苏科版2019年秋七年级数学(上)第二章单元复习检测卷附答案解析

合集下载

2019-2020学年苏科版七年级数学上册第一、二章单元测试卷及答案

2019-2020学年苏科版七年级数学上册第一、二章单元测试卷及答案

2019-2020学年七年级数学上册第一、二章测试卷满分:130分 时间:90分钟一、选择题 (每题3分,共30分)1.如果水位升高6 m 时水位变化记作+6 m ,那么水位下降6 m 时水位变化记作 ( )A .-3 mB .3 mC .6 mD .-6 m2.一张正方形纸片经过两次对折,并在如图所示的位置上剪去一个小正方形,打开后的图形是 ( )3.在-3 ,3.1415,0,-0.333…,- 227,-0.15,2.010010001 (相邻两个1之间依次多一个0) …中,有理数的个数是 ( )A .2B .3C .4D .5 4.若某地某天的最高气温是8℃,最低气温是-2℃,则该地这一天的温差是 ( ) A .-10℃ B .-6℃ C .6℃ D .10℃ 5.若a ,b 是有理数,则下列结论一定正确的是 ( ) A .若a <b ,则a <b B .若a >b ,则a >b C .若a =b ,则a =b D .若a ≠b ,则a ≠b6.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96500000条.将96500000用科学记数法表示应为 ( ) A .96.5×107 B .9.65×107 C .9.65×108 D .0.965×1097.如图,一只蚂蚁从“1”处爬到“4”处 (只能向上、向右爬行),爬行路线共有 ( ) A .3条 B .4条C .5条D .6条8.在某校七年级新生的军训活动中,共有393名学生参加.如果 将这393名学生排成一列,按1,2,3,4,3,2,1,2,3,4,3,2,1,…的规律报数,那么最后一名学生所报的数是 ( )A .1B .2C .3D .49.如图,数轴上有一个质点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,质点落在表示数3的点上(允许重复过此点),则质点的不同运动方案共有()A.2种B.3种C.4种D.5种10.观察下列图形中点的个数,若按其规律再画下去,可以得到第5个图形中所有点的个数为( )A.16个B.25个C.36个D.49个二、填空题(每题3分,共30分)11.李老师的身份证号码是××××××196807124917[其中前六位数字为此人所属的省(市、自治区)、市、县(市、区)的编码],根据这个身份证号,可以看出李老师在年出生.12.若用16 m长的篱笆围成长方形的生物园来饲养动物,则生物园的最大面积为.13.35的相反数与-25的绝对值的和是14.数轴上,若A,B表示互为相反数的两个数且A在B的右侧,并且这两点的距离为10,则点B表示的数是.15.已知有理数-1,-8,+11,-2,请你通过有理数加减混合运算,使运算结果最大,则列式为16.国家森林城市的创建极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量.截至2014年,全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”称号.永州市也正在积极创建“国家森林城市”,据统计近两年全市投入“创森”资金约为365000000元.365000000用科学记数法表示为.17.若x=4,y2=4且y<0,则x + y=18.一跳蚤在一直线上从O点开始,第1次向右跳1个单位长度,紧接着第2次向左跳2个单位长度,第3次向右跳3个单位长度,第4次向左跳4个单位长度,…,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是个单位长度.19.定义:a是不为1的有理数,我们把11a-称为a的差倒数,如:2的差倒数是112-=-1,-1的差倒数是11(1)--=12.已知a1=-12,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,以此类推,则a2016= .20.将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2017个正方形,则需要操作次数.三、解答题(共76分)21.(本题8分) 按要求把下列各数填入相应的括号里:2.5,-0.5252252225…(每两个5之间依次增加一个2),-102,-5,0,13,3.6,-23-(-10),2π-6.(1) 非负数集合:{ …};(2) 非负整数集合:{ …};(3) 有理数集合:{ …};(4) 无理数集合:{ …}.22.(本题16分)计算下列各题:(1) 12+(-23)-(-13)+(+14);(2) 45-+(-71)+5-+(-9);(3) -989×81;(4) (-2)3×8-8×(12)3+8÷18;(5) -15+(-2)2×(16-13)-12÷3;(6)113⨯+135⨯+…+120112013⨯+120132015⨯(7) (12-13)÷(-16)+(-2)2×(-14);(8)[32×(-13)2-0.8]÷(-525).23.(本题5分) 把下列各数及它们的相反数在数轴上表示出来,并用“<”号把它们连接起来.-3,-(-4),0, 2.5 ,-112.24.(本题8分) 写出符合下列条件的数: (1) 大于-3且小于2的所有整数;(2) 绝对值大于2且小于5的所有负整数,(3)在数轴上,与表示-1的点的距离为2的所有数;(4)不超过(-53)3的最大整数.25.(本题5分) 已知a =3,b =2,且a <b ,求a +b 的值.26.(本题6分) 检查5个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:(1) 最接近标准质量的是几号篮球?(2) 质量最大的篮球比质量最小的篮球重多少克?27.(本题6分) 现有10盒火柴,以每盒100根为标准,超过的根数记作正数,不足的根数记作负数.每盒数据记录如下:+3,-2,-1,0,+2,-1,+4,-2,-3,+1.回答下列问题:(1) 这10盒火柴中火柴根数最多的有 根,最少的有 根; (2) 这10盒火柴一共有多少根?28.(本题8分) 一只蚂蚁从原点出发来回爬行,爬行的各段路程依次为:×5,-3,+10,-8,-9,+12,-10,请在数轴上画出爬行过程.回答下列问题:(1) 蚂蚁最后是否回到出发点?(2) 在爬行过程中,若每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻?29.(本题8分) 某工艺品厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况 (超产记为正,减产记为负):(1) 写出该厂星期一生产工艺品的数量.(2) 本周产量最多的一天比最少的一天多生产多少个工艺品? (3) 请求出该工艺品厂在本周实际生产工艺品的数量.(4) 已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个可得50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.30.(本题8分)探索性问题:已知点A 、B 在数轴上分别表示m 、n .(1) 填写下表:(2) 若A 、B 两点的距离为d ,则d 与m 、n 有何数量关系. (3) 在数轴上标出所有符合条件的整数点...P ,使它到3和-3的距离之和为6,并求出所 有这些整数的和.(4) 若点C 表示的数为x ,当C 在什么位置时,2x ++3x -取得值最小,最小值是多少?参考答案一、选择题1.D 2.D 3.D 4.D 5.C 6.B 7.A 8.C(提示:由题意可找出规律,以“1,2,3,4,3,2”6个数为一个循环,所以最后一名学生报的数是3) 9.D 10.C 二、填空题11.1968 12.16 m 2 13.-1514.-5 15.+11-[(-1)+(-8)+(-2)]16.3.65×108 17.2或-6 18.50 19.3(提示:由题意可找出规律,a 1=-12,a 2=23,a 3=3,a 4=-12,a 5=23,a 6=3,…3个为一个循环,所以a 2016=3) 20.504 三、解答题21.(1) 非负数集合:{2.5,0,13,3.6,-23-(-10),2π-6,…} (2) 非负整数集合:{0,-23-(-10),…} (3) 有理数集合:(2.5,-102,-5,0,13,3.6,-23-(-10),…) (4) 无理数集合:{-0.5252252225…(每两个5之间依次增加一个2),2π-6,…)22.(1) 原式=512(2) 原式=-30 (3) 原式=-801 (4) 原式=-l (5) 原式=-116 (6) 原式=10072015 (7) 原式=-57 (8) 原式=1323.在数轴上表示略,-4<-3<- 2.5-<-112<0<-(-112)< 2.5-<-(-3)<-(-4)24.(1) -2,-1,0,1 (2) -3,-4 (3) 1或-3 (4) -525.由题意可以得到a =3或-3,b =2或-2,又因为a <b ,所以a =-3,b =2或a =-3,b =-2,所以a +b 的值为-1或-526.(1) 3号篮球最接近标准质量 (2) 质量最大的篮球比质量最小的篮球重17 g 27.(1) 104 97 (2) 3-2-1+0+2-1+4-2-3+1=1(根),100×10+1=1001(根).答:这10盒火柴一共有1001根28.画图略 (1) 不回到出发点,因为0+5-3+10-8-9+12-10=-3(2) (5++3- +10++8-+9-+12++10-)×2=114(粒)29.(1) 星期一的产量为300+5=305(个) (2) 由表格可知:星期六产量最高,为300+(+16)=316(个),星期五产量最低,为300+(-10)=290(个),则产量最多的一天比产量最少的一天多生产316-290=26(个) (3) 根据题意得一周生产的工艺品数量为300×7+[(+5)+(-2)+(-5)+(+15)+(-10)+(+16)+(-9)]=2100+10=2110(套) (4) (+5)+(-2)+(-5)+(+15)+(-10)+(+16)+(-9)=10(个),根据题意得该厂工人一周的工资总额为2110×60+50×10=127100(元) 30.(1) 2;5;10;2;12 (2) d m n =- (3) 数轴略 所有这些整数的和为0 (4) 2x ++3x - 数轴上表示-2到3的距离和所以,当-2≤x ≤3时,2x ++3x -的值最小,最小值为5。

苏科版2019-2020七年级数学第二章有理数自主学习基础训练题B(附答案)

苏科版2019-2020七年级数学第二章有理数自主学习基础训练题B(附答案)

苏科版2019-2020七年级数学第二章有理数自主学习基础训练题B(附答案)1.2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12 050 000枚,用科学记数法表示正确的是( )A.1.205×107B.1.20×108C.1.205×104D.1.21×1072.因为,所以()A.是倒数B.是倒数C.和互为倒数D.以上都不对3.若,则的值为()A.6 B.﹣6 C.8 D.﹣84.如果a+b=0,那么a、b两个有理数一定是()A.都等于0 B.一正一负C.互为相反数D.互为倒数5.下列说法正确的是().A.一个数的前面添上一个“-”,一定是负数B.有理数的绝对值一定是正数C.互为相反数的两个数的绝对值一定相等D.如果一个数的绝对值是它本身,则这个数一定是正数6.一个有理数的相反数与自身绝对值的和()A.可能是负数B.必为正数C.必为非负数D.必为7.−3的相反数是()A.13B.−3 C.−13D.38.运用乘法分配律计算“(﹣24)×(﹣+﹣)”,不正确的是()A.(﹣24)+(﹣24)×(﹣)+(﹣24)×+(﹣24)×(﹣)B.(﹣24)×﹣(﹣24)×(﹣)+(﹣24)×﹣(﹣24)×(﹣)C.(﹣24)×﹣(﹣24)×+(﹣24)×﹣(﹣24)×D.×(﹣24)﹣×(﹣24)+×(﹣24)﹣×(﹣24)9.近似数 0.450精确到________位,有____个有效数字.10.已知|﹣x|=|﹣4|,则x=.11.计算:﹣10﹣6的结果为_____.12.数轴上有A、B、C三个点,B点表示的数是1,CAB=BC,则A点表示的数是____________.13.,,的和的绝对值与这三个数的绝对值的和的差是________.14.一只小蚂蚁停在数轴上表示﹣3的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为_____.15.若互为相反数,互为倒数,则________.16.计算:﹣33=_____.17.﹣2的相反数的值等于_____.18.为了节约用水,某市改进居民用水设施,在2017年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为________.19.把下列各数填入相应的大括号里:正分数集合{…};整数集合{…};非正数集合{…};有理数集合{…}20.已知a的相反数是2,b的绝对值是3,c的倒数是﹣1.(1)写出a,b,c的值;(2)求代数式3a(b+c)﹣b(3a﹣2b)的值.21.如图,这是一个数值转换机的示意图.(1)若输入x 的值为﹣2,输入y 的值为5,求输出的结果;(2)若输入x 的值为4,输出的结果为8,求输入y 的值.22.计算题:(1)23-37+3-52;(2);(3);(4).23.在下面给出的数轴中,点A 表示1,点B 表示-2,回答下面的问题:(1)A、B 之间的距离是;(2)观察数轴,与点A 的距离为5 的点表示的数是:;(3)若将数轴折叠,使点A 与-3 表示的点重合,则点B 与数表示的点重合;(4)若数轴上M、N 两点之间的距离为2018(M 在N 的左侧),且M、N 两点经过(3)中折叠后互相重合,则M 、N 两点表示的数分别是:M :;N:.24.计算:(1)(-2)2×5-(-2)3÷4; (2)-24×531 6812⎛⎫-+-⎪⎝⎭;(3)527763122⎛⎫⎛⎫-+÷-⨯⎪ ⎪⎝⎭⎝⎭;(4)[-33×2+(-3)2×4-5×(-2)3]÷214⎛⎫-⎪⎝⎭.25.计算:...(4)26.随着手机的普及,微信一种聊天软件的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况超额记为正,不足记为负单位:斤;(1)根据记录的数据可知前三天共卖出______ 斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售______ 斤;(3)本周实际销售总量达到了计划数量没有?(4)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?参考答案1.A【解析】【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n 为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【详解】根据科学计数法的表示方法得:12050000=1.205×107.故选A【点睛】本题考查科学计数法,将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.确定a、n的值是解题关键.2.C【解析】【分析】根据倒数的意义,乘积是1的两个数互为倒数.据此解答即可.【详解】因为,所以和互为倒数,故选C.【点睛】本题考查了倒数的意义,熟知乘积为1的两个数互为倒数是解题的关键.3.D【解析】【分析】根据非负数的性质列出方程求出m、n的值,代入所求代数式计算即可.【详解】由题意得:m﹣1=0,n+3=0,解得:m=1,n=﹣3,则(m+n)3=-8.故选D.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.4.C【解析】【分析】根据有理数的加法,可得a、b的关系,可得答案.【详解】∵a+b=0,∴a、b是互为相反数.故选C【点睛】本题考查了相反数,互为相反数的两个数的和为0是解题关键.5.C【解析】【分析】根据负数的定义,绝对值的性质,整数的定义对各选项分析判断后利用排除法求解.【详解】A、一个数前面加上“-”号就是负数不正确,例如-(-2)=2,是正数,故本选项错误;B、∵0的绝对值是0,故本选项错误;C、∵互为相反数的两个数的绝对值相等,故本选项正确;D、0的绝对值也是它本身,故本选项错误.故选C.【点睛】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.6.C【解析】【分析】用字母表示该有理数,按该数为负数和非负数进行分类讨论,分别写出其相反数和绝对值求和即可.【详解】令该有理数为a,则其相反数为-a,当a为负数时,其绝对值为-a,则:-a+(-a)=-2a,结果为正数;当a为非负数时,其绝对值为a,则:-a+a=-0,结果为0;故其和为非负数,故选择C.【点睛】本题一定要理解一个有理数可以分为负数、正数和0,不要遗漏.7.D【解析】解:﹣3的相反数是3.故选D.8.B【解析】【分析】直接运用乘法的分配律来判断即可.【详解】解:运用乘法的分配律可知原式=故选择答案B.【点睛】正确运用乘法的分配律:m(a+b+c)=ma+mb+mc,是解本题的关键.9.千分3【解析】【分析】根据精确度和有效数字的定义直接解答此题.【详解】据精确度的确定方法确定精确度,从左边第一个不是0的数开始数起,到精确到的数位为止共有3个有效数字.近似数-0.450精确到千分位,有3个有效数字,分别是4,5,0.从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意前面的负号与有效数字的确定无关.【点睛】本题考查了学生对数的精确度和有效数字,掌握精确度的定义和会判别有效数字的个数是解决此题的关键.10.±4.【解析】试题解析:∵|-x|=|-4|,∴x=±4,故答案为:±4.11.-16【解析】【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】﹣10﹣6=﹣10+(﹣6)=﹣16.故答案为:﹣16.【点睛】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.12.2【解析】∵B点表示的数是1,C AB=BC,∴BC=AB1,∴A点表示的数是:.故答案为:点睛:本题考查的是数轴,熟知数轴上两点之间的距离公式是解答此题的关键.13.-18【解析】【分析】根据题意列出算式,然后利用有理数的运算法则进行计算即可.【详解】由题意可得,|-7.5+9+(-2.5)|-(|-7.5|+|9|+|-2.5|)=1-19=-18.故答案为:-18.【点睛】本题考查了绝对值的性质及有理数的加减混合运算,根据题意正确列出算式是解决本题的关键.14.2或﹣8.【解析】【分析】设此点表示的数是a,再根据数轴上两点间的距离公式求解即可.【详解】∵设此点表示的数是a,则|a+3|=5,∴当a≥3时,原式=a+3=5,解得:a=2;当a<3时,原式=﹣a﹣3=5,解得:a=﹣8.故答案为:2或﹣8.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.15.-1【解析】【分析】利用相反数,倒数的定义求出a+b,cd的值,代入原式计算即可得到结果.【详解】根据题意得:,,则原式=0﹣1=﹣1.故答案为:﹣1.【点睛】此题考查了代数式求值,相反数,倒数,熟练掌握运算法则是解本题的关键. 16.-27【解析】解:原式=﹣33=﹣27.故答案为:﹣27.17.2【解析】分析:根据相反数的定义:只有符号不同的两个数叫做互为相反数,进行作答即可. 详解:-2的相反数的值等于 2. 故答案是:2.点睛:考查了相反数的概念:只有符号不同的两个数叫做互为相反数. 18.53.0510⨯【解析】试题解析:305000用科学记数法表示为: 53.0510.⨯ 故答案为: 53.0510.⨯ 19.见解析. 【解析】 【分析】分别根据正分数、整数、有理数、非正数的定义进行判断填写即可. 【详解】解:正分数集合{ 0.618,,0. …}; 整数集合{ 0,260,-2015,-|-2|,-{+[-(-2)]} …}; 非正数集合{0,-,-3.14,-2015,-|-2|,-{+[-(-2)]} …}; 有理数集合{ …}【点睛】本题主要考查实数的分类,注意无限不循环小数是无理数,分数中包括小数是解答此题的关键.20.(1)a=﹣2,b=±3,c=﹣1;(2)24; 【解析】 【分析】(1)根据相反数、绝对值、倒数的定义解答即可;(2)把所给的整式去括号合并同类项化为最简后,再代入求值即可.【详解】(1)∵a的相反数是2,b的绝对值是3,c的倒数是﹣1,∴a=﹣2,b=±3,c=﹣1;(2)3a(b+c)﹣b(3a﹣2b)=3ab+3ac﹣3ab+2b2=3ac+2b2,∵a=﹣2,b=±3,c=﹣1,∴b2=9,∴原式=3×(﹣2)×(﹣1)+2×9=6+18=24.【点睛】本题考查了代数式求值,相反数的定义,绝对值的性质,倒数的定义,是基础题,比较简单,但要注意b的两种情况.21.(1)7;(2)y=±4.【解析】【分析】(1)根据给出的运算方法转化为有理数的混合运算,利用运算方法和顺序计算即可;(2)根据给出的运算方法转化为方程求得y的数值即可.【详解】解:(1)[(﹣2)×2+]÷3=(﹣4+25)÷3=21÷3=7.(2)(4×2+)÷3=88+=24=16y=±4.【点睛】此题考查有理数的混合运算,理解题意,搞清规定的运算顺序与计算方法是解决问题的关键. 22.(1);(2);(3);(4)【解析】【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【详解】(1)23-37+3-52=-14+3-52=-11-52=-63;(2)=-9-5025-1=-9-2-1=-12;(3)=-49+29-54=-49+18-54=-85(4)=-4(-64)+0.2=+=【点睛】本题考查的知识点是有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算. 23.(1)3;(2)6或-4;(3)0;(4)M :-1010 ;N:1008 .【解析】【分析】(1)(2)观察数轴,直接得出结论;(3)A点与-3表示的点相距4单位,其对称点为-1,由此得出与B点重合的点;(4)对称点为-1,M点在对称点左边,离对称点2018÷2=1009个单位,N点在对称点右边,离对称点1009个单位,由此求出M、N两点表示的数.【详解】(1)A、B之间的距离是1+|−2|=3.故答案为:3;(2)与点A的距离为5的点表示的数是:−4或6.故答案为:−4或6;(3)则A点与−3重合,则对称点是−1,则数B关于−1的对称点是:0.故答案为:0;(4)由对称点为−1,且M、N两点之间的距离为2018(M在N的左侧)可知,M点表示数−1010,N点表示数1008.故答案为:−1010,1008.【点睛】本题考查了数轴的运用.关键是利用数轴,数形结合求出答案.24.(1)原式=22,(2)原式=13.(3)原式=1,(4)原式=352【解析】试题分析:(1)根据有理数的混合运算顺序依次计算即可;(2)利用分配律计算即可;(3)据有理数的混合运算顺序依次计算即可;(4)据有理数的混合运算顺序依次计算即可.试题解析:(1)原式=4×5-(-8)÷4=20-(-2)=22(2)原式=531 2424246812⎛⎫-⨯--⨯+⨯⎪⎝⎭=20-9+2 =13(3)原式=(16-)×12772⎛⎫-⨯⎪⎝⎭=1(4)原式=[-27×2+9×4-5×(-8)]÷116=(-54+36+40)×16=22×16=35225.;;-3 ;(4) .【解析】【分析】(1)根据有理数的加减法进行计算即可;(2)根据有理数的加减法进行计算即可;(3)根据乘法分配律进行简便计算即可;(4)先把除法转化成乘法,再根据有理数的乘法法则进行计算即可.【详解】(1)原式;(2)原式;(3)原式= -3;(4)= -18=.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.;;本周实际销量达到了计划数量;小明本周一共收入3585元.【解析】【分析】(1)根据前三天销售量相加计算即可;(2)将销售量最多的一天与销售量最少的一天相减计算即可;(3)先将各数相加求得正负即可求解;(4)将总数量乘以价格差解答即可【详解】,答:根据记录的数据可知前三天共卖出296斤;(斤);,答:本周实际销量达到了计划数量;元.答:小明本周一共收入3585元.【点睛】此题考查正数和负数的问题,此题的关键是读懂题意,列式计算.。

