第6章 有机化合物的波谱分析

合集下载

有机化学(付建龙 李红)版答案(完整)

有机化学(付建龙 李红)版答案(完整)

第2章 烷烃1.解:(1)2,3,5,5-四甲基庚烷;(3)2,6-二甲基-4-乙基庚烷;(5)3-甲基-4-乙基庚烷2.解:(1)CH 3CCH 3 ; (3) CH 3CH 2CH 2CHCH 2CH 2CH 3; (5) CH 3CCH 2CHCH 3CH 3CH 3C(CH 3)3CH 3CH 3CH 33.解:最稳定构象 最不稳定构象 5.解:(2)(b)>(d)>(e)>(a)>(c)6.解:按稳定性由大到小排列有:(3)>(2)> (1)。

第3章 烯烃和二烯烃1.解:(2) (E)-2-溴-2-戊烯; (4) 4-甲基-3-乙基-1-戊烯;(6) (Z)-3,6,6-三甲基-4-异丙基-3-庚烯 2.解:(1) CH 3C=CH 2;(4) C=CCH 3CH 3CH 3CH 2HCH 2CH 2CH 34.解:(1) CH 3CCH 3;CH 3CHCH 2Br; (2) CH 2CH 2CHCH 2Cl; (3) CH 3CH 2CH 2CH 2OH; (4) CCl 3CH 2CH 2I (反马氏规则产物)CH 3Br CH 3OH(5) CH 3CH 2COOH; (6)CH 3CHCH=CH 2; CH 3CH CH CH 2Cl Cl Cl Cl5.解:(1) ; (2) H 2/Lindlar 催化剂;H 2/Ni; (3)BrBr(4)由于中间体,有4种形式:CH 3CCH=CH 2 CH 2=CCHCH 3 CH 3C=CHCH 2 CH 2C=CHCH 3CH 3CH 3++CH 3+CH 3+(A) (B) (C) (D)其中(A )最稳定。

故主要产物为:CH 3CCH=CH 2CH 3Br(5)由于中间体,有2种形式:CH 3CH=CHCHCH 2CH 3 CH 2CHCH=CHCH 2CH 3++稳定性,不好评价。

故此有2种产物。

BrCH 3CH=CHCHCH 2CH 3 CH 2CHCH=CHCH 2CH 3Br (A) (B)C C ==O OO (6)(7)COOCH 3COOCH 3CH 3CH 3(8) ;COCH 3BrBrCOCH 36.解:(3) >(2) >(5)>(4)>(1)9.解:(1)丙烯醛大于丙烯。

(波普解析)有机化合物波谱解析

(波普解析)有机化合物波谱解析

HMQC
CH2
CH2
-CH2O-
HMQC(13C-1H COSY) 13C,1H 直接相关谱 1JCH
12
总论
3、核磁共振谱(NMR spectroscopy,NMR)
1H-NMR及13C-NMR是在有机化合物分子结构测定中最重要 的工具,两者相辅相成,提供有关分子中氢及碳原子的类型、 数目、相互连接方式、周围化学环境乃至空间排列等结构信 息。在确定有机化合物分子的平面及立体结构中发挥重要作 用。
有机化合物波谱解析
药化与天然药物化学教研室 药学院610室
1
总论
确定有机化合物结构的方法
1、紫外光谱 (ultraviolet spectra, UV) 2、红外光谱 (infrared spectra,IR) 3、核磁共振谱 (nuclear magnetic resonance spectroscopy, NMR) 4、质谱(mass spectra:MS) 5、单晶X射线衍射(X-ray diffraction by asingle crystal )
积分数目
8
总论
3、核磁共振谱(NMR spectroscopy,NMR) 13C-NMR • 基本参数:化学位移()
9
13C-NMR
根据化学位移,确定碳的类型
• sp3: = –20~100 (CH3,CH2,CH,C) • sp2: = 95~220 (C=C,C=N,C=O) • sp: = 70~130 (C≡C)
21
吸收光谱的产生
一个原子或分子吸收一定的电磁辐射能()时,就由一种 稳定的状态(基态)跃迁到另一种状态(激发态),从而产生 吸收光谱。
22
23
24

有机化合物波谱解析

有机化合物波谱解析

仪器分析:测定复杂结构的化合物 样品用量少
• 四谱同时用或联用技术 • 四谱比较: • 灵敏度:MS>UV>IR>1HNMR>13CNMR
MS: 微克级
UV: ppb级
IR:毫克级(可微克级,FTIR)
1HNMR:0.5mg }可回收
13CNMR: 0.5mg
四谱的信息量比较:
1HNMR及13CNMR
loge2
max1
max2
/nm
不论纵坐标选用什么单位,同一化合物的最大吸收对应 的波长(λmax)不变。
四、朗伯-比耳定律(Lambert—Beer定律)
样品的吸光度A与浓度之间的关系为:
A= lc=lgI0/I=lgT-1 式中T—透射率(或透射比);
I0——入射光强度, I——透过光强度; c——被测液浓度, l——被测液厚度,亦称样品槽厚度。 ——吸光系数 ε——摩尔吸光系数(L/mol·cm) E1%1cm ——百分吸光系数,亦称比吸光系数
液浓度为1g/100ml(1%),液层厚度为1cm时,溶液的吸光 度。
3.两种表示方法的换算关系
设吸光物质的摩尔质量为M g/mol ,则
1mol/L=M g/1000ml=M/10·1g/100ml
∴ ε=M/10·E1%1cm
通过紫外光谱测定获得吸收度或透光率,使用 Beer-Lambert定律便可计算ε值。
有机化合物波谱解析
• 概论
色谱分析:GC,HPLC,TLC 与裂解---色谱成分分析
波谱分析:UV,IR,NMR,MS(有机)----结构分析
• 色谱分析:具有高效分离能力可以把复杂有机混合物分离 成单一的纯组分
• 波谱分析:纯样品进行结构分析,特点是:微量化、测 量快、结果准确、重复性好。除MS之外,可回收样品

