接AD ,如图,则460BD BP DP DBP BDP ===∠=∠=︒,, ∵ABC △是等边三角形,∴60AB BC ABC =∠=︒,, ∵60ABD ABP CBP ABP ∠+∠=∠+∠=︒,∴ABD CBP ∠=∠,在△ABD 与△CBF 中,AB BCABD CBP BD BP =⎧⎪∠=∠⎨⎪=⎩,∴ABD CBP △≌△,∴3BPC BDA AD PC ∠=∠==,,在ADP △中,∵543PA PD AD ===,,, ∴222AP DP AD +=, ∴APD △是直角三角形, ∴90ADP ∠=︒,∴150ADB ADP BDP ∠=∠+∠=︒, ∴150BPC ∠=︒.【名师点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和,勾股定理逆定理,作出辅助线,把PA PB PC 、、的长度转化为一个三角形三条边,构造出直角三角形是解题的关键.三、解答题(共8题66分)19.(2019·浙江绍兴)计算:4sin60°+(π﹣2)0﹣(﹣12)-2【答案】﹣3【解析】原式﹣4﹣﹣3. 20.(2019·浙江台州)先化简,再求值:22332121x x x x x --+-+,其中x =12.【答案】31x -,–6. 【解析】22332121x x x x x --+-+ =23(1)(1)x x -- =31x -, 当x =12时,原式=3112-=–6. 【名师点睛】本题考查的是分式的化简求值,掌握同分母分式的减法法则是解题的关键.21.(2019·浙江金华)如图,在7×6的方格中,△ABC 的顶点均在格点上.试按要求画出线段EF (E ,F 均为格点),各画出一条即可.【答案】见解析.【解析】如图1,从图中可得到AC 边的中点在格点上设为E ,过E 作AB 的平行线即可在格点上找到F ,则EF 平分BC ;如图2,EC=EF=FC=,借助勾股定理确定F点,则EF⊥AC;如图3,借助圆规作AB的垂直平分线即可.【名师点睛】本题考查三角形作图;在格点中利用勾股定理,三角形的性质作平行、垂直、中点是解题的关键.22.为了扎实推进精准扶贫工作,某地出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种、4种和5种帮扶措施的贫困户分别称为A、B、C、D类贫困户.为检査帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成下面两幅不完整的统计图:请根据图中信息回答下面的问题:(1)本次抽样调查了多少户贫困户?(2)抽查了多少户C类贫困户?并补全统计图;(3)若该地共有13000户贫困户,请估计至少得到4项帮扶措施的大约有多少户?(4)为更好地做好精准扶贫工作,现准备从D类贫困户中的甲、乙、丙、丁四户中随机选取两户进行重点帮扶,请用树状图或列表法求出恰好选中甲和丁的概率.【答案】(1)500 (2)120,补全图形见解析(3)5200 (4)1 6【解析】【分析】(1)由A类别户数及其对应百分比可得答案;(2)总数量乘以C 对应百分比可得; (3)利用样本估计总体思想求解可得;(4)画树状图或列表将所有等可能的结果列举出来,利用概率公式求解即可. 【详解】(1)本次抽样调查的总户数为26052%500÷=(户); (2)抽查C 类贫困户为50024%120⨯=(户), 补全图形如下:(3)估计至少得到4项帮扶措施的大约有()1300024%16%5200⨯+=(户); (4)画树状图如下:由树状图知共有12种等可能结果,其中恰好选中甲和丁的有2种结果, 所以恰好选中甲和丁的概率为21126=. 【点睛】本题考查了扇形统计图,条形统计图,树状图等知识点,能正确画出条形统计图和树状图是解此题的关键.23.(2019·浙江衢州)如图,在等腰△AB C 中,AB =AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作DE ⊥AB ,垂足为E .(1)求证:DE 是⊙O 的切线.(2)若DE =C =30°,求»AD 的长.【答案】(1)见解析;(2)»AD的长为23π.【解析】(1)如图,连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线.(2)如图,连接AD,∵AC是直径,∴∠ADC=90°,∵AB=AC,∴∠B=∠C=30°,BD=CD,∴∠OAD=60°,∵OA=OD,∴△AOD是等边三角形,∴∠AOD=60°,∵DE=B=30°,∠BED=90°,∴CD=BD=2DE∴OD=AD=tan30°•CD3=⨯=2,∴»AD的长为:6022 1803π⋅π=.【名师点睛】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.24.(2019·广东)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?【答案】(1)篮球、足球各买了20个,40个;(2)最多可购买篮球32个. 【解析】(1)设篮球、足球各买了x ,y 个,根据等量关系:篮球、足球共60个,篮球、足球共用4600元,列出方程组,解方程组即可得;(2)设购买了a 个篮球,根据购买篮球的总金额不超过购买足球的总金额,列出不等式进行求解即可. 