人教版初二上数学基础复习题

合集下载

人教版 八年级数学上册 第11章 三角形 复习题

人教版 八年级数学上册 第11章 三角形 复习题

人教版八年级数学第11章三角形复习题一、选择题1. 下面是小强用三根火柴组成的图形,其中符合三角形概念的是()2. 如图,小方做了一个长方形框架,发现它很容易变形,请你帮小方选择一个最好的加固方案()3. 若一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.64. 如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为()A. 40°B. 45°C. 60°D. 70°5. 如图,足球图片正中的黑色正五边形的内角和是A .180°B .360°C .540°D .720°6. 下列哪一个度数可以作为某一个多边形的内角和 ( ) A .240° B .600° C .540°D .2180°7. 把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是( ) A .六边形 B .五边形C .四边形D .三角形8. 如图,在△ABC 中,BC 边不动,点A 竖直向上运动,∠A 越来越小,∠B ,∠C 越来越大.若∠A 减小x °,∠B 增加y °,∠C 增加z °,则x ,y ,z 之间的关系是 ( )A .x=y+zB .x=y-zC .x=z-yD .x+y+z=180二、填空题9. (2019•江西)如图,在ABC △中,点D 是BC 上的点,40BAD ABC ∠=∠=︒,将ABD △沿着AD 翻折得到AED △,则CDE ∠=__________°.10. 若正多边形的一个外角是60°,则这个正多边形的内角和是________.11. 如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2=________.12. 如图,含30°角的三角尺的直角边AC,BC分别经过正八边形的两个顶点,则∠1+∠2=________°.13. 如图,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为cm.14. 如图,小明从点A出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°……照这样走下去,他第一次回到出发地点A时,一共走了________米.15. 如图,在四边形ABCD中,AB∥CD,将四边形ABCD沿对角线AC折叠,使点B落在点B′处.若∠1=∠2=44°,则∠B=________°.16. 如图,在△ABC中,三角形的外角∠DAC和∠ACF的平分线交于点E.(1)若∠B=50°,则∠DAC+∠ACF=________°,∠E=________°;(2)若∠B=α,则∠DAC+∠ACF=______,∠E=________.三、解答题17. 如图11-Z-11,点B在点A的南偏西45°方向,点C在点A的南偏东30°方向,点C在点B的北偏东60°方向,求∠C的度数.18. 观察探究观察并探求下列各问题.(1)如图①,在△ABC中,P为边BC上一点,则BP+PC________AB+AC(填“>”“<”或“=”);(2)将(1)中的点P移到△ABC内,如图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由;(3)将(2)中的点P变为两个点P1,P2,如图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.19. 如图①所示,在△ABC中,∠1=∠2,∠C>∠B,E为AD上一点,且EF⊥BC 于点F.(1)试探索∠DEF与∠B,∠C之间的数量关系;(2)如图②所示,当点E在AD的延长线上时,其余条件都不变,你在(1)中探索得到的结论是否还成立?人教版八年级数学第11章三角形复习题-答案一、选择题1. 【答案】C2. 【答案】D3. 【答案】B4. 【答案】A【解析】由AE∥BD,可得∠DBC=∠E=35°,由BD平分∠ABC 可得∠ABC=2∠DBC=70°,由AB=AC可得∠ABC=∠C=70°,由三角形内角和定理可得∠BAC=180°-70°-70°=40°.5. 【答案】C【解析】黑色正五边形的内角和为:(5–2)×180°=540°, 故选C .6. 【答案】C[解析] ∵多边形内角和公式为(n -2)×180°,∴多边形内角和一定是180°的倍数. ∵540°=3×180°,∴540°可以作为某一个多边形的内角和.7. 【答案】A[解析] 剪去一个角的方法有三种:经过两个顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.所以一个n 边形剪去一个角后,剩下的形状可能是n 边形或(n +1)边形或(n -1)边形.8. 【答案】A[解析] 根据题意,得∠A+∠ABC+∠ACB=180°①,变化后的三角形的三个角的度数分别是∠A-x °,∠ABC+y °,∠ACB+z °,∴∠A-x °+∠ABC+y °+∠ACB+z °=180°②,①②联立整理可得x=y+z.二、填空题9. 【答案】20【解析】∵40BAD ABC ∠=∠=︒,将ABD △沿着AD 翻折得到AED △, ∴404080ADC ∠=︒+︒=︒,1804040100ADE ADB ∠=∠=︒-︒-︒=︒, ∴1008020CDE ∠=︒-︒=︒,故答案为:20.10. 【答案】720°[解析] 该正多边形的边数为360°÷60°=6.该正多边形的内角和为(6-2)×180°=720°.11. 【答案】54°【解析】如解图,过点C作直线CE∥a,则a∥b∥CE,则∠1=∠ACE,∠2=∠BCE,∵∠ACE+∠BCE=90°,∴∠1+∠2=90°,∵∠1=36°,∴∠2=54°.12. 【答案】180[解析] 正八边形的每一个内角为(8-2)×180°8=135°,所以∠1+∠2=2×135°-90°=180°.13. 【答案】19[解析] ∵AD是BC边上的中线,∴BD=CD.∴△ABD的周长-△ACD的周长=(AB+BD+AD)-(AC+CD+AD)=AB-AC.∵△ABD的周长为25 cm,AB比AC长6 cm,∴△ACD的周长为25-6=19(cm).14. 【答案】120[解析] 由题意得360°÷36°=10,则他第一次回到出发地点A时,一共走了12×10=120(米).故答案为120. 15. 【答案】114[解析] 因为AB∥CD,所以∠BAB′=∠1=44°.由折叠的性质知∠BAC=12∠BAB′=22°.在△ABC中,∠B=180°-(∠BAC+∠2)=114°.16. 【答案】(1)23065(2)180°+α90°-1 2α三、解答题17. 【答案】解:∵∠NBC=60°,∠NBA=∠BAS=45°,∴∠ABC=∠NBC-∠NBA=60°-45°=15°.又∵∠BAC=∠BAS+∠SAC=45°+30°=75°,∴在△ABC中,∠C=180°-(75°+15°)=90°.18. 【答案】解:(1)<(2)△BPC的周长<△ABC的周长.理由:如图①,延长BP交AC于点M.在△ABM中,BP+PM<AB+AM.在△PMC中,PC<PM+MC.两式相加,得BP+PC<AB+AC,∴△BPC的周长<△ABC的周长.(3)四边形BP1P2C的周长<△ABC的周长.理由:如图②,分别延长BP 1,CP 2交于点M. 由(2)知,BM +CM <AB +AC. 又∵P 1P 2<P 1M +P 2M ,∴BP 1+P 1P 2+P 2C <BM +CM <AB +AC. ∴四边形BP 1P 2C 的周长<△ABC 的周长.19. 【答案】解:(1)∵∠1=∠2,∴∠1=12∠BAC. 又∵∠BAC =180°-(∠B +∠C),∴∠1=12[180°-(∠B +∠C)]=90°-12(∠B +∠C).∴∠EDF =∠B +∠1=∠B +90°-12(∠B +∠C)=90°+12(∠B -∠C). ∵EF ⊥BC ,∴∠EFD =90°.∴∠DEF =90°-∠EDF =90°-[90°+12(∠B -∠C)]=12(∠C -∠B).(2)当点E 在AD 的延长线上时,其余条件都不变,在(1)中探索得到的结论仍成立.。

初二人教版数学基础练习题

初二人教版数学基础练习题

初二人教版数学基础练习题一.选择题1. 小明买了10个苹果,每个苹果的价格是3元,他付了一张50元的钞票,收银员应找给他多少钱?A. 40元B. 20元C. 30元D. 50元2. 下列四个数中,最大的数是:A. 0.03B. 0.5%C. 0.3D. 0.0053. 小华的体重是43.5千克,小明的体重是小华体重的2倍,那么小明的体重是多少千克?A. 87千克B. 43.5千克C. 22千克D. 21.75千克4. 水果店每天卖出30千克苹果,按每千克5元计算,那么每天卖出的苹果的总价钱是多少元?A. 150元B. 15元C. 450元D. 50元5. 一辆汽车每小时行驶80千米,行驶8小时所行驶的路程是多少千米?A. 800千米B. 64千米C. 10千米D. 88千米二.填空题1. 从10到30的所有偶数的和是________。

2. (2+3)×4-8÷2=________。

3. 一次性还清贷款本息共计5000元,借款本金6000元,利率是10%,借款的时间是多少年?4. __:48=6:8。

5. 12÷(3×2)+4×2-6=___。

三.解答题1. 甲、乙、丙三个人在一起参与做一件事情,三个人合作8天完成该事情,如果让甲一个人完成需要16天,那么乙一个人完成需要多少天?2. 某商店甲类商品的销售比例是30%,乙类商品的销售比例是50%,丙类商品的销售比例是20%。

如果该商店共销售了6000元的商品,那么甲类商品的销售额是多少元?3. 乘法: 63 × 274. 一个长方形的长是12厘米,宽是8厘米,它的周长是多少厘米?5. 一个正方形的周长是32厘米,它的边长是多少厘米?四.应用题1. 一张长方形的纸片宽是12厘米,长是宽的两倍。

如果按照宽贴墙,那么贴墙后纸片上踪的面积是多少平方厘米?2. A、B两个人齐头并进干一件工作,如果A一个人用2个小时就能完成,B一个人用4个小时就能完成。

人教版八年级数学上册第十四章基础练习题(含答案)

人教版八年级数学上册第十四章基础练习题(含答案)

人教版八年级数学上册第十四章基础练习题(含答案)14.1整式的乘法考点1 同底数幂的乘法1.计算a •a 2的结果是( )A .aB .a 2C .a 3D .a 42.已知x a =2,x b =3,则x a+b 的值( )A .1B .-1C .5D .63.已知2a +5b ﹣4=0,则4a ×32b =( )A .8B .16C .32D .644.已知2x +4=m ,用含m 的代数式表示2x 正确的是( )A .16m B .8m C .m ﹣4 D .4m考点2 幂的乘方5.计算()()433a a -⋅-的结果为( )A .15aB .10a -C .15a -D .10a -6.已知:2x a =,5y a =,则32x y a -=( ).A .910B .4125C .825D .357.如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A .a >b >cB .c >b >aC .b >a >cD .b >c >a考点3 积的乘方8.计算:(m 3n )2的结果是( )A .m 6nB .m 5n 2C .m 6n 2D .m 3n 29.已知m ,n 是整数,a≠0,b≠0,则下列各式中,能表示“积的乘方法则”的是( )A .n m m n a a a +=B .()nmmn a a = C .m n m n a a a -÷=D .()nn n ab a b =10.计算()20202019144⎛⎫-⨯- ⎪⎝⎭的结果是( )A .4B .-4C .14D .14-考点4 同底数幂的除法11.计算(﹣a )5÷a 3结果正确的是( )A .a 2B .﹣a 2C .﹣a 3D .﹣a 412.已知a m =9,a n =13,则a m ﹣n 的值为( )A .4B .﹣4C .913D .13913.下列计算正确的是( )A .426a a a +=B .52210()ab a b =C .4312⋅=a a aD .1025a a a ÷=考点5 单项式乘单项式14.计算a 2•ab 的结果是( )A .a 3bB .2a 2bC .a 2b 2D .a 2b15.一个长方形的长为3a 2b ,宽为2ab ,则其面积为( )A .5a 3b 2B .6a 2bC .6a 2b 2D .6a 3b 216.若□·3xy=27x 3y 4 , 则□内应填的单项式是( )A .3x 3y 4B .9x 2y 2C .3x 2y 3D .9x 2y 3考点6 单项式乘多项式17.计算(-3x)(2x 2-5x-1)的结果是( )A .-6x 3-15x 2-3xB .-6x 3+15x 2+3xC .-6x 3+15x 2D .-6x 3+15x 2-118.若11,2a b a c -=--=,则35()228b c b c --++的值是 ( ) A .14B .38C .1D .-119.若()()3x a x -+-的积不含x 的一次项,则a 的值为A .3B .-3C .13D .13-20.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-21.某同学在计算23x -乘一个多项式时错误的计算成了加法,得到的答案是21x x -+,由此可以推断正确的计算结果是( )A .241x x -+B .21x x -+C .4321233x x x -+-D .无法确定考点7 多项式乘多项式22.如果x 2+ kx +6=(x +2)(x +3),则k =( )A .1B .2C .3D .523.如果代数式(x ﹣2)(x 2+mx+1)的展开式不含x 2项,那么m 的值为( )A .2B .12C .-2D .12-24.设A =(x ﹣2)(x ﹣7),B =(x ﹣3)(x ﹣6),则A 、B 的大小关系为( )A .A <B B .A =BC .A >BD .无法确定25.已知4322125d x x x x =-+--,则当2250x x --=,d 的值为( )A .25B .20C .15D .1026.如图,从边长为(a+1)cm 的正方形纸片中剪去一个边长为(a ﹣1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )A .2cm 2B .2acm 2C .4acm 2D .(a 2﹣1)cm 227.观察下列各式及其展开式()2a b +=2a +2ab+2b()3a b +=3a +32a b+3a 2b +3b()4a b +=4a +43a b+62a 2b +4a 3b +4b()5a b +=5a +54a b+103a 2b +102a 3b +5a 4b +5b……请你猜想()821x -的展开式中含2x 项的系数是( )A .224B .180C .112D .48考点8 单项式除单项式28.若□×2xy =16x 3y 2,则□内应填的单项式是( )A .4x 2yB .8x 3y 2C .4x 2y 2D .8x 2y29.计算(x 3y )3÷(2xy )3的结果应该是( )A .612x B .618x C .418x y D .218x y 30.如果一个单项式与22a b -的积为3225a bc -,则这个单项式为( )A .215acB .15ac C .45acD .245ac 考点9 多项式除单项式31.计算(﹣4a 2+12a 3b )÷(﹣4a 2)的结果是( )A .1﹣3abB .﹣3abC .1+3abD .﹣1﹣3ab32.弟弟把嘉琪的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮她推测出被除式等于( )A .B .C .D .33.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为()2a b +,则宽为( )A .12B .1C .()12a b + D .+a b考点10 整式的混合运算34.若3x 2﹣5x +1=0,则5x (3x ﹣2)﹣(3x +1)(3x ﹣1)=( )A .﹣1B .0C .1D .﹣235.王大爷承包一长方形鱼塘,原来长为2x 米,宽为x 米,现在要把长和宽都增加y 米,那么这个鱼塘的面积增加( )A .(2232x xy y ++)平方米B .(2223x xy y ++)平方米C .2(3)xy y +平方米D .2(64)xy y +平方米36.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多a cm ,则正方形的面积与长方形的面积的差为 ( )A .a 2B .12a 2C .13a 2 D .14a 2答案1.C 2.D 3.B 4.A 5.C 6.C 7.C 8.C 9.D 10.D 11.B 12.C 13.B 14.A 15.D 16.D 17.B18.C19.B20.A21.C22.D23.A24.A25.A26.C27.C28.D29.B30.A31.A32.B33.C34.A35.C36.D14.2 乘法公式一、选择题(本大题共10道小题)1. 运用乘法公式计算(a+3)(a-3)的结果是()A.a2-6a+9 B.a2-3a+9C.a2-9 D.a2-6a-92. 下列各式中,运算结果是9m2-16n2的是()A.(3m+2n)(3m-8n)B.(-4n+3m)(-4n-3m)C.(-3m+4n)(-3m-4n)D.(4n+3m)(4n-3m)3. 将202×198变形正确的是 ( )A.2002-4 B.2022-4C.2002+2×200+4 D.2002-2×200+44. 若(a+3b)2=(a-3b)2+A,则A等于( )A.6ab B.12ab C.-12ab D.24ab5. 计算(x+1)(x2+1)·(x-1)的结果是( )A.x4+1 B.(x+1)4C.x4-1 D.(x-1)46. 为了运用平方差公式计算(x+2y-1)(x-2y+1),下列变形正确的是()A.[x-(2y+1)]2B.[x+(2y-1)][x-(2y-1)]C.[(x-2y)+1][(x-2y)-1]D.[x+(2y-1)]27. 将9.52变形正确的是 ( )A.9.52=92+0.52 B.9.52=(10+0.5)×(10-0.5) C.9.52=92+9×0.5+0.52 D.9.52=102-2×10×0.5+0.528. 若(2x +3y )(mx -ny )=9y 2-4x 2,则m ,n 的值分别为( )A .2,3B .2,-3C .-2,-3D .-2,3 9. 如图,阴影部分是边长为a 的大正方形剪去一个边长为b 的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列3种割拼方法,其中能够验证平方差公式的是( )A .①②B .②③C .①③D .①②③10. 如果a ,b ,c 是ABC △三边的长,且22()a b ab c a b c +-=+-,那么ABC △是( )A. 等边三角形.B. 直角三角形.C. 钝角三角形.D. 形状不确定.二、填空题(本大题共6道小题)11. 填空:()22121453259x y x y ⎛⎫-=- ⎪⎝⎭ 12. 如果(x -ay )(x +ay )=x 2-9y 2,那么a = .13. 如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a b >),把剩下的部分拼成一个梯形,分别计算这两个图形的面积,验证了公式_________________.14.课本上,公式(a-b)2=a2-2ab+b2是由公式(a+b)2=a2+2ab+b2推导得出的.已知(a+b)4=a4+4a3b+6a2b2+4ab3+b4,则(a-b)4=________________.15. 如图,四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a、b的恒等式___________.16.根据图①到图②的变化过程可以写出一个整式的乘法公式,这个公式是_______ _____________.三、解答题(本大题共4道小题)17.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘25;abba第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的数是8,请帮他计算出最后结果:[(8+1)2-(8-1)2]×25÷8;(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a (a ≠0),请你帮小明完成这个验证过程.18. 探索、归纳与证明:(1)比较以下各题中两个算式结果的大小(在横线上填“>”“<”或“=”): ①32+42________2×3×4;②52+52________2×5×5;③(-2)2+52________2×(-2)×5;④(12)2+(23)2________2×12×23.(2)观察上面的算式,用含字母a ,b 的关系式表示上面算式中反映的一般规律.(3)证明(2)中你所写规律的正确性.19. 如图,王大妈将一块边长为a m的正方形土地租给了邻居李大爷种植,今年,她对李大爷说:“我把你这块地的一边减少4 m,另一边增加4 m,继续租给你,你也没有吃亏,你看如何?”李大爷一听,就答应了.同学们,你认为李大爷吃亏了吗?为什么?20. 认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应地,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,….下面我们依次对(a+b)n展开式的各项系数进一步研究发现,当n取正整数时可以单独列成如图所示的形式:上面的多项式展开系数表称为“杨辉三角形”.仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)(a+b)n展开式中共有多少项?(2)请写出多项式(a+b)5的展开式.14.3《因式分解》一.选择题1.下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣252.如果多项式abc+ab2﹣a2bc的一个因式是ab,那么另一个因式是()A.c﹣b+5ac B.c+b﹣5ac C.ac D.﹣ac3.分解因式b2(x﹣3)+b(x﹣3)的正确结果是()A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)4.已知a+b=3,ab=2,计算:a2b+ab2等于()A.5 B.6 C.9 D.15.如图,矩形的长、宽分别为a、b,周长为10,面积为6,则a2b+ab2的值为()A.60 B.30 C.15 D.166.下列多项式,在实数范围内能够进行因式分解的是()A.x2+4 B.C.x2﹣3y D.x2+y27.下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+98.把多项式a3﹣a分解因式,结果正确的是()A.a(a2﹣1)B.a(a﹣1)2C.a(a+1)2D.a(a+1)(a﹣1)9.已知x2+kx+4可以用完全平方公式进行因式分解,则k的值为()A.﹣4 B.2 C.4 D.±410.多项式x2y﹣y2z+z2x﹣x2z+y2x+z2y﹣2xyz因式分解后的结果是()A.(y﹣z)(x+y)(x﹣z)B.(y﹣z)(x﹣y)(x+z)C.(y+z)(x﹣y)(x+z)D.(y+z)(x+y)(x﹣z)11.如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取多少个()A.4 B.5 C.6 D.812.已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形13.如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为()A.140 B.70 C.35 D.24二.填空题14.分解因式:x2﹣4=.15.因式分解:2x2﹣8=.16.分解因式:x3﹣4x2﹣12x=.17.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.18.若a,b,c分别是△ABC的三条边,a2+c2+2b2﹣2ab﹣2bc=0.则△ABC的形状是.三.解答题(共4小题)19.分解因式(1)(2)9y2﹣(2x+y)2.20.将下列各式因式分解(1)2a3b﹣8ab3 (2)﹣x3+x2y﹣xy2(3)(7x2+2y2)2﹣(2x2+7y2)2 (4)(x2+4x)2+(x2+4x)﹣621.已知a﹣b=7,ab=﹣12.(1)求a2b﹣ab2的值;(2)求a2+b2的值;(3)求a+b的值.22.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求2x+y的值;(2)已知a﹣b=4,ab+c2﹣6c+13=0,求a+b+c的值.参考答案一.选择题1.解;A、a2+4a﹣21=a(a+4)﹣21,不是因式分解,故A选项错误;B、a2+4a﹣21=(a﹣3)(a+7),是因式分解,故B选项正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故C选项错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故D选项错误;故选:B.2.解:abc+ab2﹣a2bc=ab(c+b﹣5ac),故另一个因式为(c+b﹣5ac),故选:B.3.解:b2(x﹣3)+b(x﹣3),=b(x﹣3)(b+1).故选:B.4.解:∵a+b=3,ab=2,∴a2b+ab2=ab(a+b)=2×3=6.故选:B.5.解:∵边长分别为a、b的长方形的周长为10,面积6,∴2(a+b)=10,ab=6,则a+b=5,故ab2+a2b=ab(b+a)=6×5=30.故选:B.6.解:A、x2+4不能分解,故此选项错误;B、x2﹣x+=(x﹣)2,故此选项正确;C、x2﹣3y不能分解,故此选项错误;D、x2+y2不能分解,故此选项错误;故选:B.7.解:A、a2+(﹣b)2符号相同,不能用平方差公式分解因式,故A选项错误;B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故B选项错误;C、﹣x2﹣y2符号相同,不能用平方差公式分解因式,故C选项错误;D、﹣x2+9=﹣x2+32,两项符号相反,能用平方差公式分解因式,故D选项正确.故选:D.8.解:原式=a(a2﹣1)=a(a+1)(a﹣1),故选:D.9.解:∵x2+kx+4=x2+kx+22,∴kx=±2x•2,解得k=±4.故选:D.10.解:x2y﹣y2z+z2x﹣x2z+y2x+z2y﹣2xyz=(y﹣z)x2+(z2+y2﹣2yz)x+z2y﹣y2z=(y﹣z)x2+(y﹣z)2x﹣yz(y﹣z)=(y﹣z)[x2+(y﹣z)x﹣yz]=(y﹣z)(x+y)(x﹣z).故选:A.11.解:设12可分成m•n,则p=m+n(m,n同号),∵m=±1,±2,±3,n=±12,±6,±4,∴p=±13,±8,±7,共6个值.故选:C.12.解:已知等式变形得:(a+b)(a﹣b)﹣c(a﹣b)=0,即(a﹣b)(a+b﹣c)=0,∵a+b﹣c≠0,∴a﹣b=0,即a=b,则△ABC为等腰三角形.故选:C.13.解:根据题意得:a+b==7,ab=10,∴a2b+ab2=ab(a+b)=10×7=70;故选:B.二.填空题14.解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).15.解:2x2﹣8=2(x+2)(x﹣2).16.解:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).故答案为:x(x+2)(x﹣6).17.解:(x+1)(x﹣2)=x2﹣2x+x﹣2=x2﹣x﹣2所以a=﹣1,b=﹣2,则a+b=﹣3.故答案为:﹣3.18.解:∵a2+c2+2b2﹣2ab﹣2bc=0(a2﹣2ab+b2)+(b2﹣2bc+c2)=0(a﹣b)2+(b﹣c)2=0,∴a﹣b=0,b﹣c=0,解得:a=b=c,又∵a,b,c分别是△ABC的三条边,∴△ABC是等边三角形,故答案为等边三角形.三.解答题(共4小题)19.解:(1)原式=(m2﹣2mn+n2)=(m﹣n)2;(2)原式=[3y+(2x+y)][3y﹣(2x+y)]=4(x+2y)(y﹣x).20.解:(1)2a3b﹣8ab3=2ab(a2﹣4b2)=2ab(a+2b)(a﹣2b);(2)﹣x3+x2y﹣xy2=﹣x(x2﹣xy+y2)=﹣x(x﹣y)2;(3)(7x2+2y2)2﹣(2x2+7y2)2=(7x2+2y2+2x2+7y2)(7x2+2y2﹣2x2﹣7y2)=(9x2+9y2)(5x2﹣5y2)=9×5(x2+y2)(x2﹣y2)=45((x2+y2)(x﹣y)(x+y);(4)(x2+4x)2+(x2+4x)﹣6=(x2+4x﹣2)(x2+4x+3)=(x2+4x﹣2)(x+1)(x+3).21.解:(1)∵a﹣b=7,ab=﹣12,∴a2b﹣ab2=ab(a﹣b)=﹣12×7=﹣84;(2)∵a﹣b=7,ab=﹣12,∴(a﹣b)2=49,∴a2+b2﹣2ab=49,∴a2+b2=25;(3)∵a2+b2=25,∴(a+b)2=25+2ab=25﹣24=1,∴a+b=±1.22.解:(1)∵x2+2xy+2y2+2y+1=0,∴(x2+2xy+y2)+(y2+2y+1)=0,∴(x+y)2+(y+1)2=0,∴x+y=0,y+1=0,解得,x=1,y=﹣1,∴2x+y=2×1+(﹣1)=1;(2)∵a﹣b=4,∴a=b+4,∴将a=b+4代入ab+c2﹣6c+13=0,得b2+4b+c2﹣6c+13=0,∴(b2+4b+4)+(c2﹣6c+9)=0,∴(b+2)2+(c﹣3)2=0,∴b+2=0,c﹣3=0,解得,b=﹣2,c=3,∴a=b+4=﹣2+4=2,∴a+b+c=2﹣2+3=3.。