《常考题》初中七年级数学上册第二章《整式的加减》知识点复习(含答案解析)

《常考题》初中七年级数学上册第二章《整式的加减》知识点复习(含答案解析)

1.某养殖场2018年年底的生猪出栏价格是每千克a元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克()A.(1-15%)(1+20%)a元B.(1-15%)20%a元C.(1+15%)(1-20%)a 元D.(1+20%)15%a元A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1-15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1-15%)(1+20%)a元.故选:A.【点睛】本题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.2.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/kg.则3月份鸡的价格为()A.24(1-a%-b%)元/kg B.24(1-a%)b% 元/kgC.(24-a%-b% )元/kg D.24(1-a%)(1-b%)元/kg D解析:D【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【详解】∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/kg,∴2月份鸡的价格为24(1-a%)元/kg,∵3月份比2月份下降b%,∴三月份鸡的价格为24(1-a%)(1-b%)元/kg.故选:D.【点睛】本题主要考查了列代数式,解题的关键是掌握每个月份的数量增长关系.3.代数式x2﹣1y的正确解释是()A.x与y的倒数的差的平方B.x的平方与y的倒数的差C.x的平方与y的差的倒数D.x与y的差的平方的倒数B 解析:B【分析】根据代数式的意义,可得答案.【详解】解:代数式x 2﹣1y的正确解释是x 的平方与y 的倒数的差, 故选:B . 【点睛】本题考查了代数式,理解题意(代数式的意义)是解题关键. 4.下列去括号正确的是( ) A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ D解析:D 【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确; 故答案为:D . 【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 5.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( )A .14B .14-C .4D .-4B解析:B 【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案. 【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩则()()5711n m +-=14-故答案选B. 【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.6.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b cA .1,6,15a b c ===B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B解析:B 【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可. 【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=. 故选:B . 【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 7.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2 B .3C .4D .5B解析:B 【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值. 【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4, 解得,n=3, 故选:B.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同. 8.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( ) A .2- B .13C .23D .32A 解析:A 【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值. 【详解】∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期 ∵2020÷3=673⋯⋯1,∴202012a a ==- 故选:A. 【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况. 9.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17B .67C .-67D .0B解析:B 【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题. 【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项, ∴6﹣7m =0,解得m =67. 故选:B . 【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 10.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数 C .a 的平方与b 的差的倒数 D .a 的平方与b 的倒数的差D解析:D 【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果. 【详解】 解:代数式21a b-的正确解释是a 的平方与b 的倒数的差. 故选:D. 【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.11.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ). A .0 B .-2C .0或-2D .任意有理数A解析:A 【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值.【详解】∵a ,b 互为相反数, ∴0a b +=, ∵c ,d 互为倒数, ∴cd =1,∵m 的绝对值等于1, ∴m =±1, ∴原式=0110-+= 故选:A. 【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.12.下列各对单项式中,属于同类项的是( ) A .ab -与4abc B .213x y 与212xy C .0与3-D .3与a C解析:C 【分析】根据同类项的定义逐个判断即可. 【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项; D .3与a 不是同类项. 故选C . 【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.13.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( ) A .16a ﹣8b B .7a ﹣5bC .4a ﹣4bD .7a ﹣7b B解析:B 【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数. 【详解】由题意可得:(10a ﹣6b )﹣[(6a ﹣2b )﹣(3a ﹣b )] =10a ﹣6b ﹣6a +2b +3a ﹣b =7a ﹣5b . 故选B . 【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键. 14.下列说法错误的是( ) A .23-2x y 的系数是32-B .数字0也是单项式C .-x π是二次单项式D .23xy π的系数是23πC 解析:C 【分析】根据单项式的有关定义逐个进行判断即可.【详解】A. 23-2x y 的系数是32-,故不符合题意;B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D.23xy π的系数是23π,故不符合题意. 故选C . 【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键. 15.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( ) A .2m +2nB .mC .m +nD .m ,n 中的较大数D解析:D 【解析】 【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 的次数是m ,n 中的较大数是该多项式的次数. 【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数. 故选D. 【点睛】此题考查多项式,解题关键在于掌握其定义.1.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n 次时共有4+3(n-1)=3n+1试题解析:3n+1. 【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n 次时,共有4+3(n-1)=3n+1. 试题故剪n 次时,共有4+3(n-1)=3n+1. 考点:规律型:图形的变化类.2.单项式2335x yz -的系数是___________,次数是___________.六【分析】根据单项式系数次数的定义来求解单项式中数字因数叫做单项式的系数所有字母的指数和叫做这个单项式的次数【详解】的系数是次数是6故答案为六【点睛】本题考查了单项式的次数和系数确定单项式的系数和次解析:35六 【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数. 【详解】2335x yz -的系数是35-,次数是6, 故答案为35-,六. 【点睛】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.3.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n 个图形有6n+2根火柴棒解析:6n+2. 【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒, 第2个图形有14=6×1+8根火柴棒, 第3个图形有20=6×2+8根火柴棒, ……,第n 个图形有6n+2根火柴棒.4.如图,是由一些点组成的图形,按此规律,在第n 个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n 个图形中小圆的个数为3+3+5+7+…+(2解析:n 2+2 【详解】解:第1个图形中点的个数为3; 第2个图形中点的个数为3+3; 第3个图形中点的个数为3+3+5; 第4个图形中点的个数为3+3+5+7; …第n 个图形中小圆的个数为3+3+5+7+…+(2n ﹣1)=n 2+2. 故答案为:n 2+2. 【点睛】本题考查规律型:图形的变化类.5.22223124,4135-=-=225146-=,……221012m m -=+m =_____________9【分析】根据观察可知:将代入即可得出答案【详解】解:……故答案为:【点睛】主要考查了学生的分析总结归纳能力规律型的习题一般是从所给的数据和运算方法进行分析从特殊值的规律上总结出一般性的规律解析:9 【分析】 ()22113n n n +-++=,将210n +=代入即可得出答案.【详解】 解:22223124,4135--=225146-=……,()22113n n n +-++=210n+=∴=n8∴=+=19m n故答案为:9.【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.6.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+3×209=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律.---,…,按如图所示的规律有序排列.根据图中排列规律可7.将一列数1,2,3,4,5,6知,“峰1”中峰顶位置(C的位置)是4,那么“峰206”中C的位置的有理数是______.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝解析:-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,以此进行分析即可.【详解】解:由图可知,每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,当206n =时,52061103011029⨯-=-=,因为1029是奇数,所以“峰206”中C 的位置的有理数是1029-.故答案为:1029-.【点睛】本题考查图形的数字规律,熟练掌握根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -是解题的关键.8.计算7a 2b ﹣5ba 2=_____.2a2b 【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a 2b【分析】根据合并同类项法则化简即可.【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 9.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c| 解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥, ∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.10.已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数,x y ,代数式 2A B - 的值不变,则12()(2)33a Ab B ---的值是_______.-2【分析】先根据代数式为定值求出ab 的值及的值然后对所求代数式进行变形然后代入计算即可【详解】∵对于任意有理数代数式的值不变∴∵∴原式=故答案为:-2【点睛】本题主要考查代数式的求值能够对代数式进解析:-2【分析】先根据代数式 2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可.【详解】222(251)2(34)A B x ax y x x by -=+-+-+--222512628x ax y x x by =+-+--++(6)(25)9a x b y =-+-+∵对于任意有理数 ,x y ,代数式 2A B - 的值不变∴60,250a b -=-=,29A B -=56,2a b ∴== ∵121()(2)2(2)333a Ab B a b A B ---=--- ∴原式=51629653223-⨯-⨯=--=- 故答案为:-2【点睛】 本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.11.为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a 元收费,如果超过50度,那么超过部分按每度()0.5a +元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.【分析】98度超过了50度应分两段进行计费第一段50每度收费a 元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代解析:()9824a +【分析】98度超过了50度,应分两段进行计费,第一段50,每度收费a 元,第二段(98-50)度,每度收费(a +0.5)元,据此计算即可.【详解】解:由题意可得:()()5098500.59824a a a +-+=+(元).故答案为:(98a +24).【点睛】本题考查了列代数式,根据题意,列出代数式是解决此题的关键.1.已知有理数a 和b 满足多项式A ,且A=(a ﹣1)x 5+x |b+2|﹣2x 2+bx+b (b≠﹣2)是关于x 的二次三项式,求(a ﹣b )2的值.解析:16或25【解析】试题分析:根据有理数a 和b 满足多项式A .A =(a ﹣1)x 5+x |b +2|﹣2x 2+bx +b 是关于x 的二次三项式,求得a 、b 的值,然后分别代入计算可得.试题解:∵有理数a 和b 满足多项式A .A =(a ﹣1)x 5+x |b +2|﹣2x 2+bx +b 是关于x 的二次三项式,∴a ﹣1=0,解得:a =1.(1)当|b +2|=2时,解得:b =0或b =4.①当b =0时,此时A 不是二次三项式;②当b =﹣4时,此时A 是关于x 的二次三项式.(2)当|b +2|=1时,解得:b =﹣1(舍)或b =﹣3.(3)当|b +2|=0时,解得:b =﹣2(舍)∴a =1,b =﹣4或a =1,b =﹣3.当a =1,b =﹣4时,(a ﹣b )2=25;当a =1,b =﹣3时,(a ﹣b )2=16.点睛:本题考查了多项式的知识,解题的关键是根据题意求得a 、b 的值,题目中重点渗透了分类讨论思想.2.奇奇同学发现按下面的步骤进行运算,所得结果一定能被9整除.请你用我们学过的整式的知识解释这一现象.解析:见解析.【分析】设原来的两位数十位数字为a ,个位数字为b ,表示出原来两位数与新的两位数,相减得到结果,即可得出结果.【详解】解:设原来的两位数十位数字为a ,个位数字为b ,则原来两位数为10a+b ,交换后的新两位数为10b+a ,(10a+b )-(10b+a )=10a+b-10b-a=9a-9b=9(a-b ),则这个结果一定是被9整除.【点睛】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键. 3.化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 4.求多项式的值222232424a b ab a b ab --+-,其中1a =-,2b =-.解析:24a b --,-2.【分析】原式合并同类项后代入字母的值计算即可.【详解】解:原式24a b =--, 当1a =-,2b =-时, 原式2=-.【点睛】本题考查了整式的化简求值,正确的将原式合并同类项是解决此题的关键.。

2019年备战中考数学(苏科版)巩固复习第二章有理数(含解析)-文档资料

2019年备战中考数学(苏科版)巩固复习第二章有理数(含解析)-文档资料

2019备战中考数学(苏科版)巩固复习-第二章有理数(含解析)一、单选题1.移动互联网已全面进入人们的日常生活,某市4G用户总数达到3820000,数据3820000用科学记数法表示为()A. 3.8×106B. 3.82×105C. 3.82×106D. 3.82×1072.若5个有理数之积为负数,则这5个因数中负因数的个数可能是( )A. 1B. 3C. 1或3或5D. 2或4或没有3.﹣3的倒数是()A. -3B. 3C. -D.4.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A. 485×105B. 48.5×106C. 4.85×107D. 0.485×1085.下列运算正确的是()A. + =B. (a﹣b)2=a2﹣b2C. (π﹣2)0=1D. (2ab3)2=2a2b66.下列四个有理数中,比-1小的数是()A. -2B. 0C. 1D. 27.-2的倒数是()A. 2B. -2C.D. -8.下列说法正确的是()A. 0既不是正数,也不是负数,所以0不是有理数B. 在﹣3与﹣1之间仅有一个有理数C. 一个负数的倒数一定还是负数D. 一个数的绝对值越大,表示它的点在数轴上越靠右二、填空题9.数轴上到原点的距离等于4的数是________ .10.如果收入15•元记作+•15•元,•那么支出20•元记作________元.11.绝对值是的数是________12.绝对值小于π的所有正整数的积等于________.13.甲、乙两人同时从A地出发,如果向南走48m,记作+48m,则乙向北走—32m,记为________m14.纪录片《穹顶之下》让大众进一步认识了雾霾对健康的危害,目前,我国受雾霾影响的区域约为1500000平方公里,将数据1500000用科学记数法表示为________ .15.某省进入全民医保改革3年来,共投入36400000元,将36400000用科学记数法表示为________。

2019-2020学年七年级上册数学第二章检测试卷及答案人教版

2019-2020学年七年级上册数学第二章检测试卷及答案人教版

2019-2020学年七年级上册数学第二章检测试卷及答案人教版注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.“比a 的32大1的数”用式子表示是A .32a +1B .23a +1C .52a D .32a –12.下列单项式书写不正确的有①312a 2b ;②2x 1y 2;③–32x 2;④–1a 2b .A .1个B .2个C .3个D .4个3.下列各组式中是同类项的为A .4x 3y 与–2xy 3B .–4yx 与7xyC .9xy 与–3x 2D .ab 与bc 4.下列说法正确的是A .a 的系数是0B .1y 是一次单项式C .–5x 的系数是5D .0是单项式5.下列各式计算正确的是A .235a b ab+=B .2538x x x +=C .22523y y -=D .222945a b ba a b -=6.下列整式中,去括号后得a –b +c 的是A .a –(b +c )B .–(a –b )+cC .–a –(b +c )D .a –(b –c )A .a =0,b =3B .a =1,b =3C .a =2,b =3D .a =2,b =18.若长方形长是2a +3b ,宽为a +b ,则其周长是A .6a +8bB .12a +16bC .3a +8bD .6a +4b 9.减去–2x 后,等于4x 2–3x –5的代数式是A .4x 2–5x –5B .–4x 2+5x +5C .4x 2–x –5D .4x 2–510.用棋子摆出如图所示的一组“口”字,若按照这种方法摆下去,则摆第n 个“口”字需用棋子A .4n 枚B .(4n –4)枚C .(4n +4)枚D .n 2枚第Ⅱ卷二、填空题(本题共8小题,每小题3分,共24分)11.212x y 是__________次单项式.12.计算:3a –(2a –b )=__________.13.–2x 2y 4的系数是a ,次数是b ,则a +b =__________.14.已知23x 3m y 2与–14x 6y 2n 是同类项,则5m +3n =__________.15.若a +b =–1,ab =4,则(4a –5b –3ab )–(3a –6b +ab )的值为__________.16.某班a 名同学参加植树活动,其中男生b 名(b <a ).若只由男生完成,每人需植树15棵;若只由女生完成,则每人需植树__________棵.17.若关于x 的多项式(a –4)x 3–x 2+x –2是二次三项式,则a =__________.18.若1314a =-,2111a a =-,3211a a =-,......,则2019a =__________.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)计算:(1)3x 2y –3xy 2–12xy 2+23x 2y ;(2)4(a –2b +1)–3(–4a +b –5).20.(本小题满分6分)课堂上老师给大家出了这样一道题,“当2016x =时,求代数式的值”,小明一看(2x 3–3x 2y –2xy 2)–(x 3–2xy 2+y 3–2019)+(–x 3+3x 2y +y 3)中x 的值太大了,又没有y 的值,怎么算呢?”你能帮小明解决这个问题吗?请写出具体过程.21.(本小题满分6分)先化简,再求值:(1)12x –2(x –13y 2)+(–32x +13y 2),其中x =–2,y =23.23.(本小题满分8分)已知222322A x xy y x y =-+++,224623B x xy y x y =-+--.(1)当2x =,15y =-时,求2B A -的值.(2)若22(3)0x a y -+-=,且2B A a -=,求a 的值.24.(本小题满分10分)如图所示.(1)阴影部分的周长是__________;(2)阴影部分的面积是__________;(3)当x =5.5,y =4时,阴影部分的周长是多少?面积是多少?25.(本小题满分10分)阅读材料:对于任何数,我们规定符号a bc d的意义是a bc d=ad–bc,例如:1234=1×4–2×3=–2.(1)按照这个规定,请你计算5628-的值.(2)按照这个规定,请你计算当|x+y–4|+(xy+1)2=0时,132121xy yx+-+的值.26.(本小题满分12分)长春市发起了“保护伊通河”行动,某学校七年级两个班的115名学生积极参与,踊跃捐款.已知甲班有13的学生每人捐了10元,乙班有25的学生每人捐了10元,两个班其余学生每人捐了5元,设甲班有学生x人.(1)用含x的代数式表示乙班人数:__________;(2)用含x的代数式表示两班捐款的总额;(3)若x=60,则两班共捐款多少元?加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

苏教版七年级数学上册 2.3 数轴 同步练习(含答案解析)

苏教版七年级数学上册 2.3 数轴 同步练习(含答案解析)

