二叉树排序C语言
判断一棵树是否为满二叉树的算法c语言
判断一棵树是否为满二叉树的算法c语言判断一棵树是否为满二叉树的算法(C语言)满二叉树是一种特殊的二叉树,每个节点要么没有子节点,要么有两个子节点。
判断一棵树是否为满二叉树的算法可以通过以下步骤实现:1. 定义二叉树的数据结构在C语言中,可以使用结构体定义二叉树的节点。
每个节点包含一个数据域和两个指针域,分别指向左子节点和右子节点。
```cstruct TreeNode {int data;struct TreeNode* left;struct TreeNode* right;};```2. 实现判断函数编写一个递归函数,用于判断给定二叉树是否为满二叉树。
函数的输入参数为根节点指针,返回值为布尔类型。
```cint isFullBinaryTree(struct TreeNode* root) {// 如果根节点为空,则返回真if (root == NULL) {return 1;}// 如果只有一个子节点或没有子节点,则返回假if ((root->left == NULL && root->right != NULL) ||(root->left != NULL && root->right == NULL)) {return 0;}// 递归判断左子树和右子树return isFullBinaryTree(root->left) && isFullBinaryTree(root->right);}```3. 测试样例可以编写一些测试样例来验证判断函数的正确性。
例如,下面是一个满二叉树和一个非满二叉树的示例:```cint main() {// 满二叉树struct TreeNode* root1 = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->data = 1;root1->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->left->data = 2;root1->left->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->left->left->data = 4;root1->left->left->left = NULL;root1->left->left->right = NULL;root1->left->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->left->right->data = 5;root1->left->right->left = NULL;root1->left->right->right = NULL;root1->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->right->data = 3;root1->right->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->right->left->data = 6;root1->right->left->left = NULL;root1->right->left->right = NULL;root1->right->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->right->right->data = 7;root1->right->right->left = NULL;root1->right->right->right = NULL;// 非满二叉树struct TreeNode* root2 = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->data = 1;root2->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->left->data = 2;root2->left->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->left->left->data = 4;root2->left->left->left = NULL;root2->left->left->right = NULL;root2->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->right->data = 3;root2->right->left = NULL;root2->right->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->right->right->data = 7;root2->right->right->left = NULL;root2->right->right->right = NULL;// 判断是否为满二叉树if (isFullBinaryTree(root1)) {printf("root1是满二叉树\n");} else {printf("root1不是满二叉树\n");}if (isFullBinaryTree(root2)) {printf("root2是满二叉树\n");} else {printf("root2不是满二叉树\n");}return 0;}```运行上述代码,输出结果为:```root1是满二叉树root2不是满二叉树```根据以上算法和示例,我们可以判断一棵树是否为满二叉树。
数据结构c语言课设-二叉树排序
题目:二叉排序树的实现1 内容和要求1)编程实现二叉排序树,包括生成、插入,删除;2)对二叉排序树进展先根、中根、和后根非递归遍历;3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。
4)分别用二叉排序树和数组去存储一个班(50 人以上)的成员信息(至少包括学号、姓名、成绩3 项),比照查找效率,并说明在什么情况下二叉排序树效率高,为什么?2 解决方案和关键代码2.1 解决方案:先实现二叉排序树的生成、插入、删除,编写DisplayBST函数把遍历结果用树的形状表示出来。
前中后根遍历需要用到栈的数据构造,分模块编写栈与遍历代码。
要求比照二叉排序树和数组的查找效率,首先建立一个数组存储一个班的成员信息,分别用二叉树和数组查找,利用clock〔〕函数记录查找时间来比照查找效率。
