13-15年高考新课标卷I文科数学试卷与解析

合集下载

2015年高考文科数学全国卷1及答案解析

2015年高考文科数学全国卷1及答案解析

2015年⾼考⽂科数学全国卷1及答案解析数学试卷第1页(共15页)数学试卷第2页(共15页)数学试卷第3页(共15页)绝密★启⽤前2015年普通⾼等学校招⽣全国统⼀考试(全国新课标卷1)数学(⽂科)使⽤地区:河南、⼭西、河北、江西本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题共60分)⼀、选择题:本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.已知集合{|}32,A x x n n ==+∈N ,{6,8,10,12,14}B =,则集合A B 中元素的个数为()A .5B .4C .3D .22.已知点0,1A (),3,2B (),向量AC =43--(,),则向量BC =()A (-7,-4)B .(7,4)C .(-1,4)D .(1,4) 3.已知复数z 满⾜(z -1)i=1+i ,则z=()A .-2-iB .-2+iC .2-iD .2+i4.如果3个正整数可作为⼀个直⾓三⾓形三条边的边长,则称这3个数为⼀组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成⼀组勾股数的概率为()A .310C .110D .1205.已知椭圆E 的中⼼在坐标原点,离⼼率为12,E 的右焦点与抛物线28C y x =:的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=()A .3B .6C .9D .126.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委⽶依垣内⾓,下周⼋尺,⾼五尺.问:积及为⽶⼏何?”其意思为:“在屋内墙⾓处堆放⽶(如图,⽶堆为⼀个圆锥的四分之⼀),⽶堆底部的弧长为8尺,⽶堆的⾼为5尺,问⽶堆的体积和堆放的⽶各为多少?”已知1斛⽶的体积约为1.62⽴⽅尺,圆周率约为3,估算出堆放的⽶约有()A .14斛B .22斛C .36斛D .66斛7.已知{}n a 是公差为1的等差数列,n S 为n {}a 的前n 项和.若844S S =,则10a = () A .172B .192C .10D .128.函数=cos(+)x f x ω?()的部分图象如图所⽰,则f x ()的单调递减区间为()A .13π,π+44k k k -∈Z (),B .132π,2π+44k k k -∈Z (), C .13,+44k k k -∈Z (),D .13k k k -∈Z (),9.执⾏如图所⽰的程序框图,如果输⼊的0.01t =,则输出的n = ()A .5B .6C .7D .810.已知函数1222, 1,()log (1), 1,x x f x x x -?-=?-+?≤>且()3f a =-,则(6)f a -= ()A .74-B .54-C .34-D .14-11.圆柱被⼀个平⾯截去⼀部分后与半球(半径为r )组成⼀个⼏何体,该⼏何体三视图中的正视图和俯视图如图所⽰.若该⼏何体的表⾯积为16π20+,则r = ()A .1B .2C .4D .812.设函数()y f x =的图象与2x a y +=的图象关于直线y x =-对称,且(2)(4)f f -+-1=,则a =()A .1-B .1C .2D .4--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------⽆--------------------效----------------姓名________________ 准考证号_____________数学试卷第4页(共15页)数学试卷第5页(共15页)数学试卷第6页(共15页)第Ⅱ卷(⾮选择题共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考⽣都必须作答,第22~24题为选考题,考⽣根据要求作答.⼆、填空题:本⼤题共4⼩题,每⼩题5分,共20分.把答案填在题中的横线上. 13.在数列{}n a 中12a =,12n n a a +=,n S为{}n a 的前n 项和.若126n S =,则n =_____.14.已知函数31f x ax x =++()的图象在点1,1f (())处的切线过点(2,7),则a =_____. 15.若x ,y 满⾜约束条件20,210,220,x y x y x y +-??-+??-+?≤≤≥则z 3x y =+的最⼤值为_____.16.已知F 是双曲线2218yC x -=:的右焦点,P 是C的左⽀上⼀点,A (.当APF △周长最⼩时,该三⾓形的⾯积为_____.三、解答题:本⼤题共6⼩题,共70分.解答应写出必要的⽂字说明、证明过程或演算步骤. 17.(本⼩题满分12分)已知a ,b ,c 分别是ABC △内⾓A ,B ,C 的对边,2sin 2sin sin B A C =. (Ⅰ)若a b =,求cos B ;(Ⅱ)若B =90°,且a ABC △的⾯积. 18.(本⼩题满分12分)如图,四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平⾯. (Ⅰ)证明:平⾯AEC ⊥平⾯BED ;(Ⅱ)若ABC ∠=120°,AE EC ⊥,三棱锥E ACD -,求该三棱锥的侧⾯积.19.(本⼩题满分12分)某公司为确定下⼀年度投⼊某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z(单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,…,8)数据作了初步处理,得到下⾯的散点图及⼀些统计量的值.表中i ωω=8ii=1ω∑(Ⅰ)根据散点图判断,y a bx =+与y c =+y 关于年宣传费x 的回归⽅程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建⽴y 关于x 的回归⽅程;(Ⅲ)已知这种产品的年利率z 与x ,y 的关系为z=0.2y -x .根据(Ⅱ)的结果回答下列问题:(i )年宣传费x =49时,年销售量及年利润的预报值是多少?(ii )年宣传费x 为何值时,年利润的预报值最⼤?附:对于⼀组数据11()u v ,,22(,)u v ,…,(,)n n u v ,其回归直线v u αβ=+的斜率和截距的最⼩⼆乘估计分别为121()(),()nii i nii uu v v v u uu βαβ==--==--∑∑.20.(本⼩题满分12分)已知过点(0,1)A 且斜率为k 的直线l 与圆22 ()2(3)1C x y -+-=:交于M ,N 两点. (Ⅰ)求k 的取值范围;(Ⅱ)若12OM ON ?=,其中O 为坐标原点,求||MN . 21.(本⼩题满分12分)设函数()2ln x f x e a x =-.(Ⅰ)讨论()f x 的导函数()f x '的零点的个数;(Ⅱ)证明:当0a >时,()22ln f x a a a+≥.请考⽣在第22~24三题中任选⼀题作答,如果多做,则按所做的第⼀题计分. 22.(本⼩题满分10分)选修4—1:⼏何证明选讲如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是⊙O 的切线;(Ⅱ)若OA CE ,求∠ACB 的⼤⼩.23.(本⼩题满分10分)选修4—4:坐标系与参数⽅程在直⾓坐标系xOy 中,直线1C :x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建⽴极坐标系. (Ⅰ)求1C ,2C 的极坐标⽅程;(Ⅱ)若直线3C 的极坐标⽅程为()π4θρ=∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的⾯积.24.(本⼩题满分10分)选修4—5:不等式选讲已知函数12f x =|||x |x a --+(),0a >. (Ⅰ)当=1a 时,求不等式1f x >()的解集;(Ⅱ)若f x ()的图象与x 轴围成的三⾓形⾯积⼤于6,求a 的取值范围.数学试卷第7页(共15页)数学试卷第8页(共15页)数学试卷第9页(共15页)2015年普通⾼等学校招⽣全国统⼀考试(全国新课标卷1)数学(⽂科)答案解析第Ⅰ卷{8,14A B =【答案】A 【解析】(3,1)AB OB OA =-=(7,BC AC AB ∴=-=-【考点】向量运算【答案】C【解析】抛物线,1e 2c a ==代⼊椭圆E 【解析】公差【解析】()f a =-1a >时,-第Ⅱ卷】12a =,2)1262n -=-数学试卷第10页(共15页)数学试卷第11页(共15页)数学试卷第12页(共15页)【解析】()3f x '=,⼜(1)f a =(1,2)a +,切线过为4.(0,66)A ∴直线90,由勾股定理得120,可得3624AC GD BE x 3,EAD △的⾯积与ACD c y dw ∴=-576.6z =?0.2(100.6z =时,z数学试卷第13页(共15页)数学试卷第14页(共15页)数学试卷第15页(共15页)12OM ON x x =2(1)8=121k k+++的⼀元⼆次⽅程,利⽤平⾯向量数量积的坐标公式及12OM ON =,90ACB ∠+,90,90∴∠,DE ∴.AE x =,由已知得AB =2x -,由射影定理可得,AECE BE =,212x x ∴=-3x =60ACB ∴∠=.90,即90∠,CE BE ,列出关于【考点】圆的切线判定与性质,圆周⾓定理,直⾓三⾓形射影定理1 452=.。

