第四章 牛顿运动定律 章末总结(测)-2016-2017学年高一物理同步精品课堂(基础版)(解析版)
高中物理必修一 第4章 ——牛顿运动定律考点总结
六、板块模型
第四章 牛顿运动定律
相对静止变为相对运动的临界是静摩擦力达到 最大值
1、以力F没有作用的物体为研究对象,找到临界 加速度a0
2、以整体为研究对象,找到临界拉力F0。 3、若F ≤F0,以整体为研究对象找加速度 4、若F >F0 ,单独以每个物体为研究对象找各自
的加速度
5、找出两物体的位移关系,运用运动学公式解 题
栏目 导引
第四章 牛顿运动定律
二、瞬时加速度:①剪谁谁对物体的作用力就消失 ②轻绳和轻杆弹力能突变,一般情况下从有到无 ③轻弹簧和橡皮条弹力不能突变,即不变 ④分析物体剪前和剪后的受力情况求加速度 例1 图1中所示A、B、C为三个物块,K为轻 质弹簧,L为轻线.系统处于平衡状态, 现若将L突然剪断,用aA、aB分别表示 刚剪断时A、B的加速度,则有( B ) A.aA=0、aB=0 B.aA=0、aB≠0 C.aA≠0、aB≠0 D.aA≠0、aB=0
水平传送带:a=µg
倾斜传送带:a1=µgsinθ+µgcosθ
a2=µgsinθ-µgcosθ
栏目
导引
第四章 牛顿运动定律
例2 如图所示,水平传送带A、B两端点相距 x=3.5m,以v0=2m/s的速度(始终保持不变)顺 时针运转.今将一小煤块(可视为质点)无初速 度地轻放在A点处,已知小煤块与传送带间的动 摩擦因数为0.4.由于小煤块与传送带之间有相 对滑动,会在传送带上留下划痕.小煤块从A运 动到B的过程中( AD ) A、所用的时间是2s B、所用的时间是2.25s C、划痕长度是4m D、划痕长度是0.5m
栏目 导引
第四章 牛顿运动定律
例 3 如图所示,质量为 4 kg 的物体静止于水平面上.现用 大小为 40 N,与水平方向夹角 为 37°的斜向上的力拉物体,使 物体沿水平面做匀加速运动(g 取 10 m/s2,sin 37°=0.6,cos 37°=0.8). (1)若水平面光滑,物体的加速度是多大? (2)若物体与水平面间的动摩擦因数为 0.5, 物体的加速度是多大?
高一物理人教版必修1 第四章牛顿运动定律章节知识点总结过关单元测试
高一物理必修1第四章牛顿运动定律章节知识点过关单元测试一、选择题(本题共15小题,每小题4分,共60分。
在每小题给出的四个选项中,1-10题只有一个选项符合题目要求,11-15题有多个选项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.在光滑的水平面上做匀加速直线运动的物体,当它所受的合力逐渐减小而方向不变时,则关于物体的说法正确的是()A.加速度越来越大,速度越来越大B.加速度越来越小,速度越来越小C.加速度越来越大,速度越来越小D.加速度越来越小,速度越来越大2.一只球挂在三角形木块的左侧面,如图所示。
球与木块均能保持静止,则()A.地面对木块的摩擦力向左B.地面对木块的摩擦力向右C.地面对木块无摩擦力D.若地面光滑,挂上球后木块一定滑动3.应用物理知识分析生活中的常见现象,可以使物理学习更加有趣和深入。
例如平伸手掌托起物体,由静止开始竖直向上运动,直至将物体抛出。
对此现象分析正确的是()A.手托物体向上运动的过程中,物体始终处于超重状态B.手托物体向上运动的过程中,物体始终处于失重状态C.在物体离开手的瞬间,物体的加速度大于重力加速度D.在物体离开手的瞬间,手的加速度大于重力加速度4.如图所示,图乙中用力F取代图甲中的m,且F=mg,其余器材完全相同,不计摩擦,图甲中小车的加速度为a1,图乙中小车的加速度为a2。
则()A.a1=a2B.a1>a2C.a1<a2D.无法判断5.如图所示,吊篮P悬挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断的瞬间,吊篮P和物体Q的加速度大小是()A.a P=a Q=gB.a P=2g,a Q=gC.a P=g,a Q=2gD.a P=2g,a Q=06.如图所示,把一个光滑圆球放在两块挡板AC和AB之间,AC与AB之间夹角为30°,现将AC板固定而使AB板顺时针缓慢转动90°,则()A.球对AB板的压力先减小后增大B.球对AB板的压力逐渐减小C.球对AC板的压力逐渐增大D.球对AC板的压力先减小后增大7.如图所示,质量分别为m1和m2的A和B两物体靠在一起放在水平面上,它们与水平面间的动摩擦因数相同。
高中物理必修一 第四章牛顿运动定律 章末总结
定 律
牛顿第 三定律
方向相反,作用在同一条直线上. 同时产生,同时变化作用的物体上
作用力、反作用力和一对平衡力的区别
第3页,共27页。
答案
两类基 已知运动情况求受力情况
牛 本问题 已知受力情况求运动情况 顿
运
动
定 超重与 失重:加速度a 向下 ,FN<G
图1
第6页,共27页。
解析答案
(2)用大小为30 N、与水平方向成37°的力斜向上拉此物体,使物体从A处由 静止开始运动并能到达B处,求该力作用的最短时间t.
第8页,共27页。
方法提炼
解析答案
二、动力学中的图象问题
例2 一质量m=2.0 kg的小物块以一定的初速度冲上一倾角为37°足够长的斜 面,某同学利用传感器测出了小物块从一开始冲上斜面到上滑过程中多个时刻 的瞬时速度,并用计算机作出了小物块上滑过程的速度-时间图线,如图2所 示.(取sin 37°=,cos 37°=,g=10 m/s2)求: (1)小物块冲上斜面过程中加速度的大小;
律 失重
超重:加速度a 向上 ,FN>G
完全失重:a=g,FN=0
第4页,共27页。
答案
牛
平衡状态:静止或 匀速直线运动
顿 共点力作用 运 下物体的平 平衡条件:
F合=0
动衡 定
求解方法
直角三角形法相
三角形法 似三角形法
律
正交分解法
第5页,共27页。
答案
返回
一、动力学的两类基本问题
典例精析
例1 如图1所示,质量m=2 kg的物体静止于水平地面的A处,A、B间距L= 20 m.用大小为30 N、沿水平方向的外力拉此物体,经t0=2 s拉到B处.(已知cos 37°=,sin 37°=0.6.取g=10 m/s2) (1)求物体与地面间的动摩擦因数μ;
高一物理第四章牛顿运动定律知识要点总结
高一物理第四章牛顿运动定律知识要点总结
高一物理第四章牛顿运动定律知识要点总结
牛顿运动定律中的各定律互相独立,且内在逻辑符合自洽一致性,物理第四章牛顿运动定律知识要点帮助大家更清晰地学习掌握牛顿定律。
一、牛顿第一定律
亚里士多德观点:物体运动需要力来维持。
伽利略观点:物体的运动不须要力来维持,运动之所以停下来,是因为受到了阻力作用。
牛顿第一定律:一切物体在没有收到力的作用时,总保持静止状态或匀速直线运动状态。
(牛顿第一定律是在经验事实的基础上,通过进一步的推理而概括出来的,因而不能用实验来证明这一定律)。
二、探究加速度与力质量的关系
加速度是速度变化量与发生这一变化所用时间的比值
Δv/Δt,是描述物体速度变化快慢的物理量。
加速度(Acceleration)是速度变化量与发生这一变化所用时间的比值Δv/Δt,是描述物体速度变化快慢的物理量。
三、牛顿第二定律
1.定律内容:物体的加速度跟物体所受的合外力F成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同.
