2017年秋高中物理第四章牛顿运动定律章末总结讲基础版
高中物理必修一 第4章 ——牛顿运动定律考点总结
六、板块模型
第四章 牛顿运动定律
相对静止变为相对运动的临界是静摩擦力达到 最大值
1、以力F没有作用的物体为研究对象,找到临界 加速度a0
2、以整体为研究对象,找到临界拉力F0。 3、若F ≤F0,以整体为研究对象找加速度 4、若F >F0 ,单独以每个物体为研究对象找各自
的加速度
5、找出两物体的位移关系,运用运动学公式解 题
栏目 导引
第四章 牛顿运动定律
二、瞬时加速度:①剪谁谁对物体的作用力就消失 ②轻绳和轻杆弹力能突变,一般情况下从有到无 ③轻弹簧和橡皮条弹力不能突变,即不变 ④分析物体剪前和剪后的受力情况求加速度 例1 图1中所示A、B、C为三个物块,K为轻 质弹簧,L为轻线.系统处于平衡状态, 现若将L突然剪断,用aA、aB分别表示 刚剪断时A、B的加速度,则有( B ) A.aA=0、aB=0 B.aA=0、aB≠0 C.aA≠0、aB≠0 D.aA≠0、aB=0
水平传送带:a=µg
倾斜传送带:a1=µgsinθ+µgcosθ
a2=µgsinθ-µgcosθ
栏目
导引
第四章 牛顿运动定律
例2 如图所示,水平传送带A、B两端点相距 x=3.5m,以v0=2m/s的速度(始终保持不变)顺 时针运转.今将一小煤块(可视为质点)无初速 度地轻放在A点处,已知小煤块与传送带间的动 摩擦因数为0.4.由于小煤块与传送带之间有相 对滑动,会在传送带上留下划痕.小煤块从A运 动到B的过程中( AD ) A、所用的时间是2s B、所用的时间是2.25s C、划痕长度是4m D、划痕长度是0.5m
栏目 导引
第四章 牛顿运动定律
例 3 如图所示,质量为 4 kg 的物体静止于水平面上.现用 大小为 40 N,与水平方向夹角 为 37°的斜向上的力拉物体,使 物体沿水平面做匀加速运动(g 取 10 m/s2,sin 37°=0.6,cos 37°=0.8). (1)若水平面光滑,物体的加速度是多大? (2)若物体与水平面间的动摩擦因数为 0.5, 物体的加速度是多大?
高一物理第四章牛顿运动定律知识要点总结
高一物理第四章牛顿运动定律知识要点总结
高一物理第四章牛顿运动定律知识要点总结
牛顿运动定律中的各定律互相独立,且内在逻辑符合自洽一致性,物理第四章牛顿运动定律知识要点帮助大家更清晰地学习掌握牛顿定律。
一、牛顿第一定律
亚里士多德观点:物体运动需要力来维持。
伽利略观点:物体的运动不须要力来维持,运动之所以停下来,是因为受到了阻力作用。
牛顿第一定律:一切物体在没有收到力的作用时,总保持静止状态或匀速直线运动状态。
(牛顿第一定律是在经验事实的基础上,通过进一步的推理而概括出来的,因而不能用实验来证明这一定律)。
二、探究加速度与力质量的关系
加速度是速度变化量与发生这一变化所用时间的比值
Δv/Δt,是描述物体速度变化快慢的物理量。
加速度(Acceleration)是速度变化量与发生这一变化所用时间的比值Δv/Δt,是描述物体速度变化快慢的物理量。
三、牛顿第二定律
1.定律内容:物体的加速度跟物体所受的合外力F成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同.
2.公式:F合=ma
牛顿原始公式:F=Δ(mv)/Δt(见牛顿《自然哲学之物理原
而再通过受力分析,来求解出某个力的大小。
七、用牛顿运动定律解决问题(二)
考点1:共点力的平衡条件
考点2:超重和失重
考点3:从动力学看自由落体运动
高一物理第四章牛顿运动定律知识要点的全部内容就是这些,想要继续提升自己同学们一定不要错过必修一物理第四章牛顿运动定律同步练习。
2017高中物理 第四章 牛顿运动定律本章优化总结课件
2.(2016· 宜昌调研)如图所示, 质量为 M=1 kg, 长为 L=0.5 m 的木板 A 上放置一质量为 m=0.5 kg 的物体 B, A 平放在光滑桌面上,B 位于 A 中点处,B 与 A 之间的动摩擦 因数为 μ=0.1, B 与 A 间的最大静摩擦力等于滑动摩擦力(B 可 看做质点,重力加速度 g 取 10 m/s2).求:
2.运动过程分析:在运动分析时,要区分出初态、运动过程和 末态,在物体运动的整个过程中,往往因为物体受力的变化, 可以把它的运动过程分为几个阶段,所以解题时一般要根据实 际情况画出运动过程示意图,再结合受力情况选取相应的规律 求解.
3.矢量的运算:学过的矢量主要有:位移 x、速度 v、加速度 a、力 F 等,矢量运算要注意以下几点 (1) 同 一 条 直 线 上 的 矢 量 运 算 , 要 先 规 定 正 方 向 , 然 后 以 “+”“-”号代表矢量方向,从而把矢量运算转化为算术运 算. (2)互成角度的矢量合成与分解,遵从平行四边形定则,在进行 矢量合成或分解时,应明确物体遵循力和运动的“独立性原 理”. (3)正交分解法实际中多应用于力的分解,应用时要根据物体受 力情况选定坐标系,使较多的力落在坐标轴上.
专题三
多过程问题分析
1.当题目给出的物理过程较复杂,由多个过程组成时,要明确 整个过程由几个子过程组成,将过程合理分段,找到相邻过程 的联系点并逐一分析每个过程.联系点:前一过程的末速度是 后一过程的初速度,另外还有位移关系等. 2.注意:由于不同过程中力发生了变化,所以加速度也会发生 变化, 所以对每一过程都要分别进行受力分析, 分别求加速度.
