七年级上册数学 期末试卷检测题(Word版 含答案)
七年级上册数学 期末试卷试卷(word版含答案)
七年级上册数学期末试卷试卷(word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知:线段AB=30cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以4厘米/秒运动,经过几秒,点P、Q两点能相遇?(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点P出发3秒后,点Q沿线段BA自B点向A点以4厘米/秒运动,问再经过几秒后点P、Q两点相距6cm?(3)如图2,AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若P、Q两点能相遇,直接写出点Q运动的速度.【答案】(1)解:30÷(2+4)=5(秒),答:经过5秒,点P、Q两点能相遇.(2)解:设再经过x秒后点P、Q两点相距6cm.当点P在点Q左边时,2(x+3)+4x+6=30解得x=3;当点P在点Q右边时,2(x+3)+4x-6=30解得x=5,所以再经过3或5秒后点P、Q两点相距6cm;(3)解:设点Q运动的速度为每秒xcm.当P、Q两点在点O左边相遇时,120÷60x=30-2,解得x=14;当P、Q两点在点O右边相遇时,240÷60x=30-6,解得x=6,所以若P、Q两点能相遇点Q运动的速度为每秒14cm或6cm.【解析】【分析】(1)根据点P、Q运动路程和等于AB求解;(2)分点P在点Q左右两边两种可能来解答;(3)分情况讨论,P、Q在点O左右两边相遇来解答.2.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数________ ,点P表示的数________(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【答案】(1)点B表示的数是﹣6;点P表示的数是8﹣5t(2)解:设点P运动x秒时,在点C处追上点Q (如图)则AC=5x,BC=3x,∵AC﹣BC=AB∴5x﹣3x=14…解得:x=7,∴点P运动7秒时,在点C处追上点Q(3)解:没有变化.分两种情况:①当点P在点A.B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB=7…②当点P运动到点B的左侧时:MN=MP﹣NP= AP﹣ BP= (AP﹣BP)= AB=7…综上所述,线段MN的长度不发生变化,其值为7…(4)解:式子|x+6|+|x﹣8|有最小值,最小值为14.…【解析】【分析】(1)由于A点表示的数是8,故OA=8,又AB=14,从而得出OB=AB-OA=6,由于点B表示的数在原点的左边,故B点表示的数是-6,根据路程等于速度乘以时间得出AP=5t,从而得出P点表示的数是8-5t;(2)设点P运动x秒时,在点C处追上点Q (如图)格努路程定于速度乘以时间得出AC=5x,BC=3x,然后由AC﹣BC=AB列出方程求解即可得出x的值;(3)没有变化.根据线段中点的定义得出PM=AP,NP=BP,分两种情况:①当点P在点A.B两点之间运动时,由MN=MP+NP= AP+ BP= (AP+BP)= AB得出答案;②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP)= AB得出答案,综上所述即可得出答案;(4)式子|x+6|+|x﹣8|有最小值,最小值为14,点D是数轴上一点,点D表示的数是x,那么|x+6|表示点D,B两点间的距离,|x﹣8|表示点D,A两点间的距离,要|x+6|+|x﹣8|其实质就是DB+AD的和,要DB+AD的和最小,只有在D为线段AB上的时候,DB+AD的和最小=AB,即可得出答案。
七年级数学上册期末考试卷及答案【完整版】
七年级数学上册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.黄金分割数512-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .46.如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠17.如图,数轴上两点A,B 表示的数互为相反数,则点B 表示的( )A .-6B .6C .0D .无法确定8.如图,已知1l AB ∕∕,AC 为角平分线,下列说法错误的是( )A .14∠=∠B .15∠=∠C .23∠∠=D .13∠=∠9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是________.4.已知x =3是方程2x a -—2=x —1的解,那么不等式(2—5a )x <13的解集是________.5.若不等式组2x b 0{x a 0-≥+≤的解集为3≤x ≤4,则不等式ax+b <0的解集为________.6.若13a +与273a -互为相反数,则a=________. 三、解答题(本大题共6小题,共72分)1.解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩2.已知m ,n 互为相反数,且m n ≠,p ,q 互为倒数,数轴上表示数a 的点距原点的距离恰为6个单位长度。
七年级数学(上册)期末试卷及答案(完美版)
七年级数学(上册)期末试卷及答案(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.下列说法不正确的是( )A .过任意一点可作已知直线的一条平行线B .在同一平面内两条不相交的直线是平行线C .在同一平面内,过直线外一点只能画一条直线与已知直线垂直D .直线外一点与直线上各点连接的所有线段中,垂线段最短3.下列图形中,是轴对称图形的是( )A .B .C .D .4.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A .45°B .60°C .75°D .85°5.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0a b< 6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°8.如图,直线AB 、CD 、EF 相交于点O ,其中AB ⊥CD ,∠1:∠2=3:6,则∠EOD =( )A .120°B .130°C .60°D .150°9.设42a ,小数部分为b ,则1a b-的值为( ) A .2- B 2C .21+ D .21 10.把代数式244ax ax a -+分解因式,下列结果中正确的是( ).A .()22a x -B .()22a x +C .()24a x -D .()()22a x x +-二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.3.已知点A (0,1),B (0 ,2),点C 在x 轴上,且2ABC S ∆=,则点C 的坐标________.4.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =________.5.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.6.近似数2.30万精确到________位.三、解答题(本大题共6小题,共72分)1.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩ (2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩2.先化简,再求值:(x +2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =2019.3.如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D ,(1)求证:AB=CD ;(2)若AB=CF ,∠B=30°,求∠D 的度数.4.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.5.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、C5、D6、C7、A8、D9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、12、a+c3、(4,0)或(﹣4,0)4、40或805、76、百三、解答题(本大题共6小题,共72分)1、(1)12xy=⎧⎨=-⎩(2)2345xy⎧=-⎪⎪⎨⎪=⎪⎩2、(x﹣y)2;1.3、(1)略;(2)∠D=75°.4、(1)65°(2)证明略5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。
数学七年级上册 期末试卷检测(基础+提高,Word版 含解析)
数学七年级上册期末试卷检测(基础+提高,Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧(1)若AB=18,DE=8,线段DE在线段AB上移动①如图1,当E为BC中点时,求AD的长;②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长;(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式,则________.【答案】(1)解:①又 E为BC中点;②设,因点F(异于A、B、C点)在线段AB上,可知:,和当时,此时可画图如图2所示,代入得:解得:,即AD的长为3当时,此时可画图如图3所示,代入得:解得:,即AD的长为5综上,所求的AD的长为3或5;(2) .【解析】【解答】(2)①若DE在如图4的位置设,则又(不符题设,舍去)②如DE在如图5的位置设,则又代入得:解得:则 .【分析】(1)①根据AB的长和可求出AC和BC,根据中点的定义可得CE,再由可得CD,最后根据计算即可得;②设,因点F(异于A、B、C点)在线段AB上,可知,和,所以需分2种情况进行讨论:和,如图2、3(见解析),先根据已知条件判断点E、F位置,再将EF和CE用含x的式子表示出来,最后代入求解即可;(2)设,先判断出DE在AB上的位置,再根据得出x和y 满足的等式,然后将其代入化简即可得.2.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.3.一副直角三角板(其中一个三角板的内角是45°,45°,90°,•另一个是30°,60°,90°)(1)如图①放置,AB⊥AD,∠CAE=________,BC与AD的位置关系是________;(2)在(1)的基础上,再拿一个30°,60°,90°的直角三角板,如图②放置,将AC′边和AD 边重合, AE是∠CAB′的角平分线吗,如果是,请加以说明,如果不是,请说明理由. (3)根据(1)(2)的计算,请解决下列问题:如图③∠BAD=90°,∠BAC=∠FAD= (是锐角),将一个45°,45°,90°直角三角板的一直角边与AD边重合,锐角顶点A与∠BAD的顶点重合,AE是∠CAF的角平分线吗?如果是,请加以说明,如果不是,请说明理由.【答案】(1)15°;BC与AD相互平行(2)解:AE是∠CAB′的角平分线.理由如下:如图②,∵∠EAD=45°,∠B′AC′=30°,∴∠EAB′=∠EAD-∠B′AC′=15°.又由(1)知,∠CAE=15°,∴∠CAE=∠EAB′,即AE是∠CAB′的角平分线(3)解:AE是∠CAF的角平分线.理由如下:如图③,∵∠EAD=45°,∠BAD=90°,∴∠BAE=∠DAE=45°,又∵∠BAC=∠FAD=α,∴∠BAE-∠BAC=∠DAE-∠FAD,∴∠CAE=∠FAE,即AE是∠CAF的角平分线【解析】【解答】(1)解:∵AB⊥AD,∴∠BAD=90°,∴∠CAE=90°-45°-30°=15°,∵AB⊥AD,AB⊥BC,∴BC与AD相互平行【分析】(1)∠CAE=∠BAD-∠BAC-∠EAD=15°,因为AB⊥AD,AB⊥BC,所以BC与AD相互平行;(2)先计算出∠EAB′=∠EAD-∠B′AC′=15°,由(1)可得∠EAB′=∠CAE,所以AE是∠CAB′的角平分线;(3)分别计算出∠CAE=∠FAE=45°-α,所以AE是∠CAF的角平分线.4.如图,O为直线AB上一点,∠BOC=36°.(1)若OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数:(2)若∠AOD=∠AOC,∠DOE=60°,如图(b)所示,求∠AOE的度数:(3)若∠AOD=∠AOC,∠DOE=(n≥2,且n为正整数),如图(c)所示,请用n含的代数式表示∠AOE的度数________(直接写出结果).【答案】(1)解:∵∠BOC=36°,OD平分∠AOC,∴∠AOD=∠DOC=72°,∵∠DOE=90°,则∠AOE=90°−72°=18°;故答案为:18°(2)解:设∠AOD=x,则∠DOC=2x,∠BOC=180°−3x=36°,解得:x=48°,∴∠AOE=60°-x=60°−48°=12°(3) .【解析】【解答】(3)设∠AOD=x,则∠DOC=(n−1)x,∠BOC=180°-nx=36°,解得:x=,∴∠AOE=-=.【分析】(1)利用角平分线的性质得出∠AOD=∠DOC=72°,进而得出∠AOE的度数;(2)设∠AOD=x,则∠DOC=2x,∠BOC=180°−3x=36°,得出x的值,进而得出∠AOE 的度数;(3)利用(2)中作法,得出x与α的关系,进而得出答案.5.我们学过角的平分线的概念类比给出新概念:从一个角的顶点出发把这个角分成1:2的两个角的射线,叫做这个角的三分线显然,一个角的三分线有两条,例如:如图1,若∠BOC=2∠AOC,则OC是∠AOB的一条三分线。
七年级数学(上册)期末试卷及答案(完整)
七年级数学(上册)期末试卷及答案(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.方程13153520052007x x x x ++++=⨯的解是x =( ) A .20062007 B .20072006 C .20071003D .10032007 2.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为A .32B .3C .1D .43 3.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为( )A .180B .182C .184D .1864.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.将长方形ABCD 纸片沿AE 折叠,得到如图所示的图形,已知∠CED'=70°,则∠EAB 的大小是( )A.60°B.50°C.75°D.55°6.观察下列图形,是中心对称图形的是( )A.B. C. D.7.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.13208.如图,在数轴上,点A、B、C对应的数分别为a、b、c,若以下三个式子:b c<①,0a c②+<,0a b+<③都成立,则原点在()A.点A的左侧 B.点A和点B之间 C.点B和点C之间 D.点C的左侧9.已知实数a、b满足a+b=2,ab=34,则a﹣b=()A.1 B.﹣52C.±1 D.±5210.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:34x x-=________.2.若关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,则关于a、b的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是________. 3.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 _________.4.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是________.5.已知不等式组2123x a x b -<⎧⎨->⎩的解集为11x -<<,则()()11a b +-的值是________. 6.如图,直线12l l //,120︒∠=,则23∠+∠=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x ﹣1)=15 (2)71132x x -+-=2.已知,x 无论取什么值,式子35ax bx ++必为同一定值,求a b b +的值.3.如图是一块长方形的空地,长为x 米,宽为120米,现在它分成甲、乙、丙三部分,其中甲和乙是正方形形状.(1)乙地的边长为;(用含x的代数式表示)(2)若设丙地的面积为S平方米,求出S与x的关系式;x 时,求S的值.(3)当2004.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC 上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、,台,其中每台乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y的价格、销售获利如下表:甲型乙型丙型价格(元/台)1000800500销售获利(元/台)260190120()1购买丙型设备台(用含,x y的代数式表示) ;()2若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?()3在第()2题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、B5、D6、D7、B8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x (x +2)(x ﹣2).2、3212a b ⎧=⎪⎪⎨⎪=-⎪⎩3、44、40°5、6-6、200°三、解答题(本大题共6小题,共72分)1、(1)x=3;(2)x=-23.2、853、(1)(0)12x -米 (2)(120)(240)S x x =-- (3)32004、(1)证明略;(2)证明略.5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.--; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5 6、(1) 60x y台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。
七年级数学上册期末试卷综合测试卷(word含答案)
七年级数学上册期末试卷综合测试卷(word含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.把一副三角板放成如图所示.(1)当OD平分∠AOB时,求∠COB;(2)若摆成如图2,OB、OD重合,OM平分∠AOD,ON平分∠AOC,求∠MON;(3)将三角板OCD绕O点旋转,把OD旋转到∠AOB的内部或外部,(2)中的条件不变,试问∠MON的角度是否变化?若不变,求出它的值,并说理由.【答案】(1)解:∵OD平分∠AOB,∠AOB=90°∴∠DOB=∠AOB=45°∵∠DOC=30°∴∠COB=∠DOB-∠DOC=45°-30°=15°(2)解:如图,∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=45°∠AON=∠AOC=(90°+30°)=60°∴∠MON=∠AON-∠AOM=60°-45°=15°(3)解:把OD旋转到∠AOB的内部时,如图,∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=(90°-∠BOD)=45°-∠BOD∠AON=∠AOC=(∠AOB+∠COD-∠BOD)=60°-∠BOD∴∠MON=∠AON-∠MOA=15°把OD旋转到∠AOB的外部时,如图,设∠AOC=α,则∠AOD=360°-30°-α=330°-α∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=(330°-α)=165°-α∠AON=∠AOC=α∠MON=∠MOA+∠AON=165°-α+α=165°∴∠MON=15°或∠MON=165°【解析】【分析】(1)利用角平分线的定义求出∠DOB的度数,再根据∠COB=∠DOB-∠DOC,就可求出结果。
(完整版)人教版七年级数学上册期末试卷及答案(可编辑修改word版)
27.(7 分)∠COE=75° 28.(8 分)(1)50 元 (2)13 吨
6
22.计算(共 12 分,每小题 3 分) (1)12-(-18)+(-7)-15
(2)(-8)+4÷(-2)
3
(2)(-10)÷ 1 5 5
(4) ( 1 2 1) 24 234
23.解方程:(共 12 分,每小题 3 分)
(1) x 7 10 4(x 0.5)
(2)0.5y—0.7=6.5—1.3y
(1) -x2+13x-1
(2) 15a2b—6ab2
22. (共 12 分,每小题 3 分)
(1)8
(2)-10
23. (共 12 分,每小题 3 分)
(1)x=3
(1)x=-3/5
(3)250
(2) y=4 (2)x=3/8
(4)-2
24.(5 分)原式=-x2-1
原式=-5/4
25. (5 分)600 26.(5 分)解:设快马 X 天可以追上慢马,则
14.多项式 x2 3kxy 3y2 6xy 8 不含 xy 项,则 k=
;
15.若x=4 是关于x的方程 5x-3m=2 的解,则m= .
16.如图,点 A,B 在数轴上对应的实数分别为 m,n,则 A,B 间的距离是
.