2.公式:F合=ma
牛顿原始公式:F=Δ(mv)/Δt(见牛顿《自然哲学之物理原
而再通过受力分析,来求解出某个力的大小。
七、用牛顿运动定律解决问题(二)
考点1:共点力的平衡条件
考点2:超重和失重
考点3:从动力学看自由落体运动
高一物理第四章牛顿运动定律知识要点的全部内容就是这些,想要继续提升自己同学们一定不要错过必修一物理第四章牛顿运动定律同步练习。
人教版高中物理必修1学案 第四章 牛顿运动定律 章末总结
学案9 章末总结一、动力学的两类基本问题1.掌握解决动力学两类基本问题的思路方法其中受力分析和运动过程分析是基础,牛顿第二定律和运动学公式是工具,加速度是连接力和运动的桥梁.2.求合力的方法(1)平行四边形定则若物体在两个共点力的作用下产生加速度,可用平行四边形定则求F合,然后求加速度.(2)正交分解法:物体受到三个或三个以上的不在同一条直线上的力作用时,常用正交分解法.一般把力沿加速度方向和垂直于加速度方向进行分解.例1我国第一艘航空母舰“辽宁号”已经投入使用,为使战斗机更容易起飞,“辽宁号”使用了滑跃技术.如图1所示,其甲板可简化为模型:AB部分水平,BC部分倾斜,倾角为θ.战斗机从A点开始起跑,C点离舰,此过程中发动机的推力和飞机所受甲板和空气阻力的合力大小恒为F,ABC甲板总长度为L,战斗机质量为m,离舰时的速度为v m,重力加速度为g.求AB部分的长度.图1二、图象在动力学中的应用1.常见的图象形式在动力学与运动学问题中,常见、常用的图象是位移图象(x—t图象)、速度图象(v—t 图象)和力的图象(F—t图象)等,这些图象反映的是物体的运动规律、受力规律,而绝非代表物体的运动轨迹.2.图象问题的分析方法遇到带有物理图象的问题时,要认真分析图象,先从它的物理意义、点、线段、斜率、截距、交点、拐点、面积等方面了解图象给出的信息,再利用共点力平衡、牛顿运动定律及运动学公式去解题.例2如图2甲所示固定光滑细杆与地面成一定夹角为α,在杆上套有一个光滑小环,小环在沿杆方向的推力F作用下向上运动,推力F与小环速度v随时间变化规律如图乙所示,取重力加速度g=10 m/s2.求:图2(1)小环的质量m;(2)细杆与地面间的夹角α.针对训练放在水平地面上的一物块,受到方向不变的水平推力F的作用,F的大小与时间t的关系如图3甲所示,物块速度v与时间t的关系如图乙所示.取重力加速度g=10 m/s2.由这两个图象可以求得物块的质量m和物块与地面之间的动摩擦因数μ分别为( )图3A .0.5 kg,0.4B .1.5 kg ,215C .0.5 kg,0.2D .1 kg,0.2三、传送带问题传送带传递货物时,一般情况下,由摩擦力提供动力,而摩擦力的性质、大小、方向和运动状态密切相关.分析传送带问题时,要结合相对运动情况,分析物体受到传送带的摩擦力方向,进而分析物体的运动规律是解题的关键.注意 因传送带由电动机带动,一般物体对传送带的摩擦力不影响传送带的运动状态. 例3 某飞机场利用如图4所示的传送带将地面上的货物运送到飞机上,传送带与地面的夹角θ=30°,传送带两端A 、B 的距离L =10 m ,传送带以v =5 m/s 的恒定速度匀速向上运动.在传送带底端A 轻放上一 质量m =5 kg 的货物,货物与传送带间的动摩擦因数μ=32.求货物从A 端运送到B 端所需的时间.(g 取10 m/s 2) 图4四、共点力作用下的平衡问题常用方法1.矢量三角形法(合成法)物体受三个力作用而平衡时,其中任意两个力的合力与第三个力大小相等、方向相反,且这三个力首尾相接构成封闭三角形,可以通过解三角形来求解相应力的大小和方向.常用的有直角三角形、动态三角形和相似三角形.2.正交分解法在正交分解法中,平衡条件F 合=0F x =F 1x +F 2x +…+F nx =0(即x 方向合力为零);∑F y =F 1y +F 2y +…+F ny =0(即y 方向合力为零).3. 整体法和隔离法:在选取研究对象时,为了弄清楚系统(连接体)内某个物体的受力情况,可采用隔离法;若只涉及研究系统而不涉及系统内部某些物体的受力时,一般可采用整体法.例4 如图5所示,质量m 1=5 kg 的物体,置于一粗糙的斜面体上,斜面倾角为30°,用一平行于斜面的大小为30 N 的力F 推物体,物体沿斜面向上匀速运动.斜面体质量m 2=10 kg ,且始终静止,g 取10 m/s 2,求:(1)斜面体对物体的摩擦力;(2)地面对斜面体的摩擦力和支持力.图51.(动力学的两类基本问题)如图6所示,在倾角θ=37°的足够长的固定的斜面底端有一质量m=1.0 kg的物体.物体与斜面间动摩擦因数μ=0.25,现用轻细绳拉物体由静止沿斜面向上运动.拉力F=10 N,方向平行斜面向上.经时间t=4.0 s绳子突然断了,求:(1)绳断时物体的速度大小.图6(2)从绳子断了开始到物体再返回到斜面底端的运动时间.(已知sin 37°=0.60,cos 37°=0.80,取g=10 m/s2)2.(图象在动力学中的应用)如图7甲所示为一风力实验示意图.开始时,质量为m=1 kg 的小球穿在固定的足够长的水平细杆上,并静止于O点.现用沿杆向右的恒定风力F作用于小球上,经时间t1=0.4 s后撤去风力.小球沿细杆运动的v—t图象如图乙所示(g取10 m/s2),试求:图7(1)小球沿细杆滑行的距离;(2)小球与细杆之间的动摩擦因数;(3)风力F的大小.3.(传送带问题)如图8所示,水平传送带以2 m/s的速度运动,传送带长AB=20 m,今在其左端将一工件轻轻放在上面,工件被带动,传送到右端,已知工件与传送带间的动摩擦因数μ=0.1,(g=10 m/s2)试求:(1)工件开始时的加速度a;(2)工件加速到2 m/s时,工件运动的位移;(3)工件由传送带左端运动到右端的时间.图84.(共点力的平衡问题)如图9所示,球A重G1=60 N,斜面体B重G2=100 N,斜面倾角θ=30°,一切摩擦均不计,则水平力F为多大时,才能使A、B均处于静止状态?此时竖直墙壁和水平地面受到的弹力为多大?图9。
高一物理第四章总结-已经上传五篇范文
高一物理第四章总结-已经上传五篇范文第一篇:高一物理第四章总结-已经上传高一物理第四章《牛顿运动定律》教材分析学习总结通过学习高中物理“牛顿运动定律”教程,使我更加清楚的认识了牛顿运动定律,是经典力学的基础,学好本章的知识,对于学好其余的力学知识以及整个物理学都有至关重要的意义。
也是高中物理的教与学的难点。
因此,探索有效地教学策略显得非常重要。
下面我谈谈自己的几点看法:1、注重知识的延续性:初中阶段已经学习了有关“牛顿运动定律”的知识,高中“牛顿运动定律”是在此基础上的继续学习,可以先让学生复习回顾,或出些试题测试学生对这部分知识的学生情况和掌握情况。
初中阶段所学的惯性已经做了大量实验,比如在水杯上放一纸杯,在纸杯上放一个鸡蛋,把纸杯抽走鸡蛋就会掉到水杯里;再比如锤头和锤柄之间松动,利用惯性把锤头和锤柄加固等实验都是学生在初中学到的东西。
初中教材中也谈到了运动和力得关系,提出些问题和猜想,涉及到一些实验和方法,比如让一个小车沿斜面滑下来,滑到水平面上来,在水平面上放上不同的接触面(毛巾、木板、玻璃)观察,根据现象分析力和运动之间是什么关系。
2、理想化实验的学习。
初中也学习了牛顿第一定律,高中阶段学习牛顿第一定律,提高对牛顿第一定律的理解,多设计一些理想实验,比如冰壶比赛,冰壶与冰面之间的摩擦比较小,冰壶在冰面上滑动的时间比较长,再比如单摆小球的运动。
学生第一次接触到理想实验,应充分说明伽利略理想实验的推理过程,知道理想实验是建立在可靠事实的基础上的一种科学方法,理解牛顿第一定律所描述的虽然是一种理想化的状态,它却正确地揭示了自然规律.虽然是理想化的实验,但它是以可靠的事实为基础,经过抽象思维,抓住主要因素,忽略次要因素,设计出的实际不可能进行的但又符合严格科学推理的“理想化的实验”.3、教学理念新(1)重视“过程”目标的落实,重视“情感”目标的体现,重视“生活”中的体验和联系(2)重视科学情感、态度和价值观等(3)重视学生的自主学习,提倡教学方式的多元化通过该节的学习要培养学生知难而进的思想,要敢于面对问题和困难;师生互动和实验演示,活跃气氛,激发学生学习兴趣,理解实践出真知的道理。
[配套K12]2016-2017学年高中物理 第四章 牛顿运动定律章末总结(讲)(基础版,含解析)新
第四章 牛顿运动定律章末总结※知识点一、整体法、隔离法分析连接体问题 1.连接体两个或两个以上相互作用的物体组成的具有相同加速度的整体叫连接体.如几个物体叠放在一起,或并排挤放在一起,或用绳子、细杆等连在一起. 2.处理连接体问题的方法(1)整体法:把整个系统作为一个研究对象来分析的方法.不必考虑系统内力的影响,只考虑系统受到的外力.(2)隔离法:把系统中的各个部分(或某一部分)隔离,作为一个单独的研究对象来分析的方法.此时系统的内力就有可能成为该研究对象的外力,在分析时要特别注意. (3)整体法与隔离法的选用求解各部分加速度都相同的连接体问题时,要优先考虑整体法;如果还需要求物体之间的作用力,再用隔离法.求解连接体问题时,随着研究对象的转移,往往两种方法交叉运用.一般的思路是先用其中一种方法求加速度,再用另一种方法求物体间的作用力或系统所受合力.无论运用整体法还是隔离法,解题的关键还是在于对研究对象进行正确的受力分析. 【典型例题】【例题1】如图,两个质量分别为m 1=2 kg 、m 2 = 3 kg 的物体置于光滑的水平面上,中间用轻质弹簧秤连接。