2.求解临界极值问题的三种常用方法 (1)极限法:把物理问题(或过程)推向极端,从而使临界现象(或 状态)暴露出来,以达到正确解决问题的目的. (2)假设法:临界问题存在多种可能,特别是非此即彼两种可能 时,或变化过程中可能出现临界条件,也可能不出现临界条件 时,往往用假设法解决问题. (3)数学方法:将物理过程转化为数学公式,根据数学表达式解 出临界条件.
高一物理必修一第四章牛顿运动定律定律知识点梳理
高一物理必修一第四章牛顿运动定律定律知识点梳理
高一物理必修一第四章牛顿运动定律定律知识
点梳理
高中物理是高中理科(自然科学)基础科目之一,小编准备了高一物理必修一第四章牛顿运动定律定律知识点,希望你喜欢。
知识要点
一、牛顿第一定律
1.牛顿第一定律的内容:一切物体总保持原来的匀速直线运动或静止状态,直到有外力迫使它改变这种状态为止.
2.理解牛顿第一定律,应明确以下几点:
(1)牛顿第一定律是一条独立的定律,反映了物体不受外力时的运动规律,它揭示了:运动是物体的固有属性,力是改变物体运动状态的原因.
①牛顿第一定律反映了一切物体都有保持原来匀速直线运动状态或静止状态不变的性质,这种性质称为惯性,所以牛顿第一定律又叫惯性定律.
②它定性揭示了运动与力的关系:力是改变物体运动状态的原因,是产生加速度的原因.
(2)牛顿第一定律表述的只是一种理想情况,因为实际不受力的物体是不存在的,因而无法用实验直接验证,理想实验就是把可靠的事实和理论思维结合起来,深刻地揭示自然规律.理想实验方法:也叫假想实验或理想实验.它是在可靠的
(3)注意一对作用力和反作用力与一对平衡力的区别
高一物理必修一第四章牛顿运动定律定律知识点就为大家介绍到这里,希望对你有所帮助。
高中物理 第四章 牛顿运动定律章末总结(练)(基础版,含解析)新人教版必修1(2021年最新整理)
2016-2017学年高中物理第四章牛顿运动定律章末总结(练)(基础版,含解析)新人教版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中物理第四章牛顿运动定律章末总结(练)(基础版,含解析)新人教版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中物理第四章牛顿运动定律章末总结(练)(基础版,含解析)新人教版必修1的全部内容。
《第四章 牛顿运动定律》1.关于惯性,下列说法正确的是( )A 、物体受力增大时,惯性会减小B 、某物体运动得越快越难停下来,说明物体速度大时惯性大C 、将一小球从地球带到月球,物体的惯性会减小D 、惯性大小只由物体的质量决定,与速度和是否受力无关【答案】D【名师点睛】对于惯性概念的理解要准确到位:惯性是物体的固有属性,一切物体都有惯性,惯性大小取决于物体质量大小,与速度等因素无关。
2.如图所示,物体在水平拉力F 作用下沿水平地面做匀速直线运动,速度为 v .现让拉力逐渐减小,则物体的加速度和速度的变化情况是( )A .加速度逐渐变小,速度逐渐变大B .加速度逐渐变大,速度逐渐变小C .加速度和速度都在逐渐变大D .加速度和速度都在逐渐变小【答案】B【解析】开始物体在水平方向上受拉力和滑动摩擦力平衡,当拉力逐渐减小,根据牛顿第二定律,f F a m-=,知加速度逐渐增大,方向水平向左,方向与速度的方向相反,则速度逐渐减小.故B 正确,ACD 错误.故选B 。
【名师点睛】此题是牛顿第二定律的应用问题;解决本题的关键知道根据合力的大小变化,可知道加速度大小的变化.以及知道当速度方向与加速度方向相同,物体做加速运动,当速度方向与加速度方向相反,物体做减速运动.3.如图,质量A B m m >的两物体A 、B 叠放在一起放在倾角为θ的光滑斜面上,现让它们由静止开始释放,在沿斜面下滑过程中,物体B 的受力图是( )【答案】C【解析】两物体共同运动的加速度为a=gsin θ;对物体B ,根据牛顿第二定律:sin AB B B F m g m a θ+=,解得F AB =0;故物体B 只受重力和斜面的支持力作用,故选C.【名师点睛】此题考查了牛顿第二定律的应用以及整体及隔离法的问题;解题时先选择AB 的整体求解加速度,然后隔离任一个物体可求解两物体之间的作用力即可;整体及隔离法是解决连接体问题的常用方法,必须熟练掌握。
高中物理:第四章 牛顿运动定律 章末总结
章末总结
知识网络
内容:一切物体总保持匀速直线运动状态或静止状态,除
牛顿运 牛顿第 动定律 一定律
非作用在它上面的力迫使它改变这种状态. 力是改变物体运动状态 的原因
理解 一切物体在任何情况下都具有惯性,质量 是惯性
大小的惟一量度
内容:物体加速度的大小跟它受到的作用力成 正比 ,跟
它的质量成反比,加速度的方向跟 作用力的方向 相同.
表达式:F=_m_a_
牛顿运 牛顿第
动定律 二定律
矢量 性:a的方向与F的方向一致
理解 瞬时 性:a随F的变化而变化
独立 性:每个力都能使物体产生一个加速度
力学单位制:基本量与基本单位、导出单位、单位制的应用
内容:两个物体之间的作用力和反作用力总是大小相等,
牛顿运 牛顿第 方向相反,作用在同一条直线上.