2.2关键代码树的根本构造定义及根本函数typedef struct{KeyType key;} ElemType;typedef struct BiTNode//定义链表{ElemType data;struct BiTNode *lchild, *rchild;}BiTNode, *BiTree, *SElemType;//销毁树int DestroyBiTree(BiTree &T){if (T != NULL)free(T);return 0;}//清空树int ClearBiTree(BiTree &T){if (T != NULL){T->lchild = NULL;T->rchild = NULL;T = NULL;}return 0;}//查找关键字,指针p返回int SearchBST(BiTree T, KeyType key, BiTree f, BiTree &p) {if (!T){p = f;return FALSE;}else if EQ(key, T->data.key){p = T;return TRUE;}else if LT(key, T->data.key)return SearchBST(T->lchild, key, T, p);elsereturn SearchBST(T->rchild, key, T, p);}二叉树的生成、插入,删除生成void CreateBST(BiTree &BT, BiTree p){int i;ElemType k;printf("请输入元素值以创立排序二叉树:\n");scanf_s("%d", &k.key);for (i = 0; k.key != NULL; i++){//判断是否重复if (!SearchBST(BT, k.key, NULL, p)){InsertBST(BT, k);scanf_s("%d", &k.key);}else{printf("输入数据重复!\n");return;}}}插入int InsertBST(BiTree &T, ElemType e){BiTree s, p;if (!SearchBST(T, e.key, NULL, p)){s = (BiTree)malloc(sizeof(BiTNode));s->data = e;s->lchild = s->rchild = NULL;if (!p)T = s;else if LT(e.key, p->data.key)p->lchild = s;elsep->rchild = s;return TRUE;}else return FALSE;}删除//某个节点元素的删除int DeleteEle(BiTree &p){BiTree q, s;if (!p->rchild) //右子树为空{q = p;p = p->lchild;free(q);}else if (!p->lchild) //左子树为空{q = p;p = p->rchild;free(q);}else{q = p;s = p->lchild;while (s->rchild){q = s;s = s->rchild;}p->data = s->data;if (q != p)q->rchild = s->lchild;elseq->lchild = s->lchild;delete s;}return TRUE;}//整棵树的删除int DeleteBST(BiTree &T, KeyType key) //实现二叉排序树的删除操作{if (!T){return FALSE;}else{if (EQ(key, T->data.key)) //是否相等return DeleteEle(T);else if (LT(key, T->data.key)) //是否小于return DeleteBST(T->lchild, key);elsereturn DeleteBST(T->rchild, key);}return 0;}二叉树的前中后根遍历栈的定义typedef struct{SElemType *base;SElemType *top;int stacksize;}SqStack;int InitStack(SqStack &S) //构造空栈{S.base = (SElemType*)malloc(STACK_INIT_SIZE *sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base;S.stacksize = STACK_INIT_SIZE;return OK;}//InitStackint Push(SqStack &S, SElemType e) //插入元素e为新栈顶{if (S.top - S.base >= S.stacksize){S.base = (SElemType*)realloc(S.base, (S.stacksize + STACKINCREMENT)*sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base + S.stacksize;S.stacksize += STACKINCREMENT;}*S.top++ = e;return OK;}//Pushint Pop(SqStack &S, SElemType &e) //删除栈顶,应用e返回其值{if (S.top == S.base) return ERROR;e = *--S.top;return OK;}//Popint StackEmpty(SqStack S) //判断是否为空栈{if (S.base == S.top) return TRUE;return FALSE;}先根遍历int PreOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);if (!Visit(p->data)) return ERROR;p = p->lchild;}else{Pop(S, p);p = p->rchild;}}return OK;}中根遍历int InOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);p = p->lchild;}else{Pop(S, p);if (!Visit(p->data)) return ERROR;p = p->rchild;}}return OK;}后根遍历int PostOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S, SS;BiTree p;InitStack(S);InitStack(SS);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);Push(SS, p);p = p->rchild;}else{if (!StackEmpty(S)){Pop(S, p);p = p->lchild;}}}while (!StackEmpty(SS)){Pop(SS, p);if (!Visit(p->data)) return ERROR;}return OK;}利用数组存储一个班学生信息ElemType a[] = { 51, "陈继真", 88,82, "黄景元", 89,53, "贾成", 88,44, "呼颜", 90,25, "鲁修德", 88,56, "须成", 88,47, "孙祥", 87, 38, "柏有患", 89, 9, " 革高", 89, 10, "考鬲", 87, 31, "李燧", 86, 12, "夏祥", 89, 53, "余惠", 84, 4, "鲁芝", 90, 75, "黄丙庆", 88, 16, "李应", 89, 87, "杨志", 86, 18, "李逵", 89, 9, "阮小五", 85, 20, "史进", 88, 21, "秦明", 88, 82, "杨雄", 89, 23, "刘唐", 85, 64, "武松", 88, 25, "李俊", 88, 86, "卢俊义", 88, 27, "华荣", 87, 28, "杨胜", 88, 29, "林冲", 89, 70, "李跃", 85, 31, "蓝虎", 90, 32, "宋禄", 84, 73, "鲁智深", 89, 34, "关斌", 90, 55, "龚成", 87, 36, "黄乌", 87, 57, "孔道灵", 87, 38, "张焕", 84, 59, "李信", 88, 30, "徐山", 83, 41, "秦祥", 85, 42, "葛公", 85, 23, "武衍公", 87, 94, "范斌", 83, 45, "黄乌", 60, 67, "叶景昌", 99, 7, "焦龙", 89, 78, "星姚烨", 85, 49, "孙吉", 90, 60, "陈梦庚", 95,};数组查询函数void ArraySearch(ElemType a[], int key, int length){int i;for (i = 0; i <= length; i++){if (key == a[i].key){cout << "学号:" << a[i].key << " 姓名:" << a[i].name << " 成绩:" << a[i].grade << endl;break;}}}二叉树查询函数上文二叉树根本函数中的SearchBST()即为二叉树查询函数。
