一元一次不等式培优复习试卷含答案

合集下载

《一元一次不等式》综合提优卷(含答案)

《一元一次不等式》综合提优卷(含答案)

《一元一次不等式》综合提优卷(含答案)一.选择题(共10小题)1.如果a>b,那么下列结论中,正确的是()A.a﹣1>b﹣1 B.1﹣a>1﹣b C.D.﹣2a>﹣2b 2.不等式2x+3<﹣1的解集是()A.x>2 B.x<﹣2 C.x<1 D.x>﹣23.不等式组的解集为()A.x<﹣3 B.x≤2 C.﹣3<x≤2 D.无解4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.不等式组的解集在数轴表示正确的是()A.B.C.D.6.已知关于x的不等式组的最小整数解是2,则实数m的取值范围是()A.﹣3≤m<﹣2 B.﹣3<m≤﹣2 C.﹣3<m<﹣2 D.﹣3≤m≤﹣2 7.关于x的不等式组有3个整数解,则a的取值范围是()A.﹣2<a≤﹣1 B.﹣2≤a<﹣1 C.﹣3<a≤﹣2 D.﹣3≤a<﹣2 8.码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.轮船到达目的地后开始卸货,由于遇到紧急情况,需要将船上的货物不超过五天卸载完毕,那么平均每天至少要卸载货物的重量为()A.60吨B.48吨C.40吨D.30吨9.如果关于x的方程的解是非负数,那么a与b的关系是()A.a b B.b a C.a b D.a b10.某商店计划用不超过2000元的资金,购进甲、乙两种单价分别为30元、60元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利5元、15元,两种商品均售完.若所获利润大于380元,则该店进货方案有()A.3种B.4种C.5种D.6种二.填空题(共10小题)11.3的解集是.12.不等式组的解集是.13.若不等式组无解,则m的取值范围是.14.当m的取值范围是时,关于x的方程1的解不大于11.15.规定[x]为不大于x的最大整数,如[0.7]=0,[﹣2.3]=﹣3,若[x+0.5]=2,且[1﹣x]=﹣2,则x的取值范围为.16.某商店的老板销售一种商品,他要以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价元商店老板才能出售.17.已知关于x的不等式组恰有三个整数解,则t的取值范围为.18.对于整数a,b,c,d,符号表示运算ad﹣bc,已知13,则bd的值是.19.一辆公交车每月的支出费用为3000元,乘车平均票价为1.5元/人,设每月有x人乘坐该公交车,每月收入与支出的差额为y元,当每月乘客量达到人以上时,该公交车才不会亏损.20.某班男女同学分别参加植树劳动,要求男女同学各种8行树,男同学种的树比女同学种的树多,如果每行都比预定的多种一棵树,那么男女同学种树的数目都超过100棵;如果每行都比预定的少种一棵树,那么男女同学植树的数目都达不到100棵.这样原来预定男同学种树棵;女同学种树棵.三.解答题(共8小题)21.解不等式组:.22.解不等式组:并把它的解集在数轴上表示出来.23.已知关于x的不等式组.(1)当k为何值时,该不等式组的解集为﹣2<x<3;(2)若该不等式组只有2个正整数解,求k的取值范围.24.如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x﹣1=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是;(填序号)(2)若不等式组的一个关联方程的解是整数,则这个关联方程可以是;(写出一个即可)(3)若方程1﹣x=﹣7+3x,6(x)=10﹣x都是关于x的不等式组的关联方程,直接写出m的取值范围.25.某市教育局对某镇实施“教育精准扶贫”,为某镇建了中、小两种图书馆.若建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元.(1)建立每个中型图书馆和每个小型图书馆各需要多少万元?(2)现要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,那么有哪几种方案?26.某校计划购进A,B两种树木共100棵进行校园绿化,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A,B两种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.27.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元,超出200元的部分按80%收费;在乙商场累计购物超过100元,超出100元的部分按85%收费.已知小红在同一商场累计购物x元,其中x>200.(1)当x=300时,小红在甲商场需花费元,在乙商场需花费元.(2)分别用含x的代数式表示小红在甲、乙商场的实际花费.(3)当小红在同一商场累计购物超过200元时,通过计算说明小红在哪家商场购物的实际花费少.28.先阅读短文,然后回答短文后面所给出的问题:对于三个数a、b、c的平均数,最小的数都可以给出符号来表示,我们规定M{a,b,c}表示a,b,c这三个数的平均数,min{a,b,c}表示a,b,c这三个数中最小的数,max{a,b,c}表示a,b,c这三个数中最大的数.例如:M{﹣1,2,3},min{﹣1,2,3}=﹣1,max{﹣1,2,3}=3;M{﹣1,2,a},min{﹣1,2,a}.(1)请填空:max{c﹣1,c,c+1}=;若m<0,n>0,min{3m,(n+3)m,﹣mn}=;(2)若min{2,2x+2,4﹣2x}=2,求x的取值范围;(3)若M{2,x+1,2x}=min{2,x+1,2x},求x的值.一.选择题(共10小题)1.如果a>b,那么下列结论中,正确的是()A.a﹣1>b﹣1 B.1﹣a>1﹣b C.D.﹣2a>﹣2b 【分析】根据不等式的性质对各选项分析判断后利用排除法求解.【解答】解:A、a>b两边都减去1得a﹣1>b﹣1,故本选项正确;B、a>b两边都乘以﹣1再加1得1﹣a<1﹣b,故本选项错误;C、a>b两边都乘以得,故本选项错误;D、a>b两边都乘以﹣2得,﹣2a<﹣2b,故本选项错误.故选:A.【点评】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.不等式2x+3<﹣1的解集是()A.x>2 B.x<﹣2 C.x<1 D.x>﹣2【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:2x<﹣1﹣3,合并同类项,得:2x<﹣4,系数化为1,得:x<﹣2,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.不等式组的解集为()A.x<﹣3 B.x≤2 C.﹣3<x≤2 D.无解【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式x﹣1>2x+2,得:x<﹣3,解不等式2+5x≤3(6﹣x),得:x≤2,则不等式组的解集为x<﹣3.故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣3≥0,得:x≥1,解不等式x﹣1<5﹣x,得:x<3,则不等式组的解集为1≤x<3,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.不等式组的解集在数轴表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+1≤3,得:x≤2,解不等式﹣2x﹣6<﹣4,得:x>﹣1,则不等式组的解集为﹣1<x≤2,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.已知关于x的不等式组的最小整数解是2,则实数m的取值范围是()A.﹣3≤m<﹣2 B.﹣3<m≤﹣2 C.﹣3<m<﹣2 D.﹣3≤m≤﹣2 【分析】分别求出每一个不等式的解集,根据口诀:同大取大及不等式组的最小整数解求解即可.【解答】解:解不等式2,得:x≥4+m,解不等式x﹣4≤3(x﹣2),得:x≥1,∵不等式组的最小整数解是2,∴1<4+m≤2,解得﹣3<m≤﹣2,故选:B.【点评】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.关于x的不等式组有3个整数解,则a的取值范围是()A.﹣2<a≤﹣1 B.﹣2≤a<﹣1 C.﹣3<a≤﹣2 D.﹣3≤a<﹣2 【分析】分别求出每个不等式的解集,结合不等式组整数解的个数可得a的取值范围.【解答】解:解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,则不等式组的解集为a<x<2,∵不等式组有3个整数解,∴不等式组的整数解为1、0、﹣1,则﹣2≤a<﹣1,故选:B.【点评】本题主要考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式的基本步骤,并根据不等式组整数解的情况确定字母a的取值范围.8.码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.轮船到达目的地后开始卸货,由于遇到紧急情况,需要将船上的货物不超过五天卸载完毕,那么平均每天至少要卸载货物的重量为()A.60吨B.48吨C.40吨D.30吨【分析】首先根据题意可知总工作量为30×8=240吨不变,故卸货速度v与卸货时间t 之间为反比例关系,即vt=240,将t≤5代入,即可求出答案.【解答】解:设轮船上的货物总量为k吨,根据已知条件得k=30×8=240,所以v关于t的函数关系式为v,∵v,∴t,∵t≤5,∴5,解得:v≥48.即平均每天至少要卸载48吨.故选:B.【点评】本题考查了一元一次不等式的应用,解答该类问题的关键是确定两个变量之间的函数关系.9.如果关于x的方程的解是非负数,那么a与b的关系是()A.a b B.b a C.a b D.a b【分析】解方程求出x,根据方程的解是非负数得出0,求出不等式的解集即可.【解答】解:,5(2x+a)=3(4x+b),10x+5a=12x+3b,10x﹣12x=3b﹣5a,﹣2x=3b﹣5a,x,∵关于x的方程的解是非负数,∴0,解得:a b,b a,故选:C.【点评】本题考查了解一元一次方程,一元一次方程的解,解一元一次不等式等知识点,能求出方程的解是解此题的关键.10.某商店计划用不超过2000元的资金,购进甲、乙两种单价分别为30元、60元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利5元、15元,两种商品均售完.若所获利润大于380元,则该店进货方案有()A.3种B.4种C.5种D.6种【分析】设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据“购进甲乙商品不超过2000元的资金、两种商品均售完所获利润大于380元”列出关于x的不等式组,解之求得整数x的值即可得出答案.【解答】解:设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据题意,得:,解得:x<37,∵x为整数,∴x=34、35、36,∴该店进货方案有3种,故选:A.【点评】本题主要考查一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式组.二.填空题(共10小题)11.3的解集是x≥7.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项可得.【解答】解:去分母,得:x﹣1≥6,移项、合并,得:x≥7,故答案为:x≥7.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.不等式组的解集是3≤x<4.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式1<1,得:x<4,解不等式2﹣3x≤﹣7,得:x≥3,则不等式组的解集为3≤x<4,故答案为:3≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.若不等式组无解,则m的取值范围是m≤2.【分析】求出第一个不等式的解集,根据口诀:大大小小找不到可得答案.【解答】解:解不等式x﹣2<3x﹣6,得:x>2,∵不等式组无解,∴m≤2,故答案为:m≤2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.当m的取值范围是m≤1时,关于x的方程1的解不大于11.【分析】解关于x的方程得出x,再根据解不大于11得出关于m的不等式,解之可得答案.【解答】解:解关于x的方程1得x,根据题意,得:11,解得m≤1,故答案为:m≤1.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.规定[x]为不大于x的最大整数,如[0.7]=0,[﹣2.3]=﹣3,若[x+0.5]=2,且[1﹣x]=﹣2,则x的取值范围为2<x<2.5.【分析】根据新定义得出2≤x+0.5<3且﹣2≤1﹣x<﹣1,再分别求出其解集,继而找到其解集的公共部分即可.【解答】解:∵[x+0.5]=2,且[1﹣x]=﹣2,∴2≤x+0.5<3且﹣2≤1﹣x<﹣1,解2≤x+0.5<3得1.5≤x<2.5,解﹣2≤1﹣x<﹣1得2<x≤3,∴2<x<2.5,故答案为:2<x<2.5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.某商店的老板销售一种商品,他要以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价120元商店老板才能出售.【分析】设这件商品的进价为x,根据题意可得高出进价80%的价格标价为360元,列出方程,求出x的值,然后再求出最低出售价,用标价﹣最低出售价即可得出答案.【解答】解:设这件商品的进价为x.根据题意得:(1+80%)•x=360,解得:x=200.盈利的最低价格为200×(1+20%)=240,则商店老板最多会降价360﹣240=120(元).故答案为:120.【点评】本题考查一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.17.已知关于x的不等式组恰有三个整数解,则t的取值范围为t.【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出:一定存在一个整数k,满足满足下列关系:,并分情况讨论得出k的取值,再得t的取值范围.【解答】解:解不等式①得:x,解不等式②得:x<3﹣2t,则不等式组的解集为:x<3﹣2t,∵不等式组有3个整数解,∴一定存在一个整数k,满足满足下列关系:,解不等式组①得,,解不等式组②得,,(1)当,即时,则,于是,,解得,,∴k,∵k为整数,∴k=3,∴,∴t;(2)当时,即时,不存在整数k,∴此时无解;(3)当,此时无解;(4)当,即k时,则,于是,,解得,,∴,不存在整数k,∴此时无解.综上,t.故答案为:t.【点评】本题考查一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.难点是由不等式组有3个整数解,得出t的不等式组,以及分情况解k及t.难度大.18.对于整数a,b,c,d,符号表示运算ad﹣bc,已知13,则bd的值是2.【分析】根据题中已知条件得出关于bd的不等式,直接进行解答即可.【解答】解:已知13,即1<4﹣bd<3所以解得1<bd<3因为b,d都是整数,则bd一定也是整数,因而bd=2.【点评】读懂题目,把题目中的式子转化为一般的式子是解决本题的关键.19.一辆公交车每月的支出费用为3000元,乘车平均票价为1.5元/人,设每月有x人乘坐该公交车,每月收入与支出的差额为y元,当每月乘客量达到2000人以上时,该公交车才不会亏损.【分析】设当每月乘客量达到x人以上时,该公交车才不会亏损,根据题意列出不等式,求出不等式的解集即可.【解答】解:设当每月乘客量达到x人以上时,该公交车才不会亏损,则1.5x﹣3000≥0,解得:x≥2000,故答案为:2000.【点评】此题主要考查了函数的表示方法,解题的关键首先正确理解题意,然后根据题目的数量关系列出关系式即可求解.20.某班男女同学分别参加植树劳动,要求男女同学各种8行树,男同学种的树比女同学种的树多,如果每行都比预定的多种一棵树,那么男女同学种树的数目都超过100棵;如果每行都比预定的少种一棵树,那么男女同学植树的数目都达不到100棵.这样原来预定男同学种树104棵;女同学种树96棵.【分析】关系式为:8×(原来每行树的棵数+1)>100;8×(原来每行树的棵数﹣1)<100,把相关数值代入求得整数解,根据男同学种的树比女同学种的树多可得男同学和女同学原来种的每行树的棵数,乘以8即为总的种树棵树.【解答】解:设原来每行树的棵数为x.,解得11.5<x<13.5,∵x为整数,∴x为12,13.∵男同学种的树比女同学种的树多,∴男同学每行种13棵树,女同学每行种12棵树.∴男同学种了13×8=104棵树,女同学种了12×8=96棵树.故答案为:104;96.【点评】考查一元一次不等式组的应用;得到种树总棵数和100的2个关系式是解决本题的关键.三.解答题(共8小题)21.解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式x+5>3,得:x>﹣2,解不等式,得:x≥2,则不等式组的解集为x≥2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.解不等式组:并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式5x+6>3(x+1),得:x,解不等式,得:x≤4,则不等式组的解集为,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.已知关于x的不等式组.(1)当k为何值时,该不等式组的解集为﹣2<x<3;(2)若该不等式组只有2个正整数解,求k的取值范围.【分析】(1)先解每个不等式得出其解集,结合已知的不等式组的解集得出关于k的方程,解之即可;(2)根据不等式组只有2个整数解知01,解之即可.【解答】解:(1)解不等式2x+4>0,得:x>﹣2,解不等式3x﹣k<6,得:x,则不等式组的解集为﹣2<x,∵该不等式组的解集为﹣2<x<3,∴3,解得k=3;(2)∵不等式组只有2个正整数解,∴23,解得0<k≤3.【点评】本题主要考查一元一次不等式组的整数解,解题的关键是掌握解一元一次不等式的能力,并根据不等式组的整数解个数得出关于k的不等式组.24.如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x﹣1=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是③;(填序号)(2)若不等式组的一个关联方程的解是整数,则这个关联方程可以是3x﹣3=﹣3(答案不唯一);(写出一个即可)(3)若方程1﹣x=﹣7+3x,6(x)=10﹣x都是关于x的不等式组的关联方程,直接写出m的取值范围0<m≤1.【分析】(1)求出三个方程的解,并解不等式组求出其解集,从而得出答案;(2)解不等式组求出其解集,得出其整数解,继而得出答案;(3)先求出方程的解和不等式组的解集,根据关联方程的概念得到关于m的不等式组,解之即可得出答案.【解答】解:(1)解方程3x﹣1=0得:x,解方程x+1=0得:x,解方程x﹣(3x+1)=﹣5得:x=2,解不等式组得:x,所以不等式组的关联方程是③,故答案为:③;(2)解不等式(x﹣2)<2x+1,得:x>﹣1,解不等式,得:x,∴不等式组的解集为﹣1<x,则不等式组的整数解为x=0,∴此不等式组的关联方程可以为3x﹣3=﹣3,故答案为:3x﹣3=﹣3(答案不唯一);(3)解方程1﹣x=﹣7+3x,得:x=2,解方程6(x)=10﹣x,得:x=3,解不等式3x﹣m≥x+3m,得:x≥2m,解不等式x﹣m x+3,得:x<m+3,则不等式组的解集为2m≤x<m+3,根据题意知2m≤2且m+3>3,解得0<m≤1,故答案为:0<m≤1.【点评】本题主要考查解一元一次方程和一元一次不等式组,熟练掌握解一元一次方程和一元一次不等式组的技能是解题的关键.25.某市教育局对某镇实施“教育精准扶贫”,为某镇建了中、小两种图书馆.若建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元.(1)建立每个中型图书馆和每个小型图书馆各需要多少万元?(2)现要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,那么有哪几种方案?【分析】(1)设建立每个中型图书馆x万元,建立每个小型图书馆y万元,根据建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元,列方程组求解.(2)设建立中型图书馆a个,根据要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,列出不等式组求解.【解答】解:(1)设建立每个中型图书馆x万元,建立每个小型图书馆y万元,根据题意列方程组:.解得:.答:建立每个中型图书馆需要5万元,建立每个小型图书馆需要3万元.(2)设建立中型图书馆a个,根据题意得:.解得:5≤a≤7.∵a取正整数,∴a=5,6,7.∴10﹣a=5,4,3答:一共有3种方案:方案一:中型图书馆5个,小型图书馆5个;方案二:中型图书馆6个,小型图书馆4个;方案三:中型图书馆7个,小型图书馆3个.【点评】本题主要考查了二元一次方程组的应用,以及一元一次不等式组的应用,找到关键描述语,进而找到所求的量的数量关系,列出方程组或不等式组求解.26.某校计划购进A,B两种树木共100棵进行校园绿化,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A,B两种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.【分析】(1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;(2)设购买A种树木为a棵,则购买B种树木为(100﹣a)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得a的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答.【解答】解:(1)设A种树每棵x元,B种树每棵y元,依题意得:,解得.答:A种树每棵100元,B种树每棵80元;(2)设购买A种树木为a棵,则购买B种树木为(100﹣a)棵,则a≥3(100﹣a),解得a≥75.设实际付款总金额是y元,则y=0.9[100a+80(100﹣a)],即y=18a+7200.∵18>0,y随a的增大而增大,∴当a=75时,y最小.即当a=75时,y最小值=18×75+7200=8550(元).答:当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元.【点评】本题考查了一次函数的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.27.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元,超出200元的部分按80%收费;在乙商场累计购物超过100元,超出100元的部分按85%收费.已知小红在同一商场累计购物x元,其中x>200.(1)当x=300时,小红在甲商场需花费280元,在乙商场需花费270元.(2)分别用含x的代数式表示小红在甲、乙商场的实际花费.(3)当小红在同一商场累计购物超过200元时,通过计算说明小红在哪家商场购物的实际花费少.【分析】(1)在甲商场累计购物超过200元,超出200元的部分按80%收费,则多出的100元按80%收费,于是得到小红在甲商场所花费用为200+(300﹣200)×80%;在乙商场累计购物超过100元,超出100元的部分按85%收费,则多出的200元按85%收费,于是得到小红在乙商场所花费用为100+(300﹣100)×80%;(2)与(1)的思路一样,用x代替300即可;(3)讨论:当0.8x+40>0.85x+15时,小红在乙商场购物的实际花费少;当0.8x+40=0.85x+15时,小红在甲乙商场购物的实际花费一样;当0.8x+40<0.85x+15时,小红在甲商场购物的实际花费少,然后分别解不等式或方程确定x的范围或值即可.【解答】解:(1)当x=300时,小红在甲商场所花费用为200+(300﹣200)×80%=280(元);在乙商场所花费用为100+(300﹣100)×85%=270(元);故答案为280,270;(2)x>200,小红在甲商场所花费用为200+(x﹣200)×80%=(0.8x+40)元;在乙商场所花费用为100+(x﹣100)×85%=(0.85x+15)元;(3)当0.8x+40>0.85x+15时,解得x<500,所以当200<x<500时,小红在乙商场购物的实际花费少;当0.8x+40=0.85x+15时,解得x=500,所以当x=500时,小红在甲乙商场购物的实际花费一样;当0.8x+40<0.85x+15时,解得x>500,所以当x>500时,小红在甲商场购物的实际花费少.【点评】本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.28.先阅读短文,然后回答短文后面所给出的问题:对于三个数a、b、c的平均数,最小的数都可以给出符号来表示,我们规定M{a,b,c}表示a,b,c这三个数的平均数,min{a,b,c}表示a,b,c这三个数中最小的数,max{a,b,c}表示a,b,c这三个数中最大的数.例如:M{﹣1,2,3},min{﹣1,。