动定律 三定律
同时产生,同时变化 ,同时消失
理解 同种_性__质__
分别作用在两个相互作用的物体上
作用力、反作用力和一对平衡力的区别
两类基 已知运动情况确定受力情况
本问题 已知受力情况确定运动情况
超重与 超重:加速度a向上 ,FN>G
牛顿运 失重 失重:加速度a向下 ,FN<G
动定律
完全失重:a= g ,FN=0
共点力作 用下物体的平衡
平衡状态:静止或_匀__速__直__线__运__动__ 平衡条件:_F_合__=__0_
求解方法
直角三角形法 三角形法
相似三角形法 _正__交__分__解__法__
高一物理第四章总结-已经上传五篇范文
高一物理第四章总结-已经上传五篇范文第一篇:高一物理第四章总结-已经上传高一物理第四章《牛顿运动定律》教材分析学习总结通过学习高中物理“牛顿运动定律”教程,使我更加清楚的认识了牛顿运动定律,是经典力学的基础,学好本章的知识,对于学好其余的力学知识以及整个物理学都有至关重要的意义。
也是高中物理的教与学的难点。
因此,探索有效地教学策略显得非常重要。
下面我谈谈自己的几点看法:1、注重知识的延续性:初中阶段已经学习了有关“牛顿运动定律”的知识,高中“牛顿运动定律”是在此基础上的继续学习,可以先让学生复习回顾,或出些试题测试学生对这部分知识的学生情况和掌握情况。
初中阶段所学的惯性已经做了大量实验,比如在水杯上放一纸杯,在纸杯上放一个鸡蛋,把纸杯抽走鸡蛋就会掉到水杯里;再比如锤头和锤柄之间松动,利用惯性把锤头和锤柄加固等实验都是学生在初中学到的东西。
初中教材中也谈到了运动和力得关系,提出些问题和猜想,涉及到一些实验和方法,比如让一个小车沿斜面滑下来,滑到水平面上来,在水平面上放上不同的接触面(毛巾、木板、玻璃)观察,根据现象分析力和运动之间是什么关系。
2、理想化实验的学习。
初中也学习了牛顿第一定律,高中阶段学习牛顿第一定律,提高对牛顿第一定律的理解,多设计一些理想实验,比如冰壶比赛,冰壶与冰面之间的摩擦比较小,冰壶在冰面上滑动的时间比较长,再比如单摆小球的运动。
学生第一次接触到理想实验,应充分说明伽利略理想实验的推理过程,知道理想实验是建立在可靠事实的基础上的一种科学方法,理解牛顿第一定律所描述的虽然是一种理想化的状态,它却正确地揭示了自然规律.虽然是理想化的实验,但它是以可靠的事实为基础,经过抽象思维,抓住主要因素,忽略次要因素,设计出的实际不可能进行的但又符合严格科学推理的“理想化的实验”.3、教学理念新(1)重视“过程”目标的落实,重视“情感”目标的体现,重视“生活”中的体验和联系(2)重视科学情感、态度和价值观等(3)重视学生的自主学习,提倡教学方式的多元化通过该节的学习要培养学生知难而进的思想,要敢于面对问题和困难;师生互动和实验演示,活跃气氛,激发学生学习兴趣,理解实践出真知的道理。
人教版高中物理(必修一)第四章 牛顿运动定律重、难点梳理
人教版高中物理(必修一)第四章牛顿运动定律重、难点梳理第一节牛顿第一定律一、教学要求:1、知道伽利略和亚里士多德对力和运动的关系的不同认识,知道伽利略的理想实验及其推理过程和结论,知道理想实验法是科学研究的重要方法。
2、理解牛顿第一定律的内容和意义。
3、联系生活实例,知道什么是惯性,知道惯性大小与质量有关,并正确解释有关惯性的现象。
二、重点、难点、疑点、易错点1、重点:惯性是物体的固有属性,质量是物体惯性大小的量度运用惯性概念,解释有关实际问题2、难点:理想实验的推理过程;对牛顿第一定律的理解3、疑点:牛顿第一定律是否是牛顿第二定律的特殊情形4、易错点:力和运动关系实际应用三、教学资源:1、教材中值得重视的题目:P75问题与练习第4题2、教材中的思想方法:理想实验的方法第二节实验:探究加速度与力、质量的关系一、教学要求:1、通过实验探究和具体实例的分析,理解加速度与力的关系,理解加速度与质量的关系。
2、经历实验方案的制定和实验数据处理的过程,形成正确的思维方法,养成良好的科学态度。
二、重点、难点、疑点、易错点1、重点:探究加速度与力、质量的关系:通过实验测量加速度、力、质量,分别作出加速度与力、加速度与质量的关系图像根据图像写出加速度与力、质量的关系式体会“控制变量法”对研究问题的意义2、难点:实验方案的确立、实验数据的分析,包括:体验实验探究过程:明确实验目的、分析实验思路、制定实验方案、得出实验结论认识数据处理时变换坐标轴的技巧了解将”不易测量的物理量转化为可测物理量”的实验方法会对实验误差作初步分析3、疑点:为什么要作a-1/m图像4、易错点:实验的方法与步骤三、教学资源:1、教材中值得重视的题目:2、教材中的思想方法:控制变量法、图像法处理数据第三节牛顿第二定律一、教学要求:1、通过实验归纳,理解牛顿第二定律的内容,知道牛顿第二定律表达式的含义2、知道力的单位“牛顿”的定义方法3、根据牛顿第二定律进一步理解G=mg4、运用牛顿第二定律,解决简单的动力学问题二、重点、难点、疑点、易错点1、重点:理解牛顿第二定律的内容会用正交分解法和牛顿第二定律解决实际问题2、难点:认识加速度与物体所受的合力之间的关系(正比性、同体性、瞬时性和矢量性)3、疑点:牛顿第二定律与牛顿第一定律的关系4、易错点:受力分析三、教学资源:1、教材中值得重视的题目:P82 动力学方法测量质量P82 问题与练习12、教材中的思想方法:正交分解法进行力的计算第四节力学单位制一、教学要求:1、知道单位制的意义,知道国际单位制中力学的基本单位。
高一物理知识点总结第四章牛顿运动定律
高一物理知识点总结第四章牛顿运动定律
高一物理知识点总结第四章牛顿运动定律
高一物理知识点总结:第四章牛顿运动定律
考试的要求:
Ⅰ、对所学知识要知道其含义,并能在有关的问题中识别并直接运用,相当于课程标准中的了解和认识。
Ⅱ、能够理解所学知识的确切含义以及和其他知识的联系,能够解释,在实际问题的分析、综合、推理、和判断等过程中加以运用,相当于课程标准的理解,应用。
要求Ⅰ:力学单位制
要求Ⅱ:牛顿第一定律、牛顿第二定律、牛顿第三定律
知识构建:
新知归纳:
一、牛顿第一定律
●牛顿第一定律
定义:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
●惯性
1、定义:物体具有的保持原来的匀速直线运动状态或静止状态的性质。
2、惯性是物体的固有属性,惯性不是一种力。
任何物体在任何情况下都具有惯性。
3、惯性的大小只由物体本身的特征决定,与外界因素无关。
高一物理第四章牛顿运动定律知识点总结讲解.doc
