2018-2019学年度七年级数学第一学期期末试卷39

合集下载

2018-2019年新人教版七年级(上)期末考试数学试卷(含答案解析)

2018-2019年新人教版七年级(上)期末考试数学试卷(含答案解析)

2018-2019年新人教版七年级(上)期末考试数学试卷一、选择题(本大题共10小题,共30.0分)1.−12的相反数等于()A. 12B. 2 C. −12D. −22.下列计算正确的是()A. −2−2=0B. 8a4−6a2=2a2C. 3(b−2a)=3b−2aD. −32=−93.如图,点B在点A的方位是()A. 南偏东43∘B. 北偏西47∘C. 西偏北47∘D. 东偏南47∘4.据统计,网络《洋葱数学》学习软件,注册用户已达1200万人,数据1200万用科学记数法表示为()A. 1.2×103B. 1.2×107C. 1.2×108D. 1.2万×1045.如图,小刚将一副三角板摆成如图形状,如果∠DOC=120°,则∠AOB=()A. 45∘B. 70∘C. 30∘D. 60∘6.关于y的方程2m+y=m与3y-3=2y-1的解相同,则m的值为()A. 0B. −2C. −12D. 27.若|m|=5,|n|=3,且m+n<0,则m-n的值是()A. −8或−2B. ±8或±2C. −8或2D. 8或28.某土建工程共需动用30台挖运机械,每台机械每分钟能挖土3m3,或者运土2m3,为了使挖土和运土工作同时结束,安排了x台机械挖土,这里的x应满足的方程是()A. 30−2x=3xB. 3x−2x=30C. 2x=3(30−x)D. 3x=2(30−x)9.已知一个有50个奇数排成的数阵,用如图所示的框去框住四个数,并求出这四个数的和,在下列给出的备选答案中,有可能是这四个数的和的是()A. 114B. 122C. 220D. 8410.如果∠α和∠β互余,则下列表示∠β的补角的式子中:①180°-∠β,②90°+∠α,③2∠α+∠β,④2∠β+∠α,其中正确的有()A. ①②③B. ①②③④C. ①②④D. ①②二、填空题(本大题共8小题,共24.0分)11. 如果卖出一台电脑赚钱500元,记作+500,那么亏本300元,记作______元.12. 如图,在一个长方形休闲广场的中央设计一个圆形的音乐喷泉,若圆形音乐喷泉的半径为r 米,广场的长为a 米,宽为b 米,则广场空地的面积表示为:______米2.13. 某玩具标价100元,打8折出售,仍盈利25%,这件玩具的进价是______元.14. 如图,将长方形纸片ABCD 沿直线EN 、EM 进行折叠后(点E 在AB 边上),B ′点刚好落在A ′E 上,若折叠角∠AEN =30°15′,则另一个折叠角∠BEM =______.15. 设0.7⋅=x ,由0.7⋅=0.777…可知,10x =7.777…,所以10x -x =7.解方程x =79.于是,得0.7⋅=79.则无限循环小数0.3⋅25⋅化成分数等于______.16. 如图,已知BC 是圆柱的底面直径,AB 是圆柱的高,在圆柱的侧面上,过点A 、C 嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB 剪开,若展开图中,金属丝与底面周长围成的图形的面积是5πcm 2,该圆柱的侧面积是______cm 2.17. 已知线段AB =acm ,在直线AB 上截取BC =bcm ,且b <a ,D 是AC 的中点,则线段BD =______cm .18. 如图所示,用圆圈拼成的图案,图1由一个圆环组成,图2由5个圆圈组成,图3由13个圆圈组成,依此规律,第8个图案一共由______个圆圈组成,第n 个由______个组成.三、计算题(本大题共4小题,共34.0分)19. 计算与化简:(1)-23÷23×(-13)2 (2)2(a 2+a +1)-3(1-2a -a 2)20. 解方程:(1)5(x -2)-2=2(2+x )+x(2)0.1(2x−4)−10.2=0.2(4−2x)−0.10.3−121. 我们通常象这样来比较两个数或两个代数式值的大小:若a -b =0,则a =b ;若a -b<0,则a <b ;若a -b >0,则a >b ,我们把这种方法叫“作差法”.已知A =5m 3+3m 2-2(52m -12),B =5m 3+5(m 2-m )+5,试比较代数式A 与B 的大小.22. 如图,已知直线AB 与直线CD 相交于点O ,∠BOE =90°,FO 平分∠BOD ,∠BOC :∠AOC =1:3.(1)求∠DOE 、∠COF 的度数.(2)若射线OF 、OE 同时绕O 点分别以2°/s 、4°/s 的速度,顺时针匀速旋转,当射线OE 、OF 的夹角为90°时,两射线同时停止旋转.设旋转时间为t ,试求t 值.四、解答题(本大题共3小题,共32.0分)23. 如图,已知同一平面内的四个点A 、B 、C 、D ,根据要求用直尺画图.(1)画线段AB ,∠ADC ;(2)找一点P ,使P 点既在直线AD 上,又在直线BC上;(3)找一点Q ,使Q 到A 、B 、C 、D 四个点的距离和最短.24. 下表是某市青少年业余体育健身运动中心的三种消费方式.方式 一年费/元 消费限定次数(次) 消费超时费(元/次)方式A5807525方式B88018020方式C0不限次数,29元/次(1)设一年内参加健身运动的次数为t次(t为正整数).试用t表示大于180次时,三种方式分别如何计费.(2)试计算t为何值时,方式A与方式B的计费相等?方式A与方式C呢?(3)请你根据参加运动的次数,设计最省钱的消费方式.25.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为-20和40.(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P 点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B 两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.①求整个运动过程中,P点所运动的路程.②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.答案和解析1.【答案】A【解析】解:根据定义可得:-的相反数等于.故选:A.根据相反数的定义:只有符号不同的两个数叫做互为相反数可以直接写出答案.此题主要考查了相反数的定义,关键是掌握相反数的定义.2.【答案】D【解析】解:A、-2-2=-2+(-2)=-4,此选项错误;B、8a4与-6a2不是同类项,不能合并,此选项错误;C、3(b-2a)=3b-6a,此选项错误;D、-32=-9,此选项正确;故选:D.根据有理数的减法和乘方的运算法则及同类项的定义、去括号法则逐一判断可得.本题主要考查有理数的运算和整式的运算,解题的关键掌握有理数的减法和乘方的运算法则及同类项的定义、去括号法则.3.【答案】B【解析】解:由余角的定义,得,∠CAB=90°43°=47°,点B在点A的北偏西47°,故选:B.根据余角的定义,方向角的表示方法,可得答案.本题考查了方向角,利用余角的定义得出方向角是解题关键.4.【答案】B【解析】解:1200万=1.2×107.故选:B.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.5.【答案】D【解析】解:∵∠DOB=∠AOC=90°,∠DOC=120°,∴∠DOA=30°,故∠AOB=90°-30°=60°.故选:D.直接利用互余的性质进而结合已知得出答案.此题主要考查了互余的性质,正确得出∠DOA=30°是解题关键.6.【答案】B【解析】解:由3y-3=2y-1,得y=2.由关于y的方程2m+y=m与3y-3=2y-1的解相同,得2m+2=m,解得m=-2.故选:B.分别解出两方程的解,两解相等,就得到关于m的方程,从而可以求出m的值.本题考查了同解方程,解决的关键是能够求解关于x的方程,根据同解的定义建立方程.7.【答案】A【解析】解:∵|m|=5,|n|=3,且m+n<0,∴m=-5,n=3;m=-5,n=-3,可得m-n=-8或-2,则m-n的值是-8或-2.故选:A.根据题意,利用绝对值的代数意义求出m与n的值,即可确定出原式的值.此题考查了代数式求值,以及绝对值,熟练掌握运算法则是解本题的关键.8.【答案】D【解析】解:设安排x台机械挖土,则有(30-x)台机械运土,x台机械挖土的总数为3xm3,则(30-x)台机械运土总数为2(30-x)m3,根据挖出的土等于运走的土,得:3x=2(30-x).故选:D.根据安排x台机械挖土,则有(30-x)台机械运土,x台机械挖土的总数为3xm3,则(30-x)台机械运土总数为2(30-x)m3,进而得出方程.此题主要考查了由实际问题抽象出一元一次方程,找出题目蕴含的数量关系是解决问题的关键.9.【答案】B【解析】解:设最小的一个数为x,则另外三个数为x+8,x+10,x+12,显然x的个位数字只可能是3,5,7,框住的四个数之和为x+(x+8)+(x+10)+(x+12)=4x+30.当4x+30=114时,x=21,不合题意;当4x+30=122时,x=23,符合题意;当4x+30=220时,x=47.5,不合题意;当4x+30=84时,x=13.5,不合题意;故选:B.可利用图例,看出框内四个数字之间的关系,上下相差10,左右相差2,利用此关系表示四个数之和,再进行求解即可得出答案.此题考查了一元一次方程的应用,解题的关键是读懂题目的意思,根据题目表示出这四个数,注意阅读材料题一定要审题细致,思维缜密.10.【答案】A【解析】解:因为∠α和∠β互余,所以表示∠β的补角的式子:①180°-∠β,正确;②90°+∠α,正确;③2∠α+∠β,正确④2∠β+∠α,错误;故选:A.根据互余的两角之和为90°,进行判断即可.本题考查了余角和补角的知识,解答本题的关键是掌握互余的两角之和为90°,互补的两角之和为180°.11.【答案】-300【解析】解:根据题意,亏本300元,记作-300元,故答案为:-300.由赚钱为正,亏本为负.赚钱500元记作+500,即可得到亏本300元应记作-300元.此题考查了正数与负数,熟练掌握相反意义的量是解本题的关键.12.【答案】(ab-πr2)【解析】解:由图可得,广场空地的面积为:(ab-πr2)米2,故答案为:(ab-πr2).根据题意和图形,可以用代数式表示出广场空地的面积.本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.13.【答案】64【解析】解:设该玩具的进价为x元.根据题意得:100×80%-x=25%x.解得:x=64.故答案是:64.设该玩具的进价为x元.先求得售价,然后根据售价-进价=进价×利润率列方程求解即可.本题主要考查的是一元一次方程的应用,根据售价-进价=进价×利润率列出方程是解题的关键.14.【答案】59°45′【解析】解:由折叠性质得:∠AEN=∠A′EN,∠BEM=∠B′EM,∴∠A′EN=30°15′,∠BEM=(180°-∠AEN-∠A′EN)=(180°-30°15′-30°15′)=59°45′,故答案为:59°45′.由折叠性质得∠AEN=∠A′EN,∠BEM=∠B′EM,即可得出结果;本题主要考查了翻折变换的性质及其应用问题;灵活运用翻折变换的性质来分析、判断、推理是解决问题的关键.15.【答案】325999【解析】解:设=x,由=0.325325325…,易得1000x=325.325325….可知1000x-x=325.325325…-0.325325325…=325,即 1000x-x=325,解得:x=.故答案为:.设=x,找出规律公式1000x-x=325,解方程即可求解.此题主要考查了一元一次方程的应用,解答本题的关键是找出其中的规律,即通过方程形式,把无限小数化成整数形式.16.【答案】10π【解析】解:如图,圆柱的侧面展开图为长方形,AC=A'C ,且点C 为BB'的中点,∵AA'∥BB',四边形ABB'A'是矩形,∴S △AA'C =S 长方形ABB'A ',又∵展开图中,S △AA'C =5πcm 2,∴圆柱的侧面积是10πcm 2.故答案为:10π.由平面图形的折叠及立体图形的表面展开图的特点解题.此题主要考查圆柱的展开图,以及学生的立体思维能力.解题时注意:圆柱的侧面展开图是长方形,圆锥的侧面展开图是扇形17.【答案】12(a +b )或12(a -b )【解析】 解:①当点C 在点B 的左侧时,如图,AC=AB-BC=(a-b )cm ,∵D 是AC 的中点,∴CD=AC=(a-b )cm ,则BD=BC+CD=b+(a-b )=(a+b )cm ;②当点C 在点B 右侧时,如图2,AC=AB+BC=(a+b )cm ,∵D 是AC 的中点,∴CD=AC=(a+b )cm ,则BD=CD-BC=(a+b )-b=(a-b )cm ,故答案为:(a+b )或(a-b ).分①当点C 在点B 的左侧时和②当点C 在点B 右侧时,分别求解可得. 本题主要考查两点间的距离和中点的定义,熟练掌握线段的和差运算是解题的关键.18.【答案】113 n 2+(n -1)2【解析】解:图1由一个圆环组成:1=12图2由5个圆圈组成:5=22+12图3由13个圆圈组成:13=33+22依此规律,第8个图案:82+72=113第n 个由n 2+(n-1)2,故答案为113,n 2+(n-1)2;探究规律,利用规律即可解决问题;本题考查规律问题,解题的关键是学会探究规律的方法,学会利用数形结合的思想解决问题,属于中考常考题型.19.【答案】解:(1)原式=-8×32×19=-43;(2)原式=2a 2+2a +2-3+6a +3a 2=5a 2+8a -1.【解析】(1)原式先计算乘方运算,再计算乘除运算即可求出值;(2)原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)去括号得:5x -10-2=4+2x +x ,移项合并得:2x =16,解得:x =8;(2)方程整理得:x -2-5=2(4−2x)−13-1,去分母得:3x -21=7-4x -3,移项合并得:7x =25,解得:x =257.【解析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x 系数化为1,即可求出解. 此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.21.【答案】解:∵A =5m 3+3m 2-2(52m -12),B =5m 3+5(m 2-m )+5,∴A -B =5m 3+3m 2-5m +1-5m 3-5m 2+5m -5=-2m 2-4<0,则A <B .【解析】把A 与B 代入A-B 中,判断差的正负确定出A 与B 的大小即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.【答案】解:(1)∵∠BOC :∠AOC =1:3,∴∠BOC =180°×11+3=45°, ∴∠AOD =45°,∵∠BOE =90°,∴∠AOE =90°,∴∠DOE =45°+90°=135°,∠BOD =180°-45°=135°,∵FO 平分∠BOD ,∴∠DOF =∠BOF =67.5°,∴∠COF =180°-67.5°=112.5°.(2)∠EOF =90°+67.5°=157.5°,依题意有4t -2t =157.5-90,解得t =33.75.故t 值为33.75.【解析】(1)根据平角的定义和已知条件可求∠BOC 的度数,根据对顶角相等可求∠AOD 的度数,根据角的和差关系可求∠DOE 的度数,根据平角的定义和角平分线的定义可求∠DOF 的度数,再根据平角的定义求得∠COF 的度数. (2)先求出∠EOF 的度数,再根据射线OE 、OF 的夹角为90°,列出方程求解即可.此题主要考查了角平分线的性质以及垂线定义和邻补角的定义,正确表示出∠AOD的度数是解题关键.23.【答案】解:(1)如图所示,线段AB、∠ADC即为所求;(2)直线AD与直线BC交点P即为所求;(3)如图所示,点Q即为所求.【解析】(1)根据线段和角的定义作图可得;(2)直线AD与直线BC交点P即为所求;(3)连接AC、BD,交点即为所求.本题主要考查作图-复杂作图,解题的关键是熟练掌握线段、直线和角的概念.24.【答案】解:(1)消费方式A所需费用为580+25(t-75)=25t-1295元;消费方式B所需费用为:880+20(t-180)=20t-2720元;消费方式C所需费用为:29t元.(2)当0<t≤75时,消费方式A所需费用为580元;当t>75时,消费方式A所需费用为(25t-1295)元.当0<t≤180时,消费方式B所需费用为880元;当t>180时,消费方式B所需费用为(20t-2720)元.当t>0时,消费方式C所需费用为29t元.①若方式A与方式B的计费相等,则25t-1295=880,解得:t=87,∴当t=87时,方式A与方式B的计费相等;②若方式A与方式C的计费相等,则580=29t,解得:t=20,∴当t=20时,方式A与方式C的计费相等.(3)根据(2)的结论,可知:当0<t<20时,选择方式C消费最省钱;当t=20时,选择方式A与方式C的计费相等;当20<t<87时,选择方式A消费最省钱;当t=87时,选择方式A与方式B的计费相等;当t>87时,选择方式B消费最省钱.【解析】(1)根据总费用=年卡+消费超时费×超出次数,即可得出选择消费方式A、消费方式B及消费方式C所需费用;(2)找出当0<t≤75及t>75时消费方式A所需费用;当0<t≤180及t>180时消费方式B所需费用;当t>0时消费方式C所需费用.①由方式A与方式B 的计费相等,即可得出关于t的一元一次方程,解之即可得出结论;②由方式A与方式C的计费相等,可得出关于t的一元一次方程,解之即可得出结论;(3)由(2)的结论,即可找出最省钱的消费方式.本题考查了列代数式以及一元一次方程的应用,解题的关键是:(1)根据三种消费方式的收费标准,找出当t>180时三种消费方式所需费用;(2)找准等量关系,正确列出一元一次方程;(3)根据(2)的结论,找出最省钱的消费方式.25.【答案】解:(1)∵P是AB的中点,A、B所对应的数值分别为-20和40.∴点p应该位于点A的右侧,和点A的距离是30,而点A位于原点O的左侧,距离为20∴点P位于原点的右侧,和原点O的距离为10.故答案是10.=20(秒),此即整个过程中点P运动(2)①点A和点B相向而行,相遇的时间为601+2的时间.所以,点P的运动路程为3×20=60(单位长度),故答案是60个单位长度.②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的.所以这个过程中0≤t≤15.P点经过t秒钟后,在数轴上对应的数值为10-3t.故答案是:10-3t,0≤t≤15.③不存在.由②可知,点P是和点A相向而行的,整个过程中,点P与点A的距离越来越小,而点P与点B的距离越来越大,所以不存在相等的时候.【解析】(1)根据题意结合图形即可解决问题;(2)①关键是确定P点运动的时间;②根据条件确定t的取值范围,由点P运动的时间和速度,再结合其初始位置,易得其在数轴上对应的位置;③研究三个点的相对位置和运动过程中距离的变化情况可以判断.该命题主要考查了数轴上的点的排列特点;解题的关键是深刻把握题意.。