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题六(含答案) (50)

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题六(含答案) (50)

人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题六(含答案)在△ABC 中,CA=CB=4,∠ACB=120°,将一块足够大的直角三角尺PMN(∠M=90°、∠MPN=30°)按如图所示放置,顶点P 在线段AB 上滑动,三角尺的直角边PM 始终经过点C ,并且与CB 的夹角∠PCB=α,斜边PN 交AC 于点D .(1)当PN ∥BC 时,∠ACP=_____度.(2)在点P 滑动的过程中,当AP 长度为多少时,△ADP 与△BPC 全等. (3)在点P 的滑动过程中,△PCD 的形状可以是等腰三角形吗?若不可以,请说明理由;若可以,请求出夹角α的大小.【答案】90【解析】【分析】(1)当PN ∥BC 时,NPM α∠=∠,则1203090ACP ∠=︒︒=︒﹣;(2)根据120ACB ∠=︒,CA CB =,可得30A B ∠=∠=︒,再根据外角的性质可得APD α∠=∠,又AP BC =,可证ADP BPC ≌,即可得出结论.(3)在点P 的滑动过程中,PCD 的形状可以是等腰三角形,分三种情况考虑:当PC PD =;PD CD =;PC CD =,分别求出夹角α的大小即可.【详解】(1)当PN ∥BC 时,30NPM α∠=∠=︒,又∵120ACB ∠=︒,∴1203090ACP ∠=︒-︒=︒,故答案为90︒;(2)当4AP =时,ADP BPC ≌,理由为:∵120ACB ∠=︒,CA CB =,∴30A B ∠=∠=︒,又∵APC ∠是BPC 的一个外角,∴30APC B αα∠=∠+∠=︒+∠,∵30APC DPC APD APD ∠=∠+∠=︒+∠,∴APD α∠=∠,又∵4AP BC ==时,∴()ADP BPC ASA ≌;(3)PCD 的形状可以是等腰三角形,则120PCD α∠=︒-,30CPD ∠=︒,①当PC PD =时,PCD 是等腰三角形, ∴18030752PCD PDC ︒-︒∠=∠==︒,即120α75︒-=︒, ∴45α∠=︒;②当PD CD =时,PCD 是等腰三角形, ∴30PCD CPD ∠=∠=︒,即12030α︒=︒﹣, ∴90α=︒;③当PC CD =时,PCD 是等腰三角形,∴30CDP CPD ∠=∠=︒,∴180230120PCD ∠=︒-⨯︒=︒,即120120α︒-=︒,∴0α=︒,此时点P 与点B 重合,点D 和A 重合,综合所述:当45α=︒或90︒或0︒时,PCD 是等腰三角形.【点睛】本题考查了平行的性质,全等三角形的判定及等腰三角形的性质.解题的关键是选择适当的条件证明全等,在不确定等腰三角形的腰和底边时,注意分类讨论.92.(2016.镇江)如图,AD 、BC 相交于点O ,AD=BC ,∠C=∠D=90°. (1)若∠ABC=35°,求∠CAO 的度数;(2)求证:CO=DO【答案】(1)20°;(2)见解析;【解析】分析:(1)根据HL 证明Rt △ABC △Rt △BAD ;由全等的性质得∠BAD =△ABC ,根据直角三角形两直角互余可求∠BAC =55 º,从而可求出△CAO 的度数;(2)利用全等三角形的性质可得∠BAD =∠ABC ,BC =AD ,从而可证求证CO =DO .详解:∵∠D =∠C =90°,∴△ABC和△BAD都是Rt△,在Rt△ABC和Rt△BAD中,△AD=BC,AB=BA,∴Rt△ABC≌Rt△BAD(HL);∴∠BAD=∠ABC=35°.∵∠ABC=35°,△△BAC=90º-35º=55º,△△CAO=55º-35º=20º.(2)证明:∵Rt△ABC≌Rt△BAD,∴∠BAD=∠ABC,BC=AD,∴AO=BO,∴BC-BO=AD-AO,∴CO=DO.点睛:本题考查了直角三角形两个锐角互余,等腰三角形的判定,全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”;全等三角形的对应边相等.93.如图,方格纸中的△ABC的三个顶点分别在小正方形的顶点(格点)上,请在方格纸上按下列要求画图.(1)在图①中画出与△ABC全等且有一个公共顶点的△A′B′C′;(2)在图②中画出与△ABC全等且有一条公共边的△A″B″C″.【答案】见解析【解析】分析:(1)此题作法较多,可用平移来作,将△ABC沿射线CB平移,平移距离为BC的长,由此可得所求作的三角形.(2)以AB为公共边为例,作C关于直线AB的对称点C",然后连接AC″和BC″即可.详解:(1)如图①;(2)如图②.点睛:本题主要考查学生动手作图的能力,注意平移和轴对称作图的应用.题目不难,属于中等题型,掌握网格作图的方法并能灵活运用是关键.94.如图,点B,F,C,E在一条直线上,∠A=∠D,AC=DF,且AC∥DF.求证:△ABC≌△DEF.【答案】见解析;【解析】【分析】首先根据平行线的性质可得∠ACB=∠DFE ,再根据ASA 定理证明△ABC ≌△DEF 即可.【详解】证明:∵ AC ∥DF ,∴ ∠ACB =∠DFE .在△ABC 和△DEF 中,∠A =∠D ,AC =DF ,∠ACB =∠DFE ,∴ △ABC ≌△DEF .(ASA)【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.95.已知,如图, ,12AC BD =∠=∠.(1)求证: ABC ∆≌BAD ∆;(2)若2325∠=∠=°,则D ∠= °.【答案】(1)证明见解析;(2)105°【解析】试题分析:(1)利用SAS 证明三角形ABC ∆≌BAD ∆.(2)利用三角形全等的性质.试题解析:(1),12AC BD =∠=∠.,AB=AB ,所以ABC ∆≌BAD ∆.(2)由(1)得∠1=△2,△D =△C ,2325∠=∠=︒,所以△C=180°-25°-25°-25°=105°.故∠D =△C=105°.点睛:证明三角形全等的方法:(1)三组对应边分别相等的两个三角形全等(简称SSS).(2)有两边及其夹角对应相等的两个三角形全等(SAS).(3)有两角及其夹边对应相等的两个三角形全等(ASA) .(4)有两角及一角的对边对应相等的两个三角形全等(AAS).(5)直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL) .注:S 是边的英文缩写,A 是角的英文缩写 ,其中证明直角三角形所有5种方法都可以用;一般三角形SSA 不能证明三角形的全等.96.如图,在△ABC 中,∠ACB=90°,AC=BC ,AE 是BC 边上的中线,过点C 作AE 的垂线CF ,垂足为F ,过点B 作BD ⊥BC ,交CF 的延长线于点D .(1)求证:AE=CD ;(2)若,求BD 的长.【答案】(1)证明见解析;(2)2【解析】试题分析:()1根据同角的余角相等,得到D AEC ∠=∠.用AAS 证明DBC △≌ECA △,即可得出AE CD =.()2根据DBC △≌ECA △,得到,BD EC =根据AB =求得4,AC BC ==求出EC 的长度即可求出BD 的长.试题解析:(1)证明:DB BC CF AE ,,⊥⊥∴90DCB D DCB AEC ∠+∠=∠+∠=︒.∴D AEC ∠=∠.又∵90DBC ECA ∠=∠=︒,且BC CA =,在DBC △与ECA △中 90,D AEC DBC ECA BCAC .∠=∠⎧⎪∠=∠=⎨⎪=⎩∴DBC △≌ECA △(AAS ).∴AE CD =.(2)由(1)得DBC △≌ECA △,,BD EC ∴=∵AB =∴4AC BC ==, ∴1122BD EC BC AC ===, ∴2BD =.97.如图,已知点B 、E 、F 、C 在同一条直线上,∠A=∠D ,BE=CF ,且AB ∥CD ,求证:AE=DF .【答案】证明见解析【解析】试题分析:根据AB ∥CD ,得到B C ∠=∠,用ASA 证明ABE △≌DCF ,即可得到AE DF =.试题解析:证明:∵AB ∥CD ,∴B C ∠=∠,在ABE △和DCF 中,∵,A D AB CD B C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABE △≌DCF (ASA ),∴AE DF =.98.阅读下面材料:学习了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.小聪的探究方法是对∠B分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当∠B 是直角时,如图1,△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据“HL”定理,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B 是锐角时,如图2,BC=EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则△ABC和△DEF的关系是;A.全等B.不全等C.不一定全等第三种情况:当∠B是钝角时,如图3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°.过点C作AB边的垂线交AB延长线于点M;同理过点F作DE边的垂线交DE延长线于N,根据“ASA”,可以知道△CBM≌△FEN,请补全图形,进而证出△ABC≌△DEF.【答案】第二种情况选C,理由见解析;第三种情况补全图见解析,证明见解析.【解析】【分析】第二种情况选C.画出图形即可判断.第三种情况:先证明△CMA≌△FND,推出AM=DN,推出AB=DE,再证明△ABC≌△DEF即可.【详解】解:第二种情况选C.理由:由题意满足条件的点D有两个,故△ABC和△DEF不一定全等(如图所示)故选C.第三种情况补全图.证明:由△CBM≌△FEN得,CM=FN,BD=EN.在Rt△CMA和Rt△FND中,∵AC DF CM FN=⎧⎨=⎩,∴△CMA≌△FND,∴AM=DN,∴AB=DE.在△ABC和△DEF中,∵AC DF BC EF AB DE=⎧⎪=⎨⎪=⎩,∴△ABC≌△DEF.99.如图,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,BE=3cm,AD=9cm.求:(1)DE的长;(2)若CE在△ABC的外部(如图),其它条件不变,DE的长是多少?【答案】(1)DE= 6cm;(2)DE= 12cm.【解析】【分析】(1)由余角的性质,推出∠CBE=∠ECA,再依据全等三角形的判定定理“AAS”,推出△BEC和△CDA全等,然后即得BE=CD,CE=AD,再由BE=3cm,AD=9cm,结合图形即可推出DE=6cm,(2)根据余角的性质推出∠CBE=∠ACD,再依据全等三角形的判定定理“AAS”,推出△BEC和△CDA全等,然后即得BE=CD,CE=AD,再由BE=3cm,AD=9cm,结合图形即可推出DE=12cm.解:(1)∵∠ACB=90°,BE⊥CE∴∠BCE+∠CBE=90°,∠BCE+∠ECA=90°,∴∠CBE=∠ECA,∠BEC=∠CDA.在△BEC和△CDA中,∵BEC CDACBE ECABC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BEC≌△CDA(AAS),∴BE=CD,CE=AD.∵BE=3cm,AD=9cm,∴CD=3cm,CE=9cm,∴DE=CE﹣CD=6cm.(2)∵∠ACB=90°,BE⊥CE于E,AD⊥CE于D,∴∠BCE+∠CBE=90°,∠BCE+∠DCA=90°,∠BEC=∠CDA=90°,∴∠CBE=∠ACD.在△CBE和△ACD中,∵BEC CDACBE ACDBC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CBE≌△ACD(AAS),∴BE=CD,CE=AD.∵BE=3cm,AD=9cm,∴DE=CD+CE=BE+AD=12cm.本题主要考查垂直的性质、全等三角形的判定与性质,关键在于根据相关的判定定理推出相关的三角形全等.100.如图,已知在△ABC 和△ABD 中,AD = BC,∠DAB = ∠CBA,求证:∠C = ∠D.【答案】证明见解析【解析】【分析】根据“SAS”可证明△ADB△△BAC,由全等三角形的性质即可得出结论.【详解】证明:在△ADB和△BAC中,∵AD=BC,△DAB=△CBA,AB=BA,△△ADB△△BAC(SAS),△△C=△D.点睛:本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.。

人教版八年级数学上册课课练 期末复习基础巩固练一二

人教版八年级数学上册课课练 期末复习基础巩固练一二

班级: 姓名: 期末复习基础巩固练(一)一、选择题(每小题只有一个正确选项)1.为丰富国民精神文化生活,提升文化素养,全国各地陆续开展全民阅读活动.现在的图书馆不单是人们学习知识的地方,更是成为人们休闲的好去处.下列图书馆标志的图形中不是轴对称图形的是( )2.有两根长分别为6 cm,11 cm的木棒,要想以这两根木棒为其中两边做一个三角形,可以选用第三根木棒的长为( )A.3 cmB.16 cmC.20 cmD.24 cm3.下列四个图形中,线段BE是△ABC的高的是( )4.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE//BC交AC 于点E.若∠A =54°,∠B=48° ,则∠CDE的大小为( )A.44°B.40°C.39°D.38°(第4题图)5.如图,点D在△ABC边AB的延长线上,DE//BC.若∠A=35°,∠C=24°,则∠D 的度数是( ) .A.24°B.59°C.60°D.69(第5题图)6.有下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的周长、面积分别相等;④面积相等的两个三角形全等其中正确的说法为( )A.①③④B.②③④C.①②③D.①②③④7.如图, 一张等边三角形纸片,剪去一个角后得到一个四边形,则图中∠a+∠β的度数是( )A.180°B.220°C.240°D.300°(第7题圈)8.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD= 20° ,则∠ACE的度数是( )A.20°B.35°C.40°D.70°(第8题图)9.如图, △A0B∠△ADC,点B和点C是对应顶点,∠0=∠D =90° ,记∠OAD=a,∠AB0=β,当BC//0A时,a与β之间的数量关系是( )A.a=βB. a=2βC.a +β = 90°D.a+2β=180°(第9题图)10.如图,在OABC中,∠BAC=115° ,DE,FG分别为AB,AC的垂直平分线,则∠EAG的度数为( )A.50°B.40°C.30°D.25°(第10题图)二、填空题11.已知点A(a+b,2),点B( -b,a-b)关于y轴对称,则6a= .12.如图,若正五边形和正六边形有一边重合,则∠BAC=(第12题圈)13.如图, △ABC的三条角平分线交于点D,AB=4,BC=6,AC=8,则S△ABD:S△BCD:S△ACD=(第13题图)14.如图,在△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为P,若∠BAC=84°,则∠BDC = 。

人教版数学八年级上册第12章《全等三角形》复习测试题(配套练习附答案)