(用含 m,n 的式子表示)
2
A m0
B nx
17.已知线段 AB=10cm,点 D 是线段 AB 的中点,直线 AB 上有一点 C,并且 BC=2 cm,则
()
A.5x=15-3(x -1)
B.x=1-(3 x -1)
C.5x=1-3(x -1)
初中七年级数学上册期末考试卷及答案【完整版】
初中七年级数学上册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-4.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,△ABC ≌△ADE ,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC 的度数为( )A .40°B .45°C .35°D .25°9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30° 10.一个多边形的内角和与外角和相等,则这个多边形是( )A .四边形B .五边形C .六边形D .八边形二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc +++结果是________. 2.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个. 3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B=70°,∠FAE=19°,则∠C=______度.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解下列方程(1)12225y y y -+-=- (2)()()()22431233x x x ---=-+2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .4.如图,直线AB,CD相交于点O,OD平分∠BOE,OF平分∠AOE(1)判断OF与OD的位置关系,并进行证明.(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、A2、C3、D4、A5、C6、D7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、23、4332a ≤≤ 4、50°5、246、7三、解答题(本大题共6小题,共72分)1、(1)711=y (2)x=0 2、353、(1)证明见解析;(2)∠FAE=135°;4、(1)OF ⊥OD ,证明详略;(2)∠EOF =60°.5、(1)作图见解析;(2)120.6、(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.。
七年级上册《数学》期末测试题(含答案)
七年级上册数学期末测试题(时间:120分钟,满分:120分)一、选择题(本大题共12小题,每小题3分,共36分.下列各题给出的四个选项中,只有一项符合题意)1.下列方程中,是一元一次方程的是( ) A.x 2-2x=4 B.x=0 C.x+3y=7D.x-1=1x2.下列计算正确的是( ) A.4x-9x+6x=-x B.12a-12a=0C.x 3-x 2=xD.xy-2xy=3xy 3.在解方程x-13+x=3x+12时,方程两边同时乘6,去分母后,正确的是( )A.2x-1+6x=3(3x+1)B.2(x-1)+6x=3(3x+1)C.2(x-1)+x=3(3x+1)D.(x-1)+x=3(x+1)4.点A ,B 在数轴上的位置如图所示,其表示的数分别是a 和b 。
对于以下结论:甲:b-a<0;乙:a+b>0;丙:|a|<|b|;丁:ba >0。
其中正确的是( ) A.甲、乙B.丙、丁C.甲、丙D.乙、丁5.如图,在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,则∠AOB 的大小为( )A.69°B.111°C.159°D.141°6.一件衣服按原价的九折销售,现价为a 元,则原价为( ) A.916aB.109aC.1110aD.119a7.如图,小黄和小陈观察蜗牛爬行,蜗牛在以A 为起点沿直线匀速爬向点B 的过程中,到达点C 时用了6min ,则到达点B 还需要的时间是( )A.2minB.3minC.4minD.5min8.若长方形的周长为6m ,一边长为m+n ,则另一边长为( ) A.3m+nB.2m+2nC.2m-nD.m+3n9.(2020·内蒙古包头中考)2020年初,国家统计局发布数据,按现行国家农村贫困标准测算,截至2019年末,全国农村贫困人口减少至551万人,累计减少9348万人。
七年级数学上册期末试卷试卷(word版含答案)
七年级数学上册期末试卷试卷(word 版含答案)一、选择题1.2020的相反数是( ) A .2020B .﹣2020C .12020D .﹣120202.若关于x 的方程2x ﹣m=x ﹣2的解为x=3,则m 的值是( ) A .5 B .﹣5 C .7 D .﹣7 3.下列单项式中,与2a b 是同类项的是( ) A .22a b B .22a b C .2ab D .3ab 4.无论x 取什么值,代数式的值一定是正数的是( ) A .(x +2)2 B .|x +2| C .x 2+2 D .x 2-2 5.在钟表上,下列时刻的时针和分针所成的角为90°的是( )A .2点25分B .3点30分C .6点45分D .9点6.截止到今年6月初,东海县共拥有镇村公交线路28条,投入镇村公交42辆,每天发班236班次,日行程5286公里,方便了98. 46万农村人口的出行.数据“98. 46万”可以用科学记数法表示为() A .498.4610⨯ B .49.84610⨯ C .59.84610⨯ D .60.984610⨯ 7.下列各项中,是同类项的是( )A .xy -与2yxB .2ab 与2abcC .2x y 与2x zD .2a b 与2ab8.下列图形中,线段AD 的长表示点A 到直线BC 距离的是( )A .B .C .D .9.如图①,一种长方形餐桌的四周可坐6人用餐,现把若千张这样的餐桌按如图②方式进行拼接.那么需要_________张餐桌拼在一起可坐78人用餐( )A .13B .15C .17D .1910.某商店以90元相同的售价卖出2件不同的衬衫,其中一件盈利25%,另一件亏损25%.商店卖出这两件衬衫的盈亏情况是( )A .赚了B .亏了C .不赚也不亏D .无法确定11.某网店销售一件商品,已知这件商品的进价为每件400元,按标价的7折销售,仍可获利20%,设这件商品的标价为x 元,根据题意可列出方程( ) A .0.740020%400x -=⨯ B .0.740020%0.7x x -=⨯ C .()120%0.7400x -⨯=D .()0.7120%400x =-⨯12.如图,是一张长方形纸片(其中AB ∥CD ),点E ,F 分别在边AB ,AD 上.把这张长方形纸片沿着EF 折叠,点A 落在点G 处,EG 交CD 于点H .若∠BEH =4∠AEF ,则∠CHG 的度数为( )A .108°B .120°C .136°D .144° 13.若,,则多项式与的值分别为( ) A .6,26B .-6,26C .-6,-26D .6,-2614.如果a 和14-b 互为相反数,那么多项式()()2210723b a a b -++--的值是 ( ) A .-4B .-2C .2D .415.下列计算正确的是( )A .2334a a a +=B .﹣2(a ﹣b)=﹣2a+bC .5a ﹣4a=1D .2222a b a b a b -=-二、填空题16.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.17.当x =1时,代数式ax 2+2bx+1的值为0,则2a+4b ﹣3=_____. 18.12-的相反数是_________. 19.若232a b -=,则2622020b a -+=_______.20.若∠1+∠2=90°,∠2+∠3=90°,则∠1=∠3.理由是______. 21.按照下图程序计算:若输入的数是 -3 ,则输出的数是________22.如果单项式1b xy+-与23a xy -是同类项,那么()2019a b -=______.23.如图,已知直线AB 和CD 相交于点O ,射线OE 在COB ∠内部,OE OC ⊥,OF 平分AOE ∠,若40BOD ∠=,则COF ∠=__________度.24.小红在某月的日历中任意框出如图所示的四个数,但不小心将墨水滴在上面遮盖了其中的两个数,则b =______.(用含字母a 的代数式表示)25.如果1x =是方程240x k +-=的解,那么k 的值是_________三、解答题26.如图,直线AB 、CD 相交于点O ,已知∠AOC =75°,∠BOE :∠DOE =2:3.(1)求∠BOE 的度数;(2)若OF 平分∠AOE ,∠AOC 与∠AOF 相等吗?为什么?27.如图,已知点A 、B 、C 是数轴上三点,O 为原点,点A 表示的数为-12,点B 表示的数为8,点C 为线段AB 的中点.(1)数轴上点C 表示的数是 ;(2)点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当P 、Q 相遇时,两点都停止运动,设运动时间为t (t >0)秒. ①当t 为何值时,点O 恰好是PQ 的中点;②当t 为何值时,点P 、Q 、C 三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(三等分点是把一条线段平均分成三等分的点).(直接写出结果) 28.解方程: (1)4365x x -=-; (2)221134x x +-=+. 29.如图,在方格纸中, A 、 B 、 C 为 3 个格点,点 C 在直线 AB 外.(1)仅用直尺,过点 C 画AB 的垂线 m 和平行线n ; (2)请直接写出(1)中直线m 、n 的位置关系. 30.解方程:(1)()()23319x x --+= (2)2151146x x +--=- 31.小莉和她爸爸两人沿长江边扬子江步道匀速跑步,他们从渡江胜利纪念馆同时出发,终点是绿博园.已知小莉比她爸爸每步少跑 0.4m ,两人的运动手环记录时间和步数如下:出发 途中 结束时间 7:007:10a小莉的步数130831838808出发途中结束时间 7:007:107:25 爸爸的步数21684168b(1)表格中 a 表示的结束时间为 , b = ;(2)小莉和她爸爸两人每步分别跑多少米?(3)渡江胜利纪念馆到绿博园的路程是多少米?32.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =, ①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =; (2)如果2t s =时,1CD cm =,试探索AP 的值. 33.按要求画图:如图,在同一平面内有三点A 、B 、C . (1)画直线AB 和射线BC ;(2)连接线段AC ,取线段AC 的中点D ; (3)画出点D 到直线AB 的垂线段DE .四、压轴题34.[ 问题提出 ]一个边长为 ncm(n ⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm 的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手 (1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体; 一面涂色的:在面上,每个面上有1个,共有6个; 两面涂色的:在棱上,每个棱上有1个,共有12个; 三面涂色的:在顶点处,每个顶点处有1个,共有8个. (2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体: 一面涂色的:在面上,每个面上有4个,正方体共有 个面,因此一面涂色的共有 个;两面涂色的:在棱上,每个棱上有2个,正方体共有 条棱,因此两面涂色的共有 个; 三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有 个… [ 问题解决 ]一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。
七年级上册数学 期末试卷综合测试(Word版 含答案)
七年级上册数学 期末试卷综合测试(Word 版 含答案)一、选择题1.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A .a >bB .ab <0C .b a ->0D .+a b >02.2018年10月26日,南通市城市轨道交通2号线一期工程开工仪式在园林路站举行.南通市城市轨道交通2号线一期工程线路总长约为21000m ,将21000用科学记数法表示为( ) A .2.1×104B .2.1×105C .0.21×104D .0.21×1053.下列运用等式的性质,变形不正确的是: A .若x y =,则55x y +=+ B .若x y =,则ax ay = C .若x y =,则x y a a = D .若a bc c=(c ≠0),则a b = 4.一船在静水中的速度为20km /h ,水流速度为4km /h ,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm ,则下列方程正确的是( ) A .()()204x 204x 15++-= B .20x 4x 5+= C .x x 5204+= D .x x5204204+=+- 5.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( )A .B .C .D .6.截止到今年6月初,东海县共拥有镇村公交线路28条,投入镇村公交42辆,每天发班236班次,日行程5286公里,方便了98. 46万农村人口的出行.数据“98. 46万”可以用科学记数法表示为() A .498.4610⨯B .49.84610⨯C .59.84610⨯D .60.984610⨯7.下列运用等式性质进行变形:①如果a =b ,那么a ﹣c =b ﹣c ;②如果ac =bc ,那么a =b ;③由2x +3=4,得2x =4﹣3;④由7y =﹣8,得y =﹣,其中正确的有( ) A .1个B .2个C .3个D .4个8.下列各组中的两个单项式,属于同类项的一组是( ) A .23x y 与23xyB .3x 与3xC .22与2aD .5与-39.如图的平面展开图折叠成正方体后,相对面上的数都互为相反数,那么a 的值是( )A .1B .-2C .3D .b -10.如图,数轴的单位长度为1,如果点A 表示的数为-2,那么点B 表示的数是( )A .3B .2C .0D .-111.将一副直角三角尺按如图所示摆放,图中锐角∠1的度数为( )A .58°B .59°C .60°D .61°12.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2的大小是( )A .27°40′B .57°40′C .58°20′D .62°20′13.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( ) A .商品的利润不变 B .商品的售价不变 C .商品的成本不变D .商品的销售量不变14.下列计算正确的是( ) A .325a b ab += B .532y y -= C .277a a a +=D .22232x y yx x y -= 15.如图,直线a ,b 相交于点O ,若1∠等于36︒,则2∠等于( )A .54︒B .64︒C .144︒D .154︒二、填空题16.如图,点C 在线段AB 上,8,6AC CB ==,点,M N 分别是,AC BC 的中点,则线段MN =____.17.单项式-4x 2y 的次数是__.18.2019年1至6月份,东台黄海森林公园入园人数约为280000人,数字280000用科学记数法可以表示为_______________.19.在数轴上到-3的距离为4个单位长度的点表示的数是___. 20.比较大小:0.4--_________(0.4)--(填“>”“<”或“=”).21.已知数轴上点A ,B 分别对应数a ,b .若线段AB 的中点M 对应着数15,则a +b 的值为_____.22.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.23.如图,已知∠AOB =150°,∠COD =40°,∠COD 在∠AOB 的内部绕点O 任意旋转,若OE 平分∠AOC ,则2∠BOE ﹣∠BOD 的值为___°.24.在 -2 、-3 、4、5 中选取2个数相除,则商的最小值是________. 25.观察下面两行数第一行: 1,4,9,16,25,36---⋯ 第二行: 3,2,11,14,27,34---⋯ 则第二行中的第8个数是 __________.三、解答题26.计算下列各题: (1)1021(2)11-+--⨯ (2)2019111(3)69--÷-⨯ 27.如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图: (1)画射线CB 交直线l 于点F ; (2)连接BA ;(3)在直线l 上确定点E ,使得AE+CE 最小.28.、两地相距,甲、乙两车分别沿同一条路线从地出发驶往地,已知甲车的速度为,乙车的速度为,甲车先出发后乙车再出发,乙车到达地后再原地等甲车.(1)求乙车出发多长时间追上甲车? (2)求乙车出发多长时间与甲车相距?29.如图,直线AB 、CD 相交于点O ,BOD ∠与∠BOE 互为余角,18BOE ∠=︒.求AOC ∠的度数.30.如图所示,直线AB 、CD 相交于点O ,OM ⊥AB . (1)若∠1=∠2,判断ON 与CD 的位置关系,并说明理由; (2)若∠1=15∠BOC ,求∠MOD 的度数.31.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,FOC ∠=90°,∠1=40°.求∠2和∠3的度数.32.先化简,在求值:221523243m mn mn m ⎡⎤⎛⎫--++ ⎪⎢⎥⎝⎭⎣⎦,其中2m =-,12n =33.解方程(1)5x ﹣1=3(x +1) (2)2151136x x +--= 四、压轴题34.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值. 35.一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由; (3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对”. 36.点O 在直线AD 上,在直线AD 的同侧,作射线OB OC OM ,,平分AOC ∠. (1)如图1,若40AOB ∠=,60COD ∠=,直接写出BOC ∠的度数为 ,BOM ∠的度数为 ;(2)如图2,若12BOM COD ∠=∠,求BOC ∠的度数; (3)若AOC ∠和AOB ∠互为余角且304560AOC ∠≠,,,ON 平分BOD ∠,试画出图形探究BOM ∠与CON ∠之间的数量关系,并说明理由.37.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a的值.38.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .39.数轴上有两点A ,B , 点C ,D 分别从原点O 与点B 出发,沿BA 方向同时向左运动.(1)如图,若点N 为线段OB 上一点,AB=16,ON=2,当点C ,D 分别运动到AO ,BN 的中点时,求CD 的长;(2)若点C 在线段OA 上运动,点D 在线段OB 上运动,速度分别为每秒1cm, 4cm ,在点C ,D 运动的过程中,满足OD=4AC ,若点M 为直线AB 上一点,且AM-BM=OM ,求AB OM的值.40.如图,两条直线AB,CD 相交于点O ,且90AOC ∠=,射线OM 从OB 开始绕O 点逆时针方向旋转,速度为15/s ,射线ON 同时从OD 开始绕O 点顺时针方向旋转,速度为12/s .两条射线OM 、ON 同时运动,运动时间为t 秒.(本题出现的角均小于平角)(1)当012t <<时,若369AOM AON ∠=∠-.试求出的值;(2)当06t <<时,探究BON COM AOCMON∠-∠+∠∠的值,问:t 满足怎样的条件是定值;满足怎样的条件不是定值?41.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .42.点O 为直线AB 上一点,在直线AB 同侧任作射线OC 、OD ,使得∠COD=90°(1)如图1,过点O 作射线OE ,当OE 恰好为∠AOC 的角平分线时,另作射线OF ,使得OF 平分∠BOD ,则∠EOF 的度数是__________度;(2)如图2,过点O 作射线OE ,当OE 恰好为∠AOD 的角平分线时,求出∠BOD 与∠COE 的数量关系;(3)过点O 作射线OE ,当OC 恰好为∠AOE 的角平分线时,另作射线OF ,使得OF 平分∠COD ,若∠EOC=3∠EOF ,直接写出∠AOE 的度数43.