一元一次不等式组 能力培优训练(含答案)

一元一次不等式组 能力培优训练(含答案)

一元一次不等式组能力提升专题一 求一元一次不等式组中未知系数 1.若关于x 的一元一次不等式组-01-2-2x a x x >⎧⎨>⎩无解,则a 的取值范围是( )A. a ≥1B. a >1C. a ≤—1D. a <-13.若关于x 的不等式⎪⎪⎩⎪⎪⎨⎧<++>+022234a x x x 的解集为x <2,则a 的取值范围是 .4.若关于x 的不等式组有实数解,则a 的取值范围是 .专题二 一元一次不等式组的特殊解 5.已知关于x 的不等式组221x a b x a b -≥⎧⎨-<+⎩的解集是35x ≤<,则ba 的值是( )A .-2B .12-C .-4D .14-6. 按如下程序进行运算:并规定:程序运行到“结果是否大于65”为一次运算,且运算进行4次才停止,则可输入的整数x 的个数是 . 7. 已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩的整数解3个,则a 的取值范围是 .8. 对于整数a 、b 、c 、d ,对于符号a b d c表示运算ac bd -,已知1134b d <<,则b d +的值是 .9. 已知a a -=-33,当a 为何整数时,方程组⎩⎨⎧=-=-a y x y x 115163的解都是负数?3x -a >5 2x >3x -3专题三 一元一次不等式组的应用10.某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.不同的组建方案有( ) A .4种 B .3种 C .2种 D .1种11. 一辆公共汽车上有(5a -4)名乘客,到某一车站有(9-2a )名乘客下车,车上原来有 _________名乘客.12.已知0x >,符号[]x 表示大于或者等于......x 的最小正整数......,如[]0.31=;[]3.24=;[]55=⋅⋅⋅.(1)填空:1711⎡⎤⎢⎥⎣⎦=_____________,若[]6x =,则x 的取值范围是____________; (2)某市出租车收费标准规定如下:3千米以内(包括3千米)收费6元;超过3千米的,每超过1千米,加收1.2元(不足1千米按1千米计算).用x 表示所行的千米数,y 表示应付车费,则乘车费可按如下公式计算:当03x <≤(单位:千米)时,6y =(元);当3x >(单位:千米)时,[]6 1.23y x =+-(元).某乘客乘车付费18元,则该乘客所行的路程x (千米)的取值范围为__________. 13. 在我市开展城乡综合治理的活动中,需要将A 、B 、C 三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D 、E 两地进行处理.已知运往D 地的数量比运往E 地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A 地运往D 地a 立方米(a 为整数),B 地运往D 地30立方米,C 地运往D 地的数量小于A 地运往D 地的2倍.其余全部运往E 地,且C 地运往E 地不超过12立方米,则A 、C 两地运往D 、E 两地有哪几种方案?(3)已知从A 、B 、C 三地把垃圾运往D 、E 两地处理所需费用如下表:在(2)的条件下,请说明哪种方案的总费用最少?【知识要点】1.一元一次不等式组的解集:几个一元一次不等式的解集的公共部分叫做它们的解集. 2.一元一次不等式组的解集规律:①同大取大,同小取小;②大小小大取中间,大大小小是空集.3.解一元一次不等式组的应用题的步骤:①审清题意;②设未知数;③找不等关系组;④列不等式组;⑤解不等式组;⑥检验解的合理性;⑦作答.【温馨提示】1.解集的规律要记准确,异号不等式要特别注意.2.求不等式组中未知系数的值时要注意是否带上“=”号.3. 注意求整数解时不要漏解和多解.4.在数轴上表示不等式组的解集同样要注意有等号用实心圆点,无等号用空心圆圈.5. 解应用题时要注意解要符合实际.【方法技巧】1.求不等式组中某个字母的值时:①一般是先分别求出每个不等式的解集,再借助数轴找出它们的公共部分,再根据题意求出式子中某一系数的取值;②不等式组无解即没有公共部分,常采用逆向思维,写出有解的取值范围,然后进行思考;③不等式组有几个整数解,常借助数轴对照进行解决.2.根据题中最关键的语句(“超过”、“不大于”、“不小于”、“最多”、“不足”等字眼),写出不等关系组是解不等式组应用题的关键.3.方案问题通常设一元不等式(组),先将其转化为数学问题,即求一种的数量和另一种的数量,然后设一种的数量为x,则另一种数量用关于x的代数式表示,再根据题意构建不等式组模型,求整数解,有多少个整数解,就能求出多少种方案.1. A 解析:若不等式组有解集,则解集为a <x <1,则a <1.所以不等式组无解时,a ≥1.2. D 解析:A 选项,所给不等式组的解集为﹣2<x <2,那么a ,b 为一正一负,设a >0,则b <0,解得x >,x <,∴原不等式组无解,同理得到把2个数的符号全部改变后也无解,故错误,不符合题意;B 选项,所给不等式组的解集为﹣2<x <2,那么a ,b 同号,设a >0,则b >0,解得x >,x <,解集都是正数;若同为负数可得到解集都是负数;故错误,不符合题意;C 选项,理由同上,故错误,不符合题意;D 选项,所给不等式组的解集为-2<x <2,那么a ,b 为一正一负,设a >0,则b <0,解得x <,x >,∴原不等式组有解,可能为-2<x <2,把2个数的符号全部改变后也如此,故正确,符合题意;故选D .3. a ≤-2 解析:先解不等式组得,,因为解集为x <2,根据同小取小的原则可知,2≤-a ,则a ≤-2.4. a <4 解析:解不等式2x >3x -3,得x <3.解不等式3x -a >5,得x >5+a 3.这两个不等式解集的公共部分是5+a3<x <3.即a <4.故答案为a <4.5. A 解析:由题意得:212a b a b x +++≤<,所以32152a b a b +=⎧⎪⎨++=⎪⎩,解得36a b =-⎧⎨=⎩,所以2ba=-. 6. 3 解析:根据题意得:()[]{}()[]⎩⎨⎧<--->----651112226511112222x x 解得:5<x <9.则x 的整数值是: 6,7,8.共有3个.故答案是: 3. 7. 10<≤a 解析:解不等式组,得⎩⎨⎧>≤ax x 3,因为不等式组的整数解有3个,所以10<≤a .8. ±3 解析:由1134b d <<得143bd <-<,所以13bd <<,所以2bd =,所以b d +=±3.9. 解:解方程组⎩⎨⎧=-=-a y x y x 115163,得1163533a x ay -⎧=⎪⎪⎨-⎪=⎪⎩,因为方程组⎩⎨⎧=-=-a y x y x 115163的解都是负数,所以00x y <⎧⎨<⎩,即:116035303a a -⎧<⎪⎪⎨-⎪<⎪⎩,解得116a >.又因为a a -=-33,所以30a -≥,所以3a ≤. 所以1136a <≤,所以整数2a =或3. 10. B 解析:设组建中型图书角x 个,则组建小型图书角为(30-x )个.由题意,得⎩⎨⎧≤-+≤-+,1620)30(6050,1900)30(3080x x x x 解这个不等式组,得18≤x ≤20.∴x 的取值是18,19,20.所以12. 解:(1) 8 56x <≤(2)因为[]186 1.23x =+⨯-, 所以[]310x -=, 即9310x <-≤, 所以1213x <≤.13. 解:(1)设运往E 地x 立方米,由题意得,x +2x ﹣10=140, 解得:x =50, ∴2x ﹣10=90,答:共运往D 地90立方米,运往E 地50立方米. (2)由题意可得,[]⎩⎨⎧≤+--<+-12)30(90502)30(90a aa , 解得:20<a ≤22, ∵a 是整数, ∴a =21或22, ∴有如下两种方案:第一种:A 地运往D 地21立方米,运往E 地29立方米; C 地运往D 地39立方米,运往E 地11立方米; 第二种:A 地运往D 地22立方米,运往E 地28立方米; C 地运往D 地38立方米,运往E 地12立方米. (3)第一种方案共需费用:22×21+20×29+39×20+11×21+30×20+10×22=2873(元), 第二种方案共需费用:22×22+28×20+38×20+12×21+30×20+10×22=2876(元), 所以,第一种方案的总费用最少.。

一元一次不等式培优练习(教师版)(含答案)

一元一次不等式培优练习(教师版)(含答案)

D.4 个
4.使不等式 4x+3<x+6 成立的最大整数解是


A.﹣1
B.0
C.1
D.以上都不对
5.下列说法中错误的是


A.不等式 x+1≤4 的整数解有无数个
B.不等式 x+4<5 的解集是 x<1
C.不等式 x<4 的正整数解为有限个
D.0 是不等式 3x<﹣1 的解
6.不等式 3(x﹣1)≤5﹣x 的非负整数解有
4. 4 x 5 5. (1)去分母,得1 x 3x 3
移项,得 x 3x 1 3 合并同类项,得 2x 4 系数化为 1,得 x 2
将解集表示在数轴上如图:
6. (1) x 3
不等式两边乘(或除以)同一个负数,不等号的方向改变
(2) x 2
(3)
(4) 2 x 2
7. D 8. B
当 n 5 时,安检所需要的总费用为 (30005 25 200)6 102000 (元)
85 800<102 000 所以每个入口处有 4 个通道安放门式安检仪,剩下的 1 个通道为手持安检仪.安检所需费用最少.
7
《一元一次不等式的整数解》专题训练
参考答案
一.选择题 1.关于 x 的不等式 x﹣b≥0 恰有两个负整数解,则 b 的取值范围是( ) A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2 【分析】解不等式可得 x≥b,根据不等式的两个负整数解为﹣1、﹣2 即可得 b 的范围. 【解答】解:解不等式 x﹣b≥0 得 x≥b, ∵不等式 x﹣b≥0 恰有两个负整数解, ∴不等式的两个负整数解为﹣1、﹣2, ∴﹣3<b≤﹣2,故选:B. 【点评】本题考查了不等式的正整数解,解题的关键是注意能根据整数解的具体数值,找出不等式解 集的具体取值范围.

初中数学一元一次不等式训练题(含答案解析)

初中数学一元一次不等式训练题(含答案解析)

一元一次不等式的解法1.解不等式:552(2)x x-<+.2.解下列不等式:(1)726x->;(2)415x x-<+.3.解下列不等式:(1)51541x x+>-;(2)325 23x x--.4.解不等式523(1)x x+-,并把它的解集在数轴上表示出来.5.解不等式:2613x x +>-,并在数轴上表示解集.6.解不等式4113x x --<,并在数轴上表示解集.7.解不等式5124xx ++,并把它的解集在数轴上表示出来.8.解不等式11123x x +-<+,并把它的解集在数轴上表示出来.9.解不等式组:34612553x x x x ++⎧⎪-+⎨<⎪⎩.10.解不等式组:3(1)2122x x x x +<⎧⎪⎨-+>⎪⎩.11.解不等式组541.2x x ⎨+->⎪⎩12.解不等式2(1)4x x -<-,并在数轴上表示出它的解集.13.解不等式组213122x x x +-⎧⎨+>-⎩,并把它的解集在数轴上表示出来.14.解不等式组2361422x x x x -<-⎧⎨--⎩,并在数轴上表示解集.15.解不等式组:1076,713x x x x >+⎧⎪+⎨-<⎪⎩16.解不等式组1139x x -+⎨⎪⎩,并将它的解集在数轴上表示出来.17.解不等式组4521,5118x x x x +-⎧⎪⎨+-⋅⎪⎩①② 请结合题意填空,完成本题的解答.()I 解不等式①,得 ;()II 解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来: ()IV 原不等式组的解集为 .18.解不等式组3152113x x x ->⎧⎪+⎨+⎪⎩,把解集在数轴上表示出来,并写出不等式组的所有整数解.19.解不等式组.(1)11213x x +>-⎧⎨+<⎩;(2)3(2)41213x x x x ---⎧⎪+⎨>-⎪⎩.20.解不等式组,并求出整数解33213(1)8x x x x-⎧+⎪⎨⎪--<-⎩.21.解不等式组2(3)535146x x x x --⎧⎪-⎨<+⎪⎩,并把解集表示在下面的数轴上.22.解不等式组2341213x xxx++⎧⎪+⎨>-⎪⎩,并写出它的所有正整数解.23.解不等式组:4537422133x xx x+<+⎧⎪⎨+-⎪⎩,并写出它的整数解.24.解不等式组2(1)12323x xx x-+⎧⎪++⎨⎪⎩,并求出不等式组的整数解之和.参考答案与试题解析1.解不等式:552(2)x x -<+.【解答】解:552(2)x x -<+,5542x x -<+5245x x -<+,39x <,3x <.2.解下列不等式:(1)726x ->;(2)415x x -<+.【解答】解:(1)移项,得:267x >+, 合并同类项得:33x >;(2)移项,得:451x x -<+,合并同类项得:36x <,系数化成1得:2x <.3.解下列不等式:(1)51541x x +>-;(2)32523x x --. 【解答】解:(1)51541x x +>-; 移项,得:54115x x ->--,合并同类项得:16x >-;(2)32523x x --. 去分母,得:3(3)2(25)x x --, 去括号,得:39410x x --,移项,得:34109x x --+,合并同类项,得:1x --,系数化成1得:1x .4.解不等式523(1)x x +-,并把它的解集在数轴上表示出来.【解答】解:去括号,得:5233x x +-, 移项,得:5332x x ---,合并同类项,得:25x -,系数化为1,得: 2.5x -,将不等式的解集表示在数轴上如下:5.解不等式:2613x x +>-,并在数轴上表示解集. 【解答】解:移项,得:2163x x +>-, 合并同类项,得:553x >-, 系数化为1,得:3x >-,将不等式的解集表示在数轴上如下:6.解不等式4113x x --<,并在数轴上表示解集.【解答】解:去分母得:4133x x --<, 移项合并同类项得:4x <,在数轴上表示为:.7.解不等式5124xx ++,并把它的解集在数轴上表示出来.【解答】解:去分母,得:425x x ++, 移项,得:254x x --,合并,得:1x ,将不等式的解集表示在数轴上如下:8.解不等式11123x x +-<+,并把它的解集在数轴上表示出来.【解答】解:去分母得:3(1)2(1)6x x +<-+, 去括号得:33226x x +<-+, 移项合并得:1x <.9.解不等式组:34612553x x x x ++⎧⎪-+⎨<⎪⎩. 【解答】解:34612553x x x x ++⎧⎪⎨-+<⎪⎩①②,解不等式①得:1x ,解不等式②得:4x >-,不等式组的解集为:41x -<.10.解不等式组:3(1)2122x x x x +<⎧⎪⎨-+>⎪⎩. 【解答】解:()312122x x x x +<⎧⎪⎨-+>⎪⎩①②, 解不等式①得:3x <-,解不等式②得:5x >-,则不等式组的解集为53x -<<-.11.解不等式组280,541.2x x x -⎧⎪⎨+->⎪⎩ 【解答】解:2805412x x x -⎧⎪⎨+->⎪⎩①②, 解不等式①,得4x ,解不等式②,得2x <-, ∴原不等式组的解集为2x <-.12.解不等式2(1)4x x -<-,并在数轴上表示出它的解集.【解答】解:去括号,得224x x -<-, 移项,得242x x +<+, 合并同类项,得36x <, 系数化为1,得2x <. 解集在数轴上表示如图:13.解不等式组213122x x x +-⎧⎨+>-⎩,并把它的解集在数轴上表示出来.【解答】解:213122x x x +-⎧⎨+>-⎩①②, 由①得:2x -,由②得:3x <,不等式组的解集为:23x -<, 在数轴上表示:.14.解不等式组2361422x x x x -<-⎧⎨--⎩,并在数轴上表示解集. 【解答】解:2361422x x x x -<-⎧⎨--⎩①②, 解不等式①得:3x <, 解不等式②得:12x , 不等式组的解集为:132x <,在数轴上表示为:.15.解不等式组:1076,713x x x x >+⎧⎪+⎨-<⎪⎩【解答】解:1076713x x x x >+⎧⎪⎨+-<⎪⎩①②, 解不等式①得2x >,解不等式②得5x <.故原不等式组的解集是25x <<.16.解不等式组121139x x x x ->⎧⎪-+⎨⎪⎩,并将它的解集在数轴上表示出来. 【解答】解:解不等式12x x ->,得:1x <-, 解不等式1139x x -+,得:2x , 将解集表示在数轴上如下:∴不等式组的解集为1x <-.17.解不等式组4521,5118x x x x +-⎧⎪⎨+-⋅⎪⎩①② 请结合题意填空,完成本题的解答.()I 解不等式①,得 3x - ;()II 解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来: ()IV 原不等式组的解集为 .【解答】解:()I 解不等式①,得3x -; ()II 解不等式②,得:3x ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:()IV 原不等式组的解集为33x -.故答案为:3x -,3x ,33x -.18.解不等式组3152113x x x ->⎧⎪+⎨+⎪⎩,把解集在数轴上表示出来,并写出不等式组的所有整数解. 【解答】解:3152113x x x ->⎧⎪⎨++⎪⎩①②, 解不等式①得:2x >,解不等式②得:4x ,∴不等式组的解集是24x <, 在数轴上表示不等式组的解集为:,所以不等式组的所有整数解是3,4.19.解不等式组.(1)11213x x +>-⎧⎨+<⎩; (2)3(2)41213x x x x ---⎧⎪+⎨>-⎪⎩. 【解答】解:(1)11213x x +>-⎧⎨+<⎩①②, 解不等式①得:2x >-,解不等式②得:1x <,则不等式组的解集为21x -<<;(2)()3241213x x x x ⎧---⎪⎨+>-⎪⎩①②, 解不等式①得:1x ,解不等式②得:4x <,∴不等式组的解集为1x .20.解不等式组,并求出整数解 33213(1)8x x x x-⎧+⎪⎨⎪--<-⎩. 【解答】解()3321318x x x x -⎧+⎪⎨⎪--<-⎩①② 解不等式①得:3x ,解不等式②得:2x >-,则不等式组的解集为23x -<, 所以不等式组的整数解为1-,0,1,2,3.21.解不等式组2(3)535146x x x x --⎧⎪-⎨<+⎪⎩,并把解集表示在下面的数轴上.【解答】解:解不等式2(3)5x x --,得:1x , 解不等式35146x x -<+,得:3x >-, 则不等式组的解集为31x -<,将不等式组的解集表示在数轴上如下:22.解不等式组2341213x x x x ++⎧⎪+⎨>-⎪⎩,并写出它的所有正整数解. 【解答】解:2341213x x x x ++⎧⎪⎨+>-⎪⎩①②解①得:1x,解②得:4x<,不等式组的解集为:14x <,则它的所有正整数解为3,2,1.23.解不等式组:4537422133x xx x+<+⎧⎪⎨+-⎪⎩,并写出它的整数解.【解答】解:4537422133x xx x+<+⎧⎪⎨+-⎪⎩①②,解①得2x<,解②得12x-,故不等式组的解集为122x-<,则其整数解为0,1.24.解不等式组2(1)12323x xx x-+⎧⎪++⎨⎪⎩,并求出不等式组的整数解之和.【解答】解:解不等式2(1)1x x-+,得:3x,解不等式2323x x++,得:0x,则不等式组的解集为03x,所以不等式组的整数解之和为01236+++=.。