2.3数轴一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•溧水区期末)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.3 B.2 C.0 D.﹣12.(2020•丰县模拟)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.﹣1 B.0 C.3 D.43.(2019秋•东海县期末)在数轴上与表示﹣2的点相距5个单位长度的点所表示的数是()A.3 B.﹣7 C.7 D.3或﹣74.(2019秋•云龙区期末)点M为数轴上表示﹣2的点,将点M沿数轴向右平移5个单位到点N,则点N 表示的数是()A.3 B.5 C.﹣7 D.3或﹣75.(2019秋•阜宁县期末)在数轴上与表示﹣2的点距离等于3的点所表示的数是()A.1 B.5 C.1或5 D.1或﹣56.(2019秋•泗阳县期末)数轴上表示整数的点称为整点,某数轴的单位长度为1cm,若在数轴上画出一条长2015cm的线段AB,则AB盖住的整点个数是()A.2015或2016 B.2014或2015 C.2016 D.20157.(2019秋•仪征市校级期末)在数轴上距离原点2个单位长度的点所表示的数是()A.2 B.﹣2 C.2或﹣2 D.1或﹣18.(2019秋•贵港期末)数轴上的点A到原点的距离是4,则点A表示的数为()A.4 B.﹣4 C.4或﹣4 D.2或﹣29.(2019秋•建湖县期中)如图,将刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.8cm”对应数轴上的数为()A.5.8 B.﹣2.8 C.﹣2.2 D.﹣1.810.(2019秋•南京月考)北京等5个城市的当地时间(单位:时)可在数轴上表示如下:如果将两地时间的差简称为时差,那么()A.汉城与多伦多的时差为13小时B.汉城与纽约的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在横线上)11.(2019秋•秦淮区期末)数轴上到原点的距离等于2个单位长度的点表示的数是.12.(2019秋•栖霞区期末)点A、B在数轴上对应的数分别为﹣2和5,则线段AB的长度为.13.(2019秋•黄冈期末)若点A、B是数轴上的两个点,点A表示的数是﹣4,点B与点A的距离是2,点B表示的数是.14.(2019秋•宿州期末)数轴上的点A所对应的有理数是2,那么在数轴上与A点相距5个单位长度的点所对应的有理数.15.(2019秋•苏州期末)在数轴上,与﹣3表示的点相距4个单位的点所对应的数是.16.(2020春•南岗区期末)在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是.17.(2019秋•织金县期末)一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是.18.(2019秋•琅琊区期末)写出一个在和1之间的负整数:.19.(2019秋•邗江区校级期中)数轴上点M表示的有理数是﹣3,将点M向右平移2个单位长度到达点N,则N表示的有理数为.20.(2019秋•宿豫区期中)如图,把半径为1的圆形纸片放在数轴上,圆形纸片上的A点对应2,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是.三、解答题(本大题共4小题,共40分.解答时应写出文字说明、证明过程或演算步骤)21.(2019秋•洪泽区期末)数轴上,点M表示﹣2,现从M点开始先向右移动3个单位到达P点,再从P 点向左移动5个单位到达Q点.(1)点P、Q各表示什么数?(2)到达Q点后,再向哪个方向移动几个单位,才能回到原点?22.(2019秋•建邺区期中)已知数轴上的点A、B、C、D分别表示﹣3、﹣1.5、0、4.(1)请在数轴上标出A、B、C、D四个点;(2)B、C两点之间的距离是;(3)如果把数轴的原点取在点B处,其余条件都不变,那么点A、C、D分别表示的数是.23.(2019秋•鄂城区期中)邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行7km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C三个村庄的位置;(2)C村离A村多远?(3)邮递员一共骑行了多少千米?24.(2019秋•兴化市期中)小明骑车从家出发,先向东骑行4km到达A村,继续向东骑行3km到达B村.然后向西骑行10km到达C村,最后回到家.(1)以家为原点.以向东方向为正方向.用lcm表示1km.画出数轴.并在数轴上表示出A.B.C三个村庄的位置.(2)小明一共行了多少km?答案解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•溧水区期末)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.3 B.2 C.0 D.﹣1【分析】由题意得AB=5,即﹣2+5即为点B表示的数.【解析】﹣2+5=3,故选:A.2.(2020•丰县模拟)如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.﹣1 B.0 C.3 D.4【分析】根据数轴的单位长度为1,点B在点A的右侧距离点A5个单位长度,直接计算即可.【解析】点B在点A的右侧距离点A有5个单位长度,∴点B表示的数为:﹣2+5=3,故选:C.3.(2019秋•东海县期末)在数轴上与表示﹣2的点相距5个单位长度的点所表示的数是()A.3 B.﹣7 C.7 D.3或﹣7【分析】分点在﹣2的左边和右边两种情况讨论求解.【解析】若点在﹣2的左边,则﹣2﹣5=﹣7,若点在﹣2的右边,则﹣2+5=3,所以,在数轴上与表示﹣2的点相距5个单位长度的点所表示的数是﹣7或3.故选:D.4.(2019秋•云龙区期末)点M为数轴上表示﹣2的点,将点M沿数轴向右平移5个单位到点N,则点N 表示的数是()A.3 B.5 C.﹣7 D.3或﹣7【分析】根据在数轴上平移时,左减右加的方法计算即可求解.【解析】由M为数轴上表示﹣2的点,将点M沿数轴向右平移5个单位到点N可列:﹣2+5=3,故选:A.5.(2019秋•阜宁县期末)在数轴上与表示﹣2的点距离等于3的点所表示的数是()A.1 B.5 C.1或5 D.1或﹣5【分析】根据数轴上到一点距离相等的点有两个,位于该点的左右,可得答案.【解析】数轴上与表示﹣2的点距离等于3的点所表示的数是﹣5或1,故选:D.6.(2019秋•泗阳县期末)数轴上表示整数的点称为整点,某数轴的单位长度为1cm,若在数轴上画出一条长2015cm的线段AB,则AB盖住的整点个数是()A.2015或2016 B.2014或2015 C.2016 D.2015【分析】某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2015厘米的线段AB,则线段AB盖住的整点的个数可能正好是2016个,也可能不是整数,而是有两个半数那就是2015个.【解析】依题意得:①当线段AB起点在整点时覆盖2016个数,②当线段AB起点不在整点,即在两个整点之间时覆盖2015个数,综上所述,盖住的点为:2015或2016.故选:A.7.(2019秋•仪征市校级期末)在数轴上距离原点2个单位长度的点所表示的数是()A.2 B.﹣2 C.2或﹣2 D.1或﹣1【分析】分点在原点左边与右边两种情况讨论求解.【解析】①在原点左边时,∵距离原点2个单位长度,∴该点表示的数是﹣2;②在原点右边时,∵距离原点2个单位长度,∴该点表示的数是2.综上,距离原点2个单位长度的点所表示的数是﹣2或2.故选:C.8.(2019秋•贵港期末)数轴上的点A到原点的距离是4,则点A表示的数为()A.4 B.﹣4 C.4或﹣4 D.2或﹣2【分析】在数轴上点A到原点的距离为4的数有两个,意义相反,互为相反数.即4和﹣4.【解析】在数轴上,4和﹣4到原点的距离为4.∴点A所表示的数是4和﹣4.故选:C.9.(2019秋•建湖县期中)如图,将刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.8cm”对应数轴上的数为()A.5.8 B.﹣2.8 C.﹣2.2 D.﹣1.8【分析】根据数轴上点的表示方法,直接判断即可.【解析】刻度尺上5.8cm对应数轴上的点距离数轴上原点(刻度尺上表示3的点)的距离为2.8,且该点在原点的左侧,故刻度尺上“5.8cm”对应数轴上的数为﹣2.8.故选:B.10.(2019秋•南京月考)北京等5个城市的当地时间(单位:时)可在数轴上表示如下:如果将两地时间的差简称为时差,那么()A.汉城与多伦多的时差为13小时B.汉城与纽约的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时【分析】理解两地国际标准时间的差简称为时差.根据有理数减法法则计算,减去一个数等于加上这个数的相反数.【解析】汉城与多伦多的时差为9﹣(﹣4)=13小时;汉城与纽约的时差为9﹣(﹣5)=14小时;北京与纽约的时差为8﹣(﹣5)=13小时;北京与多伦多的时差为8﹣(﹣4)=12小时.故选:A.二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在横线上)11.(2019秋•秦淮区期末)数轴上到原点的距离等于2个单位长度的点表示的数是±2.【分析】根据数轴上两点间距离的定义进行解答即可.【解析】设数轴上,到原点的距离等于2个单位长度的点所表示的有理数是x,则|x|=2,解得,x=±2.故答案为:±2.12.(2019秋•栖霞区期末)点A、B在数轴上对应的数分别为﹣2和5,则线段AB的长度为7.【分析】根据数轴上两点距离公式进行计算即可.【解析】AB=|﹣2﹣5|=7,故答案为:7.13.(2019秋•黄冈期末)若点A、B是数轴上的两个点,点A表示的数是﹣4,点B与点A的距离是2,点B表示的数是﹣6或﹣2.【分析】根据题意,分两种情况:(1)点B在点A的左边;(2)点B在点A的右边;求出点B表示的数为多少即可.【解析】(1)点B在点A的左边时,点B表示的数为:﹣4﹣2=﹣6.(2)点B在点A的右边时,点B表示的数为:﹣4+2=﹣2.∴点B表示的数为﹣6,﹣2.故答案为﹣6或﹣2.14.(2019秋•宿州期末)数轴上的点A所对应的有理数是2,那么在数轴上与A点相距5个单位长度的点所对应的有理数﹣3或7.【分析】此题注意考虑两种情况:当点在已知点的左侧;当点在已知点的右侧.【解析】在A点左边与A点相距5个单位长度的点所对应的有理数为﹣3;在A点右边与A点相距5个单位长度的点所对应的有理数为7.故答案为:﹣3或7.15.(2019秋•苏州期末)在数轴上,与﹣3表示的点相距4个单位的点所对应的数是1或﹣7.【分析】根据题意得出两种情况:当点在表示﹣3的点的左边时,当点在表示﹣3的点的右边时,列出算式求出即可.【解析】分为两种情况:①当点在表示﹣3的点的左边时,数为﹣3﹣4=﹣7;②当点在表示﹣3的点的右边时,数为﹣3+4=1;故答案为:1或﹣7.16.(2020春•南岗区期末)在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是﹣1和5.【分析】点A所表示的数为2,到点A的距离等于3个单位长度的点所表示的数有两个,分别位于点A 的两侧,分别是﹣1和5.【解析】2﹣3=﹣1,2+3=5,则A表示的数是:﹣1或5.故答案为:﹣1或5.17.(2019秋•织金县期末)一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是﹣3.【分析】根据向右为“+”、向左为“﹣”分别表示为+5和﹣8,再相加即可得出答案.【解析】点从数轴的原点开始,向右移动5个单位长度,表示为+5,在此基础上再向左移动8个单位长度,表示为﹣8,则到达的终点表示的数是(+5)+(﹣8)=﹣3,故答案为:﹣3.18.(2019秋•琅琊区期末)写出一个在和1之间的负整数:﹣2,﹣1.【分析】把和1之间的负整数在数轴上表示出来,通过观察数轴来解答,正整数、0、负整数统称为整数.【解析】如图所未,通过数轴观察,可以确定出和1之间的负整数为:﹣2,﹣1.故答案为:﹣2,﹣1.19.(2019秋•邗江区校级期中)数轴上点M表示的有理数是﹣3,将点M向右平移2个单位长度到达点N,则N表示的有理数为﹣1.【分析】根据题意画出数轴,借助数轴找出点N的位置即可.【解析】根据题意画图如下:M表示的有理数是﹣3,将点M向右平移2个单位长度到达点N,则N表示的有理数为﹣1;故答案为:﹣1.20.(2019秋•宿豫区期中)如图,把半径为1的圆形纸片放在数轴上,圆形纸片上的A点对应2,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是2﹣2π.【分析】因为圆形纸片从2沿数轴逆时针即向左滚动一周,可知OA′=2π,再根据数轴的特点即可解答.【解析】∵半径为1个单位长度的圆形纸片从2沿数轴向左滚动一周,∴OA′之间的距离为圆的周长=2π,A′点在2的左边,∴A′点对应的数是2﹣2π.故答案是:2﹣2π.三、解答题(本大题共4小题,共40分.解答时应写出文字说明、证明过程或演算步骤)21.(2019秋•洪泽区期末)数轴上,点M表示﹣2,现从M点开始先向右移动3个单位到达P点,再从P 点向左移动5个单位到达Q点.(1)点P、Q各表示什么数?(2)到达Q点后,再向哪个方向移动几个单位,才能回到原点?【分析】(1)利用数轴上点的移动规律:左减右加得出点P、Q各表示什么数即可;(2)根据得出Q点表示的数与原点的位置,回答问题即可.【解析】(1)点M表示﹣2,P点表示﹣2+3=1,Q点表示1﹣5=﹣4;(4)﹣4在原点的左边,距离原点4个单位,所以向右移动4个单位,才能回到原点.22.(2019秋•建邺区期中)已知数轴上的点A、B、C、D分别表示﹣3、﹣1.5、0、4.(1)请在数轴上标出A、B、C、D四个点;(2)B、C两点之间的距离是 1.5;(3)如果把数轴的原点取在点B处,其余条件都不变,那么点A、C、D分别表示的数是﹣1.5,0,1.5,5.5.【分析】(1)在数轴上描出四个点的位置即可;(2)根据两点之间的距离公式可求B、C两点的距离;(3)原点取在B处,相当于将原数加上1.5,从而计算即可.【解析】(1)如图所示:(2)B、C两点的距离=0﹣(﹣1.5)=1.5;(3)点A表示的数为:﹣3+1.5=﹣1.5,点B表示的数为0,点C表示的数为0+1.5=1.5,点D表示的数为4+1.5=5.5.故答案为:1.5;﹣1.5,0,1.5,5.5.23.(2019秋•鄂城区期中)邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行7km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C三个村庄的位置;(2)C村离A村多远?(3)邮递员一共骑行了多少千米?【分析】(1)根据已知条件在数轴上表示出来即可;(2)根据题意列出算式,即可得出答案;(3)根据数轴把邮递员骑行的路程相加即可求解.【解析】(1)如图所示:(2)C村离A村的距离为2+2=4(km);(3)邮递员一共行驶了2+3+7+2=14(千米).故邮递员一共骑行了14千米.24.(2019秋•兴化市期中)小明骑车从家出发,先向东骑行4km到达A村,继续向东骑行3km到达B村.然后向西骑行10km到达C村,最后回到家.(1)以家为原点.以向东方向为正方向.用lcm表示1km.画出数轴.并在数轴上表示出A.B.C三个村庄的位置.(2)小明一共行了多少km?【分析】(1)画出数轴,然后根据题意标注点A、B、C即可;(2)根据图形列出算式计算即可得解.【解析】(1)A,B,C三个村庄的位置,如图所示;(2)小明一共行:4+3+10+3=20km.。

2019年人教版七年级上册数学《第2章整式的加减》单元测试卷(解析版)

2019年人教版七年级上册数学《第2章整式的加减》单元测试卷(解析版)

2019年人教版七年级上册数学《第2章整式的加减》单元测试卷一.选择题(共10小题)1.下列各式符合代数式书写规范的是()A.a8B.C.m﹣1元D.1x2.七年级1班有女生m人,女生占全班人数的40%,则全班人数是()A.B.40%m C.D.(1﹣40%)m3.当x=2时,ax+3的值是5;当x=﹣2时,代数式ax﹣3的值是()A.﹣5B.1C.﹣1D.24.若﹣3x m y2与2x3y2是同类项,则m等于()A.1B.2C.3D.45.如果单项式x a+b y3与5x2y b的和仍是单项式,则|a﹣b|的值为()A.4B.3C.2D.16.下列说法正确的是()A.单项式是整式,整式也是单项式B.25与x5是同类项C.单项式的系数是,次数是4D.是一次二项式7.下列关于单项式的说法中,正确的是()A.系数是2,次数是2B.系数是﹣2,次数是3C.系数是,次数是2D.系数是,次数是38.下列各式中,是二次三项式的是()A.B.32+3+1C.32+a+ab D.x2+y2+x﹣y9.一个多项式A与多项式B=2x2﹣3xy﹣y2的差是多项式C=x2+xy+y2,则A等于()A.x2﹣4xy﹣2y2B.﹣x2+4xy+2y2C.3x2﹣2xy﹣2y2*D.3x2﹣2xy10.x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则﹣a+b的值为()A.3B.1C.﹣2D.2二.填空题(共5小题)11.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a元,请你对“0.8a”再赋予一个含义:.12.一艘轮船在静水中的速度是50千米/时,水流速度是a千米/时,则该轮船在逆水中航行3小时的路程为千米.13.若a与b互为相反数,c与d互为倒数,则(a+b)3﹣4(cd)5=.14.和统称为整式.15.单项式﹣的次数是.三.解答题(共4小题)16.请将下列代数式进行分类(至少三种以上),a,3x,,,,a2+x,4x2ay,x+8.17.方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?18.已知a,b为常数,且三个单项式4xy2,axy b,﹣5xy相加得到的和仍然是单项式.那么a和b 的值可能是多少?说明你的理由.19.已知多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式.(1)求m的值;(2)当x=,y=﹣1时,求此多项式的值.2019年人教版七年级上册数学《第2章整式的加减》单元测试卷参考答案与试题解析一.选择题(共10小题)1.下列各式符合代数式书写规范的是()A.a8B.C.m﹣1元D.1x【分析】本题根据书写规则,数字应在字母前面,分数不能为假分数,不能出现除号,对各项的代数式进行判定,即可求出答案.【解答】解:A、数字应写在前面正确书写形式为8a,故本选项错误;B、书写形式正确,故本选项正确;C、正确书写形式为(m﹣1)元,故本选项错误;D、正确书写形式为x,故本选项错误,故选:B.【点评】本题考查了代数式:用运算符号(指加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式.数的一切运算规律也适用于代数式.单独的一个数或者一个字母也是代数式,注意代数式的书写格式是解答此题的关键.2.七年级1班有女生m人,女生占全班人数的40%,则全班人数是()A.B.40%m C.D.(1﹣40%)m【分析】根据全班人数=女生人数÷女生所占百分比即可列式求解.【解答】解:∵七年级1班有女生m人,女生占全班人数的40%,∴全班人数是.故选:A.【点评】本题考查了列代数式,列代数式时,要注意语句中的关键字,根据题意找出数据之间的联系,并准确的用代数式表示出来.3.当x=2时,ax+3的值是5;当x=﹣2时,代数式ax﹣3的值是()A.﹣5B.1C.﹣1D.2【分析】由当x=2时,代数式ax+3的值为5就可得到一个关于a的方程,求出a的值,再把a 的值及x=﹣2代入代数式就可求出代数式的值.【解答】解:根据题意得2a+3=5,解得:a=1,把a=1以及x=﹣2代入,得:ax﹣3=﹣2﹣3=﹣5.故选:A.【点评】此题的关键是据已知条件求出a的值,再根据已知条件求代数式的值.4.若﹣3x m y2与2x3y2是同类项,则m等于()A.1B.2C.3D.4【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得:m=3.注意同类项与字母的顺序无关,与系数无关.【解答】解:因为﹣3x m y2与2x3y2是同类项,所以m=3.故选:C.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.5.如果单项式x a+b y3与5x2y b的和仍是单项式,则|a﹣b|的值为()A.4B.3C.2D.1【分析】由题意可知x a+b y3与5x2y b是同类项,然后分别求出a与b的值,最后代入求值即可.【解答】解:由题意可知:a+b=2,3=b,∴a=﹣1,b=3,∴原式=|﹣1﹣3|=4,故选:A.【点评】本题考查了合并同类项法则和同类项定义的应用,关键是能根据题意得出方程a+b=2,3=b.6.下列说法正确的是()A.单项式是整式,整式也是单项式B.25与x5是同类项C.单项式的系数是,次数是4D.是一次二项式【分析】根据整式、同类项、单项式和多项式的概念,紧扣概念逐一作出判断.【解答】解;A、整式包括单项式和多项式,所以单项式是整式,但整式不一定是单项式,故本选项错误;B、25与x5指数相同,但底数不同,故本选项错误;C、单项式的系数是,次数是4,正确;D、中的不是整式,故本选项错误.故选:C.【点评】主要考查了整式的有关概念.要正确掌握整式、同类项、单项式和多项式的概念.7.下列关于单项式的说法中,正确的是()A.系数是2,次数是2B.系数是﹣2,次数是3C.系数是,次数是2D.系数是,次数是3【分析】直接利用单项式次数与系数确定方法分析得出答案.【解答】解:单项式的系数是,次数是3.故选:D.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.8.下列各式中,是二次三项式的是()A.B.32+3+1C.32+a+ab D.x2+y2+x﹣y【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选:C.【点评】此题主要考查了如何确定多项式的项数和次数,难点是通过计算确定多项式的次数.9.一个多项式A与多项式B=2x2﹣3xy﹣y2的差是多项式C=x2+xy+y2,则A等于()A.x2﹣4xy﹣2y2B.﹣x2+4xy+2y2C.3x2﹣2xy﹣2y2*D.3x2﹣2xy【分析】首先表示出A=B+C,然后去括号合并同类项.【解答】解:A=B+C=(2x2﹣3xy﹣y2)+(x2+xy+y2)=2x2﹣3xy﹣y2+x2+xy+y2=3x2﹣2xy.故选:D.【点评】整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.合并同类项时把系数相加减,字母与字母的指数不变.10.x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则﹣a+b的值为()A.3B.1C.﹣2D.2【分析】原式去括号合并得到最简结果,根据结果与x的值无关,即可确定出a与b的值,进而求出﹣a+b的值.【解答】解:原式=x2+ax﹣2y+7﹣bx2+2x﹣9y+1=(1﹣b)x2+(a+2)x﹣11y+8,由结果与x的取值无关,得到1﹣b=0,a+2=0,解得:a=﹣2,b=1,则﹣a+b=2+1=3.故选:A.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.二.填空题(共5小题)11.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a元,请你对“0.8a”再赋予一个含义:练习本每本0.8元,小明买了a本,共付款0.8a元(答案不唯一).【分析】根据生活实际作答即可.【解答】解:答案不唯一,例如:练习本每本0.8元,小明买了a本,共付款0.8a元.【点评】本题考查了代数式的意义,此类问题应结合实际,根据代数式的特点解答.12.一艘轮船在静水中的速度是50千米/时,水流速度是a千米/时,则该轮船在逆水中航行3小时的路程为3(50﹣a)千米.【分析】根据题意先得轮船在逆水中航行的速度为“静水中的速度﹣水流速度”,再得3小时航行的路程.【解答】解:由题意得,该轮船在逆水中航行3小时的路程为3(50﹣a)千米.【点评】本题考查了代数式的列法,正确理解题意是解决这类题的关键.13.若a与b互为相反数,c与d互为倒数,则(a+b)3﹣4(cd)5=﹣4.【分析】根据a与b互为相反数,c与d互为倒数,可以得到:a+b=0,cd=1.代入求值即可求解.【解答】解:∵a与b互为相反数,c与d互为倒数,∴a+b=0,cd=1.∴(a+b)3﹣4(cd)5=0﹣4×1=﹣4.故答案是:﹣4.【点评】本题考查了相反数,倒数的定义,正确理解定义是关键.14.单项式和多项式统称为整式.【分析】根据整式的定义进行解答.【解答】解:整式包括单项式和多项式.故答案为:单项式和多项式.【点评】本题重点考查整式的定义:整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母.单项式和多项式统称为整式.15.单项式﹣的次数是3.【分析】根据单项式的次数的定义直接求解.【解答】解:单项式﹣的次数为3.故答案为3.【点评】本题考查了单项式:由数与字母的积或字母与字母的积所组成的代数式叫做单项式(单独的一个数字或字母也是单项式).单项式中的数字因数叫做这个单项式的系数.所有字母的指数之和叫做这个单项式的次数.三.解答题(共4小题)16.请将下列代数式进行分类(至少三种以上),a,3x,,,,a2+x,4x2ay,x+8.【分析】根据代数式的分类解答:.【解答】解:本题答案不唯一.单项式:,a,3x,4x2ay;多项式:,a2+x,x+8;整式:,a,3x,4x2ay,,a2+x,x+8;分式:.【点评】本题考查了代数式的定义及其分类.由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式.注意,分式和无理式都不属于整式.17.方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?【分析】第一个窗户射进的阳光的面积=长方形面积﹣半径为的一个半圆的面积;第二个窗户射进的阳光的面积=长方形面积﹣半径为的2个圆的面积.【解答】解:第一个窗户射进的阳光的面积为ab﹣×π()2=ab﹣第二个窗户射进的阳光的面积为ab﹣2×π()2=ab﹣∵>∴第一个窗户射进的阳光的面积<第二个窗户射进的阳光的面积.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.要能根据图形得到窗户射进的阳光的面积的计算公式.18.已知a,b为常数,且三个单项式4xy2,axy b,﹣5xy相加得到的和仍然是单项式.那么a和b 的值可能是多少?说明你的理由.【分析】因为4xy2,axy b,﹣5xy相加得到的和仍然是单项式,它们y的指数不尽相同,所以这几个单项式中有两个为同类项.那么可分情况讨论:(1)若axy b与﹣5xy为同类项,则b=1,这两个式子相加后再加一个式子仍是单项式,说明这两个式子相加得0;(2)若4xy2与axy b为同类项,则b=2,这两个式子相加后再加一个式子仍是单项式,说明这两个式子相加得0.【解答】解:(1)若axy b与﹣5xy为同类项,∴b=1,∵和为单项式,∴;(2)若4xy2与axy b为同类项,∴b=2,∵axy b+4xy2=0,∴a=﹣4,∴.【点评】本题考查的知识点是:三个单项式相加得到的和仍然是单项式,它们y的指数不尽相同,这几个单项式中有两个为同类项,并且相加得0.19.已知多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式.(1)求m的值;(2)当x=,y=﹣1时,求此多项式的值.【分析】(1)直接利用多项式的次数的确定方法得出m的值;(2)将x,y的值代入求出答案.【解答】解:(1)∵多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式,∴|m|﹣2+3=4,m﹣3≠0,解得:m=﹣3,(2)当x=,y=﹣1时,此多项式的值为:﹣6××(﹣1)3+()2×(﹣1)﹣2××(﹣1)2=9﹣﹣3=.【点评】此题主要考查了多项式以及绝对值,正确得出m的值是解题关键.。