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD . (1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据图示知b <a <0,然后利用不等式的性质对以下选项进行一一分析、判断. 【详解】 解:如图:根据数轴可知,b <a <0, A 、a >b ,正确; B 、ab >0,故B 错误; C 、0b a -<,故C 错误; D 、0a b +<,故D 错误; 故选:A. 【点睛】本题考查了利用数轴比较大小,解题的关键是根据数轴得到b <a <0.2.A解析:A【解析】 【分析】根据科学记数法的定义判断即可. 【详解】根据科学记数法表示方法:21000=2.1×104. 故选A. 【点睛】本题考查科学记数法的表示方法,熟记科学记数法的定义是解题关键.3.C解析:C 【解析】 【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立. 【详解】A 、若x =y ,则x +5=y +5,此选项正确;B 、若x y =,则ax ay =,此选项正确;C 、若x =y ,当a ≠0时x ya a=不成立,故此选项错误; D 、若a bc c =,则a b =(c ≠0),则 a =b ,此选项正确; 故选:C . 【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.4.D解析:D 【解析】 【分析】由题意可得顺水中的速度为(20+4)km/h ,逆水中的速度为(20﹣4)km/h ,根据“从甲码头顺流航行到乙码头,再返回甲码头共用5h ”可得顺水行驶x 千米的时间+逆水行驶x 千米的时间=5h ,根据等量关系代入相应数据列出方程即可. 【详解】若设甲、乙两码头的距离为xkm ,由题意得:204204x x+=+-5. 故选D . 【点睛】本题考查了由实际问题抽象出一元一次方程,关键是正确理解题意,抓住题目中的关键语句,列出方程.5.B解析:B【解析】【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A 、设最小的数是x .x+x+7+x+7+1=19∴x=43,故本选项错误; B 、设最小的数是x .x+x+6+x+7=19,∴x=2,故本选项正确.C 、设最小的数是x .x+x+1+x+7=19, ∴x=113,故本选项错误. D 、设最小的数是x .x+x+1+x+8=19, ∴x=103,故本选项错误. 故选:B.【点睛】 本题考查一元一次方程的应用,需要学生具备理解题意能力,关键知道日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.6.C解析:C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将98.46万用科学记数法表示为59.84610 .故选:C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.解析:B【解析】【分析】直接录用等式的基本性质分析得出答案.【详解】解:①如果a=b,那么a-c=b-c,正确;②如果ac=bc,那么a=b(c≠0),故此选项错误;③由2x+3=4,得2x=4-3,正确;④由7y=-8,得y=-,故此选项错误;故选:B.【点睛】此题主要考查了等式的基本性质,正确把握性质2是解题关键.8.D解析:D【解析】【分析】所含字母相同,相同字母的指数也相同的项叫同类项,由此可确定.【详解】A选项,相同字母的指数不同,不是同类项,A错误;B选项,3x字母出现在分母上,不是整式,更不是单项式,B错误;C选项,不含有相同字母,C错误;D选项,都是数字,故是同类项,D正确.【点睛】本题考查了同类项,熟练掌握同类项的定义是解题的关键.9.A解析:A【解析】【分析】由展开图可知a的相对面为1-,根据题意可得a的值.【详解】解:因为相对面上的数都互为相反数,由展开图可知a的相对面为1-,所以a的值为1.故选:A【点睛】本题考查了正方体的展开图,熟练掌握展开图与立体图之间的关系是解题的关键. 10.A【解析】【分析】根据数轴的单位长度为1,点B在点A的右侧距离A点5个单位长度,直接计算即可.【详解】解:点B在点A的右侧距离A点5个单位长度,∴点B 表示的数为:-2+5=3,故选:A.【点睛】本题主要考查数轴,解决此题时,明确数轴上右边的数总是比左边的数大是解题的关键.11.C解析:C【解析】【分析】根据特殊直角三角形的角度即可解题.【详解】解:由特殊直角三角形可知,∠1=90°-30°=60°,故选C.【点睛】本题考查了特殊直角三角形的认识,属于简单题,熟悉特殊三角形的角度是解题关键. 12.B解析:B【解析】【分析】先由∠1=27°40′,求出∠CAE的度数,再根据∠CAE+∠2=90°即可求出∠2的度数.【详解】∵∠1=27°40′,∴∠CAE=60°-27°40′=32°20′,∴∠2=90°-32°20′= 57°40′.故选B.【点睛】本题考查了角的和差及数形结合的数学思想,认真读图,找出其中的数量关系是解答本题的关键.13.C解析:C【解析】【分析】0.8x-20表示售价与盈利的差值即为成本,0.6x+10表示售价与亏损的和即为成本,所以列此方程的依据为商品的成本不变.解:设标价为x 元,则按八折销售成本为(0.8x-20)元,按六折销售成本为(0.6x+10)元, 根据题意列方程得, 0.8200.610x x -=+.故选:C.【点睛】本题考查一元一次方程的实际应用,即销售问题,根据售价,成本,利润之间的关系找到等量关系列方程是解答此题的关键.14.D解析:D【解析】【分析】根据合并同类项的法则进行运算依次判断.【详解】解:A.两项不是同类项不能合并,错误;B. 532y y y -=,错误;C. 78a a a +=,错误;D.正确.故选D.【点睛】本题考查了合并同类项,系数相加字母部分不变是解题关键.15.C解析:C【解析】【分析】观察图形可知∠1和∠2是一对邻补角,由136∠=︒,可求∠2.【详解】解:因为直线a ,b 相交于点O ,所以12180∠+∠=︒,又因为136∠=︒,所以2180118036144∠=︒-∠=︒-︒=︒.故选:C .【点睛】本题考查了邻补角的性质,解题的关键是结合图形,熟练运用邻补角的性质,此题比较简单,易于掌握.二、填空题16.7【解析】根据线段中点求出MC和NC,即可求出MN;【详解】解:∵M、N分别是AC、BC的中点,AC=8,BC=6,∴MC=AC=4,CN=BC=3,∴MN=MC+CN=4+3解析:7【解析】【分析】根据线段中点求出MC和NC,即可求出MN;【详解】解:∵M、N分别是AC、BC的中点,AC=8,BC=6,∴MC=12AC=4,CN=12BC=3,∴MN=MC+CN=4+3=7,故答案为:7.【点睛】本题考查了两点间的距离,解题的关键是利用中点的定义求解.17.3【解析】【分析】直接利用单项式的次数的确定方法得出即可.【详解】单项式-4x2y的次数是2+1=3.故答案为:3.【点睛】本题考查了有关单项式的概念,正确把握单项式次数的确定方法是解析:3【解析】【分析】直接利用单项式的次数的确定方法得出即可.【详解】单项式-4x2y的次数是2+1=3.故答案为:3.【点睛】本题考查了有关单项式的概念,正确把握单项式次数的确定方法是解题的关键. 18.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1解析:52.810⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:280000=52.810⨯,故答案为:52.810⨯【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.19.1或【解析】【分析】数轴上到−3的距离为4个单位长度的点表示的数有2个:−3−4,−3+4,据此求解即可.【详解】解:∵−3−4=−7,−3+4=1,∴数轴上到−3的距离为4个单解析:1或 7-【解析】【分析】数轴上到−3的距离为4个单位长度的点表示的数有2个:−3−4,−3+4,据此求解即可.【详解】解:∵−3−4=−7,−3+4=1,∴数轴上到−3的距离为4个单位长度的点表示数是1和−7.故答案为1和−7.【点睛】本题主要考查了数轴的特征和应用,以及分类讨论思想的应用,要熟练掌握.20.<.【解析】【分析】先化简各值然后再比较大小. 【详解】,,∵-0.4<0.4,∴<.故答案为:<.【点睛】本题比较有理数的大小,关键在于掌握绝对值和去括号的计算.解析:<.【解析】【分析】先化简各值然后再比较大小.【详解】0.40.4--=-,(0.4)0.4--=,∵-0.4<0.4,∴0.4--<(0.4)--.故答案为:<.【点睛】本题比较有理数的大小,关键在于掌握绝对值和去括号的计算.21.【解析】【分析】由线段AB 的中点对应的数为15,可知点A 、B 两点分别在点M 的两侧,画出符合题意的图形,由数轴上两点之间的距离和点与数的对应关系求出a+b 的值为30.【详解】解:如图所示:解析:【解析】【分析】由线段AB 的中点对应的数为15,可知点A 、B 两点分别在点M 的两侧,画出符合题意的图形,由数轴上两点之间的距离和点与数的对应关系求出a +b 的值为30.【详解】解:如图所示:∵点A 、B 对应的数为a 、b ,∴AB =a ﹣b , ∴152a b a --=, 解得:a +b =30,故答案为:30.【点睛】 本题主要考查数轴,线段中点,数形结合是解题的关键.22.1,,.【解析】【分析】先根据题意算出乙和丙每分钟注水量,随着时间变化可以分三种情况讨论,①当甲比乙高,②乙比加高,③乙溢出到甲后,乙比甲高.【详解】试题分析:∵甲、乙、丙三个圆柱形容器(解析:1,75,17340. 【解析】【分析】先根据题意算出乙和丙每分钟注水量,随着时间变化可以分三种情况讨论,①当甲比乙高,②乙比加高,③乙溢出到甲后,乙比甲高.【详解】试题分析:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1, ∴甲、乙、丙三个圆柱形容器的底面积之比为1:4:1,∵每分钟同时向乙和丙注入相同量的水,注水1分钟,乙的水位上升56cm , ∴注水1分钟,丙的水位上升510463⨯=cm , ①当甲比乙高16cm 时,此时乙中水位高56cm ,用时1分; ②当乙比甲水位高16cm 时,乙应为76cm, 757=665÷分, 当丙的高度到5cm 时,此时用时为5÷103=32分, 因为73<52,所以75分乙比甲高16cm. ③当丙高5cm 时,此时乙中水高535624⨯=cm ,在这之后丙中的水流入乙中,乙每分钟水位上升55263⨯=cm ,当乙的水位达到5cm 时开始流向甲,此时用时为355+5243⎛⎫-÷ ⎪⎝⎭=154分,甲水位每分上升1020233⨯=cm ,当甲的水位高为546cm 时,乙比甲高16cm ,此时用时155201734146340⎛⎫+-÷= ⎪⎝⎭分; 综上,开始注入1,75,17340分钟的水量后,甲与乙的水位高度之差是16cm. 【点睛】本题考查圆柱体与水流变化的结合,关键在于找到三个分类节点.23.【解析】【分析】根据角平分线的意义,设,根据,,分别表示出图中的各个角,然后再计算的值即可.【详解】如图:∵OE 平分∠AOC ,∴∠AOE =∠COE ,设∠DOE =x ,∵∠COD =40°,解析:【解析】【分析】根据角平分线的意义,设DOE x ∠=,根据150AOB ∠=︒,40COD ∠=︒,分别表示出图中的各个角,然后再计算2BOE BOD ∠-∠的值即可.【详解】如图:∵OE 平分∠AOC ,∴∠AOE =∠COE ,设∠DOE =x ,∵∠COD =40°,∴∠AOE =∠COE =x +40,∴∠BOC =∠AOB ﹣∠AOC =150°﹣2(x +40°)=70°﹣2x ,∴2∠BOE ﹣∠BOD =2(70°﹣2x +40°+x )﹣(70°﹣2x +40°)=140°﹣4x +80°+2x ﹣70°+2x ﹣40°=110°.故答案为:110.【点睛】考查角平分线的意义,利用代数的方法解决几何的问题也是常用的方法,有时则会更简捷. 24.【解析】【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值.【详解】解:∵,,,,,,,,∴商的最小值为.故答案为:.【点睛】本题考解析:5 2 -【解析】【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值.【详解】解:∵1242,422,2255,5522,3344,4433,3355,5533,∴商的最小值为5 2 -.故答案为:5 2 -.【点睛】本题考查有理数的除法,掌握除法法则是解答此题的关键.25.-62【解析】【分析】根据数字规律,即可求出第二行中的第个数.【详解】第二行:3=12+2,-2=- 22+2, 11=32+2,-14=- 42+2, 27=52+2,-34=- 62+ 解析:-62【解析】【分析】根据数字规律,即可求出第二行中的第8个数.【详解】第二行:3=12+2,-2=- 22+2, 11=32+2,-14=- 42+2, 27=52+2,-34=- 62+2,故第二行中的第8个数是- 82+2=-62故答案为: -62.【点睛】此题考查的是数字的探索规律题,找到数字的变化规律是解决此题的关键.三、解答题26.(1)33;(2)1 2 -.【解析】【分析】(1)先计算乘法,再去括号,最后进行有理数加减混合运算;(2)先算乘方和小括号内的乘法,再计算除法,最后计算加法运算.【详解】解:(1)1021(2)11-+--⨯=1021(22)-+--=1122+=33(2)2019111(3)69 --÷-⨯=11 1()63 --÷-11(3)6=--⨯-112=-+12=-【点睛】本题考查含有乘方的有理数混合运算,解题关键是熟练掌握运算顺序和运算法则. 27.答案见解析【解析】【分析】根据射线的定义、线段的定义进行作图,E点即AC与直线l的交点.【详解】【点睛】本题考查的知识点是射线的定义和线段的定义,以及两点之间线段最短的基本事实. 28.(1)乙车出发2小时追上甲车;(2)乙车出发、、与甲车相距【解析】【分析】(1)设乙车出发x小时追上甲车,由此时甲车走了(x+1)小时,根据两车所走的路程相等,列出方程进行求解即可;(2)分乙车没追上甲车、乙车追上甲车、乙车到达B地而甲车没到达B地三种情况分别解即可.【详解】(1)设乙车出发x小时追上甲车,由此时甲车走了(x+1)小时,由题意得60(x+1)=90x,解得:x=2,答:乙车出发2小时追上甲车;(2)①(小时),②(小时),③4小时后,甲距离地60千米,乙到达地等甲,还有可能相距50米,(小时),答:乙车出发2小时追上甲车;乙车出发、、与甲车相距.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解(1)的关键,分情况讨论是解(2)的关键.29.72°.【解析】【分析】根据余角定义可得∠BOD=90°−18°=72°,再根据对顶角相等可得∠AOC=∠BOD=72°.【详解】∴∠与∠BOE互为余角解:BOD90BOD BOE ∴∠+∠=︒又18BOE ∠=︒90901872BOD BOE ∴∠=︒-∠=︒-︒=︒AOC ∠与BOD ∠是对顶角72AOC BOD ∴∠=∠=︒【点睛】此题主要考查了对顶角和余角,关键是掌握对顶角相等.30.(1)ON ⊥CD ,理由见解析;(2)157.5°【解析】【分析】(1)根据垂直的定义可得∠AOM=90°,进而可得∠1+∠AOC=90°,再利用等量代换可得∠2+∠AOC=90°,从而可得ON ⊥CD .(2)由题意可得∠1=15∠BOC =15(∠1+90°) ,进而可得∠MOD =90°+∠BOD =90°+∠AOC =180°-∠1,再代入∠1的度数即可的解.【详解】(1)ON ⊥CD .理由如下:∵OM ⊥AB ,∴∠AOM=90°,∴∠1+∠AOC=90°,又∵∠1=∠2,∴∠2+∠AOC=90°,即∠CON=90°,∴ON ⊥CD .(2) ∠1=15∠BOC =15(∠1+90°) , ∵∠1=22.5°,∴ ∠MOD =90°+∠BOD =90°+∠AOC =180°-∠1= 157.5°【点睛】本题考查角的计算,解题的关键是将所求角转化为已知角.31.∠2=65°,∠3=50°.【解析】【分析】首先根据平角以及∠FOC 和∠1的度数求出∠3的度数,然后根据∠3的度数求出∠AOD 的度数,根据角平分线的性质求出∠2的度数.【详解】∵AB 为直线,∴∠3+∠FOC+∠1=180°.∵∠FOC=90°,∠1=40°,∴∠3=180°-90°-40°=50°.∵∠3与∠AOD 互补,∴ ∠AOD=180°-∠3=130°.∵OE 平分∠AOD ,∴ ∠2=∠AOD=65°.【点睛】 考点:角平分线的性质、角度的计算.32.26m mn -+,11【解析】【分析】根据整式的加减运算进行化简,再代入m,n 即可求解.【详解】解:原式225264m mn mn m ⎡⎤=---+⎣⎦()22546m mn m =-+-22546m mn m =--+26m mn =-+ 当2m =-,12n =时 原式()()21226112=---⨯+=. 【点睛】此题主要考查整式的化简求值,解题的关键熟知整式的加减运算法则.33.(1)x =2;(2)x =﹣3.【解析】【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【详解】解:(1)去括号,可得:5x ﹣1=3x +3,移项,合并同类项,可得:2x =4,系数化为1,可得:x =2.(2)去分母,可得:2(2x +1)﹣(5x ﹣1)=6,去括号,可得:4x +2﹣5x +1=6,移项,合并同类项,可得:﹣x =3,系数化为1,可得:x =﹣3.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.四、压轴题34.(1)8;(2)4或10;(3)t 的值为167和329【解析】【分析】(1)由数轴上点B 在点A 的右侧,故用点B 的坐标减去点A 的坐标即可得到AB 的值; (2)设点C 表示的数为x ,再根据AC=3BC ,列绝对值方程并求解即可;(3)点C 位于A ,B 两点之间,分两种情况来讨论:点C 到达B 之前,即2<t<3时;点C 到达B 之后,即t>3时,然后列方程并解方程再结合进行取舍即可.【详解】解:(1)∵数轴上两点A ,B 表示的数分别为﹣2,6∴AB =6﹣(﹣2)=8答:AB 的值为8.(2)设点C 表示的数为x ,由题意得|x ﹣(﹣2)|=3|x ﹣6|∴|x +2|=3|x ﹣6|∴x +2=3x ﹣18或x +2=18﹣3x∴x =10或x =4答:点C 表示的数为4或10.(3)∵点C 位于A ,B 两点之间,∴点C 表示的数为4,点A 运动t 秒后所表示的数为﹣2+t ,①点C 到达B 之前,即2<t <3时,点C 表示的数为4+2(t ﹣2)=2t∴AC =t +2,BC =6﹣2t∴t +2=3(2t ﹣6)解得t =167②点C 到达B 之后,即t >3时,点C 表示的数为6﹣2(t ﹣3)=12﹣2t∴AC =|﹣2+t ﹣(12﹣2t )|=|3t ﹣14|,BC =6﹣(12﹣2t )=2t ﹣6∴|3t ﹣14|=3(2t ﹣6)解得t =329或t =43,其中43<3不符合题意舍去 答:t 的值为167和329 【点睛】本题考查了数轴上的动点问题,列一元一次方程和绝对值方程进行求解,是解答本题的关键.35.(1)94b =-;(2)92,2⎛⎫- ⎪⎝⎭(答案不唯一);(3)见解析 【解析】【分析】(1)根据“相伴数对”的定义,将()1,b 代入2323a b a b ++=+,从而求算答案;(2)先根据“相伴数对”的定义算出a 、b 之间的关系为:94a b =-,满足条件即可; (3)将将,a m b n == 代入2323a b a b ++=+得出49m n ,再将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到491,94n n -+-⎛⎫ ⎪⎝⎭,分别去计算等式左右两边,看是否恒等即可. 【详解】解:(1)∵()1,b 为“相伴数对”,将()1,b 代入2323a b a b ++=+得: 112323b b ++=+ ,去分母得:()151061b b +=+ 解得:94b =-(2)2323a b a b ++=+化简得:94a b =- 只要满足这个等量关系即可,例如:92,2⎛⎫-⎪⎝⎭(答案不唯一) (3)∵(),m n 是“相伴数对”将,a m b n == 代入2323a b a b ++=+: ∴2323m n m n ++=+ ,化简得:49m n 将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到:491,94n n -+-⎛⎫ ⎪⎝⎭ 将:491,94a nb n =-+=- 代入2323a b a b ++=+ 左边=49149942336n n n -+--+= 右边=49149942336n n n -++--=+∴左边=右边∴当(),m n 是“相伴数对”时, 91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对” 【点睛】本题考查定义新运算,正确理解定义是解题关键.36.(1)80°,20°;(2)90°;(3)当030AOB <∠<时,45BOM CON ∠+∠=;当3090AOB <∠<,45CON BOM ∠-∠=,理由见解析【解析】【分析】 (1)利用平角的定义、角平分线的定义和角的和差即可得出结论(2)设AOM COM x ∠=∠=,再根据已知12BOM COD ∠=∠得出∠BOM=90°-x , 再利用BOC BOM COM ∠=∠+∠即可得出结论(3)分030AOB <∠<,3090AOB <∠<两种情况加以讨论【详解】解:(1)∵∠AOB=40°,∠COD=60°∴∠BOC=180°-∠AOB -∠COD=80°,∠AOC=180°-∠COD =120°∵OM 平分∠AOC∴∠AOM=60°∴∠BOM=∠AOM-∠AOB =20°故答案为:80°,20°(2)∵OM 平分∠AOC∴设AOM COM x ∠=∠=,则1802COD x ∠=-∵12BOM COD ∠=∠ ∴()11802902BOM x x ∠=-=- ∴9090BOC BOM COM x x ∠=∠+∠=-+=(3)当030AOB <∠<时,即OB 在OM 下方时设AOB x ∠=∴90AOC x ∠=-∴1452AOM x ∠=-∴13454522BOM x x x ∠=--=-∴119022DOA DOB x ∠==-. ∴13909022CON DOC DON x x x ∠=∠-∠=+-+= ∴45BOM CON ∠+∠= ②当3090AOB <∠<,即OB 在OM 上方时设AOB x ∠=∴90AOC x ∠=-∴1452AOM x ∠=-∴3452BOM x ∠=- ∴1809090DOC x x ∠=-+=+,∵ON 平分BOD ∠,∴119022DON BOD x ∠=∠=- ∴32CON x ∠= ∴45CON BOM ∠-∠=【点睛】本题考查角的相关计算,难度适中,涉及角平分线的定义和邻补角相加等于180°的知识点;同时,里面的小题从易到难,体现了分类讨论的数学思想.37.(1)2;(2)存在,t=125;(3)54或127【解析】【分析】(1)根据AB 的长度和点P 的运动速度可以求得;(2)根据题意可得:当2BP BQ =时,点P 在AB 上,点Q 在BC 上,据此列出方程求解即可;(3)分两种情况:P 为接近点A 的三等分点,P 为接近点C 的三等分点,分别根据点的位置列出方程解得即可.【详解】解:(1)∵8AB =,点P 的运动速度为2个单位长度/秒,∴当P 为AB 中点时,。