一元一次不等式培优带答案

一元一次不等式培优带答案

初一数学培优讲义—不等式(答案)一、例题选讲例1、已知关于x的方程:17834-=-xmx,当m为某些负整数时,方程的解为负整数,试求负整数m的最大值。

解:原方程化简整理得:12141214+=-=xmmx,可得由于m为负整数,所以x214必为小于-1的负整数所以4154211214-<-<∴-<xxx,即,而要使x214为负整数,x必是21的倍数,所以x的最大值为-21由于当x取最大值时,m也取得最大值,所以m的最大值为-3例2、已知m、n为实数,若不等式(2m-n) x+3m-4n<0的解集为94 >x,求不等式 (m-4n) x+2m-3n>0 的解。

解:由(2m-n) x+3m-4n<0得:(2m-n) x<4n-3m,由于它的解集为94>x,所以有⎪⎩⎪⎨⎧=--<-(2)94234(1)2nmmnnm由(2)得mn87=代入(1)得 m<0把mn87=代入(m-4n) x+2m-3n>0得8525mxm>-∵m<0 ∴41->x所以,不等式(m-4n) x+2m-3n>0 的解集为41->x例3、解不等式:(1) (2x+1)2-7<(x+m)2+3x (x-1)(2)1324≤---xx解:(1) 原不等式可化为:(7-2m) x<m2+6∴当m<27即7-2m>0时,解为x<mm2762-+当m>27即7-2m<0时,解为x>mm2762-+当m=27即7-2m=0,m2+6=4118时,解为一切实数。

(2)4;423;23234324>≤<≤--xxxxxx分为三段:的取值范围零点分段法,可把,由和的零点分别是与当x23≤时,原不等式可化为 -x+4+2x-3≤1,解得x≤0当423≤<x时,原不等式可化为-x+4-2x+3≤1,解得x≥2所以,原不等式的解为2≤x≤4当x>4时,原不等式可化为x-4-2x+3≤1,解得x≥-2 所以,原不等式的解为x>4综上所述,原不等式的解集为x≤0 或x≥2例4、先阅读下面的例题,再解答问题:解不等式(3x-2)(2x+1)>0.解:由有理数的乘法法则“两数相乘,同号得正”可得①或②解不等式组①,得x>; 解不等式组②,得x<-, 所以(3x-2)(2x+1)>0的解集是x>或x<-.依据上面的方法,解不等式<0.解:依据题意可列出不等式组①或②解不等式组①,得不等式组无解; 解不等式组②,得-<x<-.所以不等式<0的解集是-<x<-.例5、一玩具工厂用于生产的全部劳力为450个工时,原料为400个单位。

浙教版八年级上册一元一次不等式专题培优(附答案)

浙教版八年级上册一元一次不等式专题培优(附答案)

浙教版八年级上册一元一次不等式专题培优(附答案)八年级上册一元一次不等式专题培优基础巩固1.不等式 $x+1\geq2x-1$ 的解集在数轴上表示为()。

答案:$[2,+\infty)$2.已知$a>b$,$c\neq0$,则下列关系一定成立的是()。

A。

$ac>bc$B。

$\frac{c}{a}>\frac{c}{b}$C。

$c-a>c-b$D。

$c+a>c+b$答案:A3.若实数 $3$ 是不等式 $2x-a-2<0$ 的一个解,则 $a$ 可取的最小正整数为()。

答案:$5$4.下列命题中:①如果 $a1-a$ 的解集是 $x<-1$,则 $a<1$;③若 $\frac{6-x}{3}$ 是自然数,则满足条件的正整数 $x$ 有$4$ 个。

正确的命题有()。

A。

个B。

$1$ 个C。

$2$ 个D。

$3$ 个答案:C5.若关于$x$,$y$ 的二元一次方程组的解满足$x+y<2$,则 $a$ 的取值范围是()。

A。

$a>2$B。

$a<2$C。

$a>4$D。

$a<4$答案:B6.若 $x$ 的 $3$ 倍大于 $5$,且 $x$ 的一半与 $1$ 的差不大于 $2$,则 $x$ 的取值范围是()。

答案:$[\frac{7}{3},+\infty)$7.若 $ab$ 的解集是 $x<\frac{a}{b}$,则 $a$ 的取值范围是()。

答案:$(-\infty,0)\cup(b,+\infty)$8.若在数轴上表示关于 $x$ 的不等式 $x-3>\frac{2}{3}$ 的解集如图所示,则 $a$ 的值是()。

答案:$a=\frac{11}{3}$9.如图,若开始输入的 $x$ 的值为正整数,最后输出的结果为 $144$,则满足条件的 $x$ 的值为()。

答案:$6$10.解下列不等式,并把解集表示在数轴上。

人教版七年级数学下册-一元一次不等式应用题-培优练习(含答案)

人教版七年级数学下册-一元一次不等式应用题-培优练习(含答案)

人教版七年级数学下册-一元一次不等式应用题-培优练习(含答案)1.某公司要运送一批参展货物去参加2011年西安世界园艺博览会,使用几辆载重为8吨的汽车。

如果每辆汽车只装4吨,则剩下20吨货物;如果每辆汽车装满8吨,则最后一辆汽车不空也不满。

求共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,其中西红柿和西兰花的批发价和零售价如下表所示:蔬菜品种 | 批发价(元/kg) | 零售价(元/kg) |西红柿。

| 3.6.| 5.4.|西兰花。

| 8.| 14.|1)第一天该经营户批发了西红柿和西兰花两种蔬菜共300kg,用去了1520元。

这两种蔬菜当天全部售完后,一共能赚多少钱?请列方程组求解。

2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?3.“六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具。

若购进甲种玩具80个,乙种玩具40个,需要800元;若购进甲种玩具50个,乙种玩具30个,需要550元。

1)求益智玩具店购进甲、乙两种玩具每个需要多少元?2)若益智玩具店准备1000元全部用来购进甲、乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?4.XXX为学校购买运动会的奖品后,回学校向后勤XXX 老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元。

”XXX算了一下,说:“你肯定搞错了。

”1)XXX为什么说他搞错了?试用方程的知识给予解释。

2)XXX连忙拿出购物,发现的确弄错了,因为他还买了一个笔记本。

但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元。

一元一次不等式培优题(1)

一元一次不等式培优题(1)

一元一次不等式培优题(1)1.解不等式,并把解集表示在数轴上(1)、)23(6)1(3)1(2+-≥+--x x x(2)、17)10(2283--≤--x x x(3)、4238171->--x x(4)、2231061-+>-x x2 求不等式1-4x ≤2+62-x 的负整数解.3 求不等式)2(2423-+≥-x x 的最小整数解4.求不等式69232322+≤+-+x x x 的非正整数的解;5.求不等式1215312≤+--x x 的非正整数的解。

6.求不等式21(3x+4)-3≤7的最大整数解。

7.求代数式21x-2不大于x+65时的最小整数x8. 已知方程13+=-x a x 的解是正数,求a 的取值范围9.关于x 的方程2x+3k=1的解是负数, 则k 的取值范围是什么?10.关于x 的方程3x+3k=2的解是正数, 求k 的取值范围?11.已知方程组⎩⎨⎧-=+=-k y x ky x 5132的解x 与y 的和为负数,求k 的取值范围.12.已知关于x 的方程3(x -2a)+2=x -a +1的解适合不等式2(x -5)≥8a ,求a 的取值范围。

13 已知x =3是方程2ax -—2=x —1的解,求不等式(2—5a )x <31的解集14.已知满足不等式3(x -2)+5<4(x -1)+6的最小整数是方程2 x -ax =3的解,求代数式4a -a14的值.15.已知满足不等式3(1-x)<2(x +9)的最小整数是方程3-ax =6的解,求代数式4a 2-5的值。

16. 已知)1(645)25(3+-<++x x x ,化简:x x 3113--+。

17.已知不等式x +8>4x +m (m 是常数)的解集是x <3,求m 。

18.已知不等式42213xa x +>-的解是2>x ,求不等式()a x a ->-231的解19.如果不等式4x -3a >-1与不等式2(x -1)+3>5的解集相同,求a 的值.20.已知不等式()为未知数x a x x 322434-<+的解,也是不等式21621<-x 的解,求a 的取值范围.21.已知关于x 的不等式22>-m x 与不等式x ->-3231的解集相同,求m 的值.22.已知正整数x 满足032<-x ,求代数式()xx 52115--的值.23. 当2(k -3)<310k-时,求关于x 的不等式4)5(-x k >x -k 的解集.24.不等式a (x -1)>x +1-2a 的解集是x <-1,求a 的值.25.若不等式4x-k ≥5+3x 没有负数解,求k 的取值范围。

人教版 七年级数学下册 一元一次不等式 期末专题培优复习(含答案)

人教版  七年级数学下册 一元一次不等式 期末专题培优复习(含答案)

七年级数学下册一元一次不等式期末专题培优复习一、选择题:1、如果a<b,下列各式中正确的是()A. B. C. D.2、下列不等式变形正确的是()A.由a>b,得a﹣2<b﹣2B.由a>b,得|a|>|b|C.由a>b,得﹣2a<﹣2bD.由a>b,得a2>b23、如图,表示下列某个不等式的解集,其中正确的是()A.x>2B.x<2C.x≥2D.x≤﹣24、如果关于x的不等式(a+1)x>a+1的解集为x<1,则a的取值范围是()A.a<0B.a<-1C.a>1D.a>-15、不等式的负整数解有()A.1个B.2个C.3个D.4个6、已知数的大小关系如图所示,则下列各式:①;②;③;④;⑤.其中正确的个数为()A.1个B.2个C.3个D.4个7、不等式组的解集为x<4,则a满足的条件是()A.a<4B.a=4C.a≤4D.a≥48、如果关于x的分式方程有负分数解,且关于x的不等式组的解集为x<﹣2,那么符合条件的所有整数a的积是()A.﹣3B.0C.3D.99、一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分.则小明至少答对的题数是()A.11道B.12道C.13道D.14道10、某种商品的进价为800元,标价为1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最低可打()A.8折B.8.5折C.7折D.6折学11、已知关于x的不等式组恰有3个整数解,则a的取值范围是()A. B. C. D.12、若关于x的不等式组只有5个整数解,则a的取值范围()A. B. C. D.二、填空题:13、不等式2x﹣1<﹣3的解集是.14、不等式3x﹣4≥4+2(x﹣2)的最小整数解是.15、若关于二元一次方程组的解满足则整数a的最大值为16、已知关于的不等式组只有两个整数解,则的取值范围 .17、某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x元;下午,他又买了20斤,价格为每斤y元,后来他以每斤元的价格卖完后,结果发现自己赔了钱,则x与y的大小关系是18、用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的,已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是a cm,若铁钉总长度为9cm,则a的取值范围是 .三、解答题:19、解一元一次不等式:20、解不等式组:21、已知,则化简。

初中数学一元一次不等式(组)单元综合课后能力提升培优训练题1(附答案)

初中数学一元一次不等式(组)单元综合课后能力提升培优训练题1(附答案)

初中数学一元一次不等式(组)单元综合课后能力提升培优训练题1(附答案)1.下列不等式对任何实数x 都成立的是( )A .x+1>0B .x 2+1>0C .x 2+1<0D .∣x ∣+1<02.在下列式子中,不是不等式的是( )A .2x <1B .x≠﹣2C .4x+5>0D .a=33.下列式子:(1)4>0;(2)2x+3y <0;(3)x=3;(4)x≠y ;(5)x+y ;(6)x+3≤7中,不等式的个数有( )A .2个B .3个C .4个D .5个4.若关于x 的不等式组221x m x m ->⎧⎨-<-⎩无解,则m 的取值范围( ) A .m >3 B .m <3 C .m ≤3 D .m ≥35.x 取哪些整数时,2≤2x -8<7成立( )A .3,4,5;B .4,5,6;C .5,6,7;D .6,7,8. 6.不等式组315247x x x -≥⎧⎨+〈+⎩的解集为( ) A .x≥2 B .x <3 C .2≤x <3 D .x >37.若a 、b 是有理数,则下列说法正确的是( )A .若a 2>b 2 ,则a >bB .若a >b ,则a 2>b 2C .若|a|>b ,则a 2>b 2D .若|a|≠|b|,则a 2≠b 28.若数a 使关于x 的不等式组()363512x x x a x -⎧-⎪⎨⎪+≥-⎩<,有且仅有四个整数解,且使关于y 的分式方程322a y y y --++=2有整数解,则所有满足条件的整数a 的值之和是( ) A .50 B .﹣20 C .20 D .-509.甲、乙两人从A 地出发同向而行,乙以每小时5千米的速度步行,比甲先出发2小时,如果甲骑车在半小时内赶上乙,那么甲的速度应该是 ( )A .20 k/hB .22 km/hC .24 km/hD .26 km/h10.若a >b ,则下列不等式中错误的是( )A .77a bB .-(-a )>-(-b )C .a -2>b -2D .-2a+1>-2b+111.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有﹣个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x 人,则可列不等式为( )A .8(x ﹣1)<5x+12<8B .0<5x+12<8xC .0<5x+12﹣8(x ﹣1)<8D .8x <5x+12<812.不等式3x+2≥5的解集是( )A .x≥1B .x≥73C .x≤1D .x≤﹣113.一个矩形,两边长分别为xcm 和10cm ,如果它的周长小于80cm ,面积大于100cm 2,则x 的取值范围是__.14.如果a<b ,那么3-2a_______3-2b.15.不等式组201322x x -<⎧⎪⎨-≤⎪⎩的非负整数解是_________ 16.不等式组21320x x +>-⎧⎨-+≥⎩的整数解分别是____________. 17.若3(2)27m m x --+≤是关于x 的一元一次不等式,则m =_________.18.当时k ______时,不等式1(2)20k k x --+> 是一元一次不等式19.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有 种购买方案.20.不等式组31211x x -<⎧⎨--<⎩的解集是______ . 21.不等式2x+4>0的解集是________.22.关于x 的方程53?(1)x m x -=+解为非负数,则m 的取值范围是__________. 23.已知不等式组x 12a x-b 1+⎧⎨⎩<>的解集是2<x <3,则关于x 的方程ax+b=0的解为________。

