数据结构严蔚敏 -查找表3
严蔚敏数据结构题集(C语言版)答案
任何的限度,都是从自己的心坎开端的。
每一奋发尽力的背地,必有加倍的弥补。
严蔚敏数据结构C语言版答案详解第1章绪论1.1 简述下列术语:数据数据元素、数据对象、数据结构、存储结构、数据类型和抽象数据类型解:数据是对客观事物的符号表示在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称数据元素是数据的基本单位在计算机程序中通常作为一个整体进行考虑和处理数据对象是性质相同的数据元素的集合是数据的一个子集数据结构是相互之间存在一种或多种特定关系的数据元素的集合存储结构是数据结构在计算机中的表示数据类型是一个值的集合和定义在这个值集上的一组操作的总称抽象数据类型是指一个数学模型以及定义在该模型上的一组操作是对一般数据类型的扩展1.2 试描述数据结构和抽象数据类型的概念与程序设计语言中数据类型概念的区别解:抽象数据类型包含一般数据类型的概念但含义比一般数据类型更广、更抽象一般数据类型由具体语言系统内部定义直接提供给编程者定义用户数据因此称它们为预定义数据类型抽象数据类型通常由编程者定义包括定义它所使用的数据和在这些数据上所进行的操作在定义抽象数据类型中的数据部分和操作部分时要求只定义到数据的逻辑结构和操作说明不考虑数据的存储结构和操作的具体实现这样抽象层次更高更能为其他用户提供良好的使用接口1.3 设有数据结构(DR)其中试按图论中图的画法惯例画出其逻辑结构图解:1.4 试仿照三元组的抽象数据类型分别写出抽象数据类型复数和有理数的定义(有理数是其分子、分母均为自然数且分母不为零的分数)解:ADT Complex{数据对象:D={ri|ri为实数}数据关系:R={<ri>}基本操作:InitComplex(&Creim)操作结果:构造一个复数C其实部和虚部分别为re和imDestroyCmoplex(&C)操作结果:销毁复数CGet(Ck&e)操作结果:用e返回复数C的第k元的值Put(&Cke)操作结果:改变复数C的第k元的值为eIsAscending(C)操作结果:如果复数C的两个元素按升序排列则返回1否则返回0IsDescending(C)操作结果:如果复数C的两个元素按降序排列则返回1否则返回0Max(C&e)操作结果:用e返回复数C的两个元素中值较大的一个Min(C&e)操作结果:用e返回复数C的两个元素中值较小的一个}ADT ComplexADT RationalNumber{数据对象:D={sm|sm为自然数且m不为0}数据关系:R={<sm>}基本操作:InitRationalNumber(&Rsm)操作结果:构造一个有理数R其分子和分母分别为s和mDestroyRationalNumber(&R)操作结果:销毁有理数RGet(Rk&e)操作结果:用e返回有理数R的第k元的值Put(&Rke)操作结果:改变有理数R的第k元的值为eIsAscending(R)操作结果:若有理数R的两个元素按升序排列则返回1否则返回0IsDescending(R)操作结果:若有理数R的两个元素按降序排列则返回1否则返回0Max(R&e)操作结果:用e返回有理数R的两个元素中值较大的一个Min(R&e)操作结果:用e返回有理数R的两个元素中值较小的一个}ADT RationalNumber1.5 试画出与下列程序段等价的框图(1) product=1; i=1;while(i<=n){product *= i;i++;}(2) i=0;do {i++;} while((i!=n) && (a[i]!=x));(3) switch {case x<y: z=y-x; break;case x=y: z=abs(x*y); break;default: z=(x-y)/abs(x)*abs(y);}1.6 在程序设计中常用下列三种不同的出错处理方式:(1) 用exit语句终止执行并报告错误;(2) 以函数的返回值区别正确返回或错误返回;(3) 设置一个整型变量的函数参数以区别正确返回或某种错误返回试讨论这三种方法各自的优缺点解:(1)exit常用于异常错误处理它可以强行中断程序的执行返回操作系统(2)以函数的返回值判断正确与否常用于子程序的测试便于实现程序的局部控制(3)用整型函数进行错误处理的优点是可以给出错误类型便于迅速确定错误1.7 在程序设计中可采用下列三种方法实现输出和输入:(1) 通过scanf和printf语句;(2) 通过函数的参数显式传递;(3) 通过全局变量隐式传递试讨论这三种方法的优缺点解:(1)用scanf和printf直接进行输入输出的好处是形象、直观但缺点是需要对其进行格式控制较为烦琐如果出现错误则会引起整个系统的崩溃(2)通过函数的参数传递进行输入输出便于实现信息的隐蔽减少出错的可能(3)通过全局变量的隐式传递进行输入输出最为方便只需修改变量的值即可但过多的全局变量使程序的维护较为困难1.8 设n为正整数试确定下列各程序段中前置以记号@的语句的频度:(1) i=1; k=0;while(i<=n-1){@ k += 10*i;i++;}(2) i=1; k=0;do {@ k += 10*i;i++;} while(i<=n-1);(3) i=1; k=0;while (i<=n-1) {i++;@ k += 10*i;}(4) k=0;for(i=1; i<=n; i++) {for(j=i; j<=n; j++)@ k++;}(5) for(i=1; i<=n; i++) {for(j=1; j<=i; j++) {for(k=1; k<=j; k++)@ x += delta;}(6) i=1; j=0;while(i+j<=n) {@ if(i>j) j++;else i++;}(7) x=n; y=0; // n是不小于1的常数while(x>=(y+1)*(y+1)) {@ y++;}(8) x=91; y=100;while(y>0) {@ if(x>100) { x -= 10; y--; }else x++;}解:(1) n-1(2) n-1(3) n-1(4) n+(n-1)+(n-2)+ (1)(5) 1+(1+2)+(1+2+3)+...+(1+2+3+...+n)===(6) n(7) 向下取整(8) 11001.9 假设n为2的乘幂并且n>2试求下列算法的时间复杂度及变量count的值(以n的函数形式表示)int Time(int n) {count = 0; x=2;while(x<n/2) {x *= 2; count++;}return count;}解:count=1.11 已知有实现同一功能的两个算法其时间复杂度分别为和假设现实计算机可连续运算的时间为秒(100多天)又每秒可执行基本操作(根据这些操作来估算算法时间复杂度)次试问在此条件下这两个算法可解问题的规模(即n值的范围)各为多少?哪个算法更适宜?请说明理由解:n=40n=16则对于同样的循环次数n在这个规模下第二种算法所花费的代价要大得多故在这个规模下第一种算法更适宜1.12 设有以下三个函数:请判断以下断言正确与否:(1) f(n)是O(g(n))(2) h(n)是O(f(n))(3) g(n)是O(h(n))(4) h(n)是O(n3.5)(5) h(n)是O(nlogn)解:(1)对 (2)错 (3)错 (4)对 (5)错1.13 试设定若干n值比较两函数和的增长趋势并确定n在什么范围内函数的值大于的值解:的增长趋势快但在n较小的时候的值较大当n>438时1.14 判断下列各对函数和当时哪个函数增长更快?(1)(2)(3)(4)解:(1)g(n)快 (2)g(n)快 (3)f(n)快 (4) f(n)快1.15 试用数学归纳法证明:(1)(2)(3)(4)1.16 试写一算法自大至小依次输出顺序读入的三个整数XY和Z的值解:int max3(int xint yint z){if(x>y)if(x>z) return x;else return z;elseif(y>z) return y;else return z;}1.17 已知k阶斐波那契序列的定义为...;试编写求k阶斐波那契序列的第m项值的函数算法k和m均以值调用的形式在函数参数表中出现解:k>0为阶数n为数列的第n项int Fibonacci(int kint n){if(k<1) exit(OVERFLOW);int *px;p=new int[k+1];if(!p) exit(OVERFLOW);int ij;for(i=0;i<k+1;i++){if(i<k-1) p[i]=0;else p[i]=1;}for(i=k+1;i<n+1;i++){x=p[0];for(j=0;j<k;j++) p[j]=p[j+1];p[k]=2*p[k-1]-x;}return p[k];}1.18 假设有ABCDE五个高等院校进行田径对抗赛各院校的单项成绩均已存入计算机并构成一张表表中每一行的形式为项目名称性别校名成绩得分编写算法处理上述表格以统计各院校的男、女总分和团体总分并输出解:typedef enum{ABCDE} SchoolName;typedef enum{FemaleMale} SexType;typedef struct{char event[3]; //项目SexType sex;SchoolName school;int score;} Component;typedef struct{int MaleSum; //男团总分int FemaleSum; //女团总分int TotalSum; //团体总分} Sum;Sum SumScore(SchoolName sn Component a[]int n){Sum temp;temp.MaleSum=0;temp.FemaleSum=0;temp.TotalSum=0;int i;for(i=0;i<n;i++){if(a[i].school==sn){if(a[i].sex==Male) temp.MaleSum+=a[i].score;if(a[i].sex==Female) temp.FemaleSum+=a[i].score;}}temp.TotalSum=temp.MaleSum+temp.FemaleSum;return temp;}1.19 试编写算法计算的值并存入数组a[0..arrsize-1]的第i-1个分量中(i=12...n)假设计算机中允许的整数最大值为maxint则当n>arrsize或对某个使时应按出错处理注意选择你认为较好的出错处理方法解:#include<iostream.h>#include<stdlib.h>#define MAXINT 65535#define ArrSize 100int fun(int