人教版数学八年级上册第12章《全等三角形》复习测试题(配套练习附答案)
∴△ABD≌△C'DB (HL) ,
同理△DCB≌△C'DB,
∵∠A=∠C',∠AOB=∠C'OD,AB=C'D,
∴△AOB≌△C'OD (AAS) ,
所以共有四对全等三角形.
故答案为4.
【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
故选D.
二.填空题(本大题共8小题,共24.0分)
9.如图,在 和 中, ,若利用“HL”证明 ≌ ,则需要加条件______.
【答案】 ,
【解析】
【分析】
添加∠C=∠D=90°,由HL证明△ABC≌△ABD即可.
【详解】添加∠C=∠D=90°,理由如下:
∵∠C=∠D=90°,
∴在Rt△ABC和Rt△ABD中,
A. AE=DFB. ∠A=∠DC. ∠B=∠CD. AB= CD
【答案】D
【解析】
【分析】
根据垂直定义求出∠CFD=∠AEB=90°,由已知 ,再根据全等三角形的判定定理推出即可.
【详解】添加的条件是AB=CD;理由如下:
∵AE⊥BC,DF⊥BC,
∴∠CFD=∠AEB=90°,
在Rt△ABE和Rt△DCF中,
【详解】①∵PR⊥AB,PS⊥AC,PR=PS,
∴点P在∠A的平分线上,∠ARP=∠ASP=90°,
∴∠SAP=∠RAP,
在Rt△ARP和Rt△ASP中,

∴Rt△ARP≌Rt△ASP(HL),
∴AR=AS,∴①正确;

初二人教版数学第一节练习题

初二人教版数学第一节练习题

初二人教版数学第一节练习题题目一:整数的加减乘除1. 小明乘坐公交车上学,上车时他手上有12元的零钱,车上费用是2元。

请问小明还剩下多少钱?解答:小明上车时手上有12元的零钱,车费是2元。

所以,小明还剩下12元 - 2元 = 10元。

2. 物体从窗户上面落下,在第1秒钟内下落了2米,第2秒钟内下落了4米。

请问,物体在第3秒钟内下落了多少米?解答:第1秒钟内下落了2米,第2秒钟内下落了4米。

所以,第3秒钟内下落了4米。

3. 一家商店打折出售某种商品,原价是50元,现在打8折出售。

请问,现在出售这种商品需要多少钱?解答:原价是50元,打8折的折扣为80%。

所以,现在出售这种商品需要50元 × 80% = 40元。

题目二:几何图形的计算1. 一个矩形的长是6厘米,宽是3厘米。

请问,这个矩形的周长是多少?解答:一个矩形的长是6厘米,宽是3厘米。

所以,这个矩形的周长是(6厘米 + 3厘米) × 2 = 18厘米。

2. 一个正方形的边长是5米。

请问,这个正方形的面积是多少?解答:一个正方形的边长是5米。

所以,这个正方形的面积是5米× 5米 = 25平方米。

题目三:华氏温度与摄氏温度的转换1. 某地的气温是华氏50度,请问转换为摄氏温度是多少度?解答:华氏温度与摄氏温度的转换公式是:摄氏温度 = (华氏温度 - 32) × 5/9。

所以,华氏50度转换为摄氏温度是(50 - 32) × 5/9 = 10.0度。

2. 某地的气温是摄氏20度,请问转换为华氏温度是多少度?解答:华氏温度与摄氏温度的转换公式是:华氏温度 = 摄氏温度 ×9/5 + 32。

所以,摄氏20度转换为华氏温度是20 × 9/5 + 32 = 68度。

题目四:代数式的计算1. 已知a = 2, b = 3,请计算a^2 + b^2的值。

解答:a = 2, b = 3。

所以,a^2 + b^2 = 2^2 + 3^2 = 4 + 9 = 13。

人教版八年级上册数学 第十五章分式同步复习题(含详细答案)

人教版八年级上册数学 第十五章分式同步复习题(含详细答案)

人教版八年级上册数学第十五章分式复习题一.选择题1.关于x的分式方程﹣=0的解为()A.﹣3 B.﹣2 C.2 D.32.某学校食堂需采购部分餐桌,现有A、B两个商家,A商家每张餐桌的售价比B商家的优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为()A.117元B.118元C.119元D.120元3.使分式的值为0,这时x应为()A.x=±1 B.x=1C.x=1 且x≠﹣1 D.x的值不确定4.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A.+=t B.+=tC.•+•=t D.+=t5.春节期间,文具店的一种笔记本8折优惠出售.某同学发现,同样花12元钱购买这种笔记本,春节期间正好可比春节前多买一本.这种笔记本春节期间每本的售价是()A.2元B.3元C.2.4元D.1.6元6.已知关于x的方程的解是正整数,且k为整数,则k的值是()A.0 B.﹣2 C.0或6 D.﹣2或67.已知,则的值为()A.5 B.6 C.7 D.88.已知关于x的方程=3的解是负数,那么m的取值范围是()A.m>﹣6且m≠﹣2 B.m<﹣6 C.m>﹣6且m≠﹣4 D.m<﹣6且m≠﹣29.要使分式有意义,x的取值是()A.x≠1 B.x≠﹣1 C.x≠±1 D.x≠±1且x≠﹣2 10.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学记数法表示为()A.6.5×107B.6.5×10﹣6C.6.5×10﹣8D.6.5×10﹣711.下列各式中,正确的是()A.B.C.=b+1 D.=a+b12.如果分式方程无解,则a的值为()A.﹣4 B.C.2 D.﹣213.已知关于x的分式方程的解为正数,则k的取值范围为()A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠1 14.某车间接了生产12000只口罩的订单,加工4800个口罩后,采用了的新的工艺,效率是原来的1.5倍,任务完成后发现比原计划少用了2个小时.设采用新工艺之前每小时可生产口罩x个,依据题意可得方程()A.=2B.=2C.=2D.=2二.填空题15.分式的值比分式的值大3,则x的值为.16.若关于x的分式方程,有负数解,则实数a的取值范围是.17.已知分式,当x=1时,分式无意义,则a=.18.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示为米.19.对和进行通分,需确定的最简公分母是.20.已知关于x的分式方程+=.若方程有增根,则m的值为.三.解答题21.计算(1)﹣(2)+﹣(3)(+)÷22.化简求值:,其中x=.23.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B 种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?24.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?25.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?参考答案一.选择题1.解:去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.2.解:设A商家每张餐桌的售价为x元,则B商家每张餐桌的售价为(x+13),根据题意列方程得:=,解得:x=117,经检验:x=117是原方程的解.故选:A.3.解:∵分式的值为0,∴x2﹣1=0,且x+1≠0,解得:x=1.故选:B.4.解:设小水管的注水速度为x立方米/分钟,可得:,故选:C.5.解:设这种笔记本节日前每本的售价是x元,根据题意得:,解得:x=3,经检验,x=3是原方程的解,∴0.8x=0.8×3=2.4(元),答:这种笔记本节日期间每本的售价是2.4元,故选:C.6.解:方程去分母,得9﹣3x=kx,即kx+3x=9,∴x=因为原分式方程的解为正整数,且x≠3.所以x==1、2、4、5、6、7、8、9,又因为k为整数,所以k=﹣2或6.故选:D.7.解:∵,∴(a+)2=9,即a2+2+=9,则=7,故选:C.8.解:去分母,得2x﹣m=3x+6,∴x=﹣m﹣6.由于方程的解为负数,∴﹣m﹣6<0且﹣m﹣6≠﹣2,解得m>﹣6且m≠﹣4.故选:C.9.解:要使分式有意义,则x+1≠0,解得:x≠﹣1,故选:B.10.解:0.00000065=6.5×10﹣7.故选:D.11.解:与在a=0或a=b时才成立,故选项A不正确;==,故选项B正确;=b+,故选项C不正确;不能化简,故选项D不正确;故选:B.12.解:去分母得:x=2(x﹣4)﹣a解得:x=a+8根据题意得:a+8=4解得:a=﹣4.故选:A.13.解:去分母得:x﹣2(x﹣1)=k,去括号得:x﹣2x+2=k,解得:x=2﹣k,由分式方程的解为正数,得到2﹣k>0,且2﹣k≠1,解得:k<2且k≠1,故选:D.14.解:设采用新工艺之前每小时可生产口罩x个,则采用新工艺之后每小时可生产口罩1.5x个,依题意,得:﹣=2.故选:D.二.填空题(共6小题)15.解:根据题意得:﹣=3,去分母得:x﹣3﹣1=3x﹣6,移项合并得:﹣2x=﹣2,解得:x=1,经检验x=1是分式方程的解,故答案为:1.16.解:,分式方程去分母得:1﹣x﹣3=a,移项合并得:﹣x=a+2,解得:x=﹣a﹣2,∵分式方程的解为负数,∴﹣a﹣2<0且﹣a﹣2+3≠0,解得:a>﹣2且a≠1.故答案为:a>﹣2且a≠1.17.解:把x=1代入得:,此时分式无意义,∴a﹣3=0,解得a=3.故答案为:3.18.解:0.0000084=8.4×10﹣6,故答案为:8.4×10﹣6.19.解:分式和的分母分别是2(x+y)、(x+y)(x﹣y).则最简公分母是2(x+y)(x﹣y).故答案是:2(x+y)(x﹣y).20.解:若原分式方程有增根,则(x+2)(x﹣2)=0,所以x=﹣2 或x=2,当x=﹣2 时,﹣2m=﹣8.得m=4,当x=2 时,2m=﹣8.得m=﹣4,所以若原分式方程有增根,则m=±4;故答案为:±4.三.解答题(共5小题)21.解:(1)﹣=+=;(2)+﹣=+﹣===﹣;(3)(+)÷=•=x﹣1.22.解:原式=•==﹣x(x+1)=﹣x2﹣x当x=时,原式=﹣2﹣.23.解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100﹣m)盒,依题意,得:(300﹣200)×+(300×0.7﹣200)×+(400﹣280)×+(400×0.7﹣280)×=5800,解得:m=40,∴100﹣m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.24.解:(1)设乙厂每天加工x套防护服,则甲厂每天加工1.5x套防护服,根据题意,得﹣=4.解得x=50.经检验:x=50是所列方程的解.则1.5x=75.答:甲厂每天加工75套防护服,乙厂每天加工50套防护服;(2)设甲厂要加工m天,根据题意,得150m+120×≤6360.解得m≥28.答:甲厂至少要加工28天.25.解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.再设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100,解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.。

14.1.3 积的乘方 练习题 人教版八年级数学上册

14.1.3 积的乘方  练习题  人教版八年级数学上册
4.将(2×102)3写成科学记数法的形式为()
A.6×105B.6×106
C.8×105D.8×106
5.[2020·陕西]计算(- x2y)3的结果是()
A.-2x6y3B. x6y3
C.- x6y3D.- x5y4
6.计算:(1)(3x)4;
(2)(-xy)4;
(3)(-3ab2)3;
(4)-(2x2y)4;
13.解:a2n+2·b2n·b4=a2n·a2·b2n·b4
=a2n·b2n·a2·b2·b2
=(ab)2n·(ab)2·b2
=
= .
(5)(xmyn)2;
(6)(3×102)2×(2×104)3.
知识点 2 积的乘方的逆运算
7.计算:(-0.25)11×411=(×)11=.
8.计算(-3)100×(- )101的结果为()
A.-1B.1C.- D.
【能力提升】
9.若(ambn)3=a9b15,则m,n的值分别为()
A.9,5B.3,5C.5,3D.6,12
14.1.3 积的乘方
1.a6b6
2.D
3.D[解析] A.a2·a3=a5,故计算错误;
B.(3a)3=27a3,故计算错误;
C.3a-2a=a,故计算错误;
D.(-2ห้องสมุดไป่ตู้2)3=-8a6,故计算正确.
故选D.
4.D
5.C[解析] - x2y 3= - 3·(x2)3·y3=- x6y3.
6.解:(1)原式=34·x4=81x4.
(2)(-xy)4=(-x)4y4=x4y4.
(3)(-3ab2)3=(-3)3a3(b2)3=-27a3b6.
(4)-(2x2y)4=-24(x2)4y4=-16x8y4.

人教版初中八年级数学上册第十一章《三角形》经典复习题(含答案解析)(1)

人教版初中八年级数学上册第十一章《三角形》经典复习题(含答案解析)(1)