一元一次不等式(组)培优40题(含解析)

一元一次不等式(组)培优40题(含解析)

一元一次不等式(组)培优40题(含解析)一.选择题:(共10题)1.从−7,−5,−1,0,4,3这六个数中,随机抽一个数,记为m ,若数m 使关于x 的不等式组{x−m2>0x −4<3(x −2)的解集为x >1,且关于x 的分式方程1−x 2−x +m x−2=3有非负整数解,则符合条件的m 的值的个数是( ) A .1个B .2个C .3个D .4个2.若方程组{3x +2y =2k 2y −x =3的解满足x <1,且y >1,则整数k 的个数是( )A .4B .3C .2D .13.若关于x 的不等式组{x <2(x −a)x −1≤23x恰有3个整数解,则a 的取值范围是( ) A .0≤a <12B .0≤a <1C .−12<a ≤0 D .−1≤a <04.正五边形广场 ABCDE 的边长为 80 米,甲、乙两个同学做游戏,分别从 A 、 C 两点处同时出发,沿 A −B −C −D −E −A 的方向绕广场行走,甲的速度为 50米/分,乙的速度为 46米/分,则两人第一次刚走到同一条边上时 ( )A .甲在顶点 A 处B .甲在顶点 B 处C .甲在顶点C 处D .甲在顶点D 处 5.若不等式组{x −2<3x −6x <m无解,则m 的取值范围是( )A .m >2B .m <2C .m ≥2D .m ≤26.若不等式组{1<x ≤2x >k无解,则k 的取值范围是( )A .k ≤2B .k >2C .k ≥2D .1≤k <27.如图,直线y=kx+b 与y=mx+n 分别交x 轴于点A (﹣0.5,0)、B (2,0),则不等式(kx+b )(mx+n )<0的解集为( )A .x >2B .﹣0.5<x <2C .0<x <2D .x <﹣0.5或x >28.若关于x 的不等式3x-2m ≥0的负整数解为-1,-2,则m 的取值范围是( ) A .−6≤m <−92 B .−6<m ≤−92 C .−92≤m <−3 D .−92<m ≤−3 9.如图,经过点B (1,0)的直线y=kx+b 与直线y=4x+4相交于点A (m ,83),则0<kx+b<4x+4的解集为( )A .x <-13B .-13<x <1 C .x <1 D .-1<x <110.若数a 使关于x 的不等式组{13x −1≤12(x −1)2x −a ≤3(1−x),有且仅有三个整数解,且使关于y 的分式方程3yy−2+a+122−y=1有整数解,则满足条件的所有a 的值之和是( )A .﹣10B .﹣12C .﹣16D .﹣18 二.填空题:(共10题)11.若数a 使关于x 的不等式组{x−12<1+x 35x −2≥x +a有且只有四个整数解,且使关于y 的方程y+a y−1+2a 1−y=2的解为非负数,则符合条件的正整数a 的值为______.12.如果不等式mx+13>1+x+33的解集为x>5,则m 的值为_______.13.若关于x ,y 的方程组{3x +2y =k −12x −3y =2 的解使4x +7y >2成立,则k 的取值范围是________.14.冬至节快到了,李老师和杨老师都准备给班级同学买饺子吃.到了超市两人均买了两款饺子,A 款单价为33元/袋,B 款41元/袋.其中李老师购买A 款数量少于B 款数量,合计花了500多元.杨老师购买的A ,B 两款的数量刚好与李老师互换,也花了500多元,巧合的是所花费用的十位数字与个位数字刚好也和李老师所花费用的十位数字与个位数字互换.则李老师购买A ,B 两款饺子共计____袋.15.若不等式组{x −a ≻0x −a ≺1-的解集中的任何一个x 的值均不在2≤x ≤5的范围内,则a 的取值范围为________.16.如果不等式组{3x −a ≥02x −b <0 的整数解仅为 2,且 a 、b 均为整数,则代数式 2a 2+b 的最大值=________.17.使得关于x 的分式方程x+kx+1−kx−1=1的解为负整数,且使得关于x 的不等式组{3x +2≥2x −14x −4≤k有5个整数解的所有k 的和为_____.18.关于x 的不等式组{4a +3x >03a −4x ≥0恰好只有三个整数解,则a 的取值范围是_____________.19.若关于x 的一元一次不等式组{x −a >02x −3<1有2个负整数解,则a 的取值范围是_____.20.在一次智力测验中有20道选择题,评分标准为:对l 题给5分,错1题扣2分,不答题不给分也不扣分,张强有1道题末答,如果总分才不会低于70分,则他至少答对____道题.三.解答题:(共20题)21.某工厂计划生产A 、B 两种产品共50件,需购买甲、乙两种材料.生产一件A 产品需甲种材料30千克、乙种材料10千克;生产一件B 产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B 产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A 产品需加工费200元,生产一件B 产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费) 22.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)设商场购进甲种节能灯x 只,求出商场销售完节能灯时总利润w 与购进甲种节能灯x 之间的函数关系式;(3)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元? 23.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?24.在平面直角坐标系中,已知直线l1:y=2x+1(1)若将直线l1平移,使之经过点(1,-5),求平移后直线的解析式;(2)若直线l2:y=x+m与直线l1的交点在第二象限,求m的取值范围;(3)如图,直线y=x+b与直线y=nx+2n(n≠0)的交点的横坐标为-5,求关于x的不等式组0<nx+2n<x+b的解集.25.为了争创全国文明卫生城市,优化城市环境,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车(两种车型都要有)每年能节省的汽油量不低于22.4万升,请问有哪几种购车方案?(3)求(2)中最省钱的购买方案所需的购车款.26.某商场销售每个进价为150元和120元的A、B两种型号的足球,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入−进货成本)(1)求A、B两种型号的足球的销售单价;(2)若商场准备用不多于8400元的金额再购进这两种型号的足球共60个,求A种型号的足球最多能采购多少个?(3)在(2)的条件下,商场销售完这60个足球能否实现利润超过2550元,若能,请给出相应的采购方案;若不能请说明理由.27.(题文)小雨的外婆送来一篮鸡蛋.这篮鸡蛋最多只能装55只左右.小雨3只一数,结果剩下1只,但忘了数多少次,只好重数.他5只一数,结果剩下2只,可又忘了数多少次.他准备再数时,妈妈笑着说:“不用数了,共有52只.”小雨惊讶地问妈妈怎么知道的.妈妈笑而不答.同学们,你们知道这是为什么吗?28.夏季即将来临,某电器超市销售每台进价分别为200元、170元的A,B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)分别求出A ,B 两种型号电风扇的销售单价;(2)若超市准备用不超过5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.29.某人共收集邮票若干张,其中14是2000年以前的国内外发行的邮票,18是2001年国内发行的,119是2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票.30.为落实优秀传统文化进校园,某校计划购进“四书”、“五经”两套图书供学生借阅,已知这两套图书单价和为660元,一套“四书”比一套“五经”的2倍少60元. (1)分别求出这两套图书的单价;(2)该校购买这两套图书不超过30600元,且购进“四书”至少33套,“五经”的套数是“四书”套数的2倍,该校共有哪几种购买方案?31.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有多少块?32.国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:类别 彩电 冰箱 洗衣机 进价(元/台) 2000 1600 1000 售价(元/台) 2300 1800 1100若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x 台. (1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元? 33.一幢学生宿舍楼有一些空房间,现要安排一批学生入住.若每间住4人,则有20人无法入住;若每间住8人,则有1间房间还剩余一些空床位. (1)求空房间的间数和这批学生的人数;(2)这批学生入住后,男生房间的间数恰好是女生房间间数的2倍,每间房间都有8个床位,每间女生房间都空出数量相同的床位,问:男女学生各多少人?34.(2016黑龙江省牡丹江市)某绿色食品有限公司准备购进A和B两种蔬菜,B种蔬菜每吨的进价比A中蔬菜每吨的进价多0.5万元,经计算用4.5万元购进的A种蔬菜的吨数与用6万元购进的B种蔬菜的吨数相同,请解答下列问题:(1)求A,B两种蔬菜每吨的进价;(2)该公司计划用14万元同时购进A,B两种蔬菜,若A种蔬菜以每吨2万元的价格出售,B种蔬菜以每吨3万元的价格出售,且全部售出,请求出所获利润W(万元)与购买A种蔬菜的资金a(万元)之间的函数关系式;(3)在(2)的条件下,要求A种蔬菜的吨数不低于B种蔬菜的吨数,若公司欲将(2)中的最大利润全部用于购买甲、乙两种型号的电脑赠给某中学,甲种电脑每台2100元,乙种电脑每台2700元,请直接写出有几种购买电脑的方案.35.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16 000元采购A型商品的件数是用7 500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数解析式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.36.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.37.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如表.(1)该商场购进A、B两种商品各多少件?(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?38.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.39.每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的某款沙发每套成本为5000元,在标价8000元的基础上打9折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售相同的沙发,其成本、标价与甲卖家一致,以前每周可售出5套,现乙卖家先将标价提高m%,再大幅降价40m元,使得这款沙发在3月15日那一天卖出的数量就比原来一周卖出的m%,这样一天的利润达到了31250元,求m.数量增加了1240.某校九年级6个班举行毕业文艺汇演,每班3个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少6个.设舞蹈类节目有x个.(1)用含x的代数式表示:歌唱类节目有______________个;(2)求九年级表演的歌唱类与舞蹈类节目数各有多少个?(3)该校七、八年级有小品节目参与汇演,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计全场节目交接所用的时间总共16分钟.若从19:00开始,21:30之前演出结束,问参与的小品类节目最多能有多少个?答案与解析1.解{x−m2>0①x−4<3(x−2)②,解不等式①得:x>m,解不等式②得:x>1,∵该不等式组的解集为:x>1,∴m≤1,即m取−7,−5,−1,0;1−x 2−x +mx−2=3,方程两边同时乘以(x−2)得:x−1+m=3(x−2),去括号得:x−1+m=3x−6,移项得:x−3x=1−6−m,合并同类项得:−2x=−5−m,系数化为1得:x=m+52,∵该方程有非负整数解,∴即m+52≥0,m+52≠2,且m+52为整数,∴m取−5,3,综上:m取−5,即符合条件的m的值的个数是1个,故选A.2.解{3x +2y =2k ①2y −x =3②,①﹣②,得:4x=2k ﹣3,∴x =2k−34.∵x <1,∴2k−34<1,解得:k <72.将x =2k−34代入②,得:2y −2k−34=3,∴y =2k+98.∵y >1,∴2k+98>1,解得:k >−12,∴−12<k <72.∵k 为整数,∴k 可取0,1,2,3,∴k 的个数为4个. 故选A . 3.A解:解不等式x <2(x ﹣a ),得:x >2a ,解不等式x ﹣1≤23x ,得:x ≤3. ∵不等式组恰有3个整数解,∴0≤2a <1,解得:0≤a <12.故选A .4.解:两人如果在同一条边上,说明两人的距离小于等于80米,∵甲、乙两个同学做游戏,分别从 A 、 C 两点处同时出发,两人相差160米,甲要追回80米需要的时间是80÷(50-46)=20分钟,20分钟甲走了1000米,正好走到CD 的中点设为F;20分钟乙走920米走到DE 距D 点40米处设为G.甲从F 走到D 是40比50等于0.8分钟;乙用0.8分从G 点走出0.8乘46等于36.8米距E 点80-36.8-40=3.2米由此得知甲走到D 点时乙走在DE 线上距E3.2米处. ∴D 选项是正确的 5.解{x −2<3x −6①x <m ②.∵解不等式①得:x >2,不等式②的解集是x <m . 又∵不等式组{x −2<3x −6x <m无解,∴m ≤2.故选D .6.解:由题意可知不等式组{1<x ≤2x >k无解所以k ≥4.故选:C.7.解∵(kx+b )(mx+n )<0,∴{kx +b >0mx +n <0 ①或{kx +b <0mx +n >0②.∵直线y=kx+b 与直线y=mx+n 分别交x 轴于点A (﹣0.5,0)、B (2,0),∴①的解集为:x <﹣0.5,②的解集为:x >2,∴不等式(kx+b )(mx+n )<0的解集为x <﹣0.5或x >2.故选D .8.解:3x −2m ≥0,得x ≥23m ,根据题意得,-3<23m ≤-2,解得−92<m ≤−3,故选D. 点睛:本题主要考查了一元一次不等式的解法,先用含m 的式子表示出不等式的解集,再根据不等式的负整数解得到含m 的式子的范围,即关于m 的不等式组,解这个不等式组即可求解.9.解∵经过点B (1,0)的直线y=kx+b 与直线y=4x+4相交于点A (m ,83),∴4m+4=83,∴m=−13,∴直线y=kx+b 与直线y=4x+4的交点A 的坐标为(−13,83),直线y=kx+b 与x 轴的交点坐标为B (1,0),又∵当x <1时,kx+b >0,当x >−13时,kx+b <4x+4,∴0<kx+b <4x+4的解集为−13<x <1.故选B .10.解{13x −1≤12(x −1)①2x −a ≤3(1−x)②, 解①得x ≥-3,解②得x ≤3+a 5,不等式组的解集是-3≤x ≤3+a 5. ∵仅有三个整数解,∴-1≤3+a 5<0∴-8≤a <-3,3y y−2+a+122−y =1,3y-a-12=y-2.∴y=a+102,∵y ≠-2,∴a ≠-6,又y=a+102有整数解,∴a=-8或-4,所有满足条件的整数a 的值之和是-8-4=-12,故选B .11.解:{x−12<1+x 3①5x −2≥x +a ② ,解不等式①得:x <5,解不等式②得:x ≥a+24,∵该不等式组有且只有四个整数解,∴该不等式组的解集为:a+24≤x <5,且0<a+24≤1, 解得:−2<a ≤2,又∵y+a y−1+2a 1−y =2,方程两边同时乘以(y −1)得:y +a −2a =2(y −1),去括号得:y −a =2y −2,移项得:y =2−a ,∵该方程的解为非负数,∴2−a ≥0且2−a ≠1,解得:a ≤2且a ≠1,综上可知:符合条件的正整数a 的值为2,故答案为:2.12.解:由不等式mx+13>1+x+33可得(1-m )•x <-5,∵不等式的解集为x >5,∴1-m <0,∴(1-m )•5=-5,∴m=2.故答案为:2.13.解{3x +2y =k −1①2x −3y =2②由①×2﹣②得:4x+7y=2k-2-2,∴2k-2-2>2,∴2k >6,解得:k >3.故答案为:k >3.14.解:依题意设李老师买了A 款饺子x 袋,B 款饺子y 袋,购买的金额十位上的数字为a ,各位上的数字为b ,则可列出方程组:{33x +41y =500+10a +b ①33y +41y =500+10b +a ②①+②得x+y=1000+11a+11b 74③,∵500<33x +41y <600,500<41x +33y <600∴1000<74(x+y )<1200,即13.5<x+y <16.2x+y 可能为14、15、16当x+y=14时,代入③得11a+11b=36,不符题意,当x+y=15时,代入③得11a+11b=110,a+b=10符题意,当x+y=16时,代入③得11a+11b=184,不符题意,故x+y=15,填15.15.解:不等式组{x −a >0x −a <1的解集为:a <x <a+1, ∵任何一个x 的值均不在2≤x ≤5范围内,∴x <2或x >5,∴a+1≤2或a ≥5,解得,a ≤1或a ≥5,∴a 的取值范围是:a ≤1或a ≥5,故答案为:a ≤1或a ≥5.16.解:解不等式3x-a ≥0,得:x ≥a 3,解不等式2x-b <0,得:x <b 2,∵整数解仅为2,∴{1<a 3≤22<b 2≤3, 解得:3<a ≤6,4<b ≤6,∵a 、b 均为整数,∴当a=6、b=6时,2a 2+b 取得最大值,最大值为2×62+6=78,故答案为:78.17.解:解分式方程x+k x+1−k x−1=1,可得x=1-2k ,∵分式方程x+k x+1−k x−1=1的解为负整数,∴1-2k <0,∴k >12,又∵x ≠-1,∴1-2k ≠-1,∴k ≠1,解不等式组{3x +2≥2x −14x −4≤k ,可得{x ≥−3x ≤k +44, ∵不等式组{3x +2≥2x −14x −4≤k有5个整数解, ∴1≤k+44<2,解得0≤k <4,∴12<k <4且k ≠1,∴k 的值为1.5或2或2.5或3或3.5,∴符合题意的所有k 的和为12.5,故答案为:12.5.18.解:解不等式4a+3x>0得:x>-43a ,解不等式3a-4x ≥0得:x ≤34a , ∴不等式的解集为:-43a<x ≤34a ,∵方程组只有三个整数解,∴方程组的解包括0,∴方程组的整数解为:0、1、2或-1、0、1或-2、-1、0,当整数解为0、1、2时:{−1≤−43a ≤02≤34a <3 ,方程组无解,当整数解为-1、0、1时:{−2≤−43a ≤−11≤34a <2,解得:43≤a ≤32, 当整数解为-2、-1、0时:{−3≤−43a ≤−20≤34a <1方程组无解, ∴a 的取值范围为:43≤a ≤32, 故答案为:43≤a ≤3219.解:2x -3<1,得x <2,进而得负整数解为-1,-2,解得-3≤a <-2.20.解:设小明至少答对的题数是x 道,5x-2(20-1-x )≥70,x ≥1537故至少答对16题,总分才不会低于70分.故答案为:16.21.解(1)设甲钟材料每千克x 元,乙种材料每千克y 元,根据题意列方程组得: {x +y =402x +3y =105解之{x =15y =25甲钟材料每千克15元,乙种材料每千克25元.(2)设生产A 产品m 件,生产B 产品(50-m )件,则生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000,由题意:-100m+40000≤38000,解得m ≥20,又∵50-m ≥28,解得m ≤22,∴20≤m ≤22,∵m 为正整数∴m 的值为20,21,22,共有三种方案,如下表:(3)设总生产成本为W元,加工费为:200m+300(50-m),则W=-100m+40000+200m+300(50-m)=-200m+55000,∵W 随m的增大而减小,而m=20,21,22,∴当m=22时,总成本最低,此时W=-200×22+55000=50600元,∴选择第三种方案. 22.解(1)设商场应购进甲型节能灯x只,则乙型节能灯为(1200﹣x)只.根据题意得:25x+45(1200﹣x)=46000解得:x=400.当x=400时,1200-x=800.答:购进甲型节能灯400只,乙型节能灯800只时,进货款恰好为46000元.(2)设商场应购进甲型节能灯x只,商场销售完这批节能灯可获利w元.根据题意得:w=(30﹣25)x+(60﹣45)(1200﹣x)=5x+18000﹣15x=﹣10x+18000所以w=﹣10x+18000;(3)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,利润为w元,根据题意得:﹣10x+18000≤[25x+45(1200﹣x)]×30%解得:x≥450.∵w=﹣10x+18000,∴k=﹣10<0,∴w随x的增大而减小,∴x=450时,w最大=13500元.答:商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.23.解(1)设购买轿车x辆,那么购买面包车(10-x)辆.由题意,得7x+4(10-x)≤55,解得x≤5.又因为x≥3,所以x的值为3,4,5,所以有三种购买方案:方案一:购买3辆轿车,7辆面包车;方案二:购买4辆轿车,6辆面包车;方案三:购买5辆轿车,5辆面包车.(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元;方案三的日租金为5×200+5×110=1550(元)>1500元.所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.24.解(1)设平移后的直线解析式为y=2x+t ,把(1,-5)代入得2+t=-5,解得t=-7,所以平移后直线的解析式y=2x-7;(2)解方程组{y =x +m y=2x+1 得{y =2m −1x=m−1 ,所以y=x+m 与直线l 1的交点坐标为(m-1,2m-1)因为{2m −1>0m−1<0所以12<m <1; (3)当y=0时,nx+2n=0,解得x=-2,直线y=nx+2n 与x 轴的交点坐标为(-2,0), 所以不等式组0<nx+2n <x+b 的解集为-5<x <-2.25.解(1)由题意可得:{a =b +202a =3b −60,解得:{a =120b =100 . 答:a 的值是120,b 的值是100.(2)设购买A 型公交车x 辆,则购买B 型公交车(10﹣x )辆,根据题意得:2.4x+2(10﹣x )≥22.4,解得:x ≥6.∵两种车型都要有,∴x <10,∴6≤x <10.∵x 为整数,∴x=6、7、8、9,∴有四种购车方案.方案一:购买A 型公交车6辆,购买B 型公交车4辆;方案二:购买A 型公交车7辆,购买B 型公交车3辆;方案三:购买A 型公交车8辆,购买B 型公交车2辆;方案四:购买A 型公交车9辆,购买B 型公交车1辆.(3)设购车款为w 元,购买A 型车x 辆,根据题意得:w=120x+100(10﹣x )=20x+1000∴当x=6时,w 取得最小值,此时w=1120.答:(1)解:设A 、B 两种型号的足球销售单价分别是x 元和 y 元,列出方程组:{5x +3y =14503x+4y=1200解得{y =150x=200A 型号足球单价是200元,B 型号足球单价是150元.(2)解:设A 型号足球购进a 个,B 型号足球购进(60−a)个,根据题意得:150a +120(60−a)≤8400解得a ≤40,所以A 型号足球最多能采购40个.(3)解:若利润超过2550元,须 50a +30(60−a)>2550a >37.5,因为a 为整数,所以38<a ≤40能实现利润超过2550元,有3种采购方案.方案一:A 型号38个,B 型号22个;方案二:A 型号39个,B 型号21个;方案三:A 型号40个,B 型号20个.27.解:设小明第一次数了x 次,第二次数了y 次,由题意,得3x+1=5y+2,3x=5y+1,x=5y+13,3x+1≤55,5y+2≤55,∴x ≤18,y ≤10.6,∵x >0,y >0,且x 、y 为整数,且5y+1是3的倍数,∴5y+1=6,9,12,15,18…,y=1,4,7,10,13…,∴y 最大=10,∵篮子是装满的,并且最多只能装55只,∴(5y+2)中,y 的值只能取y=10,∴篮子的鸡蛋数量为:5×10+2=52(只).28.解(1)设A ,B 两种型号电风扇的销售单价分别为x 元、y 元.......1分根据题意,得{2x +3y =1130,5x +6y =2510.解这个方程组,得{x =250,y =210.答:A ,B 两种型号电风扇的销售单价分别为250元、210.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30﹣a )台,根据题意,得 200a+170(30﹣a )≤5400,解这个不等式,得a ≤10.答:A 种型号的电风扇最多能采购10台(3)根据题意,得(250﹣200)a+(210﹣170)(30﹣a )=1400,解这个方程,得a=20,由(2)可知,a ≤10,∴在(2)的条件下超市不能实现利润1400元的目标.29.解:该人共有x 张邮票,根据题意列方程得:14x+18x+119x >x-100,解得:x <167391.∵其中14是2000年以前的国内外发行的邮票,18是2001年国内发行的,119是2002年国内发行的,∴x 一定是4,8,19的倍数,这三个数的最小公倍数是:152.故该人共有邮票约152张.30.解(1)设五经的单价为x 元,则四书的单价为(2x −60)元,依题意得x +2x −60=660,解得x =240,∴2x −60=420,∴五经的单价为240元,则四书的单价为420元;(2)设购买四书a 套,五经b 套,依题意得{420a +240b ≤30600a ≥33b =2a, 解得33≤a ≤34,∵a 为正整数,∴a =33或34,∴当a =33时,b =66;当a =34时,b =68;∴该校共有2种购买方案:①四书33套,五经66套;②四书34套,五经68套.31.解:设这批手表有x 块,550×60+(x ﹣60)×500>55000解得,x >104答:这批电话手表至少有105块.32.解:(1)根据题意,得:2000⋅2x+1600x+1000(100−3x)⩽170000,解得:x ≤261213, ∵x 为正整数,∴x 最多为26,答:商店至多可以购买冰箱26台.(2)设商店销售完这批家电后获得的利润为y 元,则y=(2300−2000)2x+(1800−1600)x+(1100−1000)(100−3x)=500x+10000,∵k=500>0,∴y 随x 的增大而增大,∵ x ≤261213且x 为正整数, ∴当x=26时,y 有最大值,最大值为:500×26+10000=23000,答:购买冰箱26台时,能使商店销售完这批家电后获得的利润最大,最大利润为23000元.33.解:(1)设空房间有x 间,根据题意,得:8(x-1)<4x+20<8x ,解得:5<x <7,∵x 为整数,∴x=6,这批学生人数为4×6+20=44(人)答:空房间的间数为6间,这批学生的人数为44人.(2)设女生房间为m 间,则男生房间为2m 间,由m+2m=6,得:m=2,2m=4,又设每间女生房间都空出a 个床位,其中a >0则44-(8×2-2a)≤8×4,解得:a ≤2,∴0<a ≤2,且a 为整数,则a 为1或2,∴当a=1时,女生人数为16-2=14(人),男生人数为44-14=30(人);当a=2时,女生人数为16-4=12(人),男生人数为44-12=32(人).34.解:(1)设每吨A 种蔬菜的进价为x 万元,则每吨B 种蔬菜的进价为(x+0.5)万元,依题意得:4.5x =6x+0.5,解得x=1.5,经检验:x=1.5是原方程的解,∴x+0.5=2. 答:每吨A 种蔬菜的进价为1.5万元,每吨B 种蔬菜的进价为2万元;(2)根据题意得,W=(2﹣1.5)×a 1.5+(3﹣2)×14−a 2=−16a +7,∴所获利润W (万元)与购买A 种蔬菜的资金a (万元)之间的函数关系式为:W=−16a +7; (3)当a 1.5≥14−a 2时,a ≥6,∵在一次函数W=−16a +7中,W 随着a 的增大而减小,∴当a=6时,W 有最大值,W 的最大值为﹣1+7=6(万元).设购买甲种电脑a 台,购买乙种电脑b 台,则2100a+2700b=60000,∵a 和b 均为整数,∴{a =8b =16 或{a =17b =9 或{a =26b =2,∴有三种购买方案. 35.解:(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(x+10)元. 由题意:16000x+10=7500x ×2,解得x=150,经检验x=150是分式方程的解.答:一件B 型商品的进价为150元,一件A 型商品的进价为160元.(2)因为客商购进A 型商品m 件,所以客商购进B 型商品(250﹣m )件.由题意:v=80m+70(250﹣m )=10m+17500,∵80≤m ≤250﹣m ,∴80≤m ≤125,∴v=10m+17500(80≤m ≤125);(3)设利润为w 元.则w=(80﹣a )m+70(250﹣m )=(10﹣a )m+17500:①当10﹣a >0时,w 随m 的增大而增大,所以m=125时,最大利润为(18750﹣125a )元. ②当10﹣a=0时,最大利润为17500元.③当10﹣a <0时,w 随m 的增大而减小,所以m=80时,最大利润为(18300﹣80a )元,∴当a <10时,最大利润为(18750﹣125a )元;当a=10时,最大利润为17500元;当a >10时,最大利润为(18300﹣80a )元.36.解:(1)根据题意得:.(2)因为,解得,又因为为正整数,且. 所以,且为正整数. 因为,所以的值随着的值增大而减小, 所以当时,取最大值,最大值为. 答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.37.解:(1)设购进A 种商品x 件,B 种商品y 件,根据题意得,{1200x +1000y =360000(1380−1200)x +(1200−1000)y =60000解得{x=200y=120.答:该商场购进A.B两种商品分别为200件和120件.(2)由于A商品购进400件,获利为(1380-1200)×400=72000(元),从而B商品售完获利应不少于81600-72000=9600(元).设B商品每件售价为z元,则120(z-1000)≥9600,解之得z≥1080.所以B种商品最低售价为每件1080元.38.解:(1)设大货车用x辆,则小货车用(18﹣x)辆,根据题意得:14x+8(18﹣x)=192,解得:x=8,18﹣x=18﹣8=10.答:大货车用8辆,小货车用10辆.(2)设运往甲地的大货车是a,那么运往乙地的大货车就应该是(8﹣a),运往甲地的小货车是(10﹣a),运往乙地的小货车是10﹣(10﹣a),w=720a+800(8﹣a)+500(10﹣a)+650[10﹣(10﹣a)]=70a+11400(0≤a≤8且为整数);(3)14a+8(10﹣a)≥96,解得:a≥83.又∵0≤a≤8,∴3≤a≤8 且为整数.∵w=70a+11400,k=70>0,w随a的增大而增大,∴当a=3时,W最小,最小值为:W=70×3+11400=11610(元).答:使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.39.解:(1)设降价x元,列不等式:8000×0.9-x≥5000(1+20%),解得:x≤1800.答:最多降价1800元,才能使得利润不低于20%.设m%=a,根据题意得:[8000(1+a)-4000a-5000]×5(1+12a)=31250,整理得,8a2+22a-13=0,解得a=12或a=-2(舍).所以m%=1,则m=50.2答:m的值为50.40.解:(1)(2x−6).(2)根据题意得:x+(2x−6)=6×3,解得:x=8.经检验,符合题意.当x=8时,2x−6=10.答:表演的歌唱类节目10个,舞蹈类节目8个.(3)设参与的小品类节目有a个,根据题意得:5×10+6×8+8a+16<150,解得:a<4.5.∵a为整数,∴a最多为4.答:参与的小品类节目最多能有4个.。