高一物理第四章《牛顿运动定律一、夯实基础知识1 、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫为止。
理解要点:( 1)运动是物体的一种属性,物体的运动不需要力来维持;( 2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动度定义: a v,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因t生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”(3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态惯性。
惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)量度。
( 4)牛顿第一定律描述的是物体在不受任何外力时的状态。
而不受外力的物体是不存在的,牛用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律( 5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,第一定律当成牛顿第二定律在F=0时的特例,牛顿第一定律定性地给出了力与运动的关地给出力与运动的关系。
2 、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。
公式理解要点:( 1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计m i ,对应的加速度为a i ,则有: F 合=m 112233,,n na +m a +m a + +m a对这个结论可以这样理解:先分别以质点组中的每个物体为研究对象用牛顿第二定律:∑ F 1=m 1a 1, ∑ F 2 =m 2a 2 , ,, ∑ F n =m n a n ,将以上各式等号左、右分别相加,其中左边所力的, 总是成对出现并且大小相等方向相反的,其矢量和必为零,所以最后得到的和,即合外力F 。
物理知识点总结第四章 牛顿运动定律
物理知识点总结----第四章 牛顿运动定律★ 1.牛顿第一定律:一切物体总是保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
(1) 运动是物体的一种属性,物体的运动不需要力来维持。
(2) 定律说明了任何物体都具有惯性。
(3) 不受力的物体是不存在的。
牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础上,通过思维的逻辑推理而发现的。
它告诉了人们研究物理问题的另一种方法:通过观察大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律。
(4) 牛顿第一定律是牛顿第二定律的基础,不能简单认为它是牛顿第二定律不受外力的特例,。
2.惯性:物体保持匀速直线运动状态或静止状态的性质(1) 惯性是物体的固有属性,即一切物体都有惯性,与物体的受力情况即运动状态无关。
因此说,人们只能“利用”惯性而不能“克服”惯性。
(2) 质量是物体惯性大小的量度,质量越大,惯性越大。
★★★★3.牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式ma =合F 。
(1) 牛顿第二定律定量揭示了力与运动的关系,即知道了力可根据牛顿第二定律,分析出物体的运动规律;反过来,知道了运动状态,可根据牛顿第二定律研究其受力情况。
为设计运动、控制运动提供了理论基础。
(2) 对牛顿第二定律的数学表达式ma =合F ,F 合是力,ma 是力的作用效果,特别要注意不能把ma 看作是力,(3) 牛顿第二定律揭示的是力的瞬间效果,即作用在物体上的力与它的作用效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意:力的瞬间效果是加速度的变化而不是速度。
(4) 牛顿第二定律ma =合F ,F 合是矢量,ma 也是矢量,且ma 与F 合的方向总是一致的。
F 合可以进行合成与分解,ma 也可以进行合成与分解。
★ 4.牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。
高中物理重点基础:牛顿运动定律知识点总结
高中物理重点基础:牛顿运动定律知识点总结牛顿运动定律是高中物理的核心内容,是毋庸置疑的难点和重点,下面就是小编给大家带来的高中物理重点基础:牛顿运动定律知识点总结,希望能帮助到大家!知识结构核心知识牛顿第一定律一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。
1. 明确物体具有惯性“一切物体总保持匀速直线运动状态或静止状态”,揭示了一切物体都具有惯性,即物体具有保持原来匀速直线运动状态或静止状态的性质,叫做惯性。
量度物体惯性大小的物理量是质量。
2. 明确力的含义“除非作用在它上面的力迫使它改变这种状态”,说明力的作用是改变物体的运动状态。
当物体受到的合外力为零时,物体就保持原来的状态(静止或匀速),若受到合外力,其状态一定发生变化。
牛顿第二定律物体的加速度跟作用力成正比,跟物体的质量成反比。
公式:F=ma1. 瞬时性牛顿第二定律表明了物体的加速度与物体所受合外力的瞬时对应关系,即加速度随着力的产生而产生、消失而消失、变化而变化。
2. 矢量性F=ma是一个矢量方程,任一瞬时,a的方向均与合外力的方向保持一致。
3. 同体性F=ma中F、m、a必须对应同一个物体或同一个系统。
牛顿第三定律两物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一条直线上。
区分一对作用力反作用力和一对平衡力共同点:大小相等、方向相反、作用在同一条直线上。
不同点:1. 作用力反作用力作用在两个不同物体上,而平衡力作用在同一个物体上;2. 作用力反作用力一定是同种性质的力,而平衡力可能是不同性质的力;3. 作用力反作用力一定是同时产生同时消失的,而平衡力中的一个消失后,另一个可能仍然存在。
超重和失重1. 超重物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象称为超重。