数据结构(c语言)第6章二叉树课练答案(含完整实验程序刘玉保留
第6章树和二叉树自测卷解答姓名班级一、下面是有关二叉树的叙述,请判断正误(每小题1分,共10分)(√)1. 若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n—1个非空指针域。
(×)2.二叉树中每个结点的两棵子树的高度差等于1。
(√)3.二叉树中每个结点的两棵子树是有序的。
(×)4.二叉树中每个结点有两棵非空子树或有两棵空子树。
(×)5.二叉树中每个结点的关键字值大于其左非空子树(若存在的话)所有结点的关键字值,且小于其右非空子树(若存在的话)所有结点的关键字值。
(应当是二叉排序树的特点)(×)6.二叉树中所有结点个数是2k-1-1,其中k是树的深度。
(应2i-1)(×)7.二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。
(×)8.对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i—1个结点。
(应2i-1)(√)9.用二叉链表法(link-rlink)存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。
(正确。
用二叉链表存储包含n个结点的二叉树,结点共有2n个链域。
由于二叉树中,除根结点外,每一个结点有且仅有一个双亲,所以只有n-1个结点的链域存放指向非空子女结点的指针,还有n+1个空指针。
)即有后继链接的指针仅n-1个。
(√)10. 〖01年计算机系研题〗具有12个结点的完全二叉树有5个度为2的结点。
最快方法:用叶子数=[n/2]=6,再求n2=n0-1=5二、填空(每空1分,共15分)1.由3个结点所构成的二叉树有5种形态。
2. 【计算机研2000】一棵深度为6的满二叉树有n1+n2=0+ n2= n0-1=31 个分支结点和26-1 =32个叶子。
注:满二叉树没有度为1的结点,所以分支结点数就是二度结点数。
3.一棵具有257个结点的完全二叉树,它的深度为9。
(注:用⎣ log2(n) ⎦+1= ⎣ 8.xx ⎦+1=94.【全国专升本统考题】设一棵完全二叉树有700个结点,则共有350个叶子结点。
实验报告:二叉树
实验报告:二叉树第一篇:实验报告:二叉树实验报告二叉树一实验目的1、进一步掌握指针变量,动态变量的含义;2、掌握二叉树的结构特性以及各种存储结构的特点及适用范围。
3、掌握用指针类型描述、访问和处理二叉树的运算。
4、熟悉各种存储结构的特征以及如何应用树结构解决具体问题。
二实验原理树形结构是一种应用十分广泛和重要的非线性数据结构,是一种以分支关系定义的层次结构。
在这种结构中,每个数据元素至多只有一个前驱,但可以有多个后继;数据元素之间的关系是一对多的层次关系。
树形结构主要用于描述客观世界中具有层次结构的数据关系,它在客观世界中大量存在。
遍历二叉树的实质是将非线性结构转为线性结构。
三使用仪器,材料计算机 2 Wndows xp 3 VC6.0四实验步骤【问题描述】建立一个二叉树,请分别按前序,中序和后序遍历该二叉树。
【基本要求】从键盘接受输入(按前序顺序),以二叉链表作为存储结构,建立二叉树(以前序来建立),并采用递归算法对其进行前序,中序和后序遍历,将结果输出。
【实现提示】按前序次序输入二叉树中结点的值(一个整数),0表示空树,叶子结点的特征是其左右孩子指针为空。
五实验过程原始记录基本数据结构描述; 2 函数间的调用关系;用类C语言描述各个子函数的算法;附录:源程序。
六试验结果分析将实验结果分析、实验中遇到的问题和解决问题的方法以及关于本实验项目的心得体会,写在实验报告上。
第二篇:数据结构-二叉树的遍历实验报告实验报告课程名:数据结构(C语言版)实验名:二叉树的遍历姓名:班级:学号:时间:2014.11.03一实验目的与要求1.掌握二叉树的存储方法2.掌握二叉树的三种遍历方法3.实现二叉树的三种遍历方法中的一种二实验内容• 接受用户输入一株二叉树• 输出这株二叉树的前根, 中根, 后根遍历中任意一种的顺序三实验结果与分析//*********************************************************** //头文件#include #include //*********************************************************** //宏定义#define OK 1 #define ERROR 0 #define OVERFLOW 0//*********************************************************** typedef struct BiTNode { //二叉树二叉链表存储结构char data;struct BiTNode *lChild,*rChild;}BiTNode,*BiTree;//******************************** *************************** int CreateBiTree(BiTree &T){ //按先序次序输入二叉中树结点的值,空格表示空树//构造二叉链表表示的二叉树T char ch;fflush(stdin);scanf(“%c”,&ch);if(ch==' ')T=NULL;else{ if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))return(OVERFLOW);T->data=ch;Creat eBiTree(T->lChild);CreateBiTree(T->rChild);} return(OK);} //********************************************************* void PreOrderTraverse(BiTree T){ //采用二叉链表存储结构,先序遍历二叉树的递归算法if(T){ printf(“%c”,T->data);PreOrderTraverse(T->lChild);PreOrd erTraverse(T->rChild);} } /***********************************************************/ void InOrderTraverse(BiTree T){ //采用二叉链表存储结构,中序遍历二叉树的递归算法if(T){ InOrderTraverse(T->lChild);printf(“%c”,T->data);InOrderT raverse(T->rChild);} }//*********************************************************** void PostOrderTraverse(BiTree T){ //采用二叉链表存储结构,后序遍历二叉树的递归算法if(T){ PostOrderTraverse(T->lChild);PostOrderTraverse(T->rChild) ;printf(“%c”,T->data);} }//*********************************************************** void main(){ //主函数分别实现建立并输出先、中、后序遍历二叉树printf(“please input your tree follow the PreOrder:n”);BiTNode *Tree;CreateBiTree(Tree);printf(“n先序遍历二叉树:”);PreOrderTraverse(Tree);printf(“n中序遍历二叉树:”);InOrderTraverse(Tree);printf(“n后序遍历二叉树:”);PostOrderTraverse(Tree);}图1:二叉树的遍历运行结果第三篇:数据结构二叉树操作验证实验报告班级:计算机11-2 学号:40 姓名:朱报龙成绩:_________实验七二叉树操作验证一、实验目的⑴ 掌握二叉树的逻辑结构;⑵ 掌握二叉树的二叉链表存储结构;⑶ 掌握基于二叉链表存储的二叉树的遍历操作的实现。