2018-2019学年度第一学期期末考试初一数学试卷

2018-2019学年度第一学期期末考试初一数学试卷

2018-2019学年度第一学期期末考试初一数学试卷一、选择题 (本大题共 10 小题,每题 2 分,共 20分。

每题只有一个选项是正确的,把正确选项前的字母填在下表中 )题号12345678910答案1. 1 的相反数是 (A)3(B) ―3(C) 1(D) ―13332.方程 1 x=3 的解是 (A)x=6(B)x= ―6(C)x=3 (D)x=22233 .在―(―6) ,―(―6) 2 , |―6| ,―6 2 这四个数中,负数的个数为(A)1 个 (B)2 个(C)3 个(D)4 个4 .当 a = ―5, b= ―3 时,代数式 2b 2―5a 的值等于(A)18 (B) ―18(C)43 (D) ―435.假如― 4 x 2a ―1 y 6与―2xy 6 是同类项,则代数式 (a — 2) 2004 ·(2 a — 1) 2005 的值是 5(A)0 (B)1(C) ―1(D)1 或―16 .若 |x|=3 , |y|=2 , xy < 0 ,则 x+y 的值等于(A)5 或―5 (B)1 或―1 (C)5 或 1 (D)―5 或 17 .如图, AB ∥CD ,直线 EF 分别交 AB 、 CD 于点 E 、 F ,BG 均分∠BEF ,∠l=50 °,则∠2 为(A)50 °(B)60 °(C)65 ° (D)70 °8 .下边事倩中必定事情是 (A) 翻开电视机,它正好播广告(B)异号两数相加,和为零(C) 黑暗中我从一大串钥匙中选出一把,用它翻开了门(D) 投掷一枚一般的正方体段子,掷得的数不是奇数就是偶数 9 .以下左侧的正视图和俯视图对应右侧物体中的10 .以下图形中,不行能围成正方体的是二、填空 (本大 共 8 小 ,每小 2分,共 16 分 )11 .某天清晨的气温是― 7 ℃,正午上涨了11 ℃, 正午的气温是 _________℃。

2018-2019 学年度第一学期七年级期末质量检测数学试卷参考答案

2018-2019 学年度第一学期七年级期末质量检测数学试卷参考答案
解得: m 22 ----------------------------------------------------------------------9 分 7
CED BCM 90 (已知) ∴ CED ACN (同角的余角相等)-----------8 分
∴AC∥DE(内错角相等,两直线平行)-----------9 分 ∵AC⊥BF(已知)
A
B
M
C
E
N
∴∠ACB=90°(垂直定义)---------------------10 分 又∵AC∥DE(已证)
解得:x=4,-----------------------------------------------------------------------------------------12 分
∴点 P 运动 4 秒时,追上点 Q.------------------------------------------------------------ 13 分
三、解答题
17. 解:原式= 4 1 ( 3) --------------------------------------4 分(绝对值计算 2 分,其他 1 分) 6
=2
------------------------------------------6 分
18. 解法一:原式= 2x 2 y 3x 3y 3x 3y 2x 2 y ---4 分(评分点:每去一个括号正确得 1 分)
2018-2019 学年第一学期七年级期末质量检测 数学试卷参考答案与评分说明
一.选择题(每小题 4 分,共 40 分)
题号
1
2
3
4
5
6

2018-2019学年新人教版数学七年级上册期末试题(含答案解析)

2018-2019学年新人教版数学七年级上册期末试题(含答案解析)

2018-2019学年七年级(上)期末数学试卷一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定4.(3分)如图,几何体的左视图是()A.B.C.D.5.(3分)下列运算结果为正数的是()A .﹣32B .﹣3÷2C .﹣1+2D .0×(﹣2018) 6.(3分)若方程(a ﹣3)x |a |﹣2﹣1=5是关于x 的一元一次方程,则a 的值为( ) A .±2 B .3 C .±3 D .﹣37.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是( ) A .两点确定一条直线B .直线比曲线短C .两点之间直线最短D .两点之间线段最短8.(3分)下列解方程变形正确的是( )A .若5x ﹣6=7,那么5x=7﹣6B .若,那么2(x ﹣1)+3(x +1)=1C .若﹣3x=5,那么x=﹣D .若﹣,那么x=﹣39.(3分)若3a 2+m b 3和(n ﹣2)a 4b 3是同类项,且它们的和为0,则mn 的值是( )A .﹣2B .﹣1C .2D .110.(3分)若x=4是关于x 的方程2x +a=1的解,则a 的值是( )A .﹣4B .﹣7C .7D .﹣911.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB ,则线段AB 盖住的整点个数有( ) A .2018或2019 B .2017或2018 C .2016或2017 D .2019或202012.(2分)已知(b +1)4与|3﹣a |互为相反数,则b a 的值是( )A .﹣3B .3C .﹣1D .113.(2分)若x=2时,代数式ax 4+bx 2+5的值是3,则当x=﹣2时,代数式ax 4+bx 2+7的值为( )A .﹣3B .3C .5D .714.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x 颗,则可得方程为( )A .B .2x +8=3x ﹣12C .D . =15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a >b ),则a ﹣b 的值为( )A.6B.8C.9D.1216.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×1020189.9×102017.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣121.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=;若a=4,则b=;②用含a的式子表示b,则b=;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm【分析】从图可知长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条,再把它们的长度相加即可.【解答】解:因为长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条.所以图中所有线段长度之和为:1×4+2×3+3×2+4×1=20(厘米).故选:B.【点评】本题考查了两点间的距离,关键是能够数出1cm,2cm,3cm,4cm的线段的条数,从而求得解.2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°【分析】根据1度等于60分,1分等于60秒解答即可.【解答】解:10°36″用度表示为10.01°,故选:C.【点评】考查了度分秒的换算,分秒化为度时用除法,而度化为分秒时用乘法.3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定【分析】结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2013年的销售收入约为50万元,2017年约为90万元,则从2013~2017年甲公司增长了90﹣50=40万元;乙公司2013年的销售收入约为50万元,2017年约为70万元,则从2013~2017年乙公司增长了70﹣50=20万元.则甲公司近年的销售收入增长速度比乙公司快.故选:A.【点评】本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是解决问题的关键.4.(3分)如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体.故选:C.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.5.(3分)下列运算结果为正数的是()A.﹣32B.﹣3÷2C.﹣1+2D.0×(﹣2018)【分析】根据各个选项中的式子,可以计算出相应的结果,从而可以解答本题.【解答】解:∵﹣32=﹣9,﹣3÷2=﹣,﹣1+2=1,0×(﹣2018)=0,∴选项C中的结果为正数,故选:C.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.6.(3分)若方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,则a的值为()A.±2B.3C.±3D.﹣3【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,∴|a|﹣2=1,a﹣3≠0,解得:a=﹣3.故选:D.【点评】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.7.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短【分析】根据线段的性质解答即可.【解答】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.【点评】本题考查的是线段的性质,即两点之间线段最短.8.(3分)下列解方程变形正确的是()A.若5x﹣6=7,那么5x=7﹣6B.若,那么2(x﹣1)+3(x+1)=1C.若﹣3x=5,那么x=﹣D.若﹣,那么x=﹣3【分析】A、运用移项的法则可以求出结论;B、根据等式的性质2去分母可以得出结论;C、运用等式的性质2化系数为1可以得出结论;D、运用等式的性质2化系数为1可以得出结论;【解答】解:A、∵5x﹣6=7,移项,得5x=7+6,故选项错误;B、∵,去分母,得2(x﹣1)+3(x+1)=6,故选项错误;C、∵﹣3x=5,化系数为1,得x=﹣,故选项错误;D、∵﹣,化系数为1,得x=﹣3,故选项正确.故选:D.【点评】本题考查了解方程步骤的运用,去分母,去括号,移项,合并同类项,化系数为1的过程的运用.9.(3分)若3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣2B.﹣1C.2D.1【分析】由同类项是字母相同且相同字母的指数也相同,可得m的值;根据合并同类项系数相加字母及指数不变,可得n的值;再计算mn,可得答案.【解答】解:由3a2+m b3和(n﹣2)a4b3是同类项,得2+m=4,解得m=2.由它们的和为0,得3a4b3+(n﹣2)a4b3=(n﹣2+3)a4b3=0,解得n=﹣1.mn=﹣2,故选:A.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.(3分)若x=4是关于x的方程2x+a=1的解,则a的值是()A.﹣4B.﹣7C.7D.﹣9【分析】把x=4代入已知方程后,列出关于a的新方程,通过解新方程来求a的值.【解答】解:∵x=4是关于x的方程2x+a=1的解,∴2×4+a=1,解得a=﹣7.故选:B.【点评】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.11.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB,则线段AB盖住的整点个数有()A.2018或2019B.2017或2018C.2016或2017D.2019或2020【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【解答】解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点.∵2018+1=2019,∴2018厘米的线段AB盖住2018或2019个整点.故选:A.【点评】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.12.(2分)已知(b+1)4与|3﹣a|互为相反数,则b a的值是()A.﹣3B.3C.﹣1D.1【分析】根据相反数的概念列出算式,根据非负数的性质求出a、b的值,计算即可.【解答】解:由题意得(b+1)4+|3﹣a|=0,则3﹣a=0,b+1=0,解得a=3,b=﹣1,则b a=﹣1,故选:C.【点评】本题考查的是非负数的性质和相反数,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13.(2分)若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3B.3C.5D.7【分析】将x=2代入ax4+bx2+5=3得16a+4b=﹣2,据此将其代入x=﹣2时ax4+bx2+7=16a+4b+7中计算可得.【解答】解:将x=2代入ax4+bx2+5=3,得:16a+4b+5=3,则16a+4b=﹣2,所以当x=﹣2时,ax4+bx2+7=16a+4b+7=﹣2+7=5,故选:C.【点评】本题主要考查代数式求值,解题的关键是熟练掌握代数式的求值及整体代入思想的运用.14.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x颗,则可得方程为()A.B.2x+8=3x﹣12C.D.=【分析】设有糖果x颗,根据该幼儿园小朋友的人数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有糖果x颗,根据题意得:=.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A.6B.8C.9D.12【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个长方形面积的差.【解答】解:设重叠部分的面积为c,则a﹣b=(a+c)﹣(b+c)=35﹣23=12,故选:D.【点评】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.16.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0【分析】根据题意可知:a是从1开始到序数的连续整数的和,c是序数与1的和,而b 是a与c的和,据此可得.【解答】解:由图可知,a=1+2+3+ (2018)c=2019,则b=a+c=1+2+3+……+2018+2019,∴a﹣b+c=1+2+3+……+2018﹣(1+2+3+……+2018+2019)+2019=0,故选:D.【点评】本题考查数字和图形的变化类,解题的关键是明确题意,找出数字的变化规律.二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×102018>9.9×102017.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵1.1×102018=11×102017,由11>9.9,∴1.1×102018>9.9×102017.故答案为:>.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=9cm.【分析】根据题意求出BC,根据线段中点的性质解答即可.【解答】解:∵点D是线段BC的中点,若BD=3cm,∴BC=2BD=2×3=6cm,∵点C是线段AB的中点,∴AC=CB=6cm,∴AD=AC+CD=6+3=9cm,故答案为:9cm.【点评】本题考查的是两点间的距离的计算,掌握线段中点的概念、灵活运用数形结合思想是解题的关键.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=1﹣.【分析】分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可.=1﹣;=1﹣;【解答】解:故答案为:;1﹣.【点评】本题主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律是解答此题的关键.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣1【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)方程移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=13﹣9+2﹣7=15﹣16=﹣1;(2)原式=﹣1﹣×3×(﹣4)=﹣1+6=5;(3)方程移项合并得:5x=﹣20,解得:x=﹣4;(4)方程去分母得:4x﹣2+x﹣5=﹣6,移项合并得:5x=1,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.【分析】(1)在射线CP上延长截取CM=MN=a,ND=b,则CD满足条件;(2)根据几何语言画出对应的几何图形即可.【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=5x2y﹣3xy2﹣7x2y+2xy2=﹣2x2y﹣xy2,当x=﹣1,y=2时,原式=﹣4+4=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.【分析】设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【解答】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOC=40°.【点评】本题考查了角平分线的定义,要设恰当的未知数,用同一个未知数表示相关的角,根据已知的角列方程进行计算是解此题的关键.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?【分析】根据题意可以列出相应的方程,从而可以求得每件衬衫降价多少元.【解答】解:设每件衬衫降价x元,(180﹣120)×400+(500﹣400)(180﹣x﹣120)=120×500×42%解得,x=48,答:每件衬衫降价48元.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=2;若a=4,则b=﹣2;②用含a的式子表示b,则b=2﹣a;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.【分析】(1)根据政治科目的人数及其所占百分比可得总人数,依据地理学科的人数所占的百分比,即可得到其所在扇形的圆心角;(2)总人数乘以历史科目的百分比可得其人数,从而补全折线图;(3)总人数乘以样本中物理科目人数所占比例即可得.【解答】解:(1)由图知把政治作为首选的324人,占全校总人数的百分比为36%,全校总人数为:324÷36%=900人,地理学科所在扇形的圆心角=360°×=18°;答:被抽查的学生共有900人,地理学科所在扇形的圆心角为18°.(2)本次调查中,首选历史科目的人数为900×6%=54人,补全折线图如下:(3)2000×=400,答:估计喜欢物理学科的人数为400人.【点评】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.【分析】(1)①根据互为基准变换点的定义可得出a+b=2,代入数据即可得出结论;②根据a+b=2,变换后即可得出结论;(2)设点A表示的数为x,根据点A的运动找出点B,结合互为基准变换点的定义即可得出关于x的一元一次方程,解之即可得出结论;(3)由于点P表示的数为m,根据题意,用含m的代数式分别表示出P1、P2、P3、P4、P5表示的数,从而发现4个一循环的规律,进而得出点P2018表示的数与点P2表示的数相同.【解答】解:(1)①∵点A表示数a,点B表示数b,点A与点B互为基准变换点,∵a+b=2,当a=0时,b=2;当a=4时,b=﹣2.故答案为:2;﹣2.②∵a+b=2,∴b=2﹣a.故答案为:2﹣a;(2)设点A表示的数为x,根据题意得:x﹣3+x=2,解得:x=2.故点A表示的数是2;(3)设点P表示的数为m,由题意可知:P1表示的数为m+k,P2表示的数为2﹣(m+k),P3表示的数为2﹣m,P4表示的数为m,P5表示的数为m+k,…由此可分析,4个一循环,∵2018÷4=504…2,∴点P2018表示的数与点P2表示的数相同,即点P2018表示的数为2﹣(m+k).【点评】本题考查了规律型中图形的变化类、数轴以及列代数式,根据互为基准变换点的定义找出a+b=2是解题的关键.。

2018—2019学年度新人教版七年级数学第一学期期末试卷含有参考答案带解析

2018—2019学年度新人教版七年级数学第一学期期末试卷含有参考答案带解析

2018—2019学年度新人教版七年级数学第一学期期末试卷一、选择题1、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线.能解释这一实际问题的数学知识是( ) A .两点确定一条直线 B .两点之间线段最短C .垂线段最短D .在同一平面内,过一点有且只有一条直线与已知直线垂直2、向北行驶3 km ,记作+3 km ,向南行驶2 km 记作( )A .+2 kmB .-2 kmC .+3 kmD .-3 km 3、若使等式(-4)□(-6)=2成立,则□中应填入的运算符号是( ) A .+ B .- C .× D .÷ 4、下列运算正确的是( )A .5x -3x =2B .2a +3b =5abC .-(a -b)=b +aD .2ab -ba =ab5、如果以x =-5为方程的解构造一个一元一次方程,那么下列方程中不满足要求的是( )A .x +5=0B .x -7=-12C .2x +5=-5D .=-16、张东同学想根据方程10x +6=12x -6编写一道应用题:“几个人共同种一批树苗,________,求参与种树的人数.”若设参与种树的有x 人,那么横线部分的条件应描述为( )A .如果每人种10棵,那么缺6棵树苗;如果每人种12棵,那么剩下6棵树苗未种B .如果每人种10棵,那么剩下6棵树苗未种;如果每人种12棵,那么缺6棵树苗C .如果每人种10棵,那么剩下6棵树苗未种;如果每人种12棵,也会剩下6棵树苗未种D .如果每人种10棵,那么缺6棵树苗;如果每人种12棵,同样也是缺6棵树苗 7、在数轴上,两点M ,N 分别表示数m ,n ,那么M ,N 两点之间的距离等于( ) A .m +n B .m -n C .|m +n| D .|m -n|8、在同一平面上,若∠BOA =60.3°,∠BOC =20°30′,则∠AOC 的度数是( ) A .80.6° B .40° C .80.8°或39.8° D .80.6°或40°9、-7的倒数是( )A .7B .C .-7D .-10、如图,下面几何体,从左边看得到的平面图形是( )A .AB .BC .CD .D二、填空题11、据统计,2014年全国约有939万人参加高考,939万人用科学记数法表示为____________人。