有机化合物波谱解析

有机化合物波谱解析

3. 紫外吸收光谱表示法及常用术语
图示法,横坐标:波长(nm); 纵坐标:吸光度A(或吸收系数ε,lgε)
术语:
吸收峰:吸收值最大处,对应波长 称最大吸收波长(λmax)。 吸收谷:最小处;最小吸收波长 (λmin), 肩峰:当吸收曲线在下降或上升处 有停顿或吸收稍有增加的现象。这 种现象由主峰内藏有其他吸收峰造 成。 末端吸收:在图谱短波端只呈现强 吸收而不成峰型的部分称为末端吸 收。
确定分子结构:
O
O
O
(A)
(B)
(C)
1.不与2,4-二硝基苯肼作用,有氧; 2.与Grignard试剂作用不给出活泼氢;
因此当时写成B 红外光谱确证其中有羰基,
紫外-可见光谱分析数据为: 211,240,314。推测为A 在红外869.5处有强谱带,怀疑为三环,写成C 核磁共振应用于化学,否认三环结构,
有机化合物 波 谱 解 析(1)
绪论
波谱法: 物质在光(电磁波)的照射下,引起分子内部某
种运动,从而吸收或散射某种波长的光,将入射光强 度变化或散射光的信号记录下来,得到一张信号强度 与光的波长、波数(频率)或散射角度的关系图,用 于物质结构、组成及化学变化的分析,这就叫波谱法
CH3
CH3
绪论
结构鉴定:
一般文献给出的数据:
NMR: 详细 MS: 分子量 IR: 主要官能团 一般无UV数据
对化合物的紫外吸收光谱(UV)、红外吸收光谱(IR)、 核磁共振(NMR)、质谱(MS)的谱图进行分析得到分子式 及结构式。
有机分子结构鉴定方法大体可以分为两个阶段,即经典的 化学分析方法为主和仪器分析为主、化学手段为辅的分析方法。
紫外可见光谱 (UV-VIS); 红外(拉曼)光谱 (IR,Raman); 质谱 (MS); 核磁共振谱 (NMR); X线衍射; 折射率; 电诱导率; 熔点;