两个大小分别为F 1=30N 、F 2 =20N 的水平拉力分别作用在m 1、m 2上,则A .弹簧秤的示数是20 NB .弹簧秤的示数是25 NC .在突然撤去F 2的瞬间,m 1的加速度大小为5 m/s 2D .在突然撤去F 1的瞬间,m 1的加速度大小为13 m/s 2 【答案】D【解析】将两物体和弹簧看做一个整体,根据牛顿第二定律可得2512123020/2/5F F a m s m s m m --===+,对1m 分析可得11F F m a -=,联立解得11302226F F m a N N =-=-⨯=,AB 错误;在突然撤去2F 的瞬间,因为弹簧的弹力不能发生突变,所以1m 的受力没有发生变化,故加速度大小仍为22m /s ,故C 错误;突然撤去1F 的瞬间,1m 的受力仅剩弹簧的弹力,对1m 列牛顿第二定律得:1F m a =,解得:213/a m s =,故D 正确.【名师点睛】两个大小分别为123020F N F N ==、的水平拉力导致物体受力不平衡,先选整体为研究对象进行受力分析,列牛顿第二定律解出加速度,再隔离单独分析一个物体,解出弹簧受力;在突然撤去2F 的瞬间,弹簧的弹力不变,对两物块分别列牛顿第二定律,解出其加速度【针对训练】(多选)如图所示,在光滑的桌面上有M 、m 的两个物块,现用力F 推物块,使M 、m 两物块在桌上一起向右加速,则M 、m 间的相互作用力为A 、若桌面光滑,作用力为MFM m +B 、若桌面光滑,作用力为mFM m+C 、若桌面的摩擦因数为μ,M 、m 仍向右加速,则M 、m 间的相互作用力为MFMg M m μ++D 、若桌面的摩擦因数为μ,M 、m 仍向右加速,则M 、m 间的相互作用力为MFM m+【答案】AD【名师点睛】分析整体的受力时采用整体法可以不必分析整体内部的力,分析单个物体的受力时就要用隔离法.采用整体隔离法可以较简单的分析问题 ※知识点二、动力学的临界问题 1.概念(1)临界问题:某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态. (2)极值问题:在满足一定的条件下,某物理量出现极大值或极小值的情况. 2.关键词语在动力学问题中出现的“最大”、“最小”、“刚好”、“恰能”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件. 3.常见类型动力学中的常见临界问题主要有三类:一是弹力发生突变时接触物体间的脱离与不脱离的问题;二是绳子的绷紧与松弛的问题;三是摩擦力发生突变的滑动与不滑动问题. 4.解题关键解决此类问题的关键是对物体运动情况的正确描述,对临界状态的判断与分析,找出处于临界状态时存在的独特的物理关系,即临界条件. 常见的三类临界问题的临界条件:(1)相互接触的两个物体将要脱离的临界条件是:相互作用的弹力为零. (2)绳子松弛的临界条件是:绳的拉力为零. 【典型例题】【例题2】如图所示,质量为m 的光滑小球,用轻绳连接后,挂在三角劈的顶端,绳与斜面平行,劈置于光滑水平面上,斜边与水平面夹角为θ=30°,求:(1)劈以加速度a 1=g /3水平向左加速运动时,绳的拉力多大? (2)劈的加速度至少多大时小球对劈无压力?加速度方向如何? (3)当劈以加速度a 3=2g 向左运动时,绳的拉力多大?【答案】 (1)3+36mg (2)3g ,方向水平向左;(3)5mg【解析】 (1)如图所示,水平方向:F T1cos θ-F N1sin θ=ma 1① 竖直方向:F T1sin θ+F N1cos θ=mg ②由①②得:F T1=3+36mg .③【针对训练】如图所示,有一块木板静止在光滑而且足够长的水平面上,木板的质量为M =4 kg 、长为L =1.4 m ,木板右端放着一个小滑块,小滑块质量m =1 kg ,其尺寸远小于L ,小滑块与木板间的动摩擦因数为μ=0.4.(g 取10 m/s 2)(1)现用恒力F 作用在木板M 上,为使m 能从M 上面滑落下来,问:F 大小的范围是多少?(2)其他条件不变,若恒力F =22.8 N ,且始终作用在M 上,最终使得m 能从M 上滑落下来,问:m 在M 上面滑动的时间是多少? 【答案】 (1)F >20 N (2)2 s※知识点三、动力帝的图象问题物理图象信息量大,包含知识内容全面,好多习题已知条件是通过物理图象给出的。
高一物理第四章牛顿运动定律知识点总结讲解.doc
高一物理第四章《牛顿运动定律一、夯实基础知识1 、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫为止。
理解要点:( 1)运动是物体的一种属性,物体的运动不需要力来维持;( 2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动度定义: a v,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因t生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”(3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态惯性。
惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)量度。
( 4)牛顿第一定律描述的是物体在不受任何外力时的状态。
而不受外力的物体是不存在的,牛用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律( 5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,第一定律当成牛顿第二定律在F=0时的特例,牛顿第一定律定性地给出了力与运动的关地给出力与运动的关系。
2 、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。
公式理解要点:( 1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计m i ,对应的加速度为a i ,则有: F 合=m 112233,,n na +m a +m a + +m a对这个结论可以这样理解:先分别以质点组中的每个物体为研究对象用牛顿第二定律:∑ F 1=m 1a 1, ∑ F 2 =m 2a 2 , ,, ∑ F n =m n a n ,将以上各式等号左、右分别相加,其中左边所力的, 总是成对出现并且大小相等方向相反的,其矢量和必为零,所以最后得到的和,即合外力F 。
高一物理必修1第四章牛顿运动定律本章知识点总结综合评估同步检测
高一物理必修1第四章牛顿运动定律本章知识点综合评估同步检测一、选择题(本题共15小题,每小题4分,共60分。
在每小题给出的四个选项中,1-10题只有一个选项符合题目要求,11-15题有多个选项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.伽利略创造的把实验、假设和逻辑推理相结合的科学方法,有力地促进了人类科学认识的发展。
利用如图所示的装置做如下实验:小球从左侧斜面上的O点由静止释放后沿斜面向下运动,并沿右侧斜面上升。
斜面上先后铺垫三种粗糙程度逐渐减低的材料时,小球沿右侧斜面上升到的最高位置依次为1、2、3。
根据三次实验结果的对比,可以得到的最直接的结论是()A.如果斜面光滑,小球将上升到与O点等高的位置B.如果小球不受力,它将一直保持匀速运动或静止状态C.如果小球受到力的作用,它的运动状态将发生改变D.如果小球受到的力越大,运动的速度将越大2.如图所示,用两根等长轻绳将木板悬挂在竖直木桩上等高的两点,制成一简易秋千。
某次维修时将两轻绳剪去一小段,但仍保持等长且悬挂点不变。
木板静止时,F1表示木板所受合力的大小,F2表示单根轻绳对木板拉力的大小,则维修后()A.F1不变,F2变大B.F1不变,F2变小C.F1变大,F2变大D.F1变小,F2变小3.如图所示,甲、乙两人在冰面上“拔河”。
两人中间位置处有一分界线,约定先使对方过分界线者为赢。
若绳子质量不计,冰面可看成光滑,则下列说法正确的是()A.甲对绳的拉力与绳对甲的拉力是一对平衡力B.甲对绳的拉力与乙对绳的拉力是作用力与反作用力C.若乙收绳的速度比甲快,则乙能赢得“拔河”比赛的胜利D.若甲的质量比乙大,则甲能赢得“拔河”比赛的胜利4.一条不可伸长的轻绳跨过质量可忽赂不计的定滑轮,绳的一端系一质量M=15kg的重物,重物静止于地面上,有一质量m=10kg的猴子,从绳的另一端沿绳向上爬,不计滑轮摩擦。
在重物不离开地面的条件下,猴子向上爬的最大加速度为()A.25m/s2B.5m/s2C.10m/s2D.15m/s25.如图所示为一游乐场的娱乐项目简化示意图.质量为m的参赛者要爬上一段带有弧形轨道的顶端,轨道始终静止在地面上。
高中物理 第四章 牛顿运动定律章末总结(测)(基础版,含解析)新人教版必修1(2021年最新整理)
2016-2017学年高中物理第四章牛顿运动定律章末总结(测)(基础版,含解析)新人教版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中物理第四章牛顿运动定律章末总结(测)(基础版,含解析)新人教版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中物理第四章牛顿运动定律章末总结(测)(基础版,含解析)新人教版必修1的全部内容。
第四章牛顿运动定律【满分:110分时间:90分钟】一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中。
1~8题只有一项符合题目要求; 9~12题有多项符合题目要求。
全部选对的得5分,选对但不全的得3分,有选错的得0分.)1.伽利略创造的把实验、假设和逻辑推理相结合的科学方法,有力地促进了人类科学认识的发展.利用如图所示的装置做如下实验:小球从左侧斜面上的O点由静止释放后沿斜面向下运动,并沿右侧斜面上升.斜面上先后铺垫三种粗糙程度逐渐减低的材料时,小球沿右侧斜面上升到的最高位置依次为1、2、3.根据三次实验结果的对比,可以得到的最直接的结论是()A.如果斜面光滑,小球将上升到与O点等高的位置B.如果小球不受力,它将一直保持匀速运动或静止状态C.如果小球受到力的作用,它的运动状态将发生改变D.小球受到的力一定时,质量越大,它的加速度越小【答案】A【名师点睛】小球从左侧斜面上的O点由静止释放后沿斜面向下运动,并沿右侧斜面上升,阻力越小则上升的高度越大,伽利略通过上述实验推理得出运动物体如果不受其他物体的作用,将会一直运动下去.要想分清哪些是可靠事实,哪些是科学推论要抓住其关键的特征,即是否是真实的客观存在,这一点至关重要,这也是本题不易判断之处;伽利略的结论并不是最终牛顿所得出的牛顿第一定律,因此,在确定最后一空时一定要注意这一点。