i);int main(){int ik;int a[ArrSize];cout<<"Enter k:";cin>>k;if(k>ArrSize-1) exit(0);for(i=0;i<=k;i++){if(i==0) a[i]=1;else{if(2*i*a[i-1]>MAXINT) exit(0);else a[i]=2*i*a[i-1];}}for(i=0;i<=k;i++){if(a[i]>MAXINT) exit(0);else cout<<a[i]<<" ";}return 0;}1.20 试编写算法求一元多项式的值的值并确定算法中每一语句的执行次数和整个算法的时间复杂度注意选择你认为较好的输入和输出方法本题的输入为和输出为解:#include<iostream.h>#include<stdlib.h>#define N 10double polynomail(int a[]int idouble xint n);int main(){double x;int ni;int a[N];cout<<"输入变量的值x:";cin>>x;cout<<"输入多项式的阶次n:";cin>>n;if(n>N-1) exit(0);cout<<"输入多项式的系数a[0]--a[n]:";for(i=0;i<=n;i++) cin>>a[i];cout<<"The polynomail value is "<<polynomail(a nxn)<<endl;return 0;}double polynomail(int a[]int idouble xint n)if(i>0) return a[n-i]+polynomail(ai-1xn)*x;else return a[n];}本算法的时间复杂度为o(n)第2章线性表2.1 描述以下三个概念的区别:头指针头结点首元结点(第一个元素结点)解:头指针是指向链表中第一个结点的指针首元结点是指链表中存储第一个数据元素的结点头结点是在首元结点之前附设的一个结点该结点不存储数据元素其指针域指向首元结点其作用主要是为了方便对链表的操作它可以对空表、非空表以及首元结点的操作进行统一处理2.2 填空题解:(1) 在顺序表中插入或删除一个元素需要平均移动表中一半元素具体移动的元素个数与元素在表中的位置有关(2) 顺序表中逻辑上相邻的元素的物理位置必定紧邻单链表中逻辑上相邻的元素的物理位置不一定紧邻(3) 在单链表中除了首元结点外任一结点的存储位置由其前驱结点的链域的值指示(4) 在单链表中设置头结点的作用是插入和删除首元结点时不用进行特殊处理2.3 在什么情况下用顺序表比链表好?解:当线性表的数据元素在物理位置上是连续存储的时候用顺序表比用链表好其特点是可以进行随机存取2.4 对以下单链表分别执行下列各程序段并画出结果示意图解:2.5 画出执行下列各行语句后各指针及链表的示意图L=(LinkList)malloc(sizeof(LNode)); P=L;for(i=1;i<=4;i++){P->next=(LinkList)malloc(sizeof(LNode));P=P->next; P->data=i*2-1;}P->next=NULL;for(i=4;i>=1;i--) Ins_LinkList(Li+1i*2);for(i=1;i<=3;i++) Del_LinkList(Li);解:2.6 已知L是无表头结点的单链表且P结点既不是首元结点也不是尾元结点试从下列提供的答案中选择合适的语句序列a. 在P结点后插入S结点的语句序列是__________________b. 在P结点前插入S结点的语句序列是__________________c. 在表首插入S结点的语句序列是__________________d. 在表尾插入S结点的语句序列是__________________(1) P->next=S;(2) P->next=P->next->next;(3) P->next=S->next;(4) S->next=P->next;(5) S->next=L;(6) S->next=NULL;(7) Q=P;(8) while(P->next!=Q) P=P->next;(9) while(P->next!=NULL) P=P->next;(10) P=Q;(11) P=L;(12) L=S;(13) L=P;解:a. (4) (1)b. (7) (11) (8) (4) (1)c. (5) (12)d. (9) (1) (6)2.7 已知L是带表头结点的非空单链表且P结点既不是首元结点也不是尾元结点试从下列提供的答案中选择合适的语句序列a. 删除P结点的直接后继结点的语句序列是____________________b. 删除P结点的直接前驱结点的语句序列是____________________c. 删除P结点的语句序列是____________________d. 删除首元结点的语句序列是____________________e. 删除尾元结点的语句序列是____________________(1) P=P->next;(2) P->next=P;(3) P->next=P->next->next;(4) P=P->next->next;(5) while(P!=NULL) P=P->next;(6) while(Q->next!=NULL) { P=Q; Q=Q->next; }(7) while(P->next!=Q) P=P->next;(8) while(P->next->next!=Q) P=P->next;(9) while(P->next->next!=NULL) P=P->next;(10) Q=P;(11) Q=P->next;(12) P=L;(13) L=L->next;(14) free(Q);解:a. (11) (3) (14)b. (10) (12) (8) (3) (14)c. (10) (12) (7) (3) (14)d. (12) (11) (3) (14)e. (9) (11) (3) (14)2.8 已知P结点是某双向链表的中间结点试从下列提供的答案中选择合适的语句序列a. 在P结点后插入S结点的语句序列是_______________________b. 在P结点前插入S结点的语句序列是_______________________c. 删除P结点的直接后继结点的语句序列是_______________________d. 删除P结点的直接前驱结点的语句序列是_______________________e. 删除P结点的语句序列是_______________________(1) P->next=P->next->next;(2) P->priou=P->priou->priou;(3) P->next=S;(4) P->priou=S;(5) S->next=P;(6) S->priou=P;(7) S->next=P->next;(8) S->priou=P->priou;(9) P->priou->next=P->next;(10) P->priou->next=P;(11) P->next->priou=P;(12) P->next->priou=S;(13) P->priou->next=S;(14) P->next->priou=P->priou;(15) Q=P->next;(16) Q=P->priou;(17) free(P);(18) free(Q);解:a. (7) (3) (6) (12)b. (8) (4) (5) (13)c. (15) (1) (11) (18)d. (16) (2) (10) (18)e. (14) (9) (17)2.9 简述以下算法的功能(1) Status A(LinkedList L) { //L是无表头结点的单链表if(L && L->next) {Q=L; L=L->next; P=L;while(P->next) P=P->next;P->next=Q; Q->next=NULL;}return OK;}(2) void BB(LNode *sLNode *q) {p=s;while(p->next!=q) p=p->next;p->next =s;}void AA(LNode *paLNode *pb) {//pa和pb分别指向单循环链表中的两个结点BB(papb);BB(pbpa);}解:(1) 如果L的长度不小于2将L的首元结点变成尾元结点(2) 将单循环链表拆成两个单循环链表2.10 指出以下算法中的错误和低效之处并将它改写为一个既正确又高效的算法Status DeleteK(SqList &aint iint k){//本过程从顺序存储结构的线性表a中删除第i个元素起的k个元素if(i<1||k<0||i+k>a.length) return INFEASIBLE;//参数不合法else {for(count=1;count<k;count++){//删除第一个元素for(j=a.length;j>=i+1;j--) a.elem[j-i]=a.elem[j];a.length--;}return OK;}解:Status DeleteK(SqList &aint iint k){//从顺序存储结构的线性表a中删除第i个元素起的k个元素//注意i的编号从0开始int j;if(i<0||i>a.length-1||k<0||k>a.length-i) return INFEASIBLE;for(j=0;j<=k;j++)a.elem[j+i]=a.elem[j+i+k];a.length=a.length-k;return OK;}2.11 设顺序表va中的数据元素递增有序试写一算法将x插入到顺序表的适当位置上以保持该表的有序性解:Status InsertOrderList(SqList &vaElemType x){//在非递减的顺序表va中插入元素x并使其仍成为顺序表的算法int i;if(va.length==va.listsize)return(OVERFLOW);for(i=va.length;i>0x<va.elem[i-1];i--)va.elem[i]=va.elem[i-1];va.elem[i]=x;va.length++;return OK;}2.12 设和均为顺序表和分别为和中除去最大共同前缀后的子表若空表则;若=空表而空表或者两者均不为空表且的首元小于的首元则;否则试写一个比较大小的算法解:Status CompareOrderList(SqList &ASqList &B){int ikj;k=A.length>B.length?A.length:B.length;for(i=0;i<k;i++){if(A.elem[i]>B.elem[i]) j=1;if(A.elem[i]<B.elem[i]) j=-1;}if(A.length>k) j=1;if(B.length>k) j=-1;if(A.length==B.length) j=0;return j;}2.13 试写一算法在带头结点的单链表结构上实现线性表操作Locate(L x);解:int LocateElem_L(LinkList &LElemType x){int i=0;LinkList p=L;while(p&&p->data!