一、选择题1.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( )①13∠=∠;②180BAE CAD ∠+∠=︒;③若//BC AD ,则230∠=︒;④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个C解析:C【分析】 利用同角的余角相等可判断①,利用角的和差与直角三角形的性质可判断②,利用平行线的性质先求解CAD ∠,再利用结论②可判断③,由150CAD ∠=︒,先求解230∠=︒, 如图,记,AB DE 交于,G 再求解90AGE ∠=︒,再利用三角形的外角的性质求解4∠, 从而可判断④.【详解】解:90BAC DAE ∠=∠=︒,122390∴∠+∠=∠+∠=︒,13∴∠=∠,故①符合题意, 19090180BAE CAD BAE DAE BAC DAE ∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,故②符合题意;//,BC AD180C CAD ∴∠+∠=︒,45C ∠=︒,135CAD ∴∠=︒,218018013545CAD ∴∠=︒-∠=︒-︒=︒,故③不符合题意; 150180CAD BAE CAD ∠=︒∠+∠=︒,,30BAE ∴∠=︒,如图,记,AB DE 交于,G60E∠=︒,180306090AGE∴∠=︒-︒-︒=︒,45,B C∠=∠=︒4904545.AGE B∴∠=∠-∠=︒-︒=︒4.C∴∠=∠故④符合题意,综上:符合题意的有①②④.故选:.C【点睛】本题考查的是角的和差,余角与补角,平行线的性质,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.2.下列四组线段中,不可以构成三角形的是()A.4,5,6 B.1.5,2,2.5 C.13,14,15D.12,3D解析:D【分析】计算较小两边的和,与最大的边比较,大于最大的边时三角形存在,依此判断即可.【详解】∵4+5>6,∴能构成三角形;∵1.5+2>2.5,∴能构成三角形;∵14+15>13,∴能构成三角形;∵2<1+2=3,∴不能构成三角形;故选D.【点睛】本题考查了已知线段长判断三角形的存在,熟记三角形存在的条件是解题的关键. 3.若一个三角形的三边长分别为3,7,x,则x的值可能是()A.6 B.3 C.2 D.11A解析:A根据三角形的三边关系列出不等式,即可求出x 的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x ,∴7-3<x <7+3,即4<x <10,四个选项中,A 中,4<6<10,符合题意.故选:A .【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.4.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40°B解析:B【分析】 利用平行线和三角形外角的性质即可求解.【详解】∵//AB CD ,∴60DEF A ∠=∠=︒.∵DEF C F ∠=∠+∠,∴604020F DEF C ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质,熟练利用其性质找到角的等量关系是解答本题的关键.5.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30°A【分析】先根据三角形外角的性质得出∠ADC=∠B+∠BAD ,∠AED=∠C+∠EDC ,再根据∠B=∠C ,∠ADE=∠AED 即可得出结论.【详解】解:∵∠ADC 是△ABD 的外角,∴∠ADC=∠B+∠BAD ,∴∠ADE=∠ADC-∠CDE=∠B+∠BAD-∠CDE∵∠AED 是△CDE 的外角,∴∠AED=∠C+∠EDC ,∵∠ADE=∠AED ,∴∠B+∠BAD-∠CDE=∠C+∠EDC ,∵∠B=∠C ,∴∠BAD=2∠EDC ,∵10CDE ∠=︒∴∠BAD=20°;故选:A【点睛】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.6.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC ∠的度数是( )A .65︒B .75︒C .85︒D .105︒B解析:B【分析】 根据三角板的性质以及三角形内角和定理计算即可.【详解】解:∵∠CEA =60︒,∠BAE =45︒,∴∠ADE = 180︒−∠CEA −∠BAE =75︒,∴∠BDC =∠ADE =75︒,故选:B【点睛】本题考查三角板的性质,三角形内角和定理等知识,对顶角相等,解题的关键是熟练掌握基本知识,属于中考基础题.7.一个多边形的内角和是外角和的4倍,则这个多边形的边数为()A.10 B.8 C.6 D.4A解析:A【分析】设这个多边形的边数为n,根据内角和公式以及多边形的外角和为360°即可列出关于n的一元一次方程,解方程即可得出结论.【详解】解:设这个多边形的边数为n,则该多边形的内角和为(n-2)×180°,依题意得:(n-2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故选:A【点睛】本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n-2)×180°=360°×4.a b,含30角的直角三角板按如图所示放置,顶点A在直线a上,斜边8.已知直线//BC与直线b交于点D,若135∠=︒,则2∠的度数为()A.35︒B.45︒C.65︒D.75︒C解析:C【分析】如图,根据三角形外角的性质可得出∠3,再根据平行线的性质可得出∠2.【详解】解:如图,∠=︒,∠B=30°∵135∴∠3=∠1+∠B=35°+30°=65°a b∵//∴∠2=∠3=65°故选:C【点睛】此题考查了平行线的性质以及三角形外角的性质.解题时注意掌握平行线的性质以及三角形外角的性质的应用.9.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( ) A .3cmB .10cmC .4cmD .6cm D解析:D【分析】根据三角形的三边关系解答.【详解】解:∵三角形的两边为3cm ,7cm ,∴第三边长的取值范围为7-3<x <7+3,即4<x <10,只有D 符合题意,故选:D .【点睛】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边.10.小红有两根长度分别为4cm 和8cm 的木棒,他想摆一个三角形,现有长度分别为3cm ,4cm ,8cm ,15cm 四根木棒,则他应选择的木棒长度为( ).A .3cmB .4cmC .8cmD .15cm C 解析:C【分析】设选择的木棒长为x ,根据第三边大于两边之差小于两边之和即可求出范围,再结合选项即可得出答案.【详解】由题意得,设选择的木棒长为x ,则8448x -<<+,即412x <<, ∴选择木棒长度为8cm .故选C .【点睛】本题考查了三角形三边关系的应用,熟练掌握三边关系是解题的关键.二、填空题11.如图,则A B C D E ∠+∠+∠+∠+∠的度数为________.180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2再通过三角形的内角和定理即可求解【详解】解:如图∵∠1是△CDF 外角∴∠C+∠D=∠1∵∠2是三角形BFG 外角∴∠B+∠1=∠2∴∠解析:180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2,再通过三角形的内角和定理即可求解【详解】解:如图,∵∠1是△CDF 外角,∴∠C+∠D=∠1,∵∠2是三角形BFG 外角,∴∠B+∠1=∠2,∴∠B+∠C+∠D=∠2,∴=2180A B C D E A E ∠+∠+∠+∠+∠∠+∠+∠=︒.故答案为:180°【点睛】本题考查了三角形的外角定理、内角和定理,通过三角形的外角定理将∠B+∠C+∠D 转化为∠2是解题关键.12.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线11【分析】先根据题意求出多边形的边数再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答【详解】设多边形的边数为n 则有(n-2)•180+360=2520解得:n=1414-3=11即从这个多解析:11【分析】先根据题意求出多边形的边数,再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答.【详解】设多边形的边数为n ,则有(n -2)•180+360=2520,解得:n =14,14-3=11,即从这个多边形的一个顶点出发共有11条对角线,故答案为11.【点睛】本题考查了多边形的内角和与外角和、多边形的对角线,得到多边形的边数是解本题的关键.13.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.6【分析】根据DE 分别是三角形的中点得出G 是三角形的重心再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案【详解析:6【分析】根据D ,E 分别是三角形的中点,得出G 是三角形的重心,再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3,再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案.【详解】解:∵△ABC 的两条中线AD 、BE 相交于点G ,∴2GD =AG ,∵S △ABG =2,∴S △ABD =3,∵AD 是△ABC 的中线,∴S △ABC =2S △ABD =6.故答案为:6.【点睛】此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.14.如图,在ABC ∆中,4ACB A ∠=∠,点D 在边AC 上,将BDA ∆沿BD 折叠,点A 落在点A '处,恰好BA AC '⊥于点E 且//BC DA ',则BDC ∠的度数为__________度.54°【分析】根据折叠的性质及题意可在Rt △BEC中求解∠C 及∠CBE 的度数从而计算∠ABD 的度数则∠BDC=∠A+∠ABD 即可计算出结果【详解】由题意可得:∠A=∠∠=∠CBE ∴则在Rt △BEC 中 解析:54°【分析】根据折叠的性质及题意,可在Rt △BEC 中求解∠C 及∠CBE 的度数,从而计算∠ABD 的度数,则∠BDC=∠A+∠ABD ,即可计算出结果.【详解】由题意可得:∠A=∠A ',∠A '=∠CBE ,∴44ACB A CBE ∠=∠=∠,则在Rt △BEC 中,∠C+∠CBE=90°,即:5∠CBE=90°,∠CBE=18°,∴∠A=18°,∠C=72°,∠ABC=90°,∴72ABA ABC CBE '=-=︒∠∠∠,由折叠性质可知,ABD A BD '∠=∠,∴=36ABD A BD '∠=∠︒,∴54BDC ABD A ∠=∠+∠=︒故答案为:54°.【点睛】本体三角形的折叠问题,平行线的性质及三角形的外角定理,理解图形变化中的特点,准确结合题意计算是解题关键.15.如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABC S =,则BEF S =△______.【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可【详解】解:∵BD=DC ∴S △ABD=S △ADC=×6=3(cm2)∵AE=DE ∴S △AEB=S △AEC=×3=(cm2)∴S △BEC解析:3 2【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可.【详解】解:∵BD=DC,∴S△ABD=S△ADC=12×6=3(cm2),∵AE=DE,∴S△AEB=S△AEC=12×3=32(cm2),∴S△BEC=6-3=3(cm2),∵EF=FC,∴S△BEF=12×3=32(cm2),故答案为32.【点睛】本题考查三角形的面积,三角形的中线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,在一个四边形ABCD中,AE平分∠BAD,DE平分∠ADC,且∠ABC=80°,∠BCD=70°,则∠AED=_________.75°【分析】先根据四边形的内角和求出∠BAD+∠CDA然后再根据角平分线的定义求得∠EAD+∠EDA最后根据三角的内角和定理求解即可【详解】解:∵在四边形ABCD中∠ABC=80°∠BCD=70°解析:75°.【分析】先根据四边形的内角和求出∠BAD+∠CDA,然后再根据角平分线的定义求得∠EAD+∠EDA,最后根据三角的内角和定理求解即可.【详解】解:∵在四边形ABCD中,∠ABC=80°,∠BCD=70°∴∠BAD+∠CDA=360°-80°-70°=210°∵∠EAD=12∠BAD,∠EDA=12∠CAD∴∠EAD+∠EDA=1(∠BAD+∠CDA)=105°2∴∠AED=180°-(∠EAD+∠EDA)=180°-105°=75°.故答案为75°.【点睛】本题主要考查了三角形的内角和、四边形的内角和以及角平分线的相关知识,灵活应用相关知识成为解答本题的关键.17.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________,最小值是___________.15【分析】记三角形的第三边为c先根据三角形的三边关系确定c的取值范围进而可得三角形第三边的最大值与最小值进一步即可求出答案【详解】解:记三角形的第三边为c则7-3<c<7+3即4<c<10因为第三解析:15【分析】记三角形的第三边为c,先根据三角形的三边关系确定c的取值范围,进而可得三角形第三边的最大值与最小值,进一步即可求出答案.【详解】解:记三角形的第三边为c,则7-3<c<7+3,即4<c<10,因为第三边长为奇数,所以三角形第三边长的最大值是9,最小值是5,所以三角形的周长最大值是3+7+9=19;最小值是3+7+5=15;故答案为:19,15.【点睛】本题考查了三角形的三边关系与不等式组的整数解,属于基础题型,正确理解题意、掌握解答的方法是关键.18.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95 ,王老师沿公园边由A点经B→C→D→E,一直到F时,他在行程中共转过了_____度.275【分析】王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数由多边形的外角和即可求解【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数∵多边形的外角和为360°∴解析:275王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,由多边形的外角和即可求解.【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,∵多边形的外角和为360°,∴他在行程中共转过了()36018095275︒-︒-︒=︒,故答案为:275.【点睛】本题考查多边形的外角和,明确王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数是解题的关键.19.如图,在ABC 中,已知66ABC ∠=︒,54ACB ∠=︒,BE 是AC 上的高,CF 是AB 上的高,H 是BE 和CF 的交点,EHF ∠的度数是________.120°【分析】先根据三角形内角和定理求出∠A 的度数再根据CF是AB 上的高得出∠ACF 的度数再由三角形外角的性质即可得出结论【详解】解:∵∠ABC=66°∠ACB=54°∴∠A=60°∵CF 是AB 上解析:120°【分析】先根据三角形内角和定理求出∠A 的度数,再根据CF 是AB 上的高得出∠ACF 的度数,再由三角形外角的性质即可得出结论.【详解】解:∵∠ABC=66°,∠ACB=54°,∴∠A=60°,∵CF 是AB 上的高,∴在△ACF 中,∠ACF=180°-∠AFC-∠A=30°,在△CEH 中,∠ACF=30°,∠CEH=90°,∴∠EHF=∠ACF+∠CEH=30°+90°=120°.故答案为120°.【点睛】本题考查的是三角形内角和定理及三角形外角的性质、三角形的高线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.一个三角形的三个内角的度数的比是1∶2∶3,这个三角形是_________________三角形.(填锐角、直角或钝角)直角【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数即可得出答案【详解】180°÷(1+2+3)×3=180°÷6×3=30°×3=90°答:这个三角形中最大的角是直角故答案解析:直角【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数,即可得出答案.【详解】180°÷(1+2+3)×3=180°÷6×3=30°×3=90°,答:这个三角形中最大的角是直角.故答案为:直角.【点睛】本题考查了三角形内角和定理的应用,能求出这个三角形的最大内角的度数是解此题的关键,注意:三角形的内角和等于180°.三、解答题21.如图,△ABC中,∠ABC的角平分线与外角∠ACD的平分线交于A1.(1)∵BA1、CA1是∠ABC与∠ACD的平分线,∴∠A1BD=12∠ABD,∠A1CD=12∠ACD,∴∠A1CD﹣∠A1BD=12(∠ACD﹣∠ABD),∵∠A1CD﹣∠A1BD=,∠ACD﹣∠ABD=∠,∴∠A1=.(2)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230°,求∠F的度数.(3)如图3,△ABC中,∠ABC的角平分线与外角∠ACD的平分线交于A1,若E为BA延长线上一动点,连接EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值,其中有且只有一个是正确的,请写出正确的结论,并求出其值.解析:(1)∠A1,A,12∠A;(2)25°;(3)①的结论是正确的,且这个定值为180°.【分析】(1)根据角平分线的定义可得∠A1BD=12∠ABC,∠A1CD=12∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,则可得出答案;(2)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°﹣(∠A+∠D),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,从而得出结论;(3)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)∵BA1是∠ABC的平分线,CA1是∠ACD的平分线,∴∠A1BD=12∠ABD,∠A1CD=12∠ACD,∴∠A1CD﹣∠A1BD=12(∠ACD﹣∠ABD),∵∠A1CD﹣∠A1BD=∠A1,∠ACD﹣∠ABD=∠A,∴∠A1=12∠A.故答案为:∠A1,A,12∠A;(2)∵∠ABC+∠DCB=360°﹣(∠A+∠D),∵∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,∴360°﹣(∠A+∠D)=180°﹣2∠F,2∠F=∠A+∠D﹣180°,∴∠F=12(∠A+∠D)﹣90°,∵∠A+∠D=230°,∴∠F=25°;(3)△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°﹣∠Q),化简得:∠A1+∠Q=180°,因此①的结论是正确的,且这个定值为180°.【点睛】此题考查三角形的角平分线的性质,三角形内角和定理,三角形外角定理,熟练掌握三角形的外角等于与它不相邻的两个内角的和是解题的关键.22.在ABC ∆中,已知3,7AB AC ==,若第三边BC 的长为偶数,求ABC ∆的周长. 解析:周长为16或18.【分析】利用三角形三边关系定理,先确定第三边的范围,再根据第三边BC 的长为偶数求出符合条件的BC 值,即可求出周长.【详解】 解:在ABC ∆中,3,7AB AC ==,∴第三边BC 的取值范围是:410,BC <<∴符合条件的偶数是6或8,∴当6BC =时,ABC ∆的周长为:36716++=;当8BC =时,ABC ∆的周长为:37818++=.ABC ∆∴的周长为16或18.【点睛】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.23.如图,AF ,AD 分别是ABC 的高和角平分线,且34B ∠=︒,76C ∠=︒,求DAF ∠的度数.解析:21︒【分析】运用三角形的内角和定理即可求出∠BAC 的度数;根据角平分线的定义、三角形的内角和定理的推论以及直角三角形的两个锐角互余即可求出∠FAC 的度数,再由DAF DAC FAC =-∠∠∠即可得出结论.【详解】解:∵AF 是ABC 的高,∴90AFC ∠=︒,∴90907614FAC C ∠=︒-∠=︒-︒=︒,∵180BAC B C ∠+∠+∠=︒,∴180180763470BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 是ABC 的角平分线, ∴11703522DAC BAC ==⨯︒=∠∠︒, ∴21DAF DAC FAC =-∠=∠∠︒.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键. 24.如图①,ABC 中,BD 平分ABC ∠,且与ABC 的外角ACE ∠的角平分线交于点D .(1)若75ABC ∠=︒,45ACB ∠=︒,求D ∠的度数;(2)若把A ∠截去,得到四边形MNCB ,如图②,猜想D ∠、M ∠、N ∠的关系,并说明理由.解析:(1)30D ∠=︒;(2)()11802D M N ∠=∠+∠-︒,理由见解析 【分析】(1)根据三角形内角和定理以及角平分线定义,先求出∠D 、∠A 的等式,推出∠A=2∠D ,最后代入求出即可;(2)根据(1)中的结论即可得到结论.【详解】解:ACE A ABC ∠=∠+∠, ACD ECD A ABD DBE ∴∠+∠=∠+∠+∠,DCE D DBC ∠=∠+∠,又∵BD 平分ABC ∠,CD 平分ACE ∠,ABD DBE ∴∠=∠,ACD ECD ∠=∠,()2A DCE DBC ∴∠=∠-∠,D DCE DBC ∠=∠-∠,2A D ∴∠=∠,75ABC ∠=︒,45ACB ∠=︒,60A ∴∠=︒,30D ∴∠=︒;(2)()11802D M N ∠=∠+∠-︒; 理由:延长BM 、CN 交于点A ,则180A BMN CNM ∠=∠+∠-︒,由(1)知,12D A ∠=∠, ()11802D M N ∴∠=∠+∠-︒.【点睛】此题考查三角形内角和定理以及角平分线的定义的综合运用,解此题的关键是求出∠A=2∠D .25.已知一个n 边形的每一个内角都等于120°.(1)求n 的值;(2)求这个n 边形的内角和;(3)这个n 边形内一共可以画出几条对角线?解析:(1)6;(2)720°;(3)9条【分析】(1)分别用两个式子表示多边形的内角和,列出方程,求解即可;(2)根据多边形内角和公式即可求解;(3)根据对角线的定义求出每个顶点的对角线条数,再求解即可.【详解】解:(1)由题意得()2180120n n -︒=︒,解得 6n =.(2)()62180720-⨯︒=︒,所以这个多边形的内角和为720°.(3)六边形每个顶点可以引6-3=3条对角线, 所以一共可画6392⨯=条对角线. 【点睛】本题考查了多边形的内角和公式,多边形对角线的定义,熟记多边形的内角和公式,理解对角线的定义是解题关键.26.如图,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,60BAC ∠=︒,70C ∠=︒.求EAD ∠和∠BOE 的度数.解析:10EAD ∠=︒,55BOE ∠=︒【分析】根据三角形内角和定理求出∠BAC=180°-60°-70°=50°,再由AE 是角平分线,求出∠EAC=12∠BAC=30°,由AD 是高,求出∠CAD=90°-∠C=20°,最后即可求出∠EAD=∠EAC-∠CAD=10°;根据角平分线的性质,得∠OAB=12∠BAC ,∠OBA=12∠ABC ,所以∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC )=12(180°-∠C )=12×(180°-70°)=55°. 【详解】解:∠B AC =60°,∠C =70°∴∠ABC =180°−∠ABC −∠C =180°−60°-70°=50°,∵AE 是角平分线,∴∠EAC =12∠BAC =12×60°=30°, ∵AD 是高,∴∠ADC =90°,∴∠CAD =90°−∠C =90°−70°=20°,∴∠DAE =∠EAC −∠CAD =30°−20°=10°;∵AE ,BF 是角平分线,∴∠OAB =12∠BAC ,∠OBA =12∠ABC , ∴∠BOE =∠OAB +∠OBA =12(∠BAC +∠ABC )=12(180°−∠C )=12×(180°−70°) =55°. 【点睛】本题考查了三角形内角和定理、角平分线性质,解题的关键是明确题意,找出所求问题需要的条件.27.如图,已知直线//AB CD ,直线EF 分别交直线AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线相交于一点P .试说明:90P ∠=︒.解析:证明见解析【分析】由AB∥CD,可知∠BEF与∠DFE互补,由角平分线的性质可得∠PEF+∠PFE=90°,由三角形内角和定理可得出结论.【详解】∵AB∥CD,∴∠BEF+∠DFE=180°.又∵∠BEF的平分线与∠DFE的平分线相交于点P,∴∠PEF=12∠BEF,∠PFE=12∠DFE,∴∠PEF+∠PFE=12(∠BEF+∠DFE)=90°.∵∠PEF+∠PFE+∠P=180°,∴∠P=90°.【点睛】本题主要考查了平行线的性质、角平分线的定义、三角形内角和等知识,解题时注意:两直线平行,同旁内角互补.28.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式.解析:(1)10︒;(2)11 22βα-【分析】(1)根据三角形的内角和求出∠BAC的度数,得到∠BAE的度数,求出∠AED的度数,根据AD是高线,求得答案;(2)根据三角形的内角和求出∠BAC的度数,得到∠BAE的度数,求出∠AED的度数,根据AD是高线,求得答案.【详解】(1)∵∠B=40°,∠C=60°,∴∠BAC=18080B C ︒-∠-∠=︒,∵AE 平分∠BAC ,∴∠BAE=1402BAC ∠=︒, ∴∠AED=∠B+∠BAE=80︒,∵AD 是高线,∴AD ⊥BC ,∴∠DAE=9010AED ︒-∠=︒;(2)∵∠B =α,∠C =β,∴∠180180BAC B C αβ=︒-∠-∠=︒--,∵AE 平分∠BAC ,∴∠BAE=121902B C ︒-∠-∠=121902αβ︒-- ∴∠AED=∠B+∠BAE=121902B C ︒+∠-∠=121902αβ︒+- ∵AD 是高线,∴AD ⊥BC , ∴∠DAE=190212AED C B ︒-∠=∠-∠=1122βα-, 故答案为:1122βα-. 【点睛】此题考查三角形的基础知识,三角形的角平分线的性质,三角形的内角和定理,三角形的高线,直角三角形两锐角互余,熟练掌握各知识点并应用解决问题是解题的关键.。