金考卷:苏科版江苏省2019-2020学年七年级数学上学期期末原创卷二(含解析版答案)

金考卷:苏科版江苏省2019-2020学年七年级数学上学期期末原创卷二(含解析版答案)

……………………:______江苏省2019-2020学年上学期期末原创卷(二)七年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:苏科版七上全册。

第Ⅰ卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.结果为正数的式子是 A .6(1)- B .25-C .|3|--D .31()3-2.下列各组中的两个单项式,属于同类项的一组是 A .23a b 与23ab B .2x 与2xC .23与2aD .4与12-3.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是A .点A 和点CB .点B 和点DC .点A 和点DD .点B 和点C4.如图,是小明同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“善”字相对的面上的字是A .文B .明C .诚D .信5.如图所示,AC ⊥BC 于C ,CD ⊥AB 于D ,图中能表示点到直线(或线段)的距离的线段有A .1条B .2条C .3条D .5条6.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人 A .赚16元 B .赔16元C .不赚不赔D .无法确定第Ⅱ卷二、填空题(本大题共10小题,每小题2分,共20分) 7.比较大小,4-__________3(用“>”“<”或“=”填空).8.小明家的冰箱冷冻室的温度为﹣5℃,调高4℃后的温度是__________℃. 9.多项式2526235x y x y --+的一次项系数、常数项分别是__________.10.已知2(3)30m m xm --+-=是关于x 的一元一次方程,则m =__________.11.如果21a -与()22b +互为相反数,那么ab 的值为__________. 12.已知3x =是方程()427k x k x +--=的解,则k 的值是__________.13.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD =56°23′,则∠BOC 的度数为__________.……○………………内……………… 此……○………………外………………14.如图,长方形纸片的长为6cm ,宽为4cm ,从长方形纸片中剪去两个形状和大小完全相同的小长方形卡片,那么余下的两块阴影部分的周长之和是__________.15.小颖按如图所示的程序输入一个正整数x ,最后输出的结果为656,请写出符合条件的所有正整数x 的值为__________.16.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2020个图形中共有__________个〇.三、解答题(本大题共11小题,共88分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分7分)计算:(1)212(3(24)2-÷---; (2)﹣24+16÷(﹣2)3×|﹣3﹣1|. 18.(本小题满分7分)解方程:(1)98512x x -+-+=; (2)11(2)(3)32x x +=+. 19.(本小题满分7分)先化简,再求值:()22234232322⎛⎫--++- ⎪⎝⎭xy x xy y x xy ,其中x =3,y =–1. 20.(本小题满分8分)如图,已知线段a ,b ,用尺规作一条线段c ,使c =2b –a .21.(本小题满分8分)如图,已知∠AOB =90°,∠EOF =60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠COB 和∠AOC 的度数.22.(本小题满分7分)某船从A 地顺流而下到达B 地,然后逆流返回,到达A 、B 两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A 、C 两地之间的路程为10千米,求A 、B 两地之间的路程.23.(本小题满分8分)有8袋大米,以每袋25kg 标准,超过的千克数记作正数,不足的千克数记作负数,称后记录如下:1.2+,0.1-, 1.0+,0.6-,0.5-,0.3+,0.4-,0.2+.(1)这8袋大米中,最轻和最重的这两袋分别是多少千克? (2)这8袋大米一共多少千克?24.(本小题满分82(10y -=).(1)求x y ,的值;(2)求()()()()()()1111112220192019xy x y x y x y +++⋯+++++++的值.25.(本小题满分8分)老师在黑板上出了一道解方程的题212134x x -+=-,小明马上举手,要求到黑板上做,他是这样做的:()()421132x x -=-+⋯①,84136x x -=--⋯②, 83164x x +=-+⋯③, 111x =-⋯④,111x =-⋯⑤, 老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在__________(填编号);然后,你自己细心地接下面的方程: (1)()()335221x x +=-;(2)2157146y y ---=.26.(本小题满分9分)网上办公,手机上网已成为人们日常生活的一部分,我县某通信公司为普及网络使用,特推出以下两种电话拨号上网收费方式,用户可以任选其一. 收费方式一(计时制):0.05元/分;收费方式二(包月制):50元/月(仅限一部个人电话上网); 同时,每一种收费方式均对上网时间加收0.02元/分的通信费. 某用户一周内的上网时间记录如下表:(1)计算该用户一周内平均每天上网的时间.(2)设该用户12月份上网的时间为x 小时,请你分别写出两种收费方式下该用户所支付的费用.(用含x 的代数式表示)(3)如果该用户在一个月(30天)内,按(1)中的平均每天上网时间计算,你认为采用哪种方式支付费用较为合算?并说明理由.27.(本小题满分11分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折. (1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和(10)a a >个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若60a =,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?2019-2020学年上学期期末原创卷A 卷七年级数学·全解全析1.【答案】A【解析】A 、6(1)-=1,故A 正确;B 、25-=–25,–52表示5的2次幂的相反数,为负数,故B 错误;C 、|3|--=–3,故错误;D 、31(3-=–127,故错误.故选A . 2.【答案】D【解析】A .23a b 与23ab ,字母相同,但各字母次数不同,故错误; B .2x 与2x,字母相同,但各字母次数不同,故错误; C .23与2a ,一个为常数项,一个的次数是2,故错误; D .4与12-,均为常数项,故正确;所以答案为:D 3.【答案】C【解析】由A 表示–2,B 表示–1,C 表示0.75,D 表示2. 根据相反数和为0的特点,可确定点A 和点D 表示互为相反数的点. 故答案为C . 4.【答案】A【解析】这是一个正方体的平面展开图,共有六个面,其中面“文"与“善"相对,面“明"与面“信"相对,“诚”与面“友"相对.故选A . 5.【答案】D【解析】表示点C 到直线AB 的距离的线段为CD ,表示点B 到直线AC 的距离的线段为BC ,表示点A 到直线BC 的距离的线段为AC ,表示点A 到直线DC 的距离的线段为AD ,表示点B 到直线DC 的距离的线段为BD ,共五条.故选D . 6.【答案】B【解析】设此商人赚钱的那件衣服的进价为x 元,则(125%)120x +=,得96x =;设此商人赔钱的那件衣服进价为y 元,则(125%)120y -=,解得160y =; 所以他一件衣服赚了24元,一件衣服赔了40元, 所以卖这两件衣服总共赔了4024=16-(元). 故选B . 7.【答案】<【解析】4 3.-<故答案为:.< 8.【答案】–1【解析】根据题意得:–5+4=–1(℃),∴调高4℃后的温度是–1℃.故答案为:–1. 9.【答案】3-,5【解析】多项式2526235x y x y --+的一次项的系数是–3,常数项是5.故答案为:–3,5. 10.【答案】–3【解析】根据一元一次方程满足的条件可得:21m -=且m –3≠0,解得:m =–3. 11.【答案】–1【解析】由题意可得:221(2)0a b -++=,∴210,20a b -=+=,解得1,22a b ==-, ∴1(2)12ab =⨯-=-.故答案为:–1. 12.【答案】2【解析】把x =3代入方程得:7k ﹣2k ﹣3=7,解得k =2.故答案为:2. 13.【答案】146°23′【解析】∵EO ⊥AB 于点O ,∴∠EOA =90°,又∵∠EOD =56°23′,∴∠COB =∠AOD =∠EOD +∠EOA =90°+56°23′=146°23′.故答案为:146°23′.14.【答案】16【解析】设剪去的长方形的长为a ,宽为b ,a +b =6, 则左下角长方形的长为a ,宽为4–b ,周长为8+2a –2b , 右上角长方形的长为b ,宽为4–a ,周长为8+2b –2a , 所以阴影部分周长和为:8+2a –2b +8+2b –2a =16, 故答案为:16. 15.【答案】5、26、131【解析】由题意得:运行一次程序5x +1=656,解得x =131;运行二次程序5x +1=131,解得x =26;运行三次程序5x +1=26,解得x =5;运行四次程序5x +1=5,解得x =0.8(不符合,即这次没有运行), ∴符合条件的所有正整数x 的值为131、26、5. 故答案为:131、26、5. 16.【答案】6061【解析】观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…, 第n 个图形共有:1+3n ,∴第2020个图形共有1+3×2020=6061,故答案为:6061. 17.【解析】(1)原式54(2)2=-÷-- 2425=-⨯+825=-+25=;(3分) (2)原式=–16+16÷(–8)×4 =–16+(–2)×4 =–16–8 =–24.(7分)18.【解析】(1)去分母得:–10x +2=–9x +8,移项合并得:–x =6, 解得x =–6;(3分) (2)去分母得:2x +4=3x +9, 解得x =–5.(7分)19.【解析】原式=4xy –3x 2+6xy –4y 2+3x 2–6xy =4xy –4y 2.(4分)当x =3,y =–1时,原式=4×3×(–1)–4×(﹣1)2 =–12–4 =–16.(7分)20.【解析】如图所示,线段AD 即为所求.……○………………○…………(8分)21.【解析】90AOB ∠=,OE 平分AOB ∠,45BOE ∴∠=,又60EOF ∠=,604515FOB ∴∠=-=,(4分)OF 平分BOC ∠,21530COB ∴∠=⨯=,3090120AOC BOC AOB ∴∠=∠+∠=+=.(8分)22.【解析】设A 、B 两码头之间的航程为x 千米,则B 、C 间的航程为(x –10)千米,由题意得,1078282x x -+=+-,(4分) 解得x =32.5.答:A 、B 两地之间的路程为32.5千米.(7分)23.【解析】(1)这8袋大米中,最轻和最重的这两袋分别是24.4千克,26.2千克;(4分)(2)258( 1.2)(0.1)( 1.0)(0.6)(0.5)(0.3)(0.4)(0.2)⨯+++-+++-+-+++-+201.1=(千克). 答:这8袋大米一共201.1千克.(8分)24.【解析】(1)根据题意得2010x y -=-=,,解得21x y ==,;(4分) (2)原式111121324320212020=+++⋯+⨯⨯⨯⨯ 111111112233420202021=-+-+-+⋯+-112021=-20202021=.(8分) 25.【解析】小明错在①;故答案为:①;(2分)(1)去括号得:91542x x +=-, 移项合并得:517x =-, 解得 3.4x =-;(5分)(2)去分母得:()()32125712y y ---=, 去括号得:63101412y y --+=, 移项合并得:41y -=,解得0.25y =-.(8分)26.【解析】(1)该用户一周内平均每天上网的时间:354033503474048++++++=40(分钟).答:该用户一周内平均每天上网的时间是40分钟;(3分)(2)采用收费方式一(计时制)的费用为:0.05×60x +0.02×60x =4.2x (元), 采用收费方式二(包月制)的费用为:50+0.02×60x =(50+1.2x )(元);(6分) (3)40分钟=23h . 若一个月内上网的时间为30x =20小时,则计时制应付的费用为4.2×20=84(元),包月制应付的费用为50+1.2×20=74(元). 由84>74,所以包月制合算.(9分)27.【解析】(1)设每个足球的定价是x 元,则每套队服是(x +50)元,根据题意得2(x +50)=3x ,解得x =100,x +50=150.答:每套队服150元,每个足球100元;(4分) (2)到甲商场购买所花的费用为:150×100+100(a ﹣10010)=(100a +14000)元, 到乙商场购买所花的费用为:150×100+0.8×100•a =(80a +15000)元;(8分) (3)当60a =时,到甲商场购买所花的费用为:100×60+14000=20000(元), 到乙商场购买所花的费用为:80×60+15000=19800(元), 所以到乙商场购买合算.(11分)。

七年级上册数学期末检测试卷(附答案和解释)

七年级上册数学期末检测试卷(附答案和解释)

七年级上册数学期末检测试卷(附答案和解释)2019年七年级上册数学期末检测试卷(附答案和解释)距离期末考试越来越近了,期末考试考查的是整个学期的学习内容,内容很多。

各科都已经进入复习阶段,现在大家都在忙碌的复习阶段。

我们一起来看看这篇七年级上册数学期末检测试卷吧!一、选择题(每小题3分,共30分)1. 如果向东走80m记为+80m,那么向西走60m记为()A. ﹣60mB. |﹣60|mC. ﹣(﹣60)mD. m2. ﹣6的绝对值等于()A. 6B.C. ﹣D. ﹣63. 未来三年,国家将投入8 500亿元用于缓解群众看病难,看病贵问题.将8 500亿元用科学记数法表示为A. 0.85104亿元B. 8.5103亿元C. 8.5104亿元D. 85102亿元4. 当x=﹣2时,代数式x+1的值是()A. ﹣1B. ﹣3C. 1D. 35. 在解方程时,去分母正确的是()A. 3(x﹣1)﹣2(2x+3)=6B. 3(x﹣1)﹣2(2x+3)=1C. 2(x﹣1)﹣2(2x+3)=6 D. 3(x﹣1)﹣2(2x+3)=36. 中国古代问题:有甲、乙两个牧童,甲对乙说:把你的羊给我一只,我的羊数就是你的羊数的2倍.乙回答说:最18. 已知x=﹣2是方程3(x+a)=15的解,则a=.19. 如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则AOC+DOB=度.20. 如图,AOB中,OD是BOC的平分线,OE是AOC的平分线,若AOB=140,则EOD=度.三、计算题(每小题6分,共24分)21. (﹣18)2(1﹣)22. ﹣23+(﹣3)2﹣32(﹣2)2.23. 先化简,后求值:2(3x﹣4y)﹣5(x﹣2y)+10,其中x=2,y=﹣1.24. 解方程:四、解答题25. 用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40m3,第一架工作16小时,第二架工作24小时,共掘土8640m3,问每架掘土机每小时可以掘土多少m3? 26. 如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度.27. 海滨中学暑假将××部分学生到北京旅游,甲旅行社说:如果领队买全票一张,那么其他学生可以享受半价优惠.乙旅行社说:包括领队在内,全部按全票价的6折优惠.两家旅行社的全票价均为240元.(1)设学生数为x,甲旅行社收费为m,乙旅行社收费为n,列等式表示两家旅行社的收费情况.(2)当学生数是多少时,两家旅行社的收费一样多?参考答案与试题解析一、选择题(每小题3分,共30分)1. 如果向东走80m记为+80m,那么向西走60m记为()A. ﹣60mB. |﹣60|mC. ﹣(﹣60)mD. m考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:正和负相对,所以,如果向东走80m记为+80m,那么向西走60m记为﹣60m.2. ﹣6的绝对值等于()A. 6B.C. ﹣D. ﹣6考点:绝对值.专题:计算题.分析:根据绝对值的性质解答即可.解答:解:根据绝对值的性质,3. 未来三年,国家将投入8 500亿元用于缓解群众看病难,看病贵问题.将8 500亿元用科学记数法表示为A. 0.85104亿元B. 8.5103亿元C. 8.5104亿元D. 85102亿元考点:科学记数法表示较大的数.分析:科学记数法的表示形式为a10n的形式,其中110,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数.解答:解:按照科学记数法的形式8 500亿元应该写成8.5103亿元.4. 当x=﹣2时,代数式x+1的值是()A. ﹣1B. ﹣3C. 1D. 3考点:代数式求值.分析:把x=﹣2直接代入x+1计算.5. 在解方程时,去分母正确的是()A. 3(x﹣1)﹣2(2x+3)=6B. 3(x﹣1)﹣2(2x+3)=1C. 2(x﹣1)﹣2(2x+3)=6 D. 3(x﹣1)﹣2(2x+3)=3考点:解一元一次方程.专题:计算题.分析:去分母的方法是:方程左右两边同时乘以各分母的最小公倍数,这一过程的依据是等式的基本性质,注意去分母时分数线起到括号的作用,容易出现的错误是:漏乘没有分母的项,以及去分母后忘记分数线的括号的作用,符号出现错误.解答:解:方程左右两边同时乘以6得:3(x﹣1)﹣2(2x+3)=6.6. 中国古代问题:有甲、乙两个牧童,甲对乙说:把你的羊给我一只,我的羊数就是你的羊数的2倍.乙回答说:最好还是把你的羊给我一只,我们羊数就一样了.若设甲有x 只羊,则下列方程正确的是()A. x+1=2(x﹣2)B. x+3=2(x﹣1)C. x+1=2(x﹣3)D.考点:由实际问题抽象出一元一次方程.分析:根据甲的话可得乙羊数的关系式,根据乙的话得到等量关系即可.解答:解:∵甲对乙说:把你的羊给我1只,我的羊数就是你的羊数的两倍.甲有x只羊,乙有+1只,∵乙回答说:最好还是把你的羊给我1只,我们的羊数就一样了,7. 下列图形中,不是正方体的展开图的是()A. B. C. D.考点:几何体的展开图.专题:压轴题.分析:利用正方体及其表面展开图的特点解题.解答:解:A、B、C经过折叠均能围成正方体,D折叠后下边没有面,不能折成正方体,故选D.8. 已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP; ②BP=AB; ③AB=2AP; ④AP+PB=AB.A. 1个B. 2个C. 3个D. 4个考点:两点间的距离.分析:根据题意画出图形,根据中点的特点即可得出结论. 解答:解:如图所示:①∵AP=BP,点P是线段AB的中点,故本小题正确;②∵BP=A B,AP=BP,即点P是线段AB的中点,故本小题正确;③∵AB=2AP,AB=AP+BP,AP=BP,即点P是线段AB的中点,故本小题正确;9. 一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是()A. ﹣2x2+y2B. 2x2﹣y2C. x2﹣2y2D. ﹣x2+2y2考点:整式的加减.分析:被减式=差+减式.解答:解:多项式为:x2﹣2y2+(x2+y2)10. 如图,已知直线AB,CD相交于点O,OE平分COB,若EOB=55,则BOD的度数是()A. 35B. 55C. 70D. 110考点:角平分线的定义;余角和补角.分析:利用角平分线的定义和补角的定义求解.解答:解:OE平分COB,若EOB=55,二、填空题(共10个小题,每小题2分,共20分)11. 比较大小:﹣6﹣8(填、=或)考点:有理数大小比较.专题:计算题.分析:先计算|﹣6|=6,|﹣8|=8,根据负数的绝对值大的反而小,绝对值小的反而大即可得到﹣6与﹣8的大小.解答:解:∵|﹣6|=6,|﹣8|=8,12. 计算:|﹣3|﹣2= 1 .考点:有理数的减法;绝对值.分析:先根据绝对值定义去掉这个绝对值的符号再计算.13. 化简:2(x﹣3)﹣(﹣x+4)= 3x﹣10 .考点:整式的加减.分析:首先根据去括号法则去括号(注意括号前是负号时,去括号,括号里各项都要变号),再合并同类项(注意只把系数相加减,字母和字母的指数不变).解答:解:2(x﹣3)﹣(﹣x+4),14. 如果一个角的补角是150,那么这个角的余角是 60 度. 考点:余角和补角.专题:计算题.分析:本题考查互补和互余的概念,和为180度的两个角互为补角;和为90度的两个角互为余角.解答:解:根据定义一个角的补角是150,则这个角是180﹣150=30,15. 若x,y互为相反数,a、b互为倒数,则代数式的值为﹣3 .考点:代数式求值.分析:根据相反数的概念和倒数概念,可得x、y;a、b的等量关系,把所得的等量关系整体代入可求出代数式的值. 解答:解:∵x,y互为相反数,a、b互为倒数,16. 如果把6.48712保留三位有效数字可近似为 6.49 . 考点:近似数和有效数字.分析:一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.解答:解:6.48712保留三位有效数字可近似为:6.49.17. 若2x与2(1+x)互为相反数,则x的值为﹣ .考点:解一元一次方程.专题:计算题.分析:利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.解答:解:根据题意得:2x+2(1+x)=0,去括号得:2x+2+2x=0,移项合并得:4x=﹣2,18. 已知x=﹣2是方程3(x+a)=15的解,则a= 7 .考点:一元一次方程的解.专题:计算题.分析:由x=﹣2是方程的解,将x=﹣2代入方程即可求出a 的值.解答:解:根据题意将x=﹣2代入方程得:3(﹣2+a)=15,19. 如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则AOC+DOB= 180 度.考点:角的计算.专题:计算题.分析:本题考查了角度的计算问题,因为本题中AOC始终在变化,因此可以采用设而不求的解题技巧进行求解.解答:解:设AOD=a,AOC=90+a,BOD=90﹣a,20. 如图,AOB中,OD是BOC的平分线,OE是AOC的平分线,若AOB=140,则EOD= 70 度.考点:角的计算;角平分线的定义.分析:由图形可知DOE=DOC+EOC,然后根据角平分线的性质,可推出DOC=BOC,EOC=AOC,由此可推出DOE=AOB,最后根据AOB的度数,即可求出结论.解答:解:∵OD是BOC的平分线,OE是AOC的平分线,DOC=BOC,EOC=AOC,DOE=DOC+EOC=AOB,三、计算题(每小题6分,共24分)21. (﹣18)2(1﹣)考点:有理数的除法;有理数的乘法.分析:根据除以一个数等于乘以这个数的倒数,可把除法转化成乘法,根据有理数的乘法运算,可得答案.22. ﹣23+(﹣3)2﹣32(﹣2)2.考点:有理数的乘方.分析:根据有理数的乘方的定义进行计算即可得解.解答:解:﹣23+(﹣3)2﹣32(﹣2)2=﹣8+9﹣9423. 先化简,后求值:2(3x﹣4y)﹣5(x﹣2y)+10,其中x=2,y=﹣1.考点:整式的加减化简求值.专题:计算题.分析:原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式=6x﹣8y﹣5x+10y+1024. 解方程:考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项、合并同类项,系数化为1,从而得到方程的解.解答:解:去分母得:2(x+3)=12﹣3(3﹣2x)去括号得:2x+6=12﹣9+6x移项得:2x﹣6x=12﹣9﹣6四、解答题25. 用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40m3,第一架工作16小时,第二架工作24小时,共掘土8640m3,问每架掘土机每小时可以掘土多少m3?考点:一元一次方程的应用.专题:工程问题.分析:在工程问题中,注意公式:工作总量=工作效率工作时间.若设第一架掘土机每小时掘土xm3,那么,第二架掘土机每小时掘土(x﹣40)m3.第一架掘土机16小时掘土16xm3,第二架掘土机24小时掘土24(x﹣40)m3.解答:解:设第一架掘土机每小时掘土xm3,那么第二架掘土机每小时掘土(x﹣40)m3,依题意得:16x+24(x﹣40)=8640,解得:x=240,(x﹣40)=200m3.答:第一架掘土机每小时掘土240立方米,第二架掘土机每小时掘土200m3.26. 如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度.考点:比较线段的长短.专题:计算题.分析:根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=AB,CD=CB,AD=AC+CD,又AB=10cm,继而即可求出答案.解答:解:∵C点为线段AB的中点,D点为BC的中点,AB=10cm,27. 海滨中学暑假将××部分学生到北京旅游,甲旅行社说:如果领队买全票一张,那么其他学生可以享受半价优惠.乙旅行社说:包括领队在内,全部按全票价的6折优惠.两家旅行社的全票价均为240元.(1)设学生数为x,甲旅行社收费为m,乙旅行社收费为n,列等式表示两家旅行社的收费情况.(2)当学生数是多少时,两家旅行社的收费一样多?考点:一元一次方程的应用.分析: (1)根据甲乙两个旅行社的优惠情况,分别表示出示两家旅行社的收费情况即可;(2)令m=n,求出x的值.解答:解:(1)由题意得,甲旅行社收费为:m=240+120x,乙旅行社收费为:n=2400.6(x+1)=144x+144;(2)令m=n可得,240+120x=144x+144,解得:x=4,这篇七年级上册数学期末检测试卷的内容,希望会对各位同学带来很大的帮助。