c语言哈夫曼树的构造及编码
c语言哈夫曼树的构造及编码一、哈夫曼树概述哈夫曼树是一种特殊的二叉树,它的构建基于贪心算法。
它的主要应用是在数据压缩和编码中,可以将频率高的字符用较短的编码表示,从而减小数据存储和传输时所需的空间和时间。
二、哈夫曼树的构造1. 哈夫曼树的定义哈夫曼树是一棵带权路径长度最短的二叉树。
带权路径长度是指所有叶子节点到根节点之间路径长度与其权值乘积之和。
2. 构造步骤(1) 将待编码字符按照出现频率从小到大排序。
(2) 取出两个权值最小的节点作为左右子节点,构建一棵新的二叉树。
(3) 将新构建的二叉树加入到原来排序后队列中。
(4) 重复上述步骤,直到队列只剩下一个节点,该节点即为哈夫曼树的根节点。
3. C语言代码实现以下代码实现了一个简单版哈夫曼树构造函数:```ctypedef struct TreeNode {int weight; // 权重值struct TreeNode *leftChild; // 左子节点指针struct TreeNode *rightChild; // 右子节点指针} TreeNode;// 构造哈夫曼树函数TreeNode* createHuffmanTree(int* weights, int n) {// 根据权值数组构建节点队列,每个节点都是一棵单独的二叉树TreeNode** nodes = (TreeNode**)malloc(sizeof(TreeNode*) * n);for (int i = 0; i < n; i++) {nodes[i] = (TreeNode*)malloc(sizeof(TreeNode));nodes[i]->weight = weights[i];nodes[i]->leftChild = NULL;nodes[i]->rightChild = NULL;}// 构建哈夫曼树while (n > 1) {int minIndex1 = -1, minIndex2 = -1;for (int i = 0; i < n; i++) {if (nodes[i] != NULL) {if (minIndex1 == -1 || nodes[i]->weight < nodes[minIndex1]->weight) {minIndex2 = minIndex1;minIndex1 = i;} else if (minIndex2 == -1 || nodes[i]->weight < nodes[minIndex2]->weight) {minIndex2 = i;}}}TreeNode* newNode =(TreeNode*)malloc(sizeof(TreeNode));newNode->weight = nodes[minIndex1]->weight + nodes[minIndex2]->weight;newNode->leftChild = nodes[minIndex1];newNode->rightChild = nodes[minIndex2];// 将新构建的二叉树加入到原来排序后队列中nodes[minIndex1] = newNode;nodes[minIndex2] = NULL;n--;}return nodes[minIndex1];}```三、哈夫曼编码1. 哈夫曼编码的定义哈夫曼编码是一种前缀编码方式,它将每个字符的编码表示为二进制串。
二叉树的先序,中序,后序遍历c语言
二叉树的先序,中序,后序遍历c语言
二叉树是常见的数据结构,具有广泛的应用场景,例如搜索树、哈夫曼树等。
其中比较重要的一点就是对二叉树的遍历。
二叉树遍历有三种方式:先序遍历、中序遍历、后序遍历。
接下来,我将通过C语言来详细介绍这三种遍历方式。
一、先序遍历(Preorder Traversal)
先序遍历是指根节点->左子树->右子树的遍历方式。
C语言中的先序遍历算法如下:
```
void preorderTraversal(Node *node) {
if (node != NULL) {
printf("%d ", node->data); // 打印节点值
preorderTraversal(node->left); // 递归遍历左子树
preorderTraversal(node->right); // 递归遍历右子树
}
}
```
先序遍历的实现通过递归调用实现,当节点为空即遍历完成时返回。
总结:
以上三种遍历方式是二叉树遍历中最基本的方法,它们都是基于递归实现的。
通过学习这三种遍历方式,可以更好地理解二叉树的结构特点,提高数据结构算法的学习效果。
二叉排序树c语言代码实现
if ((*n) != NULL) {
free (*n);
*n = NULL;
}
}
/* 查找结点 */
PNODE find_node (PNODE n, int value) {
in_order_traversal ( n->right);
}
}
int main() {
char buf[50],a[1000];
int i,n,option,s[80],p;
PNODE tree = NULL;/*树的第一个结点*/
PNODE node = NULL;
{
r = (PNODE)malloc(sizeof(NODE));
if(!r)
{
printf("内存分配失败!");
exit(0);
zjm3:fgets (buf, sizeof(buf), stdin);
sscanf (buf, "%i", &option);
printf ("\n\n");
if(option<0) {
printf ("输入错误,请重新输入该元素\n",n);
goto zjm3;}
if(find_node (tree, option))
{
(*n)->value = value;
(*n)->left = NULL;
(*n)->right = NULL;
}
}
数据结构-C语言-树和二叉树
练习
一棵完全二叉树有5000个结点,可以计算出其
叶结点的个数是( 2500)。
二叉树的性质和存储结构
性质4: 具有n个结点的完全二叉树的深度必为[log2n]+1
k-1层 k层
2k−1−1<n≤2k−1 或 2k−1≤n<2k n k−1≤log2n<k,因为k是整数
所以k = log2n + 1
遍历二叉树和线索二叉树
遍历定义
指按某条搜索路线遍访每个结点且不重复(又称周游)。
遍历用途
它是树结构插入、删除、修改、查找和排序运算的前提, 是二叉树一切运算的基础和核心。
遍历规则 D
先左后右
L
R