高一物理第四章牛顿运动定律知识点总结
高 一 物 理 第 四 章 《 牛 顿 运 动 定 律 》 总 结一、夯实基础知识1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。
理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:t v a ∆∆=,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。
(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。
);(3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态的性质,这就是惯性。
惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。
质量是物体惯性大小的量度。
(4)牛顿第一定律描述的是物体在不受任何外力时的状态。
而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。
它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。
2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。
公式F=ma. 理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x =ma x ,F y =ma y , 若F 为物体受的合外力,那么a 表示物体的实际加速度;若F 为物体受的某一个方向上的所有力的合力,那么a 表示物体在该方向上的分加速度;若F 为物体受的若干力中的某一个力,那么a 仅表示该力产生的加速度,不是物体的实际加速度。
高一物理第四章牛顿运动定律知识点归纳总结
高一物理第四章牛顿运动定律知识点归纳总结高一物理第四章《牛顿运动定律》总结一、夯实基础知识1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。
理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:t va ∆∆=,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。
(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。
);(3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态的性质,这就是惯性。
惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。
质量是物体惯性大小的量度。
(4)牛顿第一定律描述的是物体在不受任何外力时的状态。
而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。
它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。
2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。
公式F=ma.理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x =ma x ,F y =ma y , 若F 为物体受的合外力,那么a 表示物体的实际加速度;若F 为物体受的某一个方向上的所有力的合力,那么a 表示物体在该方向上的分加速度;若F 为物体受的若干力的某一个力,那么 a 仅表示该力产生的加速度,不是物体的实际加速度。
人教版必修一第4章《牛顿运动定律》章末总结
物理·必修1(人教版)章末总结动力学两类基本问题1.掌握解决动力学两类问题的思路方法.其中受力分析是基础,牛顿第二定律和运动学公式是工具,加速度是连接力和运动的桥梁.2.力的处理方法. (1)平行四边形定则.由牛顿第二定律F 合=ma 可知,F 合是研究对象m 受到的外力的合力;加速度a 的方向与F 合的方向相同.解题时,若已知加速度的方向就可推知合力的方向;反之,若已知合力的方向,亦可推知加速度的方向.(2)正交分解法.物体受到三个或三个以上的不在同一直线上的力作用时,常用正交分解法.表示方法⎩⎪⎨⎪⎧F x =ma xF y =ma y为了减少矢量的分解,建立直角坐标系时,一般不分解加速度.风洞实验室中可产生水平方向的、大小可调节的风力.现将一套有小球的细直杆放入风洞实验室,小球孔径略大于细杆直径(如图所示)(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上匀速运动,这时小球所受的风力为小球所受重力的0.5倍,求小球与杆间的动摩擦因数.(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静止出发在细杆上滑下距离s 所需时间为多少?(sin 37°=0.6,cos 37°=0.8)解析:(1)设小球所受的风力为F ,小球的质量为m ,因小球做匀速运动,则F =μmg ,F =0.5mg ,所以μ=0.5.(2)小球受力分析如图所示.根据牛顿第二定律,沿杆方向上有Fcos 37°+mgsin 37°-F f =ma ,垂直于杆的方向上有F N +Fsin 37°-mgcos 37°=0 又F f =μF N 可解得: a =Fcos 37°+mgsin 37°-μ-m=34g 由s =12at 2得t =2s a=8s 3g.答案:(1)0.5 (2)8s 3g►跟踪训练1.用水平力F 拉一物体在水平地面上匀速运动,从某时刻起力F 随时间均匀减小,物体所受的摩擦力f 随时间t 的变化如图中实线所示.下列说法正确的是( )A .0~t 1内匀速运动B .t 1~t 2内匀速运动C .t 1~t 2内变减速运动D .t 2~t 3内变减速运动 答案:C2.如图所示为粮袋的传送装置,已知AB 间长度为L ,传送带与水平方向的夹角为θ,工作时其运行速度为v ,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A 点将粮袋放到运行中的传送带上,关于粮袋从A 到B 的运动,以下说法正确的是(设最大静摩擦力等于滑动摩擦力)( )A .粮袋到达B 点的速度与v 比较,可能大,也可能相等或小B .粮袋开始运动的加速度为g(sin θ-μcos θ),若L 足够大,则以后将一定以速度v 做匀速运动C .若μ≥tan θ,则粮袋从A 到B 一定一直是做加速运动D .不论μ大小如何,粮袋从A 到B 一直做匀加速运动,且a >gsin θ 答案:A整体法的含义:所谓整体法就是对物理问题的整个系统或整个过程进行分析、研究的方法.整体法的优点:通过整体法分析物理问题,可以弄清系统的整体受力情况和全过程的受力情况,从整体上揭示事物的本质和变化规律,从而避开了中间环节的繁琐推算,能够灵巧地解决问题.通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(或一个物体的各部分)间相互作用时,用隔离法;有时解答一个问题需要多次选取研究对象,此时整体法和隔离法要灵活应用.用轻质细线把两个质量未知的小球悬挂起来,如下图甲所示.今对小球a 持续施加一个向左偏下30°的恒力,并对小球b 持续施加一个向右偏上30°的同样大的恒力,最后达到平衡.表示平衡状态的图可能是图乙中的()解析:方法一:将a 、b 两球及两球间的绳看作一个物体系统,以这个系统为研究对象.因为作用在a 、b 上的恒力等大反向,其合外力平衡,而a 、b 受的重力竖直向下,要保持平衡,故a 到悬点的细绳的力必然沿竖直方向向上.方法二:也可以分别将a 、b 隔离进行受力分析,分别对a 、b 两球列出水平分力的平衡方程即可.以C 图为例,受力如下图所示.整体法与隔离法解物体的平衡问题对a:水平方向有F1cos 30°=T1cos α+T2cos β,对b:水平方向有F2cos 30°=T2 cos β,因为F1=F2,所以T1 cos α=0,由于T1≠0,故α=90°.答案:A►跟踪训练1.如图,两个固定的倾角相同的滑竿上分别套A、B两个圆环,两个圆环上分别用细线悬吊着两个物体C、D,当它们都沿滑竿向下滑动时,A的悬线始终与竿垂直,B的悬线始终竖直向下.则下列说法中正确的是( )A.A环与滑竿无摩擦力B.B环与滑竿无摩擦力C.A环做的是匀速运动D.B环做的是匀加速运动答案:A2.一根水平粗糙的横杆上,套有两个质量均为m的小铁环,两铁环上系着两条等长的细线,共同拴住一个质量为M的球,两铁环和球均处于静止状态,如右图所示,现使两环间距稍许增大后系统仍处于静止状态,则水平横杆对铁环的支持力N和摩擦力f的变化是( )A.N不变,f不变 B.N不变,f变大C.N变大,f不变 D.N变大,f变小答案:B物理思想方法的应用当物体运动的加速度发生变化时,物体可能从一种状态变化为另一种状态,这个转折点叫做临界状态,可理解为“将要出现”但“还没有出现”的状态.1.常见类型有:(1)隐含弹力发生突变的临界条件.弹力发生在两物体接触面之间,是一种被动力,其大小取决于物体所处的运动状态,当运动状态达到临界状态时,弹力会发生突变.(2)隐含摩擦力发生突变的临界条件.静摩擦力是被动力,其存在及其方向取决于物体之间的相对运动的趋势,而且静摩擦力存在最大值.静摩擦力为零的状态,是方向变化的临界状态;静摩擦力为最大静摩擦力是物体恰好保持相对静止的临界条件.2.可用以下方法进行临界状态分析:(1)采用极限法分析,即加速度很大或很小时将会出现的状态,则加速度取某一值时就会出现转折点——临界状态.