有机化合物波谱分析

有机化合物波谱分析

有机化合物波谱分析有机化合物波谱分析是一种重要的手段,可用于确定有机物的分子结构和功能基团。

其中,核磁共振波谱(NMR)和红外光谱(IR)是两种常用的波谱技术。

本文将重点介绍这两种波谱分析技术的基本原理、应用和解读方法。

核磁共振波谱(NMR)是一种基于核自旋的波谱分析方法。

它通过测量核自旋与外加磁场相互作用导致的能量变化来获得信息。

核磁共振波谱图通常由若干个特征峰组成,每个峰对应于一种不同类型的核。

峰的位置称为化学位移,可以通过参考物质(如四氯化硅)来标定。

峰的形状和强度可以提供有关分子结构和相互作用的信息。

核磁共振波谱提供了关于有机分子的碳氢骨架以及官能团、取代基等信息,因此在有机化学和药物化学领域有广泛应用。

红外光谱(IR)是一种基于分子振动的波谱分析方法。

它通过测量物质吸收红外辐射的能量来获得信息。

由于不同分子具有不同的振动模式和结构,它们吸收红外辐射的方式也不同。

红外光谱图通常由一系列特征峰组成,峰的位置称为波数,可以用来标识不同的官能团和化学键。

峰的强度和形状可以提供关于分子的结构和取向的信息。

红外光谱在有机化学、聚合物化学和无机化学等领域都有广泛的应用。

在进行有机化合物波谱分析时,需要先对样品进行样品制备。

核磁共振波谱通常需要溶解样品,然后将溶液转移到核磁共振管中进行测量。

红外光谱则可以对固体、液体和气体样品进行测量,通常需要将样品制备成固体片或涂在透明载体上。

波谱仪器通常会提供相应的样品制备方法和参数设置。

在分析核磁共振波谱和红外光谱时,需要注意以下几个方面。

首先,对于核磁共振波谱,要正确解读峰的化学位移。

化学位移受到许多因素的影响,如官能团、电子效应、取代基等。

因此,需要结合文献和经验来确定不同类型核的化学位移范围。

其次,对于红外光谱,要正确解读峰的波数。

不同的官能团和化学键都有特定的波数范围,可以用来确定它们的存在。

最后,对于波谱图的解读,需要综合考虑各种信息,如位置、形状、强度和相对强度等。

(波普解析)有机化合物波谱解析

(波普解析)有机化合物波谱解析
Lambert-Beer 定律应用?
30
第二节 紫外光谱的基本知识 一、 分子轨道
分子轨道是由组成分子的原子轨道相互作用形成的。 分子成键轨道; 分子反键轨道
33
34
分子轨道的种类
(1) 原子A和B的s轨道相互作用,形成的分子轨道
(2)原子A和B的p轨道相互作用形成的分子轨道
35
(3)原子A的s轨道和原子B的p轨道相互作用形成的分子轨道
• 吸收光谱特征: 吸收峰→λmax 吸收谷→λmin 肩峰→λsh 末端吸收
43
(2)数据表示法
例如λ 溶m剂a2x 37nm(ε104) 或λ 2溶m3剂a7xnm(lgε4.0)
常用术语
生色团(发色团):分子结构中含有π电子的基团 产生π→ π* 跃迁和(或)n→ π*跃迁 跃迁,E较低
例: C=C;C=O;C=N;—N=N— ; —NO2
物质对电磁辐射的吸收性质常用吸收曲线来描述,即考察 物质对不同波长的单色光吸收的情况。
溶液对单色光的吸收程度遵守Lambert-Beer 定律。
A = acl
A 为吸光度(光密度), a为吸光系数, l 为吸收池厚度, c 为溶液的浓度。
29
•若溶液的浓度以mol L-1为单位时, Lambert-Beer 定律的吸 收系数(a) 表示,单位为L mol-1 cm-1,即摩尔吸光系数。 •对于相对分子质量未知的物质,常采用质量百分比浓度 (g/100ml),相应的系数称为百分吸收系数,以E1%1cm表示。 •以摩尔吸收系数 用得最普遍。
三甲基胺n →σ*跃迁的λ分别为173nm、183nm和227nm。
39
第二节 紫外光谱的基本知识
二、 电子跃迁类型

有机化合物波谱综合解析详解

有机化合物波谱综合解析详解
有机化合物波谱综合解析
波谱综合解析的含义:利用各种波谱分
析方法获得尽可能多的结构信息,通过 对各种波谱分析信息之间的相互对比、 印证,从而获得被分析化合物准确结构 的定性分析方法。 不同波谱分析方法在功能上既有重叠部 分,也有互补部分,在综合解吸时应该 充分发挥各自优势。 在条件允许的情况下,要充分关注 1HNMR和13CNMR,因为NMR提供数据 最丰富,可靠性最高。
MS裂解机理
例题2:UV(甲醇):λmax=236 nm,(ε=8200), 300 nm(ε=3500), 1NMR, 13CNMR, IR, MS如下,推测结构:
主要依靠NMR,特别关注偶合常数关系,
积分关系,充分利用二维NMR,以及其 他特殊NMR技术,如DEPT, 结合IR, MS, UV-Vis等数据,将可能的碎 片合理连接。 最后充分利用所有波谱分析数据对可能 结构进行确证,排除所有不合理结构。
1.
例题1:根据提 供的IR, HNMR, 13CNMR和MS 推测结构
解:设MS中m/z250为M+峰,因该峰与相邻碎片离子峰 m/z 206(M-44).m/z 178(M-72)之间关系合理,故m /z 250为分子离子峰。分子量250为偶数,说明化合 物不含氮或偶数个氮。MS中无明显含S、F、C1、Br、I 的特征碎片离子峰存在。
13C
NMR谱中有12种化学环境不同的碳,由峰的相对强 度判断,分子中应含有14个碳。1H NMR谱中积分简比 (由低场至高场)为3:2:1:2:3:4:3,简比数字之 和为18.表明分子中至少含有18个H。由以上分析可知, 当N=0时,O=4,可能分子式为C14H18O14,当N=2 时.O=2.5.不合理应舍去,故该化合物的分子式为 C14H18O14,因UN=6,所以分子中可能有苯基存在。

波谱解析 第六章 -质谱图分析

波谱解析 第六章 -质谱图分析

6.1 确定分子量和元素组成
6.1.6 用低分辨质谱数据推测未知物元素组成
其它元素的存在或数目的推测: 1)氟的存在可从分子离子失去20,50u(分别对应失去HF, CF2)而证实。 2)碘的存在可从分子离子失去M-127得到证实。另外,化合 物含碘将有一个较低的 I(M+1)/I(M)值。 3)若存在m/z31,45,59,的离子,说明有醇、醚形式的 氧存在。从分子量与已知元素组成质量的较大差额也可估计 氧原子的存在个数。 4)从分子量与上述元素组成的质量差额可推测氢原子数目。
M
n1X n1

m1,
M
n2X n2

பைடு நூலகம்
m2
可求得:
n1

m2 X m1 m2
,
M n1(m1 X)
ESI mass spectrum of a protein, cytochrome c, (molecular weight approximately 12360Da), examined (a) at low resolution and (b) at high resolution over a narrow range.
6.1 确定分子量和元素组成
6.1.6 用低分辨质谱数据推测未知物元素组成
由C、H、N、O、S元素组成的化合物CxHyNzOwSs,其同 位素峰簇各峰的相对强度可近似表示为:
I(M 1) 100 1.1x 0.38z 0.78s I(M)
I(M 2)
1.12 (x2 x)
100
断裂的大致顺序:N S、O、、R Cl Br I
i 断裂的大致顺序:卤素 S、O N、C