人教版2018-2019学年七年级上册数学期末考试题及答案

人教版2018-2019学年七年级上册数学期末考试题及答案

2018-2019学年七年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,满分12分)1.(2分)设某数为m,则代数式表示()A.某数的3倍的平方减去5除以2B.某数平方的3倍与5的差的一半C.某数的3倍减5的一半D.某数与5的差的3倍除以22.(2分)如果将分式中的x和y都扩大到原来的3倍,那么分式的值()A.不变B.扩大到原来的9倍C.缩小到原来的D.扩大到原来的3倍3.(2分)()0的值是()A.0B.1C.D.以上都不是4.(2分)数学课上老师出了一道因式分解的思考题,题意是x2+2mx+16能在有理数的范围内因式分解,则整数m的值有几个.小军和小华为此争论不休,请你判断整数m的值有几个?()A.4B.5C.6D.85.(2分)如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影凃在图中标有数字()的格子内.A.1B.2C.3D.46.(2分)如图,五角星绕着它的旋转中心旋转,使得△ABC与△DEF重合,那么旋转角的度数至少为()A.60°B.120°C.72°D.144°二、填空题(本大题共12小题,每小题2分,满分24分)7.(2分)计算:(a3)2=.8.(2分)已知单项式与单项式3a2b m﹣2是同类项,则m+n=.9.(2分)计算:(﹣12x2y3z+3xy2)÷(﹣3xy2)=.10.(2分)因式分解:2x2﹣18=.11.(2分)因式分解:9a2﹣12a+4=.12.(2分)在分式,,,,中,最简分式有个.13.(2分)方程如果有增根,那么增根一定是.14.(2分)将代数式3x﹣2y3化为只含有正整数指数幂的形式是.15.(2分)用科学记数法表示:﹣0.000321=.16.(2分)等边三角形有条对称轴.17.(2分)如图,三角形ABC三边的长分别为AB=m2﹣n2,AC=2mn,BC=m2+n2,其中m、n都是正整数.以AB、AC、BC为边分别向外画正方形,面积分别为S1、S2、S3,那么S1、S2、S3之间的数量关系为.18.(2分)如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为.(结果保留π)三、简答题(本大题共6小题,每小题6分,满分36分)19.(6分)计算:(m+3n)(3m﹣n)﹣2(m﹣n)2.20.(6分)计算:(x﹣1﹣y﹣1)÷(x﹣2﹣y﹣2).21.(6分)因式分解:x3+x2y﹣xy2﹣y3.22.(6分)分解因式:(x2﹣x)2+(x2﹣x)﹣6.23.(6分)解方程:.24.(6分)先化简,再求值:•(1+)÷,其中m=2019.四、画图题(本题满分6分)25.(6分)在图中网格上按要求画出图形,并回答问题:(1)如果将三角形ABC平移,使得点A平移到图中点D位置,点B、点C的对应点分别为点E、点F,请画出三角形DEF;(2)画出三角形ABC关于点D成中心对称的三角形A1B1C1;(3)三角形DEF与三角形A1B1C1(填“是”或“否”)关于某个点成中心对称?如果是,请在图中画出这个对称中心,并记作点O.五、解答题(本大题共3小题,第26、27各7分,28题8分,满分22分)26.(7分)依法纳税是每个公民应尽的义务.新税法规定:居民个人的综合所得,以每一纳税月收入减去费用5000元以及专项扣除、专项附加扣除和依法确定的其它扣除后的余额,为个人应纳税所得额.已知李先生某月的个人应纳税所得额比张先生的多1500元,个人所得税税率相同情况下,李先生的个人所得税税额为76.5元,而张先生的个人所得税税额为31.5元.求李先生和张先生应纳税所得额分别为多少元.(个人所得税税率=)27.(7分)阅读材料:已知,求的值解:由得,=3,则有x+=3,由此可得,=x2+=(x+)2﹣2=32﹣2=7;所以,.请理解上述材料后求:已知=a,用a的代数式表示的值.28.(8分)如图,已知一张长方形纸片,AB=CD=a,AD=BC=b(a<b<2a).将这张纸片沿着过点A的折痕翻折,使点B落在AD边上的点F,折痕交BC于点E,将折叠后的纸片再次沿着另一条过点A的折痕翻折,点E恰好与点D重合,此时折痕交DC于点G.(1)在图中确定点F、点E和点G的位置;(2)连接AE,则∠EAB=°;(3)用含有a、b的代数式表示线段DG的长.2018-2019学年上海市闵行区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,满分12分)1.【解答】解:∵设某数为m,代数式表示:某数平方的3倍与5的差的一半.故选:B.2.【解答】解:∵=,∴扩大到原来的3倍,故选:D.3.【解答】解:()0=1.故选:B.4.【解答】解:∵4×4=16,(﹣4)×(﹣4)=16,2×8=16,(﹣2)×(﹣8)=16,1×16=16,(﹣1)×(﹣16)=16,∴4+4=2m,﹣4+﹣4=2m,2+8=2m,﹣2﹣8=2m,1+16=2m,﹣1﹣16=2m,分别解得:m=4,﹣4,5,﹣5,8.5,﹣8.5;∴整数m的值有4个,故选:A.5.【解答】解:如图所示,把阴影凃在图中标有数字3的格子内所组成的图形是轴对称图形,故选:C.6.【解答】解:五角星的五个角可组成正五边形,而正五边形的中心角为=72°,所以五角星绕着它的旋转中心至少顺时针旋转2个72°,使得△ABC与△DEF重合.故选:D.二、填空题(本大题共12小题,每小题2分,满分24分)7.【解答】解:(a3)2=a6.故答案为:a6.8.【解答】解:∵单项式与单项式3a2b m﹣2是同类项,∴n+1=2,m﹣2=3,解得:n=1,m=5,m+n=5+1=6.故答案为:6.9.【解答】解:原式=4xyz﹣1故答案为:4xyz﹣1.10.【解答】解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3).11.【解答】解:9a2﹣12a+4=(3a﹣2)2.12.【解答】解:==,是最简分式,==m﹣n,==,==﹣1,所以最简分式只有1个,故答案为:1.13.【解答】解:去分母得m=1+2(x﹣1),整理得m=2x﹣1,∵方程有增根,∴x﹣1=0,即x=1,∴m=2×1﹣1=1,即m=1时,分式方程有增根,增根为x=1.故答案为x=1.14.【解答】解:3x﹣2y3=3××y3=,故答案为:.15.【解答】解:﹣0.000321=﹣3.21×10﹣4.故答案为:﹣3.21×10﹣4.16.【解答】解:等边三角形有3条对称轴.故答案为:3.17.【解答】解:∵AB=m2﹣n2,AC=2mn,BC=m2+n2,∴AB2+AC2=BC2,∴△ABC是直角三角形,设Rt△ABC的三边分别为a、b、c,∴S1=c2,S2=b2,S3=a2,∵△ABC是直角三角形,∴b2+c2=a2,即S1+S2=S3.故答案为:S1+S2=S3.18.【解答】解:∵△AOC≌△BOD∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积=﹣=5π,故答案为5π.三、简答题(本大题共6小题,每小题6分,满分36分)19.【解答】解:原式=3m2+8mn﹣3n2﹣2(m2﹣2mn+n2)=3m2+8mn﹣3n2﹣2m2+4mn﹣2n2=m2+12mn﹣5n220.【解答】解:(x﹣1﹣y﹣1)÷(x﹣2﹣y﹣2).=.=.=.=.21.【解答】解:原式=(x3+x2y)﹣(xy2+y3)=x2(x+y)﹣y2(x+y)=(x+y)2(x﹣y).22.【解答】解:原式=(x2﹣x+3)(x2﹣x﹣2)=(x2﹣x+3)(x+1)(x﹣2).23.【解答】解:方程两边同乘以2(3x﹣1),得:﹣2+3x﹣1=3,解得:x=2,检验:x=2时,2(3x﹣1)≠0.所以x=2是原方程的解.24.【解答】解:原式=••=••=,当m=2019时,原式==.四、画图题(本题满分6分)25.【解答】解:(1)如图所示,△DEF即为所求.(2)如图所示,△A1B1C1即为所求;(3)如图所示,△DEF与△A1B1C1是关于点O成中心对称,故答案为:是.五、解答题(本大题共3小题,第26、27各7分,28题8分,满分22分)26.【解答】解:设张先生应纳税所得额为x元,则李先生应纳税所得额为(x+1500)元.依题意得,=,解得x=1050,经检验:x=1050是原方程的根且符合题意,当x=1050时,x+1500=2550(元),答:李先生和张先生的应纳税所得额分别为2550元、1050元.27.【解答】解:由=a,可得=,则有x+=﹣1,由此可得,=x2++1=﹣2+1=﹣1=﹣1=,所以,=.28.【解答】解:(1)点F、点E和点G的位置如图所示;(2)由折叠的性质得:∠DAE=∠EAB,∵四边形ABCD是矩形,∴∠BAD=∠DAE+∠EAB=90°,∴∠EAB=45°,故答案为:45;(3)由折叠的性质得:DG=EG,∵∠ABE=90°,∠EAB=45°,∴∠AEB=45°,∴BE=AB=a,∴CE=b﹣a,设CG=x,则DG=EG=a﹣x,在Rt△CEG中,CG2+CE2=EG2,即x2+(b﹣a)2=(a﹣x)2,解得:x=,∴DG=a﹣x=a﹣=a﹣b+.。

2018-2019学年度第一学期七年级期末考试数学试卷参考答案

2018-2019学年度第一学期七年级期末考试数学试卷参考答案

2018-2019学年度第一学期七年级期末考试数学试卷参考答案二、填空题(本大题共 5 小题,每小题4分,满分20分)11. 两点确定一条直线 12. 百 13. 4232'︒ 14.1003xx += 15. 60°或120°三、解答题(本大题共8小题,满分90分)16.(6分)计算题: 232123(2)(6)()3-+⨯---÷-解:原式=143(8)(6)9-+⨯---÷ (4分)42454=--+=26 (6分)17.(12分)解方程或方程组:(1)解方程:2131168x x ---= (2)解方程组:633594x y x y -=-⎧⎨-=⎩解:4(21)3(31)24x x ---= (3分) 解:将①⨯3得1899x y -=- ③ 25x -= 将③-②得1313x =-,解得1x =- (3分) 25x = (6分) 将1x =-代入②解得1y =- (4分) 所以此方程组解为11x y =-⎧⎨=-⎩(6分) 注:其他方法也可18.(10分)先化简,再求值:解:原式=223[223]x y xy xy x y xy --++=xy - (6分)当13,3x y ==-时,原式=13()13-⨯-= (10分)19.(10分)解:(1)∵多项式222,6,A x xy B x xy =-=+-∴2244(2)(6)A B x xy x xy -=--+-22846x xy x xy =---+2756x xy =-+ (6分)(2)∵由(1)知,24756A B x xy -=-+∴当1,2x y ==-时,原式=27151(2)6⨯-⨯⨯-+=7106++=23 (10分)20.(12分)解:设购得茶壶x 只,则需茶杯(30-x )只,根据题意得: (1分) 153[(30)]171x x x +--= (6分) 解得 x =9答:小王买了茶壶9只。

2018-2019学年第一学期期末测试七年级数学试题及答案

2018-2019学年第一学期期末测试七年级数学试题及答案

2018—2019学年第一学期期末测试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分为120分。

考试用时100分钟。

考试结束后,只上交答题卡。

2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。

3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案不能答在试题卷上。

24.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列算式:(1)(2)--;(2)2- ;(3) 3(2)-;(4)2(2)-.其中运算结果为正数的个数为(A )1 (B )2 (C )3 (D )4【 2.若a 与b 互为相反数,则a-b 等于(A )2a (B )-2a (C ) 0 (D )-2 3.下列变形符合等式基本性质的是(A )如果2a -b =7,那么b =7-2a (B )如果mk =nk ,那么m =n(C )如果-3x =5,那么x =5+3 (D )如果-13a =2,那么a =-64.下列去括号的过程(1)c b a c b a --=--)(; (2)c b a c b a ++=--)(; (3)c b a c b a +-=+-)(; (4)c b a c b a --=+-)(.其中运算结果错误的个数为(A )1 (B )2 (C )3 (D )4【 5.下列说法正确的是(A )1-x 是一次单项式 (B)单项式a 的系数和次数都是1 (C )单项式-π2x 2y 2的次数是6 (D)单项式24102x ⨯的系数是26.下列方程:(1)2x -1=x -7 ,(2)12x =13x -1 ,(3)2(x +5)=-4-x , (4)23x =x -2.其中解为x =-6的方程的个数为 (A )4 (B )3 (C )2 (D )1 7.把方程5.07.01.023.012.0-=--x x 的分母化为整数的方程是 (A )57203102-=--x x (B )5723102-=--x x (C )572312-=--x x (D )5720312-=--x x 8.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物,28.3亿吨用科学记数法表示为(A ) 28.3×107(B ) 2.83×108(C )0.283×1010(D )2.83×1099.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是 (A )用两个钉子就可以把木条固定在墙上(B )利用圆规可以比较两条线段的大小关系 (C )把弯曲的公路改直,就能缩短路程(D )植树时,只要定出两棵树的位置,就能确定同一行树所在的直线10.一个两位数,个位数字为a ,十位数字为b ,把这个两位数的个位数字与十位数字 交换,得到一个新的两位数,则新两位数与原两位数的和为 (A )b a 99+(B )ab 2(C )ab ba +(D )b a 1111+ 11.已知表示有理数a 、b 的点在数轴上的位置如图所示:则下列结论正确的是(A )|a|<1<|b| (B )1<a<b (C )1<|a|<b (D ) -b<-a<-1 12.定义符号“*”表示的运算法则为a*b =ab +3a ,若(3*x)+(x*3)=-27,则x = (A )29-(B )29(C )4 (D )-4 第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.若把45.58°化成以度、分、秒的形式,则结果为.14.若xm-1y 3与2xy n 的和仍是单项式,则(m-n )2018的值等于______ .15. 若031)2(2=++-y x ,则y x -=. 16.某同学在计算10+2x 的值时,误将“+”看成了“﹣”,计算结果为20,那么10+2x 的值应为.17.如图,数轴上相邻刻度之间的距离是51,若BC=52,A 点在数轴上对应的数值是53-,则B 点在数轴上对应的数值是 .218.我们知道,钟表的时针与分针每隔一定的时间就会重合一次,请利用所学知识确定,时针与分针从上一次重合到下一次重合,间隔的时间是______ 小时.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题分5分,本小题满分10分)计算: (1)11(0.5)06(7)( 4.75)42-+--+--(2)[(﹣5)2×]×(﹣2)3÷7.20.(每小题分5分,本小题满分10分)先化简,再求值: (1)3x 2-[5x-(6x-4)-2x 2],其中x=3(2)(8mn-3m 2)-5mn-2(3mn-2m 2),其中m=-1,n=2.21.(每小题分5分,本小题满分10分)解方程:(1)6322-41--=x x . (2)3125121103--=+x x . 22.(本小题满分8分)一个角的余角比这个角的补角的 13 还小10°,求这个角的度数.23.(本大题满分10分)列方程解应用题:A 车和B 车分别从甲,乙两地同时出发,沿同一路线相向匀速而行.出发后1.5小时两车相距75公里,之后再行驶2.5小时A 车到达乙地,而B 车还差40公里才能到达甲地.求甲地和乙地相距多少公里?24.(本小题满分12分)如图,∠AOB是直角,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)当∠AOC=40°,求出∠MON的大小,并写出解答过程理由;(2)当∠AOC=50°,求出∠MON的大小,并写出解答过程理由;(3)当锐角∠AOC=α时,求出∠MON的大小,并写出解答过程理由.2017—2018学年第一学期期末测试七年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)二、填空题(本大题6个小题,每小题4分,共24分)13.45°34'48"; 14.1; 15.37; 16. 0 ; 17.0或54 ; 18.1112 . 三、解答题(本大题6个小题,共60分) 19.(每小题分5分,本小题满分10分)计算:解:(1)11(0.5)06(7)( 4.75)42-+--+-- =130.567.5444-+-+………………………………………………2分=13(0.57.5)(64)44--++………………………………………………4分=3.………………………………………………5分(2)[(﹣5)2×]×(﹣2)3÷7=[25×]×(﹣8)÷7……………………………………1分 =[﹣15+8]×(﹣8)÷7………………………………………………2分 =﹣7×(﹣8)÷7 (3)分=56÷7…………………………………………………………4分=8.…………………………………………………………5分20.(每小题分5分,本小题满分10分)先化简,再求值:解:(1)原式, ………………………3分当时,原式; ………………………5分 (2)原式,………………………3分当时,原式. ………………………5分21.(每小题分5分,本小题满分10分)解方程:解:(1)去分母得:, …………3分移项合并得:; …………5分(2)解:原方程可化为312253--=+x x . …………1分去分母,得)12(2)53(3--=+x x . …………2分去括号,得24159+-=+x x . …………3分移项,得215-49+=+x x . …………4分合并同类项,得1313-=x .系数化为1,得1-=x . …………5分22.(本小题满分8分)解:设这个角的度数为x °, …………1分根据题意,得90-x =13(180-x)-10, …………5分解得x =60. …………7分答:这个角的度数为60°. …………8分23.(本大题满分10分)解:设甲地和乙地相距x 公里,根据题意,列出方程752401.5 1.52.5x x --=+………………………………………5分 解方程,得4300360x x -=-………………………………………7分240x =………………………………………9分答:甲地和乙地相距240公里. ……………………………10分24.(本小题满分12分)解:(1)∠AOC =40°时, ∠MON =∠MOC -∠CON ………………………………………1分=12(∠BOC -∠AOC) ………………………………………3分=12∠AOB ………………………………………5分 =45°. ………………………………………6分 (2)当∠AOC =50°,∠MON =45°.理由同(1).………………………9分 (3)当∠AOC=α时,∠MON =45°. 理由同(1).………………………12分注意:评分标准仅做参考,只要学生作答正确,均可得分。

2018-2019学年七年级(上)期末数学试题(解析版)

2018-2019学年七年级(上)期末数学试题(解析版)