(2)临界状态出现时,往往伴随着“刚好脱离”“即将滑动”等类似隐含条件,因此要注意对题意的理解及分析.(3)在临界状态时某些物理量可能为零,列方程时要注意.球紧靠在斜面上,绳与斜面平行.(1)当斜面以a1=8 m/s2的加速度向右做匀加速运动时,绳子拉力及斜面对小球的支持力是多少?当斜面以a2=5 m/s2的加速度向右运动时呢?(2)若斜面向左加速运动,小球相对于斜面静止,细绳的拉力恰好为零时,斜面对小球的支持力是多少?加速度是多少?(g取10 m/s2)解析:设小球刚好离开斜面时系统的加速度为a 0,斜面支持力F N =0, 此时对小球受力分析如右图则mgcot θ=ma.得:a 0=gcot 53°=7.5 m/s 2. (1)a 1=8 m/s 2>a 0, 所以小球离开斜面,F N =0, T 0=2+12=2.56 N.当a 2=5 m/s 2<a 0时,此时小球未离开斜面F N ≠0, 对小球受力分析如右图则⎩⎪⎨⎪⎧Tcos θ-F N sin θ=ma 2Tsin θ+F N cos θ-mg =0得:T =2.2 N ,F N =0.4 N.(2)对小球受力分析如右图则F 合=mgtan θ=ma 3, 得:a 3=gtan θ=13.3 m/s 2, F N =mgcos θ=3.33 N.答案:(1)2.56 N 0 2.2 N 0.4 N(2)3.33 N 13.3 m/s 2►跟踪训练1.(双选)一有固定斜面的小车在水平面上做直线运动,小球通过细绳与车顶相连.小球某时刻正处于图示状态.设斜面对小球的支持力为N ,细绳对小球的拉力为T ,关于此时刻小球的受力情况,下列说法正确的是( )A .若小车向右运动,N 可能为零B .若小车向左运动,T 可能为零C .若小车向右运动,N 不可能为零D .若小车向左运动,T 不可能为零 答案:AB2.如图所示,有一块木板静止在光滑水平面上,质量M =4 kg ,长L =1.4 m .木板右端放着一个小滑块,小滑块质量m =1 kg ,其尺寸远小于L ,小滑块与木板间的动摩擦因数为μ=0.4.(取g =10 m/s 2)求:(1)现将一水平恒力F 作用在木板上,为使小滑块能从木板上面滑落下来,则F 大小的范围是多少?解析:要使小滑块能从木板上滑下,则小滑块与木板之间应发生相对滑动,此时,对小滑块分析得出μmg =ma 1,解得a 1=4 m/s 2,对木板分析得出F -μmg =Ma 2,加速度a 1、a 2均向右,若小滑块能从木板上滑下,则需要满足a 2>a 1,解得F >20 N. 答案:F >20 N(2)其他条件不变,若恒力F =22.8 N ,且始终作用在木板上,最终使得小滑块能从木板上滑落下来,则小滑块在木板上面滑动的时间是多少?解析:当F =22.8 N 时,由(1)知小滑块和木板发生相对滑动,对木板有F -μmg =Ma 3,则a 3=4.7 m/s 2. 设经时间t ,小滑块从木板上滑落,则12a 3t 2-12a 1t 2=L ,解得:t =-2 s(舍去)或t =2 s. 答案:2 s。
高中物理第四章牛顿运动定律章末总结新人教版必修1
【金版学案】2015-2016学年高中物理第四章牛顿运动定律章末总1结新人教版必修一、牛顿第一定律1.定律内容2.牛顿第一定律的理解(1)“一切物体”是指宇宙中所有物体,不论物体是固体、液体还是气体,牛顿第一定律是自然界的普遍规律.(2)“匀速直线运动状态”、“静止状态”指物体处于平衡状态,所受合力为零.(3)“总保持”是“一直不变”的意思.(4)“改变这种状态”表现为改变速度的大小或方向.(5)“或”:指一个物体只能处于一种状态,到底处于哪种状态,由原来的状态决定,原来静止就保持静止,原来运动就保持匀速直线运动.二、惯性1.定义:物体保持原来匀速直线运动或静止状态的性质.2.说明(1)惯性是物体的固有属性,一切物体都有,惯性不是一种力.(2)惯性的大小只与物体的质量有关,质量越大,惯性越大,切莫认为物体的惯性与速度有关.3.与惯性相关的四个关系(1)惯性与质量的关系:质量是物体惯性大小的唯一量度,物体的质量越大,其惯性就越大.(2)惯性与力的关系:惯性是物体的固有属性,而不是力,物体的惯性大小与其受不受力、受多大的力无关.说物体“受到了惯性力”、“产生了惯性”等都是错误的.(3)惯性与速度的关系:物体的惯性大小与它是否运动以及运动速度无关.(4)惯性与惯性定律的关系:惯性是物体保持原来匀速直线运动或静止状态的性质,是任何物体在任何情况下都具有的一种性质;惯性定律也即牛顿第一定律,描述了物体在不受外力作用时所处的运动状态,揭示了力与运动关系的规律.三、牛顿第三定律1.内容两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上.2.表达式:F=-F′.3.作用力与反作用力的关系4.作用力、反作用力与平衡力的比较说明:大小相等、方向相反、作用在同一条直线上、作用在两个物体上的力,不一定是一对作用力与反作用力.四、牛顿第二定律1.内容物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向跟作用力的方向相同.2.表达式:F=ma.3.说明(1)应用公式F=ma解题时,公式中的各个物理量都应取国际单位.(2)牛顿的定义:使质量为1千克的物体产生1米/秒2的加速度所需要的力称为1牛顿.(3)牛顿第二定律F=ma中的力为合力,但对单个力此式也适用.4.牛顿第二定律的性质物体的实际加速度等于每个力产生的加5.牛顿第一定律与牛顿第二定律的区别与联系在实际生活中可得到验五、力学单位制1.概念:基本单位和导出单位一起组成了单位制.2.国际单位制(SI)(1)定义:由七个基本单位和用这些基本单位导出的单位组成的单位制.(2)七个基本单位.六、两类动力学问题1.已知物体的受力情况,求物体的运动情况.2.已知物体的运动情况,求物体的受力情况.七、共点力的平衡1.平衡状态:物体处于静止或者匀速直线运动的状态.2.共点力的平衡条件:物体所受外力的合力为零.3.平衡条件的推论(1)二力平衡:物体在两个力作用下处于平衡状态,则这两个力必定等大反向,是一对平衡力.(2)三力平衡:物体在三个共点力作用下处于平衡状态时,任意两个力的合力与第三个力等大反向.(3)多力平衡:物体受多个力作用处于平衡状态,其中任何一个力与其余力的合力一定等大反向.(4)任意方向:当物体处于平衡状态时,沿任意方向物体所受的合力均为零.(5)某一方向:物体在某个方向处于平衡状态时,在此方向上所受合力为零.八、超重、失重和完全失重易错点1误认为力是维持物体运动的原因.分析:牛顿第一定律明确说明了物体在不受力时将做匀速直线运动或处于静止状态,揭示了力与运动的关系:力不是维持物体运动的原因,而是改变物体运动状态的原因.易错点2误认为物体的速度越大,它的惯性就越大.分析:质量是物体惯性大小的唯一量度,物体的质量越大,它的惯性就越大.物体惯性的大小与它的速度没有任何关系.易错点3误认为牛顿第一定律无法用实验验证,因此无实际意义.分析:虽然牛顿第一定律是由理想实验经过推理归纳而得出的,但是牛顿第一定律揭示了自然界中力与物体的运动之间的关系,使人们认识到了力的本质和物体具有运动的属性,因此该定律是我们认识自然规律的重要工具.易错点4错误地认为作用力与反作用力的合力为零.分析:作用力与反作用力分别作用在不同的物体上,各自对相应的物体产生不同的作用效果,两者不能抵消,且两力不是共点力,不能对两力求合力易错点5混淆作用力与反作用力和二力平衡的概念.分析:作用力与反作用力和二力平衡相同之处是:大小相等,方向相反且共线.但它们之间也有很多的不同:作用对象前者是两个,后者是一个;力的性质前者相同,后者不一定相同;前者两力具有同时性,后者两力没有同时性.前者不能求合力,后者两力合力为零,能够相互抵消.易错点6将牛顿第一定律错误地理解为是牛顿第二定律的特殊情况.分析:牛顿第一定律给出了物体在不受任何作用力情况下所处的运动状态:静止或匀速直线运动状态,揭示了力与运动的关系.牛顿第二定律给出了物体的加速度、质量和所受作用力的关系,强调物体在力的作用下其加速度与作用力的关系.易错点7误认为物体先受作用力,才有了加速度.分析:牛顿第二定律具有同时性,即物体的加速度与外力是同时产生的,同时变化,同时消失的.作用力与加速度在产生的时间上没有先后,不能认为先有作用力,后有加速度.易错点8误认为物体受到哪个方向的合外力,物体就向哪个方向运动.分析:(1)物体的合外力方向决定了加速度方向,物体的运动情况由力和初始运动情况决定.(2)初速度为零的物体,受到恒定的合外力作用,物体将沿合外力方向做匀加速直线运动.(3)初速度不为零的物体,若受到与初速度反向的恒定合外力作用,将沿初速度方向做匀减速直线运动.易错点9误认为物体在“超重”情况下的重力增加,在“失重”情况下的重力减小分析:“超重”与“失重”是由于物体在加速或减速状态下,我们感觉到物体的重力发生了变化,是在这种特殊运动状态下用弹簧测力计测量出来的“视重”.物体的重力大小G =mg,即在同一地方物体重力的大小只与它的质量有关,与物体的运动状态无关.无论物体是处于“超重”状态还是“失重”状态,或者是正常的状态,它的重力始终不变.牛顿运动定律⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎧牛顿第一定律⎩⎪⎨⎪⎧伽利略理想实验内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.质量是惯性大小的量度牛顿第二定律⎩⎪⎨⎪⎧实验方法:控制变量法内容:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向跟作用力的方向相同公式:F 合=ma 牛顿第三定律⎩⎪⎨⎪⎧内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上.