=x){p=p->next;i++;}if(!p) return 0;else return i;}2.14 试写一算法在带头结点的单链表结构上实现线性表操作Length(L)解://返回单链表的长度int ListLength_L(LinkList &L){int i=0;LinkList p=L;if(p) p=p-next;while(p){p=p->next;i++;}return i;}2.15 已知指针ha和hb分别指向两个单链表的头结点并且已知两个链表的长度分别为m和n试写一算法将这两个链表连接在一起假设指针hc指向连接后的链表的头结点并要求算法以尽可能短的时间完成连接运算请分析你的算法的时间复杂度解:void MergeList_L(LinkList &haLinkList &hbLinkList &hc){LinkList papb;pa=ha;pb=hb;while(pa->next&&pb->next){pa=pa->next;pb=pb->next;}if(!pa->next){hc=hb;while(pb->next) pb=pb->next;pb->next=ha->next;}else{hc=ha;while(pa->next) pa=pa->next;pa->next=hb->next;}}2.16 已知指针la和lb分别指向两个无头结点单链表中的首元结点下列算法是从表la中删除自第i个元素起共len个元素后将它们插入到表lb中第i个元素之前试问此算法是否正确?若有错请改正之Status DeleteAndInsertSub(LinkedList laLinkedList lbint iint jint len){if(i<0||j<0||len<0) return INFEASIBLE;p=la; k=1;while(k<i){ p=p->next; k++; }q=p;while(k<=len){ q=q->next; k++; }s=lb; k=1;while(k<j){ s=s->next; k++; }s->next=p; q->next=s->next;return OK;}解:Status DeleteAndInsertSub(LinkList &la LinkList &lbint iint jint len){LinkList pqsprev=NULL;int k=1;if(i<0||j<0||len<0) return INFEASIBLE;// 在la表中查找第i个结点p=la;while(p&&k<i){prev=p;p=p->next;k++;}if(!p)return INFEASIBLE;// 在la表中查找第i+len-1个结点q=p; k=1;while(q&&k<len){q=p->next;k++;}if(!q)return INFEASIBLE;// 完成删除注意i=1的情况需要特殊处理if(!prev) la=q->next;else prev->next=q->next;// 将从la中删除的结点插入到lb中if(j=1){q->next=lb;lb=p;}else{s=lb; k=1;while(s&&k<j-1){s=s->next;k++;}if(!s)return INFEASIBLE;q->next=s->next;s->next=p; //完成插入}return OK;}2.17 试写一算法在无头结点的动态单链表上实现线性表操作Insert(Lib)并和在带头结点的动态单链表上实现相同操作的算法进行比较2.18试写一算法实现线性表操作Delete(Li)并和在带头结点的动态单链表上实现相同操作的算法进行比较2.19 已知线性表中的元素以值递增有序排列并以单链表作存储结构试写一高效的算法删除表中所有值大于mink且小于maxk的元素(若表中存在这样的元素)同时释放被删结点空间并分析你的算法的时间复杂度(注意mink和maxk是给定的两个参变量它们的值可以和表中的元素相同也可以不同)解:Status ListDelete_L(LinkList &LElemType minkElemType maxk){LinkList pqprev=NULL;if(mink>maxk)return ERROR;p=L;prev=p;p=p->next;while(p&&p->data<maxk){if(p->data<=mink){prev=p;p=p->next;}else{prev->next=p->next;q=p;p=p->next;free(q);}}return OK;}2.20 同2.19题条件试写一高效的算法删除表中所有值相同的多余元素(使得操作后的线性表中所有元素的值均不相同)同时释放被删结点空间并分析你的算法的时间复杂度解:void ListDelete_LSameNode(LinkList &L){LinkList pqprev;p=L;prev=p;p=p->next;while(p){prev=p;p=p->next;if(p&&p->data==prev->data){prev->next=p->next;q=p;p=p->next;free(q);}}}2.21 试写一算法实现顺序表的就地逆置即利用原表的存储空间将线性表逆置为解:// 顺序表的逆置Status ListOppose_Sq(SqList &L){int i;ElemType x;for(i=0;i<L.length/2;i++){x=L.elem[i];L.elem[i]=L.elem[L.length-1-i];L.elem[L.length-1-i]=x;}return OK;}2.22 试写一算法对单链表实现就地逆置解:// 带头结点的单链表的逆置Status ListOppose_L(LinkList &L){LinkList pq;p=L;p=p->next;L->next=NULL;while(p){q=p;p=p->next;q->next=L->next;L->next=q;}return OK;}2.23 设线性表试写一个按下列规则合并AB为线性表C的算法即使得当时;当时线性表AB和C均以单链表作存储结构且C表利用A表和B表中的结点空间构成注意:单链表的长度值m和n均未显式存储解:// 将合并后的结果放在C表中并删除B表Status ListMerge_L(LinkList &ALinkList &BLinkList &C){LinkList papbqaqb;pa=A->next;pb=B->next;C=A;while(pa&&pb){qa=pa; qb=pb;pa=pa->next; pb=pb->next;qb->next=qa->next;qa->next=qb;}if(!pa)qb->next=pb;pb=B;free(pb);return OK;}2.24 假设有两个按元素值递增有序排列的线性表A和B均以单链表作存储结构请编写算法将A表和B表归并成一个按元素值递减有序(即非递增有序允许表中含有值相同的元素)排列的线性表C并要求利用原表(即A表和B表)的结点空间构造C表解:// 将合并逆置后的结果放在C表中并删除B表Status ListMergeOppose_L(LinkList &ALinkList &BLinkList &C){LinkList papbqaqb;pa=A;pb=B;qa=pa; // 保存pa的前驱指针qb=pb; // 保存pb的前驱指针pa=pa->next;pb=pb->next;A->next=NULL;C=A;while(pa&&pb){if(pa->data<pb->data){qa=pa;pa=pa->next;qa->next=A->next; //将当前最小结点插入A表表头A->next=qa;}else{qb=pb;pb=pb->next;qb->next=A->next; //将当前最小结点插入A表表头A->next=qb;}}while(pa){qa=pa;pa=pa->next;qa->next=A->next;A->next=qa;}while(pb){qb=pb;pb=pb->next;qb->next=A->next;A->next=qb;}pb=B;free(pb);return OK;}2.25 假设以两个元素依值递增有序排列的线性表A和B分别表示两个集合(即同一表中的元素值各不相同)现要求另辟空间构成一个线性表C其元素为A和B中元素的交集且表C中的元素有依值递增有序排列试对顺序表编写求C的算法解:// 将A、B求交后的结果放在C表中Status ListCross_Sq(SqList &ASqList &BSqList &C){int i=0j=0k=0;while(i<A.length && j<B.length){if(A.elem[i]<B.elem[j]) i++;elseif(A.elem[i]>B.elem[j]) j++;else{ListInsert_Sq(CkA.elem[i]);i++;k++;}}return OK;}2.26 要求同2.25题试对单链表编写求C的算法解:// 将A、B求交后的结果放在C表中并删除B表Status ListCross_L(LinkList &ALinkList &BLinkList &C){LinkList papbqaqbpt;pa=A;pb=B;qa=pa; // 保存pa的前驱指针qb=pb; // 保存pb的前驱指针pa=pa->next;pb=pb->next;C=A;while(pa&&pb){if(pa->data<pb->data){pt=pa;pa=pa->next;qa->next=pa;free(pt);}elseif(pa->data>pb->data){pt=pb;pb=pb->next;qb->next=pb;free(pt);}else{qa=pa;pa=pa->next;}}while(pa){pt=pa;pa=pa->next;qa->next=pa;free(pt);}while(pb){pt=pb;pb=pb->next;qb->next=pb;free(pt);}pb=B;free(pb);return OK;}2.27 对2.25题的条件作以下两点修改对顺序表重新编写求得表C的算法(1) 假设在同一表(A或B)中可能存在值相同的元素但要求新生成的表C中的元素值各不相同;(2) 利用A表空间存放表C解:(1)// A、B求交然后删除相同元素将结果放在C表中Status ListCrossDelSame_Sq(SqList &ASqList &BSqList &C){int i=0j=0k=0;while(i<A.length && j<B.length){if(A.elem[i]<B.elem[j]) i++;elseif(A.elem[i]>B.elem[j]) j++;else{if(C.length==0){ListInsert_Sq(CkA.elem[i]);k++;}elseif(C.elem[C.length-1]!