物体对支持物的压力大小等于物体受到的支持力,则以物体为研究对象,物体受到的支持力大于物体受到的重力,合外力向上,物体具有向上的加速度,如图甲所示。
高一物理第四章牛顿运动定律知识点归纳总结
高一物理第四章牛顿运动定律知识点归纳总结高一物理第四章《牛顿运动定律》总结一、夯实基础知识1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。
理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:t va ∆∆=,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。
(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。
);(3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态的性质,这就是惯性。
惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。
质量是物体惯性大小的量度。
(4)牛顿第一定律描述的是物体在不受任何外力时的状态。
而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。
它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。
2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。
公式F=ma.理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x =ma x ,F y =ma y , 若F 为物体受的合外力,那么a 表示物体的实际加速度;若F 为物体受的某一个方向上的所有力的合力,那么a 表示物体在该方向上的分加速度;若F 为物体受的若干力的某一个力,那么 a 仅表示该力产生的加速度,不是物体的实际加速度。
人教版必修一第4章《牛顿运动定律》章末总结
物理·必修1(人教版)章末总结动力学两类基本问题1.掌握解决动力学两类问题的思路方法.其中受力分析是基础,牛顿第二定律和运动学公式是工具,加速度是连接力和运动的桥梁.2.力的处理方法. (1)平行四边形定则.由牛顿第二定律F 合=ma 可知,F 合是研究对象m 受到的外力的合力;加速度a 的方向与F 合的方向相同.解题时,若已知加速度的方向就可推知合力的方向;反之,若已知合力的方向,亦可推知加速度的方向.(2)正交分解法.物体受到三个或三个以上的不在同一直线上的力作用时,常用正交分解法.表示方法⎩⎪⎨⎪⎧F x =ma xF y =ma y为了减少矢量的分解,建立直角坐标系时,一般不分解加速度.风洞实验室中可产生水平方向的、大小可调节的风力.现将一套有小球的细直杆放入风洞实验室,小球孔径略大于细杆直径(如图所示)(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上匀速运动,这时小球所受的风力为小球所受重力的0.5倍,求小球与杆间的动摩擦因数.(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静止出发在细杆上滑下距离s 所需时间为多少?(sin 37°=0.6,cos 37°=0.8)解析:(1)设小球所受的风力为F ,小球的质量为m ,因小球做匀速运动,则F =μmg ,F =0.5mg ,所以μ=0.5.(2)小球受力分析如图所示.根据牛顿第二定律,沿杆方向上有Fcos 37°+mgsin 37°-F f =ma ,垂直于杆的方向上有F N +Fsin 37°-mgcos 37°=0 又F f =μF N 可解得: a =Fcos 37°+mgsin 37°-μ-m=34g 由s =12at 2得t =2s a=8s 3g.答案:(1)0.5 (2)8s 3g►跟踪训练1.用水平力F 拉一物体在水平地面上匀速运动,从某时刻起力F 随时间均匀减小,物体所受的摩擦力f 随时间t 的变化如图中实线所示.下列说法正确的是( )A .0~t 1内匀速运动B .t 1~t 2内匀速运动C .t 1~t 2内变减速运动D .t 2~t 3内变减速运动 答案:C2.如图所示为粮袋的传送装置,已知AB 间长度为L ,传送带与水平方向的夹角为θ,工作时其运行速度为v ,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A 点将粮袋放到运行中的传送带上,关于粮袋从A 到B 的运动,以下说法正确的是(设最大静摩擦力等于滑动摩擦力)( )A .粮袋到达B 点的速度与v 比较,可能大,也可能相等或小B .粮袋开始运动的加速度为g(sin θ-μcos θ),若L 足够大,则以后将一定以速度v 做匀速运动C .若μ≥tan θ,则粮袋从A 到B 一定一直是做加速运动D .不论μ大小如何,粮袋从A 到B 一直做匀加速运动,且a >gsin θ 答案:A整体法的含义:所谓整体法就是对物理问题的整个系统或整个过程进行分析、研究的方法.整体法的优点:通过整体法分析物理问题,可以弄清系统的整体受力情况和全过程的受力情况,从整体上揭示事物的本质和变化规律,从而避开了中间环节的繁琐推算,能够灵巧地解决问题.通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(或一个物体的各部分)间相互作用时,用隔离法;有时解答一个问题需要多次选取研究对象,此时整体法和隔离法要灵活应用.用轻质细线把两个质量未知的小球悬挂起来,如下图甲所示.今对小球a 持续施加一个向左偏下30°的恒力,并对小球b 持续施加一个向右偏上30°的同样大的恒力,最后达到平衡.表示平衡状态的图可能是图乙中的()解析:方法一:将a 、b 两球及两球间的绳看作一个物体系统,以这个系统为研究对象.因为作用在a 、b 上的恒力等大反向,其合外力平衡,而a 、b 受的重力竖直向下,要保持平衡,故a 到悬点的细绳的力必然沿竖直方向向上.方法二:也可以分别将a 、b 隔离进行受力分析,分别对a 、b 两球列出水平分力的平衡方程即可.以C 图为例,受力如下图所示.整体法与隔离法解物体的平衡问题对a:水平方向有F1cos 30°=T1cos α+T2cos β,对b:水平方向有F2cos 30°=T2 cos β,因为F1=F2,所以T1 cos α=0,由于T1≠0,故α=90°.