DLR LDR LRD DRL RDL RLD
遍历规则
A BC DE
先序遍历:A B D E C 中序遍历:D B E A C 后序遍历:D E B C A
练习 具有3个结点的二叉树可能有几种不同形态?普通树呢?
5种/2种
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
(a + b *(c-d)-e/f)的二叉树
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
二叉树的抽象数据类型定义
特殊形态的二叉树
只有最后一层叶子不满,且全部集中在左边
c语言二叉树的先序,中序,后序遍历
c语言二叉树的先序,中序,后序遍历1、先序遍历先序遍历可以想象为,一个小人从一棵二叉树根节点为起点,沿着二叉树外沿,逆时针走一圈回到根节点,路上遇到的元素顺序,就是先序遍历的结果先序遍历结果为:A B D H I E J C F K G2、中序遍历中序遍历可以看成,二叉树每个节点,垂直方向投影下来(可以理解为每个节点从最左边开始垂直掉到地上),然后从左往右数,得出的结果便是中序遍历的结果中遍历结果为:H D I B E J A F K C G3、后序遍历后序遍历就像是剪葡萄,我们要把一串葡萄剪成一颗一颗的。
还记得我上面提到先序遍历绕圈的路线么?(不记得翻上面理解)就是围着树的外围绕一圈,如果发现一剪刀就能剪下的葡萄(必须是一颗葡萄)(也就是葡萄要一个一个掉下来,不能一口气掉超过1个这样),就把它剪下来,组成的就是后序遍历了。
后序遍历中,根节点默认最后面后序遍历结果:H I D J E B K F G C A4、口诀先序遍历:先根再左再右中序遍历:先左再根再右后序遍历:先左再右再根这里的根,指的是每个分叉子树(左右子树的根节点)根节点,并不只是最开始头顶的根节点,需要灵活思考理解5、代码展示#include<stdio.h>#include<stdlib.h>typedef struct Tree{int data; // 存放数据域struct Tree *lchild; // 遍历左子树指针struct Tree *rchild; // 遍历右子树指针}Tree,*BitTree;BitTree CreateLink(){int data;int temp;BitTree T;scanf("%d",&data); // 输入数据temp=getchar(); // 吸收空格if(data == -1){ // 输入-1 代表此节点下子树不存数据,也就是不继续递归创建return NULL;}else{T = (BitTree)malloc(sizeof(Tree)); // 分配内存空间T->data = data; // 把当前输入的数据存入当前节点指针的数据域中printf("请输入%d的左子树: ",data);T->lchild = CreateLink(); // 开始递归创建左子树printf("请输入%d的右子树: ",data);T->rchild = CreateLink(); // 开始到上一级节点的右边递归创建左右子树return T; // 返回根节点}}// 先序遍历void ShowXianXu(BitTree T) // 先序遍历二叉树{if(T==NULL) //递归中遇到NULL,返回上一层节点{return;}printf("%d ",T->data);ShowXianXu(T->lchild); // 递归遍历左子树ShowXianXu(T->rchild); // 递归遍历右子树}// 中序遍历void ShowZhongXu(BitTree T) // 先序遍历二叉树{if(T==NULL) //递归中遇到NULL,返回上一层节点{return;}ShowZhongXu(T->lchild); // 递归遍历左子树printf("%d ",T->data);ShowZhongXu(T->rchild); // 递归遍历右子树}// 后序遍历void ShowHouXu(BitTree T) // 后序遍历二叉树{if(T==NULL) //递归中遇到NULL,返回上一层节点{return;}ShowHouXu(T->lchild); // 递归遍历左子树ShowHouXu(T->rchild); // 递归遍历右子树printf("%d ",T->data);}int main(){BitTree S;printf("请输入第一个节点的数据:\n");S = CreateLink(); // 接受创建二叉树完成的根节点printf("先序遍历结果: \n");ShowXianXu(S); // 先序遍历二叉树printf("\n中序遍历结果: \n");ShowZhongXu(S); // 中序遍历二叉树printf("\n后序遍历结果: \n");ShowHouXu(S); // 后序遍历二叉树return 0;}。
二叉树 c语言
二叉树 c语言在计算机科学领域中,树型数据结构是一种非常重要的数据结构,在实际开发中也得到了广泛的应用。
其中,二叉树又是一种非常常见的树型结构。
二叉树在很多情况下都能够提供更好的算法效率,同时也易于理解和实现,因此我们可以通过通过学习和掌握二叉树的特点以及优点,来更好的应用到实际开发中。
一、二叉树的定义二叉树是一种树型结构,树型结构是由节点构成的。
二叉树与一般的树型结构不同,它的每个节点最多只有两个子节点,分别称为左子树和右子树。
它们可以为空或者不为空,其子节点的数量时不固定且没有任何限制的。
二叉树的定义如下:(1)空树是树的一种特殊的状态。
我们可以把它称为二叉树;(2)若不是空树,那么它就是由一个称为根节点(root)的元素和左右两棵分别称为左子树(left subtree)和右子树(right subtree)的二叉树组成。
二、二叉树的特性(1)每个节点最多只有两个子节点,分别称为左子节点和右子节点;(2)左子树和右子树是二叉树;(3)二叉树没有重复的节点。
三、二叉树的应用二叉树是一种非常实用的数据结构,因为它可以模拟很多实际生活中的情况。
例如,我们可以利用二叉树来对某些数据进行分类和排序。
在二叉树的基础上,我们还可以构造二叉堆、哈夫曼树等更高级的数据结构。
除此之外,二叉树还可以应用到程序设计中。
例如,我们可以构造一个二叉树来表示某个程序的控制流,这个程序在执行时可以沿着二叉树的各个节点进行分支和选择,实现不同的功能。
此外,我们还可以利用二叉树来加快某些算法的执行效率,比如二分查找算法等。
四、二叉树的遍历方式对于二叉树的遍历,有三种基本方式,即前序遍历、中序遍历、后序遍历。
它们的遍历顺序不同,因此也得到了不同的称呼。
下面我们来简要介绍一下这三种遍历方式的特点和应用。
(1)前序遍历前序遍历是指首先访问树的根节点,然后按照从左到右的顺序依次遍历左子树和右子树。
前序遍历的应用非常广泛,可以用于生成表达式树、构造二叉树等等。
关于树的各种C语言代码