=A.elem[i]){ListInsert_Sq(CkA.elem[i]);k++;}i++;}}return OK;}(2)// A、B求交然后删除相同元素将结果放在A表中Status ListCrossDelSame_Sq(SqList &ASqList &B){int i=0j=0k=0;while(i<A.length && j<B.length){if(A.elem[i]<B.elem[j]) i++;elseif(A.elem[i]>B.elem[j]) j++;else{if(k==0){A.elem[k]=A.elem[i];k++;}elseif(A.elem[k]!=A.elem[i]){A.elem[k]=A.elem[i];k++;}i++;}}A.length=k;return OK;}2.28 对2.25题的条件作以下两点修改对单链表重新编写求得表C的算法(1) 假设在同一表(A或B)中可能存在值相同的元素但要求新生成的表C中的元素值各不相同;(2) 利用原表(A表或B表)中的结点构成表C并释放A表中的无用结点空间解:(1)// A、B求交结果放在C表中并删除相同元素Status ListCrossDelSame_L(LinkList &ALinkList &BLinkList &C){LinkList papbqaqbpt;pa=A;pb=B;qa=pa; // 保存pa的前驱指针qb=pb; // 保存pb的前驱指针pa=pa->next;pb=pb->next;C=A;while(pa&&pb){if(pa->data<pb->data){pt=pa;pa=pa->next;qa->next=pa;free(pt);}elseif(pa->data>pb->data){pt=pb;pb=pb->next;qb->next=pb;free(pt);}else{if(pa->data==qa->data){pt=pa;pa=pa->next;qa->next=pa;free(pt);}else{qa=pa;pa=pa->next;}}}while(pa){pt=pa;pa=pa->next;qa->next=pa;free(pt);}while(pb){pt=pb;pb=pb->next;qb->next=pb;free(pt);}pb=B;free(pb);return OK;}(2)// A、B求交结果放在A表中并删除相同元素Status ListCrossDelSame_L(LinkList &A LinkList &B){LinkList papbqaqbpt;pa=A;pb=B;qa=pa; // 保存pa的前驱指针qb=pb; // 保存pb的前驱指针pa=pa->next;pb=pb->next;while(pa&&pb){if(pa->data<pb->data){pt=pa;pa=pa->next;qa->next=pa;free(pt);}elseif(pa->data>pb->data){pt=pb;pb=pb->next;qb->next=pb;free(pt);}else{if(pa->data==qa->data){pt=pa;pa=pa->next;qa->next=pa;free(pt);}else{qa=pa;pa=pa->next;}}}while(pa){pt=pa;pa=pa->next;qa->next=pa;free(pt);}while(pb){pt=pb;pb=pb->next;qb->next=pb;free(pt);}pb=B;free(pb);return OK;}2.29 已知AB和C为三个递增有序的线性表现要求对A表作如下操作:删去那些既在B表中出现又在C表中出现的元素试对顺序表编写实现上述操作的算法并分析你的算法的时间复杂度(注意:题中没有特别指明同一表中的元素值各不相同)解:// 在A中删除既在B中出现又在C中出现的元素结果放在D中Status ListUnion_Sq(SqList &DSqList &ASqList &BSqList &C){SqList Temp;InitList_Sq(Temp);ListCross_L(BCTemp);ListMinus_L(ATempD);}2.30 要求同2.29题试对单链表编写算法请释放A表中的无用结点空间解:// 在A中删除既在B中出现又在C中出现的元素并释放B、CStatus ListUnion_L(LinkList &ALinkList &BLinkList &C){ListCross_L(BC);ListMinus_L(AB);}// 求集合A-B结果放在A表中并删除B表Status ListMinus_L(LinkList &ALinkList &B){LinkList papbqaqbpt;pa=A;pb=B;qa=pa; // 保存pa的前驱指针qb=pb; // 保存pb的前驱指针pa=pa->next;pb=pb->next;while(pa&&pb){if(pb->data<pa->data){pt=pb;pb=pb->next;qb->next=pb;free(pt);}elseif(pb->data>pa->data){qa=pa;pa=pa->next;}else{pt=pa;pa=pa->next;qa->next=pa;free(pt);}}while(pb){pt=pb;pb=pb->next;qb->next=pb;free(pt);}pb=B;free(pb);return OK;}2.31 假设某个单向循环链表的长度大于1且表中既无头结点也无头指针已知s为指向链表中某个结点的指针试编写算法在链表中删除指针s所指结点的前驱结点解:// 在单循环链表S中删除S的前驱结点Status ListDelete_CL(LinkList &S){LinkList pq;if(S==S->next)return ERROR;q=S;p=S->next;while(p->next!=S){q=p;p=p->next;}q->next=p->next;free(p);return OK;}2.32 已知有一个单向循环链表其每个结点中含三个域:predata和next其中data为数据域next为指向后继结点的指针域pre也为指针域但它的值为空试编写算法将此单向循环链表改为双向循环链表即使pre成为指向前驱结点的指针域解:// 建立一个空的循环链表Status InitList_DL(DuLinkList &L){L=(DuLinkList)malloc(sizeof(DuLNode));if(!L) exit(OVERFLOW);L->pre=NULL;L->next=L;return OK;}// 向循环链表中插入一个结点Status ListInsert_DL(DuLinkList &L ElemType e){DuLinkList p;p=(DuLinkList)malloc(sizeof(DuLNode));if(!p) return ERROR;p->data=e;p->next=L->next;L->next=p;return OK;}// 将单循环链表改成双向链表Status ListCirToDu(DuLinkList &L){DuLinkList pq;q=L;p=L->next;while(p!=L){p->pre=q;q=p;}if(p==L) p->pre=q;return OK;}2.33 已知由一个线性链表表示的线性表中含有三类字符的数据元素(如:字母字符、数字字符和其他字符)试编写算法将该线性表分割为三个循环链表其中每个循环链表表示的线性表中均只含一类字符解:// 将单链表L划分成3个单循环链表Status ListDivideInto3CL(LinkList &LLinkList &s1LinkList &s2LinkList &s3){LinkList pqpt1pt2pt3;p=L->next;pt1=s1;pt2=s2;pt3=s3;while(p){if(p->data>='0' && p->data<='9'){q=p;p=p->next;q->next=pt1->next;pt1->next=q;pt1=pt1->next;}elseif((p->data>='A' && p->data<='Z') ||(p->data>='a' && p->data<='z')){q=p;p=p->next;q->next=pt2->next;pt2->next=q;pt2=pt2->next;}else{p=p->next;q->next=pt3->next;pt3->next=q;pt3=pt3->next;}}q=L;free(q);return OK;}在2.34至2.36题中"异或指针双向链表"类型XorLinkedList和指针异或函数XorP定义为:typedef struct XorNode {char data;struct XorNode *LRPtr;} XorNode*XorPointer;typede struct { //无头结点的异或指针双向链表XorPointer LeftRight; //分别指向链表的左侧和右端} XorLinkedList;XorPointer XorP(XorPointer pXorPointer q);// 指针异或函数XorP返回指针p和q的异或值2.34 假设在算法描述语言中引入指针的二元运算"异或"若a和b为指针则a⊕b的运算结果仍为原指针类型且a⊕(a⊕b)=(a⊕a)⊕b=b(a⊕b)⊕b=a⊕(b⊕b)=a则可利用一个指针域来实现双向链表L链表L中的每个结点只含两个域:data域和LRPtr域其中LRPtr域存放该结点的左邻与右邻结点指针(不存在时为NULL)的异或若设指针L.Left指向链表中的最左结点L.Right指向链表中的最右结点则可实现从左向右或从右向左遍历此双向链表的操作试写一算法按任一方向依次输出链表中各元素的值解:Status TraversingLinkList(XorLinkedList &Lchar d){XorPointer pright;if(d=='l'||d=='L'){p=L.Left;left=NULL;while(p!=NULL){VisitingData(p->data);left=p;p=XorP(leftp->LRPtr);}}elseif(d=='r'||d=='R'){p=L.Right;right=NULL;while(p!=NULL){VisitingData(p->data);right=p;p=XorP(p->LRPtrright);}}else return ERROR;return OK;}2.35 采用2.34题所述的存储结构写出在第i个结点之前插入一个结点的算法2.36 采用2.34题所述的存储结构写出删除第i个结点的算法2.37 设以带头结点的双向循环链表表示的线性表试写一时间复杂度O(n)的算法将L改造为解:// 将双向链表L=(a1a2...an)改造为(a1a3...an。