初中七年级数学上册期末考试及答案【完整版】
初中七年级数学上册期末考试及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( )A .∠4,∠2B .∠2,∠6C .∠5,∠4D .∠2,∠44.下列图形具有稳定性的是( )A .B .C .D .5.两条直线被第三条直线所截,就第三条直线上的两个交点而言形成了“三线八角”.为了便于记忆,同学们可仿照图用双手表示“三线八角”(两大拇指代表被截直线,食指代表截线).下列三幅图依次表示( )A .同位角、同旁内角、内错角B .同位角、内错角、同旁内角C .同位角、对顶角、同旁内角D .同位角、内错角、对顶角6.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l的有()A.5个B.4个C.3个D.2个7.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定8.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°9.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm 10.下列四个不等式组中,解集在数轴上表示如图所示的是()A.23xx≥⎧⎨>-⎩B.23xx≤⎧⎨<-⎩C.23xx≥⎧⎨<-⎩D.23xx≤⎧⎨>-⎩二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC'=________.3.因式分解:2218x-=______.4.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是________.5.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF = CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.如图,直线AB、CD相交于点O,OE⊥AB于点O,且∠COE=34°,则∠BOD为________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)32316x yx y-=⎧⎨+=⎩(2)25528x yx y-=⎧⎨+=⎩2.解不等式组:2(3)47{22x xxx+≤++>并写出它的所有整数解.3.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为小时;(3)乙从出发起,经过小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?4.如图,已知∠A=∠ADE.(1)若∠EDC=3∠C,求∠C的度数;(2)若∠C=∠E.求证:BE∥CD.5.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴题小組.要求每人必须参加.并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情況,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数.并补全条形统计图(画图后请标注相应的数据);(2)________, ________;m n ==(3)若某校共有1200名学生,试估计该校选择“围棋”课外兴趣小组有多少人?6.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A 、B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7800万元,改扩建3所A 类学校和1所B 类学校共需资金5400万元.(1)改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划改扩建A 、B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过11800万元,地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校改扩建资金分别为每所300万元和500万元,请问共有哪几种改扩建方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、A5、B6、B7、B8、A9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、a≥22、53、2(x+3)(x﹣3).4、40°5、AC=DF(答案不唯一)6、56°三、解答题(本大题共6小题,共72分)1、(1)5{2xy==;(2)21xy=⎧⎨=-⎩.2、原不等式组的解集为122x-≤<,它的所有整数解为0,1.3、(1)10;(2)1;(3)3;(4)不一样,理由略;4、(1)45°;(2)详略.5、(1)150;补图见解析;(2)36,16;(3)选择“围棋”课外兴趣小组的人数为192人.6、(1)1200万元、1800万元;(2)共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.。
完整版)初一数学上册期末测试卷及答案
完整版)初一数学上册期末测试卷及答案初一数学上期末试题及答案一。
填空题(本大题共10小题,每小题3分,共30分)1.甲数的3与乙数的2的差用代数式表示为a×3-b×2.2.用四舍五入法,把47.6精确到个位的近似值是48.3.单项式2x2yz3的系数是2,次数是6.4.把多项式3a2b+2ab2-5axy+3x2y按y的降幂排列后,第二项是-5axy。
5.最大的负整数与绝对值最小的数的和为-2.6.在公式v=v0+at中,已知a=3,v0=17,v=5,则t=-4.7.某地下管道由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时相向施工,则要6天可以铺好。
8.若x=1是关于x的方程ax+b=(a≠0)的解,则a+b-1=0.9.某商品的进价为200元,原价为300元,折价销售后的利润率为5%,则此商品是按原价的折销售的。
10.如图是花圃摆放的一组花盆图案(“○”代表红花花盆,“×”代表黄花花盆)观察图案并探索:在第n个图案中,红花有2n-1盆,黄花有2n盆。
二。
选择题(本大题共10小题,每小题3分,共30分。
每小题只有一个答案正确,将正确答案的代号填入题后的括号里)11.下列各式中计算正确的是(B)。
A。
11-(-7)=18B。
23-(-3)=26C。
(6)+(-13)=-7D。
(-9)×5×(-4)×2=36012.若室内温度是16℃,室外温度是-5℃,那么室内的温度比室外的温度高(D)。
A。
-21℃B。
21℃C。
-11℃D。
11℃13.如果y=3x,z=2(y-1),那么x-y+z等于(B)。
A。
4x-1B。
4x-2C。
5x-1D。
5x-214.下列运算正确的是(C)。
A。
-2a-2a=-4aB。
2xy+3xy=5xyC。
1/2+1/2=1D。
2/15ab+ba^2=a^2b15.下列方程为一元一次方程的是(D)。
七年级数学上册期末考试及答案【完整版】
七年级数学上册期末考试及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+7C.12或7+7D.以上都不对2.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人3.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°4.如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数25的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上5.如图所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为()A .1°B .2°C .4°D .8°6.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( ) ①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④7.点()1,3M m m ++在y 轴上,则点M 的坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,28.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( )A .10℃B .6℃C .﹣6℃D .﹣10℃9.观察等式(2a ﹣1)a +2=1,其中a 的取值可能是( )A .﹣2B .1或﹣2C .0或1D .1或﹣2或010.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若关于x ,y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围为________.2.已知654a b c ==,且26a b c +-=,则a 的值为__________. 3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.把5×5×5写成乘方的形式__________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)326{2317x y x y -=+= (2)414{3314312x y x y +=---=2.解不等式组()31511242x x x x ⎧-<+⎪⎨-≥-⎪⎩,并写出它的所有非负整数解.3.已知坐标平面内的三个点A (1,3),B (3,1),O (0,0),求△ABO 的面积.4.如图表示的是汽车在行驶的过程中,速度随时间变化而变化的情况.(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在那些时间段保持匀速行驶?时速分别是多少?(3)出发后8分到10分之间可能发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.5.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?6.某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、B4、B5、C6、B7、D8、A9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4a<2、123、15°4、50°5、16、35三、解答题(本大题共6小题,共72分)1、(1)43xy=⎧⎨=⎩;(2)3114xy=⎧⎪⎨=⎪⎩.2、非负整数解是:0,1、2.3、4.4、(1)略;(2)略;(3)略;(4)略;5、(1)P(转动一次转盘获得购物券)=12;(2)选择转转盘对顾客更合算.6、(1)小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,销售完后,该水果商共赚了3200元;(2)41.6元/千克.。
七年级数学上册 期末试卷检测题(Word版 含答案)
七年级数学上册期末试卷检测题(Word版含答案)一、选择题1.在有理数2,-1,0,-5中,最大的数是()A.2B.C.0D.2.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为15cm,则四边形ABFD的周长等于()A.17cm B.18cm C.19cm D.20cm3.下列单项式中,与2a b是同类项的是()ab D.3abA.2a b C.22a b B.224.如图,给出下列说法:①∠B和∠1是同位角;②∠1和∠3是对顶角;③∠2和∠4是内错角;④∠A和∠BCD是同旁内角. 其中说法正确的有( )A.0个B.1个C.2个D.3个5.如图,若将三个含45°的直角三角板的直角顶点重合放置,则∠1的度数为( )A.15°B.20°C.25°D.30°6.若a>b,则下列不等式中成立的是()A.a+2<b+2 B.a﹣2<b﹣2 C.2a<2b D.﹣2a<﹣2b7.下列各数中,比-4小的数是()A . 2.5-B .5-C .0D .28.一个正方体的表面展开图可以是下列图形中的( )A .B .C .D .9.如图,学校(记作A )在蕾蕾家(记作B )南偏西20︒的方向上.若90ABC ∠=︒,则超市(记作C )在蕾蕾家的( )A .北偏东20︒的方向上B .北偏东70︒的方向上C .南偏东20︒的方向上D .南偏东70︒的方向上10.有理数a 、b 在数轴上的位置如图所示,则下列各式正确的是( )A .ab >0B .|b|<|a|C .b <0<aD .a+b >0 11.在钟表上,下列时刻的时针和分针所成的角为90°的是( ) A .2点25分 B .3点30分C .6点45分D .9点12.下列计算正确的是( )A .2334a a a +=B .﹣2(a ﹣b)=﹣2a+bC .5a ﹣4a=1D .2222a b a b a b -=-13.有理数a 、b 在如图所示数轴的对应位置上,则2a b b a +--化简后结果为( )A .aB .a -C .2a b -+D .2b a -14.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是( )A .圆柱B .圆锥C .球体D .棱锥15.下列各数:-1,2π,4.112134,0,227,3.14,其中有理数有( )A .6个B .5个C .4个D .3个二、填空题16.一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_______.17.已知3x =是方程35x x a -=+的解,则a 的值为__________.18.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为 _______.19.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为_________________________(用含a ,b 的式子表示).20.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为__________. 21.计算:33--=______.22.如图,O 为模拟钟面圆心,M 、O 、N 在一条直线上,指针OA 、OB 分别从OM 、ON 同时出发,绕点O 按顺时针方向转动,OA 运动速度为每秒12°,OB 运动速度为每秒4°,当一根指针与起始位置重合时,转动停止,设转动的时间为t 秒,当t =______秒时,∠AOB=60°.23.观察一列数:-1,2,-3,4,-5,6,-7,…,将这列数排成如图所示形式.记ij a 对应的数为第i 行第j 列的数,如234a =,那么97a 对应的数为___________.24.计算t 3t t --=________. 25.单项式-4x 2y 的次数是__.三、解答题26.计算(1)2212 6.533-+--;(2)4210.5132(3)⎡⎤---÷⨯--⎣⎦.27.先化简,再求值:3x 2+(2xy -3y 2)-2(x 2+xy -y 2),其中x =-1,y =2. 28.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q运动速度为2/cm s,经过多长时间P、Q两点相遇?(2)当2PA PB=时,点Q运动到的位置恰好是线段OB的中点,求点Q的运动速度;(3)设运动时间为xs,当点P运动到线段AB上时,分别取OP和AB的中点E、F,则2OC AP EF--=____________cm.29.定义:点C在线段AB上,若BC=π⋅AC,则称点C是线段AB的一个圆周率点.如图,已知点C是线段AB的一个靠近点A的圆周率点,AC=3.(1)AB=;(结果用含π的代数式表示)(2)若点D是线段AB的另一个圆周率点(不同于点C),则CD= ;(3)若点E在线段AB的延长线上,且点B是线段CE的一个圆周率点.求出BE的长.30.求不等式组()21511325131x xx x-+⎧-≤⎪⎨⎪-+⎩<的整数解.31.天然气被公认是地球上最干净的化石能源,逐渐被广泛用于生产、生活中,2019年1月1日起,某天然气有限公司对居民生活用天然气进行调整,下表为2018年、2019年两年的阶梯价格阶梯用户年用气量(单位:立方米)2018年单价(单位:元/立方米)2019年单价(单位:元/立方米)第一阶梯0-300(含)a3第二阶梯300-600(含)0.5a+ 3.5第三阶梯600以上 1.5a+5(1)甲用户家2018年用气总量为280立方米,则总费用为元(用含a的代数式表示);(2)乙用户家2018年用气总量为450立方米,总费用为1200元,求a的值;(3)在(2)的条件下,丙用户家2018年和2019年共用天然气1200立方米,2018年用气量大于2019年用气量,总费用为3625元,求该用户2018年和2019年分别用气多少立方米?32.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =, ①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =; (2)如果2t s =时,1CD cm =,试探索AP 的值.33.如图,直线AB 、CD 相交于点O ,OE ⊥CD ,∠AOC =50°.求∠BOE 的度数.四、压轴题34.请观察下列算式,找出规律并填空.111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯. 则第10个算式是________,第n 个算式是________.根据以上规律解读以下两题: (1)求111112233420192020++++⨯⨯⨯⨯的值;(2)若有理数a ,b 满足|2||4|0a b -+-=,试求:1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++的值.35.一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由; (3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对”. 36.某市两超市在元旦节期间分别推出如下促销方式: 甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折; 已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由. 37.综合与实践 问题情境在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C 是线段AB 上的一点,M 是AC 的中点,N 是BC 的中点.图1 图2 图3 (1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程) ②若AB a ,AC b =,则MN =___________;(直接写出结果) (2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON . ③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果) (3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)38.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .39.如图,A 、B 、C 三点在数轴上,点A 表示的数为10-,点B 表示的数为14,点C 为线段AB 的中点.动点P 在数轴上,且点P 表示的数为x .(1)求点C 表示的数;(2)点P 从点A 出发,向终点B 运动.设BP 中点为M .请用含x 的整式表示线段MC 的长.(3)在(2)的条件下,当x 为何值时,2AP CM PC -=? 40.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 41.已知点O 为直线AB 上的一点,∠EOF 为直角,OC 平分∠BOE , (1)如图1,若∠AOE=45°,写出∠COF 等于多少度;(2)如图1,若∠AOE=()090n n ︒<<,求∠COF 的度效(用含n 的代数式表示); (3)如图2,若∠AOE=()90180n n ︒<<,OD 平分∠AOC,且∠AOD-∠BOF=45°,求n 的值.42.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