集合了树的各种算法,已经运行过,本人亲自所写,先序,后序,等全包括#include<stdio.h>#include<malloc.h>#define Max 100typedef int Status;typedef struct BiTNode{char data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;int count;Status CreatBiTree(BiTree *bt) /*1.按先序遍历序列创造二叉树的二叉链表*/ {char ch;getchar();scanf("%c",&ch);if (ch == ' '){*bt = NULL;}else{*bt = (BiTree)malloc(sizeof(BiTNode));(*bt)->data = ch;printf("\n\t请输入%c结点的左孩子:",(*bt)->data);CreatBiTree(&((*bt)->lchild));printf("\n\t请输入%c结点的右孩子:",(*bt)->data);CreatBiTree(&((*bt)->rchild));}return 1;}void PreOrder(BiTree bt) /*2.先序遍历二叉树*/{if (bt != NULL){printf("%c\n",bt->data);PreOrder(bt->lchild);PreOrder(bt->rchild);}}void InOrder(BiTree bt) /*3.中序遍历二叉树*/{if (bt != NULL){InOrder(bt->lchild);printf("%c\n",bt->data);InOrder(bt->rchild);}}void PostOrder(BiTree bt) /*4.后序遍历二叉树*/{if (bt != NULL){PostOrder(bt->lchild);PostOrder(bt->rchild);printf("%c\n",bt->data);}}void PreOrderLeaf(BiTree bt) /*5.输出所有的叶子结点*/{if (bt != NULL){if ((bt->lchild == NULL) && (bt->rchild == NULL)){printf("%c\n",bt->data);}PreOrderLeaf(bt->lchild);PreOrderLeaf(bt->rchild);}}Status Leaf(BiTree bt) /*6.统计叶子结点数目,即度为零的结点数目*/ {if (bt == NULL){count = 0;}else if ((bt->lchild == NULL) && (bt->rchild == NULL)){count = 1;}else{count = Leaf(bt->lchild) + Leaf(bt->rchild);}return count;}void Degree1Node(BiTree bt) /*7.输出度为一的结点*/{if (bt != NULL){if (((bt->lchild != NULL) || (bt->rchild != NULL))&& (!((bt->lchild != NULL) && (bt->rchild != NULL)))) {printf("%c\n",bt->data);}Degree1Node(bt->lchild);Degree1Node(bt->rchild);}}void Degree2Node(BiTree bt) /*8.输出度为二的结点*/{if ( bt != NULL){if ((bt->lchild != NULL) && (bt->rchild != NULL)){printf("%c\n",bt->data);}Degree2Node(bt->lchild);Degree2Node(bt->rchild);}}Status CountNode(BiTree bt) /*9.统计二叉树中结点的总数*/{if (bt == NULL){return 0;}else{count++;CountNode(bt->lchild);CountNode(bt->rchild);return count;}}Status TreeDepth(BiTree bt) /*10.求二叉树的深度*/{int ldep, rdep;if (bt == NULL){return 0;}else{ldep = TreeDepth(bt->lchild);rdep = TreeDepth(bt->rchild);if (ldep > rdep){return (ldep +1);}else{return (rdep + 1);}}}void PrintTree(BiTree bt, int nlayer) /*11.按树状打印二叉树*/ {if (bt == NULL) /*如果是空则直接退出函数*/{return;}PrintTree(bt->rchild,nlayer + 1);for ( int i = 0; i < nlayer; i++){printf("----");}printf("%c\n",bt->data);PrintTree(bt->lchild,nlayer + 1);}void PreOrderTree(BiTree bt) /*12.非递归先序遍历*/BiTree Stack[Max];BiTree p = bt;int top = 0;while (p != NULL || top != 0){if (p != NULL){printf("%c",p->data);top++;Stack[top] = p;p = p->lchild;}else{p = Stack[top];top--;p = p->rchild;}}}void InOrderTree(BiTree bt) /*13.非递归中序遍历*/ {BiTree Stack[Max];BiTree p = bt;int top = 0;do{while (p != NULL){top++;Stack[top] = p;p = p->lchild;}if (top != 0){p = Stack[top];top--;printf("%c",p->data);p = p->rchild;}}while ((p != NULL) || (top != 0));void PostOrderTree(BiTree bt) /*14.非递归后序遍历*/ {BiTree p, q;int top = 0;BiTree Stack[Max];q = NULL;p = bt;while ((p != NULL) || (top != 0)){while (p != NULL){top++;Stack[top] = p;p = p->lchild;}if (top > 0){p = Stack[top];if ((p->rchild == NULL) || (p->rchild == q)){printf("%c",p->data);q = p;p = NULL;top--;}else{p = p->rchild;}}}}void LayerOrder(BiTree bt) /*15.层次遍历*/{int front,rear;BiTree Q[Max];front = 0;rear = front;BiTree r, s, p;r = s = p = bt;if (p == NULL) return;Q[rear] = p;rear++;while (front != rear){s = r = Q[front];printf("%c",Q[front]->data);front++;if (r->lchild){Q[rear] = r->lchild;rear++;}if (s->rchild){Q[rear] = s->rchild;rear++;}}}int main(){BiTree bt;int choice;int i,j,k;int nlayer = 1;printf("请用数字选择操作:\n");printf("1.按先序序列创建二叉树(二叉链表)\n");printf("2.递归先序遍历二叉树\n");printf("3.递归中序遍历二叉树\n");printf("4.递归后序遍历二叉树\n");printf("5.输出叶子结点(即度为零的结点)\n");printf("6.统计叶子结点数目\n");printf("7.输出度为一的结点\n");printf("8.输出度为二的结点\n");printf("9.统计二叉树中结点总数\n");printf("10.求二叉树的高度(即深度)\n");printf("11.按树状打印二叉树\n");printf("12.非递归先序遍历二叉树\n");printf("13.非递归中序遍历二叉树\n");printf("14.非递归后序遍历二叉树\n");printf("15.层次遍历二叉树\n");printf("0.则退出\n");while (1){printf("请输入你要执行的操作(0-15):");scanf("%d",&choice);if (choice == 0){break;}else switch (choice){case 1 : printf("\n请输入按先序建立二叉树的结点序列:");printf("\n说明:逐个输入,输入空格代表后继结点为空,按回车输入下一个结点。