答案:A►跟踪训练1.如图,两个固定的倾角相同的滑竿上分别套A、B两个圆环,两个圆环上分别用细线悬吊着两个物体C、D,当它们都沿滑竿向下滑动时,A的悬线始终与竿垂直,B的悬线始终竖直向下.则下列说法中正确的是( )A.A环与滑竿无摩擦力B.B环与滑竿无摩擦力C.A环做的是匀速运动D.B环做的是匀加速运动答案:A2.一根水平粗糙的横杆上,套有两个质量均为m的小铁环,两铁环上系着两条等长的细线,共同拴住一个质量为M的球,两铁环和球均处于静止状态,如右图所示,现使两环间距稍许增大后系统仍处于静止状态,则水平横杆对铁环的支持力N和摩擦力f的变化是( )A.N不变,f不变 B.N不变,f变大C.N变大,f不变 D.N变大,f变小答案:B物理思想方法的应用当物体运动的加速度发生变化时,物体可能从一种状态变化为另一种状态,这个转折点叫做临界状态,可理解为“将要出现”但“还没有出现”的状态.1.常见类型有:(1)隐含弹力发生突变的临界条件.弹力发生在两物体接触面之间,是一种被动力,其大小取决于物体所处的运动状态,当运动状态达到临界状态时,弹力会发生突变.(2)隐含摩擦力发生突变的临界条件.静摩擦力是被动力,其存在及其方向取决于物体之间的相对运动的趋势,而且静摩擦力存在最大值.静摩擦力为零的状态,是方向变化的临界状态;静摩擦力为最大静摩擦力是物体恰好保持相对静止的临界条件.2.可用以下方法进行临界状态分析:(1)采用极限法分析,即加速度很大或很小时将会出现的状态,则加速度取某一值时就会出现转折点——临界状态.(2)临界状态出现时,往往伴随着“刚好脱离”“即将滑动”等类似隐含条件,因此要注意对题意的理解及分析.(3)在临界状态时某些物理量可能为零,列方程时要注意.球紧靠在斜面上,绳与斜面平行.(1)当斜面以a1=8 m/s2的加速度向右做匀加速运动时,绳子拉力及斜面对小球的支持力是多少?当斜面以a2=5 m/s2的加速度向右运动时呢?(2)若斜面向左加速运动,小球相对于斜面静止,细绳的拉力恰好为零时,斜面对小球的支持力是多少?加速度是多少?(g取10 m/s2)解析:设小球刚好离开斜面时系统的加速度为a 0,斜面支持力F N =0, 此时对小球受力分析如右图则mgcot θ=ma.得:a 0=gcot 53°=7.5 m/s 2. (1)a 1=8 m/s 2>a 0, 所以小球离开斜面,F N =0, T 0=2+12=2.56 N.当a 2=5 m/s 2<a 0时,此时小球未离开斜面F N ≠0, 对小球受力分析如右图则⎩⎪⎨⎪⎧Tcos θ-F N sin θ=ma 2Tsin θ+F N cos θ-mg =0得:T =2.2 N ,F N =0.4 N.(2)对小球受力分析如右图则F 合=mgtan θ=ma 3, 得:a 3=gtan θ=13.3 m/s 2, F N =mgcos θ=3.33 N.答案:(1)2.56 N 0 2.2 N 0.4 N(2)3.33 N 13.3 m/s 2►跟踪训练1.(双选)一有固定斜面的小车在水平面上做直线运动,小球通过细绳与车顶相连.小球某时刻正处于图示状态.设斜面对小球的支持力为N ,细绳对小球的拉力为T ,关于此时刻小球的受力情况,下列说法正确的是( )A .若小车向右运动,N 可能为零B .若小车向左运动,T 可能为零C .若小车向右运动,N 不可能为零D .若小车向左运动,T 不可能为零 答案:AB2.如图所示,有一块木板静止在光滑水平面上,质量M =4 kg ,长L =1.4 m .木板右端放着一个小滑块,小滑块质量m =1 kg ,其尺寸远小于L ,小滑块与木板间的动摩擦因数为μ=0.4.(取g =10 m/s 2)求:(1)现将一水平恒力F 作用在木板上,为使小滑块能从木板上面滑落下来,则F 大小的范围是多少?解析:要使小滑块能从木板上滑下,则小滑块与木板之间应发生相对滑动,此时,对小滑块分析得出μmg =ma 1,解得a 1=4 m/s 2,对木板分析得出F -μmg =Ma 2,加速度a 1、a 2均向右,若小滑块能从木板上滑下,则需要满足a 2>a 1,解得F >20 N. 答案:F >20 N(2)其他条件不变,若恒力F =22.8 N ,且始终作用在木板上,最终使得小滑块能从木板上滑落下来,则小滑块在木板上面滑动的时间是多少?解析:当F =22.8 N 时,由(1)知小滑块和木板发生相对滑动,对木板有F -μmg =Ma 3,则a 3=4.7 m/s 2. 设经时间t ,小滑块从木板上滑落,则12a 3t 2-12a 1t 2=L ,解得:t =-2 s(舍去)或t =2 s. 答案:2 s。
2017_2018学年高中物理第4章牛顿运动定律章末小结课件
如图所示,一质量为 500kg 的木箱放在质量为 2000kg 的平板车的 后部,木箱到驾驶室的距离 L=1.6m。已知木箱与木板间的动摩擦因数 μ=0.484, 平板车在运动过程中所受阻力是车和箱总重的 0.20 倍。平板车以 v0=22.0m/s 的恒 定速度行驶,突然驾驶员刹车,使车做匀减速运动,为不让木箱撞击驾驶室, g 取 10m/s2,试求: 导学号 99684623
答案: (1) 物体先以 a = 0.4m/s2做匀加速直线运动,达到传送带速度后,便 以传送带速度做匀速运动 (2)11.25s
触及高考
牛顿运动定律是力学的基本规律,是力学的核心知识,在整个物理学中占 有非常重要的地位。因此本章是高考的热点,着重考查学生分析问题、解决问 题的能力,本章多与运动学、电磁学等知识联系在一起综合考查。
根据牛顿第二定律可知: F 滑-mg sin 37° =ma F 滑=μFN FN=mgcos37° 求解得 a=g(μ cos 37° -sin 37° )=0.4 m/s2
设物体在传送带上做匀加速直线运动时间 t1 及位移 x1,因 v0=0a=0.4m/s2,vt =4m/s 1 2 根据匀变速直线运动规律得:vt=at1x1= at1 2 代入数据得:t1=10s x1=20m<25m 说明物体将继续跟随传送带一起向上匀速运动, 物体在第二阶段匀速运动时间 Δx 25-20 t2= v = s=1.25s 4 所以物体运动性质为:物体起初由静止起以 a=0.4m/s2 做匀加速直线运动,达 到传送带速度后,便以传送带速度做匀速运动。 (2)物体运动总时间 t 总=t1+t2=11.25s
B.物体与水平面间的动摩擦因数μ=0.40 C.前3s内物体的平均速度为1.5m/s