苏科版数学七下期末复习一元一次不等式提优训练(含答案)

苏科版数学七下期末复习一元一次不等式提优训练(含答案)

期末复习 不等式提优卷考点一:不等式定义以及解不等式1.下列式子:①;②;③;④;⑤;⑥3<4,其中是不等式的有( )。

A. ①②③⑥ B.②④⑤⑥ C.②③⑤⑥ D.①③⑤⑥2.若,则下列不等式一定成立的是( )A. B. C. D.3.解不等式,并在数轴上表示不等式的解集。

(1) (2) (3) (3) (4) (5) 4、已知;请你根据上式中包含的规律,求关于x 的不等式的解集。

考点二:一元一次不等式与整数解(含参数的一元一次不等式)32-=x 31>-x 52+≤b a a b b a +=+22-≠+a a b a >22b a >b a 11<22bc ac >1122++c b c a >4634+≤-x x 121312<x x --+61312≤-x ⎪⎩⎪⎨⎧-≥++3122413x x x x )>(112>-x x 2223<-+x x ;;;;⋯⋯-=⨯-=⨯-=⨯-=⨯5141541413143131213212112111111216121--+⋯⋯+++n x n n x x x >)(1.解不等式:2mx+3-n<3x2.已知不等式3x-a 0的正整数解恰是1,2,3,则a 的取值范围是( )3.不等式(x-m)>3-m 的解集为x>1,则m 的值为( )4.已知关于x 的不等式(1-a)x>2的解集为x<,则a 的取值范围是( )。

5.若关于x 的不等式mx+1>0的解集是x<,则关于x 的不等式(m-1)x>-2-m 的解集是( )。

6.已知关于x 的方程9x-3=kx+14有整数解,且关于x 的不等式组,有且只有4个整数解,则满足条件的整数k 为( )。

7.若关于x 的不等式组,所有整数解的和为-9,求m 的范围。

考点三:绝对值不等式和分式不等式1.关于不等式恒成立,则m 的取值范围是( )。

2.已知:,,求m 的取值范围。

初中数学一元一次不等式(组)单元综合培优测试题1(附答案)

初中数学一元一次不等式(组)单元综合培优测试题1(附答案)

初中数学一元一次不等式(组)单元综合培优测试题1(附答案)1.已知不等式组294a -的解集为()()44a a -+,则22()xy x y -得取值范围是( ) A .115x - B .6{ 3.x y ==-,C .13x ≤<D .21x a =-+2.若a b >,则下列不等式正确的是( )A .33a b <B .ma mb >C .11a b -->--D .1122a b +>+ 3.若式子34a -的值不小于2,则a 的取值范围是( )A .23a ≥-B .2a ≥C .a <23-D .a <24.不等式组的解集为( ) A . B . C . D .5.不等数组不等式组213{13x x -≤≤+的解集表示在数轴上正确的是( ) A .B .C .D . 6.若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有2个,则m 的取值范围是( ) A .4<m <5B .4≤m<5C .4<m≤5D .4≤m≤5 7.不等式组20{260x x +>-≤的解集在数轴上表示正确的是( ) A .B .C .D .8.如果a >b ,则下列各式中不成立的是( )A .a+4>b+4B .2+3a>2+3bC .a-6>b-6D .-3a>-3b9.不等式组213{34x x +≤+>的解集是( ) A .x >1 B .x ≤1C .x =1D .无解 10.不等式26x -≤的解集在数轴上表示正确的是( )A .B .C .D .11.若不等式ax |a -1|>2是一元一次不等式,则a =____________.12.不等式(1-3)x >1+3的最大整数解是________.13.当代数式2x -3x 的值大于10时,x 的取值范围是____________. 14.不等式组9511x x x m +<+⎧⎨>+⎩的解集是x>2,则m 的取值范围是_____. 15.当1≤x≤2时,ax+2>0,则a 的取值范围是________16.学完一元一次不等式解法后,老师布置了如下练习:解不等式1532x -≥7x -,并把它的解集在数轴上表示出来. 以下是小明的解答过程:问:请指出小明从第几步开始出现了错误,并说明判断依据.答:______________________________________________.17.2016年在东安县举办了永州市首届中学生足球比赛,比赛规则是:胜一场积3分,平一场积1分;负一场积0分.某校足球队共比赛11场,以负1场的成绩夺得了冠军,已知该校足球队最后的积分不少于25分,则该校足球队获胜的场次最少是_____场. 18.不等式2x ﹣7<5﹣2x 的非负整数解的个数为__个.19.若关于x 的不等式组2{x x m >>的解集是2x >,则m 的取值范围是___________.20.不等式的正整数解是___________;21.解下列不等式(组):(1)43(2)x x ->-;(2)求不等式组11{313(1)8x x x x-+≥--<-的整数解.22.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数.23.若一件商品的进价为500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,设打x 折,那么列出的不等式为_______________.24.解方程组及不等式组:(1)521{68x y x y -=+=;(2)253(2){312x x x x+≤+-≥ 25.解不等式(组)(1) 1(3)42x -->;(2)313{112123x x x x +<-++≤+ 26.求不等式组5234722x x x x -≤+⎧⎪⎨+≥⎪⎩的整数解. 27.某公司为了开发新产品,用A 、B 两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据:(1)设生产甲种产品x 件,根据题意列出不等式组,求出x 的取值范围;(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y 元,求出成本总额y (元)与甲种产品件数x (件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额. 28.(2016四川省资阳市)某大型企业为了保护环境,准备购买A 、B 两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A 型2台、B 型3台需54万,购买A 型4台、B 型2台需68万元.(1)求出A 型、B 型污水处理设备的单价;(2)经核实,一台A 型设备一个月可处理污水220吨,一台B 型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.参考答案1.D【解析】∵不等式组2{x x m >>的解集为()()44a a -+,2m ∴≤故选D.2.D【解析】A. ∵a >b , 33a b > ,故不正确;B. ∵当m=0时, ma mb = ,故不正确;C. ∵a >b , ∴-a<-b , ∴ 11a b --<-- , 故不正确;D. ∵a >b , ∴1122a b +>+,故正确; 故选D.3.B【解析】【详解】由题意可知,3a-4≥2,解得a≥2,故选B.4.D【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集. 解①得x< 4,解②得x≥2,则不等式组的解集是2≤x< 4.“点睛”本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.5.A【解析】由213x -≤得,2x ≤;由132x x 得,;≤+≥-所以这个不等式组的解集是22x -≤≤.故选A.6.C【解析】不等式组整理得:3x m x <⎧⎨≥⎩,即3⩽x<m ,由不等式的整数解有2个,得到整数解为3,4,则m 的范围为4<m ⩽5.故选C点睛:此题考查了一元一次不等式组的整数解.已知解集(整数解)求字母的取值的一般思路为:先把题目中除了未知数以外的字母当做常数看待,解不等式组等,然后再根据题目中对结果的限制的条件得到有关字母的代数式,最后解代数式即可得到答案.7.C【解析】【分析】【详解】解:20{260x x +>-≤①②解不等式①得:x>-2解不等式②得:x≤3所以不等式组的解集在数轴上表示为:故选C .8.D【解析】适当地选用不等式的基本性质对所给不等式进行变形,注意不等号方向的“不变”与“改变”.解:根据不等式的基本性质3可知:不等式两边乘(或除以)同一个负数,不等号的方向改变;即-3a <3b ,故D 错误; 故选D.“点睛”解决这类问题时,先看已知不等式与变化后的不等式两边变化情况,从而确定应用哪一个性质.9.D【解析】21 3......{3 4......x x +≤+>①②解不等式①,得x ≤1,解不等式②,得x>1,所以不等式组无解集;故选D 。