数据结构C语言版(第2版)严蔚敏人民邮电出版社课后习题答案
数据结构(C语言版)(第2版)课后习题答案李冬梅2015.3目录第1章绪论 (1)第2章线性表 (5)第3章栈和队列 (13)第4章串、数组和广义表 (26)第5章树和二叉树 (33)第6章图 (43)第7章查找 (54)第8章排序 (65)第1章绪论1.简述下列概念:数据、数据元素、数据项、数据对象、数据结构、逻辑结构、存储结构、抽象数据类型。
答案:数据:是客观事物的符号表示,指所有能输入到计算机中并被计算机程序处理的符号的总称。
如数学计算中用到的整数和实数,文本编辑所用到的字符串,多媒体程序处理的图形、图像、声音、动画等通过特殊编码定义后的数据。
数据元素:是数据的基本单位,在计算机中通常作为一个整体进行考虑和处理。
在有些情况下,数据元素也称为元素、结点、记录等。
数据元素用于完整地描述一个对象,如一个学生记录,树中棋盘的一个格局(状态)、图中的一个顶点等。
数据项:是组成数据元素的、有独立含义的、不可分割的最小单位。
例如,学生基本信息表中的学号、姓名、性别等都是数据项。
数据对象:是性质相同的数据元素的集合,是数据的一个子集。
例如:整数数据对象是集合N={0,±1,±2,…},字母字符数据对象是集合C={‘A’,‘B’,…,‘Z’,‘a’,‘b’,…,‘z’},学生基本信息表也可是一个数据对象。
数据结构:是相互之间存在一种或多种特定关系的数据元素的集合。
换句话说,数据结构是带“结构”的数据元素的集合,“结构”就是指数据元素之间存在的关系。
逻辑结构:从逻辑关系上描述数据,它与数据的存储无关,是独立于计算机的。
因此,数据的逻辑结构可以看作是从具体问题抽象出来的数学模型。
存储结构:数据对象在计算机中的存储表示,也称为物理结构。
抽象数据类型:由用户定义的,表示应用问题的数学模型,以及定义在这个模型上的一组操作的总称。
具体包括三部分:数据对象、数据对象上关系的集合和对数据对象的基本操作的集合。
《数据结构(C语言版 第2版)》(严蔚敏 著)第三章练习题答案
《数据结构(C语言版第2版)》(严蔚敏著)第三章练习题答案第3章栈和队列1.选择题(1)若让元素1,2,3,4,5依次进栈,则出栈次序不可能出现在()种情况。
A.5,4,3,2,1 B.2,1,5,4,3 C.4,3,1,2,5 D.2,3,5,4,1答案:C解释:栈是后进先出的线性表,不难发现C选项中元素1比元素2先出栈,违背了栈的后进先出原则,所以不可能出现C选项所示的情况。
(2)若已知一个栈的入栈序列是1,2,3,…,n,其输出序列为p1,p2,p3,…,pn,若p1=n,则pi为()。
A.i B.n-i C.n-i+1 D.不确定答案:C解释:栈是后进先出的线性表,一个栈的入栈序列是1,2,3,…,n,而输出序列的第一个元素为n,说明1,2,3,…,n一次性全部进栈,再进行输出,所以p1=n,p2=n-1,…,pi=n-i+1。
(3)数组Q[n]用来表示一个循环队列,f为当前队列头元素的前一位置,r为队尾元素的位置,假定队列中元素的个数小于n,计算队列中元素个数的公式为()。
A.r-f B.(n+f-r)%n C.n+r-f D.(n+r-f)%n答案:D解释:对于非循环队列,尾指针和头指针的差值便是队列的长度,而对于循环队列,差值可能为负数,所以需要将差值加上MAXSIZE(本题为n),然后与MAXSIZE(本题为n)求余,即(n+r-f)%n。
(4)链式栈结点为:(data,link),top指向栈顶.若想摘除栈顶结点,并将删除结点的值保存到x中,则应执行操作()。
A.x=top->data;top=top->link;B.top=top->link;x=top->link;C.x=top;top=top->link;D.x=top->link;答案:A解释:x=top->data将结点的值保存到x中,top=top->link栈顶指针指向栈顶下一结点,即摘除栈顶结点。
数据结构(C语言版)严蔚敏课后习题答案
数据结构(C语言版)严蔚敏课后习题答案数据结构(C语言版)严蔚敏课后习题答案一、线性表1. 顺序表顺序表是一种存储结构,它将元素顺序存放在一块连续的存储区域中。
C语言中常用数组来实现顺序表。
以下是一些常见题目的解答:题目1:已知顺序表中存储了n个整数,请编写一个算法,将这个顺序表中的所有负数挑选出来,并将它们按照原有顺序存放在新的顺序表中。
解答:```#include <stdio.h>#define MAX_SIZE 100int main() {int A[MAX_SIZE], neg[MAX_SIZE];int n, i, j = 0;printf("Enter the number of elements: ");scanf("%d", &n);printf("Enter the elements: ");for (i = 0; i < n; i++) {scanf("%d", &A[i]);if (A[i] < 0) {neg[j] = A[i];j++;}}printf("Negative numbers: ");for (i = 0; i < j; i++) {printf("%d ", neg[i]);}return 0;}```题目2:假设顺序表A和B中的元素递增有序排列,编写一个算法合并这两个顺序表,并使合并后的顺序表仍然递增有序。
解答:```#include <stdio.h>#define MAX_SIZE 100int main() {int A[MAX_SIZE], B[MAX_SIZE], C[MAX_SIZE * 2]; int m, n, i, j, k;printf("Enter the number of elements in the first list: "); scanf("%d", &m);printf("Enter the elements in increasing order: ");for (i = 0; i < m; i++) {scanf("%d", &A[i]);C[i] = A[i];}printf("Enter the number of elements in the second list: "); scanf("%d", &n);printf("Enter the elements in increasing order: ");for (i = 0; i < n; i++) {scanf("%d", &B[i]);C[m + i] = B[i];}// Merge A and B into Ci = j = k = 0;while (i < m && j < n) { if (A[i] < B[j]) {C[k] = A[i];i++;} else {C[k] = B[j];j++;}k++;}while (i < m) {C[k] = A[i];i++;k++;}while (j < n) {C[k] = B[j];j++;k++;}printf("Merged list in increasing order: ");for (i = 0; i < m + n; i++) {printf("%d ", C[i]);}return 0;}```2. 链表链表是一种动态的数据结构,它通过结点之间的指针联系起来。
数据结构C语言版(第2版)严蔚敏人民邮电出版社课后习题答案
数据结构(C语言版)(第2版)课后习题答案李冬梅2015.3目录第1章绪论...................................................................................... 错误!未定义书签。
第2章线性表 .................................................................................. 错误!未定义书签。
第3章栈和队列 .............................................................................. 错误!未定义书签。
第4章串、数组和广义表 ............................................................... 错误!未定义书签。
第5章树和二叉树........................................................................... 错误!未定义书签。
第6章图............................................................................................ 错误!未定义书签。
第7章查找...................................................................................... 错误!未定义书签。
第8章排序...................................................................................... 错误!未定义书签。
chap003 栈和队列-数据结构(C语言版)-严蔚敏-清华大学出版社
例三、行编辑程序问题
如何实现?
“每接受一个字符即存入存储器” ?
并不恰当!