七年级数学上册期末试卷检测题(Word版 含答案)
七年级数学上册期末试卷检测题(Word 版 含答案)一、选择题1.下列运算正确的是( )A .332(2)-=-B .22(3)3-=-C .323233-⨯=-⨯D .2332-=-2.如图是我市十二月份某一天的天气预报,该天的温差是( )A .3℃B .7℃C .2℃D .5℃ 3.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( ) A . B .C .D .4.若关于x 的一元一次方程mx =6的解为x =-2,则m 的值为( )A .-3B .3C .13D .165.截止到今年6月初,东海县共拥有镇村公交线路28条,投入镇村公交42辆,每天发班236班次,日行程5286公里,方便了98. 46万农村人口的出行.数据“98. 46万”可以用科学记数法表示为()A .498.4610⨯B .49.84610⨯C .59.84610⨯D .60.984610⨯6.如图正方体纸盒,展开后可以得到( )A .B .C .D .7.如图,已知射线OA ⊥射线OB , 射线OA 表示北偏西25°的方向,则射线OB 表示的方向为( )A .北偏东65°B .北偏东55°C .北偏东75°D .东偏北75°8.下列说法: ①两点之间,直线最短;②若AC =BC ,则点C 是线段AB 的中点;③同一平面内过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行.其中正确的说法有( )A .1个B .2个C .3个D .4个9.如图,点C 是AB 的中点,点D 是BC 的中点,则下列等式中正确的有( )①CD AC DB =-②CD AD BC =-③2BD AD AB =- ④13CD AB = A .4个 B .3个 C .2个 D .1个10.如图是一个几何体的表面展开图,这个几何体是( )A .B .C .D .11.我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨.将167000用科学记数法表示为( )A .316710⨯B .416.710⨯C .51.6710⨯D .60.16710⨯12.据报道,2019年建成的某新机场将满足年旅客吞吐量45 000 000人次的需求.将45 000 000用科学记数法表示应为( )A .0.45×108B .45×106C .4.5×107D .4.5×106 13.有理数a 、b 在如图所示数轴的对应位置上,则2a b b a +--化简后结果为( )A .aB .a -C .2a b -+D .2b a -14.未来三年,国家将投入8 500亿元用于缓解群众“看病难,看病贵”问题.将8 500亿元用科学记数法表示为( )A .0.85×104亿元B .8.5×103亿元C .8.5×104亿元D .85×102亿元15.下列各图中,可以是一个正方体的平面展开图的是( )A .B .C .D .二、填空题16.3615︒'的补角等于___________︒___________′.17.如图,线段AB a =,CD b =,则AD BC +=______.(用含a ,b 的式子表示)18.计算: x(x-2y) =______________19.如图,已知线段AB =8,若O 是AB 的中点,点M 在线段AB 上,OM =1,则线段BM 的长度为_____.20.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件____元.21.有一数值转换器,其转换原理如图所示,若开始输入x 的值是9,可发现第1次输出的结果是14,第2次输出的结果是7,第3次输出的结果是12,…,依次继续下去,第2020次输出的结果是______.22.0的绝对值是_____.23.已知月球与地球之间的平均距离约为384 000km ,把384 000km 用科学记数法可以表示______km .24.如图,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为_____.(用方位角来表示)25.某地2月5日最高温度是3℃,最低温度是-2℃,则最高温度比最低温度高________.三、解答题26.已知平面上点,,,A B C D .按下列要求画出图形:(1)画直线AC ,射线BD ,交于点O ;(2)比较两角的大小:AOD ∠___________BOC ∠,理由是___________;(3)画出从点A 到CD 的垂线段AH ,垂足为H .27.点,,,A B C O 在数轴上位置如图所示,其中点O 表示的数是0, 点,,A B C 表示的数分别是,,a b c .(1)图中共有___________条线段;(2)若O 是BC 的中点,2,163AC OA AB ==,求,,a b c 的值.28.如图,点O 在直线AB 上,OC ⊥AB .在RtΔODE 中,∠ODE=90°,∠DOE=30°,先将ΔODE 一边OE 与OC 重合(如图1),然后将ΔODE 绕点O 按顺时针方向旋转(如图2),当OE 与OC 重合时停止旋转.(1)当∠AOD=80°时,则旋转角∠COE 的大小为____________ ;(2)当OD 在OC 与OB 之间时,求∠AOD -∠COE 的值;(3)在ΔODE 的旋转过程中,若∠AOE=4∠COD 时,求旋转角∠COE 的大小.29.解下列方程: (1)()5123x x -=- (2)143123y y ---= 30.我们规定,若关于x 的一元一次方程()0mx n m =≠的解为n m -,则称该方程为差解方程,例如:2554x =的解为525544x ==-,则该方程2554x =就是差解方程. 请根据上边规定解答下列问题(1)若关于x 的一元一次方程31x a =+是差解方程,则a =______.(2)若关于x 的一元一次方程3x a b =+是差解方程且它的解为x a =,求代数式()22224222a b a ab a b ⎡⎤---⎣⎦的值(提示:若1m n m ++=,移项合并同类项可以把含有m 的项抵消掉,得到关于n 的一元一次方程,求得1n =-)31.如图,所有小正方形的边长都为1,点O 、P 均在格点上,点P 是∠AOB 的边 OB 上一点,直线PC ⊥OA ,垂足为点C .(1)过点 P 画 OB 的垂线,交OA 于点D ;(2)线段 的长度是点O 到直线PD 的距离;(3)根据所画图形,判断∠OPC ∠PDC (填“>”,“<”或“=”),理由是 .32.列方程解应用题:《弟子规》的初中读本的主页共计96页。
七年级数学上册期末试卷检测题(Word版 含答案)
七年级数学上册期末试卷检测题(Word 版 含答案)一、选择题1.在有理数2,-1,0,-5中,最大的数是( ) A .2B .C .0D .2.下列运算正确的是A .325a b ab +=B .2a a a +=C .22ab ab -= D .22232a b ba a b -=- 3.方程去分母后正确的结果是( ) A .B .C .D .4.把一个数a 增加2,然后再扩大2倍,其结果应是( )A .22a +⨯B .()22a +C .24a a ++D .()222a a +++5.下列说法错误的是( )A .同角的补角相等B .对顶角相等C .锐角的2倍是钝角D .过直线外一点有且只有一条直线与已知直线平行6.某小组计划做一批中国结,如果每人做6个,那么比计划多做9个;如果每人做4个,那么比计划少做7个.设计划做个“中国结”,可列方程为( ). A .B .C .D .7.已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A .相等B .互余C .互补D .不确定8.27-的倒数是( ) A .72 B .72- C .27D .27- 9.若,,则多项式与的值分别为( ) A .6,26 B .-6,26C .-6,-26D .6,-2610.下列运算中,结果正确的是( )A .3a 2+4a 2=7a 4B .4m 2n+2mn 2=6m 2nC .2x ﹣12x =32x D .2a 2﹣a 2=211.下列说法错误的是( ) A .对顶角相等 B .两点之间所有连线中,线段最短 C .等角的补角相等D .不相交的两条直线叫做平行线12.某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x 个零件,则所列方程为( ) A .1312(10)60x x =++ B .12(10)1360x x +=+ C .60101312x x +-= D .60101213x x+-= 13.对于代数式3m +的值,下列说法正确的是( ) A .比3大B .比3小C .比m 大D .比m 小14.2020的相反数是( )A .2020B .﹣2020C .12020D .﹣1202015.若x 3=是方程3x a 0-=的解,则a 的值是( )A .9B .6C .9-D .6-二、填空题16.定义一种新运算“◎”:a ◎2b a b =-,例如 2◎32231=⨯-=,若(32)x -◎(1)5x +=,则 x 的值为__________.17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.18.2019年1至6月份,东台黄海森林公园入园人数约为280000人,数字280000用科学记数法可以表示为_______________.19.下午3点30分时,钟面上时针与分针所成的角等于_____°.20.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ;OF 平分∠COE ,若∠AOC =82°,则∠BOF =______°.21.点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为﹣3、1,若BC =2,则AC 等于_____.22.如图示,一副三角尺有公共顶点O ,若3AOC BOD ∠=∠,则BOD ∠=_________度.23.一件衬衫先按成本提高50%标价,再以8折出售,获利20元,则这件衬衫的成本是__元.24.如图,已知3654AOB '∠=︒,射线OC 在AOB ∠的内部且12AOC BOC ∠=∠,则AOC ∠=___.25.如图,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为_____.(用方位角来表示)三、解答题26.如图,A 、B 、C 是正方形网格中的三个格点.(1)①画射线AC ; ②画线段BC ;③过点B 画AC 的平行线BD ;④在射线AC 上取一点E ,画线段BE ,使其长度表示点B 到AC 的距离; (2)在(1)所画图中, ①BD 与BE 的位置关系为 ;②线段BE 与BC 的大小关系为BE BC (填“>”、“<”或“=”),理由是 . 27.解方程(1)()3226x x +-=; (2)212134x x +--= 28.如图,在方格纸中, A 、 B 、 C 为 3 个格点,点 C 在直线 AB 外.(1)仅用直尺,过点 C 画AB 的垂线 m 和平行线n ; (2)请直接写出(1)中直线m 、n 的位置关系. 29.定义:对于一个两位数x ,如果x 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“相异数”,将一个“相异数”的个位数字与十位数字对调后得到一个新的两位数,将这个新两位数与原两位数的求和,同除以11所得的商记为S (x ). 例如,a =13,对调个位数字与十位数字得到的新两位数31,新两位数与原两位数的和为13+31=44,和44除以11的商为44÷11=4,所以S (13)=4.(1)下列两位数:20,29,77中,“相异数”为 ,计算:S (43)= ; (2)若一个“相异数”y 的十位数字是k ,个位数字是2(k ﹣1),且S (y )=10,求相异数y ;(3)小慧同学发现若S (x )=5,则“相异数”x 的个位数字与十位数字之和一定为5,请判断小慧发现”是否正确?如果正确,说明理由;如果不正确,举出反例. 30.如图,点C 是线段AB 的中点,6AC =.点D 在线段AB 上,且12BD AD =,求线段CD 的长.31.如图所示方格纸中,点,,O A B 三点均在格点(格点指网格中水平线和竖直线的交点)上,直线,OB OA 交于格点O ,点C 是直线OB 上的格点,按要求画图并回答问题.(1)过点C 画直线OB 的垂线,交直线OA 于点D ;过点C 画直线OA 的垂线,垂足为E ;在图中找一格点F ,画直线DF ,使得//DF OB(2)线段CE 的长度是点C 到直线 的距离,线段CD 的长度是点 到直线OB 的距离. 32.已知:关于x 的方程(3)2m m x x -+=的解与方程372(1)y y +=--的解相等,求m 的值.33.定义:若A B m -=,则称A 与B 是关于m 的关联数.例如:若2A B -=,则称A 与B 是关于2的关联数;(1)若3与a 是关于2的关联数,则a =_______.(2)若21x - 与35x -是关于2的关联数,求x 的值.(3)若M 与N 是关于m 的关联数, 33M mn n =++,N 的值与m 无关,求N 的值.四、压轴题34.请观察下列算式,找出规律并填空.111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯. 则第10个算式是________,第n 个算式是________.根据以上规律解读以下两题: (1)求111112233420192020++++⨯⨯⨯⨯的值;(2)若有理数a ,b 满足|2||4|0a b -+-=,试求:1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++的值.35.如图,数轴上A ,B 两点对应的数分别为4-,-1 (1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =36.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|; (应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 . (2)若点C (1,0),且CD ∥y 轴,且CD=2,则点D 的坐标为 . (拓展):我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5. 解决下列问题:(1)已知E (2,0),若F (﹣1,﹣2),求d (E ,F );(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,求t 的值;(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,求d (P ,Q ).37.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,85AOE ∠=(1)求COE ∠;(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时AOC DOE ∠=∠;(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到45AOC EOB ∠=∠,求m 的值. 38.综合与实践 问题情境 在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C 是线段AB 上的一点,M 是AC 的中点,N 是BC 的中点.图1 图2 图3 (1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程) ②若AB a ,AC b =,则MN =___________;(直接写出结果) (2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON . ③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果) (3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)39.如图1,点O 为直线AB 上一点,过点O 作射线OC ,OD ,使射线OC 平分∠AOD . (1)当∠BOD =50°时,∠COD = °;(2)将一直角三角板的直角顶点放在点O 处,当三角板MON 的一边OM 与射线OC 重合时,如图2.①在(1)的条件下,∠AON = °; ②若∠BOD =70°,求∠AON 的度数;③若∠BOD =α,请直接写出∠AON 的度数(用含α的式子表示).40.(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解. ①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由; (2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PBPC+的值不变.41.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.42.已知AOB ∠是锐角,2AOC BOD ∠=∠.(1)如图,射线OC ,射线OD 在AOB ∠的内部(AOD AOC ∠>∠),AOB ∠与COD ∠互余;①若60AOB ︒∠=,求BOD ∠的度数; ②若OD 平分BOC ∠,求BOD ∠的度数.(2)若射线OD 在AOB ∠的内部,射线OC 在AOB ∠的外部,AOB ∠与COD ∠互补.方方同学说BOD ∠的度数是确定的;圆圆同学说:这个问题要分类讨论,一种情况下BOD ∠的度数是确定的,另一种情况下BOD ∠的度数不确定.你认为谁的说法正确?为什么?43.已知:∠AOB =140°,OC ,OM ,ON 是∠AOB 内的射线.(1)如图1所示,若OM 平分∠BOC ,ON 平分∠AOC ,求∠MON 的度数:(2)如图2所示,OD 也是∠AOB 内的射线,∠COD =15°,ON 平分∠AOD ,OM 平分∠BOC .当∠COD 绕点O 在∠AOB 内旋转时,∠MON 的位置也会变化但大小保持不变,请求出∠MON 的大小;(3)在(2)的条件下,以∠AOC =20°为起始位置(如图3),当∠COD 在∠AOB 内绕点O 以每秒3°的速度逆时针旋转t 秒,若∠AON :∠BOM =19:12,求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】 【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可. 