苏科版数学七年级上册《期末检测试卷》及答案

苏科版数学七年级上册《期末检测试卷》及答案
A. B. C. D.
3.下列说法中,正确的是()
A.单项式 的次数是2,系数为 B. 是三次三项式,常数项是1
C.单项式 的系数是1,次数是0D.单项式 的系数是 ,次数是3
4.对于任何有理数 ,下列各式中一定为负数的是()
A B. C. D.
5.下列运用等式的性质,变形正确的是()
A.若x=y,则x﹣5=y+5B.若a=b,则ac=bc
=5(x+y)﹣3xy+2
=5×3﹣3×1+2
=14
[点睛]本题考查了整式的加减,解答本题的关键在于将代数式(5x+2)-(3xy-5y)化简为:5(x+y)-3xy+2,然后把x+y=3,xy=1代入求解.
13.如果方程 是一个关于 的一元一次方程,那么 的值是__________.
[答案]-1
[解析]
8.如图是一个切去ຫໍສະໝຸດ 一个角 正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()
A. B. C. D.
二、填空题
9. 的相反数是_________;
10.如果单项式﹣xyb+1与 xa-2y3是同类项,那么(a﹣b)2019=_____.
11.数轴上到原点的距离等于 个单位长度的点表示的数是__________.
故选:C.
[点睛]本题考查的知识点是科学记数法的表示方法,属于基础题,易于掌握.
3.下列说法中,正确的是()
A. 单项式 的次数是2,系数为 B. 是三次三项式,常数项是1
C. 单项式 的系数是1,次数是0D. 单项式 的系数是 ,次数是3
[答案]A
[解析]

七年级数学上册第二单元《整式加减》-填空题专项测试卷(含答案)

七年级数学上册第二单元《整式加减》-填空题专项测试卷(含答案)

一、填空题1.将下列代数式的序号填入相应的横线上.①223a b ab b ++;②2a b +;③23xy -;④0;⑤3y x -+;⑥2xy a ;⑦223x y +;⑧2x;⑨2x . (1)单项式:_______________;(2)多项式:_______________;(3)整式:_________________;(4)二项式:_______________.③④⑨①②⑤①②③④⑤⑨②⑤【分析】根据单项式多项式整式二项式的定义即可求解【详解】(1)单项式有:③④0⑨;(2)多项式有:①②⑤;(3)整式有:①②③④0⑤⑨;(4)二项式有:②⑤;故答案为:(解析:③④⑨ ①②⑤ ①②③④⑤⑨ ②⑤【分析】根据单项式,多项式,整式,二项式的定义即可求解.【详解】(1)单项式有:③23xy -,④0,⑨2x ; (2)多项式有:①223a b ab b ++,②2a b +,⑤3y x -+; (3)整式有:①223a b ab b ++,②2a b +,③23xy -,④0,⑤3y x -+,⑨2x ; (4)二项式有:②2a b +,⑤3y x -+; 故答案为:(1)③④⑨;(2)①②⑤;(3)①②③④⑤⑨;(4)②⑤【点睛】本题考查了整式,关键是熟练掌握单项式,多项式,整式,二项式的定义.2.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m +n+p =_________;4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法. 3.关于a ,b 的多项式-7ab-5a 4b+2ab 3+9为______次_______项式.其次数最高项的系数是__________.五四-5【分析】多项式共有四项其最高次项的次数为5次系数为-5由此可以确定多项式的项数次数及次数最高项的系数【详解】∵该多项式共有四项其最高次项是为5次∴该多项式为五次四项式∵次数最高项为∴它的系数 解析:五 四 -5【分析】多项式共有四项437,5,2,9ab a b ab --,其最高次项45a b -的次数为5次,系数为-5,由此可以确定多项式的项数、次数及次数最高项的系数.【详解】∵该多项式共有四项437,5,2,9ab a b ab --,其最高次项是45a b -,为5次∴该多项式为五次四项式∵次数最高项为45a b -∴它的系数为-5故填:五,四,-5.【点睛】本题考查了多项式的项数,次数和系数的求解.多项式中含有单项式的个数即为多项式的项数,包含的单项式中未知数的次数总和的最大值即为多项式的次数.4.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.5.用棋子按下列方式摆图形,依照此规律,第n 个图形比第()1n -个图形多______枚棋子. …第1个 第2个 第3个【分析】归纳总结找出第n 个图形与第(n-1)个图形中的棋子数相减即可得到结果【详解】解:第1个图形棋子的个数:1;第2个图形1+4;第3个图形1+4+7;第4个图形1+4+7+10;…第n 个图形1+ 解析:32n -【分析】归纳总结找出第n 个图形与第(n-1)个图形中的棋子数,相减即可得到结果.【详解】解:第1个图形棋子的个数:1;第2个图形,1+4;第3个图形,1+4+7;第4个图形,1+4+7+10;…第n 个图形,1+4+7+…+(3n -2);则第n 个图形比第(n-1)个图形多(3n-2)枚棋子.故答案为:3n-2【点睛】此题主要考查了图形的变化类问题,同时还考查了学生通过特例分析从而归纳总结出一般结论的能力.6.在x y +,0,21>,2a b -,210x +=中,代数式有______个.3【分析】代数式是指把数或表示数的字母用+-×÷连接起来的式子而对于带有=><等数量关系的式子则不是代数式【详解】解:是不等式不是代数式;是方程不是代数式;0是代数式共3个故答案是:3【点睛】本题考解析:3【分析】代数式是指把数或表示数的字母用+、-、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.【详解】解:21>是不等式,不是代数式;210x +=是方程,不是代数式;x y +,0,,2a b -,是代数式,共3个.故答案是:3.【点睛】本题考查了代数式的定义,理解定义是关键.7.仅当b =______,c =______时,325x y 与23b c x y 是同类项。

2019年苏科新版数学七年级上册《第2章有理数》单元测试卷(解析版)

2019年苏科新版数学七年级上册《第2章有理数》单元测试卷(解析版)

2019年苏科新版数学七年级上册《第2章有理数》单元测试卷一.选择题(共15小题)1.如果盈利2元记为“+2元”,那么“﹣2元”表示()A.亏损2元B.亏损﹣2元C.盈利2元D.亏损4元2.下列说法中正确的是()A.任何有理数的绝对值都是正数B.最大的负有理数是﹣1C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等3.如图,数轴上的A、B、C三点所表示的数分别为a,b,c,点A与点C到点B的距离相等,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边4.相反数等于其本身的数是()A.1B.0C.±1D.0,±15.一个正数的绝对值小于另一个负数的绝对值,则两数和一定是()A.正数B.负数C.零D.不能确定和的符号6.已知|a+3|+|b﹣1|=0,则a+b的值是()A.﹣4B.4C.2D.﹣27.的倒数是()A.B.﹣C.2019D.﹣20198.绝对值小于5的所有整数的和为()A.0B.﹣8C.10D.209.在π,,1.732,3.14四个数中,无理数的个数是()A.4个B.3个C.2个D.没有10.在3.14,,,﹣,2π,中,无理数有()个.A.1个B.2个C.3个D.4个11.下列实数,﹣,0.,,,(﹣1)0,﹣,0.1010010001中,其中无理数共有()A.2个B.3个C.4个D.5个12.在下列五个数中①,②,③,④0.777…,⑤2π,是无理数的是()A.①③⑤B.①②⑤C.①④D.①⑤13.在1.732,﹣,,,3﹣,3.02中,无理数的个数是()A.1B.2C.3D.414.在实数﹣1.414,,π,3.,2+,3.212212221…,3.14中,无理数的个数是()个.A.1B.2C.3D.415.下列实数中,无理数是()A.2B.﹣C.3.14D.二.填空题(共6小题)16.吐鲁番盆地低于海平面155米,记作﹣155m,南岳衡山高于海平面1900米,则衡山比吐鲁番盆地高m.17.在有理数集合中,最小的正整数是,最大的负整数是.18.在数轴上将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是.19.请写出一个比3大比4小的无理数:.20.请写出一个无理数.21.下列各数中:0.3、、π﹣3、、3.14、1.51511511…,有理数有个,无理数有个.三.解答题(共3小题)22.蜗牛从某点0开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)求蜗牛最后是否回到出发点?(2)蜗牛离开出发点0最远时是多少厘米?(3)在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?23.(1)将下列各数填入相应的圈内:2,5,0,1.5,+2,﹣3.(2)说出这两个圈的重叠部分表示的是什么数的集合:.24.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.2019年苏科新版数学七年级上册《第2章有理数》单元测试卷参考答案与试题解析一.选择题(共15小题)1.如果盈利2元记为“+2元”,那么“﹣2元”表示()A.亏损2元B.亏损﹣2元C.盈利2元D.亏损4元【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵盈利2元记为“+2元”,∴“﹣2元”表示亏损2元.故选:A.【点评】本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.2.下列说法中正确的是()A.任何有理数的绝对值都是正数B.最大的负有理数是﹣1C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等【分析】根据有理数的定义和特点,绝对值、互为相反数的定义及性质,对选项进行一一分析,排除错误答案.【解答】解:A、0的绝对值是0,故选项A错误;B、没有最大的负有理数也没有最小的负有理数,故选项B错误;C、没有最大的有理数,也没有最小的有理数,故选项C错误;D、根据绝对值的几何意义:互为相反数的两个数绝对值相等,故选项D正确.故选:D.【点评】本题考查了绝对值的几何意义及互为相反数的两个数在数轴上的位置特点,以及有理数的概念,难度适中.3.如图,数轴上的A、B、C三点所表示的数分别为a,b,c,点A与点C到点B的距离相等,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【解答】解:∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选:C.【点评】本题考查了实数与数轴,理解绝对值的定义是解题的关键.4.相反数等于其本身的数是()A.1B.0C.±1D.0,±1【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数的定义,则相反数等于其本身的数只有0.故选:B.【点评】主要考查了相反数的定义,要求掌握并灵活运用.5.一个正数的绝对值小于另一个负数的绝对值,则两数和一定是()A.正数B.负数C.零D.不能确定和的符号【分析】根据有理数的加法运算法则进行计算即可得解.【解答】解:∵一个正数的绝对值小于另一个负数的绝对值,∴两数和一定是负数.故选:B.【点评】本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.已知|a+3|+|b﹣1|=0,则a+b的值是()A.﹣4B.4C.2D.﹣2【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,a+3=0,b﹣1=0,解得a=﹣3,b=1,所以,a+b=﹣3+1=﹣2.故选:D.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.的倒数是()A.B.﹣C.2019D.﹣2019【分析】根据倒数的定义解答.【解答】解:的倒数是=2019.故选:C.【点评】考查了倒数的定义,考查了学生对概念的记忆,属于基础题.8.绝对值小于5的所有整数的和为()A.0B.﹣8C.10D.20【分析】找出绝对值小于5的所有整数,求出之和即可.【解答】解:绝对值小于5的所有整数为:0,±1,±2,±3,±4,之和为0.故选:A.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.9.在π,,1.732,3.14四个数中,无理数的个数是()A.4个B.3个C.2个D.没有【分析】根据无理数的定义得到无理数有π,共两个.【解答】解:无理数有:π,故选:C.【点评】本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:①开方开不尽的数,如等;②无限不循环小数,如0.101001000…等;③字母,如π等.10.在3.14,,,﹣,2π,中,无理数有()个.A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:﹣,2π共2个.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.11.下列实数,﹣,0.,,,(﹣1)0,﹣,0.1010010001中,其中无理数共有()A.2个B.3个C.4个D.5个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,﹣,共有3个.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.在下列五个数中①,②,③,④0.777…,⑤2π,是无理数的是()A.①③⑤B.①②⑤C.①④D.①⑤【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【解答】解:=2,所给数据中无理数有:①,⑤2π.故选:D.【点评】本题考查了无理数的定义,属于基础题,解答本题的关键是熟练掌握无理数的三种形式.13.在1.732,﹣,,,3﹣,3.02中,无理数的个数是()A.1B.2C.3D.4【分析】根据无理数就是无限不循环小数即可解答.【解答】解:在1.732,﹣,,,3﹣,3.02中,无理数有:﹣,,3﹣共3个.【点评】此题主要考查了无理数的定义.判断一个数是否是无理数时,可紧密联系无理数的概念以及无理数常见的几种形式进行判断.14.在实数﹣1.414,,π,3.,2+,3.212212221…,3.14中,无理数的个数是()个.A.1B.2C.3D.4【分析】无理数常见的三种类型(1)开不尽的方根(2)特定结构的无限不循环小数(3)含有π的绝大部分数,如2π.【解答】解:﹣1.414是有限小数,是有理数,是无理数,π是无理数,3.无限循环小数是有理数,2+是无理数,3.212212221…是无限不循环小数是无理数,3.14有限小数是有理数.故选:D.【点评】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.15.下列实数中,无理数是()A.2B.﹣C.3.14D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、2是整数,是有理数,选项不符合题意;B、﹣是分数,是有理数,选项不符合题意;C、3.14是有限小数,是有理数,选项不符合题意;D、是无理数,选项符合题意.故选:D.【点评】本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:开方开不尽的数,如等;无限不循环小数,如0.1010010001…等;字母表示的无理数,如π等.二.填空题(共6小题)16.吐鲁番盆地低于海平面155米,记作﹣155m,南岳衡山高于海平面1900米,则衡山比吐鲁番盆地高2055m.【分析】根据正负数的意义,把比海平面低记作“﹣”,则比海平面高可记作“+”,求高度差用“作差法”,列式计算.【解答】解:吐鲁番盆地低于海平面155米,记作﹣155m,则南岳衡山高于海平面1900米,记作+1900米;∴衡山比吐鲁番盆地高1900﹣(﹣155)=2055(米).【点评】先根据数的意义确定两个读数,再列式计算.17.在有理数集合中,最小的正整数是1,最大的负整数是﹣1.【分析】根据正整数和负整数的定义来得出答案.正整数:+1,+2,+3,…叫做正整数.负整数:﹣1,﹣2,﹣3,…叫做负整数.特别注意:0是整数,既不是正数,也不是负数.【解答】解:在有理数集合中,最小的正整数是1,最大的负整数是﹣1.故答案为1;﹣1.【点评】本题主要考查了有理数的分类及定义.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.特别注意:整数和正数的区别,注意0是整数,但不是正数.18.在数轴上将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是﹣3.【分析】设点A表示的数为x,根据向右平移加,向左平移减列出方程,然后解方程即可.【解答】解:设点A表示的数为x,由题意得,x+7﹣4=0,解得x=﹣3,所以,点A表示的数是﹣3.故答案为:﹣3.【点评】本题考查了数轴,主要利用了向右平移加,向左平移减,熟记并列出方程是解题的关键.19.请写出一个比3大比4小的无理数:π.【分析】由于带根号的要开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.【解答】解:比3大比4小的无理数很多如π.故答案为:π.【点评】此题主要考查了无理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.20.请写出一个无理数.【分析】根据无理数定义,随便找出一个无理数即可.【解答】解:是无理数.故答案为:.【点评】本题考查了无理数,牢记无理数的定义是解题的关键.21.下列各数中:0.3、、π﹣3、、3.14、1.51511511…,有理数有3个,无理数有3个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可得到正确答案.【解答】解:0.3、=2、3.14这三个数是有理数,π﹣3、、1.51511511…这三个数是无理数,故答案为3、3.【点评】此题主要考查了无理数和有理数的知识点,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.三.解答题(共3小题)22.蜗牛从某点0开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)求蜗牛最后是否回到出发点?(2)蜗牛离开出发点0最远时是多少厘米?(3)在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?【分析】(1)把爬过的路程记录相加,即可得解;(2)求出各段距离,然后根据正负数的意义解答;(3)求出爬行过的各段路程的绝对值的和,然后解答即可.【解答】解:(1)5﹣3+10﹣8﹣6+12﹣10,=27﹣27,=0,所以,蜗牛最后能回到出发点;(2)蜗牛离开出发点0的距离依次为:5、2、12、4、2、10、0,所以,蜗牛离开出发点0最远时是12厘米;(3)|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|,=5+3+10+8+6+12+10,=54厘米,∵每爬1厘米奖励一粒芝麻,∴蜗牛一共得到54粒芝麻.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.23.(1)将下列各数填入相应的圈内:2,5,0,1.5,+2,﹣3.(2)说出这两个圈的重叠部分表示的是什么数的集合:正整数.【分析】按照有理数的分类填写:有理数,整数,分数.【解答】解:(1);(2)由图形可得,两个圈的重叠部分表示的是正整数的集合.【点评】本题考查了有理数的分类.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.24.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.【分析】先设=,再由已知条件得出,a2=5b2,又知道b是整数且不为0,所以a不为0且为5的倍数,再设a=5n,(n是整数),则b2=5n2,从而得到b也为5的倍数,与a,b是互质的正整数矛盾,从而证明了答案.【解答】解:设与b是互质的两个整数,且b≠0.则,a2=5b2,因为b是整数且不为0,所以a不为0且为5的倍数,设a=5n,(n是整数),所以b2=5n2,所以b也为5的倍数,与a,b是互质的正整数矛盾.所以是无理数.【点评】本题考查了无理数的概念,解题的关键是根据所给事例模仿去做,做到举一反三.。