2018-2019学年七年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1. 如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A. B. C. D.【答案】B【解析】【分析】检测质量时,与标准质量偏差越小,合格的程度就越高.比较与标准质量的差的绝对值即可.【详解】|+0.6|=0.6,|-0.2|=0.2,|-0.5|=0.5,|+0.3|=0.3 ,而0.2<0.3<0.5<0.6 ,∴B球与标准质量偏差最小,故选B.【点睛】本题考查的是绝对值的应用,理解绝对值表示的意义是解决本题的关键.2. 用式子表示“a的2倍与b的差的平方”,正确的是()A. 2(a﹣b)2B. 2a﹣b2C. (a﹣2b)2D. (2a﹣b)2【答案】D【解析】【分析】根据代数式的表示方法,先求倍数,然后求差,再求平方.【详解】解:a的2倍为2a,与b的差的平方为(2a﹣b)2故选:D.【点睛】本题考查了列代数式的知识,列代数式的关键是正确理解题目中的关键词,比如本题中的倍、差、平方等,从而明确其中的运算关系,正确的列出代数式.3. 在下面四个几何体中,左视图、俯视图分别是长方形和圆的几何体是()A. B. C. D.【答案】A【解析】【分析】逐一判断出各几何体的左视图、俯视图即可求得答案.【详解】A 、圆柱的左视图是长方形,俯视图是圆,符合题意;B 、圆锥的的左视图是等腰三角形,俯视图是带有圆心的圆,不符合题意;C 、长方体的左视图是长方形,俯视图是长方形,不符合题意;D 、三棱柱的左视图是长方形,俯视图是三角形,不符合题意,故选A .【点睛】本题考查了简单几何体的三视图,熟练掌握常见几何体的三视图是解题的关键.4. 下列各式中运算正确的是( )A. 224a a a +=B. 4a 3a 1-=C. 2223a b 4ba a b -=-D. 2353a 2a 5a +=【答案】C【解析】【分析】根据合并同类项的法则逐一进行计算即可.【详解】A. 222a a 2a +=,故A 选项错误;B. 4a 3a a -=,故B 选项错误;C. 2223a b 4ba a b -=-,正确;D. 23a 与32a 不是同类项,不能合并,故D 选项错误,故选C .【点睛】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.5. 如图,能用∠1、∠ABC、∠B 三种方法表示同一个角的是( ) A. B. C.D.【答案】A【解析】【分析】根据角的表示法可以得到正确解答.【详解】解:B、C、D选项中,以B为顶点的角不只一个,所以不能用∠B表示某个角,所以三个选项都是错误的;A选项中,以B为顶点的只有一个角,并且∠B=∠ABC=∠1,所以A正确.故选A .【点睛】本题考查角的表示法,明确“过某个顶点的角不只一个时,不能单独用这个顶点表示角”是解题关键.6. 如图,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A. 两点之间,线段最短B. 两点确定一条直线C. 垂线段最短D. 在同一平面内,过一点有且只有一条直线与已知直线垂直【答案】B【解析】【分析】根据“经过两点有且只有一条直线”即可得出结论.【详解】解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.故选B.【点睛】本题考查了直线性质,牢记“经过两点有且只有一条直线”是解题的关键.7. 在下列式子中变形正确的是( )A. 如果a b =,那么a c b c +=-B. 如果a b =,那么a b 33=C. 如果a 63=,那么a 2=D. 如果a b c 0-+=,那么a b c =+【答案】B【解析】【分析】根据等式的性质逐个判断即可.【详解】A 、∵a=b ,∴a+c=b+c ,不是b-c ,故本选项不符合题意;B 、∵a=b ,∴两边都除以3得:a b 33=,故本选项符合题意; C 、∵a 63=,∴两边都乘以3得:a=18,故本选项不符合题意; D 、∵a-b+c=0,∴两边都加b-c 得:a=b-c ,故本选项不符合题意,故选B .【点睛】本题考查了等式的性质,能熟记等式的性质的内容是解此题的关键.8. 直线l 外一点P 与直线l 上两点的连线段长分别为3cm ,5cm ,则点P 到直线l 的距离是( )A. 不超过3cmB. 3cmC. 5cmD. 不少于5cm【答案】A【解析】【分析】根据直线外的点与直线上各点的连线垂线段最短,可得答案.【详解】解:直线外的点与直线上各点的连线垂线段最短,得点P 到直线l 的距离是小于或等于3,故选A .【点睛】本题考查了点到直线的距离,直线外的点与直线上各点的连线垂线段最短. 二、填空题(本大题共10小题,共30.0分)9. 元月份某天某市的最高气温是4℃,最低气温是-5℃,那么这天的温差(最高气温减最低气温)是______℃.【答案】9【解析】【分析】利用最高气温减最低气温,再根据减去一个数等于加上这个数的相反数计算即可.【详解】这天的温差为4-(-5)=4+5=9(℃),故答案为9【点睛】本题考查有理数的减法的应用,正确列出算式,熟练掌握有理数减法的运算法则是解题的关键. 10. 我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.【答案】4.4×109【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109, 故答案为4.4×109. 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11. 若3x =-是关于x 的一元一次方程250x m ++=的解,则m 的值为___________.【答案】1【解析】把x =−3代入方程得:−6+m +5=0,解得:m =1,故答案为1.12. 若|x -12|+(y +2)2=0,则(xy )2019的值为______. 【答案】-1【解析】【分析】根据非负数的性质列出算式,求出x 、y 的值,计算即可.【详解】∵|x-12|+(y+2)2=0, ∴x-12=0,y+2=0, ∴x=12,y=-2,∴(xy)2019=(-1)2019=-1,故答案为-1.【点睛】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13. 若a+b=2019,c+d=-5,则代数式(a-2c)-(2d-b)=______.【答案】2029【解析】【分析】根据去括号、添括号法则把原式变形,代入计算,得到答案.【详解】(a-2c)-(2d-b)=a-2c-2d+b=(a+b)-2(c+d)=2019+10=2029,故答案为2029.【点睛】本题考查的是整式的加减混合运算,掌握去括号、添括号法则是解题的关键.注意整体思想的应用.14. 一个正方体的平面展开图如图所示,将它折成正方体后“扬”字对面是______字.【答案】美【解析】【分析】注意正方体的空间图形,从相对面入手,分析及解答问题.【详解】对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,“扬”字对面是“美”字,故答案为美.【点睛】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.15. 若∠A=45°30′,则∠A的补角等于_______________.【答案】134°30′【解析】试题分析:根据补角定义:如果两个角的和等于180°(平角),就说这两个角互为补角可得答案.解:∵∠A=45°30′,∴∠A的补角=180°﹣45°30′=179°60′﹣45°30′=134°30′,故答案为134°30′.考点:余角和补角;度分秒的换算.16. 如图,将一副直角三角板叠放在一起,使其直角顶点重合于点O,若∠DOC=26°,则∠AOB=______°.【答案】154【解析】【分析】先根据∠COB=∠DOB-∠DOC求出∠COB,再代入∠AOB=∠AOC+∠COB,即可求解.【详解】∵∠COB=∠DOB-∠DOC=90°-26°=64°,∴∠AOB=∠AOC+∠COB=90°+64°=154°,故答案是:154.【点睛】本题考查了角度的计算,弄清角的和差关系是解题的关键.17. 已知线段AB=6cm,C是线段AB的中点,E是直线AB上的一点,且CE=13AB,则线段AE=______cm.【答案】1或5【解析】【分析】由已知C是线段AB中点,AB=6,求得AC=3,进一步分类探讨:E在线段AC内;E在线段CB内;由此画图得出答案即可.【详解】∵C是线段AB的中点,AB=6cm,∴AC=12AB=3cm,CE=13AB=2cm,①如图,当E在线段AC上时,AE=AC-CE=3-2=1cm;②如图,E在线段CB上,AE=AC+CE=3+2=5cm,所以AE=1cm或5cm,故答案为1或5.【点睛】本题考查线段中点的意义,线段的和与差,分类探究是解决问题的关键.18. 某中学初三(6)班十几名同学毕业前和数学老师合影留念,一张彩色底片要0.6元,扩印一张相片0.5元,每人分一张,免费赠送老师一张(由学生出钱),每个学生交0.6元刚好,则相片上共有______人.【答案】12【解析】【分析】扩印费+0.5×照片上人数=0.6×学生数,把相关数值代入计算即可.【详解】设相片上共有x人,0.6+0.5x=0.6×(x-1),解得x=12,故答案为12.【点睛】本题考查一元一次方程的应用,弄清题意,得到所需总费用的等量关系是解决本题的关键.三、计算题(本大题共4小题,共32.0分)19. 计算:(1)14-(-12)+(-25)-17.(2)(12-13)÷(-16)-22×(-4).【答案】(1)-16;(2)15【解析】【分析】(1)根据有理数的加减法法则进行计算即可;(2)按顺序先计算括号内的减法、乘方,然后再按运算顺序进行计算即可. 【详解】(1)14-(-12)+(-25)-17=14+12+(-25)+(-17)=-16;(2)(12-13)÷(-16)-22×(-4)=16×(-6)-4×(-4)=(-1)+16=15.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20. 化简:(1)(5a-3b)-3(a-2b);(2)3x2-[7x-(4x-3)-2x2].【答案】(1)2a+3b;(2)5x2-3x-3【解析】【分析】(1)先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可;(2)先按照去括号法则去掉整式中的小括号,然后去中括号,最后合并整式中的同类项即可.【详解】(1)原式=5a-3b-3a+6b=2a+3b;(2)原式=3x2-[7x-4x+3-2x2]=3x2-7x+4x-3+2x2=5x2-3x-3.【点睛】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.21. 解方程:(1)2x+3=11-6x.(2)x24+-2x16-=1【答案】(1)x=1;(2)x=-4.【解析】【分析】(1)按移项、合并同类项、系数化为1的步骤进行求解即可得;(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可得.【详解】(1)2x+6x=11-3,8x=8,x=1;(2)3(x+2)-2(2x-1)=12,3x+6-4x+2=12,3x-4x=12-6-2,-x=4,x=-4.【点睛】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22. 先化简,再求值,2(3ab2-a3b)-3(2ab2-a3b),其中a=-12,b=4.【答案】a3b,1 2 -.【解析】【分析】根据乘法分配律,先去括号,再合并同类项进行化简,再代入求值. 【详解】解:原式=6ab2﹣2a3b﹣6ab2+3a3b=a3b,当a=12-,b=4时,原式=3142⎛⎫-⨯⎪⎝⎭=12-.故答案为1 2 -【点睛】本题考核知识点:整式化简求值.解题关键点:根据乘法分配律去括号,再合并同类项.四、解答题(本大题共6小题,共64.0分)23. 如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到______的距离,______是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是______(用“<”号连接).【答案】(1)见解析;(2)见解析;(3)OA,PC的长度,PH<PC<OC.【解析】【分析】(1)利用三角板过点P画∠OPC=90°即可;(2)利用网格特点,过点P画∠PHO=90°即可;(3)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短即可确定线段PC、PH、OC的大小关系.【详解】(1)如图所示;(2)如图所示;(3) 线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短可知PH<PC<OC,故答案为OA,PC,PH<PC<OC.【点睛】本题主要考查了基本作图----作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.24. 某小组计划做一批“中华结”,如果每人做6个,那么比计划多做了8个;如果每人做4个,那么比计划少做了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.【答案】计划做多少个“中华结”?答案见解析.【解析】【分析】首先提出问题:这批“中华结”的个数是多少?设该批“中华结”的个数为x个,根据加工总个数=单人加工个数×人数,结合该小组人数不变找出关于x的一元一次方程,解之即可得出结论.【详解】这批“中华结”的个数是多少?设计划做“中华结”的个数为x个.根据题意,得:842 64x x+-=.解得:x=142.答:计划做“中华结”的个数为142个.【点睛】本题考查了一元一次方程应用.25. 阅读下面一段文字:问题:0.8⋅能用分数表示吗?探求:步骤①设x=0.8⋅,步骤②10x=10×0.8⋅,步骤③10x=8.8⋅,步骤④10x =8+0.8⋅,步骤⑤10x =8+x ,步骤⑥9x =8,步骤⑦x =89. 根据你对这段文字的理解,回答下列问题:(1)步骤①到步骤②的依据是______;(2)仿照上述探求过程,请你尝试把0.36⋅⋅表示成分数的形式.【答案】(1)等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立;(2)见解析,114x =. 【解析】【分析】(1)利用等式的基本性质得出答案;(2)利用已知设x=0.36⋅⋅,进而得出100x=36+x ,求出即可.【详解】(1)步骤①到步骤②,等式的两边同时乘10,依据的是等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立,故答案为等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立;(2)设x=0.36⋅⋅,100x=100×0.36⋅⋅,100x=36.36⋅⋅,100x=36+ 0.36⋅⋅,100x=36+x ,99x=36,解得:x=411. 【点睛】本题主要考查了等式的基本性质以及一元一次方程的应用,根据题意得出正确等量关系是解题关键.26. 如图,直线AB 、CD 、EF 相交于点O ,OG ⊥CD ,∠BOD =32°.(1)求∠AOG 的度数;(2)如果OC 是∠AOE 的平分线,那么OG 是∠AOF 的平分线吗?请说明理由.【答案】(1)∠AOG=58°;(2)OG是∠AOF的平分线,见解析.【解析】【分析】(1)根据对顶角的性质,可得∠AOC的度数,根据角的和差,可得答案;(2)根据角平分线的性质,可得∠AOC与∠COE的关系,根据对顶角的性质,可得∠DOF与∠COE的关系,根据等量代换,可得∠AOC与∠DOF的关系,根据余角的性质,可得答案.【详解】(1)由对顶角相等,得∠AOC=∠BOD=32°,由角的和差,得∠AOG=∠COG-∠AOC=90°-32°=58°;(2)如果OC是∠AOE的平分线,那么OG是∠AOF的平分线,理由如下:由OC是∠AOE的平分线,得∠COE=∠AOC=32°,由对顶角相等,得∠DOF=∠COE,等量代换,得∠DOF=∠AOC,∠AOC+∠AOG=∠COG=90°,∠DOF+∠FOG=∠DOG=90°,由等角的余角相等,得∠AOG=∠FOG,OG是∠AOF的平分线.【点睛】本题考查了对顶角、邻补角,(1)利用了对顶角相等的性质,角的和差;(2)利用了对顶角相等的性质,角的和差,还利用了余角的性质:等角的余角相等.27. 为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水38m ,则应收水费:264(86)20⨯+⨯-=元.(1)若该户居民2月份用水312.5m ,则应收水费______元;(2)若该户居民3、4月份共用水315m (4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?【答案】(1)48;(2)三月份用水34m .四月份用水113m .【解析】【分析】(1)根据表中收费规则即可得到结果;(2)分两种情况:用水不超过36m 时与用水超过36m ,但不超过310m 时,再这两种情况下设三月份用水3m x ,根据表中收费规则分别列出方程即可得到结果.【详解】(1)应收水费()()264106812.51048⨯+⨯-+⨯-=元.(2)当三月份用水不超过36m 时,设三月份用水3m x ,则()226448151044x x +⨯+⨯+--= 解之得411x =<,符合题意.当三月份用水超过36m 时,但不超过310m 时,设三月份用水3m x ,则()()264626448151044x x ⨯+-+⨯+⨯+⨯--=解之得36x =<(舍去)所以三月份用水34m .四月份用水113m .28. 如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转.(1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE的旋转过程中,若∠AOE=7∠COD,试求∠AOE的大小.【答案】(1)130°;(2)∠AOD与∠COE的差不发生变化,为30°;(3)∠AOE=131.25°或175°.【解析】【分析】(1)求出∠COE的度数,即可求出答案;(2)分为两种情况,根据∠AOC=90°和∠DOE=60°求出即可;(3)根据∠AOE=7∠COD、∠DOE=60°、∠AOC=90°求出即可.【详解】(1)∵OC⊥AB,∴∠AOC=90°,∵OD在OA和OC之间,∠COD=20°,∠EOD=60°,∴∠COE=60°-20°=40°,∴∠AOE=90°+40°=130°,故答案为130°;(2)在△ODE旋转过程中,∠AOD与∠COE的差不发生变化,有两种情况:①如图1、∵∠AOD+∠COD=90°,∠COD+∠COE=60°,∴∠AOD-∠COE=90°-60°=30°,②如图2、∵∠AOD=∠AOC+∠COD=90°+∠COD,∠COE=∠DOE+∠DOC=60°+∠DOC,∴∠AOD-∠COE=(90°+∠COD)-(60°+∠COD)=30°,即△ODE在旋转过程中,∠AOD与∠COE的差不发生变化,为30°;(3)如图1、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°-∠COD=7∠COD,解得:∠COD=18.75°,∴∠AOE=7×18.75°=131.25°;如图2、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°+∠COD=7∠COD,∴∠COD=25°,∴∠AOE=7×25°=175°,即∠AOE=131.25°或175°.【点睛】本题考查了角的有关计算的应用,能根据题意求出各个角的度数是解此题的关键.注意分类思想的运用.。

2018-2019学年人教版七年级(上)期末数学试卷(含答案)

2018-2019学年人教版七年级(上)期末数学试卷(含答案)