2015年高考新课标全国卷Ⅰ文科数学试题(附答案)

2015年高考新课标全国卷Ⅰ文科数学试题(附答案)

2015年全国高考试题独家解析(新课标全国卷Ⅰ)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为A .5B .4C .3D .22.已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC = A .(7,4)-- B .(7,4) C .(1,4)- D .(1,4) 3.已知复数z 满足(1)1z i i -=+,则z =A .2i --B .2i -+C .2i -D .2i +4.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为A .310 B .15 C .110 D .1205.已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :28y x =的焦点重合,A B 、是C 的准线与E 的两个交点,则AB = A .3 B .6 C .9 D .12 6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A .14斛B .22斛C .36斛D .66斛7.已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a = A .172 B .192C .10D .12 8.函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为A .13(,),44k k k Z ππ-+∈ B .13(2,2),44k k k Z ππ-+∈ C .13(,),44k k k Z -+∈ D .13(2,2),44k k k Z -+∈9.执行右面的程序框图,如果输入的0.01t =,则输出的n =A .5B .6C .7D .810.已知函数1222,1()log (1),1x x f x x x -⎧-=⎨-+>⎩≤ ,且()3f a =-,则(6)f a -=A .74-B .54-C .34-D .14-11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =A .1B .2C .4D .812.设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =A .1-B .1C .2D .4第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答。