2019-2020学年七年级数学上期末复习试卷(第1-3章)含答案

2019-2020学年七年级数学上期末复习试卷(第1-3章)含答案

2019-2020学年七年级数学上期末复习试卷(第1-3章)含答案【年12月4日】初一( )班 学号: 姓名: 成绩: 一、选择题(每小题3分,共30分,请将唯一正确答案的序号填在下面相应的表格中) 1. 我国以年11月1日零时为标准时点,进行了第六次全国人口普查. 查得常住人口约为12700000人,将12700000用科学记数法可表示为( * )A. 127510⨯B. 12.7610⨯C. 1.27710⨯D. 1.27810⨯2. 9442y x π的系数与次数分别为( * )A. 94,7B. π94,6C. π4,6D. π94,43. 对方程13122=--x x 去分母正确的是( * )A. ()61223=--x xB. ()11223=--x xC. 6143=--x xD. ()112=--x x4. 有理数3.645精确到百分位的近似数为( * )A. 3.6B. 3.64C. 3.7D. 3.65 5. 已知一个多项式与x x 932+的和等于1432-+x x ,则这个多项式是( * )A. 15--xB. 15+xC. -x 13 1D.11362-+x x6. 若4=x 是关于x 的方程42=-a x的解,则a 的值为( * )A. -6B. 2C. 16D. -27. 一个长方形的周长是26cm ,若这个长方形的长减少1cm ,宽增加2cm ,就可以成为一个正方形,则长方形的长是( * )A. 5cmB. 7cmC.8cmD. 9cm 8.甲比乙大15岁,5年前甲的年龄是乙的两倍,乙现在的年龄是( * )A.10岁B.15岁C.20岁D.30岁9.关于x 的方程(2k -1)x 2-(2k +1)x +3=0是一元一次方程,则k 值为( * )A.12 B.21- C.0 D.110.正方形ABCD 在数轴上的位置如图所示,点A 、D 对应的数分别为0和-1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1;则连续翻转次后,数轴上数所对应的点是( * ) A.点A B.点B C.点C D.点D二、填空题(每小题3分,共18分) 11.代数式2245--x x 的值为6,则2522--x x 的值为 .12.x 的三倍减去7,等于它的两倍加上5,用方程表示为 .13.若b a x 325-与5453+-y b a 是同类项,则=x __________,=y __________.14. 一个两位数,十位上的数字是m ,个位上的数字比十位上的数字多1,则这个两位数是(用m 表示). 15. 若34+x 与53互为倒数,则x = . 16. 下列图形都是由同样大小的平行四边形按一定的规律组成。

2019秋季人教版七年级数学(上)第2章《整式的加减》单元检测题(含答案)

2019秋季人教版七年级数学(上)第2章《整式的加减》单元检测题(含答案)

七年级数学(上)第2章《整式的加减》单元检测题一、选择题(每小题3分,共30分 ) 1.下列各式中不是单项式的是( )A .3a B . 1-mC .0D .37 2.甲数比乙数的3倍大2,若乙数为x ,则甲数为( )A .3x +2B .2x +3C .123-xD . 123+x3.如果312+n m x y 与-3x 12y n 是同类项,那么m ,n 的值分别是( )A .m =-2,n =3B .m =2,n =3C . m =-3,n =2D . m =3,n =4 4.代数式-32xy 4的系数与次数分别是( )A .-2,4B .+9,5C .-9,5D .-8,4 5.(2018烟台)已知a -b =2,则2a -2b -3的值是( ) A .1 B .-1 C .-5 D .-3 6.从2a +5b 减去6a -6b 的一半,应当得到( ) A . 4a -b B . b -aC . -a +8D . 5a +2b 7.减去3m 等于5m 2-3m -5的式子是( )A .5(m 2-1) B .5m 2-6m -5 C .5(m 2+1) D .-(5m 2+6m -5) 8.在排成每行七日的日历表中取下一个3×3方块,若所有日期数之和为207.则n 的值为( ) A .21 B .23 C .15 D .19 9.已知a -b =5,c +d =2.则(b +c )-(a -d )的值是( )A .-3B .3C .-5D .7第8题图 第10题图10,填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )A .74B .92C .158D .176二、填空题(每小题3分,共18分)11.当x =5,y =4时,式子2x 2-y 的值是 .12.把(x -y )看作一个整体,合并同类项:7(x -y )+2(x -y )-4(x -y )= .13.一根铁丝的长为7a +8b ,剪下一部分围成一个长为a 宽为b 的长方形,则这根铁丝还剩下 . 14.已知单项式3a m b 4与312--n a b 的和是单项式,则m = ,n = .15.已知A =3x 2-5x +3,B =2x 2+2x -1,则3B -A 的结果是 .16.已知:数a ,b ,c 在数轴上的对应点如图所示,化简|a +b |-|-3c |-|c -a |的值是 .三、解答题(共8题,共72分)17,(8分)化简(1)5x 2+2xy -3y 2-(3xy -4y 2+3x 2); (2)5(x 2-5x )-3(2x 2+3x ) 04282622464484c18.(8分)已知A=3x2-3xy+2y2,B=3x2+xy-4y2,求:(1)A+B;(2)A-(B-2A).19.(8分)已知|x+2|+(y-12)2=0,求5xy-[(x2+4xy-y2)-(x2+3xy)]的值20.(8分)有这样一道题:“当a=2017,b=-2018时,求多项式8a3-5a3b+3a2b+4a3+5a3b-3a2b-12a3+2016值.”小明说:本题中a=2017,b=-2018是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由21.(8分)(2018中山)如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r米,长方形长为a米,宽为b米(1)分别用代数式表示草地和空地的面积(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积?(计算结果保留到整数)22.(10分)已知:A=x3+2x+3,B=2x3-mx+2.(1)若m=5,求A-(3A-2B)的值(2)若2A-B的值与x无关,求2m2-[3m2-(4m-7)+2m]的值23.(10分)幻方的历史很悠久,传统幻方最早出现在夏禹时代的“洛书”。

苏科版2019-2020七年级数学第二章有理数假期自主学习能力提升训练题4(附答案)

苏科版2019-2020七年级数学第二章有理数假期自主学习能力提升训练题4(附答案)

苏科版2019-2020七年级数学第二章有理数假期自主学习能力提升训练题4(附答案)1.的相反数是A.5 B.C.D.2.有关相反数的说法正确的是()A.-和0.25不互为相反数B.-3是相反数C.任何一个数都有相反数D.正数与负数互为相反数3.清晨蜗牛从树根沿着树干往上爬,树高10m,白天爬4m,夜间下滑3m,它从树根爬上树顶,需()A.10天B.9天C.8天D.7天4.(安徽六安叶集区桥店中学2017年九年级数学中考模拟试卷)计算(−3) − (−9)的结果等于()A.12 B.−12 C.6 D.−65.下列式子中,成立的是()A.﹣23=(﹣2)3B.(﹣2)2=﹣22C.(﹣)2= D.32=3×26.在“百度”搜索引擎中输入“库里”,能搜索到与之相关的网页约12800000个,将这个数用科学记数法表示为()A.1.28×105B.1.28×106C.1.28×107D.1.28×1087.计算(-)÷(-)÷(-)的结果是()A.-B.-C.D.-8.下列结论正确的是()A.−是的倒数B.|−2|=−2C.任何一个有理数的偶次方都是非负数D.−3>9.中共十九大召开期间,十九大代表纷纷利用休息时间来到北京展览馆,参观“砥砺奋进的五年”大型成就展,据统计,9月下旬开幕至10月22日,展览累计参观人数已经超过78万,请将780000用科学记数法表示为()A.78×104B.7.8×105C.7.8×106D.0.78×10610.丁丁做了以下4道计算题:①(﹣1)2010=﹣1;②0﹣(﹣1)=﹣1;③﹣=﹣;④÷(﹣2)=﹣1.请你帮他检查一下,他一共做对了()A.1题B.2题C.3题D.4题11.比较大小:__________.12.有理数35-的相反数是__________,有理数35-的倒数是__________.13.某市2018年元旦的最低气温为﹣1℃,最高气温为7℃,这一天的最高气温比最低气温高_____℃.14.绝对值小于的所有非负整数的积为________.15.计算:|﹣5+3|的结果是_____.16.若,,且,则________.17.已知a、b互为相反数,c、d互为倒数,m是绝对值等于3的负数,则的值为_______________.18.如果,则的值________.19.的相反数是__________,-2的倒数是__________,的绝对值是_____.20.若|x|=2,则x的值是_____.21.某储蓄所,某日办理了7项储蓄业务:取出9.6万元,存入5万元,取出7万元,存入12万元,存入22万元,取出10.25万元,取出2.4万元,求储蓄所该日现金增加多少万元?22.计算:(1)(-1)2×5+(-2)3÷4;(2)5283⎛⎫-⎪⎝⎭×24+14÷312⎛⎫-⎪⎝⎭+|-22|;(3)-2(ab-3a2)-[2b2-(5ab+a2)+2ab].23.实数a,b,c在数轴上的对应点如图,其中O是原点,且|a|=|c|,判定a+b,a+c,c-b的符号,化简|a|-|a+b|+|a+c|+|c-b|24.计算(1)-|-3|2÷(-3)2;(2)0-(-3)2÷3× (-2) 3;(3);(4)-14+(1-0.5)××[2-(-3)2];(5)12÷(-3-+1);(6).25.(1) 请你在数轴上表示下列有理数:,,0,-4,-(-4).(2) 将上列各数用“<”号连接起来:____________________________.26.同学们,我们都知道:|5-2|表示5与2的差的绝对值,实际上也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)|-4+6|=______;|-2-4|=______;(2)找出所有符合条件的整数x,使|x+2|+|x-1|=3成立;(3)若数轴上表示数a的点位于-4与6之间,求|a+4|+|a-6|的值;(4)当a=______时,|a-1|+|a+5|+|a-4|的值最小,最小值是______;(5)当a=______时,|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,最小值是______.27.已知a,b是有理数,且a,b异号,试比较|a+b|,|a﹣b|,|a|+|b|的大小关系.28.计算:(1)(-+)×24 (2)-32+(7-9)3÷参考答案1.A【解析】解:-5的相反数是5.故选A.2.C【解析】【分析】根据相反数的定义一一判断即可.【详解】A. -和0.25互为相反数,故错误;B. 一个数不能说是相反数,故错误;C. 任何一个数都有相反数,正确;D. 符号不同的两个数是互为相反数,故该选项错误.故选C.【点睛】本题主要考查了相反数的定义,牢牢掌握相反数的定义是解答本题的关键.3.D【解析】解:(10﹣4)÷1+1=7(天).故选D.4.C【解析】根据减去一个数等于加上这个数的相反数,可得原式=(−3)+9=(9−3)=6,故选C.5.A【解析】【分析】根据有理数乘方法则,逐个分析即可.【详解】A. ﹣23=(﹣2)3 =-8;本选项成立;B. (﹣2)2=4≠﹣22=-4 , 本选项不成立;C. (﹣)2=≠ , 本选项不成立;D. 32=32,本选项不成立.故选:A【点睛】本题考核知识点:有理数乘方.解题关键点:理解乘方的意义.6.C【解析】试题分析:12800000个,将这个数用科学记数法表示为1.28×107,故选C.点睛:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.7.B【解析】【分析】有理数除法法则,两数相除,同号得正,异号得负,除以一个数等于乘以这个数的相反数,先将除法转化为有理数乘法,再根据有理数乘法法则进行计算即可.【详解】(-)÷(-)÷(-),=,=,=,故选B.【点睛】本题主要考查有理数的乘法和除法法则,解决本题的关键是要熟练掌握有理数乘法和除法法则.8.C【解析】【分析】根据倒数的概念,绝对值的性质,乘方的符号法则,及有理数的大小比较方法作答.【详解】A. −是−的倒数,故本选项错误;B. |−2|=2,故本选项错误;C. 正确;D. −3<,故本选项错误.故答案选C.【点睛】本题考查了倒数、绝对值、有理数的乘方等知识点,解题的关键的熟练的掌握倒数的概念、绝对值的性质、乘方的符号法则及有理数的大小比较方法.9.B【解析】分析:由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:780000=7.8×105,故选:B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.A【解析】【分析】各式计算得到结果,即可作出判断.【详解】①(-1)2010=1,不符合题意;②0-(-1)=0+1=1,不符合题意;③﹣=-,符合题意;④÷(-2)=-,不符合题意,故选:A.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.<【解析】【分析】根据负数小于0 解答即可.【详解】∵负数小于0,∴-5<0.故答案为:<.【点睛】本题考查了有理数的大小比较,熟知正数大于0 ,0大于负数,正数大于负数,两个负数绝对值大的反而小是解题的关键.12.3553-【解析】35-的相反数为35,35-的倒数为53-.13.8【解析】解:7-(-1)=8.故答案为:8.14.【解析】【分析】先求出绝对值小于2.5的所有的非负整数,再求积.【详解】绝对值小于2.5的所有非负整数为-2,-1,0,1,2,之积为0.故答案为:0【点睛】本题考查的知识点是非负整数的概念,解题关键是注意非负整数也包含0.15.2【解析】解:|﹣5+3|=|﹣2|=2.故答案为:2.16.【解析】【分析】由,可求得x=±2,y=±3,又因为,可知x与y异号,从而可求出x与y的值.【详解】∵,,∴x=±2,y=±3,∵,∴x与y异号,∴x=2,y=-3或x=-2,y=+3,∴,或.故答案为:.【点睛】本题考查了绝对值的意义,有理数的除法法则和有理数的加法法则,由绝对值的意义和有理数的除法法则求出x与y的值是解答本题的关键.17.-26【解析】【分析】利用相反数,倒数,以及绝对值的定义求出a+b,cd以及m的值,代入原式计算即可得到结果.【详解】根据题意得:a+b=0,cd=1,m=-3,则原式=-27+1=-26.故答案为:-26.【点睛】此题考查了代数式求值,相反数,绝对值,以及倒数,熟练掌握各自的定义是解本题的关键.18.1【解析】【分析】根据非负数的性质求得a、b的值,代入即可求得的值.【详解】∵,∴a+1=0,b-2=0,∴a=-1,b=2,∴===1.故答案为:1 【点睛】本题考查了非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求得a 、b 的值是解题的关键.19.20.±2.解:∵|2|=2,|﹣2|=2,∴x =±2.故答案为:±2. 21.储蓄所该日现金增加9.75万元.解:(5+12+22)﹣(9.6+7+10.25+2.4)=39﹣29.25 =9.75(万元) 答:储蓄所该日现金增加9.7 5万元.22.(1)3;(2)19;(3)7a 2-2b 2+ab.解:(1)原式()1584152 3.=⨯+-÷=⨯-= (2)原式()1124822122219.244=-⨯+⨯-+=--+= (3)原式()()22223252,ab a b ab a ab =---+-+22226252,ab a b ab a ab =-+-+-+ 2272.a b ab =-+23.c解: 根据数轴上点的位置得:b <a <0<c ,且|a|=|c|<|b|, ∴a+b <0,a+c=0,c-b >0|a|-|a+b|+|a+c|+|c-b|=-a+a+b+0+c-b=c 24.(1)-1;(2)24;(3);(4);(5)﹣;(6)﹣81.解:(1)原式=﹣9÷9=﹣1; (2)原式=0+9÷3×8=24; (3)原式=﹣3﹣÷2×=; (4)原式=﹣1+××(﹣7)=;(5)原式=12÷(﹣1﹣)=12×(﹣)=﹣;(6)原式=×36﹣3×36+×36﹣×36=18﹣108+30﹣21=﹣81.25.—<<0<-(-4)解:首先化简有理数,然后根据有理数大小比较规则求解即可.26.(1)2,6;(2)-2,-1,0,1;(3)10;(4)1,9;(5)1,4n+1. 解:(1)2,6;(2)即整数x与-2的距离加x与1的距离和为3,则-2≤x≤1,答:所有符合条件的整数x有:-2,-1,0,1;(3)即:-4≤x≤6,则|a+4|+|a-6|=10,故答案为10;(4)取-5,1,4三个数的中间值即可,即a=1,则最小值为9,故答案为1,9;(5)依据(4)取-2n,-2n+1,…1,2,3…,2n+1的中间值1,则最小值为2n+1-(-2n)=4n+1,故答案为1,4n+1.27.|a+b|<|a﹣b|=|a|+|b|.解:∵有理数a,b异号,如图,假设a>0>b,∴当BO<AO时,|a+b|<AO;当BO≥AO时,|a+b|<BO,而|a﹣b|=AB>AO或BO,∴|a+b|<|a﹣b|,又∵|a|+|b|=AO+BO=AB,∴|a﹣b|=|a|+|b|,∴|a+b|<|a﹣b|=|a|+|b|.当a<0<b时,同理可得|a+b|<|a﹣b|=|a|+|b|.28.(1)-4;(2)-19.解:(1)原式=×24-×24+×24=6-12+2=-4;(2)原式=-9+(-2)3×=-9-8×=-9-10=-19.。