2018-2019 学年七年级(上)期末数学试卷一、选择题(本大题共10 小题,每小题3 分,共30 分)1.(3 分)2 的绝对值是()A.2 B.﹣2 C.2 或﹣2 D.2 或2.(3 分)化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n3.(3 分)下列方程是一元一次方程的是()A.3x+1=5x B.3x2+1=3x C.2y2+y=3 D.6x﹣3y=1004.(3 分)如图,是一个正方体纸盒的展开图,若在其中三个正方形A,B,C 中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A,B,C 中的三个数依次是()A.1,﹣3,0 B.0,﹣3,1 C.﹣3,0,1 D.﹣3,1,05.(3 分)下列等式的变形正确的是()A.如果s=vt,那么v=B.如果x=6,那么x=3C.如果﹣x﹣1=y﹣1,那么x=y D.如果a=b,那么a+2=2+b6.(3 分)一件夹克衫先按成本提高50%标价,再以8 折(标价的80%)出售,结果获利28 元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣28 B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x﹣28 D.(1+50%x)×80%=x+287.(3 分)下列说法中正确的是()A.38.15°=38.9′B.两点之间,直线最短C.两条射线构成的图形叫做角D.互余的两个角不可能相等8.(3 分)已知a﹣2b 的值是﹣2,则(a﹣2b)2+2(a﹣2b)的值是()A.﹣4 B.﹣1 C.0 D.29.(3 分)已知线段AB=10cm,在直线AB 上有一点C,且线段BC=4cm,点M 是线段AC 的中点,则AM 的长为()A.3cm B.7cm C.6cm D.3cm 和7cm10.(3 分)如图,当过O 点画不重合的2 条射线时,共组成1 个角;当过O 点画不重合的3 条射线时,共组成 3 个角;当过O点画不重合的4 条射线时,共组成6 个角;….根据以上规律,当过O 点画不重合的10 条射线时,共组成()个角.A.28 B.36 C.45 D.55二、填空题(本大题共5 小题,每小题3 分,共15 分,把答案写在题中横线上)11.(3 分)A 看B 的方向是北偏东21°,那么B 看A 的方向是.12.(3 分)已知14x6y2与﹣31x3m y2是同类项,则12m﹣24= .13.(3 分)对于任意有理数a.b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b,例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.若(x﹣3)⊗x=2011,则x 的值为.14.(3 分)如图,∠AOB=30°,∠BOC=70°,OE 是∠AOC 的平分线,则∠BOE 的度数为.15.(3 分)有m 辆客车及n 个人,若每辆客车乘40 人,则还有10 人不能上车;若每辆客车乘43 人,则最后一辆车有 2 个空位.给出下面五个等式:①40m+10=43m ﹣2;②40m﹣10=43m+2 ;③= ;④= ;⑤43m=n+2.其中正确的是(只填序号).三、解答题(本大题共7 小题,共55 分,解答应写出证明过程或演算步骤)16.(6 分)计算:(1)90°23′﹣36°12′(2)﹣|﹣5|×(﹣12)﹣4÷(﹣)217.(7 分)(1)化简:3a3﹣(3a2+b2﹣5b)+a2﹣5b+b2(2)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=2,y=﹣18.(8 分)解方程:(1)3(x﹣1)+2(x+1)=﹣6(2)=1+19.(6 分)列方程解应用题某文具店一支铅笔的售价为1.2 元,一支圆珠笔的售价为2 元,在元旦期间该店举行文具优惠活动,铅笔按原价打八折出售,圆珠笔按原价打九折出售,结果两种笔共卖出60 支,卖得87 元,则在这次优惠活动中卖出铅笔、圆珠笔各多少支?20.(8 分)如图,点O 是直线AB 上任一点,射线OD 和射线OE 分别平分∠AOC 和∠BOC.(1)填空:与∠AOE 互补的角是;(2)若∠AOD=36°,求∠DOE 的度数;(3)当∠AOD=x°时,请直接写出∠DOE 的度数.21.(8 分)阅读思考我们知道,在数轴上|a|表示数a 所对应的点到原点的距离,这是绝对值的几何意义,由此我们可进一步地来研究数轴上任意两个点之间的距离,一般地,如果数轴上两点A、B 对立的数用a,b 表示,那么这两个点之间的距离AB=|a﹣b|.也可以用两点中右边的点所表示数的减去左边的点所表示的数来计算,例如:数轴上P,Q 两点表示的数分别是﹣1 和2,那么P,Q 两点之间的距离就是PQ=2﹣(﹣1)=3.启发应用如图,点A 在数轴上对应的数为a,点 B 对应的数为b,且a、b 满足|a+3|+(b ﹣2)2=0(1)求线段AB 的长;(2)如图,点C 在数轴上对应的数为x,且x 是方程2x+1=x﹣8 的解,①求线段BC 的长;②在数轴上是否存在点P 使PA+PB=BC?若存在,直接写出点P 对应的数:若不存在,说明理由.22.(12 分)我国出租车的收费标准因地而异,甲市规定:起步价为6 元,3 千米之后每千米1.4 元:;乙市规定:起步价8 元,3 千米之后每千米1.2 元.(1)分别求出在甲市乘出租车2 千米,5 千米应付的车费;(2)在甲、乙两市乘出租车x (x>3)千米时应付的车费各是多少元(用含有x 的式子表示);(3)若某乘客需在甲、乙两市乘出租车15 千米,请你算一算在哪个城市乘出租车便宜?(4)如果李先生在甲、乙两市乘出租车所付的车费相等,试算出李先生乘出租车多少干米,参考答案与试题解析一、选择题(本大题共10 小题,每小题3 分,共30 分)1.(3 分)2 的绝对值是()A.2 B.﹣2 C.2 或﹣2 D.2 或【分析】根据正数的绝对值是它本身,可得答案.【解答】解:2 的绝对值是2.故选:A.【点评】本题考查了绝对值,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是0.2.(3 分)化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n【分析】利用分配律把括号内的 2 乘到括号内,然后利用去括号法则求解.【解答】解:﹣2(m﹣n)=﹣(2m﹣2n)=﹣2m+2n.故选:D.【点评】本题考查添括号的方法:添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.3.(3 分)下列方程是一元一次方程的是()A.3x+1=5x B.3x2+1=3x C.2y2+y=3 D.6x﹣3y=100【分析】根据只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程进行分析即可.【解答】解:A、是一元一次方程,故此选项正确;B、不是一元一次方程,故此选项错误;C、不是一元一次方程,故此选项错误;D、不是一元一次方程,故此选项错误;故选:A.【点评】此题主要考查了一元一次方程定义,关键是理解一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.4.(3 分)如图,是一个正方体纸盒的展开图,若在其中三个正方形A,B,C 中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A,B,C 中的三个数依次是()A.1,﹣3,0 B.0,﹣3,1 C.﹣3,0,1 D.﹣3,1,0【分析】使得它们折成正方体后相对的面上两个数互为相反数,则 A 与﹣1,B 与3;C 与0 互为相反数.【解答】解:根据以上分析:填入正方形A,B,C 中的三个数依次是1,﹣3,0.故选:A.【点评】本题主要考查人们的空间想象能力,请不要忘记正方体展开时的各种情形.5.(3 分)下列等式的变形正确的是()A.如果s=vt,那么v=B.如果x=6,那么x=3C.如果﹣x﹣1=y﹣1,那么x=y D.如果a=b,那么a+2=2+b【分析】根据等式的性质:等式的两边同时加上或减去同一个数或字母,等式仍成立;等式的两边同时乘以或除以同一个不为0 数或字母,等式仍成立,可得答案.【解答】解:A、左边乘以,右边乘以,故A 错误;B、左边乘以2,右边乘以,故B 错误;C、左边加(2x+1),右边加1,故C 错误;D、两边都加2,故D 正确;故选:D.【点评】本题主要考查了等式的基本性质,等式的两边同时加上或减去同一个数或字母,等式仍成立;等式的两边同时乘以或除以同一个不为0 数或字母,等式仍成立.6.(3 分)一件夹克衫先按成本提高50%标价,再以8 折(标价的80%)出售,结果获利28 元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣28 B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x﹣28 D.(1+50%x)×80%=x+28【分析】根据售价的两种表示方法解答,关系式为:标价×80%=进价+28,把相关数值代入即可.【解答】解:标价为:x(1+50%),八折出售的价格为:(1+50%)x×80%;∴可列方程为:(1+50%)x×80%=x+28,故选:B.【点评】考查列一元一次方程;根据售价的两种不同方式列出等量关系是解决本题的关键.7.(3 分)下列说法中正确的是()A.38.15°=38.9′B.两点之间,直线最短C.两条射线构成的图形叫做角D.互余的两个角不可能相等【分析】利用余角与补角定义,线段的性质,以及度分秒性质判断即可.【解答】解:A、38.15°=38.9′,故选项正确;B、两点之间,线段最短,故选项错误;C、有公共顶点的两条射线组成的图形叫做角,故选项错误;D、互余的两个角可能相等,故选项错误.故选:A.【点评】此题考查了余角和补角,线段的性质,以及度分秒的换算,熟练掌握各自的性质是解本题的关键.8.(3 分)已知a﹣2b 的值是﹣2,则(a﹣2b)2+2(a﹣2b)的值是()A.﹣4 B.﹣1 C.0 D.2【分析】把a﹣2b=﹣2 代入(a﹣2b)2+2(a﹣2b),计算求值即可.【解答】解:把a﹣2b=﹣2 代入(a﹣2b)2+2(a﹣2b)得:(﹣2)2+2×(﹣2)=4﹣4=0故选:C.【点评】本题考查代数式求值,掌握代入求值的方法是解题的关键.9.(3 分)已知线段AB=10cm,在直线AB 上有一点C,且线段BC=4cm,点M 是线段AC 的中点,则AM 的长为()A.3cm B.7cm C.6cm D.3cm 和7cm【分析】应考虑到A、B、C 三点之间的位置关系的多种可能,即点C 在点A 与B 之间或点C 在点B 的右侧两种情况进行分类讨论.【解答】解:①如图1 所示,当点C 在点A 与B 之间时,∵线段AB=10cm,BC=4cm,∴AC=10﹣4=6cm.∵M 是线段AC 的中点,∴AM= AC=3cm,②当点 C 在点B 的右侧时,∵BC=4cm,∴AC=14cmM 是线段AC 的中点,∴AM=AC=7cm.综上所述,线段AM 的长为3cm 或7cm.故选:D.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.10.(3 分)如图,当过O 点画不重合的2 条射线时,共组成1 个角;当过O 点画不重合的3 条射线时,共组成 3 个角;当过O点画不重合的4 条射线时,共组成6 个角;….根据以上规律,当过O 点画不重合的10 条射线时,共组成()个角.A.28 B.36 C.45 D.55【分析】根据题意得出规律.若从点O 出发的n 条射线,可以组成角的个数是:,代入计算即可.【解答】解:当过O 点画不重合的2 条射线时,共组成1 个角;当过O 点画不重合的3 条射线时,共组成3 个角;当过O 点画不重合的 4 条射线时,共组成 6 个角;….根据以上规律,当过O 点画不重合的n 条射线时组成的角的个数是:,故当n=10 时,=45;故选:C.【点评】本题考查了角的概念,图形的变化类;根据题意得出规律公式是解决问题的关键.二、填空题(本大题共5 小题,每小题3 分,共15 分,把答案写在题中横线上)11.(3 分)A 看B 的方向是北偏东21°,那么B 看A 的方向是南偏西21°.【分析】首先根据从A 看B 的方向是北偏东21°正确作出A 和B 的示意图,然后根据方向角定义解答.【解答】解:从B 看A 的方向是南偏西21°.故答案是:南偏西21°.【点评】本题考查了方向角的定义,正确作出 A 和 B 的位置示意图也是关键.12.(3 分)已知14x6y2与﹣31x3m y2是同类项,则12m﹣24= 0 .【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:∵14x6y2与﹣31x3m y2是同类项,∴3m=6,∴12m=24,∴12m﹣24=0.故答案为:0.【点评】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.13.(3 分)对于任意有理数a.b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b,例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.若(x﹣3)⊗x=2011,则x 的值为2017 .【分析】已知等式利用已知新定义化简,即可求出x 的值.【解答】解:已知等式利用题中新定义化简得:2(x﹣3)﹣x=2011,解得:x=2017,故答案为:2017【点评】此题考查了解一元一次方程,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.14.(3 分)如图,∠AOB=30°,∠BOC=70°,OE 是∠AOC 的平分线,则∠BOE 的度数为20°.【分析】根据角的和差,可得∠AOC,根据角平分线的定义,可得∠AOE,根据角的和差,可得答案.【解答】解:∵∠AOB=30°,∠BOC=70°,∴∠AOC=∠AOB+∠BOC=30°+70°=100°,∵OE 平分∠AOC,∴∠AOE=∠COE=50°,∴∠BOE=∠AOE﹣∠AOB=50°﹣30°=20°.故答案为20°.【点评】本题考查了角的计算,利用角的和差得出∠AOC 的度数是解题关键,又利用了角平分线的定义.15.(3 分)有m 辆客车及n 个人,若每辆客车乘40 人,则还有10 人不能上车;若每辆客车乘43 人,则最后一辆车有 2 个空位.给出下面五个等式:①40m+10=43m ﹣2;②40m﹣10=43m+2 ;③= ;④= ;⑤43m=n+2.其中正确的是①③⑤(只填序号).【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【解答】解:根据总人数列方程,应是40m+10=43m﹣2,①正确,②错误;根据客车数列方程,应该为=,③正确,④错误;根据总人数和客车数列方程得:43m=n+2.故答案为:①③⑤.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.三、解答题(本大题共7 小题,共55 分,解答应写出证明过程或演算步骤)16.(6 分)计算:(1)90°23′﹣36°12′(2)﹣|﹣5|×(﹣12)﹣4÷(﹣)2【分析】(1)直接利用度分秒转换法则计算得出答案;(2)直接利用化简各数,进而计算得出答案.【解答】解:(1)90°23′﹣36°12′=54°11′;(2)原式=﹣5×(﹣1)﹣4×4=﹣11.【点评】此题主要考查了度分秒转化换以及有理数的混合运算,正确化简各数是解题关键.17.(7 分)(1)化简:3a3﹣(3a2+b2﹣5b)+a2﹣5b+b2(2)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=2,y=﹣【分析】(1)直接利用去括号,进而合并同类项得出答案;(2)直接利用去括号,进而合并同类项,把已知代入得出答案.【解答】解:(1)原式=3a3﹣3a2﹣b2+5b+a2﹣5b+b2=3a3﹣2a2;(2)原式=x﹣2x+2y2﹣x+y2=﹣2x+3y2,当x=2,y=﹣时,原式=﹣2×2+3×(﹣)2=﹣4+=﹣.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.18.(8 分)解方程:(1)3(x﹣1)+2(x+1)=﹣6(2)=1+【分析】根据一元一次方程的解法即可求出答案.【解答】(每小题(4 分),本题共8 分)解:(1)3x﹣3+2x+2=﹣65x﹣1=﹣65x=﹣5x=﹣1(2)3(x﹣1)=12+4(x+1)3x﹣3=12+4x+43x﹣3=16+4x3x﹣4x=19x=﹣19【点评】本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.19.(6 分)列方程解应用题某文具店一支铅笔的售价为1.2 元,一支圆珠笔的售价为2 元,在元旦期间该店举行文具优惠活动,铅笔按原价打八折出售,圆珠笔按原价打九折出售,结果两种笔共卖出60 支,卖得87 元,则在这次优惠活动中卖出铅笔、圆珠笔各多少支?【分析】设卖出铅笔x 支,则卖出圆珠笔(60﹣x)支,根据总价=单价×数量,即可得出关于x 的一元一次方程,解之即可得出结论.【解答】解:设卖出铅笔x 支,则卖出圆珠笔(60﹣x)支,根据题意得:1.2×0.8x+2×0.9(60﹣x)=87,解得:x=25,∴60﹣x=60﹣25=35.答:卖出铅笔25 支,卖出圆珠笔35 支.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20.(8 分)如图,点O 是直线AB 上任一点,射线OD 和射线OE 分别平分∠AOC 和∠BOC.(1)填空:与∠AOE 互补的角是∠BOE、∠COE ;(2)若∠AOD=36°,求∠DOE 的度数;(3)当∠AOD=x°时,请直接写出∠DOE 的度数.【分析】(1)先求出∠BOE=∠COE,再由∠AOE+∠BOE=180°,即可得出结论;(2)先求出∠COD、∠COE,即可得出∠DOE=90°;(3)先求出∠AOC、COD,再求出∠BOC、∠COE,即可得出∠DOE=90°.【解答】解:(1)∵OE 平分∠BOC,∴∠BOE=∠COE;∵∠AOE+∠BOE=180°,∴∠AOE+∠COE=180°,∴与∠AOE 互补的角是∠BOE、∠COE;故答案为∠BOE、∠COE;(2)∵OD、OE 分别平分∠AOC、∠BOC,∴∠COD=∠AOD=36°,∠COE=∠BOE= ∠BOC,∴∠AOC=2×36°=72°,∴∠BOC=180°﹣72°=108°,∴∠COE= ∠BOC=54°,∴∠DOE=∠COD+∠COE=90°;(3)当∠AOD=x°时,∠DOE=90°.【点评】本题考查了余角和补角以及角平分线的定义;熟练掌握两个角的互余和互补关系是解决问题的关键.21.(8 分)阅读思考我们知道,在数轴上|a|表示数a 所对应的点到原点的距离,这是绝对值的几何意义,由此我们可进一步地来研究数轴上任意两个点之间的距离,一般地,如果数轴上两点A、B 对立的数用a,b 表示,那么这两个点之间的距离AB=|a﹣b|.也可以用两点中右边的点所表示数的减去左边的点所表示的数来计算,例如:数轴上P,Q 两点表示的数分别是﹣1 和2,那么P,Q 两点之间的距离就是PQ=2﹣(﹣1)=3.启发应用如图,点A 在数轴上对应的数为a,点 B 对应的数为b,且a、b 满足|a+3|+(b ﹣2)2=0(1)求线段AB 的长;(2)如图,点C 在数轴上对应的数为x,且x 是方程2x+1=x﹣8 的解,①求线段BC 的长;②在数轴上是否存在点P 使PA+PB=BC?若存在,直接写出点P 对应的数:若不存在,说明理由.【分析】(1)利用非负数的性质求出a 与b 的值,即可确定出AB 的长;(2)①求出方程的解得到x 的值,进而确定出BC 的长;②存在,求出P 点对应的数即可.【解答】解:(1)由题意得|a+3|+(b﹣2)2=0,所以a+3=0,b﹣2=0,解得,a=﹣3,b=2,所以AB=2﹣(﹣3)=5;(2)①2x+1=x﹣8,解得,x=﹣6,∴BC=2﹣(﹣6)=8,即线段BC 的长为8;②存在点P,当点P 对应的数是3.5 或﹣4.5 使PA+PB=BC.【点评】此题考查了实数与数轴,非负数的性质,以及一元一次方程的解,熟练掌握运算法则是解本题的关键.22.(12 分)我国出租车的收费标准因地而异,甲市规定:起步价为6 元,3 千米之后每千米1.4 元:;乙市规定:起步价8 元,3 千米之后每千米1.2 元.(1)分别求出在甲市乘出租车2 千米,5 千米应付的车费;(2)在甲、乙两市乘出租车x (x>3)千米时应付的车费各是多少元(用含有x 的式子表示);(3)若某乘客需在甲、乙两市乘出租车15 千米,请你算一算在哪个城市乘出租车便宜?(4)如果李先生在甲、乙两市乘出租车所付的车费相等,试算出李先生乘出租车多少干米,【分析】(1)由2<3 可得出乘出租车 2 千米应付的车费,再根据应付费用=起步价+1.4×超出 3 千米部分,即可求出乘出租车 5 千米应付的车费;(2)根据两地的收费标准即可找出在甲、乙两市乘出租车x (x>3)千米时应付的车费;(3)将x=15 代入(2)的代数式中即可求出结论;(4)设李先生乘出租车x 千米时,李先生在甲,乙两市乘出租车所付的车费相等,根据(2)的结论,即可得出关于x 的一元一次方程,解之即可得出结论.【解答】解:(1)∵2<3,∴乘出租车 2 千米应付6 元,乘出租车5 千米应付的车费为:6+1.4×(5﹣3)=8.8(元).答:在甲市乘出租车2 千米应付6 元车费,在甲市乘出租车5 千米应付8.8 元车费.(2)在甲市应付:6+1.4(x﹣3)=1.4x+1.8(元);在乙市应付:8+1.2(x﹣3)=1.2x+4.4(元).(3)由(2)得:在甲市坐出租车的车费为:1.4x+1.8=1.4×15+1.8=22.8 元,在乙市坐出租车的车费为:1.2x+4.4=1.2×15+4.4=22.4 元.∵22.8>19.4,∴在乙市乘出租车便宜.(4)设李先生乘出租车x 千米时,李先生在甲,乙两市乘出租车所付的车费相等,根据题意得:1.2x+4.4=1.4x+1.8,解得:x=13.答:李先生乘出租车13 千米时,所付车费相等.【点评】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据收费标准列式计算;(2)根据数量间的关系,列出代数式;(3)代入x=15 求值;(4)找准等量关系,正确列出一元一次方程.。

2018-2019学年新人教版数学七年级上学期期末试卷(含答案解析)

2018-2019学年新人教版数学七年级上学期期末试卷(含答案解析)