有机化学波谱分析

有机化学波谱分析
,形成质谱图。
质谱的解析方法
谱图解析
01
根据质谱峰的位置和强度,确定有机分子的分子量和结构信息。
同位素峰分析
02
利用同位素峰的强度比推断有机分子的元素组成。
裂解模式分析
03
研究有机分子在质谱仪中的裂解行为,推断有机分子的结构特
征。
质谱在有机化学中的应用
有机分子鉴定
通过比较标准谱图和实验谱图,确定有机分子的 化学结构。
通过自动化和智能化的技术手段,实 现波谱分析与其他分析方法的快速、 高效联用,提高分析效率,减少人为 误差。
波谱分析在有机化学中的新应用
新材料表征
随着新材料研究的不断深入,波谱分析在新型有机材料如高 分子聚合物、纳米材料等的表征中发挥越来越重要的作用。
生物大分子研究
利用波谱分析技术,研究生物大分子如蛋白质、核酸等的结 构和功能,有助于深入了解生物体系的复杂性和相互作用的 机制。
通过有机化学波谱分析,可以确定有机化合物的分子量、官能团、化学键等结构信息,有助于深入了解 有机化合物的性质和反应机理。
有机化学波谱分析还可以用于有机化合物的定性和定量分析,为有机化合物的合成、分离、纯化等提供 有力支持。
有机化学波谱分析的发展趋势
随着科技的不断进步,有机化学波谱分析技术也在不 断发展,新的技术和方法不断涌现。
THANKS
感谢观看
高灵敏度检测
利用新型的信号处理技术和高精度的 检测设备,提高波谱分析的灵敏度和 分辨率,有助于更准确地鉴定有机化 合物的结构和性质。
波谱分析与其他分析方法的联用
联用技术
将波谱分析与其他分析方法如色谱、 质谱、核磁共振等联用,可以实现更 全面、准确的分析,提高复杂有机混 合物的分离和鉴定能力。

(新)有机化合物谱图解析-质谱图分析(一)

(新)有机化合物谱图解析-质谱图分析(一)
+ + +
Analyte Ion (M+H)
+ + +
CH5 , C2H5 , C3H5 C4H9 NH4 NH4 F
+ +
(M+H) , (M+ C2H5) , (M+ C3H5)
+ + +
+
(M+H) , (M+ C4H9) (M+H) , (M+ NH4) (M+H)
+
+
+
+ -
CH3O
(M-H)
+
3)应用氮规则 当化合物不含氮或含偶数个氮时,其分子量为偶数; 当化合物含奇数个氮时,其分子量为奇数。
4)分子离子峰的强度和化合物的结构类型密切相关。 (1) 芳香化合物共轭多烯脂环化合物短直链烷烃 某些含硫化合物。通常给出较强的分子离子峰。 (2) 直链的酮、酯、醛、酰胺、醚、卤化物等通常显 示分子离子峰。 (3) 脂肪族且分子量较大的醇、胺、亚硝酸酯、硝酸 酯等化合物及高分支链的化合物通常没有分子离子峰。
-
(M-H)
(M+ C4H9)
+
CI(with isobutane as the reagent gas) and EI mass spectra of C6H5CH2CH2CH2CH2CH3
6.1.6 用低分辨质谱数据推测未知物元素组成
1)利用元素分析数据求元素组成 。 2)利用碳谱、氢谱数据。 3)利用同位素峰簇 有机化合物中的常见元素通常不只含一种同位素,因此 分子离子峰或碎片离子一般都以同位素峰簇的形式存在。 设某一元素有两种同位素,在某化合物中含有m个该元 素的原子,则分子离子同位素峰簇各峰的相对强度为:

波谱分析第六章UV谱

波谱分析第六章UV谱

b.二取代苯:
Ⅰ.对位二取代苯
若两个取代基属同一类型,则E2带红移值由红移效应 最大的基团决定;若两个取代基属不同类型,则E2 带红移值由二者协同作用决定,且红移增值大于二 者单取代的红移增值之和。
Ⅱ.邻位和间位二取代苯
此类二取代苯不论取代基是何类型,对E2带红移值的 贡献大致等于两个取代基红移值增值之和。
根据量子理论,光子(或电磁辐射)的能量为: E=hν=hc/λ=hcσ 紫外光的能量与化学键的能量相仿,有足够的能量
使分子进行光化学反应。
6.1.2.紫外吸收光谱的产生及其表示方法
1.分子中价电子在电子能级间跃迁产生紫外吸收光 谱;
分子和原子一样,也有它的特征分子能级,这些能 级是由分子内部运动决定的。分子内部运动包括① 电子围绕原子核的运动;②分子内原子在平衡位置 附近的振动;③分子绕其重心的转动;④分子重心 的平移;⑤分子中各基团的内旋转。
b. Woodward-Fieser规则只适合成串共轭的分子, 不适合交叉共轭的分子。交叉共轭体系只能选取一 个,分叉上的双键不算延长双键。
同环双键母体 253
五个取代烷基5×5 两个环外双键5×2
288nm(285nm)
c.选择较长共轭体系作为母体。若同时存在同环双 键和异环双键时,应选取同环双键作为母体。
(3)含不饱和杂原子化合物:例如:醛、酮、酯、酰胺、 酰氯、睛、重氮、硝基、亚硝基、亚砜等。此类化合物可发 生σ→σ*,n→σ*,π→π*和n→π*其中n→π*(R吸收带) 跃迁所需能量较低,吸收带处在近紫外区,易于检测,可用 于结构分析,只不过吸收强度弱。
对于醛、酮类化合物,R带在270~300 nm,εmax=10~ 20L·mol-1·cm-1

波谱分析-有机化学PDF课件-中国科技大学-06

波谱分析-有机化学PDF课件-中国科技大学-06

1 2 k

m1 .m2 m1 m2
式中:k — 化学键的力常数,单位为N.cm-1 μ — 折合质量,单位为 g
力常数k:与键长、键能有关:键能↑(大),键长 ↓(短),k↑。
化学 键 C― C C= C C≡ C 键长 (nm) 0.154 0.134 0.116 键能 (KJ mol-1) 347.3 610.9 836.8 力常数 k(N.cm-1) 4.5 9.6 15.6 波数范围 (cm-1) 700~1200 1620~1680 2100~2600
产生红外光谱的必要条件是: 1. 辐射光的频率与分子振动的频率相当。 2. 能引起分子偶极矩变化的振动才能产生红外收。 三、有机化合物的红外光谱解析 (一) 特征谱带区、指纹区和相关峰
1、4000-1400cm-1 特征谱带区 H-X (X=O、N、C) 主要是左边各化学键 的伸缩振动吸收 C=X (X=O、N、C) 峰少,易辨认,用于 C X (X=N、C) 鉴定某功能团的存在
γH ν= 2π 0