人教版数学八年级上册 第13章 基础复习题含答案

人教版数学八年级上册 第13章 基础复习题含答案

13.1轴对称一.选择题1.以下四个汽车车标中,不是轴对称图形的是()A.B.C.D.2.如图,在△ABD中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13B.15C.18D.213.如图,△ABC的边长AB=8cm,AC=10cm,BC=4cm,作BC的垂直平分线交AC于D,则△ABD的周长为()A.18cm B.14cm C.20cm D.12cm4.如图,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5,PN=3,MR=7,则线段QN的长为()A.1B.1.5C.2D.2.55.如图是台球桌面示意图,阴影部分表示四个入球孔,小明按图中方向击球(球可以多次反弹),则球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋6.如图,若△ABC与△A'B'C′关于直线MN对称,BB'交MN于点O.则下列说法中不一定正确的是()A.∠ABC=∠A'B'C′B.AA'⊥MNC.AB∥A′B′D.BO=B′O7.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.∠A、∠B两内角的平分线的交点处B.AC、AB两边高线的交点处C.AC、AB两边中线的交点处D.AC、AB两边垂直平分线的交点处8.如图,△ABC和△AB'C'关于直线l对称,l交CC'于点D,若AB=4,B'C'=2,CD=0.5,则五边形ABCC′B'的周长为()A.14B.13C.12D.119.如图,在△ABC中,∠A=30°,∠C=110°,AB的垂直平分线交AB于点D,交边AC 于点E,则∠EBC的度数是()A.10°B.15°C.20°D.25°10.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=35°,则∠A+∠C=()A.30°B.40°C.17.5°D.35°二.填空题11.如图,在△ABC中,DE是AC的垂直平分线,AE=3,△BCD的周长为13,则△ABC 的周长是.12.雨后,地上的积水犹如一块澄澈的平面镜,某路段监控摄像头在雨后拍摄,由于位置偏离,拍摄中心聚集在了水面上,摄像头侦测到一小轿车超速行驶,积水中倒映的车牌为“”,那么该小轿车的真实车牌号为.13.如图,△ABC与△DEF关于直线l对称,若∠A=65°,∠B=80°,则∠F=.14.如图,线段AB,BC的垂直平分线l1,l2交于点O.若∠B=35°,则∠AOC=°.15.已知:△ABC是三边都不相等的三角形,点P是三个内角平分线的交点,点O是三边垂直平分线的交点,当P、O同时在不等边△ABC的内部时,那么∠BOC和∠BPC的数量关系是:∠BOC=.三.解答题16.如图,在ΔABC中,∠C=90°,DE是AB的垂直平分线.(1)若AC=5,BC=7,求ΔACD的周长;(2)若∠BAD:∠CAD=2:1,求∠B的度数.17.如图,在△ABE中,AD⊥BE于点D,C是BE上一点,BD=DC,且点C在AE的垂直平分线上,若△ABC的周长为18cm,求DE的长.18.如图所示,在△ABC中,AB,AC的垂直平分线分别交BC于D,E,垂足分别是M,N.(1)若△ADE的周长为6,求BC的长;(2)若∠BAC=100°,求∠DAE的度数.19.求证:到线段两端距离相等的点在线段的垂直平分线上.已知:;求证:.参考答案与试题解析一.选择题1.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意;故选:C.2.【解答】解:连接OC,∵点O是边BC,AC的垂直平分线的交点,∴OB=OC,OA=OC,∴OA=OB,∵OB=5,∴OA=OB=5,∵AB=8,∴△AOB的周长是AB+OA+OB=8+5+5=18,故选:C.3.【解答】解:∵BC的垂直平分线交AC于D,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=8+10=18(cm),故选:A.4.【解答】解:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R 落在MN的延长线上,∴PM=MQ,PN=NR,∵PM=2.5,PN=3,MR=7,∴RN=3,MN=MR﹣NR=7﹣3=4,MQ=MP=2.5,即NQ=MN﹣MQ=4﹣2.5=1.5,故选:B.5.【解答】解:如图所示,,球最后落入的球袋是2号袋,故选:B.6.【解答】解:∵△ABC与△A'B'C′关于直线MN对称,BB'交MN于点O,∴△ABC≌△A'B'C′,AA′⊥MN,OB=OB′∴∠ABC=∠A′B′C′,故A,B,D正确,故选:C.7.【解答】解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在AC、AB两边垂直平分线的交点处,故选:D.8.【解答】解:∵△ABC和△AB'C'关于直线l对称,l交CC'于点D,∴AB=AB′,BC=B′C′,DC=DC′,∵AB=4,B'C'=2,CD=0.5,∴AB′=4,BC=2,DC′=0.5,∴五边形ABCC′B'的周长为:4+2+0.5+0.5+2+4=13.故选:B.9.【解答】解:∵AB的垂直平分线交AB于点D,交边AC于点E,∴∠ABE=∠A=30°,∵∠A=30°,∠C=110°,∴∠ABC=180°﹣30°﹣110°=40°,∴∠EBC=40°﹣30°=10°,故选:A.10.【解答】解:连接OB,∵线段AB、BC的垂直平分线l1、l2相交于点O,∴AO=OB=OC,∴∠AOD=∠BOD,∠BOE=∠COE,∠A=∠ABO,∠C=∠CBO,∴∠A+∠C=∠ABC,∵∠DOE+∠1=180°,∠1=35°,∴∠DOE=145°,∴∠ABC=360°﹣∠DOE﹣∠BDO﹣∠BEO=35°;故选:D.二.填空题(共5小题)11.【解答】解:∵DE是AC的垂直平分线,AE=3,∴DA=DC,AC=2AE=6,∵△BCD的周长为13,∴BC+BD+CD=13,∴BC+BD+DA=BC+AB=13,∴△ABC的周长=BC+AB+AC=13+6=19,故答案为:19.12.【解答】解:利用轴对称的性质得出:该汽车牌照号码为:苏N2020N.故答案为:苏N2020N.13.【解答】解:∵∠A=65°,∠B=80°,∴∠C=180°﹣∠A﹣∠B=180°﹣65°﹣80°=35°,∵△ABC与△DEF关于直线l对称,∴∠C=∠F=35°,故答案为:35°.14.【解答】解:连接BO并延长,点D在BO的延长线上∵线段AB,BC的垂直平分线l1,l2交于点O,∴OA=OB,OC=OB,∴∠OAB=∠OBA,∠OCB=∠OBC,∴∠AOD=2∠ABO,∠COD=2∠CBO,∴∠AOC=∠AOD+∠COD=2(∠ABO+∠CBO)=70°,故答案为:70.15.【解答】解:∵BP平分∠ABC,CP平分∠ACB,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(∠ABC+∠ACB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠BAC)=90°+∠BAC,即∠BAC=2∠BPC﹣180°;如图,连接AO.∵点O是这个三角形三边垂直平分线的交点,∴OA=OB=OC,∴∠OAB=∠OBA,∠OAC=∠OCA,∠OBC=∠OCB,∴∠AOB=180°﹣2∠OAB,∠AOC=180°﹣2∠OAC,∴∠BOC=360°﹣(∠AOB+∠AOC)=360°﹣(180°﹣2∠OAB+180°﹣2∠OAC),=2∠OAB+2∠OAC=2∠BAC=2(2∠BPC﹣180°)=4∠BPC﹣360°,故答案为:4∠BPC﹣360°.三.解答题(共4小题)16.【解答】解:(1)∵DE是AB的垂直平分线,∴DA=DB,∴ΔACD的周长=AC+CD+DA=AC+CD+DB+AC+CB=5+7=12;(2)∵DA=DB,∴∠BAD=∠B,设∠CAD=x,则∠BAD=∠B=2x,∵∠C=90°,∴∠CAB+∠B=90°,即x+2x+2x=90°,解得,x=18°,∴∠B=2x=36°.17.【解答】解:∵点C在AE的垂直平分线上,∴CA=CE,∵AD⊥BE,BD=DC,∴AB=AC,∵△ABC的周长为18,∴AB+BC+AC=18,∴2AC+2DC=18,∴AC+DC=9,∴DE=DC+CE=AC+CD=9(cm).18.【解答】解:(1)∵DM和EN分别垂直平分AB和AC,∴AD=BD,EA=EC,∵△ADE的周长为6,∴AD+DE+EA=6.∴BD+DE+EC=6,即BC=6;(2)∵DM和EN分别垂直平分AB和AC,∴AD=BD,EA=EC,∴∠B=∠BAD=∠ADE,∠C=∠EAC=∠AED.∵∠BAC=∠BAD+∠DAE+∠EAC=∠B+∠DAE+∠C=100°,∴∠B+∠C=100°﹣∠DAE,在△ADE中,∠DAE=180°﹣(∠ADE+∠AED)=180°﹣(2∠B+2∠C)∴∠DAE=180°﹣2(100°﹣∠DAE)∴∠DAE=20°.19.【解答】已知:如图,QA=QB,求证:点Q在线段AB的垂直平分线上.证明:当点Q在线段AB上时,∵QA=QB∴点Q为线段AB的中点,∴点Q在线段AB的垂直平分线上;当点Q在线段AB外时,过点Q作QM⊥AB,垂足为点M,如图,则∠QMA=∠QMB=90°,在Rt△QMA和Rt△QMB中,,∴Rt△QMA≌Rt△QMB(HL)13.2 画轴对称图形一.填空题1.在平面直角坐标系中,点A(a,﹣3)向左平移3个单位得点A′,若点A和A′关于y 轴对称,则a=.2.已知点P(﹣1,2),那么点P关于直线x=1的对称点Q的坐标是.3.如图,在平面直角坐标系中,已知点A的坐标为(4,4),若△ABC是关于直线y=1的轴对称图形,则点B的坐标为;若△ABC是关于直线y=a的轴对称图形,则点B的坐标为.4.若P关于x轴的对称点为(3,a),关于y轴对称的点为(b,2),则P点的坐标为.5.已知点A(a,2),B(﹣3,b)关于y轴对称,则ab=.6.若点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则ab的值为.7.如果A(a﹣1,3),A′(4,b﹣2)关于x轴对称,则a=,b=.8.已知P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,则(a+b)2019的值为.9.如图,在平面直角坐标系中,一颗棋子从点P(0,﹣2)处开始依次关于点A(﹣1,﹣1),B(1,2),C(2,1)作循环对称跳动,即第一次跳到点P关于点A的对称点M处,接着跳到点M关于点B的对称点N处,第三次再跳到点N关于点C的对称点处,…,如此下去.则经过第2011次跳动之后,棋子落点的坐标为.10.已知P1点关于x轴的对称点P2(3﹣2a,2a﹣5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是.二.解答题11.在平面直角坐标系xOy中,△ABC的位置如图所示.(1)顶点A关于x轴对称的点的坐标A'(,),顶点C先向右平移3个单位,再向下平移2个单位后的坐标C'(,);(2)将△ABC的纵坐标保持不变,横坐标分别乘﹣1得△DEF,请你直接画出图形;(3)在平面直角坐标系xOy中有一点P,使得△ABC与△PBC全等,这样的P点有个.(A点除外)12.在直角坐标系中,△ABC的顶点坐标如图所示,(1)请你在图中先作出△ABC关于直线m(直线m上点的横坐标均为﹣1)对称图形△A1B1C1,再作出△A1B1C1关于直线n(直线n上点的纵坐标均为2)对称图形△A2B2C2;(2)线段BC上有一点M(a,b),点M关于直线m的对称点为N,点N关于直线的n 的对称点为E,求N、E的坐标(用含a,b的代数式表示).13.如图,在棋盘中有A(﹣1,1)、O(0,0)、B(1,0)三个棋子,若再添加一个棋子A、O、B、P四个棋子成为一个轴对称图形,请在三个图中分别画出三种不同的对称轴分别写出棋子P的坐标.14.已知△ABC,A(﹣4,1)、B(﹣1,﹣1)、C(﹣3,2).(1)请在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(2)请在同一平面直角坐标系中画出△A1B1C1关于直线m(直线m上各点的横坐标都是1)对称的△A2B2C2,并直接写出点A2,C2的坐标;(3)直接写出△ABC边上一点M(x,y),经过上述两次图形变换后得到△A2B2C2上的对应点M2的坐标.15.在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在如图给出的图中画出4个这样的△DEF.(每个3×3正方形格点图中限画一种,若两个图形中的对称轴是平行的,则视为一种)16.如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).(1)在图中画出△ABC关于x轴对称的△A'B'C'并在下面填写出点A',B',C'的坐标:A'(,);B'(,);C'(,).(2)求出△ABC的面积为(填出结果即可)17.如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为点B关于y轴对称的点坐标为点C关于原点对称的点坐标为(2)若网格上的每个小正方形的边长为1,则△ABC的面积是.参考答案一.填空题1.1.5.2.(3,2).3.(4,﹣2),(4,2a﹣4).4.(3,2).5.6.6.﹣10.7.a=5,b=﹣1.8.﹣1.9.(﹣2,0).10.(﹣1,1).二.解答题11.解:(1)∵A(﹣4,3),C(﹣2,5),∴A′(﹣4,﹣3),C'(1,3);故答案为:﹣4,﹣3;1,3;(2)如图所示:即为所求;(3)△ABC与△PBC全等,这样的P点有3个.故答案为:3.12.解:(1)如图所示,△A1B1C1,△A2B2C2即为所求;(2)设点N的坐标为(x,y),点E的坐标为(p,q),∵点M与点N关于直线m对称,∴=﹣1,y=b,解得x=﹣2﹣a,y=b,∴点N的坐标为(﹣2﹣a,b),又∵点N与点E关于直线n对称,∴p=﹣2﹣a,=2,解得p=﹣2﹣a,q=4﹣b,∴点E的坐标为(﹣2﹣a,4﹣b).13.解:如图所示,棋子P的坐标分别为(﹣1,﹣1),(2,1),(0,﹣1),(﹣1,2).(答案不唯一)14.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求,点A2,C2的坐标分别为(6,﹣1)和(5,﹣2);(3)点M(x,y)关于x轴对称的点M1的坐标为(x,﹣y),点M1关于直线m对称的点M2的坐标为(﹣x+2,﹣y).∴经过上述两次图形变换后得到△A2B2C2上的对应点M2的坐标为(﹣x+2,﹣y).15.解:如图,△DEF即为所求.(答案不唯一)16.解:(1)如图所示,△A'B'C'即为所求:由图可得:A'(2,﹣4);B'(﹣3,2);C'(3,﹣1).故答案为:2,﹣4;﹣3,2;3,﹣1.(2)△ABC的面积为:6×6﹣×1×3﹣×3×6﹣×5×6=36﹣﹣9﹣15=10.故答案为:10.17.解:(1)点A关于x轴对称的点坐标为(﹣1,﹣3);点B关于y轴对称的点坐标为:(﹣2,0);点C关于原点对称的点坐标为:(3,1);故答案为:(﹣1,﹣3),(﹣2,0),(3,1);(2)△ABC的面积是:4×5﹣×2×4﹣×3×3﹣×1×5=9.故答案为:9.13.3等腰三角形一.选择题1.等腰三角形的一边长为6,一边长为2,则该等腰三角形的周长为()A.8B.10C.14D.10或142.在△ABC中,∠B=∠C,∠A=20°,则∠B的大小为()A.20°B.70°C.80°D.160°3.如图,△ABC是等边三角形,D是AC边的中点,延长BC到点E,使CE=CD,连接DE,则下列结论错误是()A.CE=AB B.BD=ED C.∠BDE=∠DCE D.∠ADE=120°4.下列条件不能得到等边三角形的是()A.有一个内角是60°的锐角三角形B.有一个内角是60°的等腰三角形C.顶角和底角相等的等腰三角形D.腰和底边相等的等腰三角形5.已知一个等腰三角形的两边长分别为2cm和4cm,那么该等腰三角形的周长为()A.8cm B.10cm C.8cm或10cm D.不能确定6.三个等边三角形的摆放位置如图所示,若∠1+∠2=110°,则∠3的度数为()A.90°B.70°C.45°D.30°7.如图,点D在△ABC的边AC上,且AD=BD=CD,若∠A=40°,则∠C=()A.40°B.50°C.60°D.45°8.如图,已知OC=CD=DE,且∠BDE=72°,则∠CDE的度数是()A.63°B.65°C.75°D.84°9.如图,在△ABC中,∠BAC=90°,AB=6,AC=8,BC=10,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠F AG=2∠ACF;④AD=2.4.A.①②③④B.①②③C.①②④D.③④10.已知三个城镇中心A、B、C恰好位于等边三角形的三个顶点,在A、B、C之间铺设光缆连接,实线为所铺的路线,四种方案中光缆铺设路线最短的是()A.B.C.D.二.填空题11.如果一等腰三角形的顶角为钝角,过这个等腰三角形的一个顶点的直线将这个等腰三角形分成两个等腰三角形,那么这个等腰三角形的顶角的度数为.12.已知O为平面直角坐标系的坐标原点,等腰三角形△AOB中,A(2,4),点B是x轴上的点,则△AOB的面积为.13.等腰三角形的一个内角为130°,则这个等腰三角形顶角的度数为.14.在△ABC中,AD为∠BAC的角平分线,AB∥DE,AC=7,CD=3,则△CDE的周长为.15.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若AB=6,AC=8,则△AMN的周长为.三.解答题16.如图,已知AD平分∠EAC,且AD∥BC,求证AB=AC.17.如图,在△ABC中,线段AB、AC的垂直平分线分别交BC于点P、Q两点,且BP=PQ=QC.试证明△APQ为等边三角形.18.用一条长为20cm的细绳能围成有一边的长为4cm的等腰三角形吗?说明理由.19.在△ABC中,∠B=∠C,点D在BC上,点E在AC上,连接DE且∠ADE=∠AED.{计算发现}(1)若∠B=70°,∠ADE=80°,则∠BAD=,∠CDE=.{猜想验证}(2)当点D在BC(点B,C除外)边上运动时(如图1),且点E在AC边上,猜想∠BAD与∠CDE的数量关系式,并证明你的猜想.{拓展思考}(3)①当点D在BC(点B,C除外)边上运动时(如图2),且点E在AC边上,若∠BAD=25°,则∠CDE=.②当点D在BC(点B,C除外)边上运动时(如图2),且点E在AC边所在的直线上,若∠BAD=25°,则∠CDE=.参考答案与试题解析一.选择题1.【解答】解:①当2为底时,其它两边都为6,2、6、6可以构成三角形,则该等腰三角形的周长为14;②当2为腰时,其它两边为2和6,∵2+2<6,∴不能构成三角形,故舍去.∴这个等腰三角形的周长为14.故选:C.2.【解答】解:因为三角形的内角和是180°,∠A=20°,∠B=∠C,那么∠B=(180°﹣20°)=80°.故选:C.3.【解答】解:∵△ABC是等边三角形,D是AC边的中点,∴AB=AC,CD=AC,∴CD=AB,∵CE=CD,∴CE=AB,A选项结论正确,不符合题意;∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵D是AC边的中点,∴∠DBC=30°,∵CD=CE,∴∠E=∠EDC=∠ACB=30°,∴∠DBC=∠E,∴BD=ED,B选项结论正确,不符合题意;∵△ABC是等边三角形,D是AC边的中点,∴∠BDC=90°,∴∠BDE=120°,∵∠DCE=120°﹣∠ACB=120°,∴∠BDE=∠DCE,C选项结论正确,不符合题意;∠ADE=180°﹣30°=150°,D选项错误,符合题意;故选:D.4.【解答】解:因为有一个内角是60°的等腰三角形是等边三角形,所以A选项符合题意;所以B选项不符合题意;因为顶角和底角相等的等腰三角形是等边三角形,所以C不符合题意;因为腰和底边相等的等腰三角形是等边三角形,所以D选项不符合题意.故选:A.5.【解答】解:当4cm的边长为腰时,三角形的三边长为:4cm、4cm、2cm,满足三角形的三边关系,其周长为4+2+4=10(cm),当2cm的边长为腰时,三角形的三边长为:2cm、2cm、4cm,此时4=2+2,不满足三角形的三边关系,所以此时不存在三角形,故选:B.6.【解答】解:如图,∵∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=540°﹣180°,∴∠3=180°﹣(∠1+∠2)=70°,故选:B.7.【解答】解:∵AD=BD=CD,∴∠ABD=∠A,∠C=∠DBC,∵∠A=40°,∴∠C=(180°﹣40°×2)÷2=50°.故选:B.8.【解答】解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=72°,∴∠ODC=24°,∵∠CDE+∠ODC=180°﹣∠BDE=108°,∴∠CDE=108°﹣∠ODC=84°.故选:D.9.【解答】解:∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠F AG=2∠ACF,故③正确;∵∠BAC=90°,AD是高,=ABAC=ADBC,∴S△ABC∵AB=6,AC=8,BC=10,∴AD==4.8,故④错误,故选:B.10.【解答】解:设等边三角形ABC的边长为a,A、铺设的电缆长为a+a=2a;C、如图1:∵△ABC为等边三角形,AD⊥BC,∴D为BC的中点,∴BD=DC=BC=a,在Rt△ABD中,根据勾股定理得:AD===,则铺设的电缆长为a+a=a;B、由垂线段最短得:方案B中光缆比方案C中长;D、如图2所示,∵△ABC为等边三角形,且O为三角形三条高的交点,∴设DO=x,则BO=2x,BD=,故x2+()2=(2x)2,解得:x=a,则BO=a,则铺设的电缆长为AO+OB+OC=3×a=a,∵a<a<2a,∴方案D中光缆最短;故选:D.二.填空题(共5小题)11.【解答】解:①如图,∠ACB是钝角,直线CD将这个等腰三角形分成两个等腰三角形,AC=BC=BD,AD=CD,设∠B=x°,∵AC=BC,∴∠A=∠B=x°,∵AD=CD,∴∠ACD=∠A=x°,∴∠BDC=∠A+∠ACD=2x°,∵BC=BD,∴∠BCD=∠BDC=2x°,∴∠ACB=3x°,∴x+x+3x=180,解得x=36°,∴顶角是108°.②若过A或B作直线,则不能将这个等腰三角形分成两个等腰三角形.综上所述,这个等腰三角形的顶角的度数为108°.故答案为:108°.12.【解答】解:如图所示:过点A作AE⊥x轴于点E,∵点O(0,0),A(2,4),∴AE=4,OE=2,OA==2,=AE==8;当OA=AB时,B的坐标为(4,0),此时S△AOB当OA=OB时,B的坐标为(,0),此时S=AE=×4=4;△AOB=AE==10;当OB=AB时,B的坐标为(5,0),此时S△AOB∴△AOB的面积为:8或4或10.故答案为:8或4或10.13.【解答】解:∵若这个130°的内角是底角,则这两个底角的和就大于180°,∴等腰三角形的一个内角为130°,则这个等腰三角形顶角的度数为130°,故答案为130°.14.【解答】解:∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵AB∥DE,∴∠BAD=∠ADE,∴∠DAE=∠ADE,∴AE=DE,∴△CDE的周长=CE+DE+CD=AE+CE+CD=AC+CD,∵AC=7,CD=3,∴△CDE的周长为7+3=10,故答案为:10.15.【解答】解:∵EB平分∠ABC,∴∠ABE=∠EBC,∵MN∥BC,∴∠EBC=∠BEM,∴∠ABE=∠BEM,∴BM=EM同理可得CN=EN,∴△AMN的周长=AM+ME+EN+AN=AM+BM+CN+AN=AB+AC,∵AB=6,AC=8,∴△AMN的周长=6+8=14,故答案为:14.三.解答题(共4小题)16.【解答】证明:∵AD平分∠EAC,∴∠1=∠2,∵AD∥BC,∴∠1=∠B,∠2=∠C,∴∠B=∠C,∴AB=AC.17.【解答】证明:∵线段AB、AC的垂直平分线分别交BC于点P、Q两点,∴BP=AP,QC=AQ,∵BP=PQ=QC,∴AP=AQ=PQ,∴△APQ是等边三角形.18.【解答】解:能围成有一边的长为4cm的等腰三角形.理由:若腰长为4cm,则底边长为20﹣2×4=12(cm),∵4+4+<12,∴不能围成腰长为4cm的等腰三角形;若底边长为4cm,则腰长为×(20﹣4)=8(cm),∵4+8>8,∴能围成底边长为4cm的等腰三角形,综上,可以围成底边是4cm的等腰三角形.19.【解答】解:(1)∵∠B=∠C,∠ADE=∠AED,∠B=70°,∠ADE=80°,∴∠C=70°,∠AED=80°,∴∠CDE=∠AED﹣∠C=10°,∠DAE=180°﹣∠ADE﹣∠AED=20°,∴∠BAD=180°﹣∠B﹣∠C﹣∠DAE=20°,故答案为:20°;10°;(2)∠BAD=2∠CDE.理由如下:设∠B=x,∠ADE=y,∵∠B=∠C,∴∠C=x,∵∠AED=∠ADE,∴∠AED=y,∴∠CDE=∠AED﹣∠C=y﹣x,∠DAE=180°﹣∠ADE﹣∠AED=180°﹣2y,∴∠BAD=180°﹣∠B﹣∠C﹣∠DAE=180°﹣x﹣x﹣(180°﹣2y)=2(y﹣x),∴∠BAD=2∠CDE;(3)①由(2)知,∠BAD=2∠CDE,∴∠CDE=∠BAD=,故答案为:12.5°;②当E点在AC的延长线上时,AD<AC<AE,此时∠ADE≠∠AED,故点E不可能在AC的延长线上,分两种情况:当点E在线段AC上时,与①相同,∠CDE=12.5°;当点E在CA的延长线上时,如图2,在AC边上截取AE′=AE,连接DE′,∵∠ADE =∠AED,∴AE=AD=AE′,∴∠ADE=∠AE′D,由①知,∠CDE′=12.5°,∴∠ADE+∠ADE′=∠AED+∠AE′D,∵∠ADE+∠ADE′+∠AED+∠AE′D=180°。