二 叉 树
下图是1.2中所示的完全二叉树的顺序存储示意图。
例如,bt[3]
3=/12, 即在bt[1]中,其左
孩子在bt[2i]=bt[6]中,右孩子在bt[2i+1]=bt[7]中。
目录
二 叉 树
2)一般二叉树的顺序存储 一般的二叉树采取的办法是按完全二叉树的形式补齐 二叉树所缺少的结点,对补齐后的二叉树进行编号,将二 叉树的原有结点按编号存储到一维数组中。 下图给出了一棵一般二叉树改造后的完全二叉树形态 和其顺序存储状态示意图。
目录
二 叉 树
2021年1月30日星期六
性质3 对于一棵非空的二叉树,如果叶子结点数 为n0,度数为2的结点数为n2,则有n0=n2+1。
性质4 具有n个结点的完全二叉树的深度k log2n +1。
性质5 对于具有n个结点的完全二叉树,如果按照 」 从上到下和从左到右的顺序对二叉树中的所有结点从1
则ki无左孩子结点,即ki是叶子结点。因此完全二叉
树中编号i> n / 2 的结点必定是叶子结点。 (3)若2i+1≤n,则ki的右孩子结点编号是2i+1;
否则ki无右孩子结点。
目录
二 叉 树
2021年1月30日星期六
可用一维数组bt[]存放一棵完全二叉树,将标号 为i的结点的数据元素存放在分量bt[i]中,bt[0]不 用或用来存储结点数目。
typedef struct BiTNode { // 结点结构
ElemType data;
2021年1月30日星期六
目录
二 叉 树
二叉树、树及有序树是有区别的,二叉树不是树的特 例,主要差别在于二叉树的子树有左右之分。
在有序树中,虽然一个结点的孩子之间是有左右次序 的,但若该结点只有一个孩子时,就无须区分其左右次序。
实验报告 实验三 二叉排序树的建立和查找
实验三二叉排序树的建立和查找一、实验目的1.掌握二叉排序树的建立算法2.掌握二叉排序树查找算法。
二、实验环境操作系统和C语言系统三、预习要求复习二叉排序树的生成及查找算法,编写完整的程序。
四、实验内容实现二叉排序树上的查找算法。
具体实现要求:用二叉链表做存储结构,输入键值序列,建立一棵二叉排序树并在二叉排序树上实现查找算法。
五、参考算法#include <stdio.h>#include <stdlib.h>typedef int InfoType;typedef int KeyType; /*假定关键字类型为整数*/typedef struct node /*结点类型*/{KeyType key; /*关键字项*/InfoType otherinfo; /*其它数据域,InfoType视应用情况而定,下面不处理它*/struct node *lchild,*rchild; /*左右孩子指针*/}BSTNode;typedef BSTNode *BSTree; /*BSTree是二叉排序树的类型*/BSTNode *SearchBST(BSTree T,KeyType key){ /*在二叉排序树T上查找关键字为key的结点,成功时返回该结点位置,否则返回NULL*/if(T==NULL||key==T->key) /*递归的终结条件*/return T; /*若T为空,查找失败;否则成功,返回找到的结点位置*/if(key<T->key)return SearchBST(T->lchild,key);elsereturn SearchBST(T->rchild,key); /*继续在右子树中查找*/}void InsertBST(BSTree *T,int key){ /*插入一个值为key的节点到二叉排序树中*/BSTNode *p,*q;if((*T)==NULL){ /*树为空树*/(*T)=(BSTree)malloc(sizeof(BSTNode));(*T)->key=key;(*T)->lchild=(*T)->rchild=NULL;}else{p=(*T);while(p){q=p;if(p->key>key)p=q->lchild;else if(p->key<key)p=q->rchild;else{printf("\n 该二叉排序树中含有关键字为%d的节点!\n",key);return;}}p=(BSTree)malloc(sizeof(BSTNode));p->key=key;p->lchild=p->rchild=NULL;if(q->key>key)q->lchild=p;elseq->rchild=p;}}BSTree CreateBST(void){ /*输入一个结点序列,建立一棵二叉排序树,将根结点指针返回*/BSTree T=NULL; /*初始时T为空树*/KeyType key;scanf("%d",&key); /*读入一个关键字*/while(key){ /*假设key=0是输入结束标志*/ InsertBST(&T,key); /*将key插入二叉排序树T*/scanf("%d",&key); /*读入下一关键字*/}return T; /*返回建立的二叉排序树的根指针*/ }void ListBinTree(BSTree T) /*用广义表示二叉树*/{if(T!=NULL){printf("%d",T->key);if(T->lchild!=NULL||T->rchild!=NULL){printf("(");ListBinTree(T->lchild);if(T->rchild!=NULL)printf(",");ListBinTree(T->rchild);printf(")");}}}void main(){BSTNode *SearchBST(BSTree T,KeyType key);void InsertBST(BSTree *Tptr,KeyType key);BSTree CreateBST();void ListBinTree(BSTree T);BSTree T;BSTNode *p;int key;printf("请输入关键字(输入0为结束标志):\n");T=CreateBST();ListBinTree(T);printf("\n");printf("请输入欲查找关键字:");scanf("%d",&key);p=SearchBST(T,key);if(p==NULL)printf("没有找到%d!\n",key);elseprintf("找到%d!\n",key);ListBinTree(p);printf("\n");}实验中出现的问题及对问题的解决方案输入数据时,总是不能得到结果,原因是在建立二叉树函数定义中,是对指针的值进行了修改。
数据结构——用C语言描述(第3版)教学课件第6章 树与二叉树
6.2 二叉树 6.2.1 二叉树的定义与基本操作 6.2.2 二叉树的性质 6.2.3 二叉树的存储结构