在用户输入一行的过程中,允许 用户输入出差错,并在发现有误时 可以及时更正。 合理的作法是:
设立一个输入缓冲区,用以接受 用户输入的一行字符,然后逐行存 入用户数据区,并假设“#”为退格 符,“@”为退行符。
GetTop(S, &e) 初始条件:栈 S 已存在且非空。 操作结果:用 e 返回 S 的栈顶
元素。
a1 a2 … … an
ClearStack(&S) 初始条件:栈 S 已存在。 操作结果:将 S 清为空栈。
Push(&S, e) 初始条件:栈 S 已存在。 操作结果:插入元素 e 为新
的栈顶元素。
分析可能出现的不匹配的情况:
• 到来的右括弧并非是所“期待” • 的到;来的是“不速之客”;
• 直到结束,也没有到来所“期待” 的括弧。
算法的设计思想:
1)凡出现左括弧,则进栈;
2)凡出现右括弧,首先检查栈是否空 若栈空,则表明该“右括弧”多余, 否则和栈顶元素比较, 若相匹配,则“左括弧出栈” , 否则表明不匹配。
} // conversion
例二、 括号匹配的检验 假设在表达式中 ([]())或[([ ][ ])] 等为正确的格式, [( ])或([( ))或 (()]) 均为不正确的格式。
则 检验括号是否匹配的方法可用 “期待的急迫程度”这个概念来描述。
例如:考虑下列括号序列: [( [ ][ ] )] 1 2 34 5 6 7 8
switch (ch) {
数据结构严蔚敏PPT(完整版)
时间复杂度是衡量算法效率的重要指标,常见的 排序算法的时间复杂度有O(n^2)、O(nlogn)、 O(n)等。
查找的基本概念和算法
查找的基本概念
查找是指在一个已经有序或部分 有序的数据集合中,找到一个特 定的元素或一组元素的过程。
常见查找算法
常见的查找算法包括顺序查找 、二分查找、哈希查找等。
先进先出(FIFO)的数据 处理。
并行计算中的任务调度。
打印机的打印任务管理。
二叉树的层序遍历(宽度 优先搜索,BFS)。
04
树和图
树的基本概念和性质
树的基本概念
树是一种非线性数据结构,由节 点和边组成,其中节点表示实体 ,边表示实体之间的关系。
树的性质
树具有层次结构,节点按照层次 进行排列,每个节点最多只能有 一个父节点,除了根节点外。
isEmpty:判断队列是否为空。
enqueue:向队尾添加一个元素。
front 或 peek:查看队首元素。
dequeue:删除队首的元素。
栈和队列的应用
栈的应用 后进先出(LIFO)的数据处理。
括号匹配问题。
栈和队列的应用
队列的应用
深度优先搜索(DFS)。 表达式求值。
01
03 02
栈和队列的应用
数据结构严蔚敏ppt( 完整版)
contents
目录
• 绪论 • 线性表 • 栈和队列 • 树和图 • 排序和查找 • 数据结构的应用案例分析
01
绪论
数据结构的基本概念
总结词
数据结构是计算机存储和组织数据的方式,是算法和数据操 作的基础。
详细描述
数据结构是计算机科学中研究数据的组织和存储方式的学科 ,它决定了数据在计算机中的表示和关系。数据结构不仅包 括数据的逻辑结构,还涉及到数据的物理存储方式以及数据 的操作方式。
数据结构严蔚敏完整版
O(1) :常量时间阶 O (n):线性时间阶 O(㏒n) :对数时间阶 O(n㏒n) :线性对数时间阶
问题:必须先运行依据算法编制的程序;依赖软硬 件环境,容易掩盖算法本身的优劣;没有实际价值。 事前分析:求出该算法的一个时间界限函数。
与此相关的因素有: – 依据算法选用何种策略; – 问题的规模; – 程序设计的语言; – 编译程序所产生的机器代码的质量; – 机器执行指令的速度; 撇开软硬件等有关部门因素,可以认为一个特定算
图状结构
一般线性表 栈和队列 串 数组 广义表 一般树 二叉树 有向图 无向图
图1-5 数据逻辑结构层次关系图
1.1.5 数据类型
数据类型(Data Type):指的是一个值的集合和定义 在该值集上的一组操作的总称。
数据类型是和数据结构密切相关的一个概念。 在C 语言中数据类型有:基本类型和构造类型。
1.1 数据结构及其概念
《算法与数据结构》是计算机科学中的一门综合性专 业基础课。是介于数学、计算机硬件、计算机软件三者 之间的一门核心课程,不仅是一般程序设计的基础,而 且是设计和实现编译程序、操作系统、数据库系统及其 他系统程序和大型应用程序的重要基础。
1.1.1 数据结构的例子
例1:电话号码查询系统
– 链式存储结构:在每一个数据元素中增加一个存放 另一个元素地址的指针(pointer ),用该指针来表示 数据元素之间的逻辑结构(关系)。
例:设有数据集合A={3.0,2.3,5.0,-8.5,11.0} ,两种不同
严蔚敏数据结构题集(C语言版)完整与答案
严蔚敏 数据结构C 语言版答案详解第1章 绪论1.1 简述下列术语:数据,数据元素、数据对象、数据结构、存储结构、数据类型和抽象数据类型。
解:数据是对客观事物的符号表示。
在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称。
数据元素是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。
数据对象是性质相同的数据元素的集合,是数据的一个子集。
数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
存储结构是数据结构在计算机中的表示。
数据类型是一个值的集合和定义在这个值集上的一组操作的总称。
抽象数据类型是指一个数学模型以及定义在该模型上的一组操作。
是对一般数据类型的扩展。
1.2 试描述数据结构和抽象数据类型的概念与程序设计语言中数据类型概念的区别。
解:抽象数据类型包含一般数据类型的概念,但含义比一般数据类型更广、更抽象。
一般数据类型由具体语言系统内部定义,直接提供给编程者定义用户数据,因此称它们为预定义数据类型。
抽象数据类型通常由编程者定义,包括定义它所使用的数据和在这些数据上所进行的操作。
在定义抽象数据类型中的数据部分和操作部分时,要求只定义到数据的逻辑结构和操作说明,不考虑数据的存储结构和操作的具体实现,这样抽象层次更高,更能为其他用户提供良好的使用接口。
1.3 设有数据结构(D,R),其中{}4,3,2,1d d d d D =,{}r R =,()()(){}4,3,3,2,2,1d d d d d d r =试按图论中图的画法惯例画出其逻辑结构图。
解:1.4 试仿照三元组的抽象数据类型分别写出抽象数据类型复数和有理数的定义(有理数是其分子、分母均为自然数且分母不为零的分数)。
解:ADT Complex{ 数据对象:D={r,i|r,i 为实数} 数据关系:R={<r,i>} 基本操作: InitComplex(&C,re,im)操作结果:构造一个复数C ,其实部和虚部分别为re 和im DestroyCmoplex(&C)操作结果:销毁复数C Get(C,k,&e)操作结果:用e 返回复数C 的第k 元的值Put(&C,k,e)操作结果:改变复数C的第k元的值为eIsAscending(C)操作结果:如果复数C的两个元素按升序排列,则返回1,否则返回0 IsDescending(C)操作结果:如果复数C的两个元素按降序排列,则返回1,否则返回0 Max(C,&e)操作结果:用e返回复数C的两个元素中值较大的一个Min(C,&e)操作结果:用e返回复数C的两个元素中值较小的一个}ADT ComplexADT RationalNumber{数据对象:D={s,m|s,m为自然数,且m不为0}数据关系:R={<s,m>}基本操作:InitRationalNumber(&R,s,m)操作结果:构造一个有理数R,其分子和分母分别为s和mDestroyRationalNumber(&R)操作结果:销毁有理数RGet(R,k,&e)操作结果:用e返回有理数R的第k元的值Put(&R,k,e)操作结果:改变有理数R的第k元的值为eIsAscending(R)操作结果:若有理数R的两个元素按升序排列,则返回1,否则返回0 IsDescending(R)操作结果:若有理数R的两个元素按降序排列,则返回1,否则返回0 Max(R,&e)操作结果:用e返回有理数R的两个元素中值较大的一个Min(R,&e)操作结果:用e返回有理数R的两个元素中值较小的一个}ADT RationalNumber1.5 试画出与下列程序段等价的框图。
严蔚敏数据结构(C语言版)知识点总结笔记课后答案
严蔚敏数据结构(C语⾔版)知识点总结笔记课后答案第1章绪论1.1复习笔记⼀、数据结构的定义数据结构是⼀门研究⾮数值计算的程序设计问题中计算机的操作对象以及它们之间的关系和操作等的学科。
⼆、基本概念和术语数据数据(data)是对客观事物的符号表⽰,在计算机科学中是指所有能输⼊到计算机中并被计算机程序处理的符号的总称,它是计算机程序加⼯的“原料”。
2.数据元素数据元素(data element)是数据的基本单位,在计算机程序中通常作为⼀个整体进⾏考虑和处理。
3.数据对象数据对象(data object)是性质相同的数据元素的集合,是数据的⼀个⼦集。
4.数据结构数据结构(data structure)是相互之间存在⼀种或多种特定关系的数据元素的集合。
(1)数据结构的基本结构根据数据元素之间关系的不同特性,通常有下列四类基本结构:①集合。
数据元素之间除了“同属于⼀个集合”的关系外,别⽆其它关系。
②线性结构。
数据元素之间存在⼀个对⼀个的关系。
③树形结构。
数据元素之间存在⼀个对多个的关系。
④图状结构或⽹状结构。
数据元素之间存在多个对多个的关系。
如图1-1所⽰为上述四类基本结构的关系图。
图1-1 四类基本结构的关系图(2)数据结构的形式定义数据结构的形式定义为:数据结构是⼀个⼆元组Data_Structure==(D,S)其中:D表⽰数据元素的有限集,S表⽰D上关系的有限集。
(3)数据结构在计算机中的表⽰数据结构在计算机中的表⽰(⼜称映象)称为数据的物理结构,⼜称存储结构。
它包括数据元素的表⽰和关系的表⽰。
①元素的表⽰。
计算机数据元素⽤⼀个由若⼲位组合起来形成的⼀个位串表⽰。
②关系的表⽰。
计算机中数据元素之间的关系有两种不同的表⽰⽅法:顺序映象和⾮顺序映象。
并由这两种不同的表⽰⽅法得到两种不同的存储结构:顺序存储结构和链式存储结构。
a.顺序映象的特点是借助元素在存储器中的相对位置来表⽰数据元素之间的逻辑关系。
数据结构严蔚敏第三版
数据结构严蔚敏第三版