作用力、反作用力与一对平衡力的主要区别⎩⎪⎨⎪⎧作用力、反作用力分别作用在两个物体上,一对平衡力作用在同一个物体上牛顿运动定律的应用⎩⎪⎪⎨⎪⎪⎧两类基本问题:受力情况运动情况共点力平衡⎩⎪⎨⎪⎧平衡状态⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫静止匀速直线运动a =0平衡条件:F 合=0⎩⎪⎨⎪⎧F x 合=0F y 合=0超重与失重⎩⎪⎨⎪⎧a a 向下时,失重a =g 且竖直向下时,完全失重.专题一 整体法、隔离法解决连接体问题 1.连接体问题在研究力和运动的关系时,经常会涉及到相互联系的物体之间的相互作用,这类问题称为“连接体问题”.连接体一般是指由两个或两个以上有一定联系的物体构成的系统.2.解决连接体问题的基本方法:整体法与隔离法(1)当物体间相对静止,具有共同的对地加速度时,就可以把它们作为一个整体,通过对整体所受的合外力分析列出整体的牛顿第二定律方程.(2)当需要计算物体之间(或一个物体各部分之间)的相互作用力时,就必须把各个物体(或一个物体的各个部分)隔离出来,根据各个物体(或一个物体的各个部分)的受力情况,画出隔离体的受力图,列出牛顿第二定律方程.(3)许多具体问题中,常需要交叉运用整体法和隔离法,有分有合,从而迅速求解相关问题.注意:运用整体法分析问题时,要求系统内各物体的加速度的大小和方向均应相同,根据牛顿第二定律对整体列方程.如果系统内各物体的加速度仅大小相同,如通过滑轮连接的物体,应采用隔离法根据牛顿第二定律分别列方程.例1 如图所示的三个物体质量分别为m 1、m 2和m 3,带有滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦以及绳子的质量均不计,为使三个物体无相对运动,水平推力F 等于多少?解析:(1)选物体m 2为研究对象,设绳子拉力大小为F T ,根据竖直方向二力平衡F T =m 2g . (2)选物体m 1为研究对象, 根据牛顿第二定律F T =m 1a , 所以a =F T m 1=m 2m 1g .(3)选m 1、m 2、m 3整体为研究对象, 根据牛顿第二定律F =(m 1+m 2+m 3)a =m 2m 1(m 1+m 2+m 3)g .答案:m 2m 1(m 1+m 2+m 3)g例2 两重叠在一起的滑块,置于固定的、倾角为θ的斜面上,如图所示,滑块A 、B 的质量分别为M 、m ,A 与斜面间的动摩擦因数为μ1,B 与A 之间的动摩擦因数为μ2,已知两滑块都从静止开始以相同的加速度从斜面滑下,滑块B 受到的摩擦力( )A.等于零 B.方向沿斜面向上C.大小等于μ1mg cos θD.大小等于μ2mg cos θ解析:把A、B两滑块作为一个整体,设其下滑加速度为a,由牛顿第二定律得(M+m)g sin θ-μ1(M+m)g cos θ=(M+m)a解得a=g(sin θ-μ1cos θ)由于a<g sin θ,可见B随A一起下滑过程中,必然受到A对它沿斜面向上的摩擦力,B正确.设摩擦力为F fB,由牛顿第二定律,有mg sin θ-F fB=ma得F fB=mg sin θ-ma=mg sin θ-mg(sin θ-μ1cos θ)=μ1mg cos θ,C正确.答案:BC专题二动力学两类基本问题1.掌握解决动力学两类问题的思路方法其中受力分析是基础,牛顿第二定律和运动学公式是工具,加速度是连接力和运动的桥梁.2.力的处理方法 (1)平行四边形定则.由牛顿第二定律F 合=ma 可知,F 合是研究对象m 受到的外力的合力;加速度a 的方向与F 合的方向相同.解题时,若已知加速度的方向就可推知合力的方向;反之,若已知合力的方向,亦可推知加速度的方向.(2)正交分解法.物体受到三个或三个以上的不在同一直线上的力作用时,常用正交分解法.表示方法⎩⎪⎨⎪⎧F x =ma x F y =ma y为了减少矢量的分解,建立直角坐标系时,一般不分解加速度.例 3 风洞实验室中可产生水平方向的、大小可调节的风力.现将一套有小球的细直杆放入风洞实验室,小球孔径略大于细杆直径(如图所示)(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上匀速运动,这时小球所受的风力为小球所受重力的0.5倍,求小球与杆间的动摩擦因数.(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静止出发在细杆上滑下距离s 所需时间为多少?(sin 37°=0.6,cos 37°=0.8)解析:(1)设小球所受的风力为F ,小球的质量为m ,因小球做匀速运动,则F =μmg ,F =0.5mg ,所以μ=0.5.(2)小球受力分析如图所示.根据牛顿第二定律,沿杆方向上有F cos 37°+mg s in 37°-F f =ma ,垂直于杆的方向上有F N +F sin 37°-mg cos 37°=0 又F f =μF N 可解得:a =F cos 37°+mg sin 37°-μ(mg cos 37°-F sin 37°)m =34g由s =12at 2得t =2s a=8s 3g. 答案:(1)0.5 (2)8s 3g专题三 牛顿运动定律中的临界极值问题 1.定义在运用牛顿运动定律解动力学问题时,常常讨论相互作用的物体是否会发生相对滑动,相互接触的物体是否会发生分离等,这类问题就是临界问题.2.解决临界问题的关键是分析临界状态例如两物体刚好要发生相对滑动时,接触面上必须出现最大静摩擦力;两个物体要发生分离,相互之间的作用力——弹力必定为零.3.解决临界问题的一般方法 (1)极限法.题设中若出现“最大”“最小”“刚好”等这类词语时,一般就隐含着临界问题,解决这类问题时,常常是把物理问题(或物理过程)引向极端,进而使临界条件或临界点暴露出来,达到快速解决有关问题的目的.(2)假设法.有些物理问题在变化过程中可能会出现临界问题,也可能不出现临界问题,解答这类题,一般要用假设法.(3)数学推理法.根据分析的物理过程列出相应的数学表达式,然后由数学表达式讨论出临界条件. 例 4 如图所示,质量为m =10 kg 的小球挂在倾角θ=37°的光滑斜面的固定铁杆上,求:(1)斜面和小球以a 1=g2的加速度向右匀加速运动时,小球对绳的拉力和对斜面的压力分别为多大?(2)当斜面和小球都以a 2=3g 的加速度向右匀加速运动时,小球对绳的拉力和对斜面的压力分别为多少?解析:先求出临界状态时小球的加速度,假设小球刚要离开斜面,这时F N =0,受力情况如图甲所示,故F sin θ=mg (竖直方向),F cos θ=ma 0(水平方向).所以a 0=g cot θ=43g .(1)当斜面和小球以a 1的加速度向右匀加速运动时,由于a 1<a 0,可知这时小球与斜面间有弹力,所以其受力情况如图乙所示,故F 1cos θ-F N sin θ=ma 1(水平方向) F 1sin θ+F N cos θ=mg (竖直方向)解得F 1=100 N ,F N =50 N.(2)当斜面和小球以a 2的加速度向右匀加速运动时,由于a 2>a 0,可知这时小球已脱离斜面,所以其受力情况如图丙所示,故F 2sin α=mg (竖直方向)F 2cos α=ma 2(水平方向).两式平方相加,可得F 2=m 2g 2+m 2a 22=200 N.有牛顿第三定律知:当以加速度a1运动时,小球对绳的拉力为100 N,对斜面的压力为50 N;当以加速度a2运动时,小球对绳的拉力为200 N,对斜面的压力为0.答案:(1)100 N 50 N (2)200 N 0例5 如图所示,物体A重10 N,物体B重10 N,A与水平桌面间的动摩擦因数μ=0.2,绳与定滑轮间的摩擦均不计,A处于静止状态,求水平拉力F的取值范围是多少?(可认为最大静摩擦力和滑动摩擦力大小相等)解析:取隔离体A为研究对象,画出受力示意图,如图所示.根据题意A静止,应有F合=0即F N=G-F′sin 60°得F N=1.34 NA与桌面的最大静摩擦力Ff m=μF N=0.27 N故静摩擦力的取值范围是0<F f≤0.27 N当F>F1′时,F f向左,取最大值F f m,由平衡条件F x=0得F max=F f m+F′cos 60°=5.27N当F <F 1′时,F f 向右,由平衡条件得F min =F ′cos 60°-F f m =4.73 N故F 的取值范围为:4.73 N ≤F ≤5.27 N 答案:4.73 N ≤F ≤5.27 N专题四 物理图象在动力学问题中的应用1.物理图象信息量大,包含知识内容全面,很多习题已知条件是通过物理图象给出的,动力学问题中常见的有xt 、vt 、Ft 、aF 等图象.2.遇到带有物理图象的问题时,要认真分析图象,要从它的物理意义、点、线段、斜率、截距、交点、拐点、面积等方面了解图象给出的信息,再利用共点力平衡、牛顿运动定律及运动学公式去解题.一质量为m =40 kg 的小孩站在电梯内的体重计上,电梯从t =0时刻由静止开始上升,在0到6 s 内体重计示数F 的变化如图所示.试问:在这段时间内电梯上升的高度是多少?取重力加速度g =10 m/s 2.解析:由题图可知,在t =0到t 1=2 s 的时间内,体重计的示数大于mg ,故电梯应做向上的匀加速运动.设在这段时间内体重计作用于小孩的力为F 1,电梯及小孩的加速度为a 1,由牛顿第二定律,得F 1-mg =ma 1.在这段时间内电梯上升的高度h 1=12a 1t 21在t 1=2 s 到t 2=5 s 的时间内,体重计的示数等于mg ,故电梯应做匀速上升运动,速度为t 1时刻电梯的速度,即v 1=a 1t 1.在这段时间内电梯上升的高度h 2=v 1(t 2-t 1)在t 2=5 s 到t 3=6 s 的时间内,体重计的示数小于mg ,故电梯应做向上的匀减速运动.设这段时间内体重计作用于小孩的力为F 2,电梯及小孩的加速度为a 2,由牛顿第二定律,得mg -F 2=ma 2.在这段时间内电梯上升的高度h 3=v 1(t 3-t 2)-12a 2(t 3-t 2)2电梯上升的总高度h =h 1+h 2+h 3 代入数据解得h =9 m. 