高中物理牛顿运动定律基础知识点归纳总结
(每日一练)高中物理牛顿运动定律基础知识点归纳总结单选题1、一个倾角为θ=37°的斜面固定在水平面上,一个质量为m=1.0kg的小物块(可视为质点)以v0=4.0m/s的初速度由底端沿斜面上滑,小物块与斜面的动摩擦因数μ=0.25。
若斜面足够长,已知sin37°=0.6,cos37°=0.8,g 取10m/s2。
小物块返回斜面底端时的速度大小为()A.2 m/sB.2√2 m/sC.1 m/sD.3 m/s答案:B解析:物块上滑时,根据牛顿第二定律有mgsin37°+μmgsin37°=ma1设上滑的最大位移为x,根据速度与位移的关系式有v02=2a1x物块下滑时,根据牛顿第二定律有mgsin37°−μmgsin37°=ma2设物块滑到底端时的速度为v,根据速度与位移的关系式有v2=2a2x联立代入数据解得v=2√2m s⁄故ACD错误B正确。
故选B。
2、如图所示,我校女篮球队员正在进行原地纵跳摸高训练,以提高自已的弹跳力。
运动员先由静止下蹲一段位移,经过充分调整后,发力跳起摸到了一定的高度。
某运动员原地静止站立(不起跳)摸高为1.90m,纵跳摸高中,该运动员先下蹲,重心下降0.4m,经过充分调整后,发力跳起摸到了2.45m的高度。
若运动员起跳过程视为匀加速运动,忽略空气阻力影响,已知该运动员的质量m=60kg,g取10m/s2。
则下列说法中正确的是()A.运动员起跳后到上升到最高点一直处于超重状态B.起跳过程中运动员对地面的压力为1425NC.运动员起跳时地面弹力做功不为零D.运动员起跳时地面弹力的冲量为零答案:B解析:A.运动员起跳后到上升到最高点,先加速后减速,所以是先超重后失重,故A错误;B.运动员离开地面后做竖直上抛运动,根据v=√2gℎ1=√2×10×(2.45−1.90)m/s=√11m/s在起跳过程中,根据速度位移公式可知v2=2aℎ解得a=v22ℎ=112×0.4m/s2=13.75m/s2对运动员,根据牛顿第二定律可知F−mg=ma解得F=1425N故B正确;CD.运动员起跳时地面弹力没有位移,所以做功为零,有作用时间,冲量不为零,故CD错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1第四章牛顿运动定律章末总结※知识点一、整体法、隔离法分析连接体问题1.连接体两个或两个以上相互作用的物体组成的具有相同加速度的整体叫连接体.如几个物体叠放在一起,或并排挤放在一起,或用绳子、细杆等连在一起.2.处理连接体问题的方法(1)整体法:把整个系统作为一个研究对象来分析的方法.不必考虑系统内力的影响,只考虑系统受到的外力.(2)隔离法:把系统中的各个部分(或某一部分)隔离,作为一个单独的研究对象来分析的方法.此时系统的内力就有可能成为该研究对象的外力,在分析时要特别注意.(3)整体法与隔离法的选用求解各部分加速度都相同的连接体问题时,要优先考虑整体法;如果还需要求物体之间的作用力,再用隔离法.求解连接体问题时,随着研究对象的转移,往往两种方法交叉运用.一般的思路是先用其中一种方法求加速度,再用另一种方法求物体间的作用力或系统所受合力.无论运用整体法还是隔离法,解题的关键还是在于对研究对象进行正确的受力分析.【典型例题】【例题1】如图,两个质量分别为m1?2 kg、m2 = 3 kg的物体置于光滑的水平面上,中间用轻质弹簧秤连接。
两个大小分别为F1=30N、F2 =20N的水平拉力分别作用在m1、m2上,则A.弹簧秤的示数是20 N B.弹簧秤的示数是25 NC.在突然撤去F2的瞬间,m1的加速度大小为5 m/s2D.在突然撤去F1的瞬间,m1的加速度大小为13 m/s2【答案】D【解析】将两物体和弹簧看做一个整体,根据牛顿第二定律可得2512123020/2/5FFamsmsmm??????,对1m分析可得11FFma??,联立解得11302226FFmaNN??????,AB错误;在突然撤去2F的瞬间,因为弹簧的弹力不能发生突变,所以1m的受力没有发生变化,故加速度大小仍为22m/s,故C错误;突然撤去1F的瞬间,1m的受力仅剩弹簧的弹力,对1m列牛顿第二定律得:1Fma?,解得:213/ams?,故D正确.2【名师点睛】两个大小分别为123020FNFN??、的水平拉力导致物体受力不平衡,先选整体为研究对象进行受力分析,列牛顿第二定律解出加速度,再隔离单独分析一个物体,解出弹簧受力;在突然撤去2F的瞬间,弹簧的弹力不变,对两物块分别列牛顿第二定律,解出其加速度【针对训练】(多选)如图所示,在光滑的桌面上有M、m的两个物块,现用力F推物块,使M、m两物块在桌上一起向右加速,则M、m间的相互作用力为A、若桌面光滑,作用力为MFMm?B、若桌面光滑,作用力为mFMm?C、若桌面的摩擦因数为μ,M、m仍向右加速,则M、m间的相互作用力为MFMgMm???D、若桌面的摩擦因数为μ,M、m仍向右加速,则M、m间的相互作用力为MFMm?【答案】AD【名师点睛】分析整体的受力时采用整体法可以不必分析整体内部的力,分析单个物体的受力时就要用隔离法.采用整体隔离法可以较简单的分析问题※知识点二、动力学的临界问题1.概念(1)临界问题:某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态.(2)极值问题:在满足一定的条件下,某物理量出现极大值或极小值的情况.2.关键词语在动力学问题中出现的“最大”、“最小”、“刚好”、“恰能”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件.3.常见类型3动力学中的常见临界问题主要有三类:一是弹力发生突变时接触物体间的脱离与不脱离的问题;二是绳子的绷紧与松弛的问题;三是摩擦力发生突变的滑动与不滑动问题.4.解题关键解决此类问题的关键是对物体运动情况的正确描述,对临界状态的判断与分析,找出处于临界状态时存在的独特的物理关系,即临界条件.常见的三类临界问题的临界条件:(1)相互接触的两个物体将要脱离的临界条件是:相互作用的弹力为零.(2)绳子松弛的临界条件是:绳的拉力为零.【典型例题】【例题2】如图所示,质量为m的光滑小球,用轻绳连接后,挂在三角劈的顶端,绳与斜面平行,劈置于光滑水平面上,斜边与水平面夹角为θ=30°,求:(1)劈以加速度a1=g/3水平向左加速运动时,绳的拉力多大?(2)劈的加速度至少多大时小球对劈无压力?加速度方向如何?