质子实际感受到的磁场并不是H0,而是:

H = H0 + H’ = H0 +σH0 =H0(1+ σ)
σ 为屏蔽常数
当H’在质子处与H0反向,质子感受到的磁场减弱—屏蔽 当H’在质子处与H0同向,质子受到的磁场增强—去屏蔽 不同质子所处的环境不同,产生的H’不同;尽管实 现共振的实际磁场 H是一样的,但共振时观察到的外 加磁场H0不同—这种由于电子屏蔽或去屏蔽引起的共 振吸收位置的移动称为化学位移
二、红外光谱 的基本原理 1.分子的振动方式 (1)伸缩振动:
沿轴振动,只改变键长,不改变键角
C
对称伸缩振动(νs) -1 (2853 cm )

有机化合物波谱分析

有机化合物波谱分析

记忆方法 取代基 供电基团 o m p 之和
-OH(或-OCH3)
-R 吸电基团 -COR
-0.5
-0.2 +0.6
-0.1
-0.1 +0.1
-0.4
-0.2 +0.3
-1.0
-0.5 +1.0
35
一、1H-NMR(氢核磁共振) 2、峰面积与氢核数目
36
一、1H-NMR(氢核磁共振) 3、峰的裂分与偶合常数
38
化学等价核
通过对成操作(绕对称轴旋转、通过对称面、对称中 心反映,绕更迭对称轴旋转)或快速机制,位置可以互换, 这些核称为化学位移等价核。 1、等位质子; 2、对映异位质子; 3、非对映异位质子;
磁等价(磁等同)核
在化学等价基础上,若它们对偶合系统内其它任何一个 原子以相同大小偶合(空间结构),则为磁等价核。
uC=O 1675cm-1
uOH 3365cm-1
15
影响IR吸收的因素 二、空间效应(steric effect)
(4)环张力
16
影响IR吸收的因素 二、空间效应(steric effect)
(4)环张力
17
影响IR吸收的因素
三、氢键效应(hydrogen bond effect)
形成分子内氢键,谱带变宽,波数降低,但强度基本不增。 ∵形成氢键,使-O—H+键拉长,偶极矩增增加
123.9
117.7 115.7
123.0
65
化合物 3
66
67
68
6.80(1H,d,J=8.4Hz) 7.02(1H,d,J=8.4Hz)
10.13(1H,s)
9.37(1H,s)

第6章结构表征

第6章结构表征

3 指纹区 (低频区)
小于1600cm-1的振动频率都在此区,主要是C-C,C-N,CO等单键的伸缩振动和各种弯曲振动的频率。
分子结构的微小变化,这些键的振动频率都能反映出来,就象人的指 纹一样有特征,故称指纹区。能反映化合物的精细结构。
17
18
6.2.3 红外吸收光谱图及其解析 1. 红外吸收光谱图
剪 式 振 动
平 面 摇 摆
非 平 面 摇 摆
扭 曲 振 动
12
面 内 弯 曲
面 外 弯 曲
经典力学说明分子的振动: 一般用不同质量的小球代表原子,以不同硬度的 弹簧代表各种化学键。
K m 1 m 2
双 原 子 分 子 伸 缩 振 动 示 意 图
化学键的振动频率ν 与化学键的强度(力常数 k ) 及振动原子的质量m1、m2有关,关系式为:
吸 收 强 度 OH CH3 CH2
1 乙醇的 HNMR 图
Ho
这种由于氢原子在分子中的化学环境不同,因而在不同磁场 强度下产生吸收峰,峰与峰之间的差距称为化学位移,用δ 表示。 25
2.屏蔽效应—化学位移产生的原因
有机物分子中不同类型质子的周围的电子云密度不一样, 在外加磁场作用下,引起电子环流,电子环流围绕质子产生一 个感应磁场(H’),其方向与外磁场方向相反,这个感应磁 场使质子所感受到的磁场强度减弱了,即实际上作用于质子的 磁场强度比Ho要小。 这种由于电子产生的感应磁场对外加磁场的抵消作用称为 屏蔽效应。
(1) 伸缩振动
成键的两原子沿键轴方向伸长和缩短的振动称为伸缩振 动,常用ν 表示。 包括:对称伸缩振动(νs)、不对称伸缩振动(νas)。
伸缩振动—(键长发生改变,键角不变)。
11