2018-2019学年七年级(上)期末数学试卷一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定4.(3分)如图,几何体的左视图是()A.B.C.D.5.(3分)下列运算结果为正数的是()A .﹣32B .﹣3÷2C .﹣1+2D .0×(﹣2018) 6.(3分)若方程(a ﹣3)x |a |﹣2﹣1=5是关于x 的一元一次方程,则a 的值为( ) A .±2 B .3 C .±3 D .﹣37.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是( ) A .两点确定一条直线B .直线比曲线短C .两点之间直线最短D .两点之间线段最短8.(3分)下列解方程变形正确的是( )A .若5x ﹣6=7,那么5x=7﹣6B .若,那么2(x ﹣1)+3(x +1)=1C .若﹣3x=5,那么x=﹣D .若﹣,那么x=﹣39.(3分)若3a 2+m b 3和(n ﹣2)a 4b 3是同类项,且它们的和为0,则mn 的值是( )A .﹣2B .﹣1C .2D .110.(3分)若x=4是关于x 的方程2x +a=1的解,则a 的值是( )A .﹣4B .﹣7C .7D .﹣911.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB ,则线段AB 盖住的整点个数有( ) A .2018或2019 B .2017或2018 C .2016或2017 D .2019或202012.(2分)已知(b +1)4与|3﹣a |互为相反数,则b a 的值是( )A .﹣3B .3C .﹣1D .113.(2分)若x=2时,代数式ax 4+bx 2+5的值是3,则当x=﹣2时,代数式ax 4+bx 2+7的值为( )A .﹣3B .3C .5D .714.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x 颗,则可得方程为( )A .B .2x +8=3x ﹣12C .D . =15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a >b ),则a ﹣b 的值为( )A.6B.8C.9D.1216.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×1020189.9×102017.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣121.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=;若a=4,则b=;②用含a的式子表示b,则b=;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm【分析】从图可知长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条,再把它们的长度相加即可.【解答】解:因为长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条.所以图中所有线段长度之和为:1×4+2×3+3×2+4×1=20(厘米).故选:B.【点评】本题考查了两点间的距离,关键是能够数出1cm,2cm,3cm,4cm的线段的条数,从而求得解.2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°【分析】根据1度等于60分,1分等于60秒解答即可.【解答】解:10°36″用度表示为10.01°,故选:C.【点评】考查了度分秒的换算,分秒化为度时用除法,而度化为分秒时用乘法.3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定【分析】结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2013年的销售收入约为50万元,2017年约为90万元,则从2013~2017年甲公司增长了90﹣50=40万元;乙公司2013年的销售收入约为50万元,2017年约为70万元,则从2013~2017年乙公司增长了70﹣50=20万元.则甲公司近年的销售收入增长速度比乙公司快.故选:A.【点评】本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是解决问题的关键.4.(3分)如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体.故选:C.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.5.(3分)下列运算结果为正数的是()A.﹣32B.﹣3÷2C.﹣1+2D.0×(﹣2018)【分析】根据各个选项中的式子,可以计算出相应的结果,从而可以解答本题.【解答】解:∵﹣32=﹣9,﹣3÷2=﹣,﹣1+2=1,0×(﹣2018)=0,∴选项C中的结果为正数,故选:C.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.6.(3分)若方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,则a的值为()A.±2B.3C.±3D.﹣3【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,∴|a|﹣2=1,a﹣3≠0,解得:a=﹣3.故选:D.【点评】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.7.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短【分析】根据线段的性质解答即可.【解答】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.【点评】本题考查的是线段的性质,即两点之间线段最短.8.(3分)下列解方程变形正确的是()A.若5x﹣6=7,那么5x=7﹣6B.若,那么2(x﹣1)+3(x+1)=1C.若﹣3x=5,那么x=﹣D.若﹣,那么x=﹣3【分析】A、运用移项的法则可以求出结论;B、根据等式的性质2去分母可以得出结论;C、运用等式的性质2化系数为1可以得出结论;D、运用等式的性质2化系数为1可以得出结论;【解答】解:A、∵5x﹣6=7,移项,得5x=7+6,故选项错误;B、∵,去分母,得2(x﹣1)+3(x+1)=6,故选项错误;C、∵﹣3x=5,化系数为1,得x=﹣,故选项错误;D、∵﹣,化系数为1,得x=﹣3,故选项正确.故选:D.【点评】本题考查了解方程步骤的运用,去分母,去括号,移项,合并同类项,化系数为1的过程的运用.9.(3分)若3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣2B.﹣1C.2D.1【分析】由同类项是字母相同且相同字母的指数也相同,可得m的值;根据合并同类项系数相加字母及指数不变,可得n的值;再计算mn,可得答案.【解答】解:由3a2+m b3和(n﹣2)a4b3是同类项,得2+m=4,解得m=2.由它们的和为0,得3a4b3+(n﹣2)a4b3=(n﹣2+3)a4b3=0,解得n=﹣1.mn=﹣2,故选:A.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.(3分)若x=4是关于x的方程2x+a=1的解,则a的值是()A.﹣4B.﹣7C.7D.﹣9【分析】把x=4代入已知方程后,列出关于a的新方程,通过解新方程来求a的值.【解答】解:∵x=4是关于x的方程2x+a=1的解,∴2×4+a=1,解得a=﹣7.故选:B.【点评】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.11.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB,则线段AB盖住的整点个数有()A.2018或2019B.2017或2018C.2016或2017D.2019或2020【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【解答】解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点.∵2018+1=2019,∴2018厘米的线段AB盖住2018或2019个整点.故选:A.【点评】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.12.(2分)已知(b+1)4与|3﹣a|互为相反数,则b a的值是()A.﹣3B.3C.﹣1D.1【分析】根据相反数的概念列出算式,根据非负数的性质求出a、b的值,计算即可.【解答】解:由题意得(b+1)4+|3﹣a|=0,则3﹣a=0,b+1=0,解得a=3,b=﹣1,则b a=﹣1,故选:C.【点评】本题考查的是非负数的性质和相反数,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13.(2分)若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3B.3C.5D.7【分析】将x=2代入ax4+bx2+5=3得16a+4b=﹣2,据此将其代入x=﹣2时ax4+bx2+7=16a+4b+7中计算可得.【解答】解:将x=2代入ax4+bx2+5=3,得:16a+4b+5=3,则16a+4b=﹣2,所以当x=﹣2时,ax4+bx2+7=16a+4b+7=﹣2+7=5,故选:C.【点评】本题主要考查代数式求值,解题的关键是熟练掌握代数式的求值及整体代入思想的运用.14.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x颗,则可得方程为()A.B.2x+8=3x﹣12C.D.=【分析】设有糖果x颗,根据该幼儿园小朋友的人数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有糖果x颗,根据题意得:=.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A.6B.8C.9D.12【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个长方形面积的差.【解答】解:设重叠部分的面积为c,则a﹣b=(a+c)﹣(b+c)=35﹣23=12,故选:D.【点评】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.16.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0【分析】根据题意可知:a是从1开始到序数的连续整数的和,c是序数与1的和,而b 是a与c的和,据此可得.【解答】解:由图可知,a=1+2+3+ (2018)c=2019,则b=a+c=1+2+3+……+2018+2019,∴a﹣b+c=1+2+3+……+2018﹣(1+2+3+……+2018+2019)+2019=0,故选:D.【点评】本题考查数字和图形的变化类,解题的关键是明确题意,找出数字的变化规律.二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×102018>9.9×102017.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵1.1×102018=11×102017,由11>9.9,∴1.1×102018>9.9×102017.故答案为:>.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=9cm.【分析】根据题意求出BC,根据线段中点的性质解答即可.【解答】解:∵点D是线段BC的中点,若BD=3cm,∴BC=2BD=2×3=6cm,∵点C是线段AB的中点,∴AC=CB=6cm,∴AD=AC+CD=6+3=9cm,故答案为:9cm.【点评】本题考查的是两点间的距离的计算,掌握线段中点的概念、灵活运用数形结合思想是解题的关键.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=1﹣.【分析】分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可.=1﹣;=1﹣;【解答】解:故答案为:;1﹣.【点评】本题主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律是解答此题的关键.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣1【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)方程移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=13﹣9+2﹣7=15﹣16=﹣1;(2)原式=﹣1﹣×3×(﹣4)=﹣1+6=5;(3)方程移项合并得:5x=﹣20,解得:x=﹣4;(4)方程去分母得:4x﹣2+x﹣5=﹣6,移项合并得:5x=1,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.【分析】(1)在射线CP上延长截取CM=MN=a,ND=b,则CD满足条件;(2)根据几何语言画出对应的几何图形即可.【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=5x2y﹣3xy2﹣7x2y+2xy2=﹣2x2y﹣xy2,当x=﹣1,y=2时,原式=﹣4+4=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.【分析】设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【解答】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOC=40°.【点评】本题考查了角平分线的定义,要设恰当的未知数,用同一个未知数表示相关的角,根据已知的角列方程进行计算是解此题的关键.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?【分析】根据题意可以列出相应的方程,从而可以求得每件衬衫降价多少元.【解答】解:设每件衬衫降价x元,(180﹣120)×400+(500﹣400)(180﹣x﹣120)=120×500×42%解得,x=48,答:每件衬衫降价48元.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=2;若a=4,则b=﹣2;②用含a的式子表示b,则b=2﹣a;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.【分析】(1)根据政治科目的人数及其所占百分比可得总人数,依据地理学科的人数所占的百分比,即可得到其所在扇形的圆心角;(2)总人数乘以历史科目的百分比可得其人数,从而补全折线图;(3)总人数乘以样本中物理科目人数所占比例即可得.【解答】解:(1)由图知把政治作为首选的324人,占全校总人数的百分比为36%,全校总人数为:324÷36%=900人,地理学科所在扇形的圆心角=360°×=18°;答:被抽查的学生共有900人,地理学科所在扇形的圆心角为18°.(2)本次调查中,首选历史科目的人数为900×6%=54人,补全折线图如下:(3)2000×=400,答:估计喜欢物理学科的人数为400人.【点评】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.【分析】(1)①根据互为基准变换点的定义可得出a+b=2,代入数据即可得出结论;②根据a+b=2,变换后即可得出结论;(2)设点A表示的数为x,根据点A的运动找出点B,结合互为基准变换点的定义即可得出关于x的一元一次方程,解之即可得出结论;(3)由于点P表示的数为m,根据题意,用含m的代数式分别表示出P1、P2、P3、P4、P5表示的数,从而发现4个一循环的规律,进而得出点P2018表示的数与点P2表示的数相同.【解答】解:(1)①∵点A表示数a,点B表示数b,点A与点B互为基准变换点,∵a+b=2,当a=0时,b=2;当a=4时,b=﹣2.故答案为:2;﹣2.②∵a+b=2,∴b=2﹣a.故答案为:2﹣a;(2)设点A表示的数为x,根据题意得:x﹣3+x=2,解得:x=2.故点A表示的数是2;(3)设点P表示的数为m,由题意可知:P1表示的数为m+k,P2表示的数为2﹣(m+k),P3表示的数为2﹣m,P4表示的数为m,P5表示的数为m+k,…由此可分析,4个一循环,∵2018÷4=504…2,∴点P2018表示的数与点P2表示的数相同,即点P2018表示的数为2﹣(m+k).【点评】本题考查了规律型中图形的变化类、数轴以及列代数式,根据互为基准变换点的定义找出a+b=2是解题的关键.。

20182019人教版七年级数学上册期末试卷及答案(10套)

20182019人教版七年级数学上册期末试卷及答案(10套)

1
A、0
2018-2019 人教版七年级数学上册期末试卷及答案 (10 套 )
B、- 1
C、3
D、5
9、若 x + y <0, x y <0, x > y ,则有( ).
A . x >0, y <0 , x 绝对值较大
B. x >0, y <0 , y 绝对值较大
C. x <0, y >0 , x 绝对值较大
a=-
1 ,b
=
1
2
3
四、解答题(本大题共 6 个小题, 每题 5 分,共 30 分;要求写出必要的解题过程和步骤 ) 23、出租车司机小石某天下午营运全是在东西走向的人民大街上进行的,如果 规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:
+15,-3,+14, -11, +10,-12. (1)将最后一名乘客送达目的地时,小石距下午出发地点的距离是多少千 米? (2)若汽车耗油量为 a 升 / 千米,这天下午汽车耗油共多少升?
7
10
7
6
B. 2.5 10 C. 2.5 10
5
D. 25 10
5、已知代数式 3y2- 2y+6 的值是 8,那么 3 y2- y+1 的值是 2
()
A .1 B
.2
C
.3
D
.4
6、2、在│ -2 │,- │ 0│,( -2 )5,- │ -2 │,-( -2 )这 5 个数中负数共有
()
A. 1 个 B . 2 个 C . 3 个 D . 4 个
线段 DC= .
18.钟表在 3 点 30 分时,它的时针和分针所成的角是

2018-2019学年第一学期人教版七年级数学期末测试题(含答案)

2018-2019学年第一学期人教版七年级数学期末测试题(含答案)

2018-2019学年七年级(上)期末数学试卷一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是,﹣的倒数是.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为平方千米.10.计算:15°37′+42°51′=.11.根据图提供的信息,可知一个杯子的价格是元.12.用6根火柴最多组成个一样大的三角形,所得几何体的名称是.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=cm.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.52018-2019学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定【考点】数轴.【分析】根据数轴的相关概念解题.【解答】解:因为a是一个负数,则﹣a是一个正数,二者互为相反数,﹣a在原点的右边.故选B.【点评】解答此题要用到以下概念:数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴;(1)从原点出发朝正方向的射线上的点对应正数,相反方向的射线上的点对应负数,原点对应零.(2)在数轴上表示的两个数,正方向的数大于负方向的数.(3)正数都大于0,负数都小于0,正数大于一切负数.(4)若从点A向右移动|a|个单位,得到B,则B点坐标为A的坐标加|a|,反之B点坐标为A的坐标减|a|.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据所看位置,找出此几何体的三视图即可.【解答】解:从上面看得到的平面图形是两个同心圆,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是要把所看到的棱都表示到图中.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.【考点】点、线、面、体.【专题】常规题型.【分析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.【解答】解:A、是直角梯形绕底边旋转形成的圆台,故A错误;B、是直角梯形绕垂直于底的腰旋转形成的圆台,故B正确;C、是梯形底边在上形成的圆台,故C错误;D、是梯形绕斜边形成的圆台,故D错误.故选:B.【点评】本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29【考点】一元一次方程的应用.【分析】设该商品的标价为x,则商品的售价为0.9x元,根据售价﹣进价=利润为等量关系建立方程求出其解即可.【解答】解:设该商品的标价为x,则商品的售价为0.9x元,由题意,得0.9x﹣21=21×20%,解得:x=28故选C.【点评】本题考查了销售问题的数量关系在生活实际问题的中的运用,一元一次方程的解法的运用,解答时运用售价﹣进价=进价×利润率建立方程是关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是5,﹣的倒数是﹣2.【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣5的相反数是5,﹣的倒数是﹣2,故答案为:5,﹣2.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=1.【考点】同类项.【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得答案.【解答】解:a3﹣2n b2与5a3n﹣2b2是同类项,3﹣2n=3n﹣2,n=1,故答案为:1.【点评】本题考查了同类项,相同的字母的指数也相同是解题关键.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为 2.5×106平方千米.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】把一个大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.【解答】解:2 500 000=2.5×106平方千米.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.10.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.11.根据图提供的信息,可知一个杯子的价格是8元.【考点】二元一次方程组的应用.【分析】仔细观察图形,可知本题存在两个等量关系,即一个水壶的价格+一个杯子的价格=43,两个水壶的价格+三个杯子的价格=94.根据这两个等量关系可列出方程组.【解答】解:设水壶单价为x元,杯子单价为y元,则有,解得.答:一个杯子的价格是8元.故答案为:8.【点评】解题关键是弄清题意,找到合适的等量关系,列出方程组.12.用6根火柴最多组成4个一样大的三角形,所得几何体的名称是三棱锥或四面体.【考点】认识立体图形.【分析】用6根火柴,要使搭的个数最多,就要搭成立体图形,即三棱锥.【解答】解:要使搭的个数最多,就要搭成三棱锥,这时最多可以搭4个一样的三角形.图形如下:故答案为:4,三棱锥或四面体.【点评】此题主要考查了认识立体图形,本题要打破思维定势,不要只从平面去考虑,要考虑到立体图形的拼组.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=11或5cm.【考点】比较线段的长短.【专题】分类讨论.【分析】分点B在点A、C之间和点C在点A、B之间两种情况讨论.【解答】解:(1)点B在点A、C之间时,AC=AB+BC=8+3=11cm;(2)点C在点A、B之间时,AC=AB﹣BC=8﹣3﹣5cm.∴AC的长度为11cm或5cm.【点评】分两种情况讨论是解本题的难点,也是解本题的关键.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是158.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12,右上是14.【解答】解:分析可得图中阴影部分的两个数分别是左下是12,右上是14,则m=12×14﹣10=158.故答案为:158.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).【考点】有理数的加法;整式的加减.【分析】(1)根据有理数的加法法则,即可解答.(2)先去括号,再合并同类项,即可解答.【解答】解:(1)(﹣76)+(+26)+(﹣31)+(+17)=﹣76﹣31+26+17=﹣107+43=﹣64.(2)2(2b﹣3a)﹣3(2a﹣3b)=4b﹣6a﹣6a+9b=13b﹣12a.【点评】本题考查了有理数的加法法则,解决本题的关键是熟记有理数的加法法则.16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.【考点】解一元一次方程.【专题】计算题.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:x﹣7=10﹣4x﹣2,移项合并得:5x=15,解得:x=3;(2)去分母得:3x﹣3﹣6﹣4x=6,移项合并得:x=﹣15.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).【考点】作图—应用与设计作图.【分析】连接AB,与l的交点就是P点.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了作图与应用作图,关键是掌握两点之间线段最短.18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.【考点】余角和补角.【分析】设这个角的度数为x,根据互余的两角的和等于90°表示出它的余角,然后列出方程求解即可.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),由题意得:x﹣(90°﹣x)=30°,解得:x=80°.答:这个角的度数是80°.【点评】本题考查了余角的定义,熟记概念并列出方程是解题的关键.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.【考点】整式的加减—化简求值;合并同类项;去括号与添括号.【专题】计算题.【分析】本题先将括号去掉,进行同类项合并,然后化简后,将值代入,即可求得结果.【解答】解:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.当x=1,y=2,z=﹣3时,原式=﹣3×1×2×(﹣3)=18.…(10分)【点评】本题考查整式的加减及化简求值,将式子进行同类项合并后,然后化简后即可求得结果.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.【考点】角平分线的定义.【专题】计算题.【分析】由∠AOB=110°,∠COD=70°,易得∠AOC+∠BOD=40°,由角平分线定义可得∠AOE+∠BOF=40°,那么∠EOF=∠AOB+∠AOE+BOF.【解答】解:∵∠AOB=110°,∠COD=70°∴∠AOC+∠BOD=∠AOB﹣∠COD=40°∵OA平分∠EOC,OB平分∠DOF∴∠AOE=∠AOC,∠BOF=∠BOD∴∠AOE+∠BOF=40°∴∠EOF=∠AOB+∠AOE+∠BOF=150°.故答案为:150°.【点评】解决本题的关键利用角平分线定义得到所求角的两边的角的度数.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为|m﹣n|.【考点】比较线段的长短.【专题】计算题.【分析】(1)点M是线段AC中点,则MC=AC,点N的线段BC中点,所以CN=CB,AC+BC=AB,AB已知,从而可求出MN长度.(2)根据以上分析可得MN=AB,线段MN的长度是线段AB的一半.(3)当点C在线段AB的延长线上时,MN等于MC减去BC=n,而MC=AC=m,从而可求出MN长度;当点C在线段BA的延长线上时,MN等于NC减去MC,NC=BC=n,MC=AC=m,从而可求出MN的长度.【解答】解:(1)MN=MC+CN=AC CB=7cm;(2)MN=MC+CN=AC=;(3)当点C在线段AB的延长线上时,MN=(m﹣n);当点C在线段BA的延长线上时,MN=(n﹣m);综合以上情况得:MN=.【点评】本题前两问主要根据题中图形得到各线段之间的关系,求出MN的长度,而第三问要分情况讨论,M在AB不同侧时有不同的情况,分析各情况得到MN的表达式.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【考点】有理数的加减混合运算;正数和负数.【专题】应用题.【分析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.【考点】余角和补角.【分析】(1)根据直角的定义可得∠AOB=∠COD=90°,然后用∠AOD和∠COB表示出∠BOD,列出方程整理即可得解;(2)根据周角等于360°列式整理即可得解.【解答】解:(1)∠AOD与∠COB互补.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∴∠BOD=∠AOD﹣∠AOB=∠AOD﹣90°,∠BOD=∠COD﹣∠COB=90°﹣∠COB,∴∠AOD﹣90°=90°﹣∠COB,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补;(2)成立.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∵∠AOB+∠BOC+∠COD+∠AOD=360°,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补.【点评】本题考查了余角和补角的定义,比较简单,用两种方法表示出∠BOD是解题的关键.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.5【考点】二元一次方程组的应用.【专题】图表型.【分析】通过理解题意可知本题的两个等量关系,西红柿的重量+豆角的重量=40,1.2×西红柿的重量+1.6×豆角的重量=60,根据这两个等量关系可列出方程组.【解答】解:设西红柿的重量是xkg,豆角的重量是ykg,依题意有解得10×(1.8﹣1.2)+30×(2.5﹣1.6)=33(元)答:他当天卖完这些西红柿和豆角能赚33元.【点评】注意要先求出西红柿和豆角的重量,再计算利润.。