解一元一次不等式专项练习87题(有答案)

解一元一次不等式专项练习87题(有答案)

解一元一次不等式专项演习87题(有答案)之马矢奏春创作(1)3(x+2)﹣8≥1﹣2(x﹣1);(2)x ﹣≤2﹣.(3)2(x﹣1)+2<5﹣3(x+1)(4).(5)﹣<1;(6)3﹣(3y﹣1)≥(??y)(??)x ﹣≥﹣(??)﹣>﹣(??)﹣≤.()﹣??x≤??.(11)﹣3x﹣4≥6x+2.(12)﹣8x﹣6≥4(2﹣x)+3.(13)(14)(15).(16)2(x﹣1)<﹣3(1﹣x)(17)≤﹣1(18)10﹣3(x﹣2)≤2(x+1)(19)﹣2≤.(20)﹣3x>2(21)x >﹣x﹣2(22)3(x+1)<4(x﹣2)﹣3(23)≤1.(24)≥;(25)﹣>﹣.(??)≤(??)﹣≥.(??)x﹣??<;(??)≤.(????)(35)(36).(37)3(x+2)﹣8≥1﹣2(x﹣1);(38)>;(39)≤;(40)<.(41)3(2x﹣3)≥2(x﹣4)(42)≥0(43)7(1﹣2x)>10﹣5(4x﹣3)(44).(45)﹣<0;(46)1﹣≤﹣x.(????)≥x﹣.(??)﹣≥.(52)﹣<<.(????);(????).(????)??x??>??x﹣??(????)≤.(????)??(??﹣x)﹣(??﹣??x)<??x;(????)﹣??(x﹣??)≥(x﹣);(????)??[x﹣(x﹣)]>x﹣??(x ??);(??)(x﹣)x﹣(﹣x)≤;(?? )﹣y ﹣;(?? ).(????)x(x)>(x﹣);(64).(65)3(y﹣3)<7y﹣4(66)﹣21<6﹣3x≤9.(67);(68);(69)0.5x+3(1﹣0.2x)≥0.4x﹣0.6;(70)x ﹣<1﹣;(71)2[x﹣(x﹣1)+2]<1﹣x;(72).(73)3x﹣7<5x﹣3;(74).(75)(76)(77)≤.(78)3x﹣9≤0;(79)2x﹣5<5x﹣2;(80)2(﹣3+x)>3(x+2);(81)﹣1<.(82)3(2x+2)≥4(x﹣1)+7.(83).(84)(85).(86)8(1﹣x)≥5(4﹣x)+3;(87)<﹣1.解不等式87题参考答案:(1)3(x+2)﹣8≥1﹣2(x﹣1), 3x+6﹣8≥1﹣2x+2,3x+2x≥1+2﹣6+8,5x≥5,x≥1;(2)x ﹣≤2﹣,6x﹣3(x﹣1)≤12﹣2(x+2),6x﹣3x+3≤12﹣2x﹣4,3x+2x≤8﹣3,5x≤5,x≤1(3)2(x﹣1)+2<5﹣3(x+1)2x﹣2+2<5﹣3x﹣3,2x+3x<5﹣3+2﹣2,5x<2,x,(4),3(1+x)≤2(2x﹣1)+6,3+3x≤4x﹣2+6,3x﹣4x≤﹣2+6﹣3,﹣x≤1,x≥﹣1(5)去分母得,2x﹣3(x﹣1)<6,去括号得,2x﹣3x+3<6,移项、合并同类项得,﹣x<3,把x的系数化为1得,x>﹣3.(6)去分母得,24﹣2(3y﹣1)≥5(3+y),去括号得,24﹣6y+2≥15+5y,移项、合并同类项,﹣11y≥﹣11,把x的系数化为1得,y≤1(7)去分母得,6x﹣2(2x﹣1)≥3(2+x)﹣6去括号得,6x﹣4x+2≥6+3x﹣6,移项得,6x﹣4x﹣3x≥6﹣6﹣2,合并同类项得,﹣x≥﹣2,把x的系数化为1得,x≤2,(8)去分母得,6(2x﹣1)﹣4(2x+5)>3(6x﹣1),去括号得,12x﹣6﹣8x﹣20>18x﹣3,移项得,12x﹣8x﹣18x>﹣3+6+20,合并同类项得,﹣14x>23,把x的系数化为1得,x <﹣,(9)分子与分母同时乘以10得,﹣1≤,去分母得,2(2x﹣1)﹣6≤3(5x+2),去括号得,4x﹣2﹣6≤15x+6,移项得,4x﹣15x≤6+2+6,合并同类项得,﹣11x≤14,把x的系数化为1得,x≥﹣(10)移项合并得:﹣3x≤6,解得:x≥﹣2,(11)移项合并得:9x≤﹣6,解得:x≤﹣,(12)去括号得:﹣8x﹣6≥8﹣4x+3,移项合并得:﹣4x≥17,解得:x≤﹣(13)去分母得:4x﹣8>6x+2,移项合并得:﹣2x>10,解得:x<﹣5;(14)去分母得:2x﹣4x+1<3,移项合并得:﹣2x<2,解得:x>﹣1;(15)去分母得:12+3x﹣6≥8x+8,移项合并得:5x≥﹣2,解得:x≤﹣(16)去括号得,2x﹣2≤﹣3+3x,移项得,2x﹣3x≤﹣3+2,合并同类项得,﹣x≤﹣1把x的系数化为1得,x≥1,(17)去分母得,3(2﹣3x)≤2x﹣1﹣6,去括号得,6﹣9x≤3x﹣7,移项得,﹣9x﹣3x≤﹣7﹣6,合并同类项得,﹣12x≤13,x的系数化为1得,x≥﹣,(18)去括号得,10﹣3x+6≤2x+2,移项得,﹣3x﹣2x≤2﹣10﹣6,合并同类项得,﹣5x≤﹣24把x的系数化为1得,x≥﹣,(19)去分母得,2(1﹣5x)﹣24≤3(3﹣x )去括号得,2﹣10x﹣24≤9﹣3x,移项得,﹣10x+3x≤9﹣2+24,合并同类项得,﹣7x≤31,x的系数化为1得,x≥﹣(20)﹣3x>2,解得:x <﹣;(21)去分母得:x>﹣2x﹣6,解得:x>﹣2;(22)去括号得:3x+3<4x﹣8﹣3,解得:x>14;(23)去分母得:2(2x﹣1)﹣3(5x+1)≤6,去括号得:4x﹣2﹣15x﹣3≤6,解得:x≥﹣1(24)去分母得,3(x+4)≥﹣2(2x+1),去括号得,3x+12≥﹣4x﹣2,移项、合并同类项得,7x≥﹣14,把x的系数化为1得,x≥﹣.(25)去分母得,4(x﹣1)﹣3(2x+5)>﹣24,去括号得,4x﹣4﹣6x﹣15>﹣24,移项、合并同类项得,﹣2x>﹣5,把x的系数化为1得,x <(26)移项得,5x﹣3x>2+4,合并同类项得,2x>6,把x的系数化为1得,x>3.(27)去括号得,8x﹣4>12x+6,移项得,8x﹣12x>6+4,合并同类项得,﹣4x>10,把x的系数化为1得,x <﹣.(28)去分母得,3(4x﹣1)≤1﹣5x,去括号得,12x﹣3≤1﹣5x,移项得,12x+5x≤1+3,合并同类项得,17x≤4,把x的系数化为1得,x≤.(29)去分母得,2(5x+1)﹣24≥3(x﹣5),去括号得,10x+2﹣24≥3x﹣15,移项得,10x﹣3x≥﹣15﹣2+24,合并同类项得,7x≥7,把x的系数化为1得,x≥1(30)去括号得,4x﹣4+3≥3x,移项得,4x﹣3x≥4﹣3,合并同类项得,x≥1,(31)去分母得,3(2x﹣3)<x+1,去括号得,6x﹣9<x+1,移项得,6x﹣x<1+9,合并同类项得,5x<10,x的系数化为1得,x<2,(32)去分母得,2(2x﹣1)﹣(9x+2)≤6,去括号得,4x﹣2﹣9x﹣2≤6,移项得,4x﹣9x≤6+2+2,合并同类项得,﹣5x≤10,x的系数化为1得,x≥﹣2(33)3[x﹣2(x﹣2)]>6+3x解:去小括号,3[x﹣3x+4]>6+3x合并,3[﹣x+4]>6+3x去中括号,﹣3x+12>6+3x移项,合并,﹣6x>﹣6化系数为1,x<1.(34)解:去分母,2(2x﹣5)≤3(3x+1)﹣8x去括号,4x﹣10≤9x+3﹣8x移项合并,3x≤13化系数为1,x≤.(35)解:去分母,3(2﹣x)﹣3(x﹣5)>2(﹣4x+1)+8去括号,6﹣9x﹣3x+15>﹣8x+2+8移项合并,﹣4x>﹣11化系数为1,x <.(36)解:运用分数基赋性质化小数分母为整数去括号,4x﹣1﹣10x+7>2﹣4x移项合并,﹣2x>﹣4化系数为1,x<2(37)去括号,得:3x+6﹣8≥1﹣2x+2,移项、合并同类项,得:5x≥5,系数化成1得:x≥1;(38)去分母,得:3(x﹣3)﹣6>2(x﹣5),去括号,得:3x﹣9﹣6>2x﹣10,移项、合并同类项得:x>5;(39)去分母,得:6x﹣3(x﹣1)≤12﹣2(x+2),去括号,得:6x﹣3x+3≤12﹣2x﹣4,移项、合并同类项得:5x≤5系数化成1得:x≤1;(40)去分母,得:6x﹣3x<6+x+8﹣2(x+ 1),去括号,得:6x﹣3x<6+x+8﹣2x﹣2,移项得:6x﹣3x﹣x+2x<6﹣2+8合并同类项得:4x<12系数化成1得:x<3(41)去括号,得6x﹣9≥2x﹣8,移项,得6x﹣2x≥﹣8+9,合并同类项,得4x≥1,两边同除以4,得x≥,(42)去分母,得4﹣8x≥0,移项得﹣8x≥﹣4,两边同除以﹣8,得x≤,(43)去括号,得7﹣14x>10﹣20x+15,移项,得﹣14x+20x>10+15﹣7,合并同类项得6x>18,两边同除以6得x>3,(44)去分母,得2x+6<﹣6x﹣3(x+10),去括号,得2x+6<﹣6x﹣3x﹣30,移项,得2x+6x+3x<﹣30﹣6,合并同类项,得11x<﹣36,两边同除以11得x <﹣(45)去分母得:2(2x+1)﹣(5﹣2x)<0,去括号得:4x+2﹣5+2x<0,移项合并得:6x<3,解得:x <,暗示在数轴上,如图所示:;(46)去分母得:6﹣2(x﹣1)≤3(2x+3)﹣6x,去括号得:6﹣2x+2≤6x+9﹣6x,移项合并得:﹣2x≤1,解得:x≥﹣(47)去括号得,5x﹣12≤8x﹣6,移项得,5x﹣8x≤﹣6+12,合并同类项得,﹣3x≤6,x的系数化为1得,x≥﹣2;(48)去分母得,x﹣3≥2(x﹣2),去括号得,x﹣3≥2x﹣4,移项得,x﹣2x≥﹣4+3,合并同类项得,﹣x≥﹣1,x的系数化为1得,x≤1(49)去括号得4x﹣6﹣2x<0,移项、合并同类项得2x<6,系数化为1得x<3;这个不等式的解集在数轴上暗示如图1:(50)去分母得3(2x﹣3)﹣4(x﹣2)≥0 ,去括号得6x﹣9﹣4x+8≥0,移项、合并同类项得2x≥1,系数化为1得x≥0.5(51)3x﹣2<﹣4(x﹣5);去括号得3x﹣2<﹣4x+20,移项得3x+4x<20+2合并同类项得7x<22未知项的系数化为1得x <,(52)﹣1<<2,去分母得﹣3<2﹣x<6,移项得﹣3﹣2<﹣x<6﹣2,合并同类项得﹣5<﹣x<4未知项的系数化为1得﹣4<x<5(53)去分母得,2(x﹣1)﹣3(x+4)>﹣12,去括号得,2x﹣2﹣3x﹣12>﹣12,移项、合并同类项得﹣x<2,化系数为1得x<﹣2.(54)去分母得,(x﹣2)﹣3(x﹣1)<3,去括号得,x﹣2﹣3x+3<3,移项、合并同类项得﹣2x<2,化系数为1得x>﹣120.解:(55)移项,得:5x﹣4x>﹣13﹣1 5,合并同类项,得:x>﹣28;(56)去分母,得:2(2x﹣1)≤3x﹣4,去括号,得:4x﹣2≤3x﹣4,移项,得:4x﹣3x≤﹣4+2,合并同类项,得:x≤﹣2(57)去括号得,28﹣7x﹣8+6x<4x,移项得,﹣7x+6x﹣4x<8﹣28,合并同类项得,﹣5x<﹣20,系数化为1得,x>4.(58)去括号得,10﹣4x+12≥2x﹣2,移项得,﹣4x﹣2x≥﹣2﹣10﹣12,合并同类项得,﹣6x≥﹣24,系数化为1得,x≤4.(59)去括号得,3x﹣6x+12>x﹣3x+9,移项得,3x﹣6x﹣x+3x>9﹣12,合并同类项得,﹣x>﹣3,系数化为1得,x<3.(60)去分母得,(2x﹣1)+3x﹣3+(1﹣2 x)≤0,去括号得,2x﹣1+3x﹣3+1﹣2x≤0,移项得,2x+3x﹣2x≤3+1﹣1,合并同类项得,3x≤3,系数化为1得,x≤1.(61)去分母得,﹣10y﹣5(y﹣1)≥20﹣2(y+2),去括号得,﹣10y﹣5y+5≥20﹣2y﹣4,移项得,﹣10y﹣5y+2y≥20﹣4﹣5,合并同类项得,﹣13y≥11,系数化为1得,y≤﹣.(62)去分母得,2(3x+2)﹣(7x﹣3)>16,去括号得,6x+4﹣7x+3>16,移项得,6x﹣7x>16﹣4﹣3,合并同类项得,﹣x>9,系数化为1得,x<﹣9(63)由原不等式,得x2+x>x2﹣4x+4,移项、合并同类项,得5x>4,不等式两边同时除以5,得x >,即原不等式的解集是x >;(64)由原不等式,得﹣17x+1<12﹣10x,移项、合并同类项,得﹣7x<11,不等式两边同时除以﹣7(不等号的标的目标产生修改),得x >﹣,即原不等式的解集是x >﹣(65)去括号,得:3y﹣9<7y﹣4,移项,得:3y﹣7y<9﹣4,即﹣4y<5,;(66)﹣21<6﹣3x≤9两边同时减去6再除以﹣3,不等号的标的目标修改,得:﹣1≤x<9(67)去分母得,2(1﹣2x)≥4﹣3x,去括号得,2﹣4x≥4﹣3x,移项得,﹣4x+3x≥4﹣2,合并同类项得,﹣x≥2,化系数为1得,x≤﹣2;(68)去分母得,2(x+4)﹣3(3x﹣1)<6,去括号得,2x+8﹣9x+3<6,移项得,2x﹣9x<6﹣8﹣3,合并同类项得,﹣7x<﹣5,化系数为1得,x >;(69)去括号得,0.5x+3﹣0.6x≥0.4x﹣0.6,移项得,0.5x﹣0.6x﹣0.4x≥﹣0.6﹣3,合并同类项得,﹣0.5x≥﹣3.6,化系数为1得,x≤7.2.(70)去分母得,6x﹣3x﹣(x+8)<6﹣2(x+1),去括号得,6x﹣3x﹣x﹣8<6﹣2x﹣2,移项得,6x﹣3x﹣x+2x<6﹣2+8,合并同类项得,4x<12,化系数为1得,x<3;(71)去括号得,2x﹣2x+2+4<1﹣x,移项得,2x﹣2x+x<1﹣2﹣4,合并同类项得,x<﹣5;(72)去分母得,2(2x﹣1)﹣3(5x+1)≤6,去括号得,4x﹣2﹣15x﹣3≤6,移项得,4x﹣15x≤6+2+3,合并同类项得,﹣11x≤11,化系数为1得,x≥﹣1(73)移项合并得:﹣2x<4,解得:x>﹣2;(74)去分母得:3(x+5)﹣2(2x+3)≥1 2,去括号得:3x+15﹣4x﹣6≥12,移项合并得:﹣x≥3,解得:x≤﹣3(75)原不等式的两边同时乘以6,得2x+6>21﹣3x,移项,合并同类项,得5x>15,不等式的两边同时除以5,得x>3,∴原不等式的解集是x>3.(76)原不等式的两边同时乘以6,得8x+2≤14﹣x,移项,合并同类项,得9x≤12,不等式的两边同时除以9,得x≤34所以,原不等式的解集是x≤;(77)原不等式的两边同时乘以6,得8﹣2x≤9,移项,合并同类项,得﹣2x≤1,不等式的两边同时除以﹣2,得x≥﹣,所以,原不等式的解集是x≥﹣(78)移项得,3x≤9,x的系数化为1得,x≤3.(79)移项得,2x﹣5x<﹣2+5,合并同类项得,﹣3x<3,把x的系数化为1得,x>﹣1.(80)去括号得,﹣6+2x>3x+6,移项得,2x﹣3x>6+6,合并同类项得,﹣x>12,把x的系数化为1得,x<﹣12,(81)去分母得,x+7﹣2<3x+2,移项得,x﹣3x<2+2﹣7,合并同类项得,﹣2x<﹣3,把x的系数化为1得,x>.(82)去括号,得:6x+6≥4x﹣4+7,移项,得:6x﹣4x≥﹣4+7﹣6,合并同类项,得:2x≥﹣3,系数化为1得:x≥﹣,(83)去分母,得:2(x﹣1)﹣3(x+4)>﹣12,去括号,得:2x﹣2﹣3x﹣12>﹣12,移项、合并同类项,得:﹣x>2,系数化为1得:x<﹣2(84)去分母得:x﹣2﹣2(x﹣1)<2,去括号得:x﹣2﹣2x+2<2,移项合并得:﹣x<2,解得:x>﹣2,(85)去分母得:x+5﹣2<3x+2,移项合并得:﹣2x<﹣1,解得:x>(86)去括号得,8﹣8x≥20﹣5x+3,移项得,﹣8x+5x≥20+3﹣8,合并同类项得,﹣3x≥15,x的系数化为1得,x≤﹣5,(87)去分母得,3(3y﹣1)<10y+5﹣6,去括号得,9y﹣3<10y+5﹣6,移项得,9y﹣10y<5﹣6+3,合并同类项得,﹣y<2,x的系数化为1得,y>﹣2时间:二O二一年七月二十九日。