有机化合物波谱解析第6章 紫外光谱

有机化合物波谱解析第6章 紫外光谱
杂原子上的非键电子向*轨道的跃迁,弱谱带。
6.1.2 电子跃迁选择定则(Selection rule)
理论上: 允许的跃迁,跃迁几率大,吸收强度高( max大); 禁阻的跃迁,跃迁几率小,吸收强度低或者观察不到。
实际上,禁阻的跃迁也可以观察到,只是其强度要比允许 跃迁要小得多。
电子跃迁选择定则
加合原则
苯酚在不同介质中的紫外吸收
苯胺在不同介质中的紫外吸收
酚酞指示剂的显色原理
(4)多取代苯
当两个取代基相同类型时: 双取代的最大吸收波长近似为两者单取代时的最
大波长。
当两个取代基不同类型时:
稠环芳烃的紫外光谱
(7)芳杂环化合物
6.7 紫外光谱在有机结构分析中的应用
6.7.1 紫外光谱解析 紫外谱图主要提供化合物的共轭体系或某些羰基
(3) 按已知α, β-不饱和酮的K带max248 nm,其基值为215 nm, 推测:只有在α位有一个取代基及β位有两个取代基才与实测 值接近。即max=215 + 10 + 2×12 =249 nm
综合以上分析,化合物的可能结构为:
有一化合物C10H16由红外光谱证明有双键和异丙基存在,其 紫外光谱max = 231nm (ε= 9000),此化合物是下列哪种结构?
2、一个化合物的结构为A或B,它的紫外吸收max352 nm ,其 可能的结构式是哪一个?
作业 如何用紫外光谱区别下列化合物?
3、如何用紫外光谱区别下列化合物?
表6.5 共轭体系K带值的max经验计算参数
(1) 选择较长共轭体系作为母体,若同时存在同环双键和异环双键 时,应选取同环双键作为母体。如:
(2) 交叉共轭体系只能选取一个共轭双键,分叉上的双键不算延长 双键。如:

有机化合物波谱分析(课堂PPT)

有机化合物波谱分析(课堂PPT)
23
不同能量的电磁波能引起物质不同运动状态的变化,促 使一定能态的基态跃迁至激发态,在连续的电磁波谱上出现 吸收信号。
3
高能辐射区 光学光谱区
γ 射线 x 射线 紫外光 可见光 红外光
引起原子核的裂变

使内层电子逸出轨道
引起原子和分子外层价电子跃迁 引起分子振动和转动状态变化
波长
波谱区
微波 引起单电子自旋改变烯Βιβλιοθήκη 类型各类烯烃的特征吸收位置表
v=C–H/cm-1
vC=C/cm-1
RHC=CH2 R1R2C=CH2 R1HC=CHR2(Z)
3100~3000(m) 3100~3000(m) 3100~3000(m)
R1HC=CHR2(E) 3100~3000(m)
R1R2C=CHR3
3100~3000(m)
面外弯曲γ:包括面外摇摆和蜷曲。 面外摇摆ω
蜷曲τ
14
变形振动δ :包括对称变形振动和不对称变形振动。 对称的变形振动δs
不对称的变形振动δas
15
8.1.2 烃类化合物的IR谱图解析
8.1.2.1 烷烃
烷烃的IR谱应关注三个吸收段的情况: (1) C–H伸缩振动(vC–H):3000~2800cm-1;
形判断化合物的官能团,确定化合物类别。 红外光谱产生必要条件 分子在振、转过程中的净偶极矩的变化不为0,即分子产生
红外活性振动过程中:
Δμ ≠ 0
8
8.1.1 分子的振动和红外光谱
8.1.1.1 振动方程式
√ √ 1
v振 动 =2 π
μ K=2 1 π Km 11+m 12
√ 1
σ=2πc
K
m 11+

波谱分析-第六章 波谱综合解析

波谱分析-第六章 波谱综合解析
C≡C 65~100 若有氢,在 2~3
13C-NMR
1H-NMR
MS (m/z)
烯丙基开裂 产生41、55、 69离子峰。
2140~2100, 如果有氢原子 26离子峰。 在3310~3200出 现吸收带。 首先看 1650~1450的吸 收谱带,然后 用900~650可推 断出取代类型。
芳香 环
可推出分子中元素的组成,进而得到 可能的分子式。 (3)结合核磁共振氢谱、碳谱推测简单烃类等 分子的分子式。 (4)综合光谱材料与元素分析确定分子式。 (a)确定碳原子数 ■从13C-NMR得出碳原子的类型数。 (b)确定氢原子数
■从13C-NMR计算出碳上质子的总数HC。
■从1H-NMR的积分强度计算得到的
氢原子数HH。 (c)确定氧原子数 ♦由IR确定有无vOH、vC=O和vC-O-C 的特征 吸收谱带,进一步用 13C-NMR、 1H-NMR 和MS 等有关峰数确定。 (d)确定氮原子数 ♦可由元素分析氮含量推测氮原子个数。 与波谱数据对照。 ♦若MS中有分子离子峰且m/z 为奇数时,分 子中应含奇数个氮。
综合解析就是各种波谱法彼此补充,
用于复杂有机化合物的结构鉴定。 7.1 各种谱图解析时的作用
1.UV法: (1) 判断芳香环是否存在; (2) 判断共轭体系是否存在; (3)由Woodward一Fieser 规则估算共轭双键 或α,β一不饱和醛酮或用F. Scott 经验 公式计算芳香羰基化合物的λmax。
解:从 UV:λmax =275nm(εmax=12) 无共轭系统。
IR光谱:
可看出:
无芳香系统,但有 C=O、-CH2-、-CH3。
NMR:
也示无芳香系统。
1. 确定各部分结构:

第六章 有机化合物的波谱分析

第六章 有机化合物的波谱分析

HO
H
CO
CC
H
HH CC CO
HO
通常 反式异构体 大于顺式异构体的:
。。。。。
。。。。。
反式异构体 max = 273nm(= 21000)
顺式异构体 max = 264nm(= 1400)
6.3 红外光谱 ( I R )Infrared Spectroscopy
物质吸收的电磁辐射如果在红外光区域,用红外光谱仪把产生的红外谱带记录下来,就得到红 外光谱图。 所有有机化合物在红外光谱区内都有吸收,因此,红外光谱的应用广泛,在有机化合物的结构 鉴定与研究工作中,红外光谱是一种重要手段,用它可以确证两个化合物是否相同,也可以确 定一个新化合物中某一特殊键或官能团是否存。 6.2.1 红外光谱图的表示方法 红外光谱图用波长(或波数)为横坐标,以表示吸收带的位置,用透射百分率(T%)为纵坐标 表示吸收强度。 横坐标 --- 波数(cm-1, 下方), 波长(mm,上方) 纵坐标 --- 吸光强度(A)或透过率(T,%) 谱区 --- 4000 – 600 cm-1
化学的迅速发展。
一、 电磁波的一般概念
• 光是电磁波,有波长和频率两个特征。电磁波包括了一个极广阔的区域,从波长只有千万
分之一纳米的宇宙线到波长用米,甚至千米计的无线电波都包括再内,每种波长的光的频
率不一样,但光速都一样:即 3×1010cm/s。
光的频率与波长
波长与频率的关系为: υ= c /λ
υ=频率,单位:赫(HZ);
K 吸收带为 n π * 跃迁引起的吸收带,其特点为吸收峰很强,εmax > 10000。共轭双键增加, λmax 向长波方向移动,εmax 也随之增加。
B 吸收带为苯的 n π * 跃迁引起的特征吸收带,为一宽峰,其波长在 230~270nm 之间,中 心再 254nm,ε 约为 204 左右。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-9-13
14
三、紫外光谱图的解析
一般规律:
⑴ 若在200~750 nm波长范围内无吸收峰,则可能是直链烷 烃、环烷烃、饱和脂肪族化合物或仅含一个双键的烯烃等。 ⑵ 若在270~350 nm波长范围内有低强度吸收峰(κ=10~ 100L· -1· -1),(n→π跃迁),则可能含有一个简单非共轭 mol cm 且含有n电子的生色团,如羰基。 ⑶ 若在250~300 nm波长范围内有中等强度的吸收峰则 可能含苯环。
紫外光谱的解析步骤
第一步:观察谱图,首先观察谱带数和波长λ延伸到可见 光的程度,确定根据λmax和κmax值确定可能 的发色基团。 第二步:根据模型发色基的紫外谱图确定研究谱图中对应 的主要发色基。 第三步:在已确定模型发色基的基础上, 确定所研究谱图 的分子结构,查阅资料或标准紫外光谱图以及其他 辅助信息最终确定的分子结构。
跃迁所需能量大小顺序: * > n* > * > n*
2013-9-13 9
电子跃迁和所需能量
2013-9-13
10
1、 * 跃迁
需要的能量较高,一般发生在真空紫外光区。饱和烃中的 -c-c-键属于这类跃迁,例如乙烷的最大吸收波长max为135 nm。可作为紫外光谱分析的溶剂。
振动( s )和不对称伸缩振动(as)。 特点:振动时只发生键长变化,键角不改变。
2013-9-13 21
2、弯曲振动(键长不变、键角变)
弯曲振动是离开键轴前、后、左、右的振动,特点是键长
不变键角变化,故力常数变化小,振动频率都很低。
2013-9-13
22
(二)红外光谱
(1)官能团区( 1250-3700cm-1 ):高频区,有机化合物各种 官能团的吸收峰都在此区,可用来鉴定官能团。 (2)指纹区(小于1250 cm-1 ):低频区,主要代表某些分子骨 架的特征振动只有结构完全相同的化合物,其指纹区才相同。
2013-9-13
18
红外光谱概况
红外吸收光谱是由分子的振动能级的跃迁而产生的吸收
光谱,用于推断未知物的结构, 主要用途提供分子中官能团 的结构信息。 红外谱图以波长为横坐标,表示吸收带的位置,以透射 率为纵坐标,表示光的吸收强度。
2013-9-13
压片机
红外光谱仪
19
一、分子振动、分子结构与红外光谱
2013-9-13 15
一般规律
⑷ 若在210~250 nm波长范围内有强吸收峰,则可
能含有2个共轭双键;若在260~300 nm波长范围内有 强吸收峰,则说明该有机物含有3个或3个以上共轭双 键。 ⑸ 若该有机物的吸收峰延伸至可见光区,则该有机 物可能是长链共轭或稠环化合物。
2013-9-13
16
分子中的质子与裸露的质子比较,其周围有电子(化学环 境不同) ,电子使质子的核磁共振信号出现在高磁场处,这种 现象称为电子(化学环境)对质子的屏蔽作用(效应)。 有机分子中与不同基团相连接的氢原子的周围电子云密 度不一样,因此它们的信号就分别在谱的不同位置上出现。 质子信号位置上的这种差异叫做化学位移,用δ表示。
果、化学特征反应及核磁共振谱、紫外光谱、质谱等测定结果, 确定可能的构造式。
2013-9-13 4.查阅标准谱图验证 25
第四节 核磁共振谱
原子核在强磁场条件下,吸收无线电波的能量,使自旋能级
发生跃迁所产生的吸收光谱;应用最广泛的为H质子核磁共振 (NMR)。
具有奇数原子序数或原子质量(或两者都有)的元素,如1H、
2013-9-13
30
化学位移的表示方法
化学位移的差别仅为百万分之几,精确测量十分困难,采 用相对数值;以(CH3)4Si (TMS)四甲基硅烷为标准物质,将 其化学位移值定为零,其它质子的化学位移值与其对照,取
其相对值,单位:ppm。