2021-2022学年苏科版七年级数学第一学期第二章有理数单元测试题 含答案

2021-2022学年苏科版七年级数学第一学期第二章有理数单元测试题 含答案

有理数单元测试卷学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共8小题)1.在﹣,0,﹣|﹣5|,﹣0.6,2,﹣(﹣),﹣10中负数的个数有()A.3 B.4 C.5 D.62.下列说法中,①分数都是有理数;②两数之和为正,则两数均为正;③0是单项式;④一条直线就是一个平角.正确的说法的个数是()A.1 B.2 C.3 D.43.点A、B、C、D在数轴上的位置如图所示,表示的数是负数的点是()A.A B.B C.C D.D4.下列各数中是无理数的是()A.﹣3 B.πC.9 D.﹣0.115.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列,正确的是()A.﹣b<﹣a<a<b B.﹣b<a<﹣a<b C.﹣a<﹣b<a<b D.﹣b<b<﹣a<a6.﹣的绝对值是()A.B.C.D.7.下列运算中,结果最小的是()A.1﹣(﹣2)B.1﹣|﹣2| C.1×(﹣2)D.1÷(﹣2)8.如果a、b互为相反数,c、d互为倒数,x的绝对值等于2,那么cdx2﹣a﹣b的值是()A.4 B.﹣4 C.4或﹣4 D.无法确定二、填空题(共8小题)9.下列各数:27,,0.333…,﹣4π,1.3030030003…,3.1415926中,无理数的个数是.10.如图,数轴上的点A所表示的数为a,化简|a|﹣|a﹣2|的结果为.11.已知实数x,y满足|x﹣5|+=0 那么代数式()2008的值为.12.已知|x|=3,|y|=7,且x+y>0,则x﹣y的值等于.13.如图所示的是一个正方体的展开图,它的每一个面上都写有一个数,并且a与相对面的数互为相反数;b与相对面的数互为倒数;c与相对面的数和为33.那么a+b+c=.14.如图,有理数a在数轴上的位置如图所示,则a、、|a|、a2从小到大的顺序是.(用“<”号连接)15.对于整数a,b,c,d,符号表示运算ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是.16.如图,根据图中的运算程序进行计算,当输入x=3,y=2时,输出的结果为.三、解答题(共9小题)17.计算:(1)(+4)×(+3)÷(﹣);(2)(+10)﹣(+1)+(﹣2)﹣(﹣5);(3)(﹣24)×(﹣+);(4)﹣12+(﹣6)×(﹣)﹣8÷(﹣2)3.18.计算下列各题(1)(﹣2)3﹣|2﹣5|﹣(﹣15);(2)(﹣+﹣+)÷(﹣);(3)﹣32﹣[(1)3×(﹣)﹣6÷|﹣|];(4)2×(﹣1)﹣2×13+(﹣1)×5+×(﹣13).19.某市某公交车从起点到终点共有六个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如表:二三四五六站次人数下车(人)3610719上车(人)1210940(1)求本趟公交车在起点站上车的人数;(2)若公交车的收费标准是上车每人2元,计算此趟公交车从起点到终点的总收入?20.十几年前我国曾经流行有一种叫“二十四点”的数学趣味算题,方法是给出1~13之间的自然数,从中任取四个,将这四个数(四个数都只能用一次)进行“+”“﹣”“×”“÷”运算,可加括号使其结果等于24.例如:对1,2,3,4可运算(1+2+3)×4=24,也可以写成4×(1+2+3)=24,但视作相同的方法.现有郑、付两同学的手中分别握着四张扑克牌(见下图);若红桃♥、方块♦上的点数记为负数,黑桃♠、梅花♣上的点数记为正数.请你对郑、付两同学的扑克牌的按要求进行记数,并按前面“二十四点”运算方式对郑、付两同学的记数分别进行列式计算,使其运算结果均为24.(分别尽可能提供多种算法)依次记为:﹣、、﹣、依次记为:、﹣、﹣、.(1)帮助郑同学列式计算:﹣﹣﹣(2)帮助付同学列式计算:﹣﹣.21.阅读下列材料:现规定一种运算:=ad﹣bc.例如:=1×4﹣2×3=4﹣6=﹣2;=4x ﹣(﹣2)×3=4x+6.按照这种规定的运算,请解答下列问题:(1)=(只填结果);(2)已知:=1.求x的值.(写出解题过程)22.十一黄金周(7天)期间,49中学7年7班某同学计划租车去旅行,在看过租车公司的方案后,认为有以下两种方案比较适合(注:两种车型的油耗相同):周租金(单位:元)免费行驶里程(单位:千米)超出部分费用(单位:元/千米)A型1600100 1.5 B型2500220 1.2解决下列问题:(1)如果此次旅行的总行程为1800千米,请通过计算说明租用哪种型号的车划算;(2)设本次旅行行程为x千米,请通过计算说明什么时候费用相同.23.观察下列等式:=1﹣,=,=,将以上三个等式两边分别相加得:++=1﹣=1﹣=.(1)猜想并写出:=.(2)直接写出计算结果:+++…+=;(3)探究并计算:①.②.24.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”【提出问题】三个有理数a、b、c满足abc>0,求++的值.【解决问题】解:由题意得:a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①当a,b,c都是正数,即a>0,b>0,c>0时,则:++=++=1+1+3;②当a,b,c有一个为正数,另两个为负数时,设a>0,b<0,c<0,则:++=++=1﹣1﹣1=﹣1所以:++的值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求++的值;(2)已知|a|=9,|b|=4,且a<b,求a﹣2b的值.25.(材料阅读)数轴是数学学习的一个很重要的工具,利用数轴可以将数与形完美结合.通过数轴我们可发现许多重要的规律:①绝对值的几何意义:一般地,若点A、点B在数轴上表示的有理数分别为a,b,那么A、B两点之间的距离表示为|a﹣b|,记作AB=|a﹣b|,|3﹣1|则表示数3和1在数轴上对应的两点之间的距离;又如|3+1|=|3﹣(﹣1)|,所以|3+1|表示数3和﹣1在数轴上对应的两点之间的距离;②若数轴上点A、点B表示的数分别为a、b,那么线段AB的中点M表示的数为.(问题情境)如图,在数轴上,点A表示的数为﹣20,点B在原点右侧,表示的数为b,动点P从点A出发以每秒2个单位长度的速度沿数轴正方向运动,同时,动点Q从点B出发以每秒3个单位长度的速度沿数轴负方向运动,其中线段PQ的中点记作点M.(综合运用)(1)出发12秒后,点P和点Q相遇,则B表示的数b=;(2)在第(1)问的基础上,当时,求运动时间;(3)在第(1)问的基础上,点P、Q在相遇后继续以原来的速度在这条数轴上运动,但P、Q两点运动的方向相同.随着点P、Q的运动,线段PQ的中点M也相应移动,问线段PQ的中点M能否与表示﹣2的点重合?若能,求出从P、Q相遇起经过的运动时间;若不能,请说明理由.有理数单元提优测试卷参考答案一、单选题(共8小题)1.【答案】B【解答】解:﹣|﹣5|=﹣5,﹣(﹣)=,故负数有﹣,﹣|﹣5|,﹣0.6,﹣10,共4个.故选:B.2.【答案】B【解答】解:①分数都是有理数,说法正确;②两数之和为正,则两数不一定均为正,如2+(﹣1)=1,故原说法错误;③0是单项式,说法正确;④一条直线不是一个平角,因为平角有顶点,原说法错误,故原说法错误.正确的说法有①③共2个.故选:B.3.【答案】A【解答】解:根据数轴得:A表示的数为负数.故选:A.4.【答案】B【解答】解:A、﹣3,是有理数,不合题意;B、π,是无理数,符合题意;C、9,是有理数,不合题意;D、﹣0.11,是有理数,不合题意;故选:B.5.【答案】B【解答】解:∵a<0<b,且﹣a<b,∴﹣a>0,﹣b<0,∵﹣a<b,∴﹣b<a,∴﹣b<a<﹣a<b.故选:B.6.【答案】C【解答】解:﹣的绝对值是|﹣|=;故选:C.7.【答案】C【解答】解:A、原式=1+2=3;B、原式=1﹣2=﹣1;C、原式=﹣2;D、原式=﹣;其中结果最小的是﹣2.故选:C.8.【答案】A【解答】解:∵a、b互为相反数,c、d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,|x|=2,∴cdx2﹣a﹣b=1×22﹣0=4﹣0=4.故选:A.二、填空题(共8小题)9.【答案】2个【解答】解:27,,0.333…,﹣4π,1.3030030003…,3.1415926中,无理数有﹣4π,1.3030030003…,一共有2个.故答案为:2个.10.【答案】2【解答】解:由数轴知:1<a<2,∴a﹣2<0,∴|a|﹣|a﹣2|=a﹣(a﹣2)=a﹣a+2=2.故答案为:2.11.【答案】1【解答】解:∵|x﹣5|+=0,∴x=5,y=﹣4,则原式=1.故答案为:1.12.【答案】-4或-10【解答】解:∵|x|=3,|y|=7∴x=3或x=﹣3;y=7或y=﹣7,又∵x+y>0,∴当x=3,y=7时,x﹣y=3﹣7=﹣4;当x=﹣3,y=7时,x﹣y=﹣3﹣7=﹣10;故答案为:﹣4或﹣10.13.【答案】 14【解答】解:由正方体的表面展开图的“相间、Z端是对面”可得,“a”与“8”相对,“b”与“4”相对,“c”与“25”相对,∵a与相对面的数互为相反数;b与相对面的数互为倒数;c与相对面的数和为33.∴a=﹣8,b=,c=8∴a+b+c=,故答案为:.14.【答案】 1a<a<a2<|a|【解答】解:取a=﹣,则=﹣2,|a|=,a2=(﹣)2=,∵﹣2<﹣<,∴<a<a2<|a|,故答案为:<a<a2<|a|.15.【答案】±4【解答】解:由题意得,1<1×5﹣xy<3,即1<5﹣xy<3,∴,∵x、y均为整数,∴xy为整数,∴xy=3,∴x=±1时,y=±3;x=±3时,y=±1;∴x+y=1+3=4或x+y=﹣1﹣3=﹣4,故答案为±4.16.【答案】1【解答】解:由图中所提供的运算程序,可得输出的结果为x2+y2﹣2xy,即(x﹣y)2,当x=3,y=2时,原式=32+22﹣2×3×2=1,故答案为:1.三、解答题(共9小题)17.【解答】解:(1)原式=12×(﹣)=﹣18;(2)原式=10﹣1﹣2+5=12;(3)原式=(﹣24)×﹣(﹣24)×+(﹣24)×=﹣16+15﹣12=﹣13;(4)原式=﹣1+3﹣8÷(﹣8)=﹣1+3+1=3.18.【解答】解:(1)(﹣2)3﹣|2﹣5|﹣(﹣15)=(﹣8)﹣3+15=(﹣8)+(﹣3)+15=4;(2)(﹣+﹣+)÷(﹣)=(﹣+﹣+)×(﹣24)=﹣×(﹣24)+×(﹣24)﹣×(﹣24)+×(﹣24)=12+(﹣20)+9+(﹣10)=﹣9;(3)﹣32﹣[(1)3×(﹣)﹣6÷|﹣|]=﹣9﹣[()3×(﹣)﹣6÷]=﹣9﹣[×(﹣)﹣6×]=﹣9﹣(﹣﹣9)=﹣9++9=;(4)2×(﹣1)﹣2×13+(﹣1)×5+×(﹣13)=(2+5)×(﹣1)+[(﹣2)+(﹣)]×13=7×(﹣)+(﹣3)×13=(﹣10)+(﹣39)=﹣49.19.【解答】解:(1)19﹣[(12﹣3)+(10﹣6)+(9﹣10)+(4﹣7)]=19﹣[9+4﹣1﹣3]=19﹣9=10答:本趟公交车在起点站上车的人数是10人.(2)由(1)知起点上车10人(10+12+10+9+4)×2=45×2=90(元)答:此趟公交车从起点到终点的总收入是90元.20.【答案】【第1空】-9【第2空】7【第3空】-6【第4空】2【第5空】7【第6空】-13【第7空】-5【第8空】3【第9空】(-9+7-2)×(-6)【第10空】[-5×(-13)+7]÷3【解答】解:依次记为:﹣9、7、﹣6、2;依次记为:7、﹣13、﹣5、3.(1)(﹣9+7﹣2)×(﹣6)=(﹣4)×(﹣6)=24;(2)[﹣5×(﹣13)+7]÷3=(65+7)÷3=72÷3=24.故答案为:﹣9,7,﹣6,2;7,﹣13,﹣5,3;(﹣9+7﹣2)×(﹣6);[﹣5×(﹣13)+7]÷3.21.【答案】4【解答】解:(1)根据题中的新定义得:原式=2+6×=2+2=4;故答案为:4;(2)由题意得:﹣=1,去分母,得:3x﹣5(x﹣3)=15,去括号,得:3x﹣5x+15=15,移项及合并,得:﹣2x=0,系数化为1,得:x=0.22.【解答】解:(1)若租用A型车,所需费用为:1600+(1800﹣100)×1.5=4150,若租用B型车,所需费用为:2500+(1800﹣220)×1.2=4396,∵4396>4150∴选择A型号车划算;(2)若租用A型车,所需费用为:1600+1.5(x﹣100)=1.5x+1450,若租用B型车,所需费用为:2500+1.2(x﹣220)=1.2x+2236,当1.5x+1450=1.2x+2236,即x=2620时,租用A型车和B型车费用相同.23.【答案】【第1空】12020-12021【第2空】20192020【解答】解:(1)=﹣;故答案为:﹣;(2)+++…+=1+﹣+﹣+…+﹣=1﹣=;故答案为:;(3)①=(1﹣+﹣+﹣+…+﹣+﹣)=(1﹣)=;②=(1﹣﹣++﹣﹣++﹣+…+﹣﹣+)=×(1﹣﹣+)=.24.【解答】解:(1)由题意得:a,b,c三个有理数都为负数或其中一个为负数,另两个为正数.①当a,b,c都是负数,即a<0,b<0,c<0时,则:++=﹣﹣﹣=﹣1﹣1﹣1=﹣3;②当a,b,c有一个为负数,另两个为正数时,设a>0,b>0,c<0,则:++=++=1+1﹣1=1所以:++的值为﹣3或1.(2)因为|a|=9,|b|=4,所以a=±9,b=±4,因为a<b,所以a=﹣9,b=±4,所以a﹣2b=﹣9﹣2×4=﹣17或a﹣2b=﹣9﹣2×(﹣4)=﹣1.答:a﹣2b的值为﹣17或﹣1.25.【答案】40【解答】解:(1)由题意(2+3)×12=b﹣(﹣20),解得b=40,故答案为40.(2)设运动时间为t秒.由题意:60﹣(2+3)t=×60或(2+3)t﹣60=×60,解得t=8或16.答:运动时间为8秒或16秒时,PQ=AB.(3)能.点P、Q在相遇点表示的数为﹣20+12×2=4,设从点P、Q相遇起经过的时间为t秒时,线段PQ的中点M与﹣2重合.由题意,P,Q必须同时向左运动,可得=﹣2,解得t=,答:从P、Q相遇起经过的运动时间为.1、三人行,必有我师。

七年级上《第2章整式的加减》章末检测卷含答案(附模拟试卷含答案)

七年级上《第2章整式的加减》章末检测卷含答案(附模拟试卷含答案)

第二章检测卷一、选择题(每小题3分,共30分)1.下列式子中,是单项式的是( )A.x +y 2B.-12x 3yz 2C.5xD.x -y 2.在下列单项式中,与2xy 是同类项的是( )A.2x 2y 2B.3yC.xyD.4x3.多项式4xy 2-3xy 3+12的次数为( )A.3B.4C.6D.74.下面计算正确的是( )A.6a -5a =1B.a +2a 2=3a 2C.-(a -b )=-a +bD.2(a +b )=2a +b5.如图所示,三角尺的面积为( )A.ab -r 2B.12ab -r 2 C.12ab -πr 2 D.ab6.已知一个三角形的周长是3m -n ,其中两边长的和为m +n -4,则这个三角形的第三边的长为( )A.2m -4B.2m -2n -4C.2m -2n +4D.4m -2n +47.已知P =-2a -1,Q =a +1且2P -Q =0,则a 的值为( )A.2B.1C.-0.6D.-18.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A.甲B.乙C.丙D.一样9.当1<a<2时,代数式|a -2|+|1-a|的值是( )A.-1B.1C.3D.-310.下列图形都是由同样大小的长方形按一定的规律组成的,其中第①个图形的面积为2cm 2,第②个图形的面积为8cm 2,第③个图形的面积为18cm 2……则第⑩个图形的面积为( )A.196cm 2B.200cm 2C.216cm 2D.256cm 2二、填空题(每小题3分,共24分)11.单项式-2x 2y 5的系数是 ,次数是 W. 12.如果手机通话每分钟收费m 元,那么通话n 分钟收费 元.13.若多项式的一次项系数是-5,二次项系数是8,常数项是-2,且只含一个字母x ,请写出这个多项式 .14.减去-2m 等于m 2+3m +2的多项式是m 2+m +2.15.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2016的值为 .16.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 等于4.17.若a -2b =3,则9-2a +4b 的值为 W.18.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2016三、解答题(共66分)19.(12分)化简:(1)3a 2+5b -2a 2-2a +3a -8b ; (2)(8x -7y )-2(4x -5y );(3)-(3a 2-4ab )+[a 2-2(2a 2+2ab )].20.(8分)先化简再求值:(1)-9y +6x 2+3⎝ ⎛⎭⎪⎫y -23x 2,其中x =2,y =-1;(2)2a 2b -[2a 2+2(a 2b +2ab 2)],其中a =12,b =1.21.(10分)已知A =2x 2+xy +3y -1,B =x 2-xy.(1)若(x +2)2+|y -3|=0,求A -2B 的值;(2)若A -2B 的值与y 的值无关,求x 的值.22.(10分)暑假期间2名教师带8名学生外出旅游,教师旅游费每人a 元,学生每人b 元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,则共需交旅游费多少元(用含字母的式子表示)?并计算当a =300,b =200时的旅游费用.23.(12分)如图是某种窗户的形状,其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为am ,计算:(1)窗户的面积;(2)窗框的总长;(3)若a =1,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用是多少元(π取3.14,结果保留整数).参考答案与解析1.B 2.C 3.B 4.C 5.C6.C 7.C 8.C 9.B 10.B11.-253 12.mn 13.8x 2-5x -2 14.m 2+m +2 15.1 16.4 17.3 18.-219.解:(1)原式=3a 2-2a 2-2a +3a +5b -8b =a 2+a -3b.(4分)(2)原式=8x -7y -8x +10y =3y.(8分)(3)原式=-3a 2+4ab +a 2-4a 2-4ab =-6a 2.(12分)20.解:(1)原式=-9y +6x 2+3y -2x 2=4x 2-6y.(2分)当x =2,y =-1时,原式=4×22-6×(-1)=22.(4分)(2)原式=2a 2b -(2a 2+2a 2b +4ab 2)=2a 2b -2a 2-2a 2b -4ab 2=-2a 2-4ab 2.(6分)当a =12,b =1时,原式=-2×⎝ ⎛⎭⎪⎫122-4×12×1=-52.(8分) 21.解:(1)∵A=2x 2+xy +3y -1,B =x 2-xy ,∴A-2B =2x 2+xy +3y -1-2x 2+2xy =3xy +3y -1.∵(x +2)2+|y -3|=0,∴x=-2,y =3,则A -2B =-18+9-1=-10.(5分)(2)∵A-2B =y(3x +3)-1,A -2B 的值与y 值无关,∴3x+3=0,解得x =-1.(10分)22.解:共需交旅游费为0.8a×2+0.65b×8=(1.6a +5.2b)(元).(5分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(10分) 23.解:(1)窗户的面积为⎝ ⎛⎭⎪⎫4+π2a 2m 2.(4分) (2)窗框的总长为(15+π)am.(8分)(3)⎝ ⎛⎭⎪⎫4+π2a 2×25+(15+π)a×20=⎝⎛⎭⎪⎫100+252π×12+(300+20π)×1=400+652π≈502(元). 答:制作这种窗户需要的费用约是502元.(12分)24.解:(1)11 14 32(6分)(2)第n 个“T”字形图案共有棋子(3n +2)个.(8分)(3)当n =20时,3n +2=3×20+2=62(个).即第20个“T”字形图案共有棋子62个.(10分)(4)这20个数据是有规律的,第1个与第20个数据的和、第2个与第19个数据的和、第3个与第18个数据的和……都是67,共有10个67.所以前20个“T”字形图案中,棋子的总个数为67×10=670(个).(14分)2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,一副三角尺按不同的位置摆放,摆放位置中∠α=∠β的图形个数共有()A.4个B.3个C.2个D.1个2.下列关于角的说法正确的个数是:()①由两条射线组成的图形一定是角②角的边长,角越大③在角的一边的延长线取一点D ④角可以看作由一条射线绕着它的端点旋转而成的图形A.1 B.2 C.3 D.43.下列各图中,经过折叠能围成一个正方体的是( )A. B. C. D.4.某市居民用电价格改革方案已出台,为鼓励居民节约用电,对居民生活用电实行阶梯制价格(见表):乐乐家12月份用电200千瓦时,交电费105元,则a的值为()A.90 B.100 C.150 D.1205.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走x 步才能追上走路慢的人,那么,下面所列方程正确的是()A.x x10060100-= B.x x10010060-= C.x x10060100+= D.x x10010060+=6.给出如下结论:①单项式-232x y的系数为-32,次数为2;②当x=5,y=4时,代数式x2-y2的值为1;③化简(x+14)-2(x-14)的结果是-x+34;④若单项式57ax2y n+1与-75ax m y4的差仍是单项式,则m+n=5.其中正确的结论有()A.1个B.2个C.3个D.4个7.如图中的数字都是按一定规律排列的,其中x的值是()A .179B .181C .199D .2108.下列等式变形正确的是( )A.如果s =12ab ,那么b =2s aB.如果12x =6,那么x =3 C.如果x -3=y -3,那么x -y =0D.如果mx =my ,那么x =y 9.下列代数式中:①3x 2-1;②xyz ;③12b ;④32x y +,单项式的是( ) A .① B .② C .③ D .④10.9的相反数是( )A .﹣9B .9C .19D .19- 11.下列说法正确的是( )A.一个数前面加上“-”号,这个数就是负数B.零既是正数也是负数C.若a 是正数,则a -不一定是负数D.零既不是正数也不是负数12.a ,b ,c 三个数在数轴上的位置如图所示,则这三个数中绝对值最大的是( )A.cB.bC.aD.无法确定二、填空题13.如图,AB ∥CD ,AC 平分∠DAB ,∠2=25°,则∠D= ______ .14.∠α=0'402035",它的补角β=__________;15.若(5x+2)与(﹣2x+9)互为相反数,则x ﹣2的值为_____.16.若x =-1是关于x 的方程2x +a =1的解,则a 的值为_____.17.根据以下图形变化的规律,第2019个图形中黑色正方形的数量是___.18.若代数式223x x -的值为5,则代数式2469x x -+-的值是_______19.31()2-=________________.20.数轴上与表示-3的点相距4个单位长度的点表示的数是_____.三、解答题21.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD .(1)若∠AOC=70°,∠DOF=90°,求∠EOF 的度数;(2)若OF 平分∠COE ,∠BOF=15°,若设∠AOE=x°.①用含x 的代数式表示∠EOF;②求∠AOC 的度数.22.中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一、以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;二、个人所得税纳税税率如下表所示:(1)若甲、乙两人的每月工资收入额分别为4500元和6000元,请分别求出甲、乙两人的每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为85元,则丙每月的工资收入额应为多少?23.已知,O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.()1如图1,若AOC 30∠=,求DOE ∠的度数;()2在图1中,若AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示);()3将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置.①探究AOC ∠和DOE ∠的度数之间的关系,写出你的结论,并说明理由;②在AOC ∠的内部有一条射线OF ,满足:AOC 4AOF 2BOE AOF ∠∠∠∠-=+,试确定AOF ∠与DOE ∠的度数之间的关系,说明理由.24.用一根绳子环绕一棵大树.若环绕大树3周,则绳子还多4尺;若环绕大树4周,则绳子又少3尺.这根绳子有多长?环绕大树一周要多少尺?25.先化简,再求值:[(x+2y )(x-2y )-(x+4y )2]÷4y,其中x 、y 满足:x 2+y 2-4x+6y+13=026.计算与化简:(1)(-9)-(-7)+(-6)-(+4)-(-5)(2)42211(2)()1()0.25345-÷-+⨯-+ (3)222221382(33)(3)3535x x xy y x xy y -+-+++ 27.(1)计算:16÷(﹣2)3﹣(﹣12)3×(﹣4)+2.5; (2)计算:(﹣1)2017+|﹣22+4|﹣(12﹣14+18)×(﹣24) 28.已知,如图,A 、B 分别为数轴上的两点,A 点对应的数为-20,B 点对应的数为100.请写出AB 中点M 对应的数。