一元一次不等式培优训练题

一元一次不等式培优训练题

一元一次不等式培优训练题1、解不等式252133x -+-≤+≤- 2.求下列不等式组的整数解2(2)83373(2)82x x x x x x +<+⎧⎪-≥-⎨⎪-+>⎩3、解不等式:(1) 0)2)(1(<+-x x (2)0121>+-x x4、对于1x ≥的一切有理数,不等式()12x a a -≥都成立,求a 的取值范围。

5、已知1x =是不等式组()()352,23425x x a x a x -⎧≤-⎪⎨⎪-<+-⎩的解,求a 的取值范围.6、如果35x a =-是不等式()11233x x -<-的解,求a 的取值范围。

7、若不等式组841,x x x m +<-⎧⎨>⎩的解集为3x >,求m 的取值范围。

8、如果不等式组237,635x a b b x a -<⎧⎨-<⎩的解集为522x <<,求a 和b 的值。

9、不等式组⎪⎩⎪⎨⎧<-<-622131m x m x 的解集是36+<m x ,求m 的取值范围。

10、已知关于x 的不等式()12a x ->的解在2x <-的范围内,求a 的取值范围。

11、已知关于x 的不等式组010x a x ->⎧⎨->⎩,的整数解共有3个,求a 的取值范围。

12、已知关于x的不等式组321x ax-≥⎧⎨-≥-⎩的整数解共有5个,求a的取值范围。

13、若关于x的不等式组2145,x xx a->+⎧⎨>⎩无解,求a的取值范围。

14、设关于x的不等式组22321x mx m->⎧⎨-<-⎩无解,求m的取值范围15、若不等式组⎩⎨⎧<->a x a x 无解,那么不等式⎩⎨⎧<+>-11a x a x 有没有解?若有解,请求出不等式组的解集;若没有请说明理由?16、若不等式组372,x x a a-≤⎧⎨-≥⎩有解,求a 的取值范围。

第8章一元一次不等式(培优篇)-2022-2023学年七年级数学下册阶段性复习精选精练(华东师大版)

第8章一元一次不等式(培优篇)-2022-2023学年七年级数学下册阶段性复习精选精练(华东师大版)

第8章 一元一次不等式(培优篇)一、单选题(本大题共10小题,每小题3分,共30分) 1.如果,0a b c ><,那么下列不等式成立的是( ) A .a c b +> B .a c b c +>- C .11ac bc ->-D .()()11a c b c -<-2.一元一次不等式3(7﹣x )≥1+x 的正整数解有( ) A .3个B .4个C .5个D .6个3.数轴上A 、B 、C 三点依次从左向右排列,表示的数分别为-2,12x -,3x +,则x 可能是( )A .0B .-1C .-2D .34.已知a 、b 是不为0的实数,则下列选项中,解集可以为20222022x -<<的不等式组是( )A .11ax bx <⎧⎨>⎩B .11ax bx >⎧⎨>⎩C .11ax bx >⎧⎨<⎩D .11ax bx <⎧⎨<⎩5.小红购买了一本《数学和数学家的故事》·两位小伙伴想知道书的价格,小红让他们猜,小华说:“不少于20元”,小强说:“少于22元”,小红说:“你们两个人说的都没有错”,则这本书的价格x (元)所在的范围为( )A .2022x <<B .2022x ≤≤C .2022x ≤<D .2022x <≤6.如图,在数轴上A ,B ,C ,D 四个点所对应的数中是不等式组1202x x x -<⎧⎪⎨≤⎪⎩的解的是( )A .点A 对应的数B .点B 对应的数C .点C 对应的数D .点D 对应的数7.如图所示,运行程序规定:从“输入一个值x ”到“结果是否79>”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .9x >B .19x ≤C .919x <≤D .919x ≤≤8.若数a 使关于x 的不等式52x x a -≥+的最小正整数解是1x =,则a 的取值范围是( ) A .2a >-B .2a <C .22a -<<D .2a ≤9.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y---=--有非负整数解,则符合条件的所有整数a 的和为( ) A .0 B .1 C .4 D .610.已知关于x 、y 的方程组,给出下列说法:①当a =1时,方程组的解也是方程x +y =2的一个解;①当x -2y >8时,15a >;①不论a 取什么实数,2x +y 的值始终不变;①若25y x =+,则4a =-. 以上说法正确的是( )A .①①①B .①①①C .①①D .①①二、填空题(本大题共8小题,每小题4分,共32分) 11.已知关于x 的不等式7xa <的解也是不等式27152x a a ->-的解,则常数a 的取值范围是_____.12.已知实数x ,y 满足x +y =3,且x >﹣3,y ≥1,则x ﹣y 的取值范围____.13.已知不等式组211x x x m <+⎧⎨->⎩的解集为1x >-,则m 的取值范围是________.14.若关于x 的不等式组()()324122x x x m x ⎧-<-⎨-≤-⎩,恰有两个整数解,则m 的取值范围是______.15.关于x 的不等式组2500x x a -<⎧⎨->⎩无整数解,则a 的取值范围为_____.16.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <,则k 的取值范围为_____.17.已知a 、b 、c 是非负数,且2a +3b +c =10,a +b -c =4,如果S =2a +b -2c ,那么S 的最大值和最小值的和等于_________.18.如图,用图1中的a 张长方形和b 张正方形纸板作侧面和底面,做成如图2的竖式和横式两种无盖纸盒,若a +b 的值在285和315之间(不含285与315),且用完这些纸板做竖式纸盒比横式纸盒多30个,则a 的值可能是____________.三、解答题(本大题共6小题,共58分)19.(8分)解不等式组2153112x x x -<⎧⎪⎨-+≥⎪⎩,把解集在数轴上表示出来,并写出不等式组的所有整数解.20.(8分)解关于x 的不等式组:05310531x a x a <+≤⎧⎨<-≤⎩,其中a 为参数.21.(10分)现有不等式的两个性质:①在不等式的两边都加上(或减去)同一个数(或整式),不等号的方向不变.①在不等式的两边都乘同一个数(或整式),乘的数(或整式)为正时不等号的方向不变,乘的数(或整式)为负时不等号的方向改变.请解决以下两个问题:(1) 利用性质①比较2a 与a 的大小(a ≠0). (2) 利用性质①比较2a 与a 的大小(a ≠0).22.(10分)若任意一个代数式,在给定的范围内求得的最大值和最小值恰好也在该范围内,则称这个代数式是这个范围的“湘一代数式”.例如:关于x 的代数式2x ,当-1≤x ≤ 1时,代数式2x 在x =±1时有最大值,最大值为1;在x =0时有最小值,最小值为0,此时最值1,0均在-1≤x ≤1这个范围内,则称代数式2x 是-1≤x ≤1的“湘一代数式”.(1)若关于x 的代数式x ,当13x ≤≤时,取得的最大值为 ,最小值为 ,所以代数式“是”或“不是”)13x ≤≤的“湘一代数式”.(2)若关于x 的代数式12ax -+是22x -≤≤的“湘一代数式”,求a 的最大值与最小值. (3)若关于x 的代数式2x -是4m x ≤≤的“湘一代数式”,求m 的取值范围.23.(10分)为支援武汉抗击新冠肺炎,甲地捐赠了600吨的救援物质并联系了一家快递公司进行运送.快递公司准备安排A 、B 两种车型把这批物资从甲地快速送到武汉.其中,从甲地到武汉,A 型货车5辆、B 型货车6辆,一共需补贴油费3800元;A 型货车3辆、B型货车2辆,一共需补贴油费1800元.(1)从甲地到武汉,A、B两种型号的货车,每辆车需补贴的油费分别是多少元?(2)A型货车每辆可装15吨物资,B型货车每辆可装12吨物资,安排的B型货车的数量是A型货车的2倍还多4辆,且A型车最多可安排18辆、运送这批物资,不同安排中,补贴的总的油费最少是多少?24.(12分)老王是新农村建设中涌现出的“养殖专业户”.他准备购置80只相同规格的网箱,养殖A、B两种淡水鱼(两种鱼不能混养).计划用于养鱼的总投资不少于7万元,但不超过7.2万元,其中购置网箱等基础建设需要1.2万元.设他用x只网箱养殖A种淡水鱼,目前平均每只网箱养殖A、B两种淡水鱼所需投入及产出情况如表:(利润=收入-支出.收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出)(1)按目前市场行情,老王养殖A、B两种淡水鱼获得利润最多是多少万元?(2)基础建设投入、鱼苗投资、饲料支出及产量不变,但当老王的鱼上市时,A种鱼价格上涨a%,B种鱼价格下降20%,使老王养鱼实际获得利润5.68万元.求a的值.参考答案1.D【分析】根据不等式的性质即可求出答案. 解:①0c <, ①11c -<-, ①a b >,①()()11a c b c -<-, 故选D .【点拨】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于中等题型.2.C【分析】先求出不等式的解集,根据解集得出答案即可. 解:3(7)1x x ≥﹣+ 2131x x -≥+3121x x --≥- 420x -≥-①5x ≤所以不等式的正整数解为1,2,3,4,5,共5个, 故选:C .【点拨】本题考查了解一元一次不等式,不等式的正整数解的应用,能求出不等式的解集是解此题的关键.3.A【分析】根据条件列出关于x 的一元一次不等式组,解得x 的范围,即可求得答案. 解:由题意知,212123x x x -<-⎧⎨-<+⎩ ,解得2332x -<<. 故选:A .【点拨】本题主要考查列一元一次不等式以及解一元一次不等式组,解决本题的关键是列出一元一次不等式组.4.D【分析】根据解集可以为20222022x -<<,所以a 、b 异号,分两种情况:当a >0,b <0时,则11a b>;当a <0,b >0时,则11a b <;分别逐项判定即可.解:①解集可以为20222022x -<<, ①a 、b 异号, 当a >0,b <0时,则11a b>, A 、11ax bx <⎧⎨>⎩的解集为x <1b ,故此选项不符合题意;B 、11ax bx >⎧⎨>⎩的无解,故此选项不符合题意;C 、11ax bx >⎧⎨<⎩的解集为x >1a ,故此选项不符合题意;D 、11ax bx <⎧⎨<⎩的解集为1b <x <1a ,故此选项符合题意;当a <0,b >0时,则11a b<, A 、11ax bx <⎧⎨>⎩的解集为x >1b ,故此选项不符合题意;B 、11ax bx >⎧⎨>⎩的无解,故此选项不符合题意;C 、11ax bx >⎧⎨<⎩的解集为x <1a ,故此选项不符合题意;D 、11ax bx <⎧⎨<⎩的解集为1a <x <1b ,故此选项符合题意;综上,a 、b 是不为0的实数,解集可以为20222022x -<<的不等式组是D , 故选:D .【点拨】本题考查不等式组的解集,解不等式组,熟练掌握不等式组解集的确定原则“大大取较大,小小取较小,大小小大中间找,大大小小无处找”是解题的关键.5.C【分析】根据不少于就是大于等于的意思去建立不等式即可. 解:①书的价格“不少于20元”,“少于22元”, ①2022x ≤<,故选C .【点拨】本题考查了列不等式,正确理解不少于的意义是解题的关键. 6.B【分析】先求出不等式组的解集,然后判断即可得出答案. 解:1202x x x-<⎧⎪⎨≤⎪⎩①② 解不等式①,得1x >-, 解不等式①,得0x ≤, ①不等式组的解为10-<≤x ,①在数轴上B 点所对应的数是不等式组的解. 故选①B .【点拨】本题考查了解不等式组和数轴上点的特征,正确求出不等式组的解集是解题的关键.7.C【分析】根据运算程序,前两次运算结果小于等于79,第三次运算结果大于79列出不等式组,然后求解即可.解:由题意得,()()217922117922211179x x x ⎧+≤⎪⎪++≤⎨⎪⎡⎤+++⎪⎣⎦⎩①②>③, 解不等式①得,x ≤39, 解不等式①得,x ≤19, 解不等式①得,x >9,所以,x 的取值范围是9<x ≤19. 故选:C .【点拨】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.8.D【分析】由不等式的最小正整数解为1x =,可得出关于a 的一元一次不等式,解之即可得出a 的取值范围.解:①关于x 的不等式52x x a -≥+的最小正整数解是1x = ①214a+≤ 2a ≤故选:D.【点拨】此题主要考查一元一次不等式的正整数解的问题,熟练利用数轴理解一元一次不等式的解集是解题的关键.9.B【分析】先解关于x 的一元一次不等式组,根据其解集x a ≤,求出a 的取值范围,再解分式方程,根据其有非负整数解,求出a 的取值范围,进而可得符合要求的a 值,最后求和即可.解:由不等式组()1142423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩,解得:5x a x ≤⎧⎨<⎩ ①不等式组的解集为x a ≤ ①5a < 由分式方程24111y a y y y---=-- ,去分母得241y a y y -+-=- 解得32a y +=,1y ≠ ①分式方程有非负数解 ①3a ≥-且3a ≠①a 的取值为321---,,,0,1,2,4①符合条件的所有整数a 的和为()()32101241-+-+-++++= 故选B .【点拨】本题考查了解一元一次不等式组,解分式方程.解题的关键在于求出符合条件的所有整数a .10.A解:试题分析:当a=1时,方程x+y=1-a=0,因此方程组的解不是x+y=2的解,故①不正确;通过加减消元法可解方程组为x=3+a ,y=-2a -2,代入x -2y >8可解得a >15,故①正确;2x+y=6+2a+(-2a -2)=4,故①正确;代入x 、y 的值可得-2a -2=(3+a )2+5,化简整理可得a=-4,故①正确.故选:A 11.1009a -≤< 【分析】先把a 看作常数求出两个不等式的解集,再根据同小取小列出不等式求解即可. 解:关于x 的不等式27152x a a->-, 解得:19542x a >-, 关于x 的不等式7x a <的解也是不等式27152x a a->-的解, ∴0a <,∴不等式7xa<的解集是7x a >, ∴195742a a ≥-,解得:109a ≥-,0a <,1009a ∴-≤<, 故答案为:1009a -≤<. 【点拨】本题考查了一元一次不等式的解法,解题的关键是分别求出两个不等式的解集,再根据同小取小列出关于a 的不等式,注意在不等式两边都除以一个负数时,应只改变不等号的方向.12.91x y --≤<【分析】先设x ﹣y =m ,利用x +y =3,构造方程组,求出用m 表示x 、y 的代数式,再根据x >﹣3,y ≥1,列不等式求出m 的范围即可.解:设x ﹣y =m ,①3x y m x y -=⎧⎨+=⎩①②, ①+①得32mx +=, ①-①得32my -=, ①y ≥1, ①312m-≥,解得1m ,①x >﹣3, ①332m +>-, 解得9m >-,①91m ≤-<,x ﹣y 的取值范围91x y --≤<.故答案为91x y --≤<.【点拨】本题考查方程与不等式综合问题,解题关键是设出x ﹣y =m ,与x +y =3,构造方程组从中求出32m x +=,32m y -=,再出列不等式. 13.2m ≤-【分析】求出每个不等式的解集,根据已知得出关于m 的不等式,求出不等式的解集即可. 解:211x x x m <+⎧⎨->⎩①② 解①得,1x >-,解①得,1x m >+,不等式组211x x x m <+⎧⎨->⎩的解集为1x >-, 11m ∴+≤-,2m ∴≤-,故答案为:2m ≤-.【点拨】本题考查了解一元一次不等式组的应用,解题的关键是能根据不等式的解集和已知得出关于m 的不等式.14.21m -≤<【分析】不等式组整理后表示出解集,根据不等式组恰有两个整数解,确定出m 的范围即可.解:3(2)4(1)22x x x m x -<-⎧⎨-≤-⎩①②解不等式①得,2x >-,解不等式①得,23m x +≤, ①不等式解集为:223m x +-<≤, ①不等式组恰有两个整数解,即-1,0, ①0≤23m +<1, 解得:21m -≤<.故答案为:21m -≤<.【点拨】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.15.a ≥2.【分析】先求出两个不等式的解集,再根据不等式组无整数解列出关于a 的不等式求解即可 解:不等式组整理得:52x x a⎧<⎪⎨⎪>⎩ 不等式组的解集是:a <x <52, 当a ≥52时,不等式组无解, ①不等式组无整数解,①a ≥2故答案为:a ≥2.【点拨】本题考查了一元一次不等式组的解法,解题的关键是熟练掌握确定不等式组解集的方法.16.k≥1解:解不等式2x+9>6x+1可得x <2,解不等式x -k <1,可得x <k+1,由于x <2,可知k+1≥2,解得k≥1.故答案为k≥1.17.14【分析】把a 看成是已知数,分别用含a 的式子表示b ,c ,根据a ,b ,c 是非负数求出a 的范围,把b ,c 代入S =2a +b -2c ,根据a 的范围求出S 的最大值和最小值.解:由方程组23104a b c a b c ++=⎧⎨+-=⎩得,143424a b a c -⎧⎪⎪⎨-⎪⎪⎩==, 因为a ,b ,c 是非负数,所以014304204a a a ⎧⎪≥⎪-⎪≥⎨⎪-⎪≥⎪⎩,解得2≤a ≤143. S =2a +b -2c =2a +1434a --2×239442a a -=+, 当a =2时,S =39242⨯+=6; 当a =143时,S =3149432⨯+=8. 则6+8=14.故答案为14.【点拨】三个未知数,两个方程的问题,通常将其中的一个未知数看成是已知数,用这个字母表示出其它两个未知数,再根据题意,确定这个未知数的取值范围.18.218,225,232【分析】根据题意图形可知,竖式纸盒需要4个长方形纸板与1个正方形纸板,横式纸盒要3个长方形纸板与2个正方形纸板,设做成横式纸盒x 个,则做成竖式纸盒()30x +个,即可算出总共用的纸板数,再根据285315a b <+<,即可得到不等式组求出x 的值,即可进行求解.解:设做成横式纸盒x 个,则做成竖式纸盒()30x +个,①285315a b <+<,①()2853243030315x x x x <+++++<,解得13.516.5x <<,①x 为正整数,①14x =或15x =或16x =,当14x =时,30143044x +=+=,314444218a =⨯+⨯=,当15x =时,30153045x +=+=,315445225a =⨯+⨯=,当16x =时,30163046x +=+=,316446232a =⨯+⨯=,综上所述,a 的值为218,225,232,故答案为:218,225,232.【点拨】此题主要考查不等式的应用,解题的关键是根据题意设出未知数,找到不等关系进行求解,注意结合实际情况取整数解.19.13x -≤<,数轴上表示略,不等式组的所有整数解为-1,0,1,2【分析】先求出两个不等式的解集,再求其公共解集,然后确定这个范围内的整数解即可.解:由①得:3x <,由①得:3122x x -+≥,解得:1x ≥-,解集为:13x -≤<.不等式组的所有整数解为-1,0,1,2.【点拨】本题主要考查了一元一次不等式组解集的求法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;<”,“>”要用空心圆点表示.20.见分析【分析】求出不等式组中每个不等式的解集,分别求出当3355a a -=时、当131355a a -+=时、当31355a a +-=时、当31355a a -=时a 的值,结合不等式的解集,即可求出在各段的不等式组的解集.解:05310531x a x a <+≤⎧⎨<-≤⎩①② 解不等式①得:3513a x a -<≤-,31355a a x --<≤, 解不等式①得:3513a x a <≤+,31355a a x +<≤, ①当3355a a -=时,a =0, 当131355a a -+=时,a =0, 当31355a a +-=时,16a =-, 当31355a a -=时,16a =, ①当16a ≥ 或16a ≤-时,原不等式组无解; 当106a ≤<时,原不等式组的解集为31355a a x -<≤; 当106a -<<时,原不等式组的解集为:31355a a x +-<≤. 【点拨】本题考查了不等式组得解集,关键是能正确求出各段的不等式组的解集,本题比较特殊,有一定的难度.21.(1)2a<a;(2)2a<a试题分析:(1)根据不等式的性质①,可得答案;(2)根据不等式的性质①,可得答案.解:(1)当a >0时,a +a >a +0,即2a >a .当a <0时,a +a <a +0,即2a <a .(2)当a >0时,由2>1,得2·a >1·a ,即2a >a .当a <0时,由2>1,得2·a <1·a ,即2a <a .22.(1)3,1,是.(2)a 的最大值为6,最小值为2-;(3)20.m -≤≤【分析】(1)先求解当13x ≤≤时,x 的最大值与最小值,再根据定义判断即可; (2)当22x -≤≤时,得224,x ≤+≤分0,a ≥ a <0,分别求解12a x -+在22x -≤≤内时的最大值与最小值,再列不等式组即可得到答案;(3)当4m x ≤≤时,分24x ≤≤,2m x ≤≤两种情况分别求解2x -的最大值与最小值,再列不等式(组)求解即可.解:(1) 13x ≤≤当3x =时,x 取最大值3,当1x =时,x 取最小值1, 所以代数式x 是13x ≤≤的“湘一代数式”.故答案为:3,1,是.(2)①22x -≤≤,①0≤|x|≤2, ①224,x ≤+≤①当a≥0时,x=0时,12a x -+有最大值为12a -, x=2或-2时,12a x -+有最小值为1,4a - 所以可得不等式组122124a a ⎧-≤⎪⎪∴⎨⎪-≥-⎪⎩①②, 由①得:6,a ≤由①得:4,a ≥-所以:06,a ≤≤①a <0时,x=0时,12a x -+有最小值为12a -, x=2或-2时, 12a x -+的有大值为1,4a - 所以可得不等式组122124a a ⎧-≥-⎪⎪∴⎨⎪-≤⎪⎩①②, 由①得:2,a ≥-由①得:12,a ≤所以:2≤a -<0,综上①①可得26a -≤≤,所以a 的最大值为6,最小值为2-.(3) 2x -是4m x ≤≤的“湘一代数式”,当24x ≤≤时,2x -的最大值是2, 最小值是0,0,m ∴≤当2m x ≤≤时,22,x x -=-当2x =时,2x -取最小值0,当x m =时,2x -取最大值2m -,024m m ≤⎧∴⎨-≤⎩解得:20,m -≤≤综上:m 的取值范围是:20.m -≤≤【点拨】本题考查的是新定义情境下的不等式或不等式组的应用,理解定义列不等式(组)是解题的关键.23.(1)每辆A 型货车补贴油费400元,每辆B 型货车补贴油费300元;(2)16200元【分析】(1)设从甲地到武汉,每辆A 型货车补贴油费x 元,每辆B 型货车补贴油费y 元,根据“从甲地到武汉,A 型货车5辆、B 型货车6辆,一共需补贴油费3800元;A 型货车3辆、B 型货车2辆,一共需补贴油费1800元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设安排A 型货车m 辆,则安排B 型货车(2m+4)辆,根据A 型车最多可安排18辆且安排的车辆总的装载量不低于600吨,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为整数即可得出m 的值,再求出各安排方案所需补贴的总的油费,比较后即可得出结论.解:(1)设从甲地到武汉,每辆A 型货车补贴油费x 元,每辆B 型货车补贴油费y 元,依题意,得:563800321800x y x y +=⎧⎨+=⎩解得:400300x y =⎧⎨=⎩ 答:从甲地到武汉,每辆A 型货车补贴油费400元,每辆B 型货车补贴油费300元.(2)设安排A 型货车m 辆,则安排B 型货车(24m +)辆,依题意,得:()181********m m m ≤⎧⎨++≥⎩解得:6141839m ≤≤ ①m 为正整数①m =15,16,17,18当15m =时,补贴的总的油费为()40015300152416200⨯+⨯⨯+=(元)当16m =时,补贴的总的油费为()40016300162417200⨯+⨯⨯+=(元);当17m =时,补贴的总的油费为()40017300172418200⨯+⨯⨯+=(元);当18m =时,补贴的总的油费为()40018300182419200⨯+⨯⨯+=(元)①16200172001820019200<<<①运送这批物资,不同安排中,补贴的总的油费最少是16200元.【点拨】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.24.(1)6.8万元;(2)36.试题分析:(1)根据题意求出30≤x≤35,再表示出A 、B 两种鱼所获利润,最后找最大利润;(2)表示出价格变动后,A 、B 两种鱼上市时所获利润,再解方程.解:(1)设他用x 只网箱养殖A 种淡水鱼,则用(80-x)只网箱养殖B 种淡水鱼.由题意,得700≤5x+9(80﹣x)+120≤720,解得:30≤x≤35设A 、B 两种鱼所获利润w="(10-5)x+(22-9)×(80-x)-120=-8x+920,"所以,当x=30时,所获利润w 最多是6.8万元(2)价格变动后,一箱A 种鱼的利润=100×0.1×(1+a%)﹣(2+3)=5+0.1a (百元), 一箱B 种鱼的利润=55×0.4×(1﹣20%)﹣(4+5)=8.6(百元).设A 、B 两种鱼上市时所获利润w="(5+0.1a)x+8.6×(80-x)-120=(0.1a -3.6)x+568," 所以,(0.1a -3.6)x+568=568,所以,(0.1a -3.6)x=0因为,30≤x≤35,所以,0.1a -3.6=0,a=36.考点:一元一次不等式组.。