试样 TMS 0
试样 -TMS = 0
106
试样的信号频率(HZ) 标准物质TMS的信号频率(HZ) 仪器电磁波辐射频率(HZ)
31
2013-9-13
TMS?
(1) 屏蔽效应大,共振信号在高场区(δ值规定为0),一般有机
物的δ吸收峰均出现在它的左边。 (2) 结构对称,是一个单峰
(3) 容易回收(b.p低),与样品不缔合。
2013-9-13
2013-9-13
3
第一节 概述
波谱: 分子吸收电磁波的能量后,从较低能级跃迁到较高 能级,便产生波吸收谱,称波谱。 不同的分子跃迁的能级差不同,则吸收的光的波长不同, 就产生不同的波谱。 有机化合物的结构表征中使用最为广泛的是:红外光谱、
紫外光谱、核磁共振谱和质谱。
特点:省时、省力、省钱、快速、准确,试剂耗量是微克 级的,甚至更少。
应标明所用溶剂。
8
二、紫外光谱的基本原理
(一) 紫外光谱的产生(电子跃迁) hc hc E=hv E=

分子吸收紫外光区的电磁辐射,引起电子能级的跃迁即成 键电子或非键电子由基态跃迁到激发态。 hc < 200nm 远紫外区 ; 200 ~ 400nm 近紫外区
(二) 电子跃迁的类型
有机分子最常见的电子跃迁: * * n* n*
动,这种效应称为蓝移
(紫移)效应。
2013-9-13
13
发色基和助色基
发色基:化合物中所含有C=C,C=O,C=N和N=O等不饱和 基称为发色基。含发色基的分子可以吸收紫外和可见光,当 共轭程度增加时产生明显的红移。 助色基:含有未成对电子对的基团(-NH2,-NR2,-OH,OR,-SR,-X等)称为助色基,连到共轭链端能产生红移。
(一)分子振动的类型 物质吸收红外光的能量后产生振动能级跃迁,振动能级 的大小与化学键的类型和振动方式有关;振动方式有伸缩
振动和弯曲振动两种。
2013-9-13
20
1、伸缩振动(键长变化,键角不变)
C
C
对称伸缩振动(Vs) 不对称伸缩振动(Vas) 2853cm-1 2930cm-1
原子沿化学键轴伸长和缩短的振动,用ν表示; 有对称伸缩
裂分规律:分子中某个质子与n个磁等性质子自旋偶合,该
质子核磁共振吸收峰裂分成n+1个峰,称为n+1规律。
2013-9-13
37
四、1H NMR的自旋偶合与自旋裂分
裂分后各峰面积 (强度)
2013-9-13
38
四、1H NMR的自旋偶合与自旋裂分
偶合常数 互相偶合的质子每组吸收峰内各峰之间的距离,称为偶 合常数,用Jab表示,单位Hz;下标ab表示相互偶合的磁不
max为162 nm。
4. n*跃迁 这类跃迁发生在近紫外光区。它是简单的生色团如羰基、 硝基等中的孤对电子向反键轨道跃迁。其特点是谱带强度
弱,摩尔吸光系数小,通常小于100。
2013-9-13 12
红移和蓝移(紫移)
某些取代基的引入使吸收峰 的波长将向长波方向移动, 这种效应称为红移效应。 某些取代基的引入使吸收 峰的波长会向短波方向移
2013-9-13 17
第三节 红外光谱(IR)
红外区的分类: λ波长 近红外区: 0.78—3μm σ波数 12820—3333 ㎝-1
中红外区: 3—30μm
远红外区: 30—300μm
3333—333 ㎝-1
333— 33㎝-1
绝大多数的有机化合物和无机化合物的化学键的吸收
均出现在中红外区域, 波数在400—4000 ㎝-1 。
13C、15N、17O、31P等,在磁场的作用下会发生核磁共振(NMR)
现象;如果质子数和质量数都是偶数,则不能产生NMR。
2013-9-13
26
概述
核磁共振(NMR)现象已应用到物质结构的测定及疾 病诊断等诸方面。 核磁共振仪已成为物质结构分析不可缺少的工具,已 有分辨率相当高的800MHz的核磁共振仪。 给出的是关于分子中各种氢原子、碳原子等的原子数 目及所处化学环境等信息。 研究最广的是1H NMR和13C NMR。
2013-9-13 23
2013-9-13
24
小结:红外谱图解析步骤
1、观察官能团吸收区谱图 与标准图谱对照确定各吸收峰的归属,判断主要官能团及 化合物的类型。
2、观察指纹区的谱图
观察指纹区内吸收峰,进一步推测基团间的结合方式。 3、确定可能的构造式
根据以上两步的推断,结合合成过程、物理常数测定结
起,称为紫外-可见光谱。
紫外吸收光谱:分子价电子能级跃迁。
紫外光波长范围:100-400 nm. (1) 远紫外光区: 100-200nm ;
2013-9-13 (2) 近紫外光区: 200-400nm; (3) 可见光区:
400-800nm
6
一、紫外光谱图
紫外光谱图通常以波长λ为横坐标,吸光度A为纵坐标。 朗伯-比尔(Lambert-Beer)定律:
κ
C ----- 为试样溶液的浓度, mol·L-1 L ----- 吸收池长度,cm κ----- 化合物吸收光谱的特定常数, 其大小与试样浓度、吸收池的 长度无关,L ·mol-1 ·cm-1
4 报导化合物的紫外光谱图以及
1
2
3 250 300 2013-9-13
λ
350 400nm
化合物的λmax和κmax时,
2013-9-13
27
一、原子核的自旋与核磁共振
质子可以自旋产生磁矩。在磁场中,质子自旋所产生
的磁矩可以有两种取向:与磁场方向一致或相反。
2013-9-13
28
二、核磁共振仪和核磁共振谱
核磁共振仪器 Bruker-400 核磁管 5*18 mm
2013-9-13
核磁共振谱
29
三、1H NMR的化学位移
相关文档
最新文档