2022-2023学年苏科版七年级数学上册《第2章有理数》期中复习综合练习题(附答案)

2022-2023学年苏科版七年级数学上册《第2章有理数》期中复习综合练习题(附答案)

2022-2023学年苏科版七年级数学上册《第2章有理数》期中复习综合练习题(附答案)一、选择题(每小题3分,共24分)1.采摘杨梅时,每筐杨梅以5kg为基准,超过的千克数记为正数,不足的千克数记为负数,记录数据如图所示,则这4筐杨梅的总质量是()A.19.7kg B.19.9kg C.20.1kg D.20.3kg2.﹣|﹣|的倒数是()A.B.﹣C.﹣D.3.下列运算错误的是()A.﹣8×2×6=﹣96B.(﹣1)2020+(﹣1)2021=0C.﹣(﹣3)2=﹣9D.2÷=24.一个数的相反数仍是它本身,这个数是()A.1B.﹣1C.0D.正数5.长江三峡工程电站总装机容量科学记数法表示为1.82×107千瓦,把它写成原数是()A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦6.如图,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是()A.ab>0B.a+b<0C.(b﹣1)(a+1)>0D.(b﹣1)(a﹣1)>07.若|a﹣1|+(b+3)2=0,则ba=()A.1B.﹣1C.3D.﹣38.不相等的有理数a,b,c在数轴上的对应点分别是A、B、C,如果|a﹣b|+|b﹣c|=|a﹣c|,那么点B()A.在A、C点的左边B.在A、C点的右边C.在A、C点之间D.上述三种均可能9.张老师买了一辆启辰R50X汽车,为了掌握车的油耗情况,在连续两次加油时做了如下工作:(1)把油箱加满油;(2)记录了两次加油时的累计里程(注:“累计里程”指汽车从出厂开始累计行驶的路程),以下是张老师连续两次加油时的记录:加油时间加油量(升)加油时的累计里程(千米)2016年4月28日1862002016年5月16日306600则在这段时间内,该车每100千米平均耗油量为()A.3升B.5升C.7.5升D.9升10.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN =NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R二、填空题(每小题3分,共18分)11.在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是,最小的积是.12.已知a、b互为相反数,且|a﹣b|=6,则b﹣1=.13.将640000精确到十万位为,4.10×105精确到了位.14.计算:1+2﹣3﹣4+5+6﹣7﹣8+9+10﹣11﹣12+……+2017+2018﹣2019﹣2020=.15.观察下列三行数,并按规律填空:﹣1,2,﹣3,4,﹣5,_____,_____,……1,4,9,16,25,_____,_____,……0,3,8,15,24,_____,_____,……(1)第一行数按什么规律排列?;(2)第二行数、第三行数分别与第一行数有什么关系?;(3)取每行数的第10个数.计算这三个数的和.16.已知三个互不相等的有理数,既可表示为1,a+b,a的形式,又可表示为0,,b的形式,则a2020+b2021的值为.三、解答题(共78分)17.把下列各数的序号填在相应的数集内:①1;②﹣;③+3.2;④0;⑤;⑥﹣6.5;⑦+180;⑧﹣4;⑨﹣6.(1)正整数集合:{…};(2)正分数集合:{…};(3)负分数集合:{…};(4)负数集合:{…}.18.如图,一个单位长度表示2,解答下列问题:(1)若点B与点D所表示的数互为相反数,求点D所表示的数;(2)若点A与点B所表示的数互为相反数,求点D所表示的数;(3)若点B与点F所表示的数互为相反数,求点D所表示的数的相反数.19.计算:(1);(2)﹣23+(﹣2)2×(﹣1)﹣(﹣2)4÷(﹣2)3;(3)(﹣)÷(﹣);(4)29×(﹣12)20.规定一种新的运算:a△b=ab﹣a﹣b+1,如3△4=3×4﹣3﹣4+1=6.试求:[(﹣5)△4]△(﹣3)的值.21.已知点A在数轴上对应的数是a,点B在数轴上对应的数是b,且|a+4|+(b﹣1)2=0.现将A、B之间的距离记作|AB|,定义|AB|=|a﹣b|.(1)|AB|=;(2)设点P在数轴上对应的数是x,当|P A|﹣|PB|=2时,求x的值.22.某摩托车厂家本周计划每天生产250辆摩托车,由于工厂实行轮休,每天上班人数不一定相等,实际每天生产与计划相比情况如下表:星期一二三四五六日增减﹣5+7﹣3+4+9﹣8﹣25(1)本周六生产了多少辆摩托车?(2)本周总产量与计划相比是增加了还是减少了?具体数量是多少?产量最多的一天比产量最少的一天多生产了多少?23.如图是3×3的三阶幻方,将2.4.6.8.10.12.14.16.18这九个数分别填入下列两个方格中,使得每行、每列、每条对角线上的三个数之和相等.(1)方格正中间位置的数是;(2)将下列两个幻方补充完整.24.一位病人上午8时的体温是39.4℃,下表表示该病人一天中的体温变化:时间11时14时17时20时23时凌晨2时凌晨5时上午8时体温℃﹣1.2+1+0.5﹣1.2﹣0.5﹣0.5﹣0.4+0.2(1)这位病人的最高体温出现在几时?最高体温和最低体温相差多少度?(2)从这位病人的病情变化看,请你分析他的病情在恶化还是好转?25.阅读下列材料,解答问题.饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏秋、冬季各60天.原来,学生饮水一般都是购纯净水(其他碳酸饮料或果汁价格更高),纯净水零售价为1.5元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,夏季平均每天要买2瓶纯净水,学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机,经调查,购买一台冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季,平均每1.5天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,饮水机每天用电约5度,当地民用电价为0.50元/度.问题:(1)在未购买饮水机之前,全年平均每个学生要花费多少元钱来购买纯净水饮用;(2)请计算:在购买饮水机解决学生饮水问题后,每班当年共要花费多少元?(3)这项便利学生的措施实施后,某中学一年要为全体学生共节约多少元?参考答案一、选择题(每小题3分,共24分)1.解:(﹣0.1﹣0.3+0.2+0.3)+5×4=20.1(千克),答:4筐杨梅的总质量是20.1千克.故选:C.2.解:﹣|﹣|=﹣,﹣的倒数是﹣,故B正确;故选:B.3.解:A、﹣8×2×6=﹣96,故A不符合题意;B、(﹣1)2020+(﹣1)2021=0,故B不符合题意;C、﹣(﹣3)2=﹣9,故C不符合题意;D、2÷,故D符合题意.故选:D.4.解:0的相反数是其本身.故选:C.5.解:把数据1.82×107中1.82的小数点向右移动7位就可以得到,为18 200 000.故选C.6.解:a、b两点在数轴上的位置可知:﹣1<a<0,b>1,∴ab<0,a+b>0,故A、B错误;∵﹣1<a<0,b>1,∴b﹣1>0,a+1>0,a﹣1<0故C正确,D错误.故选:C.7.解:由题意得,a﹣1=0,b+3=0,解得a=1,b=﹣3,所以,ba=(﹣3)×1=﹣3.故选:D.8.解:∵|a﹣b|+|b﹣c|=|a﹣c|,∴点B在A、C点之间.故选:C.9.解:由题意可得:两次加油间耗油30升,行驶的路程为6600﹣6200=400(千米)所以该车每100千米平均耗油量为:30÷(400÷100)=7.5(升).故选:C.10.解:∵MN=NP=PR=1,∴a、b两个数之间的距离小于3,∵|a|+|b|=3,∴原点不在a、b两个数之间,即原点不在N或P,∴原点是M或R.故选:A.二、填空题(每小题3分,共18分)11.解:在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积必须为正数,即(﹣5)×(﹣3)×5=75,最小的积为负数,即(﹣5)×(﹣3)×(﹣2)=﹣30.故答案为:75;﹣30.12.解:∵a、b互为相反数,∴a+b=0即a=﹣b.当b为正数时,∵|a﹣b|=6,∴b=3,b﹣1=2;当b为负数时,∵|a﹣b|=6,∴b=﹣3,b﹣1=﹣4.故答案填2或﹣4.13.解:将640000精确到十万位为6×105,4.10×105精确到了千位.故答案为:6×105,千.14.解:1+2﹣3﹣4+5+6﹣7﹣8+9+10﹣11﹣12+……+2013+2014﹣2015﹣2016+2017+2018﹣2019﹣2020=(1+2﹣3﹣4)+(5+6﹣7﹣8)+(9+10﹣11﹣12)+...+(2013+2014﹣2015﹣2016)+(2017+2018﹣2019﹣2020)=(﹣4)+(﹣4)+(﹣4)+...+(﹣4)+(﹣4)=(﹣4)×505=﹣2020,故答案为:﹣2020.15.解:(1)第一行数是﹣1,2,﹣3,4,﹣5,…,排列规律是:第n个数为(﹣1)n n,故答案为:第n个数为(﹣1)n n;(2)对于一、二两行中位置对应的数,可以发现:第二行数是与第一行数的每一个相对应的数的平方,第三行每一个数是第二行对应的数减1得到的,即为第一行数的每一个相对应的数的平方减1得到.故答案为:第二行数是与第一行数的每一个相对应的数的平方;第三行每一个数是第二行对应的数减1得到的,即为第一行数的每一个相对应的数的平方减1得到;(3)根据规律得出:第一行数第10个数为10,第二行数第10个数为100,第三行数第10个数为99,则这三个数的和为:10+100+99=209.故答案为:209.16.解:由分析得,a+b=0,b=1,解得a=﹣1,b=1,∴a2020+b2021=1+1=2.故答案为:2.三、解答题(共78分)17.解:(1)正整数集合:{①1;⑦+180,……};故答案为:①⑦;(2)正分数集合:{③+3.2;⑤,……};故答案为:③⑤;(3)负分数集合:{②﹣;⑥﹣6.5,……};故答案为:②⑥;(4)负数集合:{②﹣;⑥﹣6.5;⑧﹣4;⑨﹣6,……}.故答案为:②⑥⑧⑨.18.解:(1)∵点B与点D所表示的数互为相反数,∴点C是原点,∴D点表示两个单位长度,∵一个单位长度表示2,∴D点表示的数是4;(2)∵点A与点B所表示的数互为相反数,∴A、B的中点为原点,∵D点与B点之间是4个单位长度,∴D点表示的数是9;(3)∵点B与点F所表示的数互为相反数,∴B、F的中点为原点,∴D点表示的数是2,∴D点所表示的数的相反数是﹣2.19.解:(1)原式=﹣3÷(﹣)=+18=18;(2)原式=﹣8﹣4+2=﹣10;(3)原式=(﹣﹣+﹣)×(﹣48)=8+6﹣36+4=﹣18;(4)原式=(30﹣)×(﹣12)=﹣360+=﹣359.20.解:由题意得:[(﹣5)△4]△(﹣3)=[(﹣5)×4﹣(﹣5)﹣4+1]△(﹣3)=(﹣20+5﹣4+1)△(﹣3)=(﹣18)△(﹣3)=(﹣18)×(﹣3)﹣(﹣18)﹣(﹣3)+1=54+18+3+1=76.21.解:(1)∵|a+4|+(b﹣1)2=0,∴a=﹣4,b=1,∴|AB|=|a﹣b|=5;(2)当P在点A左侧时,|P A|﹣|PB|=﹣(|PB|﹣|P A|)=﹣|AB|=﹣5≠2.当P在点B右侧时,|P A|﹣|PB|=|AB|=5≠2.∴上述两种情况的点P不存在.当P在A、B之间时,|P A|=|x﹣(﹣4)|=x+4,|PB|=|x﹣1|=1﹣x,∵|P A|﹣|PB|=2,∴x+4﹣(1﹣x)=2.∴x=﹣,即x的值为﹣.故答案为:5.22.解:(1)250﹣8=242(辆),答:本周六生产了242辆摩托车;(2)本周总产量:250×7﹣5+7﹣3+4+9﹣8﹣25=1729(辆),+9﹣(﹣25)=34(辆).答:本周总产量与计划相比减少了,具体数量是1729辆,产量最多的一天比产量最少的一天多生产了34辆.23.解:(1)在所有幻方中,所有数字按照大小排序,中间的数字填写在方格正中间,故答案为:10.(2)将两个幻方补充完整如下:24.解:(1)这位病人的最高体温出现在17时,即39.4﹣1.2+1+0.5=39.7℃,最低体温=39.4﹣1.2+1+0.5﹣1.2﹣0.5﹣0.5﹣0.4=37.1℃,∴最高体温和最低体温相差39.7℃﹣37.1℃=2.6℃;(2)体温逐渐降低到人体正常温度37℃左右,病情好转.25.解:(1)∵每个学生春、秋、冬季每天1瓶矿泉水,夏季每天2瓶,∴一个学生在春、秋、冬季共要购买180瓶的矿泉水,夏天要购买120瓶矿泉水,∴一年中一个学生共要购买300瓶矿泉水,即一个学生全年共花费1.5×300=450(元).故全年平均每个学生要花费450元钱来购买纯净水饮用;(2)购买饮水机后,一年每个班所需纯净水的桶数为:春秋两季,每1.5天4桶,则120天共要(4×120)×=320(桶).夏季每天5桶,共要60×5=300(桶),冬季每天1桶,共60桶,∴全年共要纯净水(320+300+60)=680(桶),故购买矿泉水费用为:680×6=4080(元),使用电费为:240×5×0.5=600(元),故每班学生全年共花费:4080+600+150=4830(元).故每班当年共要花费4830元;(3)∵一个学生节省的钱为:450﹣=353.4(元),∴全体学生共节省的钱数为:353.4×24×50=424080(元).故某中学一年要为全体学生共节约424080元.。

新编【北师大版】2019年秋七年级数学上册:第2章质量检测卷(Word版,含答案)

新编【北师大版】2019年秋七年级数学上册:第2章质量检测卷(Word版,含答案)

第二章检测卷分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.-1的倒数是( ) A.1 B.-1 C.±1 D.02.下列四个数中,最大的数是( ) A.-2 B.13C.0D.63.如图是南昌市去年一月份某一天的天气预报,则该天最高气温比最低气温高( )A.-3℃B.7℃C.3℃D.-7℃ 4.下列计算错误的是( )A.8-(-2)=10B.-5÷⎝ ⎛⎭⎪⎫-12=10C.(-5)+(+3)=-8D.-1×⎝ ⎛⎭⎪⎫-13=135.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm ”和“8cm ”分别对应数轴上的-3.6和x ,则x 的值为( )A.4.2B.4.3C.4.4D.4.56.数轴上表示整数的点叫作整点.某数轴的单位长度为1cm ,若在这条数轴上任意画出一条长度为2018cm 的线段,则线段盖住的整点个数为( )A.2019个B.2018个C.2019或2018个D.2018或2017个二、填空题(本大题共6小题,每小题3分,共18分) 7.计算:-3+2= .8.曾有微信用户提议应该补全朋友圈只有点赞功能的缺陷,增加“匿名点呸”的功能.如果将点32个赞记作+32,那么匿名点2个呸,应记作 .9.九景衢铁路2017年12月28日正式通车,景德镇从此跨入动车时代.据了解,九景衢铁路总长约333千米,用科学记数法表示为 米.10.如果a 与1互为相反数,则|a +2|= .11.如图所示是一个简单的数值运算程序.当输入x 的值为-1时,输出的数值为 .输入x ―→×(-3)―→-2―→输出12.已知点A 是数轴上的一点,且点A 到原点的距离为2,把点A 沿数轴向右移动5个单位得到点B ,则点B 表示的有理数是 .三、(本大题共5小题,每小题6分,共30分) 13.把下列各数填入集合内:+8.5,-312,0.3,0,-3.4,12,-9,413.(1)正数集合:{} …; (2)整数集合:{} …; (3)负分数集合:{} …. 14.计算:(1)(-2)2×5-(-2)3÷4;(2)⎝ ⎛⎭⎪⎫-56+23÷⎝ ⎛⎭⎪⎫-712×72.15.画出数轴,在数轴上表示下列各数,并用“〉”把它们连接起来.-⎝ ⎛⎭⎪⎫-412,-2,0,(-1)2,|-3|,-313.16.老王在农业银行的存款有28000元,昨天因为急用取出了13500元,今天上午他将收回的货款36000元又存入了银行,并且下午打算去批发市场进货.如果这批货物需要52000元,那么老王的银行存款是否足够支付这批货物的费用?17.如图是一个数值转换机的示意 图,若输入x 的值为3,y 的值为-2,根据程序列出算式并求出输出的结果.四、(本大题共3小题,每小题8分,共24分)18.已知|a-1|+(b+2)2=0,求(a+b)2019的值.19.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间?20.已知a ,b 均为有理数,现定义一种新的运算,规定:a#b =a 2+ab -5,例如:1#2=12+1×2-5=-2.求:(1)(-3)#6的值;(2)⎣⎢⎡⎦⎥⎤2#⎝ ⎛⎭⎪⎫-32-[(-5)#9]的值.五、(本大题共2小题,每小题9分,共18分)21.如图所示,在数轴上的三个点A、B、C表示的数分别为-3、-2、2,试回答下列问题.(1)A,C两点间的距离是;(2)若E点与B点的距离是8,则E点表示的数是;(3)若将数轴折叠,使A点与C点重合,则B点与哪个数重合?22.南丰蜜桔是江西抚州的一大特产,现有20筐南丰蜜桔,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(2)与标准重量比较,20筐蜜桔总计超过或不足多少千克? (3)若蜜桔每千克售价5元,则这20筐蜜桔可卖多少元?六、(本大题共12分)23.下面是按规律排列的一列数:第1个式子:1-⎝⎛⎭⎪⎫1+-12;第2个式子:2-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34;第3个式子:3-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34⎣⎢⎡⎦⎥⎤1+(-1)45⎣⎢⎡⎦⎥⎤1+(-1)56. (1)分别计算这三个式子的结果(直接写答案);(2)写出第2017个式子的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.参考答案与解析1.B2.D3.B4.C5.C6.C 解析:当线段的起点恰好是一个整点时,盖住的整点个数为2019个,其他情况下,盖住的整点个数为2018个.故线段盖住的整点个数为2019或2018个.故选C.7.-1 8.-2 9.3.33×10510.1 11.112.3或7 解析:根据题意,点A 表示的数是-2或2,当点A 表示的数是-2时,点B 表示的数是3;当点A 表示的数是2时,点B 表示的数是7.故点B 表示的有理数是3或7.13.解:(1)正数集合:⎩⎨⎧⎭⎬⎫+8.5,0.3,12,413,…;(2分)(2)整数集合:{}0,12,-9,…;(4分)(3)负分数集合:⎩⎨⎧⎭⎬⎫-312,-3.4,….(6分)14.解:(1)原式=22.(3分) (2)原式=1.(6分) 15.解:如图所示.(3分)由数轴得-⎝ ⎛⎭⎪⎫-412〉|-3|〉(-1)2〉0〉-2〉-313.(6分)16.解:因为28000-13500+36000-52000=-1500<0,(5分) 所以老王的银行存款不够支付这批货物的费用.(6分)17.解:根据程序列式计算如下:\[3×2+(-2)3\]÷2=\[6+(-8)\]÷2=-2÷2=-1.(6分)18.解:由题可知a -1=0,b +2=0,解得a =1,b =-2.(4分)则(a +b)2019=(1-2)2019=-1.(8分)19.解:(1)如图所示.(2分)(2)2-(-1)=3(km).答:小彬家与学校之间的距离是3km.(5分)(3)2+1.5+|-4.5|+1=9(km),9km =9000m ,9000÷250=36(min).(7分) 答:小明跑步一共用了36min.(8分)20.解:(1)(-3)#6=(-3)2+(-3)×6-5=9-18-5=-14.(3分)(2)⎣⎢⎡⎦⎥⎤2#⎝ ⎛⎭⎪⎫-32-[(-5)#9]=⎣⎢⎡⎦⎥⎤22+2×⎝ ⎛⎭⎪⎫-32-5-[(-5)2+(-5)×9-5]=(4-3-5)-(25-45-5)=-4+25=21.(8分)21.解:(1)5(2分) (2)6或-10(5分)(3)因为A 点与C 点重合,所以折痕与坐标轴的交点表示的数为-0.5,则B 点与表示1的点重合.(9分)22.解:(1)2.5-(-3)=5.5(千克).答:最重的一筐比最轻的一筐重5.5千克.(3分)(2)1×(-3)+4×(-2)+2×(-1.5)+3×0+2×1+8×2.5=-3-8-3+2+20=8(千克).答:20筐南丰蜜桔总计超过8千克.(6分) (3)5×(25×20+8)=2540(元).答:这20筐南丰蜜桔可卖2540元.(9分)23.解:(1)第1个数:12;第2个数:32;第3个数:52;(6分)(2)第2017个数:2017-⎝⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34…⎣⎢⎡⎦⎥⎤1+(-1)40324033⎣⎢⎡⎦⎥⎤1+(-1)40334034=2017-12×43×34×…×40344033×40334034=2017-12=201612.(12分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档