《数据结构(C语言版)》是由严蔚敏、吴伟民合著的教材,是国内较为经典的数据结构教材之一。
该教材分为上下两册,第三版是对第二版的修订和扩充。
书中内容包括线性表、栈和队列、串、树、图、查找、排序等常见的数据结构和算法。
书中通过C语言进行讲解,以帮助读者更好地理解和应用数据结构。
《数据结构(C语言版)》的特点是理论与实践相结合,理论知识与实际应用相结合,并且注重算法的设计与分析。
书中通过大量的例子和习题,帮助读者巩固所学知识,并提供了部分习题的解答。
该教材适合计算机科学与技术、软件工程、信息管理等相关专业的本科生或研究生使用,也适合从事数据结构与算法研究的专业人士参考。
《数据结构》(C语言版)严蔚敏著-数据结构实验指导
《数据结构》(C语言版)严蔚敏著-数据结构实验指导/学年第学期姓名:______________学号:______________班级:______________指导教师:______________数学与统计学院2022预备实验C语言的函数数组指针结构体知识一、实验目的1、复习C语言中函数、数组、指针、结构体与共用体等的概念。
2、熟悉利用C语言进行程序设计的一般方法。
二、实验预习说明以下C语言中的概念1、函数:2、数组:3、指针:4、结构体5、共用体三、实验内容和要求1、调试程序:输出100以内所有的素数(用函数实现)。
#includeintiprime(intn){/某判断一个数是否为素数某/intm;for(m=2;m某m<=n;m++)if(n%m==0)return0;return1;}intmain(){/某输出100以内所有素数某/inti;printf(\for(i=2;i<100;i++)if(iprime(i)==1)printf(\return0;}运行结果:2、调试程序:对一维数组中的元素进行逆序排列。
#include#defineN10intmain(){2inta[N]={0,1,2,3,4,5,6,7,8,9},i,temp;printf(\for(i=0;itemp=a[i];a[i]=a[N-i-1];a[N-i-1]=temp;printf(\for(i=0;ireturn0;}运行结果:3、调试程序:在二维数组中,若某一位置上的元素在该行中最大,而在该列中最小,则该元素即为该二维数组的一个鞍点。
要求从键盘上输入一个二维数组,当鞍点存在时,把鞍点找出来。
#include#defineM3#defineN4intmain(){inta[M][N],i,j,k;printf(\请输入二维数组的数据:\\n\for(i=0;ifor(j=0;jfor(j=0;jfor(i=0;i/某找出第i行的最大值某/if(a[i][j]>a[i][k])k=j;for(j=0;jif(a[j][k]/某在第i行找到鞍点某/break;if(j==M)printf(\3}return0;}运行结果:4、调试程序:利用指针输出二维数组的元素。
严蔚敏数据结构C语言版习题集答案
严蔚敏《数据结构(C语言版)习题集》答案第一章绪论void print_descending(int x,int y,int z)....+f[m-k]=f[m-1]+f[m-2]+......+f[m-k]+f[m-k-1]-f[m-k-1]=2*f[m-1]-f[m-k-1]所以上述算法的时间复杂度仅为O(m). 如果采用递归设计,将达到O(k^m). 即使采用暂存中间结果的方法,也将达到O(m^2).typedef struct{char *sport;enum{male,female} gender;char schoolname; port!=NULL){switch(result[i].schoolname){case 'A':score[ 0 ].totalscore+=result[i].score;if(result[i].gender==0) score[ 0 ].malescore+=result[i].score;else score[ 0 ].femalescore+=result[i].score;break;case 'B':score[ 0 ].totalscore+=result[i].score;if(result[i].gender==0) score[ 0 ].malescore+=result[i].score;else score[ 0 ].femalescore+=result[i].score;break;………………}i++;}for(i=0;i<5;i++){printf("School %d:\n",i);printf("Total score of male:%d\n",score[i].malescore);printf("Total score of female:%d\n",score[i].femalescore);printf("Total score of all:%d\n\n",score[i].totalscore);}}void polyvalue(){float temp;float *p=a;printf("Input number of terms:");scanf("%d",&n);printf("Input value of x:");scanf("%f",&x);printf("Input the %d coefficients from a0 to a%d:\n",n+1,n);p=a;xp=1;sum=0;Status Insert(LinkList &L,int i,int b)void merge1(LinkList &A,LinkList &B,LinkList &C)void SqList_Intersect(SqList A,SqList B,SqList &C)void LinkList_Intersect_Delete(LinkList &A,LinkList B,LinkList C)iList为带头结点的单循环链表类型.{s=L->next;A=(CiList*)malloc(sizeof(CiLNode));p=A;B=(CiList*)malloc(sizeof(CiLNode));q=B;C=(CiList*)malloc(sizeof(CiLNode));r=C; .4,2的顺序重排双向循环链表L中的所有结点{p=;while(p->next!=L&&p->next->next!=L){p->next=p->next->next;p=p->next;} 同时进行调整的话,必须使用堆栈保存偶数结点的指针,否则将会破坏链表结构,造成结点丢失.DuLNode * Locate_DuList(DuLinkedList &L,int x) int x;int y;} coordinate;void Repaint_Color(int g[m][n],int i,int j,int color)归形式的算法该怎么写呢?void NiBoLan(char *str,char *new)题中暂不考虑串的具体操作的实现,而将其看作一种抽象数据类型stringtype,对其可以进行连接操作:c=link(a,b).Status g(int m,int n,int &s)void InitCiQueue(CiQueue &Q)Status EnCyQueue(CyQueue &Q,int x)省掉这一句,则在某些情况下,会引起不希望的后果,虽然在大多数情况下没有影响.请思考:设S='place', T='ace', V='face',则省掉i+=Strlen(V);运行时会出现什么结果?int Delete_SubString(Stringtype &s,Stringtype t)读者用此程序取代作者早些时候对题给出的程序.void StrAssign(Stringtype &T,char chars&#;)h&&T[j].ch!=c) j++; h) T[j].num++;else T[j]={c,1};}h;j++)printf("%c: %d\n",T[j].ch,T[j].num);}前一个程序的区别在于,串s业已存在.{for(p=s->next,q=t->next;p&&q;p=p->next,q=q->next){p->ch=q->ch;pre=p;}while(q){p=(LStrNode*)malloc(sizeof(LStrNode));p->ch=q->ch;pre->next=p;pre=p;}p->next=NULL;}算法的思想是,依次把串S的一个副本S2向右错位平移1格,2格,3格,...与自身S1相匹配,如果存在最长重复子串,则必然能在此过程中被发现.用变量lrs1,lrs2,maxlen来记录已发现的最长重复子串第一次出现位置,第二次出现位置和长度.题目中未说明"重复子串"是否允许有重叠部分,本算法假定允许.如不允许,只需在第二个for语句的循环条件中加上k<=i即可.本算法时间复杂度为O(Strlen(S)^2).void Get_LPubSub(Stringtype S,Stringtype T) for(k=0,j=jmin;j<=jmax;j++){if(A[j]==B[j-i]) k++;else k=0;if(k>maxlen){lps1=j-k+1;lps2=j-i-k+1;maxlen=k;}}一的区别是,由于A,B互不相同,因此B不仅要向右错位,而且还要向左错位,以保证不漏掉一些情况.当B相对于A的位置不同时,需要匹配的区间的计算公式也各不相同,请读者自己画图以帮助理解.本算法的时间复杂度是o(strlrn(s)*strlen(t))。
数据结构课后答案,严蔚敏版
void change ( SqList &L ) //写法1 { for(i=1, j=L.length; i<j; i++, j--) L.elem[i] ↔ L.elem[j]; }
习题2.22 单链表逆序 typedef struct LNode { int data; struct LNode *next; } *LinkList; void Inverse(LinkList &L) { LinkList p, q; p=L->next; while( p->next!=NULL) { q=p->next; p->next=q->next; q->next=L->next; L->next=q; } }
习题2.25 方法3
int Intersection(SqList La, SqList Lb, SqList &Lc) { int i, j, k;