人教八年级数学上册期末复习:基础题训练(含解析)

人教八年级数学上册期末复习:基础题训练(含解析)

2022-2023学年人教版八年级数学期末复习基础题训练一、单选题1.一个多边形的内角和与外角和相等,这个多边形是( )A .三角形B .四边形C .五边形D .六边形2.已知三角形的两边长分别为5cm 和8cm ,则第三边的长可以是( )A .2cmB .3cmC .6cmD .13cm3.如图,直线m n ∥,1100∠=︒,230∠=︒,则3∠=( )A .70︒B .110︒C .130︒D .150︒4.八一中学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km 和3km .那么杨冲,李锐两家的直线距离不可能...是( ) A .1km B .2km C .3km D .8km5.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,这两个三角形完全一样的依据是( )A .SASB .ASAC .AASD .SSS6.三个全等三角形按如图的形式摆放,则123∠+∠+∠的度数是( )A .90B .120C .135D .1807.如图,在△ABD 中,AD =AB ,△DAB =90°,在△ACE 中,AC =AE ,△EAC =90°,CD ,BE 相交于A .4个B .3个C .2个D .1个8.如图,等腰直角三角形ABC 的直角顶点C 与坐标原点重合,分别过点A 、B 作x 轴的垂线,垂足为D 、E ,点A 的坐标为(-2,5),则线段DE 的长为( )A .4B .6C .6.5D .79.如图,将一个长方形纸条折成如图的形状,若已知△1=110°,则△2为( )A .105°B .110°C .55°D .130°10.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,若CD BE ∥,150∠=︒,则2∠的度数是( )A .40︒B .80︒C .90︒D .100︒11.下列运算正确的是( )A .23a a a +=B .()3322a a =C .32a a a ÷=D .23·a a a12.如图所示,在边长为a 的正方形上剪去一个边长为b 的小正方形(a b >),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式为( )A .()()22a b a b a b -=+-B .()2222a b a ab b +=++C .()2222a b a ab b -=-+ D .()2a ab a a b -=- 13.若多项式21x ax --可分解为()()2x x b -+,则a b +的值为( )A .—2B .—1C .1D .214.化简22222a b a ab b --+的结果是:( ) A .2a b ab- B .a b a b +- C .a b a b -+ D .2a b ab+ 15.把分式+x x y 中的x ,y 都扩大2倍,则分式的值( ) A .扩大2倍 B .扩大4倍 C .缩小一半 D .不变16.已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶12千米,若设甲车的速度为x 千米/时,依题意列方程正确的是( )A .304012x x =+B .304012x x =+C .304012x x =-D .304012x x =- 二、填空题17.等腰三角形一边长为5,另一边长为7,则周长为__________.18.如图,△ABC 中,△A =40°,△B =72°,CE 平分△ACB ,CD △AB 于D ,DF △CE ,则△CDF =_________度.19.如图是两个全等的三角形,图中字母表示三角形的边长,则1∠的度数为 __.20.如图,四边形ABCD ,连接BD ,AB △AD ,CE △BD ,AB =CE ,BD =CD .若AD =5,CD =7,则BE =________.21.等腰三角形有一个内角为50︒,那么它的顶角的度数为 _____.22.如图,在ABC ∆中,,AB AC 的垂直平分线分别交BC 于点E 、F . 若130BAC ∠=︒则EAF ∠=___________.23.如图是一个长和宽分别为a 、b 的长方形,它的周长为14、面积为10,则a 2b +ab 2的值为_____.24.分解因式:x 2﹣5x ﹣6=_____.25.若分式242a a -+的值为0,则a 的值为______. 26.若关于x 的分式方程233x m x =++有负数解,则m 的取值范围为______. 三、解答题27.一个多边形的内角和比它的外角和的3倍少180︒,求这个多边形的边数.28.解下列方程: (1)122x x =-; (2)127133x x x--=--29.先化简,再求值:2()(2)(2)x y y x y x --+-,其中=1x -,8y =.30.已知,如图,在△ABC 中,AD ,AE 分别是△ABC 的高和角平分线.(1)若△ABC =30°,△ACB =60°,求△DAE 的度数;(2)写出△DAE 与△C ﹣△B 的数量关系 ,并证明你的结论.31.如图,在ABC 中,D 为AB 上一点,E 为AC 中点,连接DE 并延长至点F ,使得EF ED =,连接CF .(1)求证:CF AB ∥;(2)若50ABC ∠=︒,连接,BE BE 平分,ABC AC ∠平分BCF ∠,求A ∠的度数.32.如图,在ABC 中,AB AC =,36A ∠=︒,CD 平分ACB ∠,交AB 于点D ,E 为AC 中点.(1)求证:ACD是等腰三角形;(2)求EDC的度数.参考答案1.B解:设多边形的边数为n .根据题意得:(n −2)×180°=360°,解得:n =4.故选:B .2.C设第三边的长为x ,△ 角形的两边长分别为5cm 和8cm ,△3cm <x <13cm,故选C .3.C设△1的同位角为为△4,△2的对顶角为△5,如图,△m n ∥,△1=100°,△△1=△4=100°,△△2=30°,△2与△5互为对顶角,△△5=△2=30°,△△3=△4+△5=100°+30°=130°,故选:C .4.A以杨冲家、李锐家以及学校这三点来构造三角形,设杨冲家与李锐家的直线距离为a , 则根据题意有:5-353a +<<,即28a <<,当杨冲家、李锐家以及学校这三点共线时,538a =+=或者532a =-=,综上a 的取值范围为:28a ≤≤,据此可知杨冲家、李锐家的距离不可能是1km , 故选:A .5.B解:由题意得,有两角以及两角的夹边是已知, 因此可以利用ASA 画出一个全等的三角形, 故选:B .6.D解:如图所示:△图中是三个全等三角形,△48,67∠=∠∠=∠,又△三角形ABC 的外角和123456360︒=∠+∠+∠+∠+∠+∠=, 又578180︒∠+∠+∠=,即564180∠+∠+∠=︒, △123360180018︒︒∠+∠+=∠=-︒,故选:D .7.B△90DAB EAC ∠=∠=︒△DAB BAC EAC BAC ∠+∠=∠+∠△在DAC △和BAE 中===AD AB DAC BAE AE AC ∠∠⎧⎪⎨⎪⎩△DAC BAE ≅△DC BE =,①正确ADF ABE ∠=∠△AB ,AE 不确定相等△ABE ∠和AEB ∠不确定相等 △ABD △和ACE △是等腰直角三角形 △45ADB AEC ∠=∠=︒△45BDC ADC ∠=︒-∠,45BEC AEB ∠=︒-∠ △BDC ∠和BEC ∠不确定相等,②错误 △ADF ABE ∠=∠,AOD BOF ∠=∠,90DAB ∠=︒ △90ADF AOD ∠+∠=︒△90ABE BOF ∠+∠=︒△DC BE ⊥,③正确过点AM DC ⊥于点M ,AN BE ⊥于点N △DAC BAE ≅△=AM AN△AF 平分DFE ∠,④正确△①③④正确故选:B .8.D解:△A (-2,5),AD △x 轴, △AD =5,OD =2,△△ABO 为等腰直角三角形, △OA =BO ,△AOB =90°,△△AOD +△DAO =△AOD +△BOE =90°, △△DAO =△BOE ,在△ADO 和△OEB 中,DAO BOE ADO OEB OA BO ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ADO △△OEB (AAS ),△AD =OE =5,OD =BE =2,△DE =OD +OE =5+2=7.故选:D .9.C解:如图,△纸条的两边互相平行,△△1+△3=180°,△△1=110°,△△3=180°−△1=180°−110°=70°, 根据翻折的性质得,2△2+△3=180°,△△2=()118070552⨯︒-︒=︒, 故选:C .10.B解:延长BC 至G ,如下图所示,由题意得,AF △BE ,AD △BC , △AF∥BE ,△△1=△3.△AD∥BC ,△△3=△4,△△4=△1=50°.△CD∥BE ,△△6=△4=50°.△这条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,△△5=△6=50°,△△2=180°-△5-△6=180°-50°-50°=80°.故选:B .11.C解:A 、a 和2a 不是同类项,无法合并,故本选项错误,不符合题意; B 、()3328a a =,故本选项错误,不符合题意;C 、32a a a ÷=,故本选项正确,符合题意;D 、23a a a -=-,故本选项错误,不符合题意;故选:C12.A解:左边图形的阴影部分的面积=a 2-b 2 右边的图形的面积1222b a a b=(a +b )(a -b ).△()()22a b a b a b -=+-, 故选:A .13.D解:△(x -2)(x +b )=x 2+bx -2x -2b =x 2+(b -2)x -2b =x 2-ax -1,△b -2=-a ,-2b =-1,△b =0.5,a =1.5,△a +b =2.故选:D .14.B解:22222a b a ab b--+()()()2a b a b a b -+=- a b a b +=- 故选:B15.D 解:()22222x x x x x y x y x y x y===++++, 故选:D .16.A解:设甲车的速度为x 千米/小时,则乙车的速度为()12x +千米/小时,由题意得: 304012x x =+ 故选:A .17.17或19△7-5<第三边<7+5,△2<第三边<12,△该三角形是等腰三角形,△第三边为5或7,△周长为5+5+7=17或5+7+7=19,故答案为:17或19.18.74解:△△A =40°,△B =72°,△△ACB =180°-40°-72°=68°,△CE 平分△ACB ,△△BCE =12△ACB =12×68°=34°,△CD △AB 于D ,△△BCD +△B =90°,△△BCD =90°-△B =90°-72°=18°,△△DCE =△BCE -△BCD =34°-18°=16°,△DF △CE ,△△CFD =90°,△△DCF +△CDF =90°,△△CDF =90°-△DCF =90°-16°=74°,故答案为:74.19.70︒或60︒解:如图所示,由三角形内角和定理得,2=1805060=70∠--︒︒︒︒,两个三角形全等,1=2=70∴∠∠︒,或160∠=︒,故答案为:70︒或60︒.20.2 解: AB △AD ,CE △BD ,90BAD CED ∴∠=∠=︒,在Rt △ABD 与Rt ECD △中,AB CE BD CD =⎧⎨=⎩, ∴Rt Rt ABD ECD ≌,AD =5,CD =7,∴5ED AD ==,BD =CD =7,2BE BD ED ∴=-=故答案为:221.50︒或80︒解:当50︒角为顶角,顶角度数即为50︒;当50︒为底角时,顶角18025080=︒-⨯︒=︒.故答案为:50︒或80︒.22.80︒解:△在ABC ∆中,,AB AC 的垂直平分线分别交BC 于E 、F , △,AE BE AF CF ==,△B BAE ∠=∠,C CAF ∠=∠,△130BAC ∠=︒,△18050B C BAC ︒︒∠+∠=-∠=,△50BAE CAF ︒∠+∠=,△()EAF BAC BAE CAF ∠=∠-∠+∠1305080︒︒︒=-=.故答案为:80︒.23.70解:△长宽分别为a ,b 的长方形的周长为14,面积为10, △a +b =7,ab =10,△()2210770a b ab ab a b +=+=⨯=.故答案为70.24.()()61x x -+解:x 2﹣5x ﹣6()()61x x =-+故答案为:()()61x x -+25.2解;△分式242a a -+的值为0, △24020a a ⎧-=⎨+≠⎩, △2a =,故答案为;2.26.2m >且3m ≠-解:去分母得:2633x x m +=+,解得:63x m =-,根据题意得:630m -<,且633m -≠-,解得:2m >且3m ≠-.故答案为:2m >且3m ≠-.27.解:设这个多边形的边数是n ,依题意得(2)1803360180n ︒︒︒-⨯=⨯-,261n -=-,7n =.△这个多边形的边数是7.28.(1)解;122x x=- 两边同时乘以()2x x -得:()22x x =-,去括号得:24x x =-,移项得:24x x -=-,合并同类项得:4x -=-,系数化为1得;4x =,经检验,4x =是原方程的解,△原方程的解为4x =;(2)解;127133x x x--=-- 两边同时乘以3x -得:()()1327x x --=--,去括号得:1327x x -+=-+,移项得:2713x x -+=--,合并同类项得:3x =,经检验,3x =不是原方程的解,△原方程无解.29.解:2()(2)(2)x y y x y x --+-,2222(2)(4)x xy y y x =-+--252x xy =-,1x =-,8y =.∴原式5121821=⨯+⨯⨯=.30.解:(1)△△B +△C +△BAC =180°,△ABC =30°,△ACB =60°, △△BAC =180°﹣30°﹣60°=90°.△AE 是△ABC 的角平分线,△△BAE =12 △BAC =45°.△△AEC 为△ABE 的外角,△△AEC =△B +△BAE =30°+45°=75°.△AD 是△ABC 的高,△△ADE =90°.△△DAE =90°﹣△AEC =90°﹣75°=15°.(2)由(1)知,△DAE =90°﹣△AEC =90°﹣(12B BAC∠+∠ )又△△BAC =180°﹣△B ﹣△C .△△DAE =90°﹣△B ﹣12(180°﹣△B ﹣△C ),=12(△C ﹣△B ).31.(1)证明:△E 为AC 中点,△AE CE =,在ADE 和CFE 中,AE CEAED CEF DE EF=⎧⎪∠=∠⎨⎪=⎩,△ADE CFE ≌,△A ECF ∠=∠,△CF AB ∥;(2)解:由(1)得:A ECF ∠=∠,△AC 平分BCF ∠,△ACB ECF ∠=∠,△ACB A ∠=∠,△50ABC ∠=︒,△()1180652A ABC ∠=︒-∠=︒ 32.(1)△36AB AC A ∠==︒,, △72ACB B ∠∠==︒. △CD 平分ACB ∠, △36ACD DCB ∠∠==︒,36A ∠=︒, △CD AD =,即ACD 是等腰三角形; (2)△点E 是AC 的中点, △AE EC =,△90DEC ∠=︒,△90903654BDE ACD ∠∠=︒-=︒-︒=︒.。

人教版初二上数学基础复习题

人教版初二上数学基础复习题
4、和点P(-3,2)关于y轴对称的点是( )
A.(3, 2)B.(-3,2)
C.(3,-2)D.(-3,-2)
5、.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0)则光线从A点到B点经过的路线长是() A.4 B.5 C.6 D.7
6、如图3把一个正方形三次对折后沿虚线剪下,则所得图形大致是()
A.①和② B.②和③ C.①和③ D.①②③
8.如图8,AD是 的中线,E,F分别是AD和AD延长线上的点,且 ,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有( )A.1 B.2个 C.3个 D.4个
9.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )
7、小朋友文文把一长方形的对折了两次,如图所示:使A、B都落在DA/上,折痕分别是DE、DF,则∠EDF的度数为( )
A.60°B.75°C.90°D.120°
8、成轴对称的两个图形的对应角,对应边(线段)
9、在“线段、锐角、三角形、等边三角形”这四个图形中,是轴对称图形的有个,其中对称轴最多的是.线段的对称轴是
A.形状相同 B.周长相等 C.面积相等 D.全等
10.如图9, , ,下列结论错误的是( )
A.△ABE≌△ACDB.△ABD≌△ACEC.∠DAE=40° D.∠C=30°
11.已知:如图10,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,则图中共有全等三角形( )
A.5对 B.4对 C.3对 D.2对
2、下列图案是几种名车的标志,请你指出,在这几个图案中是轴对称图形的共有( )
A.4个; B.5个; C. 6个 ; D.7个。

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题一(含答案) (45)

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题一(含答案) (45)

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题一(含答案)已知,ABC 中,ACB 90∠=,AC BC >.()1在AC 上找一点D ,使得DA DB =:(尺规作图,保留痕迹) ()2在()1的条件下,若点D 恰在ABC ∠的平分线上,试求A ∠的度数.【答案】(1)见解析(2)30【解析】【分析】()1先线段中垂线的性质和尺规作图求解可得;()2由DA DB =知A ABD ∠∠=,结合角平分线知ABD CBD ∠∠=,根据A ABD CBD 90∠∠∠++=可得答案.【详解】()1如图所示,点D 即为所求.()2由()1知DA DB =,A ABD ∠∠∴=,又BD 平分ABC ∠,ABD CBD ∠∠∴=,A ABD CBD 90∠∠∠++=,A 30∠∴=.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握线段中垂线的性质和尺规作图.42.如图,在△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线分别交AB 于点F,交BC 的延长线于点E.求证:(1)∠EAD=∠EDA;(2)DF ∥AC .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由AD 的垂直平分线分别交AB 、BC 延长线于F 、E ,根据线段垂直平分线的性质,易得AE=DE ,又由等边对等角的性质,证得∠EAD=∠EDA(2)由AD 的垂直平分线分别交AB 、BC 延长线于F 、E ,可得AF=DF ,又由AD 是∠BAC 平分线,易得∠FDA=∠CAD ,即可判定DF ∥AC ;【详解】证明:(1)∵EF是AD的垂直平分线,∴AE=DE,∴∠EAD=∠EDA.(2)∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵AD是∠BAC的平分线,∴∠FAD=∠CAD,∴∠FDA=∠CAD,∴DF∥AC.【点睛】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.43.如图,已知线段a,h.求作:△ABC,使AB=AC,BC=a,高AD =h(不写作法,保留作图痕迹,写出结论)【答案】见解析【解析】【分析】根据等腰三角形的性质及垂直平分线的做法即可作图.【详解】如图,△ABC为所作.【点睛】此题主要考查尺规作图,解题的关键是熟知等腰三角形的性质及垂直平分线的性质.44.如图,直线AO,BO交于点O,过点P作PC⊥AO于点C,PD⊥BO 于点D,画出图形.【答案】见解析.【解析】【分析】分别作∠ACP=90°,∠PDB=90°即可【详解】作∠ACP=90°,作∠PDB=90°,则直线PC,PD即为所求.【点睛】本题考查了作图-垂线,熟练掌握定义是解题的关键.45.如图,BD 为平行四边形ABCD 的对角线,按要求完成下列各题. ()1用直尺和圆规作出对角线BD 的垂直平分线交AD 于点E ,交BC 于点F ,垂足为O ,连接BE 和DF ,(保留作图痕迹;不要求写作法)()2在()1的基础上,求证:EO FO =.【答案】(1)见解析;(2)见解析【解析】【分析】()1根据线段垂直平分线的性质画出图形即可;()2根据题意得出DOE ≌△()BOF ASA ,即可得出EO FO =.【详解】 ()1如图所示,所作即为所求.()2在平行四边形ABCD 中,AD //BC ,ADB CBD ∠∠∴=,又EF 垂直平分BD ,BO DO ∴=,EOD FOB 90∠∠==,在DOE 与BOF 中,ADB CBD BO DO EOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩, DOE ∴≌()BOF ASA ,EO FO ∴=.【点睛】本题考查的是作图-基本作图及全等三角形的判定,熟知线段垂直平分线的作法是解答此题的关键.46.如图,A 、B 两点在射线OM 、ON 上,CF 垂直平分AB ,垂足为F ,CD OM ⊥,CE ON ⊥,垂足分别为D 、E ,且AD BE =.()1求证:OC 平分MON ∠;()2如果AO 10=,BO 4=,求OD 的长.【答案】(1)见解析(2)7【解析】【分析】()1连接CA 、CB ,证明Rt ACD ≌Rt BCE ,得到CD CE =,即可说明OC为角平分线; ()2设BE x =,用x 表示出OA ,借助OA 10=构造方程求解.【详解】()1如图,连接CA ,CB CF 垂直平分AB ,AC CB ∴=CD OM ⊥,CE ON ⊥,ODA CEB 90∠∠∴==在Rt ACD 与Rt BCE 中{AC BCAD BE == Rt ACD ∴≌()Rt BCE HL .CD CE ∴=在Rt ODC 与Rt OEC 中{DC CEOC OC == Rt ODC ∴≌()Rt OEC HL .DOC EOC ∠∠∴=OC ∴平分MON ∠;()2有()1得OE OD =设BE x OB 4OE OD 4x AD BE x OA 42x 10x 3==∴==+==∴=+=∴=OD 437∴=+=.【点睛】本题考查了角平分线的定义和判定、全等三角形的判定和性质,会运用方程思想解题是解决线段长度的捷径.47.如图,已知△ABC ,AC <BC ,(1)尺规作图:作△ABC 的边BC 上的高AD(不写作法,保留作图痕迹).(2)试用尺规作图的方法在线段BC上确定一点P,使PA+PC=BC,并说明理由.【答案】(1)见解析;(2)作图见解析,证明见解析.【解析】【分析】(1)直接利用过一点作已知直线的垂线的作法即可得出答案;(2)利用线段垂直平分线的作法与性质得出答案.【详解】(1)如图所示:AD即为所求;(2)如图所示:点P即为所求.理由:∵MN垂直平分线段AB,∴AP=BP,∴PA+PC=BP+PC=BC.【点睛】此题主要考查了复杂作图,正确应用线段垂直平分线的性质是解题关键.48.尺规作图(保留作图痕迹):如图,已知直线l及其两侧两点A、B.()1在直线l上求一点P,使到A、B两点距离之和最短;()2在直线l上求一点Q,使QA QB=;()3在直线l上求一点M,使l平分AMB∠.【答案】(1)见解析;(2)见解析;(3)见解析.【解析】【分析】()1连接AB,交直线l于点P,则P点即为所求;()2作线段AB的垂直平分线,交直线l于点Q,则点Q即为所求;()3作点A关于直线l的对称点A',连接BA'并延长交直线l于点M即可.【详解】解:()1如图,连接AB,交直线l于点P,点P即为所求;()2如图,作线段AB的垂直平分线,交直线l于点Q,点Q即为所求;()3如图,作点A关于直线l的对称点A',连接BA'并延长交直线l于点M,点M即为所求.【点睛】本题考查作图-复杂作图,两点之间线段最短、线段垂直平分线的性质及角平分线的性质,熟知各小题的知识点是解答此题的关键.49.如图所示,在Rt ABC △中,90ACB ∠=︒,(1)用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹)(2)连接AP 当B 为多少度时,AP 平分CAB ∠.【答案】(1)详见解析;(2)30°.【解析】【分析】(1)根据线段垂直平分线的作法作出AB 的垂直平分线即可;(2)连接PA ,根据等腰三角形的性质可得PAB B ∠=∠,由角平分线的定义可得PAB PAC ∠=∠,根据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案.【详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线,∴PA=PB ,∴点P 即为所求.(2)如图,连接AP ,∵PA PB =,∴PAB B ∠=∠,∵AP 是角平分线,∴PAB PAC ∠=∠,∴PAB PAC B ∠=∠=∠,∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.50.如图,直线AB ∥CD ,直线l 与直线AB ,CD 相交与点E ,F ,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.①若∠PEF=48°,则∠EFC的度数为______.②若∠PEF=48°,点Q恰好落在其中一条平行线上,则∠EFP的度数为______.③若∠PEF=75°,∠CFQ=12∠PFC,则∠EFP的度数为______.【答案】①132°;②42°或66°;③35°或63°.【解析】【分析】①依据平行线的性质,即可得到∠EFC的度数;②如图1,当点Q落在AB上,根据三角形的内角和即可得到结论;如图2,当点Q落在CD上,由折叠的性质得到PF垂直平分EQ,得到∠1=∠2,根据平行线的性质即可得到结论;③如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x根据平行线的性质即可得到结论;如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=12PFC得,∠PFC=2x根据平行线的性质即可得到结论.【详解】解:①∵AB∥CD,∴∠PEF+∠EFC=180°,∴∠EFC=132°;②分两种情况:如图1,当点Q落在AB上时,FP⊥AB∴∠EFP=90°-∠PEF=42°;如图2,当点Q落在CD上,∵将△EPF沿PF折叠,使顶点E落在点Q处,∴PF垂直平分EQ,∴∠1=∠2,∵AB∥CD,∴∠QFE=180°-∠PEF=132°,∴∠PFE=12∠QFE=66°;③分两种情况:如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x,∵∠CFQ=∠PFC,∴∠PFQ=∠CFQ=x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴75°+x+x+x=180°,∴x=35°,∴∠EFP=35°;如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=1∠PFC得,∠PFC=2x,2∴∠PFQ=3x,由折叠得,∠PFE=∠PFQ=3x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2x+3x+75°=180°,∴x=21°,∠EFP=3x=63°;综上所述,∠EFP的度数是35°或63°.故答案为①132°;②42°或66°;③35°或63°.【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确的作出图形,运用分类思想是解题的关键.。