【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2. 故选A. 【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.D解析:D 【解析】 【分析】根据整式的加减,合并同类项得出结果即可判断. 【详解】A. 32a b +不能计算,故错误;B. 2a a a +=,故错误;C. 2ab ab ab -=,故错误;D. 22232a b ba a b -=-,正确, 故选D. 【点睛】此题主要考察整式的加减,根据合并同类项的法则是解题的关键.3.B解析:B 【解析】 【分析】方程两边乘以8去分母得到结果,即可做出判断. 【详解】 方程去分母后正确的结果是2(2x−1)=8−(3−x),故选B. 【点睛】此题考查解一元一次方程,解题关键在于掌握运算法则.4.B解析:B【分析】一个数a增加2为a+2,再扩大2倍为2(a+2),即可得出结果.【详解】解:一个数a增加2为:a+2,再扩大2倍,则为:2(a+2),故选:B.【点睛】本题考查了列代数式,正确理解题意是解题的关键.5.C解析:C【解析】【分析】根据补角的定义、对顶角的定义、锐角的钝角的定义以及平行公理对每一项进行解答判断即可.【详解】根据补角的定义:两角之和等于180°,同角或等角的补角相等,A正确;对顶角定义:如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,对顶角度数的大小相等,B正确;锐角的范围0°<锐角<90°,90°<钝角<180°,锐角的2倍不一定是钝角,C错误.平行公理:经过直线外一点,有且只有一条直线与已知直线平行.D正确.故答案选C.【点睛】本题考查了补角、对顶角、锐角钝角的定义及平行公理,熟练掌握它们的定义是解决本题的关键.6.B解析:B【解析】【分析】计划做个“中国结”,根据题意可用两种方式表示出参与制作的人数,根据人数不变这一等量关系即可列出方程.【详解】计划做个“中国结”,由题意可得,故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 7.B【解析】【分析】根据图形可看出,∠2的对顶角∠COE 与∠1互余,那么∠1与∠2就互余.【详解】解:图中,∠2=∠COE (对顶角相等),又∵AB ⊥CD , ∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B .【点睛】本题考查了余角和垂线的定义以及对顶角相等的性质.8.B解析:B【解析】【分析】根据倒数的定义即可求解.【详解】27-的倒数是72- 故选B.【点睛】此题主要考查倒数,解题的关键是熟知倒数的定义.9.D解析:D【解析】【分析】分别把与转化成(a 2+2ab )+(b 2+2ab)和(a 2+2ab )-(b 2+2ab)的形式,代入-10和16即可得答案. 【详解】∵,, ∴=(a 2+2ab )+(b 2+2ab)=-10+16=6, a 2-b 2=(a 2+2ab )-(b 2+2ab)=-10-16=-26,故选D.【点睛】本题考查整式的加减,熟练掌握运算法则是解题关键. 10.C解析:C【分析】将选项A ,C ,D 合并同类项,判断出选项B 中左边两项不是同类项,不能合并,即可得出结论,【详解】解:A 、3a 2+4a 2=7a 2,故选项A 不符合题意;B 、4m 2n 与2mn 2不是同类项,不能合并,故选项B 不符合题意;C.、2x -12x =32x ,故选项C 符合题意; D 、2a 2-a 2=a 2,故选项D 不符合题意;故选C .【点睛】 本题考查同类项的意义,合并同类项的法则,解题关键是掌握合并同类项法则.11.D解析:D【解析】【分析】根据各项定义性质判断即可.【详解】D 选项应该为:同一平面内不相交的两条直线叫平行线.故选D.【点睛】本题考查基础的定义性质,关键在于熟记定义与性质.12.B解析:B【解析】【分析】实际生产12小时的零件比原计划13小时生产的零件多60件,根据生产总量=生产效率乘以时间即可列出方程【详解】实际生产12小时的零件数量是12(x+10)件,原计划13小时生产的零件数量是13x 件,由此得到方程12(10)1360x x +=+,故选:B.【点睛】此题考查列方程解决实际问题,正确理解原计划与实际生产的工作量之间的关系是解题的关键.13.C解析:C【分析】3+m=m+3,根据加法运算的意义可得m+3表示比m大3.【详解】解:∵3+m=m+3,m+3表示比m大3,∴3+m比m大.故选:C.【点睛】本题考查代数式的意义,理解加法运算的意义是解答此题的关键.14.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.故选:B.【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.15.A解析:A【解析】【分析】把x=3代入方程3x﹣a=0得到关于a的一元一次方程,解之即可.【详解】把x=3代入方程3x﹣a=0得:9﹣a=0,解得:a=9.故选A.【点睛】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.二、填空题16.【解析】【分析】已知等式利用题中新定义化简,整理即可求出x的值.【详解】已知等式利用题中新定义整理得:2(3x-2)-(x+1)=5,去括号得:6x-4-x-1=5,移项合并得:5x=【解析】【分析】已知等式利用题中新定义化简,整理即可求出x的值.【详解】已知等式利用题中新定义整理得:2(3x-2)-(x+1)=5,去括号得:6x-4-x-1=5,移项合并得:5x=10,解得:x=2.故答案为:2.【点睛】本题考查有理数的混合运算,解题关键是弄清题中的新定义.17.1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为1解析:1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为118.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1解析:52.810【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:280000=52.810⨯,故答案为:52.810⨯【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.19.75【解析】试题解析:时针指向3和4的中间,分针指向6,时针与分针之间的夹角为:故答案为.解析:75【解析】试题解析:时针指向3和4的中间,分针指向6,时针与分针之间的夹角为:302302156075.÷+⨯=+=故答案为75.20.5°【解析】【分析】根据对顶角相等求得∠BOD 的度数,然后根据角的平分线的定义求得∠EOD 的度数,则∠COE 即可求得,再根据角平分线的定义求得∠EOF,最后根据∠BOF=∠E OF-∠BOF 求解解析:5°【解析】【分析】根据对顶角相等求得∠BOD 的度数,然后根据角的平分线的定义求得∠EOD 的度数,则∠COE 即可求得,再根据角平分线的定义求得∠EOF,最后根据∠BOF=∠EOF-∠BOF 求解.【详解】解:82BOD AOC ︒∠=∠=,又∵OE 平分∠BOD ,11824122DOE BOD ︒︒∴∠=∠=⨯=, 180********COE DOE ︒︒︒︒∴∠=-∠=-=,OF 平分∠COE ,1113969.522EOF COE ︒︒∴∠=∠=⨯=, 69.54128.5BOF EOF BOF ︒︒︒∴∠=∠-∠=-=故答案是28.5°.【点睛】本题考查了对顶角和角平分线的性质,解决本题的关键是熟练掌握两者性质,根据未知角和已知角的关系,推断出未知角的度数.21.2或6.【解析】【分析】要求学生分情况讨论A ,B ,C 三点的位置关系,即点C 在线段AB 内,点C 在线段AB 外.【详解】解:此题画图时会出现两种情况,即点C 在线段AB 内,点C 在线段AB 外,所以要解析:2或6.【解析】【分析】要求学生分情况讨论A ,B ,C 三点的位置关系,即点C 在线段AB 内,点C 在线段AB 外.【详解】解:此题画图时会出现两种情况,即点C 在线段AB 内,点C 在线段AB 外,所以要分两种情况计算.点A 、B 表示的数分别为﹣3、1,AB=4.第一种情况:在AB 外,AC=4+2=6;第二种情况:在AB 内,AC=4﹣2=2.故填2或6.考点:两点间的距离;数轴.22.【解析】【分析】设∠BOD 为x,则∠AOC=3x,利用直角建立等式解出x 即可.【详解】设∠BOD 为x,则∠AOC=3x,由题意得:∠AOC=∠AOB+∠BOC.x=45°.故答案解析:【解析】【分析】设∠BOD 为x,则∠AOC=3x,利用直角建立等式解出x 即可.【详解】设∠BOD 为x,则∠AOC=3x,由题意得:90,BOC x ∠=︒-∠AOC=∠AOB+∠BOC.39090x x =︒+︒-x =45°.故答案为:45.【点睛】本题考查角度的计算,关键在于利用方程的思想将题目简单化.23.100【解析】【分析】设这件衬衫的成本是x 元,根据利润=售价-进价,列出方程,求出方程的解即可得到结果.【详解】设这件衬衫的成本是x 元,根据题意得:(1+50%)x×80%﹣x=20解解析:100【解析】【分析】设这件衬衫的成本是x 元,根据利润=售价-进价,列出方程,求出方程的解即可得到结果.【详解】设这件衬衫的成本是x 元,根据题意得:(1+50%)x ×80%﹣x =20解得:x =100,这件衬衫的成本是100元.故答案为:100.【点睛】本题考查了一元一次方程的应用,找出题中的等量关系是解答本题的关键.24.【解析】【分析】根据角的和差倍分进行计算即可.【详解】解:设∵∴∴∵∴∴∴故答案为:【点睛】本题考查了角的和差倍分,根据题意列出方程是解题的关键. 解析:1218'︒【解析】【分析】根据角的和差倍分进行计算即可.【详解】解:设AOC x ∠= ∵12AOC BOC ∠=∠ ∴=2BOC x ∠∴=23AOB AOC BOC x x x ∠=∠+∠+=∵3654AOB '∠=︒∴33654x '=︒∴1218x '=︒∴1218AOC '∠=︒故答案为:1218'︒ 【点睛】本题考查了角的和差倍分,根据题意列出方程是解题的关键.25.北偏东【解析】【分析】根据平行线的性质与方位角的定义即可求解.【详解】如图,依题意得∠CBD=50°,∴∠CBE=80°-50°=30°,故此时的航行方向为:北偏东故答案为:北偏东.解析:北偏东30【解析】【分析】根据平行线的性质与方位角的定义即可求解.【详解】如图,依题意得∠CBD=50°,∴∠CBE=80°-50°=30°,故此时的航行方向为:北偏东30故答案为:北偏东30.【点睛】此题主要考查方位角,解题的关键是熟知方位角的定义及平行线的性质.三、解答题26.(1)①答案见解析;②答案见解析;③答案见解析;④答案见解析;(2)①垂直;②<,垂线段最短.【解析】【分析】(1)①画射线AC即可;②画线段BC即可;③过点B 作AC 的平行线BD 即可;④过B 作BE ⊥AC 于E 即可;(2)①根据平行线的性质得到BD ⊥BE ;②根据垂线段最短即可得出结论.【详解】(1)①如图所示,射线AC 就是所求图形;②如图所示,线段BC 就是所求图形;③如图所示,直线BD 就是所求图形;④如图所示,线段BE 就是所求图形.(2)①∵BD ∥AC ,∠BEC =90°,∴∠DBE =180°-∠BEC =180°-90°=90°,∴BD ⊥BE.故答案为:垂直.②∵BE ⊥AC ,∴BE <BC .理由如下:垂线段最短.故答案为:<,垂线段最短.【点睛】本题考查了作图﹣复杂作图、垂线、点到直线的距离、垂线段最短,解答本题的关键是充分利用网格.27.(1)2x =;(2)25x =【解析】【分析】(1)通过去括号,移项,合并同类项,系数化1即可求解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化1,从而得到方程的解.【详解】解:(1)()3226x x +-= 3246x x +-=510x =2x =;(2)2121 34x x+--=()()4213212x x+--=843612x x+-+=5=2x2=5x.【点睛】本题考查了解一元一次方程,注意去分母时,方程两边同时乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号. 28.(1)如图见解析;(2)垂直.【解析】【分析】(1)根据小方格的特征过C点画AB的垂线和平行线;(2)观察图形得出m,n的垂直关系,或者根据平行线的性质可得.【详解】(1)将点A向上平移3个单位,过该点和点C作直线n,用直尺过点C作直线AB的垂线m,如图:(2)观察图形可得m,n互相垂直,或根据两直线平行,同位角相等也可得m与n的夹角为90°,即m,n互相垂直.【点睛】本题考查网格画图,根据网格中小正方形的特征画图是解答此题的关键.29.(1)29,7;(2)46;(3)正确,理由详见解析.【解析】【分析】(1)根据“相异数”的定义可知29是“相异数”,20,77不是“相异数”,利用定义进行计算即可,(2)根据“相异数”的定义,由S(y)=10,列方程求出“相异数y”的十位数字和个位数字,进而确定y;(3)设出“相异数”的十位、个位数字,根据“相异数”的定义,由S(x)=5,得出十位数字和个位数字之间的关系,进而得出结论.【详解】解:(1)根据“相异数”的定义可知29是“相异数”, 20,77不是“相异数”S (43)=(43+34)÷11=7,故答案为:29,7;(2)由“相异数”y 的十位数字是k ,个位数字是2(k ﹣1),且S (y )=10得, 10k +2(k ﹣1)+20(k ﹣1)+k =10×11,解得k =4,∴2(k ﹣1)=2×3=6,∴相异数y 是46;(3)正确;设“相异数”的十位数字为a ,个位数字为b ,则x =10a +b ,由S (x )=5得,10a +b +10b +a =5×11,即:a +b =5,因此,判断正确.【点睛】本题主要考查相异数,一元一次方程的应用,掌握相异数的定义及S (x )的求法是解题的关键.30.CD=2【解析】【分析】因为点C 是线段AB 的中点,6AC =,所以12AB =. 由12BD AD =,得到13BD AB ==4,即可列式CD BC BD =-计算得到答案. 【详解】 解:点C 是线段AB 的中点,6AC =,12AB ∴=. 12BD AD =, 13BD AB ∴==4. 642CD BC BD AC BD ∴=-=-=-=.【点睛】本题考查线段的和差分倍,解题的关键是掌握线段的和差分倍计算方法.31.(1)详见解析;(2)OA,D.【解析】【分析】(1)根据题意画出图象即可.(2)由图象即可得出结论.【详解】(1)由题意画图如下:(2)由图可以看出:线段CE 的长度是点C 到直线OA 的距离,线段CD 的长度是点D 到直线OB 的距离.【点睛】本题考查作图能力,关键在于掌握平行垂直等作图技巧.32.2【解析】【分析】先求出方程372(1)y y +=--的解,再根据方程的解进行解答即可.【详解】解:∵方程372(1)y y +=--的解为:1y =-又∵关于x 的方程(3)2m m x x -+=的解与方程372(1)y y +=--的解相等∴关于x 的方程(3)2m m x x -+=的解为1x =-把1x =-代入(3)2m m x x -+=得:()(-13)2-1m m -+=⨯解得:2m =∴m 的值为:2.【点睛】本题考查了同解方程,把x 的值代入得出关于m 的方程是解题关键.33.(1)1;(2)x=2;(3)133【解析】【分析】(1)直接利用关联数列出方程进行计算即可;(2)直接利用关联数列出方程进行计算即可;(3)直接利用关联数列出M-N=m 的方程,将33M mn n =++代入,用m 、n 的式子表示出N ,再利用N 的值与m 无关进行计算即可.【详解】解:(1)∵3与a 是关于2的关联数∴3-a=2∴a=1故答案为:1(2)∵21x - 与35x -是关于2的关联数∴2x -1-(3x-5)=2解得:x=2(3)∵M 与N 是关于m 的关联数∴M -N=m∴N=M -m∵33M mn n =++∴33-(31)3N mn n m n m n =++=-++∵N 的值与m 无关∴31=0n - ∴1=3n ∴11(31)3=3+333N n m n =-++= 【点睛】本题考查了新型定义题型,解一元一次方程、整式的值与字母无关,解题的关键是准确理解题干,列出方程,进行解答.四、压轴题34.111=10111011-⨯,()111=11n n n n -++;(1)20192020;(2)10094040【解析】【分析】归纳总结得到一般性规律,写出第10个等式及第n 个等式即可;(1)原式变形后,计算即可得到结果;(2)利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果.【详解】解:第10个算式是111=10111011-⨯, 第n 个算式是()111=11n n n n -++;(1)1111 (12233420192020)++++⨯⨯⨯⨯=111111 (22320192020)-+-++- =112020- =20192020; (2)∵|2||4|0a b -+-=,∴a-2=0,b-4=0,∴a=2,b=4, ∴1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++ =111124466820182020++++⨯⨯⨯⨯ =1111111...2244620182020⎛⎫-+-++- ⎪⎝⎭ =111222020⎛⎫- ⎪⎝⎭ =10094040【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 35.(1)3;(2)12或74-;(3)13秒或79秒 【解析】【分析】(1)根据数轴上两点间距离即可求解;(2)设点D 对应的数为x ,可得方程314x x +=+,解之即可;(3)设t 秒后,OA=3OB ,根据题意可得47312t t t t -+-=-+-,解之即可.【详解】解:(1)∵A 、B 两点对应的数分别为-4,-1,∴线段AB 的长度为:-1-(-4)=3;(2)设点D 对应的数为x ,∵DA=3DB ,则314x x +=+,则()314x x +=+或()314x x +=--,解得:x=12或x=74-,∴点D 对应的数为12或74-; (3)设t 秒后,OA=3OB , 则有:47312t t t t -+-=-+-, 则4631t t -+=-+,则()4631t t -+=-+或()4631t t -+=--+,解得:t=13或t=79, ∴13秒或79秒后,OA=3OB . 【点睛】本题考查了一元一次方程的运用,数轴的运用和绝对值的运用,解题的关键是掌握数轴上两点之间距离的表示方法.36.【应用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)5;(2)t =±2;(3)d (P ,Q )的值为4或8.【解析】【分析】(1)根据若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1-x 2|,代入数据即可得出结论; (2)由CD ∥y 轴,可设点D 的坐标为(1,m ),根据CD=2即可得出|0-m|=2,解之即可得出结论;【拓展】:(1)根据两点之间的折线距离公式,代入数据即可得出结论;(2)根据两点之间的折线距离公式结合d (E ,H )=3,即可得出关于t 的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q 在x 轴上,可设点Q 的坐标为(x ,0),根据三角形的面积公式结合三角形OPQ 的面积为3即可求出x 的值,再利用两点之间的折线距离公式即可得出结论.【详解】解:【应用】:(1)AB 的长度为|﹣1﹣2|=3.故答案为:3.(2)由CD ∥y 轴,可设点D 的坐标为(1,m ),∵CD=2,∴|0﹣m|=2,解得:m=±2, ∴点D 的坐标为(1,2)或(1,﹣2).【拓展】:(1)d (E ,F )=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案为:5.(2)∵E (2,0),H (1,t ),d (E ,H )=3,∴|2﹣1|+|0﹣t |=3,解得:t =±2.(3)由点Q 在x 轴上,可设点Q 的坐标为(x ,0),∵三角形OPQ 的面积为3, ∴12|x |×3=3,解得:x =±2. 当点Q 的坐标为(2,0)时,d (P ,Q )=|3﹣2|+|3﹣0|=4;当点Q 的坐标为(﹣2,0)时,d (P ,Q )=|3﹣(﹣2)|+|3﹣0|=8综上所述,d (P ,Q )的值为4或8.【点睛】本题考查了两点间的距离公式,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键.37.(1)∠COE =20°;(2)当t =11时,AOC DOE ∠=∠;(3)m=296或10114 【解析】【分析】(1)根据角平分线的定义和垂直定义即可求出∠BOD=90°,∠BOE=∠DOE =45°,即可求出∠AOB ,再根据角平分线的定义即可求出∠BOC ,从而求出∠COE ;(2)先分别求出OC 与OD 重合时、OE 与OD 重合时和OC 与OA 重合时运动时间,再根据t 的取值范围分类讨论,分别画出对应的图形,根据等量关系列出方程求出t 即可; (3)先分别求出OE 与OB 重合时、OC 与OA 重合时、OC 为OA 的反向延长线时运动时、OE 为OB 的反向延长线时运动时间,再根据m 的取值范围分类讨论,分别画出对应的图形,根据等量关系列出方程求出m 即可;【详解】解:(1)∵OD OB ⊥,OE 是BOD ∠的角平分线,∴∠BOD=90°,∠BOE=∠DOE=12∠BOD =45° ∵85AOE ∠=∴∠AOB=∠AOE +∠BOE=130°∵OC 是AOB ∠的角平分线, ∴∠AOC=∠BOC=12AOB ∠=65° ∴∠COE=∠BOC -∠BOE=20° (2)由原图可知:∠COD=∠DOE -∠COE=25°,故OC 与OD 重合时运动时间为25°÷5°=5s ;OE 与OD 重合时运动时间为45°÷5°=9s ;OC 与OA 重合时运动时间为65°÷5°=13s ;①当05t <<时,如下图所示。