答案:9 m例7 质量为2 kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的vt 图象如图所示.g 取10 m/s 2,求:(1)物体与水平面间的动摩擦因数μ; (2)水平推力F 的大小;(3)0~10 s 内物体运动位移的大小.解析:本题主要考查了利用图象分析物体的受力情况和运动情况.(1)设物体做匀减速直线运动的时间为Δt 2、初速度为v 20,末速度为v t 2、加速度为a 2,则a 2=v t 2-v 20Δt 2=-2 m/s 2①设物体所受的摩擦力为F f ,根据牛顿第二定律,有F f =ma 2② F f =-μmg ③联立得μ=-a 2g=0.2.④(2)设物体做匀加速直线运动的时间为Δt 1、初速度为v 10、末速度为v t 1、加速度为a 1,则a 1=v t 1-v 10Δt 1=1 m/s 2⑤根据牛顿第二定律,由F +F f =ma 1⑥ 联立得F =μmg +ma 1=6 N .⑦(3)解法一 由匀变速直线运动位移公式,得x =x 1+x 2=v 10Δt 1+12a 1Δt 21+v 20Δt 2+12a 2Δt 22=46 m .⑧解法二 根据vt 图象围成的面积即物体运动的位移大小,得x =v 10+v t 12×Δt 1+12×v 20×Δt 2=46 m.答案:(1)0.2 (2)6 N (3)46 m 专题五 弹簧类问题牛顿第二定律F 合=ma 是联系物体受力与运动的重要规律,而弹簧由于其产生的弹力随弹簧的伸长、缩短而变化,从而引起其连接物运动情况变化无穷,因而弹簧类问题历来是高考考查的重点与热点内容.当然也是学生们感到伤脑筋的问题.其实,利用牛顿运动定律解决弹簧类问题,关键在于理解好牛顿第二定律的矢量性与瞬时性,其次是胡克定律F =kx 中弹力与弹簧伸长量的关系.下面来一起探究如何应用牛顿第二定律解决弹簧类问题.弹簧类问题常考查的题型有三种: 1.分析讨论加速度的变化问题例8 物体从某一高度自由落下,落在直立的轻弹簧上,如图甲所示,在A 点物体开始与弹簧接触,到C 点时速度为零,然后弹回,则下列说法正确的是( )A .物体从A 下降到C 的过程中,速率不断变小B .物体从C 上升到A 的过程中,速率不断变大C .物体从A 下降到C ,以及从C 上升到A 的过程中,速率都是先增大后减小D .物体在C 点时,所受合力为零解析:当小球落在弹簧上时,小球受两个力(如图乙):重力和弹簧的弹力.产生的加速度是:a =F 合m =mg -kx m在下落的过程中,小球所受的重力不变,质量不变,弹簧的劲度系数不变.随着小球的下落,x 逐渐增加.当:mg >kx 时(A →B ),a >0,小球加速下落mg =kx 时(B 点),a =0,小球速度最大 mg <kx 时(B →C ),a <0,小球减速下落所以答案是C 选项. 答案:C 2.临界状态问题例9 如图丙所示,轻弹簧上端固定,下端连接着重物(质量为m ),先由托板M 托住m ,使弹簧比自然长度缩短L ,然后由静止开始以加速度a 匀加速向下运动.已知a <g ,弹簧劲度系数为k ,求经过多长时间托板M 将与m 分开?解析:当托板与重物分离时,托板对重物没有作用力,此时重物只受到重力和弹簧的作用力(如图丁),只在这两个力作用下,当重物的加速度也为a 时,重物与托板恰好分离.根据牛顿第二定律,得:mg -kx =ma解得:x =m (g -a )k由运动学公式:L +x =12at 2即kL +m (g -a )k =at 22解得t =2[kL +m (g -a )]ka. 3.位移变化与力变化相联系的问题例 10 如图戊所示,竖直放置的劲度系数k =800 N/m 的轻弹簧上有一质量不计的轻盘,盘内放着一个质量m =12 kg 的物体,开始时m 处于静止状态,现给物体施加一个竖直向上的力F ,使其从静止开始向上做匀加速直线运动,已知前0.2 s 内F 是变力,在0.2 s后F 是恒力,取g =10 m/s 2,则F 的最小值是多少?最大值是多少?解析:m 在上升的过程中,受到重力、弹簧的弹力和拉力(如图己).由题可知,F 在前0.2 s 内是变力,说明0.2 s 时弹簧已达到原长,0.2 s 内走的距离就是弹簧原来压缩的长度.kx 0=mg即x 0=mg k =320m 又x 0=at 22所以a =2x 0t 2=7.5 m/s 2 由牛顿第二定律:F -mg +kx =ma当kx最大时(最下端kx0),F最小为F min=mg+ma-kx0=ma=90 N当kx最小时(最上端kx=0),F最大为F max=mg+ma=210 N.答案:见解析点评:上面是弹簧类问题应用牛顿运动定律的常见题型,解决这系列问题关键在于理解F合=ma中a与F合的关系,注意分析每一个瞬间研究对象的受力情况,进而确定其运动情况,从而抓住桥梁“a”在受力情况与运动情况间顺利过渡.另外,要特别注意弹簧原长时的受力情况,这一情况往往是运动状态发生改变的临界点.。
高中物理 第4章《第四章 牛顿运动定律》章末总结(测)
《优选资源》物理人教版必修1第四章牛顿运动定律3.2 弹力【限时:90分钟;分值:110分】一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中。
1~8题只有一项符合题目要求;9~12题有多项符合题目要求。
全部选对的得5分,选对但不全的得3分,有选错的得0分。
)1.下列说法正确的是A.力学的基本物理量有:长度、质量、力B.在力学单位制中,N/kg和m/s是相同的单位C.物体所受的合外力不为零,其速度一定增大D.伽利略的理想实验说明了力不是维持物体运动的原因2.用计算机辅助实验系统(DIS)做验证牛顿第三定律的实验,如图所示是把两个测力探头的挂钩钩在一起,向相反方向拉动,观察显示器屏幕上出现的结果.观察分析两个力传感器的相互作用随着时间变化的曲线,以下结论正确的是A、作用力与反作用力作用在同一物体上B、作用力与反作用力合力为零C、作用力与反作用力时刻相同D、作用力与反作用力同时变大,同时变小3.为提醒乘客注意,公交公司征集到几条友情提示语,其中对惯性的理解正确的是( )A、站稳扶好,克服惯性B、谨防意外,惯性恒在C、当心急刹,失去惯性D、稳步慢行,避免惯性4.如图,水平地面光滑,一轻弹簧一端固定在墙角上,另一端自由。
现用一木块向右将弹簧压缩一段距离后释放,则从刚释放一直到木块刚脱离弹簧的过程中,有关木块的运动下列说法正确的是()A.加速度变小,速度变小B.加速度变小,速度变大C.加速度变大,速度变大D.加速度变大,速度变小5.如图所示,质量均为m的A、B两球之间系一根轻弹簧,放在光滑水平面上,A球紧靠竖直墙壁,今用力F将B球向左推压弹簧,平衡后,突然撤去F的瞬间,下列说法正确的是()A.A的加速度为F/2m B.A的加速度为F/mC.B的加速度为F/m D.B的加速度为F/2m6.水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查。
如图所示为一水平传送带装置示意图,紧绷的传送带AB始终保持v=1m/s的恒定速率运行。
2017_2018学年高中物理第四章牛顿运动定律章末总结学案新人教版必修1
第四章牛顿运动定律章末总结一、物理图象在动力学问题中的应用1.动力学中两类常见图象及其处置方式(1)v-t图象:能够从所提供图象获取运动的方向、瞬时速度、某时刻内的位移和加速度,结合实际运动情形能够确信物体的受力情形。
(2)F-t图象:第一应明确该图象表示物体所受的是哪个力,仍是合力,依照物体的受力情形确信加速度,从而研究它的运动情形。
2.两图象需关注:图象的截距、斜率、面积和正负的含义,要做到物体实际受力与运动情形的紧密结合。
[例1] 一质量m=2.0 kg的小物块以必然的初速度冲上一倾角为37°足够长的斜面,某同窗利用传感器测出了小物块从一开始冲上斜面到上滑进程中多个时刻的瞬时速度,并用运算机作出了小物块上滑进程的速度—时刻图线,如图1所示。
(取sin 37°=0.6,cos 37°=0.8,g=10 m/s2)求:图1(1)小物块冲上斜面进程中加速度的大小;(2)小物块与斜面间的动摩擦因数;(3)小物块所抵达斜面最高点与斜面底端的距离。
解析 (1)由小物块上滑进程的速度—时刻图线,可得小物块冲上斜面进程中加速度为a =v -v 0t =0-8.01.0m/s 2=-8 m/s 2加速度大小为8 m/s 2。
(2)对小物块进行受力分析如下图,由牛顿第二定律知:mg sin 37°+F f =ma又F N -mg cos 37°=0F f =μF N代入数据解得μ=0.25。
(3)由图线知小物块沿斜面上滑的距离为x =v 02·t =8.02×1.0 m=4.0 m答案 (1)8 m/s 2(2)0.25 (3)4.0 m1.v -t 、x -t 图象反映的是物体的运动规律,绝非代表物体的运动轨迹。
F -t 图象反映的是物体的受力规律2.分析图象法,先从它的物理意义、点、线段、截距、交点、拐点、面积等方面了解信息。
[针对训练1] 放在水平地面上的一物块,受到方向不变的水平推力F 的作用,F 的大小与时刻t 的关系如图2甲所示,物块速度v 与时刻t 的关系如图乙所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年新物理人教版必修1同步精品课堂第四章牛顿运动定律《第四章牛顿运动定律》单元测试卷【满分:110分时间:90分钟】一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中. 1~8题只有一项符合题目要求;9~12题有多项符合题目要求。
全部选对的得5分,选对但不全的得3分,有选错的得0分。