6.2.1 二叉树的定义与基本操作 定义:我们把满足以下两个条件的树型结构叫做二 叉树(Binary Tree): (1)每个结点的度都不大于2; (2)每个结点的孩子结点次序不能任意颠倒。
有序树:在树T中,如果各子树Ti之间是有先后次序的,则称为有序树。 森林:m(m≥0)棵互不相交的树的集合。将一棵非空树的根结点删去,树就变成一 个森林;反之,给森林增加一个统一的根结点,森林就变成一棵树。
同构:对两棵树,通过对结点适当地重命名,就可以使两棵树完全相等(结点对应相 等,对应结点的相关关系也像等),则称这两棵树同构。
二叉树的基本结构由根结点、左子树和右子树组成
如图示
LChild Data RChild
Data
LChild RChild
用L、D、R分别表示遍历左子树、访问根结点、遍 历右子树,那么对二叉树的遍历顺序就可以有:
(1) 访问根,遍历左子树,遍历右子树(记做DLR)。 (2) 访问根,遍历右子树,遍历左子树(记做DRL)。 (3) 遍历左子树,访问根,遍历右子树(记做LDR)。 (4) 遍历左子树,遍历右子树,访问根 (记做LRD)。 (5) 遍历右子树,访问根,遍历左子树 (记做RDL)。 (6) 遍历右子树,遍历左子树,访问根 (记做RLD)。
(8) NextSibling(Tree,x): 树Tree存在,x是Tree中的某个结点。若x不 是其双亲的最后一个孩子结点,则返回x后面的下一个兄弟结点,否则 返回“空”。
基本操作:
(9) InsertChild(Tree,p,Child): 树Tree存在,p指向Tree 中某个结点,非空树Child与Tree不相交。将Child插入Tree中, 做p所指向结点的子树。
数据结构C语言版_二叉排序树
// 访问的最后一个结点并返回0,指针f指向T的双亲,其初始调用值为NULL
void SearchBST1(BiTree *T,KeyType key,BiTree f,BiTree *p,int *flag)
{
// 否则返回0。
int InsertBST(BiTree *T, ElemType e)
{
BiTree p,s;
int flag;
SearchBST1(T,e.key,NULL,&p,&flag);
if(!flag) // 查找不成功
{
s=(BiTree)malloc(sizeof(BiTNode));
free(s);
}
}
// 算法9.7 P230
// 若二叉排序树T中存在关键字等于key的数据元素时,则删除该数据元素结点,
// 并返回1;否则返回0。
int DeleteBST(BiTree *T,KeyType key)
{
if(!*T) // 不存在关键字等于key的数据元素
DestroyDSTable(&(*DT)->rchild); // 销毁右孩子子树
free(*DT); // 释放根结点
*DT=NULL; // 空指针赋0
}
}
// 算法9.5(a) P228
// 在根指针T所指二叉排序树中递归地查找某关键字等于key的数据元素,
}
// 销毁动态查找表DT
void DestroyDSTable(BiTree *DT)
C语言版数据结构知识点汇总
C语言版数据结构知识点汇总C语言是一种强大的编程语言,广泛应用于数据结构与算法的实现。
掌握C语言版数据结构的知识可以帮助开发人员更好地理解和设计高效的程序。
下面是C语言版数据结构的一些重要知识点的汇总:1. 数组(Array):数组是一种基本的数据结构,用于存储一系列相同类型的元素。
在C语言中,数组是通过下标来访问元素的,数组下标从0开始计数。
2. 链表(Linked List):链表是一种动态数据结构,不需要连续的内存空间。
链表由一系列结点组成,每个结点包含数据和指向下一个结点的指针。
常见的链表有单向链表、双向链表和循环链表。
3. 栈(Stack):栈是一种先进后出(LIFO)的数据结构,只能在末尾进行插入和删除操作。
在C语言中,栈可以用数组或链表来实现。
栈常用于表达式求值、函数调用和递归等场景。
4. 队列(Queue):队列是一种先进先出(FIFO)的数据结构,只能在一端进行插入操作,另一端进行删除操作。
在C语言中,队列可以用数组或链表来实现。
队列常用于广度优先和任务调度等场景。
5. 树(Tree):树是一种非线性的数据结构,由一系列的结点组成,每个结点可以有多个子结点。
树的一些重要特点包括根结点、父结点、子结点、叶子结点和深度等。
常见的树结构有二叉树和二叉树。
6. 图(Graph):图是一种非线性的数据结构,由一组顶点和一组边组成。
图的一些重要概念包括顶点的度、路径、连通性和环等。
图有多种表示方法,包括邻接矩阵和邻接表。
7.查找算法:查找算法用于在数据集中查找特定元素或确定元素是否存在。
常见的查找算法有顺序查找、二分查找和哈希查找。
在C语言中,可以使用数组、链表和树来实现不同的查找算法。
8.排序算法:排序算法用于将数据集中的元素按照特定的顺序进行排列。
常见的排序算法有冒泡排序、插入排序、选择排序、快速排序和归并排序等。
排序算法的选择取决于数据规模、时间复杂度和稳定性等因素。
9. 堆(Heap):堆是一种特殊的树结构,具有如下特点:完全二叉树、最大堆或最小堆的性质。
摩斯密码 c语言 二叉树
摩斯密码 c语言二叉树摩斯密码是一种将字母和数字转换为短信号和长信号的编码方式。
在莫尔斯电码中,点表示短信号,横线表示长信号。
二叉树是一种树状数据结构,其中每个节点最多有两个子节点。
二叉树可以用于搜索和排序,以及在计算机科学中的其他许多应用程序。
以下是使用C语言实现摩斯密码和二叉树:摩斯密码:```。
#include <stdio.h>。
#include <string.h>。
int main ()。
char msg[100];。
char morse[26][5] = {".-", "-...", "-.-.", "-..", ".", "..-.", "--.", "....", "..", ".---", "-.-", ".-..", "--", "-.", "---", ".--.", "--.-", ".-.", "...", "-", "..-", "...-", ".--", "-..-", "-.--", "--.."};。
int i, j;。
printf("Enter a message to convert to Morse code: ");。
fgets(msg, sizeof(msg), stdin);。
msg[strlen(msg)-1] = '\0';。
c语言括号表示法二叉树队列
c语言括号表示法二叉树队列
在C语言中,可以使用括号表示法来表示二叉树队列。
括号表示法是一种将二叉树以字符串形式表示的方法,通过括号和逗号来表示节点之间的关系。
在括号表示法中,每个节点由两部分组成:节点值和子树。
节点值用一个字符或字符串表示,子树则用括号包围起来,其中左子树在前,右子树在后,用逗号分隔。
例如,以下是一个二叉树的括号表示法:(A,(B,(D),(E)),(C,(F),(G)))
这个二叉树的根节点是A,它有两个子树:左子树是(B,(D),(E)),右子树是(C,(F),(G))。
左子树的根节点是B,它没有左子树和右子树。
右子树的根节点是C,它的左子树是(F),右子树是(G)。
在使用括号表示法来实现二叉树队列时,我们可以使用一个字符数组来存储括号表示法的字符串。
然后,我们可以通过遍历该字符数组,按照规定的方式解析字符串,构建出对应的二叉树队列。
请注意,括号表示法只是一种表示二叉树的方式,并不直接对应于二叉树的内部数据结构。
因此,在实际使用中,我们可能需要定义自己的二叉树结构,并编写相应的函数来解析和操作括号表示法字符串。
1。