2018—2019学年度第一学期7年级数学期末试题(含答案)

2018—2019学年度第一学期7年级数学期末试题(含答案)

2018—2019学年度第一学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果气温升高3℃时气温变化记作+3℃,那么气温下降3℃时气温变化记作A. -6℃B. -3℃C. 0℃ D .+3℃ 2.下列各组数中,互为相反数的是A .2和-2B .2和12C .2和12-D .12和-2 3.三个数a ,b ,c 在数轴上的位置如图所示,下列结论不正确的是A. a +b <0B. b +c <0C. b -a >0 D .c -a >0 4.下列说法正确的是A. 23xy -的系数是-2B. 2ab π-的系数是-1,次数是4(第3题图)C. 2x y +是多项式D.31x xy --的常数项是15.下列式子中,互为同类项的是A.2xy -与2y xB.2218x y 与229x y +C. a +b 与a -bD.32a b -与33ab 6.下列方程中是一元一次方程的是A.213x y -=B. 756(1)x x +=-C.21(1)12x x +-=D.12x x-= 7.关于x 的方程(3)10k x --=的解是x =﹣1,那么k 的值是A. k =2B. k =3C. k =-4 D .k =-28.永辉超市同时售出两台冷暖空调,每台均卖990元,按成本计算,其中一台盈利10%,另一台亏本10%,则永辉超市出售这两台空调会A.不赔不赚B.亏20元C.赚20元D.赚90元9.将一个直角三角板绕直角边旋转一周,则旋转后所得几何体是A. 三棱锥B.球C. 圆柱 D 圆锥 10.观察图形,下列说法正确的个数是(1)直线BA 和直线AB 是同一条直线(2)射线AC 和射线AD 是同一条射线(3)AB +BD >AD(4)三条直线两两相交时,一定有三个交点A.1个B. 2个C. 3个D. 4个11.如图,O 为我国南海某人造海岛,某商船在A 的位置,∠1=40°,下列说法正确的是A.商船在海岛的北偏西50°方向B.商船在海岛的北偏西140°方向C.商船在海岛的东偏南40°方向D.商船在海岛的南偏东40°方向 12.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中正确的是①90°-∠β; ②∠α-90°; ③180°-∠α; ④12(∠α﹣∠β). A. ①②③④ B. ①②③C. ①②④ D .①②(第10题图)(第11题图)第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.有理数-0.2的倒数是 .14.若一个有理数的绝对值是18,则这个数是 . 15.水星和太阳之间的距离约为57900000km ,这个数用科学记数法表示为 km .16.一个多项式加上-x 2-3x 得5x 2-4x -3,则这个多项式为 .17.李强在解方程5623x x -=时,他是这样做的:同桌张明对李强说:“你做错了,第一步应该去分母”,但李强认为自己没有做错.你认为李强做 (填“对”或“错”)了,他第一步变形的依据是 .18.一张桌子由一张桌面和四条桌腿拼装而成,若做一张桌面需要木材0.03m 3,做一条桌腿需要木材0.002m 3.现在做一批桌子恰好用去木材19m 3,求这批桌子有多少张?如果设这批桌子有x 张,那么根据题意,列得方程为 .19.某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每相邻两棵树的间隔相等.如果每隔4米栽1棵,则树苗缺21棵;如果每隔5米栽1棵,则树苗正好用完.则原有树苗 棵.20.如图,O 是线段AB 的中点,线段AB 上有一个点C 使得AC =8,CB =6,那么OC = .21.已知∠AOB =55°,∠BOC =25°,则∠AOC = .22.对于一组数:2,-4,8,-16,32,…;按它的排列规律,这组数的第2019个数是 .(第20题图)三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)()()1321372142-+÷-; (2)()()231212*********-÷--⨯+⨯-. 24.(1)解方程:2151234x x +--=-; (2如果一个月累计通话t 分钟时两种计费方式所付话费一样,那么通话时间t 等于多少分钟?(列方程解题)25.(1)x 为何值时,代数式().3102x --的值比代数式.105x x +-的值大3? (2)如图,已知B ,C 两点把线段AD 从左至右依次分成2∶4∶3三部分,M 是AD 的中点,BM =5,求线段MC 的长.26.已知代数式22321A x xy y =++-,2332B x xy x =-+-. (1)当x =-1,y =2时,求代数式32A B -的值;(2)若代数式32A B -的值与x 的取值无关,求y 的值.27.已知A 车的平均速度为60km /h ,B 车的平均速度为A 车的1.5倍,若两车同时从甲地驶向乙地,则B 车比A 车提前45分钟到达乙地. (1)求甲乙两地间的路程是多少km ?(2)若A 车从甲地、B 车从乙地分别以各自的平均速度同时相向而行,问经过多少时间两车之间的路程相距15km ?28.如图,已知OD 是∠AOB 的平分线,∠AOC =2∠BOC .(1)∠AOB =120°,求∠COD 的度数; (2)若∠COD =36°,则∠AOB = °;(直接写出结果,不需要写出解答过程)(3)求∠BOC 与∠COD 的有怎样的数量关系?并说明理由.(第28题图) (第25题图)2018—2019学年第一学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.–5;14.18或18-;15.75.7910⨯; 16.263x x--;17.对;合并同类项18.0.03x+0.002×4x=19;19.85;20. 1;21.80°或30°;22.20192.三、解答题:(共74分)23.解:(1)原式=……………………………1分==﹣14+18﹣4 ………………………………4分=0.………………………………………5分(2)原式=﹣9÷3﹣(6﹣8)+ ×(﹣)…………………8分=﹣3+2﹣………………………………………9分=213-. ………………………………………10分24.(1)解:去分母,得﹣4(2x+1)=24﹣3(5x﹣1)………………1分去括号,得﹣8x﹣4=24﹣15x+3 …………………2分移项,得﹣8x+15x=24+3+4 …………………3分合并同类项,得7x=31 …………………4分系数化为1,得x=……………………5分(2)解:根据题意,得30+0.1t=0.3t………………………9分解得 t =150 ……………………11分答:当t 等于150分钟时,两种方式所付话费是一样的. …12分25. 解:(1)由题意,得 3(1)130.20.5x x x -+-=-+ ……………………1分 去分母,得 15(1)2(1)x x x --=+-+……………………2分 去括号,得 ﹣15x +15=2x +2﹣x +3 ……………………3分移项,得 ﹣15x -2x +x =2+3-15 ……………………4分合并同类项,得 1610x -=- ………………………5分系数化为1,得 x =58……………………6分 (2)由题意设AB =2k ,BC =4k ,CD =3k ,则AD =9k , …………………………7分 ∵M 是AD 中点,∴AM =4.5k , …………………………9分 ∴BM =AM ﹣AB =2.5k =5, …………………………10分 ∴k =2, …………………………11分∴CM =DN ﹣CD =4.5k ﹣3k =1.5k =3.…………………………12分 26. 解:(1)3A ﹣2B =()232321x xy y ++-()23232x xy x --+- ……………1分 =6x 2+9xy +6y ﹣3﹣6x 2+2xy ﹣2x +3 ………………………5分=11xy +6y ﹣2x …………………………6分 当x =﹣1,y =2时,3A ﹣2B =11xy +6y ﹣2x=11×(﹣1)×2+6×2﹣2×(﹣1) ……………7分=﹣8; …………………………………8分(2)由(1)可知3A ﹣2B =11xy +6y ﹣2x =(11y ﹣2)x +2y ……………………10分若3A ﹣2B 的值与x 的取值无关,则11y ﹣2=0,…………12分 解得 211y = . ………………………………13分 27.(1)解:设甲乙两地间的路程是xkm ,则456060 1.560x x -=⨯ …………………………………3分 解得 x =135. …………………………………5分 答:甲乙两地间的路程是135 km ;…………………………………6分(2)解:设经过th 两车相距15km ,根据题意,需要分两种情况①当相遇前两车相距15km 时,60t +1.5×60t +15=135,…………………………………8分 解得t =; …………………………………9分 ②当相遇后两车相距15km 时,60t +1.5×60t ﹣15=135,………………………………11分 解得t =1. ………………………………12分 答:经过h 或1h 两车相距15km .………………………………13分28. 解:(1)∵∠AOB =120°,∠AOC =2∠BOC ,∴∠BOC =∠AOB =40°, ………………………………2分 ∵OD 平分∠AOB ,∴∠BOD =∠AOB =60°, ………………………………4分 ∴∠COD =60°﹣40°=20°;………………………………5分(2)∠AOB = 216 °;…………………7分(3)∠BOC =2∠COD ;…………………9分理由如下:∵∠AOC=2∠BOC,∴∠AOB=3∠BOC,……………………………10分∵OD平分∠AOB,∴∠BOD=∠AOB=∠BOC,……………………………12分∴∠COD=∠BOD﹣∠BOC………………………………13分=∠BOC﹣∠BOC=∠BOC,即∠BOC=2∠COD.…………………………………14分。

2018-2019学年七年级上学期期末考试数学试题(解析版)

2018-2019学年七年级上学期期末考试数学试题(解析版)

2018-2019学年七年级上学期期末考试数学试题一、选择题(本大题共10小题,共30.0分)1.的相反数是A. B. C. 3 D.【答案】C【解析】解:.故选:C.根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.下列方程属于一元一次方程的是A. B. C. D.【答案】D【解析】解:A、不是一元一次方程,故本选项不符合题意;B、不是一元一次方程,故本选项不符合题意;C、不是一元一次方程,故本选项不符合题意;D、是一元一次方程,故本选项符合题意;故选:D.根据一元一次方程的定义逐个判断即可.本题考查了一元一次方程的定义,能熟记一元一次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.3.在2018年的国庆假期里,我市共接待游客4435000人次,数4435000用科学记数法可表示为A. B. C. D.【答案】B【解析】解:数4435000用科学记数法可表示为.故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4.给出四个数0,,,,其中最小的数是A. B. C. 0 D.【答案】B【解析】解:四个数0,,,中,最小的数是,故选:B.根据有理数的大小比较法则得出即可.本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.5.下列各式正确的是A. B. C. D.【答案】D【解析】解:A.,此选项计算错误;B.,此选项计算错误;C.,此选项计算错误;D.,此选项计算正确;故选:D.根据算术平方根和立方根及有理数的乘方的定义逐一计算可得.本题主要考查立方根,解题的关键是熟练掌握算术平方根和立方根及有理数的乘方的定义.6.如图,将一三角板按不同位置摆放,其中 与 互余的是A. B.C. D.【答案】C【解析】解:C中的 ,故选:C.根据余角的定义,可得答案.本题考查了余角,利用余角的定义是解题关键.7.若单项式与单项式是同类项,则的值为A. 1B. 0C.D.【答案】D【解析】解:单项式与单项式是同类项,,,解得,,,则,故选:D.直接利用同类项的定义得出关于m,n的等式进而得出答案.此题主要考查了同类项,正确掌握同类项的定义是解题关键.8.已知,则代数式的值为A. B. C. D.【答案】A【解析】解:,,故选:A.将代入,计算可得.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.已知一个两位数,个位数字为b,十位数字比个位数字大a,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为A. B. C. 9a D.【答案】C【解析】解:由题意可得,原数为:;新数为:,故原两位数与新两位数之差为:.故选:C.分别表示出愿两位数和新两位数,进而得出答案.此题主要考查了列代数式,正确理解题意得出代数式是解题关键.10.已知:有公共端点的四条射线OA,OB,OC,OD,若点,,,如图所示排列,根据这个规律,点落在A. 射线OA上B. 射线OB上C. 射线OC上D. 射线OD上【答案】A【解析】解:由图可得,到顺时针,到逆时针,,点落在OA上,故选:A.根据图形可以发现点的变化规律,从而可以得到点落在哪条射线上.本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共10小题,共30.0分)11.如果向东走60m记为,那么向西走80m应记为______【答案】【解析】解:如果向东走60m记为,那么向西走80m应记为.故答案为:.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12. 的补角是______.【答案】【解析】解: .故答案为: .利用补角的意义:两角之和等于,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.此题考查补角的意义,以及度分秒之间的计算,注意借1当60.13.16的算术平方根是______.【答案】4【解析】解:,.故答案为:4.根据算术平方根的定义即可求出结果.此题主要考查了算术平方根的定义一个正数的算术平方根就是其正的平方根.14.若,则a应满足的条件为______.【答案】【解析】解:,,故答案为:.根据绝对值的定义和性质求解可得.本题主要考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.15.如图所示,,,BP平分 则______度【答案】60【解析】解:, ,,平分 ,.故填60.本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.16.若关于x的方程的解为最大负整数,则a的值为______.【答案】2【解析】解:最大负整数为,把代入方程得:,解得:,故答案为:2.求出最大负整数解,再把代入方程,即可求出答案.本题考查了有理数和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.17.如图,在数轴上点A,B表示的数分别是1,,若点B,C到点A的距离相等,则点C所表示的数是______.【答案】【解析】解:数轴上点A,B表示的数分别是1,,,则点C表示的数为,故答案为:.先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.18.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x人,则可列方程______.【答案】.【解析】解:设应派往甲处x人,则派往乙处人,根据题意得:.故答案为:.设应派往甲处x人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.19.已知a,b是正整数,且,则的最大值是______.【答案】【解析】解:,,,,则原式,故答案为:根据题意确定出a的最大值,b的最小值,即可求出所求.此题考查了估算无理数的大小,熟练掌握估算的方法是解本题的关键.20.已知A,B,C是同一直线上的三个点,点O为AB的中点,,若,则线段AB的长为______.【答案】4或36【解析】解:,设,,若点C在线段AB上,则,点O为AB的中点,,若点C在点B右侧,则,点O为AB的中点,,故答案为:4或36分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.本题考查了两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.三、计算题(本大题共3小题,共18.0分)21.计算【答案】解:原式;原式.【解析】先计算括号内的减法,再进一步计算减法可得;先计算乘方和括号内的减法,再计算乘法可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.22.先化简,再求值:,其中,.【答案】解:原式当,时,原式.【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.23.解方程【答案】解:,,;,,,,.【解析】移项、合并同类项、系数化为1可得;依次去分母、去括号、移项、合并同类项、系数化为1计算可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向形式转化.四、解答题(本大题共3小题,共22.0分)24.如图,已知四个村庄A,B,C,D和一条笔直的公路1.要修建一条途经村庄A,C的笔直公路,请在图中画出示意图;在中的公路某处修建超市Q,使得它到村庄B,D的距离之和最小. 请在图中画出超市Q的位置;请在图中画出从超市Q到公路的最短路线QP.【答案】解:直线AC如图所示;连接BD交直线AC于点Q,等Q即为所求;作直线l于P,线段PQ即为所求;【解析】直线AC如图所示;连接BD交直线AC于点Q,等Q即为所求;作直线l于P,线段PQ即为所求;本题考查作图应用与设计,轴对称最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.某水果店用500元购进甲、乙两种水果共50kg,这两种水果的进价、售价如下表所示如果这批水果当天售完,水果店除进货成本外,还需其它成本元,那么水果店销售完这批水果获得的利润是多少元?利润售价成本【答案】解:设甲种水果购进了x千克,则乙种水果购进了千克,根据题意得:,解得:,则.答:购进甲种水果20千克,乙种水果30千克;元.元.答:水果店销售完这批水果获得的利润是175元.【解析】设甲种水果购进了x千克,则乙种水果购进了千克,根据总价格甲种水果单价购进甲种水果质量乙种水果单价购进乙种水果质量即可得出关于x的一元一次方程,解之即可得出结论;根据总利润每千克甲种水果利润购进甲种水果质量每千克乙种水果利润购进乙种水果质量,净利润总利润其它销售费用,代入数据即可得出结论.本题考查了一元一次方程的应用,根据数量关系总价单价数量列出一元一次方程是解题的关键.26.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角如图1,若,则 是 的内半角.如图1,已知 , , 是 的内半角,则______;如图2,已知 ,将 绕点O按顺时针方向旋转一个角度至 ,当旋转的角度 为何值时, 是 的内半角.已知 ,把一块含有角的三角板如图3叠放,将三角板绕顶点O 以3度秒的速度按顺时针方向旋转如图,问:在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.【答案】【解析】解:是 的内半角, ,,,,故答案为:,,,是 的内半角,,,旋转的角度 为时, 是的内半角;在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角;理由:设按顺时针方向旋转一个角度 ,旋转的时间为t,如图1,是 的内半角, ,,,解得:,;如图2,是 的内半角, ,,,,;如图3,是 的内半角, ,,,,,如图4,是 的内半角, ,,,解得: ,,综上所述,当旋转的时间为或30s或110s或时,射线OA,OB,OC,OD能构成内半角.根据内半角的定义解答即可;根据内半角的定义解答即可;根据根据内半角的定义列方程即可得到结论.本题考查了角的计算,角的和差,准确识图理清图中各角度之间的关系是解题的关键.。