) 1.伽利略创造的把实验、假设和逻辑推理相结合的科学方法,有力地促进了人类科学认识的发展.利用如图所示的装置做如下实验:小球从左侧斜面上的O点由静止释放后沿斜面向下运动,并沿右侧斜面上升.斜面上先后铺垫三种粗糙程度逐渐减低的材料时,小球沿右侧斜面上升到的最高位置依次为1、2、3.根据三次实验结果的对比,可以得到的最直接的结论是()A.如果斜面光滑,小球将上升到与O点等高的位置B.如果小球不受力,它将一直保持匀速运动或静止状态C.如果小球受到力的作用,它的运动状态将发生改变D.小球受到的力一定时,质量越大,它的加速度越小【答案】A【名师点睛】小球从左侧斜面上的O点由静止释放后沿斜面向下运动,并沿右侧斜面上升,阻力越小则上升的高度越大,伽利略通过上述实验推理得出运动物体如果不受其他物体的作用,将会一直运动下去.要想分清哪些是可靠事实,哪些是科学推论要抓住其关键的特征,即是否是真实的客观存在,这一点至关重要,这也是本题不易判断之处;伽利略的结论并不是最终牛顿所得出的牛顿第一定律,因此,在确定最后一空时一定要注意这一点。
2.如图,冰壶在冰面运动时受到的阻力很小,可以在较长时间内保持运动速度的大小和方向不变,我们可以说冰壶有较强的抵抗运动状态变化的“本领”,这里所指的“本领”是冰壶的惯性,则惯性的大小取决于A、冰壶的速度B、冰壶的质量C、冰壶受到的推力D、冰壶受到的阻力【答案】B【解析】衡量惯性大小的唯一因素,就是质量,质量越大,惯性越大,质量越小,惯性越小,故B正确;【名师点睛】惯性是物体所具有的特性,和物体的运动状态,形状,所处空间位置等于因素无关,只与物体的质量有关系,基础题,比较容易3.粗糙水平面上的物体在水平拉力F作用下做匀加速直线运动,现使F不断减小,则在滑动过程中() A.物体的加速度不断减小,速度不断增大B.物体的加速度不断增大,速度不断减小C.物体的加速度先变大再变小,速度先变小再变大D.物体的加速度先变小再变大,速度先变大再变小【答案】D【名师点晴】首先我们假定物体向右运动的,拉力也是向右的,合外力向右,加速度向右,拉力减小,加速度也减小,但是加速度的方向与物体的运动方向一致,所以物体的速度不断增大,相比较而言,比原来增大的慢了一些,但是是增大的。
4.人站在自动扶梯的水平踏板上,随扶梯斜向上匀加速运动,如图所示,以下说法中正确的是( )A. 人受到的合力与速度方向相同B. 人受到重力、支持力的作用C. 人处于失重状态D. 人受到重力和支持力以及合力的作用【答案】A【解析】因人随扶梯斜向上匀加速运动,故合力方向与加速度方向相同,也为斜向上的方向,故人受到的合力与速度方向相同,选项A 正确;人受到重力、支持力以及水平方向的摩擦力的作用,选项BD 错误;加速度有向上的分量,故人处于超重状态,选项C 错误;故选A.【名师点睛】此题考查了牛顿第二定律的应用;要知道加速度和合外力的方向是一致的,物体做匀加速直线运动时加速度和速度方向也是一致的;加速度向上时物体超重,加速度向下时,物体失重;此题是基础题,考查基本规律的应用.5.同样的力作用在质量为m 1的物体上时,产生的加速度是a 1;作用在质量是m 2的物体上时,产生的加速度是a 2.那么,若把这个力作用在质量是(m 1+m 2)的物体上时,产生的加速度为( )。
B.12122a a a a + C.1212a a a a +【答案】C 6.如图所示,A 、B 两小球分别连在弹簧两端,B 端用细线固定在倾角为30°光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度分别为( )A .都等于B .0和C .• 和0 D .0和•【答案】D【解析】①对A :在剪断绳子之前,A 处于平衡状态,所以弹簧的拉力等于A 的重力沿斜面的分力相等.在剪断上端的绳子的瞬间,绳子上的拉力立即减为零,而弹簧的伸长量没有来得及发生改变,故弹力不变仍为A 的重力沿斜面上的分力.故A 球的加速度为零;②对B :在剪断绳子之前,对B 球进行受力分析,B 受到重力、弹簧对它斜向下的拉力、支持力及绳子的拉力,在剪断上端的绳子的瞬间,绳子上的拉力立即减为零,对B 球进行受力分析,则B 受到到重力、弹簧的向下拉力、支持力.所以根据牛顿第二定律得: 30230A B A B B B B M gsin M gsin M M a M M g ︒+︒=∙+=,故ABC 错误,D 正确。
【名师点睛】在剪短上端的绳子的瞬间,绳子上的拉力立即减为零,而弹簧的伸长量没有来得及发生改变,故弹力不变,再分别对A 、B 两个小球运用牛顿第二定律,即可求得加速度;该题要注意在剪断绳子的瞬间,绳子上的力立即减为0,而弹簧的弹力不发生改变,再结合牛顿第二定律解题,难度不大。
7.下列哪组单位都是国际单位制中的基本单位( )A 、千克、秒、牛顿B 、千克、米、秒C 、克、千米、秒D 、牛顿、克、米【答案】B【名师点睛】国际单位制规定了七个基本物理量,分别为长度、质量、时间、热力学温度、电流、光强度、物质的量,它们的在国际单位制中的单位称为基本单位,而物理量之间的关系式推到出来的物理量的单位叫做导出单位。
8.如图所示,质量为m 的小球固定在水平轻弹簧的一端,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度大小为( )A .0B .g C.33g D.233g 【答案】D【解析】木板撤去前,小球处于平衡态,受重力、支持力和弹簧的拉力,如图:根据共点力平衡条件,有:300F Nsin -︒=,300Ncos G ︒-=解得:N =,F = 木板AB 突然撤去后,支持力消失,重力和拉力不变,合力等于支持力N ,方向与N 反向,故加速度为:N m a ==。
【名师点睛】本题关键对物体受力分析,求出各个力,木板撤去前,小球处于平衡态,根据共点力平衡条件先求出各个力,撤去木板瞬间,支持力消失,弹力和重力不变,求出合力后即可求出加速度。
9.小芳站在电梯中的体重计上,电梯静止时体重计示数如图(甲)所示,电梯运行经过5楼时体重计示数如图(乙)所示,则此时( )A .电梯可能在向上运动B .电梯一定在向下运动C .电梯的加速度方向一定向下D .电梯的加速度方向可能向上【答案】AC【名师点晴】超重时,物体的加速度方向是向上的,合外力的方向向上;失重时,物体的加速度方向是向下的,合外力的方向向下;所谓的超重是指体重计显示的休重较大,即人对秤的压力变大,也可以说是秤对人的支持力大于的重力,所以示重变大,反之失重就是示重较小。
10.一个质量为0.2kg 的小球用细线吊在倾角θ=53°的斜面顶端,如图,斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦,当斜面以10m/s 2的加速度向右做加速运动时,则( )(sin53°=0.8,cos53°=0.6,g=10m /s 2 )A .绳的拉力为1.60NB .绳的拉力为C .斜面对小球的弹力为1.20ND .斜面对小球的弹力为0【答案】BD【解析】当小球对斜面的压力恰为零时,斜面的加速度为a 0,根据牛顿第二定律可知:mgtan370=ma 0,解得207.5/a m s =,则当斜面以10m/s 2的加速度向右做加速运动时,小球将飘离斜面,此时设细线与竖直方向的夹角为α,则mgtanα=ma ,解得α=450,此时22cos mg T N α==,故选BD. 【名师点睛】此题是关于牛顿第二定律的应用问题;关键是找到小球恰好离开斜面时加速度的临界值,然后根据已知的加速度的值进行判断小球所处的状态,最后根据牛顿定律计算;此题是中等题,考查基本方法的运用能力.11.如图所示,在水平面上,质量为10kg 的物块A 栓在一个被水平拉伸的弹簧一端,弹簧的另一端固定在小车上,小车静止不动,弹簧对物块的弹力大小为5N 时,物块处于静止状态,若小车以加速度21/a m s =沿水平地面向右加速运动时A 、物块A 相对小车仍静止B 、物块A 受到摩擦力将减小C 、物块A 受到的摩擦力大小不变D 、物块A 受到的弹力将增大【答案】AC【名师点睛】物体开始时受弹力为5N ,而处于静止状态,受到的静摩擦力为5N ,说明物体的最大静摩擦力大于等于5N ;当小车的加速度为21/a m s =,两物体将保持相对静止时,物体的加速度为21/a m s =,则需要的外力为10N ;根据弹力和最大静摩擦力可求出物体相对于小车静止的最大加速度,当小车的加速度小于等于最大加速度时,物体与小车仍保持相对静止.弹簧的弹力不变,摩擦力大小不变12.如图所示,A 、B 两物体静止在粗糙水平面上,其间用一根轻弹簧相连,弹簧的长度大于原长。
若再用一个从零开始缓慢增大的水平力F 向右拉物体B ,直到A 即将移动,此过程中,地面对B 的摩擦力F 1和对A 的摩擦力F 2的变化情况是A .F 1先不变后变大B .F 1先变小后变大C .F 2先变大后不变D .F 2先不变后变大【答案】BD【解析】由题知,刚开始弹簧处于伸长状态,对A 的拉力向右,对B 的拉力向左,而AB 均静止,所以刚开始的1F 方向水平向右,2F 方向水平向左,当用一个从零开始缓慢增大的水平力F 向右拉物体B 时,刚开始,未拉动B ,弹簧弹力不变,2F 不变,1F 减小;当F 等于弹簧弹力时,1F 等于零,F 继续增大,1F 反向增大,当1F 增大到最大静摩擦力时,B 物体开始运动,此后变为滑动摩擦力,不发生变化,而弹簧被拉伸,弹力变大,A 仍静止,所以2F 变大,所以对A 的摩擦力2F 先不变,后变大,故BD 正确. 【名师点睛】本题解题的关键是对AB 两个物体进行正确的受力分析,知道当B 没有运动时,弹簧弹力不变,当B 运动而A 为运动时,弹力变大,难度不大二、实验题(本大题共2小题,第13题4分、14题6分;共10分)13.(4分)如图所示,在研究牛顿第二定律的演示实验中,若1、2两个相同的小车所受拉力分别为1F 、2F ,车中所放砝码的质量分别为1m 、2m ,打开夹子后经过相同的时间两车的位移分别为1x 、2x ,则在实验误差允许的范围内,有( )A 、当12m m =、122F F =时,122x x =B 、当12m m =、122F F =时,212x x =C 、当122m m =、12F F =时,122x x =D 、当122m m =、12F F =时,212x x =【答案】A【名师点睛】应用牛顿第二定律与运动学公式即可正确解题,注意两小车的运动时间相等,小车做初速度为零的匀加速运动,由牛顿第二定律求出加速度、由匀变速运动的位移公式可以分析答题。