(完整版)初一数学一元一次不等式练习题汇总(复习用)含答案

(完整版)初一数学一元一次不等式练习题汇总(复习用)含答案

一元一次不等式和一元一次不等式组培优训练一、填空题1. 比较大小:-3________—π,-0.22______(—0。

2)2; 2. 若2—x <0,x________2;3. 若xy>0,则xy_________0; 4. 代数式536x-的值不大于零,则x__________;5. a 、b 关系如下图所示:比较大小|a|______b ,-;1______,1_________1bb b a ---6. 不等式13-3x >0的正整数解是__________;7. 若|x-y|=y-x ,是x___________y ;8. 若x ≠y ,则x 2+|y|_________0; 9. 不等式组⎩⎨⎧+--023,043 x x 的解集是____________。

二、选择题在下列各题中的四个备选答案中,只有一个是正确的,将正确答案前的字母填在括号内:1。

若|a |>—a ,则a 的取值范围是( )。

(A)a >0; (B )a ≥0; (C )a <0; (D )自然数。

2。

不等式23>7+5x 的正整数解的个数是( ).(A)1个;(B)无数个;(C )3个;(D )4个.3。

下列命题中正确的是( ).(A)若m ≠n ,则|m|≠|n|; (B )若a+b=0,则ab >0;(C)若ab <0,且a <b ,则|a |<|b|; (D)互为例数的两数之积必为正。

4.无论x 取什么数,下列不等式总成立的是( ).(A)x+5>0; (B )x+5<0; (C )—(x+5)2<0;(D)(x-5)2≥0.5.若11|1|-=--x x ,则x 的取值范围是( ). (A)x >1; (B)x ≤1; (C)x ≥1; (D )x <1.三、解答题1. 解不等式(组),并在数轴上表示它们的解集。

(1)213-x (x-1)≥1; (2)21322-++-x x x ;(3)⎪⎩⎪⎨⎧≥--+.052,1372x x x (4)⎪⎩⎪⎨⎧---+.43)1(4,1321x x x x2. x 取什么值时,代数式251x -的值不小于代数式4323+-x的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式培优复习试卷【经典例题1】1、已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.﹣4a<﹣4bD.a﹣4<b﹣42、不等式3x+2<2x+3的解集在数轴上表示正确的是( )3、实数a,b,c在数轴上对应的点如下图所示,则下列式子中正确的是( )A.ac > bcB.|a–b| = a–bC.–a <–b < cD.–a–c >–b–c【经典例题2】4、如果不等式组恰有3个整数解,则a的取值范围是()A.a≤﹣1B.a<﹣1C.﹣2≤a<﹣1D.﹣2<a≤﹣15、关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣6、若关于的不等式组有三个负整数解,则的取值范围是().A.-4<a<-3B.-3<a≤-2C.-4≤a<-3D.-3≤a≤-2【经典例题3】7、某商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,要保证利润率不低于5%,该商品最多可打( )A. 9折B. 8折C. 7折D. 6折8、在抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过()A.66厘米B.76厘米C.86厘米D.96厘米9、某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40%B.33.4%C.33.3%D.30%【经典例题4】10、不等式﹣3x﹣1<7的负整数解是_________.11、某种商品的进价为15元,出售时标价是22.5元。

由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价____________元出售该商品。

12、对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到:“判断结果是否大于190?”为一次操作.如果操作只进行一次就停止,则x的取值范围是_________.【经典例题5】13、解不等式:. 14、解不等式组.【经典例题6】15、若不等式组的解集为,求的值.16、已知关于x,y的方程组的解满足不等式组求满足条件的m的整数值.17、某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件) 1 200 1 000售价(元/件) 1 380 1 200(1)该商场购进A、B两种商品各多少件?(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81 600元,B种商品最低售价为每件多少元?参考答案1、C2、D.3、D4、C5、B6、C7、C8、D9、B10、答案为:﹣1,﹣2.11、答案为:612、答案为:x>64.13、答案为:;14、答案为:﹣2<x≤1.15、解:原不等式组可化为因为它的解集为所以解得16、m=-3或-2.17、(1)设购进A种商品x件,B种商品y件,根据题意得解得答:该商场购进A、B两种商品分别为200件和120件.(2)由于A商品购进400件,获利为(1 380-1 200)×400=72 000(元).从而B商品售完获利应不少于81 600-72 000=9 600(元).设B商品每件售价为z元,则120(z-1 000)≥9 600.解得z≥1 080.答:B种商品最低售价为每件1 080元.一元一次不等式培优复习试卷二一、选择题:1、如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A.a>b>-b>-aB.a>-a>b>-bC.b>a>-b>-aD.-a>b>-b>a2、下列说法不一定成立的是( )A.若a>b,则a+c>b+cB.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b3、在解不等式时,下列步骤中错误的一步是()①去分母,得2(x-1)<3(5x+1);②去括号,得2x-2<15x+3;③移项,得2x-15x<3+2;④合并,得-13x<5;⑤解集为x>A.①;B.②;C.③;D.⑤;4、若关于x的方程的解为正数,则m的取值范围是()A.m>0;B.m<0;C.m>;D.m<;5、不等式组的解集在数轴上表示正确的是()A. B. C. D.6、使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()A.3,4B.4,5C.3,4,5D.不存在7、不等式组的解集,在数轴上表示正确的是()A. B.C. D.8、若方程组的解x,y满足0<x+y<1,则k的取值范围是( )A.﹣4<k<0B.﹣1<k<0C.0<k<8D.k>﹣49、某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至少可打()A.6折;B.7折;C.8折;D.9折10、已知不等式4x﹣a≤0的正整数解是1,2,则a的取值范围是()A.8<a<12B.8≤a<12C.8<a≤12D.8≤a≤1211、在抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过()A.66厘米B.76厘米C.86厘米D.96厘米12、今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有()A.2种B.3种C.4种D. 5种二、填空题:13、不等式的最小整数解是.14、已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是_______.15、若不等式组的解集是﹣3<x<2,则a+b= .16、我国从2011年5月1日起在公众场所实行“禁烟”.为配合“禁烟”行动.某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对—题记10分.答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分.他至少要答对_________道题.17、有10名菜农,每人可种甲种蔬菜3亩乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要使收入不低于15.6万元,则最多只能安排人种甲种蔬菜。

18、从﹣2、﹣1、﹣、0、1这五个数字中,随机抽取一个数,记为a,则使得关于x的方程=1的解为非负数,且满足关于x的不等式组至少有三个整数解的概率是.三、解答题:19、解下列不等式:20、解下列不等式:21、已知关于x,y的二元一次方程组的解满足x<y,求m的取值范围.22、已知方程组的解满足,求a的取值范围.23、某次知识竞赛共有25道题,每一题答对得5分,答错或不答都扣3分,小明得分要超过90分,他至少要答对多少道题?24、定义新运算:对于任意实数a,b,都有a b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:25=2x(2-5)+1=2x(-3)+1=-6+1=-5.(1)求(-2)3的值;(2)若3x的值小于13,求x的取值范围,并在如图所示的数轴上表示出来.25、某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.26、李大爷一年前买入了A、B两种兔子共46只,目前,他所养的这两种兔子数量相同,且A种兔子的数量比买入时减少了3只,B种兔子的数量比买入时减少a只.(1)则一年前李大爷买入A种兔子只,目前A、B两种兔子共只(均用含a的代数式表示);(2)若一年前买入的A种兔子数量多于B种兔子数量,则目前A、B两种兔子共有多少只?(3)李大爷目前准备卖出30只兔子,已知卖A种兔子可获利15元/只,卖B种兔子可获利6元/只,如果卖出的A种兔子少于15只,且总共获利不低于280元,那么他有哪几种卖兔方案?哪种方案获利最大?请求出最大获利.参考答案1、D2、C3、A;4、D;5、D6、A7、C.8、A9、B10、B11、D12、B13、x=214、m<415、答案为:0.16、1417、418、19、x<-1.2.20、-3<x≤2.21、22、<a.23、解:设答对了x道题,根据题意得,解得故至少要答对21道题24、(1)11. (2)x>-1 数轴表示如图所示:25、解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.26、第11 页共11 页。

相关文档
最新文档