初二数学人教版总复习试卷

初二数学人教版总复习试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √-4D. √252. 若a=2,b=-3,则a²+b²的值是()A. 1B. 4C. 9D. 133. 下列方程中,无解的是()A. x+2=0B. 2x+3=1C. 2x-3=0D. 3x+4=04. 若a、b是方程x²-5x+6=0的两个实数根,则a+b的值是()A. 5B. 6C. 2D. 35. 下列函数中,自变量x的取值范围是()A. y=√(x-2)B. y=x²C. y=√(x+3)D. y=x6. 若点A(-2,3)关于y轴对称的点为B,则点B的坐标是()A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)7. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰梯形D. 平行四边形8. 若等边三角形的边长为a,则其面积S为()A. S=(√3/4)a²B. S=(√3/2)a²C. S=(1/2)a²D. S=(1/4)a²9. 下列命题中,正确的是()A. 直线与圆的位置关系只有相交和不相交B. 圆的半径越大,圆心角越大C. 圆的直径等于半径的两倍D. 圆的周长等于直径的π倍10. 若一个长方体的长、宽、高分别为a、b、c,则其体积V为()A. V=abcB. V=a²bC. V=ab²D. V=ac²二、填空题(每题3分,共30分)11. 若a=5,b=-3,则a+b的值是______。

12. 若x²-4x+3=0,则x的值为______。

13. 若y=2x-3,当x=2时,y的值为______。

14. 下列函数中,反比例函数是______。

15. 若等腰三角形的底边长为a,腰长为b,则其面积S为______。

16. 圆的半径为r,则其周长C为______。

人教版初二数学上册第十二章三角形全等重点题型精选(复习)

人教版初二数学上册第十二章三角形全等重点题型精选(复习)

⼈教版初⼆数学上册第⼗⼆章三⾓形全等重点题型精选(复习)⼈教版初⼆数学上册第⼗⼆章重点题型讲解(复习)本章主要内容是三⾓形全等的判定,它是培养学⽣逻辑思维、推理的主要途径,为今后的学习奠定基础。

如何运⽤三⾓形的全等的判定来判定两个三⾓形全等,本⽂通过对⼀些常见题型进⾏整理,经过这些问题的分析、解决,对这⼀问题给予作答,进⽽达到复习巩固深化本章所学的知识,进⼀步形成解题能⼒。

1.如图,N,C,A三点在同⼀直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,⼜△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2B. 1:3C. 2:3D. 1:4解析:设其中⼀份为x,∠A:∠ABC:∠ACB=3:5:10,知∠A=3x,∠ABC=5x,∠ACB=10x.由∠A+∠ABC+∠ACB=180得3x+5x+10x=1800,解得x=100,∴∠A=300,∠ABC=500,∠ACB=1000∵∠BCA+∠BCN=1800,∴∠BCN=1800-1000=800.⼜△MNC≌△ABC,∴∠MCN=∠ACB=1000,∴∠BCM=∠MCN-∠BCN=1000-800=200.∴∠BCM:∠BCN=20:80=1:4,答案选D2.如图,△ABE和△ACD是△ABC分别沿着AB,AC边翻折1800形成的,若∠BAC=1500,求∠α的度数。

解析:因为△ABE和△ACD是△ABC分别沿着AB,AC边翻折1800形成的,∴△△ABC≌△ADC≌△ADE,∴∠EDA=∠CDA=∠CBA,∠ACD=∠ACB,即∠EDC=2∠CBA,∠BCD=2∠BCA∵∠CBA+∠BCA+∠BAC=1800,∠BAC=1500∴∠CBA+∠BCA=300,∵∠α=∠EDC+∠BCD∴∠α=2(∠CBA+∠BCA)=6003.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,求点D的坐标。

人教版2019-2020学年八年级数学(上)期末复习:全等三角形常考题型复习(解析版)

人教版2019-2020学年八年级数学(上)期末复习:全等三角形常考题型复习(解析版)

人教版八年级数学上册期末复习:全等三角形常考基础专题复习一.选择题(共12小题)1.如图,△ABO≌△DCO,∠D=80°,∠DOC=70°,则∠B=()A.35°B.30°C.25°D.20°2.图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D3.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE4.如图,已知AB=AD,那么添加下列一个条件后,仍然不能判定△ABC≌△ADC的是()A.CB=CD B.∠B=∠D=90°C.∠BAC=∠DAC D.∠BCA=∠DCA 5.如图,点B、E、C、F在同一条直线上,AB∥DE,AB=DE,要用SAS证明△ABC≌△DEF,可以添加的条件是()A.∠A=∠D B.AC∥DF C.BE=CF D.AC=DF6.如图,已知AB=AD,那么添加下列一个条件后,能判定△ABC≌△ADC的是()A.AC=AC B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D7.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC8.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm9.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线10.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D.若CD=3cm,则点D到AB的距离DE是()A.5 cm B.4 cm C.3 cm D.2 cm11.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处12.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若P A=2,则PQ的最小值为()A.1B.2C.3D.4二.填空题(共8小题)13.如图所示,已知△ABC的面积是36,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的周长是.14.如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则D到AB的距离为.15.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ACB=∠DBC;能判定△ABC≌△DCB的是.(填序号)16.如图,B、C、E共线,AB⊥BE,DE⊥BE,AC⊥DC,AC=DC,又AB=2cm,DE=1cm,则BE=.17.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=.18.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=°.19.如图为6个边长相等的正方形的组合图形,则∠1+∠3=.20.如图,若△ABC≌△ADE,∠EAC=30°,则∠BAD=度.三.解答题(共12小题)21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.24.如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,AC=BE.(1)求证:AD=BD;(2)求∠B的度数.25.如图,在△ABC中,∠C=90°.(1)作∠BAC的平分线AD,交BC于D;(2)若AB=10cm,CD=4cm,求△ABD的面积.26.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的角平分线上.27.如图,点C、E、B、F在同一直线上,CE=BF,AC∥DF,AC=DF,求证:△ABC≌△DEF.28.如图,AB=AC,AD=AE,∠1=∠2,求证:△ABD≌△ACE.29.如图,已知点C,F在线段BE上,AB∥ED,∠ACB=∠DFE,EC=BF.求证:△ABC≌△DEF.30.已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.31.如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.32.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.参考答案与试题解析部分一.选择题(共12小题)1.如图,△ABO≌△DCO,∠D=80°,∠DOC=70°,则∠B=()A.35°B.30°C.25°D.20°【分析】根据三角形内角和定理求出∠C,根据全等三角形的性质解答即可.【解答】解:∵∠D=80°,∠DOC=70°,∴∠C=180°﹣∠D﹣∠DOC=30°,∵△ABO≌△DCO,∴∠B=∠C=30°,故选:B.2.图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D【分析】根据全等三角形的性质和已知图形得出即可.【解答】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.3.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE【分析】根据全等三角形的判定方法对各选项进行判断.【解答】解:∵∠A=∠D,∠B=∠DFE,∴当BE=CF时,即BC=EF,△ABC≌△DFE(AAS);当AB=DF时,即BC=EF,△ABC≌△DFE(ASA);当AC=DE时,即BC=EF,△ABC≌△DFE(AAS).故选:C.4.如图,已知AB=AD,那么添加下列一个条件后,仍然不能判定△ABC≌△ADC的是()A.CB=CD B.∠B=∠D=90°C.∠BAC=∠DAC D.∠BCA=∠DCA 【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;C、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;D、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;故选:D.5.如图,点B、E、C、F在同一条直线上,AB∥DE,AB=DE,要用SAS证明△ABC≌△DEF,可以添加的条件是()A.∠A=∠D B.AC∥DF C.BE=CF D.AC=DF【分析】根据AB∥DE得出∠B=∠DEF,添加条件BC=EF,则利用SAS定理证明△ABC ≌△DEF.【解答】解:∵AB∥DE,∴∠B=∠DEF,可添加条件BC=EF,理由:∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故选:C.6.如图,已知AB=AD,那么添加下列一个条件后,能判定△ABC≌△ADC的是()A.AC=AC B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加AC=AC,根据SS,不能判定△ABC≌△ADC,故本选项错误;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故本选项正确;C、添加∠BCA=∠DCA时,根据SSA不能判定△ABC≌△ADC,故本选项错误;D、添加∠B=∠D,根据SSA不能判定△ABC≌△ADC,故本选项错误;故选:B.7.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC【分析】根据“SAS”可添加BF=EC使△ABC≌△DEF.【解答】解:∵AB∥ED,AB=DE,∴∠B=∠E,∴当BF=EC时,可得BC=EF,可利用“SAS”判断△ABC≌△DEF.故选:A.8.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm【分析】根据角平分线上的点到角的两边的距离相等可得DE=CD,再根据等腰直角三角形的性质求出AC=BC=AE,然后求出△DBE的周长=AB,代入数据即可得解.【解答】解:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴DE=CD,又∵AC=BC,AC=AE,∴AC=BC=AE,∴△DBE的周长=DE+BD+EB=CD+BD+EB=BC+EB=AE+EB=AB,∵AB=6cm,∴△DBE的周长=6cm.故选:A.9.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线【分析】由角平分线性质的逆定理:到角的两边的距离相等的点在角的平分线上,则这个点是三角形三条角平分线的交点.【解答】解:∵到角的两边的距离相等的点在角的平分线上,∴这个点是三角形三条角平分线的交点.故选:A.10.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D.若CD=3cm,则点D到AB的距离DE是()A.5 cm B.4 cm C.3 cm D.2 cm【分析】过D作DE⊥AB于E,由已知条件,根据角平分线上的点到角的两边的距离相等解答.【解答】解:过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3cm,∴DE=3cm.故选:C.11.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故选:D.12.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若P A=2,则PQ的最小值为()A.1B.2C.3D.4【分析】由垂线段最短可知当PQ⊥OM时PQ最小,当PQ⊥OM时,则由角平分线的性质可知P A=PQ,可求得PQ=2.【解答】解:∵垂线段最短,∴当PQ⊥OM时,PQ有最小值,又∵OP平分∠MON,P A⊥ON,∴PQ=P A=2,故选:B.二.填空题(共8小题)13.如图所示,已知△ABC的面积是36,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的周长是18.【分析】作OE⊥AB于E,OF⊥AC于F,根据角平分线的性质得到OE=OF=OD=4,根据三角形的面积公式计算即可.【解答】解:作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,OE⊥AB,OF⊥AC,∴OE=OF=OD=4,由题意得,×AB×OE+×CB×OD+×AC×OF=36,解得,AB+BC+AC=18,则△ABC的周长是18,故答案为:18.14.如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则D到AB的距离为4.【分析】由已知条件首先求出线段CD的大小,接着利用角平分线的性质得点D到边AB 的距离等于CD的大小,问题可解.【解答】解:∵BC=10,BD=6,∴CD=4,∵∠C=90°,∠1=∠2,∴点D到边AB的距离等于CD=4,故答案为:4.15.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ACB=∠DBC;能判定△ABC≌△DCB的是①③④.(填序号)【分析】根据全等三角形的判定方法一一判断即可.【解答】解:因为∠ABC=∠DCB,BC=CB,①AB=CD,根据SAS可以判定△ABC≌△DCB.②AC=DB,无法判断△ABC≌△DCB.③∠A=∠D,根据AAS可以判定△ABC≌△DCB.④∠ACB=∠DBC,根据ASA可以判定△ABC≌△DCB.故答案为:①③④.16.如图,B、C、E共线,AB⊥BE,DE⊥BE,AC⊥DC,AC=DC,又AB=2cm,DE=1cm,则BE=3cm.【分析】易证△ABC≌△CED,可得AB=CE,BC=DE,可以求得BE的值.【解答】解:∵AC⊥DC,∴∠ACB+∠ECD=90°∵AB⊥BE,∴∠ACB+∠A=90°,∴∠A=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(AAS),∴AB=CE=2cm,BC=DE=1cm,∴BE=BC+CE=3cm.故答案为3cm.17.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=100°.【分析】根据全等三角形的性质求出∠B,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△DEF,∴∠B=∠E=50°,∴∠C=180°﹣∠A﹣∠B=100°,故答案为:100°.18.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=35°.【分析】根据全等三角形性质得出∠BAC=∠DAE,求出∠BAD=∠EAC,代入求出即可.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∵∠EAC=35°,∴∠BAD=35°,故答案为:35.19.如图为6个边长相等的正方形的组合图形,则∠1+∠3=90°.【分析】首先利用SAS定理判定△ABC≌△DBE,根据全等三角形的性质可得∠3=∠ACB,再由∠ACB+∠1=90°,可得∠1+∠3=90°.【解答】解:∵在△ABC和△DBE中,∴△ABC≌△DBE(SAS),∴∠3=∠ACB,∵∠ACB+∠1=90°,∴∠1+∠3=90°,故答案为:90°.20.如图,若△ABC≌△ADE,∠EAC=30°,则∠BAD=30度.【分析】根据△ABC≌△ADE,可得∠CAB=∠EAD,由于∠EAB是公共角,可得∠EAC =∠BAD,即可得解.【解答】解:∵△ABC≌△ADE,∵∠EAB是公共角,∴∠CAB﹣∠EAB=∠EAD﹣∠EAB,即∠EAC=∠BAD,已知∠EAC=30°,∴∠BAD=30°.故答案填:30.三.解答题(共12小题)21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.【分析】作∠AOB的角平分线和线段CD的垂直平分线,它们的交点为P点.【解答】解:如图,点P为所作.22.已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.【分析】(1)过D作DE⊥AB于E,依据角平分线的性质,即可得到DE=CD,再根据含30°角的直角三角形的性质,即可得出结论;(2)依据AD=BD=2CD=4,即可得到Rt△ACD中,AC==2,再根据△ABD的面积=×BD×AC进行计算即可.【解答】解:(1)如图,过D作DE⊥AB于E,∵∠C=90°,AD是△ABC的角平分线,∴DE=CD,又∵∠B=30°,∴Rt△BDE中,DE=BD,∴BD=2DE=2CD;(2)∵∠C=90°,∠B=30°,AD是△ABC的角平分线,∴∠BAD=∠B=30°,∴AD=BD=2CD=4,∴Rt△ACD中,AC==2,∴△ABD的面积为×BD×AC=×4×2=4.23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.【分析】(1)直接根据角平分线的性质可得出结论;(2)先根据勾股定理求出AB的长,再由三角形的面积公式求解即可.【解答】解:(1)∵Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3,∴DE=CD=3;(2)∵Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB==10.∵由(1)知,DE=3,∴S△ABD=AB•DE=×10×3=1524.如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,AC=BE.(1)求证:AD=BD;(2)求∠B的度数.【分析】(1)根据角平分线的性质得到CD=DE,根据全等三角形的判定和性质即可得到结论;(2)根据角平分线的定义可得∠CAD=∠BAD,根据等边对等角可得∠B=∠BAD,再根据三角形的内角和定理列出方程求解即可.【解答】证:(1)∵DE⊥AB于E,∠C=90°,AD是△ABC的角平分线,∴CD=DE,在Rt△ACD与Rt△AED中,∴Rt△ACD≌Rt△AED,∴AC=AE,∵AC=BE,∴AE=BE,∴AD=BD;(2)∵AD是△ABC的角平分线,∴∠CAD=∠BAD,∵AD=BD,∴∠B=∠BAD,∴∠CAD=∠BAD=∠B,∵∠C=90°,∴∠CAD+∠BAD+∠B=90°,∴∠B=30°.25.如图,在△ABC中,∠C=90°.(1)作∠BAC的平分线AD,交BC于D;(2)若AB=10cm,CD=4cm,求△ABD的面积.【分析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作DE⊥AB于E,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【解答】解:(1)如图所示,AD即为所求;(2)如图,过D作DE⊥AB于E,∵AD平分∠BAC,∴DE=CD=4,∴S△ABD=AB×DE=×10×4=20cm2.26.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的角平分线上.【分析】(1)连接AP,根据HL证明△APF≌△APE,可得到PE=PF;(2)利用(1)中的全等,可得出∠F AP=∠EAP,那么点P在∠BAC的平分线上.【解答】证明:(1)如图,连接AP并延长,∵PE⊥AB,PF⊥AC∴∠AEP=∠AFP=90°又AE=AF,AP=AP,∵在Rt△AFP和Rt△AEP中∴Rt△AEP≌Rt△AFP(HL),∴PE=PF.(2)∵Rt△AEP≌Rt△AFP,∴∠EAP=∠F AP,∴AP是∠BAC的角平分线,故点P在∠BAC的角平分线上.27.如图,点C、E、B、F在同一直线上,CE=BF,AC∥DF,AC=DF,求证:△ABC≌△DEF.【分析】先由CE=BF,可得BC=EF,继而利用SAS可证明结论.【解答】解:∵CE=BF,∴CE+BE=BF+BE,即BC=EF,又∵AC∥DF,∴∠C=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).28.如图,AB=AC,AD=AE,∠1=∠2,求证:△ABD≌△ACE.【分析】由∠1=∠2,可得∠CAE=∠BAD,进而利用两边夹一角,证明全等.【解答】证明:∵∠1=∠2,∴∠CAE=∠BAD,∵AB=AC,AD=AE,∴△ABD≌△ACE.29.如图,已知点C,F在线段BE上,AB∥ED,∠ACB=∠DFE,EC=BF.求证:△ABC≌△DEF.【分析】利用平行线的性质可得∠ABE=∠BED,根据等式的性质可得EF=BC,然后利用ASA判定△ABC≌△DEF即可.【解答】解:∵AB∥ED∴∠ABE=∠BED,∴EC﹣FC=BF﹣FC,∴EF=BC,在△ABC和△DEF中,∴△ABC≌△DFE(SAS).30.已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以∠ACB=∠DBC,即∠OCB=∠OBC,所以有OB=OC.【解答】证明:∵∠A=∠D=90°,AC=BD,BC=BC,∴Rt△BAC≌Rt△CDB(HL)∴∠ACB=∠DBC.∴∠OCB=∠OBC.∴OB=OC(等角对等边).31.如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.【分析】欲证BD、CE两边相等,只需证明这两边所在的△ABD与△ACE全等,这两个三角形,有一对直角相等,公共角∠A,AB=AC,所以两三角形全等.【解答】证明:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°.在△ABD和△ACE中,,∴△ABD≌△ACE(AAS).32.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.【分析】要证角相等,可先证明全等.即证Rt△ABC≌Rt△ADC,进而得出角相等.【解答】证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90°,∴△ABC与△ACD为直角三角形,在Rt△ABC和Rt△ADC中,∵AB=AD,AC为公共边,∴Rt△ABC≌Rt△ADC(HL),∴∠1=∠2.。