(3)当劈以加速度a3=2g向左运动时,绳的拉力多大?【答案】(1)3+36mg(2)3g,方向水平向左;(3)5mg【解析】 (1)如图所示,水平方向:F T1cos θ-F N1sin θ=ma1①竖直方向:F T1sin θ+F N1cos θ=mg②4由①②得:F T1=3+36mg.③【针对训练】如图所示,有一块木板静止在光滑而且足够长的水平面上,木板的质量为M=4 kg、长为L=1.4 m,木板右端放着一个小滑块,小滑块质量m=1 kg,其尺寸远小于L,小滑块与木板间的动摩擦因数为μ=0.4.(g取10 m/s2)(1)现用恒力F作用在木板M上,为使m能从M上面滑落下来,问:F大小的范围是多少?(2)其他条件不变,若恒力F=22.8 N,且始终作用在M上,最终使得m能从M上滑落下来,问:m在M上面滑动的时间是多少?【答案】 (1)F>20 N (2)2 s※知识点三、动力帝的图象问题5物理图象信息量大,包含知识内容全面,好多习题已知条件是通过物理图象给出的。
一、动力学问题中常见的有F-t及a-F等图象.1.a-t图象,要注意加速度的正负,分析每一段的运动情况,然后结合物体的受力情况根据牛顿第二定律列方程.2.F-t图象要结合物体受到的力,根据牛顿第二定律求出加速度,分析每一时间段的运动性质.3.a-F图象,首先要根据具体的物理情景,对物体进行受力分析,然后根据牛顿第二定律推导出两个量间的函数关系式,由函数关系式结合图象明确图象的斜率、截距或面积的意义,从而由图象给出的信息求出未知量.二、图象在动力学中的应用在物理学问题中,给出已知条件和信息的方式有很多,诸如文字方式、表格方式、函数方式、图象方式,其中图象方式是最常见、最直观的一种方式,运用图象求解问题也会更加直观、形象.1.常见的图象形式在动力学与运动学问题中,常见、常用的图象是位移图象(x-t图象)、速度图象(v-t 图象)和力的图象(F-t图象)等,这些图象反映的是物体的运动规律、受力规律,而绝非代表物体的运动轨迹.2.图象问题的分析方法遇到带有物理图象的问题时,要认真分析图象,先从它的物理意义、点、线段、斜率、截距、交点、拐点、面积等方面了解图象给出的信息,再利用共点力平衡、牛顿运动定律及运动学公式去解题.【典型例题】【例题3】(多选)如图甲所示,小物块从光滑斜面上由静止开始滑下,斜面保持静止,小物块的位移x和时间的平方t2的关系如图乙所示(g=10m/s2).下列说法中正确的是A.小物块的加速度大小恒为2.5m/s2 B.斜面倾角θ为30°C.小物块2s末的速度是5m/s D.小物块第2s内的位移为7.5m 【答案】BD【解析】由乙图可知函数关系是:22.5xt?,对比位移时间关系212xat?可知,物体的加速度为a=5m/s2,选项A错误;根据a=gsinθ,可知sinθ=0.5,θ=30°,选项B正确;小物块2s末的速度v=at=10m/s,选项C错误;小物块第2s内的位移为221152517.522xmmm????????,选项D正确;故选BD. 【名师点睛】此题是对牛顿第二定律的应用以及物理图线的考查;关键是能够从物理图线的斜率中得到物体的加速度值,然后根据牛顿第二定律以及运动公式求解各个物理量;对物理图线的考查历来是考试的热6点问题.【针对训练】质量为1kg的物体由静止开始沿光滑斜面下滑,下滑到斜面的底端后进入粗糙水平面滑行,直到静止,它的速度大小随时间的图象如图所示,则斜面的倾角?= ,物体与水平地面间的动摩擦因数μ= 。
【答案】30°;0.25【名师点睛】在速度时间图像中,需要掌握三点,一、速度的正负表示运动方向,看运动方向是否发生变化,只要考虑速度的正负是否发生变化,二、图像的斜率表示物体运动的加速度,三、图像与坐标轴围成的面积表示位移,在坐标轴上方表示正方向位移,在坐标轴下方表示负方向位移※知识点四、动力学中的传送带问题1.摩擦力是否影响传送带的运动是因为带动传送带的电动机在起作用(摩擦力不影响传送带的运动状态).2.分析该类问题的关键分析物体与传送带间的滑动摩擦力方向,进而分析物体的运动规律,这是分析传送带问题的关键.3.常见的传送带模型有两种,一个是水平方向的传送带;另一个是与水平方向成一定角度的传送带.(1)物体在水平传送带上的运动有两种可能:①若物体到达传送带的另一端时速度还没有达到传送带的速度,则该物体一直做匀变速直线运动;②若物体到达传送带的另一端之前速度已经和传送带相同,则物体先做匀变速直线运动后做匀速直线运动.(2)对倾斜传送带要分析最大静摩擦力和重力沿斜面方向的分力的关系,如果最大静摩擦力小于重力沿斜面的分力,则物体做匀变速运动;如果最大静摩擦力大于重力沿斜面的分力,则物体做匀速运动.【典型例题】【例题4】水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查。
如图所示为一水平传送带装置示意图,紧绷的传送带AB始终保持v=1m/s的恒定速率运行。
旅客把行李无初速度地放在A处,7设行李与传送带之间的动摩擦因数μ=0.1,AB间的距离为2m,g取10 m/s2。
若乘客把行李放到传送带的同时也以v=1 m/s的恒定速度平行于传送带运动去B处取行李,则A.乘客与行李同时到达B B.行李提前0.5 s到达BC.乘客提前0.5 s到达B D.若传送带速度足够大,行李会比乘客先到达B 【答案】C【名师点睛】关键是判断行李在传送带上的运动性质,需要知道行李无初速度放到传送带上时,在摩擦力的作用下,先做加速运动,这是就有两种可能,一种是加速到和传送带速度相同之前,行李已经到达B点,此时行李做匀加速直线运动;二是在到达B点之前,速度就已经和传送带相同了,此时行李先做匀加速直线运动,后做匀速直线运动【针对训练】(多选)如图所示,绷紧的水平传送带始终以恒定速率v1运行。
初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带。
若从小物块滑上传送带开始计时,小物块在传送带上运动的v - t图象(以地面为参考系)如图乙所示。
已知v2 > v1,则:A.t1时刻,小物块离A处的距离达到最大B.t2时刻,小物块相对传送带滑动的距离达到最大C.0 ~ t2时间内,小物块受到的摩擦力方向先向右后向左D.0 ~ t3时间内,小物块始终受到大小不变的摩擦力作用【答案】AB8【名师点睛】本题关键从图象得出物体的运动规律,然后分过程对木块受力分析:0~t1时间内木块向左匀减速直线运动,受到向右的摩擦力,然后向右匀加速,当速度增加到与皮带相等时,一起向右匀速,摩擦力消失。