2018-2019学年度七年级上数学期末试题(含答案)

2018-2019学年度七年级上数学期末试题(含答案)

(上)期末教学质量测评试题七年级数学注意事项:1.全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟. 2.在作答前,考生务必将自己的姓名,准考证号及座位号涂写在答题卡规定的地方.3.选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效.5.保持答题卡清洁,不得折叠、污染、破损等.A 卷(共100分)一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求. 1. 下列各数中,大于-2小于2的负数..是 A .-3 B .-2 C .-1 D .0 2. 如果||a a =-,那么a 一定是A .负数B .正数C .非负数D .非正数3. 有理数b a ,在数轴上的位置如图所示,则下列各式的符号为正的是 A . b a + B . b a - C . ab D . -4a 4. 用一平面截一个正方体,不能得到的截面形状是A .直角三角形B .等边三角形C .长方形D .六边形 5. 下列平面图形中不能..围成正方体的是A .B .C .D .6.a 个学生按每8个人一组分成若干组,其中有一组少3人,共分成的组数是A .8a B .38a - C .(3)8a + D .38a +7. 下列说法正确的是 A .23vt -的系数是2-B .233ab 的次数是6次C .5x y +是多项式D .21x x +-的常数项为18.下列语句正确的是A .线段AB 是点A 与点B 的距离 B .过n 边形的每一个顶点有(n -3)条对角线C .各边相等的多边形是正多边形D .两点之间的所有连线中,直线最短9. 某地区卫生组织为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是A .在公园调查了1000名老年人的健康状况B .在医院调查了1000名老年人的健康状况a(第3题图)C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况10. 成都市为减少雾霾天气采取了多项措施,如对城区主干道进行绿化.现计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是A .5(x +21-1)=6(x -l)B .5(x +21)=6(x -l)C .5(x +21-1)=6xD .5(x +21)=6x 二、填空题:(每小题3分,共15分)11.近年来,汉语热在全球范围内不断升温。

2018-2019学年度第一学期七年级数学期末考试试卷(解析版)

2018-2019学年度第一学期七年级数学期末考试试卷(解析版)

2018-2019学年度第一学期七年级数学期末考试试卷一、选择题(本大题共10小题,共40.0分)1.下列四个数中最小的数是A. B. 0 C. D.【答案】D【解析】解:,四个数中最小的数是.故选:D.有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.2.巢湖是中国五大淡水湖之一,位于安徽省中部,最大水容积达亿立方米,其中“亿”用科学记数法可表示为A. B. C. D.【答案】B【解析】解:“亿”用科学记数法可表示为,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.3.下列关系式正确的是A. B. C. D.【答案】C【解析】解:A、,错误;B、,错误;C、15^{\circ}5’'/>,正确;D、15^{\circ}5’'/>,错误;故选:C.根据,求得结果.本题考查了度分秒的换算,相对比较简单,注意以60为进制即可.4.“把弯曲的公路改直就可以缩短路程”,其中蕴含的数学道理是A. 经过两点有一条直线,并且只有一条直线B. 直线比曲线短C. 两点之间的所有连线中,直线最短D. 两点之间的所有连线中,线段最短【答案】D【解析】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.根据线段的性质解答即可.本题考查的是线段的性质,即两点之间线段最短.5.在数轴上点M表示的数为,与点M距离等于3个单位长度的点表示的数为A. 1B.C. 或1D. 或5【答案】C【解析】解:与点M距离等于3个单位长度的点在M右边时,该点表示的数是;与点M距离等于3个单位长度的点在M左边时,该点表示的数是,故选:C.与点M距离等于3个单位长度的点在M左右两边各一个,分别用M表示的数为加减3即可.本题考查数轴的相关知识运用分类讨论和数形结合思想是解答此类问题的关键.6.如图,若AB,CD相交于点O,,则下列结论不正确的是A. 与互为余角B. 与互为余角C. 与互为补角D. 与互为补角【答案】C【解析】解:,,,,,,故A、B、D选项正确,C错误.故选:C.直接利用垂直的定义结合互余以及互补的定义分析得出答案.此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.7.在解方程过程中,以下变形正确的是A. B. C.D.【答案】A【解析】解:去分母得:,去括号得:,故选:A.方程两边乘以6去分母得到结果,即可作出判断.此题考查了解一元一次方程,以及等式的性质,熟练掌握运算法则是解本题的关键.8.已知某商店出售了两个进价不同的书包,售价都是42元,其中一个盈利,另七年级个亏损,则在这次买卖中,商店的盈亏情况是A. 盈利元B. 盈利6元C. 不盈不亏D. 亏损6元【答案】D【解析】解:设盈利的书包的进价为x元个,亏损的书包的进价为y元个,根据题意得:,,解得:,,元.答:商店亏损6元.故选:D.设盈利的书包的进价为x元个,亏损的书包的进价为y元个,根据售价进价利润,即可得出关于的一元一次方程,解之即可得出的值,再利用利润售价进价即可找出商店的盈亏情况.本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.9.如图所示,圆的周长为4个单位长度在圆周的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴上的原点重合,再将圆沿着数轴向右滚动,那么数轴上的1949所对应的点与圆周上字母所对应的点重合.A. AB. BC. CD. D【答案】D【解析】解:设数轴上的一个整数为x,由题意可知当时为整数,A点与x重合;当时为整数,D点与x重合;当时为整数,C点与x重合;当时为整数,B点与x重合;而,所以数轴上的1949所对应的点与圆周上字母D重合.故选:D.因为圆沿着数轴向右滚动,依次与数轴上数字顺序重合的是A、D、C、B,且A点只与4的倍数点重合,即数轴上表示4n的点都与A点重合,表示的数都与D点重合,依此按序类推.本题考查的是数轴上数字在圆环旋转过程中的对应规律,看清圆环的旋转方向是重点,关键要找到旋转过程中数字的对应方式.10.有理数a,b,c在数轴上的对应点如图所示,化简代数式,结果为A. B. C. D.【答案】C【解析】解:由数轴知,,,故选:C.由数轴知,,,去绝对值合并同类项即可.本题考查绝对值的性质确定绝对值符号内代数式的性质符号是解答此类题目的关键.二、填空题(本大题共6小题,共24.0分)11.如果向东走10米记作米,那么向西走15米可记作______米【答案】【解析】解:向东走10米记作米,向西走15米记作米.故答案为:.明确“正”和“负”所表示的意义,再根据题意作答.本题主要考查了正数与负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.若的值与2互为相反数,则x的值为______.【答案】【解析】解:的值与2互为相反数,,解得:.故答案为:.直接利用相反数的定义得出,进而得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.13.如图是某市2015年至2018年各年底私人汽车拥有量折线统计图从中可以看出该市私人汽车数量增加最多的年份是______年【答案】~【解析】解:由图可得,~年增加辆,~年增加辆,~年增加辆,故答案为:~.根据函数图象中的数据,可以求得该市私人汽车数量增加最多的年份.本题考查折线统计图,解答本题的关键是明确题意,利用数形结合的思想解答.14.m是一个两位数,n是一个一位数,将m写到n的左边成为一个三位数,用代数式表示这个三位数为______.【答案】【解析】解:由题意,可得这个三位数为:.故答案为.根据m是一个两位数,n是一个一位数,将m写到n的左边成为一个三位数,即m扩大了10倍,n不变,即可得出答案.主要考查了列代数式,掌握三位数的表示方法,能够用字母表示数是本题的关键.15.当时,代数式的值为3,则______.【答案】1【解析】解:根据题意,将代入,得:,则原式,故答案为:1.由已知条件得出,代入原式计算可得.本题主要考查代数式的求值,解题的关键是熟练掌握整体代入思想的运用.16.已知,,OM平分,ON平分,那么等于______度【答案】或80【解析】解:当射线OC在内部时,,OM平分,ON平分,,,;当射线OC在外部时,,OM平分,ON平分,,,,故答案为:或80.分射线OC在内部和外部两种可能来解答.本题考查角平分线的意义分类讨论是解答此题的关键.三、计算题(本大题共3小题,共24.0分)17.计算:【答案】解:原式.【解析】根据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.先化简再求值:,其中,.【答案】解:原式当,时,原式【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.《九章算术》是中国古代数学的经典著作书中有一个问题:“今有共买鸡,人出九,盈十一;人出六,不足十六问人数、鸡价各几何?”意思是:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多出11文钱;如果每人出6文钱,又会缺16文钱问买鸡的人数、买鸡的钱数各是多少?请解答这个题目.【答案】解:设买鸡的人数为x,则鸡的钱数为文钱,根据题意,得:,解得:,则,答:买鸡的人数为9,则鸡的钱数为70文钱.【解析】设买鸡的人数为x,则鸡的钱数为文钱,根据“每人出6文钱,又会缺16文钱”列出方程求解可得.本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.四、解答题(本大题共3小题,共32.0分)20.解方程.【答案】解:去括号得:,移项得:,合并同类项得:,系数化为1得:.【解析】依次去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.某中学为了了解学生参加体育运动的兴趣情况,从全校学生中随机抽取部分学生进行调查,对样本数据整理后画出如下统计图统计图不够完整请结合图中信息解答下列问题:此样本的样本容量为:______;补全条形统计图;求兴趣为“中”的学生所占的百分比以及对应扇形的圆心角.【答案】200【解析】解:样本容量为:,故答案为:200;兴趣为“高”的学生有:人,补全的条形统计图如右图所示;兴趣为“中”的学生所占的百分比是:,兴趣为“中”的学生对应扇形的圆心角是:.根据统计图中兴趣为“极高”的学生所占的百分比和人数,可以求得此样本的容量;根据中的结果,可以求得条形统计图中兴趣为“高”的学生人数,从而可以将条形统计图补充完整;根据统计图中的数据可以求得兴趣为“中”的学生所占的百分比以及对应扇形的圆心角.本题考查条形统计图、扇形统计图、总体、个体、样本、样本容量,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,数轴上点A表示的数为,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动设运动时间为t秒.,B两点间的距离等于______,线段AB的中点表示的数为______;用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;求当t为何值时,?若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.【答案】20 6【解析】解:点A表示的数为,点B表示的数为16,,B两点间的距离等于,线段AB的中点表示的数为故答案为:20,6点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,点P表示的数为:,点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,点Q表示的数为:,故答案为:,或6答:或6时,线段MN的长度不会变化,点M为PA的中点,点N为PB的中点,,由数轴上两点距离可求A,B两点间的距离,由中点公式可求线段AB的中点表示的数;由题意可求解;由题意可列方程可求t的值;由线段中点的性质可求MN的值不变.本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.。

2018-2019学年七年级(上)期末数学试卷

2018-2019学年七年级(上)期末数学试卷
第 ͸页,共 11页
44̪,
̪.͸

̪̪ 元 ;
͸̪ 䁤 ̪̪ 䁤 香̪, 一次性购买 3 件最省钱. 【解析】 1. 解:如果股票指数上涨 30 点记作 ࡘ̪,那么股票指数下跌 20 点记作 香̪, 故选:A. 根据正数和负数表示相反意义的量,股票指数上涨记为正,可得股票指数下跌的表示方 法. 本题考查了正数和负数,相反意义的量用正数和负数表示. 2. 解:左视图有 2 列,每列小正方形数目分别为 2,1, 故选:D. 读图可得,左视图有 2 列,每列小正方形数目分别为 2,1. 此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来, 看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时 应注意小正方形的数目及位置. , 3. 解:150000000km 用科学记数法表示为 1. 1̪ 故选:C. 1̪ 的形式,其中 1 ሻ ሻ ܾ 1̪,n 为整数.确定 n 的值时, 科学记数法的表示形式为 要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原 数绝对值䁤 1 时,n 是正数;当原数的绝对值ܾ 1 时,n 是负数. 1̪ 的形式,其中 1 此题考查科学记数法的表示方法.科学记数法的表示形式为 ሻ ሻ ܾ 1̪,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.

1 香
香̪1 ”,但他最终的计算结果并没错误,请问是什么原因呢?

1 的值”,小亮错把“
香̪1 ,൅
香̪1 ”抄成了“
香̪1 ,
1 . 解方程:
1 香 ‫ݔ‬ 香 ‫ݔ‬

1

香‫ݔ‬
͸
ࡘ ‫ݔ‬

1
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学第一学期期末测试卷八
一、选择题: 班级 姓名 学号 1. 下列算式正确的是( )
A .—32
=9 ; B.144
1
=-÷-)()( ; C.1682-=-)(;D.325-=--
-)( . 2.若数轴上点A 表示的数是-3,则与点A 相距4个单位长度的点表示的数是( ) A.±4 B.±1; C.-7或1 D.-1或7 3.物体形状如左图所示,则从正面看此物体,看到的图形是
( )
C
B A
D
4.如果从A 看B 的方向为北偏东25°,那么从B 看A 的方向为( )
A.南偏东65°
B.南偏西65°
C.南偏东25°
D.南偏西25° 5.下列语句中正确的是( )
A.1是最小的自然数;
B.-1是最小的自然数;
C.绝对值最小的是0;
D.任何有理数都有倒数 6.运用等式性质进行的变形,正确的是( ) A.如果a=b,那么a+c=b-c; B.如果a b
c c
=,那么a=b; C.如果a=b,那么
a b
c c
=; D.如果a 2=3a,那么a=3 7. 下列调查必须用抽样调查方式来收集数据的有( )个.
①检查一大批灯炮使用寿命的长短;②调查某一城市居民家庭收入状况;③了解全班同学的身高情况;
④检查某种药品的疗效. A.1 B.2 C.3 D.4
8.已知线段MN=8,P 是MN 的中点,Q 是PN 的中点,R 是MQ 的中点,那么MR 是MN 的( )
A.13
B.
25 C.27 D.38 9.解方程321
126
x x -+-=,下列去分母正确的是( )
A.3(x-3)-(2x+1)=1;
B.(x-3)-(2x+1)=6;
C.3(x-3)-2x+1=6;
D.3(x-2)-(2x+1)=6
10.若5m+14与514m ⎛
⎫- ⎪⎝⎭为互为相反数,则m 的值是( )
A.0
B.
320 C.120
D.110
11.第二十中有54个班,2342名学生,为了解全校学生购买学习资料所花的钱,从每班任选男、女生各一名
进行调查,在这个问题中总体是( )
A.2342名学生
B.108名学生买资料花的钱
C.2342名学生买学习资料花的钱
D.108名学生
12.如图,OB 平分∠AOC,OD 平分∠EOC,∠1=20°,∠AOE=88°,则∠3为( ) A.24° B.68° C.28° D.都不对
432
C B
A
1
O
E
D
C
B
A
O
E
D
13.如图,AOB 为一直线,OC 、OD 、OE 是射线,则图中大于0°小于180°的角有( ) A.5个 B.4个 C.9个 D.10个 14.下列说法中错误的是( )
A.0的相反数是0
B.一个数的相反数必是0或负数
C.
23的倒数的相反数是3
2
- D.负数的相反数是正数 15. 下图中是正方体的展开图的有( )
A 、2
、4个二、填空题:
16.计算
:2
2
)2(2-+-=__________. 17. 在数2
1
-
,1.1-,)
3(+-,31-,13.9+,100011中,负数有__________个.
18.一个数的倒数的相反数是13
,则这个数是______.
19.如图,将a 、b 、c 、b 用“<”号连接是_______________________.
20. 有一组数依次是1,5,11,19,m ,55,则m =_____. 21.2点25分时针和分针的夹角为______度.
22.已知直线上有A,B,C 三点,其中AB=5cm,BC=2cm,则AC=___________________. 23.一个锐角的补角比它的余角大______度.
24.C 为线段AB 的中点,D 在线段CB 上,DA=6,DB=4,则CD=________.
25.若0)2(42
=++-b a ,那么a 与b 的和为_____.
26.近似数4.13×104
精确到_______位.
27.要在墙上钉牢一根棒,至少要钉两枚钉子,这是根据_________________________. 28.已知∠α=50°18′,则∠α的余角的补角是______________度.
29.∠AOB=24.3°∠BOC=31.5°,B 、C 在OA 的同侧,则∠AOC=______度_____分.
30.学校、电影院、公园在平面图上的标点分别是A 、B 、C, 电影院在学校的正东方向,公园在学校的南偏西25°方向,那么平面图上的∠CAB=______°. 31.若记号“*”表示以下运算:a*b=
2
a b
+,则(1*2)*(-3)=________. 32.已知点B 在直线AC 上,AB=8cm,AC=18cm,P 、Q 分别是AB 、 AC 的中点, 则PQ=____cm. 三、解答题:
33. 计算:(1) 8+()2
3-()2-⨯; (2).)4()8
1()2(163
-⨯---÷。

34.解下列方程:
(1)5(x-4)-7(7-x)-9=12-3(9-x); (2) 12
223
t t t -+-
=-
.
35. 一件衣服按标价的六折出售,店主可兼22元, 已知这件衣服的进价是50元,求这件衣服的标价是多少元?
36. 如图,已知O 是直线AD 上的点, 三个角∠AOB 、∠BOC 、∠COD 从小到大依次相差25度,求这三个角的度数.
C
A
D
B
37.12.某市教育局为了了解本市中小学实施素质教育的情况,抽查了某校七年级甲、乙两个班的部分学生,了解他们在一周内(星期一到星期五) 参加课外活动的次数情况,抽查结果统计如下(如图): (1)在这次抽查中,甲班被抽查了_______人,乙班被抽查了______人.
(2)在被抽查的学生中,甲班学生参加课外活动的平均次数为______次, 乙班学生参加课外活动的平均次数为______次.
(3)根据以上信息,用你学过的知识,估计甲、 乙两班在开展课外活动方面哪个班级更好些?
(4)从图中你还能得到哪些信息?(写出一个即可
)
代表乙班
代表甲班
动次数。

相关文档
最新文档