七年级上册数学 期末试卷检测题(Word版 含答案)
七年级上册数学期末试卷检测题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值. 2.如图(1)如图1,找到长方形纸片的宽DC的中点E,将∠C过E点折起一个角,折痕为EF,再将∠D过点E折起,折痕为GE,且C、D均落在GF上的一点C′(D′),请说明∠CEF与∠DEG的关系,并说明理由;(2)将(1)中的纸片沿GF剪下,得梯形纸片ABFG,再将GF沿GM折叠,F落在F′处,GF′与BF交于H,且ABHG为长方形(如图2);再将纸片展开,将AG沿GN折叠,使A 点落于GF上一点A,(如图3).在两次折叠的过程中,求两条折痕GM、GN所成角的度数?【答案】(1)解:∵∠C过E点折起一个角,折痕为EF,再将∠D过点E折起,折痕为GE,且C、D均落在GF上的一点C′(D′)∴GE平分∠DED′,FE平分∠CED′,∴∠DED′=2∠DEG,∠CED′=2∠CEF∴∠DED′+∠CED′=180°即2∠CEF+2∠DEG=180°∴∠CEF+∠DEG=90°答:∠CEF与∠DEG的关系是互余.(2)解:如图,由题意得:GM平分∠FGF, GN平分∠AGF设∠FGM=∠F'GM=x,∠FGN=∠AGN=y∴2y-2x=90°,即y-x=45°,∴∠MGN=∠FGN-∠FGM=45°答:两条折痕GM、GN所成角的度数为45°.【解析】【分析】(1)根据折叠的性质,可知GE平分∠DED′,FE平分∠CED′,再利用角平分线的性质,可证得∠DED′=2∠DEG,∠CED′=2∠CEF,然后根据平角的定义,可解答。
数学七年级上册 期末试卷检测题(Word版 含答案)
数学七年级上册 期末试卷检测题(Word 版 含答案)一、选择题1.有理数-53的倒数是( ) A .53 B .53-C .35D .352.已知关于x 的方程34x a -=的解是x a =-,则a 的值是( ) A .1 B .2C .1-D .2- 3.下列各组代数式中,不是同类项的是( )A .2与-5B .-0.5xy 2与3x 2yC .-3t 与200tD .ab 2与-8b 2a4.将一副直角三角尺按如图所示摆放,图中锐角∠1的度数为( )A .58°B .59°C .60°D .61°5.下列立体图形中,俯视图是三角形的是( )A .B .C .D .6.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β一定相等的图形个数共有( )A .1个B .2个C .3个D .4个7.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( ) A .商品的利润不变 B .商品的售价不变 C .商品的成本不变 D .商品的销售量不变8.下列说法:①两点之间,直线最短;②若AC =BC ,则点C 是线段AB 的中点;③同一平面内过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的说法有( ) A .1个B .2个C .3个D .4个9.3-的倒数是( )A .3B .13C .13-D .3-10.下列运算正确的是( )A .332(2)-=-B .22(3)3-=-C .323233-⨯=-⨯D .2332-=- 11.对于代数式3m +的值,下列说法正确的是( ) A .比3大B .比3小C .比m 大D .比m 小12.下列各图是正方体展开图的是( ) A .B .C .D .13.下列计算中正确的是( ) A .()33a a -=B .235a b ab +=C .22243a a a -=D .332a a a +=14.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )A .B .C .D .15.对于下列说法,正确的是( ) A .过一点有且只有一条直线与已知直线平行 B .不相交的两条直线叫做平行线 C .相等的角是对顶角D .将一根木条固定在墙上,只需打两个钉子就可以了,这种做法的依据是两点确定一条直线二、填空题16.在-4,0,π,1.010010001,-227,1.3•这6个数中,无理数有______个. 17.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设幼儿园里有x 个小朋友,可得方程___________. 18.若单项式2a m b 4与-3ab 2n 是同类项,则m -n =__.19.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为_________________________(用含a ,b 的式子表示).20.我国南海海域的面积约为35000002㎞,该面积用科学计数法应表示为_______2㎞. 21.在墙上固定一根木棒时,至少需要两根钉子,这其中所体现的“基本事实”是______. 22.比较大小:0.4--_________(0.4)--(填“>”“<”或“=”). 23.﹣|﹣2|=____.24.某班同学分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了2组.设这个班共有x 名学生,则可列方程为___.25.已知x +y =3,xy =1,则代数式(5x +2)﹣(3xy ﹣5y )的值_____.三、解答题26.计算下列各题: (1)1021(2)11-+--⨯(2)2019111(3)69--÷-⨯ 27.解方程:(1)-5x +3=-3x -5; (2)4x -3(1-x )=11.28.如图,A ,B 两地相距450千米,两地之间有一个加油站O ,且AO =270千米,一辆轿车从A 地出发,以每小时90千米的速度开往B 地,一辆客车从B 地出发,以每小时60千米的速度开往A 地,两车同时出发,设出发时间为t 小时. (1)经过几小时两车相遇?(2)当出发2小时时,轿车和客车分别距离加油站O 多远? (3)经过几小时,两车相距50千米?29.如图1,已知数轴上A ,B 两点表示的数分别为-9和7.(1)AB =(2)点P 、点Q 分别从点A 、点B 出发同时向右运动,点P 的速度为每秒4个单位,点Q 的速度为每秒2个单位,经过多少秒,点P 与点Q 相遇?(3)如图2,线段AC 的长度为3个单位,线段BD 的长度为6个单位,线段AC 以每秒4个单位的速度向右运动,同时线段BD 以每秒2个单位的速度向左运动,设运动时间为t 秒①t 为何值时,点B 恰好在线段AC 的中点M 处.②t 为何值时,AC 的中点M 与BD 的中点N 距离2个单位. 30.计算:(1)﹣2÷8×(﹣12); (2)2312(3)()19---⨯-+. 31.计算 (1)157()362612+-⨯ (2)()421723-+÷-32.甲、乙两车都从A 地出发,在路程为360千米的同一道路上驶向B 地.甲车先出发匀速驶向B 地.10分钟后乙车出发,乙车匀速行驶3小时后在途中的配货站装货耗时20分钟.由于满载货物,乙车速度较之前减少了40千米/时.乙车在整个途中共耗时133小时,结果与甲车同时到达B 地. (1)甲车的速度为 千米/时; (2)求乙车装货后行驶的速度;(3)乙车出发 小时与甲车相距10千米?33.轮船和汽车都往甲地开往乙地,海路比公路近40千米.轮船上午7点开出,速度是每小时24千米.汽车上午10点开出,速度为每小时40千米,结果同时到达乙地.求甲、乙两地的海路和公路长.四、压轴题34.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x 的点与原点的距离,那么,如果数轴上两点P 、Q 表示的数为x 1,x 2时,点P 与点Q 之间的距离为PQ=|x 1-x 2|. 根据上述材料,解决下列问题:如图,在数轴上,点A 、B 表示的数分别是-4, 8(A 、B 两点的距离用AB 表示),点M 、N 是数轴上两个动点,分别表示数m 、n.(1)AB=_____个单位长度;若点M 在A 、B 之间,则|m+4|+|m-8|=______; (2)若|m+4|+|m-8|=20,求m 的值;(3)若点M 、点N 既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______. 35.点O 在直线AD 上,在直线AD 的同侧,作射线OB OC OM ,,平分AOC ∠. (1)如图1,若40AOB ∠=,60COD ∠=,直接写出BOC ∠的度数为 ,BOM ∠的度数为 ;(2)如图2,若12BOM COD ∠=∠,求BOC ∠的度数; (3)若AOC ∠和AOB ∠互为余角且304560AOC ∠≠,,,ON 平分BOD ∠,试画出图形探究BOM ∠与CON ∠之间的数量关系,并说明理由.36.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a的值.37.尺规作图是指用无刻度的直尺和圆规作图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学 期末试卷检测题(Word 版 含答案)一、选择题1.我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的电力.14 000 000这个数用科学记数法表示为( ) A .14×106 B .1.4×107 C .1.4×108 D .0.14×109 2.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .1003.在一个不透明的布袋中,装有一个简单几何体模型,甲乙两人在摸后各说出了它的一个特征,甲:它有曲面;乙:它有顶点。
该几何体模型可能是( ) A .球 B .三棱锥 C .圆锥 D .圆柱 4.已知23a +与5互为相反数,那么a 的值是( ) A .1B .-3C .-4D .-15.2020的相反数是( ) A .2020B .﹣2020C .12020D .﹣120206.下列合并同类项结果正确的是( ) A .2a 2+3a 2=6a 2B .2a 2+3a 2=5a 2C .2xy -xy =1D .2x 3+3x 3=5x 67.有理数a 、b 在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为( )A .2aB .-2bC .-2aD .2b 8.若a >b ,则下列不等式中成立的是( )A .a +2<b +2B .a ﹣2<b ﹣2C .2a <2bD .﹣2a <﹣2b9.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( ) A .﹣5x ﹣1 B .5x+1C .13x ﹣1D .6x 2+13x ﹣110.如图,是一张长方形纸片(其中AB ∥CD ),点E ,F 分别在边AB ,AD 上.把这张长方形纸片沿着EF 折叠,点A 落在点G 处,EG 交CD 于点H .若∠BEH =4∠AEF ,则∠CHG 的度数为( )A .108°B .120°C .136°D .144°11.如图,点C 、D 为线段AB 上两点,6AC BD +=,且75AD BC AB +=,则CD等于( )A .6B .4C .10D .30712.如果a 和14-b 互为相反数,那么多项式()()2210723b a a b -++--的值是 ( ) A .-4 B .-2 C .2 D .4 13.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是 A .3mnB .23m nC .3m nD .32m n14.如图,直线a ,b 相交于点O ,若1∠等于36︒,则2∠等于( )A .54︒B .64︒C .144︒D .154︒15.在解方程123123x x -+-=时,去分母正确的是( ) A .3(x -1)-2(2x +3)=6 B .3(x -1)-2(2x +3)=1 C .2(x -1)-3(2x +3)=6D .3(x -1)-2(2x +3)=3二、填空题16.某产品的形状是长方体,长为8cm ,它的展开图如图所示,则长方体的体积为_____cm 3.17.一个几何体的主视图、左视图、俯视图都是相同的图形,这样的几何体可以是___________(写出一个符合条件的即可).18.已知关于 x 的一元一次方程 5x - 2a = 6 的解 x=1,则 a 的值是___________. 19.已知23a b -=,则736a b +-的值为__________.20.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____. 21.比较大小:0.4--_________(0.4)--(填“>”“<”或“=”). 22.已知220x y +-=,则124x y --的值等于______.23.如图,AB =24,点C 为AB 的中点,点D 在线段AC 上,且AD =13CB ,则DB 的长度为___.24.-6的相反数是 . 25.有下列三个生活、生产现象: ①用两个钉子就可以把木条固定在干墙上; ②把弯曲的公路改直能缩短路程;③植树时只要定出两颗树的位置,就能确定同一行所在的直线. 其中可用“两点之间,线段最短”来解释的现象有_____(填序号).三、解答题26.先化简,再求值:2211312()()2323x x y x y --+-+,其中,x y 满足22(2)03x y ++-= 27.如图所示,O 为一个模拟钟面圆心,M 、O 、N 在一条直线上,指针 OA 、OB 分别从 OM 、ON 出发绕点 O 转动,OA 运动速度为每秒 30°,OB 运动速度为每秒10°,当一根指针与起始位置重合时,运动停止,设转动的时间为 t 秒,试解决下列问题:(1)如图①,若OA 顺时针转动,OB 逆时针转动,t = 秒时,OA 与OB 第一次重合;(2)如图②,若OA 、OB 同时顺时针转动, ①当t =3秒时,∠AOB = °;②当t 为何值时,三条射线OA 、OB 、ON 其中一条射线是另两条射线夹角的角平分线?28.先化简,再求值:()()2222233a b ababa b ---+,其中1a =-,13b =. 29.先化简,后求值:(23)2(2+2ab a a b ab )-+--,其中a=3,b=1. 30.解方程:(1)5(x+8)=6(2x-7)+5 (2)2x 13-=2x 16+-131.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,FOC ∠=90°,∠1=40°.求∠2和∠3的度数.32.定义:对于一个两位数x ,如果x 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“相异数”,将一个“相异数”的个位数字与十位数字对调后得到一个新的两位数,将这个新两位数与原两位数的求和,同除以11所得的商记为S (x ). 例如,a =13,对调个位数字与十位数字得到的新两位数31,新两位数与原两位数的和为13+31=44,和44除以11的商为44÷11=4,所以S (13)=4.(1)下列两位数:20,29,77中,“相异数”为 ,计算:S (43)= ; (2)若一个“相异数”y 的十位数字是k ,个位数字是2(k ﹣1),且S (y )=10,求相异数y ;(3)小慧同学发现若S (x )=5,则“相异数”x 的个位数字与十位数字之和一定为5,请判断小慧发现”是否正确?如果正确,说明理由;如果不正确,举出反例.33.先化简,再求值.22225(3)4(31)a b ab ab a b ---+-,其中2(2)10a b ++-=.四、压轴题34.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由. 35.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n 个()0a a ≠相除记作n a ,读作“a 的n 次商”. (1)直接写出结果:312⎛⎫=⎪⎝⎭______,()42-=______. (2)关于除方,下列说法错误的是( ) A .任何非零数的2次商都等于1 B .对于任何正整数n ,()111n --=-C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数D .负数的奇数次商结果是负数,负数的偶数次商结果是正数. 深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢? (3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______ 615⎛⎫= ⎪⎝⎭______(4)想一想,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭36.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.()1点A 表示的数为______,点B 表示的数为______.()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______.()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.37.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示; ②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .38.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.39.如图,已知点A 、B 是数轴上两点,O 为原点,12AB =,点B 表示的数为4,点P 、Q 分别从O 、B 同时出发,沿数轴向不同的方向运动,点P 速度为每秒1个单位.点Q 速度为每秒2个单位,设运动时间为t ,当PQ 的长为5时,求t 的值及AP 的长.40.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.(1)若8cm AC ,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写出结果不需证明.41.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.42.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°: (1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?43.设A 、B 、C 是数轴上的三个点,且点C 在A 、B 之间,它们对应的数分别为x A 、x B 、x C .(1)若AC=CB,则点C叫做线段AB的中点,已知C是AB的中点.①若x A=1,x B=5,则x c=;②若x A=﹣1,x B=﹣5,则x C=;③一般的,将x C用x A和x B表示出来为x C=;④若x C=1,将点A向右平移5个单位,恰好与点B重合,则x A=;(2)若AC=λCB(其中λ>0).①当x A=﹣2,x B=4,λ=13时,x C=.②一般的,将x C用x A、x B和λ表示出来为x C=.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).14 000 000一共8位,从而14 000 000=.4×107.故选B.2.B解析:B【解析】【分析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得0.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.解析:C【解析】【分析】根据每个几何体的特点可得答案.【详解】解:A. 球,只有曲面,不符合题意;B. 三棱锥,面是4个平面,还有4个顶点,不符合题意;C. 