人教版初二数学上册:全等三角形判定一(SSS,SAS)(基础)巩固练习

人教版初二数学上册:全等三角形判定一(SSS,SAS)(基础)巩固练习

【巩固练习】一、选择题1. (2015•莆田)如图,AE∥DF,AE=DF ,要使△EAC≌△FDB,需要添加下列选项中的( )A .AB=CDB . EC=BFC . ∠A=∠D D . AB=BC2. 如图,已知AB =CD ,AD =BC ,则下列结论中错误的是( )A.AB ∥DCB.∠B =∠DC.∠A =∠CD.AB =BC3. (2016春•成安县期末)如图,由∠1=∠2,BC =DC ,AC=EC ,得△ABC ≌△EDC 的根据是( )A.SASB.ASAC.AASD.SSS4. 如图,AB 、CD 、EF 相交于O ,且被O 点平分,DF =CE ,BF =AE ,则图中全等三角形的对数共有( )A. 1对B. 2对C. 3对D. 4对5. 如图,将两根钢条'AA ,'BB 的中点O 连在一起,使'AA ,'BB 可以绕着点O 自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△OAB ≌△''OA B 的理由是( )A.边角边B.角边角C.边边边D.角角边6. 如图,已知AB⊥BD于B,ED⊥BD于D,AB=CD,BC=ED,以下结论不正确的是()A.EC⊥ACB.EC=ACC.ED +AB =DBD.DC =CB二、填空题7. 如图,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=_________.8. 如图,在四边形ABCD中,对角线AC、BD互相平分,则图中全等三角形共有_____对.9.(2016•牡丹江)如图,AD和CB相交于点E,BE=DE,请添加一个条件,使△ABE≌△CDE(只添一个即可),你所添加的条件是.10. 如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11. 如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=_______.12. 已知,如图,AB =CD ,AC =BD ,则△ABC ≌ ,△ADC ≌ .三、解答题13. (2014春•章丘市校级期中)如图A 、B 两点分别位于一座小山脚的两端,小明想要测量A 、B 两点间的距离,请你帮他设计一个测量方案,测出AB 的距离.并说明其中的道理.14. 已知:如图,AB ∥CD ,AB =CD .求证:AD ∥BC .分析:要证AD ∥BC ,只要证∠______=∠______,又需证______≌______.证明:∵ AB ∥CD ( ),∴ ∠______=∠______ ( ),在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ).∴ ∠______=∠______ ( ).∴ ______∥______( ).15. 如图,已知AB =DC ,AC =DB ,BE =CE 求证:AE =DE.【答案与解析】一.选择题1. 【答案】A ;【解析】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC 和△DFB 中,,∴△EAC≌△FDB(SAS ),故选:A .2. 【答案】D ;【解析】连接AC 或BD 证全等.3. 【答案】A ;【解析】通过等量加等量得到∠BCA=∠DCE, 从而由SAS 定理判定全等.4. 【答案】C ;【解析】△DOF ≌△COE ,△BOF ≌△AOE ,△DOB ≌△COA.5. 【答案】A ;【解析】将两根钢条'AA ,'BB 的中点O 连在一起,说明OA ='OA ,OB ='OB ,再由对顶角相等可证.6. 【答案】D ;【解析】△ABC ≌△EDC ,∠ECD +∠ACB =∠CAB +∠ACB =90°,所以EC ⊥AC ,ED +AB =BC +CD =DB.二.填空题7. 【答案】66°;【解析】可由SSS 证明△ABC ≌△DCB ,∠OBC =∠OCB =82412︒=︒, 所以∠DCB = ∠ABC =25°+41°=66°8. 【答案】4;【解析】△AOD ≌△COB ,△AOB ≌△COD ,△ABD ≌△CDB ,△ABC ≌△CDA.9. 【答案】AE=CE ;【解析】由题意得,BE=DE ,∠AEB=∠CED (对顶角),可选择利用SAS 进行全等的判定,答案不唯一.10.【答案】56°;【解析】∠CBE =26°+30°=56°.11.【答案】20°;【解析】△ABE ≌△ACD (SAS )12.【答案】△DCB ,△DAB ;【解析】注意对应顶点写在相应的位置上.三.解答题13.【解析】解:如图所示:在AB 下方找一点O ,连接BO ,并延长使BO=B′O,连接AO ,并延长使AO=A′O,在△AOB 和△A′OB′中:,∴△AOB≌△A′OB′(SAS ),∴AB=A′B′,量出A′B′的长即可.14. 【解析】3,4;ABD ,CDB ;已知;1,2;两直线平行,内错角相等;ABD ,CDB ;AB ,CD ,已知;∠1=∠2,已证;BD =DB ,公共边;ABD ,CDB ,SAS ;3,4,全等三角形对应角相等;AD ,BC ,内错角相等,两直线平行.15.【解析】证明:在△ABC 和△DCB 中AB DC AC DB BC =CB ⎧⎪⎨⎪⎩==∴△ABC ≌△DCB (SSS )∴∠ABC =∠DCB ,在△ABE 和△DCE 中ABC DCB AB DC BE CE =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△DCE (SAS )∴AE=DE.附录资料:【巩固练习】一、选择题1. (2016•长沙模拟)如图所示,△ABC≌△DEC,则不能得到的结论是()A. AB=DEB. ∠A=∠DC. BC=CDD. ∠ACD=∠BCE2. 如图,△ABC≌△BAD,A和B,C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为()A. 4cmB. 5cmC. 6cmD. 以上都不对3. 下列说法中正确的有()①形状相同的两个图形是全等图形②对应角相等的两个三角形是全等三角形③全等三角形的面积相等④若△ABC≌△DEF,△DEF ≌△MNP,△ABC≌△MNP.A.0个B.1个C.2个D.3个4. (2014秋•庆阳期末)如图,△ABC≌△A′B′C,∠ACB=90°,∠A′CB=20°,则∠BCB′的度数为()A.20°B.40°C.70°D.90°5. 已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是()A.6cmB.7cmC.8cmD.9cm6. 将一张长方形纸片按如图所示的方式折叠,BC、BD分别为折痕,则∠CBD的度数为()A.60° B.75°C.90°D.95°二、填空题7.(2014秋•安阳县校级期末)如图所示,△AOB ≌△COD ,∠AOB=∠COD ,∠A=∠C ,则∠D 的对应角是___________,图中相等的线段有____________________________.8. (2016•成都)如图,△ABC ≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=___________.9. 已知△DEF ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4cm ,则△DEF 的边中必有一条边等于______.10. 如图,如果将△ABC 向右平移CF 的长度,则与△DEF 重合,那么图中相等的线段有__________;若∠A =46°,则∠D =________.11.已知△ABC ≌△'''A B C ,若△ABC 的面积为10 2cm ,则△'''A B C 的面积为________ 2cm ,若△'''A B C 的周长为16cm ,则△ABC 的周长为________cm .12. △ABC 中,∠A ∶∠C ∶∠B =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______ .三、解答题13.如图,已知△ABC ≌△DEF ,∠A =30°,∠B =50°,BF =2,求∠DFE 的度数与EC 的长.14. (2014秋•射阳县校级月考)如图,在图中的两个三角形是全等三角形,其中A和D、B和E是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.15. 如图,E为线段BC上一点,AB⊥BC,△ABE≌△ECD.判断AE与DE的关系,并证明你的结论.【答案与解析】一.选择题1. 【答案】C;【解析】因为△ABC≌△DEC,可得:AB=DE,∠A=∠D,BC=EC,∠ACD=∠BCE,故选C.2. 【答案】B;【解析】AD与BC是对应边,全等三角形对应边相等.3. 【答案】C;【解析】③和④是正确的;4. 【答案】C;【解析】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠BCB′=∠A′CB′﹣∠A′CB=70°.故选C.5. 【答案】A;【解析】EF边上的高=1826 6⨯=;6. 【答案】C;【解析】折叠所成的两个三角形全等,找到对应角可解.二.填空题7. 【答案】∠OBA,OA=OC、OB=OD、AB=CD;【解析】解:∵△AOB≌△COD,∠AOB=∠COD,∠A=∠C,∴∠D=∠OBA,OA=OC、OB=OD、AB=CD,故答案为:∠OBA,OA=OC、OB=OD、AB=CD.8. 【答案】120°;【解析】∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠B=120°.9. 【答案】4cm或9.5cm;【解析】DE=DF=9.5cm,EF=4cm;10.【答案】AB=DE、AC=DF、BC=EF、BE=CF, 46°;11.【答案】10,16;【解析】全等三角形面积相等,周长相等;12.【答案】40°;【解析】见“比例”设k,用三角形内角和为180°求解.三.解答题13.【解析】解:在△ABC中,∠ACB=180°-∠A-∠B,又∠A=30°,∠B=50°,所以∠ACB=100°.又因为△ABC≌△DEF,所以∠ACB=∠DFE,BC=EF(全等三角形对应角相等,对应边相等)所以∠DFE=100°EC=EF-FC=BC-FC=BF=2.14. 【解析】解:(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,理由是:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠DFE,∴AB∥DE,BC∥EF.15. 【解析】 AE=DE ,且AE⊥DE证明:∵△ABE≌△ECD,∴∠B=∠C,∠A=∠DEC,∠AEB=∠D,AE=DE又∵AB⊥BC∴∠A+∠AEB=90°,即∠DEC+∠AEB=90°∴AE⊥DE∴AE与DE垂直且相等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二上数学复习题一、全等三角形1.如图3,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是 _ .2.如图4,AC ,BD 相交于点O ,AC =BD ,AB =CD ,写出图中两对相等的角____.3.如图5,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______.4.地基在同一水平面上,高度相同的两幢楼上分别住着甲、乙两位同学,有一天,甲对乙说:“从我住的这幢楼的底部到你住的那幢楼的顶部的直线距离,等于从你住的那幢楼的底部到我住的这幢楼的顶部的直线距离.”你认为甲的话正确吗?答:____.5.如图6,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为__. 6.如图7,P 是∠BAC 的平分线AD 上一点,PE ⊥AB 于E ,PF ⊥AC 于F ,下列结论中不正确的是( )A .PE PF = B .AE AF = C .△APE ≌△APF D .AP PE PF =+ 7.下列说法中:①如果两个三角形可以依据“AAS ”来判定全等,那么一定也可以依据“ASA ”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( ) A .①和② B .②和③ C .①和③ D .①②③8.如图8, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( ) A .1个 B .2个 C .3个 D .4个 9.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等 10.如图9,AD AE =,= = =100 =70BD CE ADB AEC BAE ︒︒,,∠∠∠,下列结论错误的是( )A .△ABE ≌△ACDB .△ABD ≌△ACEC .∠DAE =40°D .∠C =30°11.已知:如图10,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,则图中共有全等三角形( )A .5对B .4对C .3对D .2对 12.将一张长方形纸片按如图11所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( ) A .60° B .75° C .90° D .95°13.根据下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30°C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =614.已知:如图12,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF =.求证:(1)AF CE =;(2)AB CD ∥.15.如图13,工人师傅要检查人字梁的∠B 和∠C 是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA 和CA 上取BE CG =;②在BC 上取BD CF =;③量出DE 的长a 米,FG 的长b 米.如果a b =,则说明∠B 和∠C 是相等的.他的这种做法合A D O C B 图4 A D C B 图5 A D C B 图6E A D C B 图7 EF A DC B 图8ED O C B 图9 A DE C B 图10FG A E C 图11 B A ′ E ′ D A D E C BFAA B D E F A 理吗?为什么? 16.填空,完成下列证明过程. 如图14,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC ,AC 上,且BD CE ,=DEF B ∠∠ 求证:=ED EF .证明:∵∠DEC =∠B +∠BDE ( ),又∵∠DEF =∠B (已知), ∴∠______=∠______(等式性质).在△EBD 与△FCE 中, ∠______=∠______(已证),______=______(已知), ∠B =∠C (已知),∴EBD FCE △≌△( ). ∴ED =EF ( ).17.如图15,O 为码头,A ,B 两个灯塔与码头的距离相等,OA ,OB 为海岸线,一轮船从码头开出,计划沿∠AOB 的平分线航行,航行途中,测得轮船与灯塔A ,B 的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.18.如图16,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时, (1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设AED ∠的度数为x ,∠ADE 的度数为y ,那么∠1,∠2 的度数分别是多少?(用含有x 或y 的代数式表示) (3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律. 二、轴对称单元测试题1.一只小狗正在平面镜前欣赏自己的全身像(如图所示),此时,它所看到的全身像是( )2、下列图案是几种名车的标志,请你指出,在这几个图案中是轴对称图形的共有( )A.4个;B.5个;C. 6个 ;D.7个。

3、国旗是一个国家的象征,观察下面的国旗,是轴对称图形的是( )A.加拿大、哥斯达黎加、乌拉圭B.加拿大、瑞典、澳大利亚C.加拿大、瑞典、瑞士D.乌拉圭、瑞典、瑞士 加拿大 哥斯达黎加 澳大利亚 乌拉圭 瑞典 瑞士4、和点P (-3,2)关于y 轴对称的点是( )A.(3, 2)B.(-3,2)C. (3,-2)D.(-3,-2)5、.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0)则光线从A点到B点经过的路线长是( ) A.4B.5 C.6 D.76、如图3把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )7、小朋友文文把一张长方形的对折了两次,如图所示:使A 、B 都落在DA /上,折痕分别是DE 、DF ,则∠EDF 的度数为( )A.60°B. 75°C. 90°D.120° 8、成轴对称的两个图形的对应角 ,对应边(线段)9、在“线段、锐角、三角形、等边三角形”这四个图形中,是轴对称图形的有 个,其中对称轴最多的是 .线段的对称轴是 10、如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是________。

11、数的计算中有一些有趣的对称形式, 如:12×231=132×21;仿照上面A DE C B 图14F A D E C B 图16 A ′ 2 1 雪佛兰 三菱 雪铁龙 丰田的形式填空,并判断等式是否成立:(1) 12×462=____×____ ( ) , (2) 18×891=____×____ ( )。

12、已知点A (a ,-2)和B (3,b ),当满足条件 时,点A 和点B 关于y 轴对称。

13、如图,点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 。

14(1)如图所示编号为①、②、③、④的四个三角形中,关于y 轴对称的两个三角形的编号为 ;关于坐标原点O 对称的两个三角形的编号为 ;(215 1(1 (9).若524+=a a ,求2005)4(-a = .(10).若x 2n =4,则x 6n = ___.(11).若52=m ,62=n ,则n m 22+= .(12)-12c b a 52=-6ab ·( ) .(13).计算:(2×310)×(-4×510)= .(14)计算:10031002)161()16(-⨯-= . (15).①2a 2(3a 2-5b )= . ②(5x +2y )(3x -2y )= .(16).计算:)1)(2()6)(7(+---+x x x x = .(17).若._____34,992213=-=⋅⋅++-m m y x y x y x n n m m 则2.化简2)2()2(a a a --⋅-的结果是( )A .0B .22aC .26a -D .24a -3.下列计算中,正确的是( )A .ab b a 532=+B .33a a a =⋅C .a a a =-56D .222)(b a ab =-4.下列运算正确的是( )A.xy y x 532=+B.36329)3(y x y x -=-C.442232)21(4y x xy y x -=-⋅ D.842x x x =⋅ 5.计算:20032)(-·200221)(等于( ). (A)-2 (B)2 (C)-21 (D)21 6. (-5x)2 ·52xy 的运算结果是( ). (A)10y x 3 (B)-10y x 3 (C)-2x 2y (D)2x 2y7.下列各式从左到右的变形,正确的是( ).(A) -x -y=-(x -y) (B)-a+b=-(a+b)(C)22)()(y x x y -=- (D)33)()(a b b a -=-8.若)5)((-+x k x 的积中不含有x 的一次项,则k 的值是( )A .0B .5C .-5D .-5或59.若))(3(152n x x mx x ++=-+,则m 的值为( )(A )-5 (B )5 (C )-2 (D )210.若142-=y x ,1327+=x y ,则y x -等于( )(A )-5 (B )-3 (C )-1 (D )111.如果552=a ,443=b ,334=c ,那么( )(A )a >b >c (B )b >c >a (C )c >a >b (D )c >b >a12.计算(1))311(3)()2(2x xy y x -⋅+-⋅-; (2))12(4)392(32--+-a a a a a ; 13.先化简,再求值:(1)x (x -1)+2x (x +1)-(3x -1)(2x -5),其中x =2.(2)342)()(m m m -⋅-⋅-,其中m =2-14.解方程(3x -2)(2x -3)=(6x +5)(x -1)+15. 15.若0352=-+y x ,求y x 324⋅的值.16.①已知,2,21==mn a 求n m a a )(2⋅的值, ②若的求n n n x x x 22232)(4)3(,2---=值. 17.说明:对于任意的正整数n ,代数式n (n +7)-(n +3)(n -2)的值是否总能被6整除.18.整式的乘法运算(x +4)(x +m ),m 为何值时,乘积中不含x 项?m 为何值时,乘积中x项的系数为6? 你能提出哪些问题?并求出你提出问题的结论.(8分)四、因式分解单元检测题1. a m =4,a n =3,a m+n =____ __. 2.(2x -1)(-3x+2)=___ _____.3.=--+-)32)(32(n n n m ___________. 4.=--2)2332(y x ______________, 5.若A ÷5ab 2=-7ab 2c 3,则A=_________,若4x 2yz 3÷B=-8x,则B=_________.6.若4)2)((2-=++x x b ax ,则b a =_________________.7.1纳米=0.000000001米,则3.5纳米=___________米.(用科学计数法表示)8.若。

相关文档
最新文档