【详解】(1)设篮球、足球各买了x ,y 个,根据题意,得6070804600x y x y +=⎧⎨+=⎩, 解得2040x y =⎧⎨=⎩,答:篮球、足球各买了20个,40个; (2)设购买了a 个篮球,根据题意,得()708060a a ≤-,解得32a ≤, △最多可购买篮球32个.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系或不等关系列出方程或不等式是解题的关键.25.(2019·山东滨州)如图,矩形ABCD 中,点E 在边CD 上,将BCE △沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作FG CD P 交BE 于点G ,连接CG . (1)求证:四边形CEFG 是菱形;(2)若6,10AB AD ==,求四边形CEFG 的面积.【答案】(1)详见解析;(2)203. 【解析】(1)由题意可得,BCE BFE △≌△, ∴,BEC BEF FE CE ∠=∠=, ∵FG CE ∥,∴FGE CEB ∠=∠,∴FGE FEG ∠=∠,∴FG FE =,∴FG EC =, ∴四边形CEFG 是平行四边形, 又∵,CE FE =∴四边形CEFG 是菱形;(2)∵矩形ABCD 中,6,10,AB AD BC BF === , ∴90,10BAF AD BC BF ∠=︒===, ∴8AF =,∴2DF=,设EF x =,则,6CE x DE x ==-,∵90FDE ∠=︒,∴()22226x x +-=,解得103x =, ∴103CE =,∴四边形CEFG 的面积是:1020233CE DF ⋅=⨯=.【名师点睛】本题主要考查菱形的判定,关键在于首先证明其是平行四边形,再证明两条邻边相等即可.26.(2019·海南)如图,已知抛物线y =ax 2+bx +5经过A (–5,0),B (–4,–3)两点,与x 轴的另一个交点为C ,顶点为D ,连结C D . (1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为t . ①当点P 在直线BC 的下方运动时,求△PBC 的面积的最大值;②该抛物线上是否存在点P ,使得∠PBC =∠BCD ?若存在,求出所有点P 的坐标;若不存在,请说明理由.【答案】(1)y =x 2+6x +5.(2)①△PBC 的面积的最大值为278.②存在满足条件的点P 的坐标为(0,5)和(–32,–74).【解析】(1)将点A 、B 坐标代入二次函数表达式得:2555016453a b a b -+=⎧⎨-+=-⎩,解得16a b =⎧⎨=⎩, 故抛物线的表达式为:y =x 2+6x +5. (2)①如图1,过点P 作PE ⊥x 轴于点E ,交直线BC 于点F .在抛物线y =x 2+6x +5中,令y =0,则x 2+6x +5=0,解得x =–5,x =–1,∴点C 的坐标为(–1,0).由点B (–4,–3)和C (–1,0),可得直线BC 的表达式为y =x +1.设点P 的坐标为(t ,t 2+6t +5),由题知–4<t <–1,则点F (t ,t +1),∴FP =(t +1)–(t 2+6t +5)=–t 2–5t –4,∴S △PBC =S △FPB +S △FPC =12·FP ·3 =()23542t t --- =2315622t t --- =23527228t ⎛⎫-++ ⎪⎝⎭. ∵–4<–52<–1, ∴当t =–52时,△PBC 的面积的最大值为278. ②存在.∵y=x2+6r+5=(x+3)2–4,∴抛物线的顶点D的坐标为(–3,–4).由点C(–l,0)和D(–3,–4),可得直线CD的表达式为y=2x+2.分两种情况讨论:(i)当点P在直线BC上方时,有∠PBC=∠BCD,如图2.若∠PBC=∠BCD,则PB∥CD,∴设直线PB的表达式为y=2x+b.把B(–4,–3)代入y=2x+b,得b=5,∴直线PB的表达式为y=2x+5.由x2+6x+5=2x+5,解得x1=0,x2=–4(舍去),∴点P的坐标为(0,5).(ii)当点P在直线BC下方时,有∠PBC=∠BCD,如图3.设直线BP与CD交于点M,则MB=M C.过点B作BN⊥x轴于点N,则点N(–4,0),∴NB=NC=3,∴MN垂直平分线段B C.设直线MN与BC交于点G,则线段BC的中点G的坐标为53,22⎛⎫--⎪⎝⎭,由点N(–4,0)和G53,22⎛⎫--⎪⎝⎭,得直线NG的表达式为y=–x–4.∵直线CD:y=2x+2与直线NG:y=–x–4交于点M,由2x+2=–x–4,解得x=–2,∴点M的坐标为(–2,–2).由B(–4,–3)和M(–2.–2),得直线BM的表达式为y=11 2x-.由x2+6x+5=112x-,解得x1=–32,x2=–4(含去),∴点P的坐标为(–32,–74).综上所述,存在满足条件的点P的坐标为(0,5)和(–32,–74).【名师点睛】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质、图形的面积计算等,其中(2),要主要分类求解,避免遗漏。