圆锥,是一个曲面,一个顶点,符合题意;D. 圆柱,是一个曲面,两个平面,没有顶点,不符合题意.故选:C.【点睛】本题考查认识立体图形,解题关键是熟记常见几何体的特征.4.C解析:C【解析】【分析】由互为相反数的两个数和为0可得a的值.【详解】a+与5互为相反数解:23∴++=2350aa=-.解得4故选:C【点睛】本题考查了相反数,熟练掌握相反数的性质是解题的关键.5.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.故选:B.【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.6.B解析:B【解析】根据合并同类项的法则,进行求解即可. 【详解】解:222235a a a +=,故A 错误;B 正确;2xy xy xy -=,故C 错误;333235x x x +=,故D 错误;故选:B. 【点睛】本题考查了合并同类项,解答本题的关键是掌握合并同类项法则.7.A解析:A 【解析】试题分析:根据有理数a 、b 在数轴上的位置,可得,a<0,b>0,所以∣a ∣<∣b ∣,所以可得,a+b>0,a-b<0则=(a+b )+a-b=a+b+a-b=2a,故选A考点:1.数轴;2.绝对值8.D解析:D 【解析】A. ∵a >b , a+2>b +2 ,故不正确;B. ∵a >b ,a ﹣2>b ﹣2 ,故不正确;C. ∵a >b , 2a >2b ,故不正确;D. ∵a >b ,﹣2a <﹣2b ,故正确; 故选D.点睛:本题考查了不等式的基本性质,①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.9.A解析:A 【解析】 【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果. 【详解】根据题意列得:(3x 2+4x−1)−(3x 2+9x )=3x 2+4x-1−3x 2−9x =−5x−1. 故选A . 【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.10.B【解析】【分析】由折叠的性质及平角等于180°可求出∠BEH 的度数,由AB ∥CD ,利用“两直线平行,内错角相等”可求出∠DHE 的度数,再利用对顶角相等可求出∠CHG 的度数.【详解】由折叠的性质,可知:∠AEF =∠FEH .∵∠BEH =4∠AEF ,∠AEF +∠FEH +∠BEH =180°,∴∠AEF =16×180°=30°,∠BEH =4∠AEF =120°. ∵AB ∥CD ,∴∠DHE =∠BEH =120°,∴∠CHG =∠DHE =120°.故选:B .【点睛】 本题考查了四边形的折叠问题,掌握折叠的性质以及平行的性质是解题的关键.11.B解析:B【解析】【分析】 由线段和差可得35AC BD AB +=,由6AC BD +=即可得AB 的长度,即可得CD 的长度.【详解】 解:∵75AD BC AB += 又∵AD BC AD CD BD AB CD +=++=+ ∴75AB CD AB +=∴25CD AB = ∴35AC BD AB CD AB +=-=∵6AC BD += ∴3=65AB ∴=10AB ∴22=10=455CD AB =⨯【点睛】本题考查了线段和差及倍数关系,掌握线段的和差及转化是解题的关键.12.A解析:A【解析】【分析】根据相反数的性质并整理可得a 4b -=-1,然后去括号、合并同类项,再利用整体代入法求值即可.【详解】解:∵a 和14b -互为相反数,∴a +14b -=0整理,得a 4b -=-1()()2210723b a a b -++--=242071421b a a b -++--=3121a b --=()341a b --=()311⨯--=-4故选A .【点睛】此题考查的是相反数的性质和整式的化简求值题,掌握相反数的性质、去括号法则和合并同类项法则是解决此题的关键.13.C解析:C【解析】根据同底数幂的乘法法则可得:14333533 x x x x x m m m n m n m n =⨯⨯⨯=⨯⨯⨯=⨯=,故选C.14.C解析:C【解析】【分析】观察图形可知∠1和∠2是一对邻补角,由136∠=︒,可求∠2.【详解】解:因为直线a ,b 相交于点O ,所以12180∠+∠=︒,又因为136∠=︒,所以2180118036144∠=︒-∠=︒-︒=︒.故选:C.【点睛】本题考查了邻补角的性质,解题的关键是结合图形,熟练运用邻补角的性质,此题比较简单,易于掌握.15.A解析:A【解析】【分析】去分母的方法是:方程左右两边同时乘以各分母的最小公倍数,这一过程的依据是等式的基本性质,注意去分母时分数线起到括号的作用,容易出现的错误是:漏乘没有分母的项,以及去分母后忘记分数线的括号的作用,符号出现错误.【详解】方程左右两边同时乘以6得:3(x−1)−2(2x+3)=6.故选:A【点睛】考查一元一次方程的解法,熟练掌握分式的基本性质是解题的关键.二、填空题16.192【解析】【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm,则长方形的宽为(14-2x)cm,根据题意可得:14-2x+8+x+8=26,解得:x=解析:192【解析】【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm,则长方形的宽为(14-2x)cm,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm,宽为6cm,长为8cm,长方形的体积为:8×6×4=192(cm3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.答案不唯一,如正方体、球体【解析】【分析】三视图都相同的几何体是:正方体,三视图均为正方形;球体,三视图均为圆.【详解】依题意,主视图、左视图以及俯视图都相同的几何体是正方体或球体.故填解析:答案不唯一,如正方体、球体【解析】【分析】三视图都相同的几何体是:正方体,三视图均为正方形;球体,三视图均为圆.【详解】依题意,主视图、左视图以及俯视图都相同的几何体是正方体或球体.故填:正方体、球体(答案不唯一).【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力和对立体图形的认识.18.-【解析】【分析】把x=1代入方程,即可得到一个关于a的方程,即可求解.【详解】把x=1代入方程得5-2a=6,解得:a=-.故答案为:-.【点睛】本题考查了一元一次方程的解的定义解析:-1 2【解析】【分析】把x=1代入方程,即可得到一个关于a的方程,即可求解.【详解】把x=1代入方程得5-2a=6,解得:a=-12.故答案为:-12.【点睛】本题考查了一元一次方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.19.【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a-2b=3,∴7+3a-6b=7+3(a-2b)=7+3×3=16.故答案为:16.【点睛】本题考查代数解析:16【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a-2b=3,∴7+3a-6b=7+3(a-2b)=7+3×3=16.故答案为:16.【点睛】本题考查代数式求值,解题关键是正确将原式变形.20.两点确定一条直线【解析】【分析】根据两点确定一条直线解答.【详解】解:要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是:两点确定一条直线,故答案为两点确定一条直线.【点睛】本解析:两点确定一条直线【解析】【分析】根据两点确定一条直线解答.【详解】解:要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是:两点确定一条直线,故答案为两点确定一条直线.【点睛】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.21.<.【解析】【分析】先化简各值然后再比较大小.【详解】,,∵-0.4<0.4,∴<.故答案为:<.【点睛】本题比较有理数的大小,关键在于掌握绝对值和去括号的计算.解析:<.【解析】【分析】先化简各值然后再比较大小.【详解】0.40.4--=-,(0.4)0.4--=,∵-0.4<0.4, ∴0.4--<(0.4)--.故答案为:<.【点睛】本题比较有理数的大小,关键在于掌握绝对值和去括号的计算.22.-3【解析】【分析】由可得:x+2y=2,运用整体思想将x+2y 代入即可.【详解】解:∵∴∴故答案为:-3.【点睛】本题考查了整式的整体代入思想,掌握式子的变形是解题的关键.解析:-3【解析】【分析】由220x y +-=可得:x+2y=2,运用整体思想将x+2y 代入即可.【详解】解:∵220x y +-=∴2=2x y +∴()12412x+2y x y --=-⨯=1-22=-3故答案为:-3.【点睛】本题考查了整式的整体代入思想,掌握式子的变形是解题的关键.23.【解析】【分析】根据线段中点的定义可得,再求出,然后根据代入数据计算即可得解.【详解】∵AB =24,点C 为AB 的中点,,,,∴DB =AB ﹣AD =24﹣4=20.故答案为:20.解析:【解析】【分析】根据线段中点的定义可得12BC AB =,再求出AD ,然后根据DB AB AD =-代入数据计算即可得解.【详解】 ∵AB =24,点C 为AB 的中点,11241222CB AB ∴==⨯=, 13AD CB =, 11243AD ∴=⨯=, ∴DB =AB ﹣AD =24﹣4=20.故答案为:20.【点睛】本题考查了两点间的距离,掌握线段中点的定义,灵活运用数形结合思想是解题的关键. 24.6【解析】求一个数的相反数,即在这个数的前面加负号.解:根据相反数的概念,得-6的相反数是-(-6)=6.解析:6【解析】求一个数的相反数,即在这个数的前面加负号.解:根据相反数的概念,得-6的相反数是-(-6)=6.25.②.【解析】【分析】本题分别根据两点确定一条直线;两点之间,线段最短进行解答即可.【详解】解:①用两个钉子就可以把木条固定在干墙上,根据两点确定一条直线; ②把弯曲的公路改直能缩短路程,解析:②.【解析】【分析】本题分别根据两点确定一条直线;两点之间,线段最短进行解答即可.【详解】解:①用两个钉子就可以把木条固定在干墙上,根据两点确定一条直线;②把弯曲的公路改直能缩短路程,根据两点之间,线段最短;③植树时只要定出两颗树的位置,就能确定同一行所在的直线根据两点确定一条直线; 故答案为②.考点:线段的性质:两点之间线段最短.三、解答题26.23x y -+,589【解析】【分析】先把原代数式化简,再根据题意求出x 、y 的值代入化简后的代数式即可解答.【详解】 2211312()()2323x x y x y --+-+ 解:原式=22123122323x x y x y -+-+ 21312(2)()2233x y =--++ 23x y =-+ ∵22(2)03x y ++-= ∴x+2=0,y-23=0 解得:x=-2,y=23, 当22,3x y =-=时, 原式223(2)()3=-⨯-+469=+ 589= 【点睛】本题考查化简代数式并求值的方法,解题关键是熟练掌握去括号法则:括号前面是正号,去掉括号不变号,括号前面是负号,去掉括号变符号.27.(1)4.5;(2)① 120°;②经过4.5,7.2秒时,其中一条射线是另外两条射线夹角的平分线.【解析】【分析】(1)设t 秒后第一次重合.根据题意,列出方程,解方程即可;(2)①利用180°减去OA 转动的角度,加上OB 转动的角度,即可得到答案;②先用t 的代数式表示∠BON 和∠AON ,然后分为三种情况进行讨论:当ON 、OA 、OB 为角平分线时,分别求出t 的值,即可得到答案.【详解】解:(1)若OA 顺时针转动,OB 逆时针转动,∴∠AOM+∠BON=180°,∴3010180t t +=,解得: 4.5t =;∴ 4.5t =秒,OA 与OB 第一次重合;故答案为:4.5;(2)①若OA 、OB 同时顺时针转动,∴30390AOM ∠=︒⨯=︒,10330BON ∠=︒⨯=︒,∴1809030120AOB ∠=︒-︒+︒=︒;故答案为:120;② 由题意知012t ≤≤,∴∠BON =10t ,∠AON =180-30t (0≤t ≤6),∠AON =30t -180(6<t ≤12).当ON 为∠AOB 的角平分线时,有180-30t =10t ,解得:t =4.5;当OA 为∠BON 的角平分线时,10t =2(30t -180),解得:t =7.2;当OB 为∠AON 的角平分线时,30t -180=2×10t ,解得:t =18(舍去);∴经过4.5,7.2秒时,射线OA 、OB 、ON 其中一条射线是另外两条射线夹角的平分线.【点睛】本题考查一元一次方程的应用,解题的关键是理解题意,学会设未知数列方程解决问题,注意利用分类讨论的思想进行解题,属于中考常考题型.28.109【解析】【分析】根据整式的运算法则即可求出答案.【详解】原式2222623a b ab ab a b =-+-[x ∈-当1a =-,13b =时, 原式()22111103(1)1()13399=⨯-⨯--⨯=+=. 【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,属于基础题型.29.-1.【解析】试题分析:原式去括号合并得到最简结果,把,a b 的值代入计算即可.试题解析:原式 234222.ab a a b ab a b =-+-++=-+当3,1a b == 时,原式 32 1.=-+=-30.(1)x=11;(2)56x =-. 【解析】【分析】(1)按去括号、移项、合并同类项、系数化为1的步骤进行求解即可;(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可.【详解】(1)去括号,得5x+40-5=12x-42,移项,得5x-12x=-42+5-40,合并同类项,得-7x=-77,系数化为1,得x=11;(2)去分母,得2(2x+1)-(10x+1)=6,去括号,得4x+2-10x-1=6,移项,得4x-10x=6+1-2,合并同类项,得-6x=5,系数化为1,得x=56-. 【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解题的关键.31.∠2=65°,∠3=50°.【解析】【分析】首先根据平角以及∠FOC 和∠1的度数求出∠3的度数,然后根据∠3的度数求出∠AOD 的度数,根据角平分线的性质求出∠2的度数.【详解】∵AB 为直线,∴∠3+∠FOC+∠1=180°.∵∠FOC=90°,∠1=40°,∴∠3=180°-90°-40°=50°.∵∠3与∠AOD互补,∴∠AOD=180°-∠3=130°.∵OE平分∠AOD,∴∠2=∠AOD=65°.【点睛】考点:角平分线的性质、角度的计算.32.(1)29,7;(2)46;(3)正确,理由详见解析.【解析】【分析】(1)根据“相异数”的定义可知29是“相异数”,20,77不是“相异数”,利用定义进行计算即可,(2)根据“相异数”的定义,由S(y)=10,列方程求出“相异数y”的十位数字和个位数字,进而确定y;(3)设出“相异数”的十位、个位数字,根据“相异数”的定义,由S(x)=5,得出十位数字和个位数字之间的关系,进而得出结论.【详解】解:(1)根据“相异数”的定义可知29是“相异数”, 20,77不是“相异数”S(43)=(43+34)÷11=7,故答案为:29,7;(2)由“相异数”y的十位数字是k,个位数字是2(k﹣1),且S(y)=10得,10k+2(k﹣1)+20(k﹣1)+k=10×11,解得k=4,∴2(k﹣1)=2×3=6,∴相异数y是46;(3)正确;设“相异数”的十位数字为a,个位数字为b,则x=10a+b,由S(x)=5得,10a+b+10b+a=5×11,即:a+b=5,因此,判断正确.【点睛】本题主要考查相异数,一元一次方程的应用,掌握相异数的定义及S(x)的求法是解题的关键.33.3a2b-ab2+4;18.【解析】【分析】先解出a 与b 的值,再化简代数式代入求解即可.【详解】 根据2(2)10a b ++-=,可得:a=-2,b=1. 22225(3)4(31)a b ab ab a b ---+-=15a 2b-5ab 2+4ab 2-12a 2b+4=3a 2b-ab 2+4将a=-2,b=1代入得:原式=3×(-2)2×1-(-2)×12+4=12+2+4=18.【点睛】本题考查代数式的化简求值,关键在于先通过非负性求出a,b 的值.四、压轴题34.(1)m =12,n =﹣3;(2)①5;②应64岁;(3)k =6,15【解析】【分析】(1)由非负性可求m ,n 的值;(2)①由题意可得3AB =m ﹣n ,即可求解;②由题意列出方程组,即可求解;(3)用参数t 分别表示出PQ ,B 'A 的长度,进而用参数t 表示出3PQ ﹣kB ′A ,即可求解.【详解】解:(1)∵|m ﹣12|+(n +3)2=0,∴m ﹣12=0,n +3=0,∴m =12,n =﹣3;故答案为:12,﹣3;(2)①由题意得:3AB =m ﹣n ,∴AB =3m n -=5, ∴玩具火车的长为:5个单位长度,故答案为:5;②能帮小明求出来,设小明今年x 岁,奶奶今年y 岁,根据题意可得方程组为:40116y x x y x y -=+⎧⎨-=-⎩, 解得:1264x y =⎧⎨=⎩, 答:奶奶今年64岁;(3)由题意可得PQ =(12+3t )﹣(﹣3﹣t )=15+4t ,B 'A =5+2t ,∵3PQ ﹣kB ′A =3(15+4t )﹣k (5+2t )=45﹣5k +(12﹣2k )t ,且3PQ ﹣kB ′A 的值与它们的运动时间无关,∴12﹣2k =0,∴k =6∴3PQ ﹣kB ′A =45﹣30=15【点睛】本题主要考查数轴上的动点问题,关键是用代数式表示数轴上两点之间的距离,体现了数形结合思想和方程思想.35.(1)2,14;(2)B ;(3)21()3-,45;(4)21()n a -;(5)29- 【解析】【分析】(1)利用题中的新定义计算即可求出值;(2)利用题中的新定义计算即可求出值;(3)将原式变形即可得到结果;(4)根据题意确定出所求即可;(5)原式变形后,计算即可求出值.【详解】(1)3111111222222⎛⎫=÷÷=÷= ⎪⎝⎭, ()()()()()4111222221224-=-÷-÷-÷-=⨯⨯=, 故答案为:2,14; (2)A .任何非零数的2次商都等于1,说法正确,符合题意;B .对于任何正整数n ,当n 为奇数时,()111n --=-;当n 为偶数时,()111n --=,原说法错误,不符合题意;C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数,说法正确,符合题意;D .负数的奇数次商结果是负数,负数的偶数次商结果是正数,说法正确,符合题意. 故选:B ;(3)()()()()()433333-=-÷-÷-÷-111()()33=⨯-⨯- 21()3=-; 611111115555555⎛⎫=÷÷÷÷÷ ⎪⎝⎭ 15555=⨯⨯⨯⨯45=;故答案为:21()3-,45;(4)由(3)得到规律:21()n n a a -=,所以,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于21()n a -, 故答案为:21()n a -;(5)201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()2019324220202112366---⎛⎫=÷-÷---⨯ ⎪⎝⎭201820181111162966⎛⎫⎛⎫⎛⎫=⨯-⨯-⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 201811161866⎛⎫⎛⎫=--⨯⨯ ⎪ ⎪⎝⎭⎝⎭ 11186=-- 29=-. 【点睛】本题考查了有理数的混合运算,新定义的理解与运用;熟练掌握运算法则是解本题的关键.对新定义,其实就是多个数的除法运算,要注意运算顺序.36.(1)2412--;;(2)2t ;362t -;(3)P 、Q 两点之间的距离能为2,此时点P 点Q 表示的数分别是2-,2,2226,33. 【解析】【分析】 ()1因为点A 在原点左侧且到原点的距离为24个单位长度,所以点A 表示数24-;点B 在点A 右侧且与点A 的距离为12个单位长度,故点B 表示:241212-+=-;()2因为点P 从点A 出发,以每秒运动2两个单位长度的速度向终点C 运动,则t 秒后点P 表示数242t(0t 18-+≤≤,令242t 12-+=,则t 18=时点P 运动到点C),而点A 表示数24-,点C 表示数12,所以()PA 242t 242t =-+--=,PC 242t 12362t =-+-=-;()3以点Q 作为参考,则点P 可理解为从点B 出发,设点Q 运动了m 秒,那么m 秒后点Q 表示的数是244m -+,点P 表示的数是122m -+,再分两种情况讨论:①点Q 运动到点C 之前;②点Q 运动到点C 之后.。