if(La.length==0||Lb.length==0) return(0); //Lc.listsize=La.length<Lb.length?La.length:Lb.length; //Lc.elem=(int *)malloc(Lc.listsize*sizeof(int));
void main( ) { LinkList L1, L2, L3; int num; printf("\n初始化集合1,请输入集合1的元素个数:\n"); scanf("%d", &num); CreateList (L1, num); printf("输出集合1: "); OutputList(L1); printf("\n初始化集合2,请输入集合2的元素个数: \n"); scanf("%d", &num); CreateList(L2, num); printf("输出集合2: "); OutputList(L2); Intersection(L1, L2, L3); printf("\n输出集合1和集合2的交运算结果: "); OutputList(L3); }
严蔚敏数据结构pdf紫色
严蔚敏数据结构pdf紫色
1数据结构简介
数据结构,也叫信息结构,是计算机科学的一门主要分支,主要研究的是数据的表示以及数据之间的关系、存储和组织。
简单地说,数据结构就是相关的数据元素的集合,以及它们之间的关系。
严蔚敏的《数据结构》是一本以紫色为主题的数据结构学习书,被誉为中国最权威的数据结构教材。
2严蔚敏数据结构革新性
《数据结构》是严蔚敏博士针对中国学生独家编写的一本以紫色为主题的数据结构学习书。
书中将时下的科技知识以及具体的案例整理出来,利用实际的例子帮助大家理解和掌握数据结构的相关知识。
严蔚敏数据结构通过对数据结构内容进行详细细化,层层深入,使得读者更清楚地了解到各个概念的原理、来龙去脉和重要性,从而更容易学习和掌握数据结构知识。
3严蔚敏数据结构的文字说明
严蔚敏数据结构采用逻辑清晰、流程明了的表达方式,结构完整,富有能量,充满创造的积极性。
书中采用了大量的例子、动图和案例,并配以启发性的解释,很好地展示出如何使用实际的例子解决概念性的问题。
它用简洁的语言扼要地提出和分析重要性概念,并以深入浅出的方式解释抽象的概念。
4严蔚敏数据结构的特色
严蔚敏的《数据结构》强调易懂性、运用性和贴近实际;采用了英文描述和中文描述结合的方式,与国际同步;其内容及结构清晰,按照做事下手、大体上看,渐进加强,深入浅出的思路,逐层在知识结构上形成了一个完整并且实用的数据结构流程体系。
总之,严蔚敏的《数据结构》不仅结构完整、内容全面,而且语言通俗易懂、多彩多样,和谐统一,被誉为中国最权威的数据结构教程,是学习和研究数据结构的一本很好的参考书籍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-1
A
0
-2
A
-1
C C E A B
0
0
B h D h
C E
B h D h
E D h + h 1
h
3 4
(a)
(b)
3
5
h + 1
4 5
h
(c)
7
先左后右双旋转 如果在左子树根结点的右子树上插入结点, 引起不平衡,则需要进行先左后右双旋转 。 5 3 4 3
右单旋转
左单旋转
左右双旋转
右左双旋转
5
右单旋转
如果在左子树根结点的左子树上插入结点, 引起不平衡,则需要进行右单旋转 。 以结点B为旋转轴,将结点A顺时针旋转。
A
1
A C B1
2
0
B
0
B D
h
0
C
E h h
(a)
5 4
D
h + 1
E h h
(b)
4 3 5
D h E + 1 h (c)
A
C
h
3
6
左单旋转
ASL = (1×1+2 ×2 +3 × 4 +4 ×5 ) / 12
= 37 /12
29
例题: 已知长度为12的表:
(Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec) 3. 求平衡二叉排序树
Jan
Feb Apr Aug Jul
Mar Jun
May
30
Feb
Dec
ASL = (1×1+2 ×2 +3 × 4 +4 ×4 +5 ×1 ) / 12 = 38 /12
33
28பைடு நூலகம்
例题: 已知长度为12的表:
(Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec)
2. 有序表
排序后采用折半查找
(Apr, Aug, Dec, Feb, Jan, Jul, Jun, Mar,May,Nov ,Oct, Sep) 3 4 2 3 4 1 3 4 2 4 3 4
3
2. 如何构造“二叉平衡树”
构造平衡的二叉排序树的方法是: 根据初始序列,从空树开始插入新结点,在插入过程 中,在保持二叉排序树特性的前提下,采用平衡旋转技 术,对最小不平衡子树进行调整,使其平衡。
2
-2
5
2 1 0
15 8
0 0 -2
4
10
32
1
2
0
60 45
4
1
3. 平衡旋转技术
如果在一棵平衡的二叉搜索树中插入一个新 结点,造成了不平衡。此时必须调整树的结构, 使之平衡。 平衡旋转有两类: 单旋转 (左旋和右旋) 双旋转 (左平衡和右平衡)
17
case 3a : 如果 q (较高的子树) 的平衡因子 为 0,执行一个单旋转来恢复结点 p 的平 衡。 q p -1 1 p q 左单旋 0 -1 h-1 h h h
删除 结点
18
h
h-1
h
case 3b : 如果 q 的平衡因子与 p 的平衡 因子相同,则执行一个单旋转来恢复平衡, 结点 p 和 q 的平衡因子均改为0。
20
举例:
-1
M E J
1
1
P
-1
-1
1
1 0
-1
C
N
-1
R
B
D
1
1
H
I
0
K
O
0
0
0
Q
0
T
S
1
A
0
G
L
F 删除结点 P
21
树的初始状态
删除结点P
-1
M E J
1
1
用O取代P
P
-1
-1
1
1 0
-1
C
N
-1
R
B
D
1
1
H
I
0
K
O
0
0
0
Q
0
T
S
1
A
0
G
L
F
寻找结点P在中序下的直接前驱O, 用O顶 替P, 删除O。
22
删除结点P
-1
M E J
1
1
左单旋转
-1 O p
1
1 0
-1
C
N
-1 0 0
-1 R q
B
D
1
1
H
I
0
K
Q
0
T
S
1
A
0
G
L
F
case 3b:O与R的平衡因子同号, 以R为旋转轴 做左单旋转, M的子树高度减 1。 23
删除结点P
q E -1
1
p
M
向上继续调整
R
0
1
1 0
C
J
1
0
O
-1 0
T
1
14
case 1 : 当前结点 p 的平衡因子为0。如果 它的左子树或右子树被缩短,则只需要修改 它的 平衡因子为 1 或-1。不需要旋转。
0 p 不旋转 h-1 h h h-1 h 1 p
删除一个结点,高度不变
15
case 2 : 结点 p 的平衡因子不为0,且较 高的子树被缩短,则 p 的平衡因子改为0。 不需要旋转。
4 5
8
先左后右双旋转
0
0
1 -1 1
2
右单 旋转
插入 0
0 1
左单 旋转
9
先右后左双旋转 如果在右子树根结点的左子树上插入结点 引起不平衡,则需要进行先右后左双旋转 。 3
4 5 3
4
10
5
+1 先右后左双旋转
-2
0
0 -1
1
右单 旋转
右单 旋转
0
插入
1
0
11
4. 二叉平衡树的插入
例如:依次插入的关键字为5, 4, 2, 8, 6, 9
5
4 2
4
5 2
4
6
2
向右旋转 一次
8
6
5
先向右旋转 再向左旋转
8
12
向左旋转一次
4 2 5 6 8 9 4 6 8 5 9
13
继续插入关键字 9
2
5. 二叉平衡树的删除
1. 首先不考虑平衡问题,按二叉排序树的 删除原理对二叉平衡树进行删除。 2. 然后再考虑平衡问题,沿被删除结点通向 根的路径反向追踪检查路 径上各个结点平 衡因子的变化。 分三种情况考虑:
Jan
Aug Apr Feb Jul
Mar Jun
May Nov Oct Sep
32
例题: 已知长度为12的表:
(Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec) 3. 求平衡二叉排序树
Mar Jan Aug Apr Jun Jul May Nov Oct Sep
27
例题: 已知长度为12的表:
(Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec)
1. 求二叉排序树
Feb
Jan Mar Jun May Sep Oct Nov
Apr
Aug Dec Jul
ASL = (1×1+2 ×2 +3 × 3 +4 ×3 +5 ×2 +6 ×1) /12 = 42 /12
1 p 不旋转 h h+1 h 高度减1 h h 0 p
删除一个结点,高度降低一层
16
case 3 : 结点 p 的平衡因子不为0,且较 矮的子树又被缩短,则在结点 p 发生不平 衡。需要进行平衡化旋转来恢复平衡。
令结点 p 的较高的子树的根为 q, 根据 q 的平衡因子,有如下 3 种平衡化操作:
2
二叉平衡树(又称AVL树) 一棵二叉平衡树或者是空树,或者是具有下列性质 的二叉排序树:它的左子树和右子树都是二叉平衡树, 且左子树和右子树的高度之差的绝对值不超过1。
例如:
5
1
1
2
5
2
0
-1
15
1
4
0
8
0
0
4
1
8
0
10 12
0
32
0
-2 1 60
2
非平衡树
2
5
平衡树
1
非平衡树 45
结点的平衡因子:左子树的高度减右子树的 高度 。
二、二叉平衡树
1. 二叉平衡树定义
2. 如何构造二叉平衡树 3. 平衡旋转技术 4. 二叉平衡树的插入 5. 二叉平衡树的删除
1
1. 二叉平衡树定义 问题:
二叉排序树的缺点是树的结构事先无法预料, 随意性很大,它只与结点的值和插入的次序有 关,有时会得到一颗很不平衡的二叉树。
当二叉树与理想的平衡树相差越远,树的高 度越高时,其运算的时间就越长。最坏的情况 下,二叉树退化成单链表,其时间复杂度由 O(log2n)变为O(n)。
可以看出:Nh 的定义与斐波那契数列的定义非常相似。 F0 = 0, F1 = 1, Fh = Fh-1 + Fh-2 可以证明, 对于 h 0, 有 Nh = Fh+2 -1 成立。 有 n 个结点的AVL树的高度不超过: 26 1.44*log2 2(n+1) -1