(完整版)2015年新课标1卷文科数学高考真题及答案,推荐文档

(完整版)2015年新课标1卷文科数学高考真题及答案,推荐文档

2015年普通高等学校招生全国统一考试(新课标1卷)文 一、选择题:每小题5分,共60分 1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B I 中的元素个数为(A ) 5 (B )4 (C )3 (D )22、已知点(0,1),(3,2)A B ,向量(4,3)AC =--u u u r ,则向量BC =u u u r(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)3、已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )(A )310 (B )15 (C )110 (D )1205、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =(A ) 3 (B )6 (C )9 (D )126、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( )(A ) 172 (B )192(C )10 (D )12 8、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈(B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈ 9、执行右面的程序框图,如果输入的0.01t =,则输出的n =( )(A ) 5 (B )6 (C )7 (D )810、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ , 且()3f a =-,则(6)f a -=(A )74- (B )54-(C )34-(D )14- 11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1(B )2(C )4(D )812、设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .14.()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = . 15. 若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .16.已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,()0,66A ,当APF ∆周长最小时,该三角形的面积为 .三、解答题17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B (II )若90B =o ,且2,a = 求ABC ∆的面积.18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=o ,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积. 19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =L 数据作了初步处理,得到下面的散点图及一些统计量的值.(I )根据散点图判断,y a bx =+与y c x =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题:(i )当年宣传费x =49时,年销售量及年利润的预报值时多少?(ii )当年宣传费x 为何值时,年利润的预报值最大?20. (本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )若12OM ON ⋅=u u u u r u u u r ,其中O 为坐标原点,求MN .21. (本小题满分12分)设函数()2ln x f x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22lnf x a a a ≥+. 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图AB 是e O 直径,AC 是e O 切线,BC 交e O 与点E .(I )若D 为AC 中点,证明:DE 是e O 切线;(II )若3OA CE = ,求ACB ∠的大小.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N 求2C MN ∆ 的面积. 24. (本小题满分10分)选修4-5:不等式选讲已知函数()12,0f x x x a a =+--> .(I )当1a = 时求不等式()1f x > 的解集;(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.一、D A C C B B B (8)D (9)C (10)A (11)B (12)C 二、填空题(13)6 (14)1 (15)4 (16) 三、 17、解:(I )由题设及正弦定理可得2b =2ac.又a=b ,可得cosB=2222a c b ac +-=14……6分 (II )由(I )知2b =2ac. 因为B=o 90,由勾股定理得222a c =b +.故22a c =2ac +,的. 所以△ABC 的面积为1. ……12分18、解:(I )因为四边形ABCD 为菱形,所以AC ⊥BD.因为BE ⊥平面ABCD,所以AC ⊥BE,故AC ⊥平面BED.又AC ⊂平面AEC,所以平面AEC ⊥平面BED. ……5分 (II )设AB=x ,在菱形ABCD 中,又∠ABC=o 120 ,可得,GB=GD=2x . 因为AE ⊥EC,所以在Rt △AEC 中,可的x . 由BE ⊥平面ABCD,知△EBG 为直角三角形,可得. 由已知得,三棱锥E-ACD 的体积E ACD V -=13×12AC ·GD ·3x = 故x =2 ……9分从而可得.所以△EAC 的面积为3,△EAD 的面积与 △ECD故三棱锥E-ACD 的侧面积为. ……12分19、解:(I )由散点图可以判断,适宜作为年销售量y 关于年宣传费x 的回归方程式类型.(II)令w =y 关于w 的线性回归方程式.由于28181()()108.8d=681.6()i i i i i w w y y w w ==--==-∑∑),56368 6.8100.6c y d w =-=-⨯=)), 所以y 关于w 的线性回归方程为y=100.668w +),因此y 关于x 的回归方程为y 100.6=+)(Ⅲ)(i )由(II )知,当x =49时,年销售量y的预报值y 100.6=+), 年利润z 的预报值 z=576.60.24966.32⨯-=) ……9分 (ii )根据(II )的结果知,年利润z 的预报值=-20.12x x ++).13.6=6.82=,即x =46.24时,z )取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大. ……12分20、解:(I )由题设,可知直线l 的方程为1y kx =+.因为l 与C 交于两点,.解得k 所以k的取值范围为. ……5分 (II )设()1122,,(,)M x y N x y .将1y kx =+代入方程22(2)(3)1x y -+-=,整理得22(1)4(1)70k x k x +-++=. 所以1212224(1)7,11k x x x x k k++==++. 1212OM ON c x y y ⋅=+()()2121211k x x k x x =++++ ()24181k k k+=++. 由题设可得()24181k k k+=++=12,解得k=1,所以l 的方程是y=x+1. 故圆心C 在l 上,所以2MN =. ……12分21、解:(I )()f x 的定义域为()()20,,2(0)x a f x e x x '+∞=-〉. 当a ≤0时,()()0f x f x ''〉,没有零点;当0a 〉时,因为2x e 单调递增,a x -单调递减,所以()f x '在()0,+∞单调递增,又()0f a '〉, 当b 满足0<b <4a 且b <14时,()0f b '〈,故当a <0时()f x '存在唯一零点.……6分 (II )由(I ),可设()f x '在()0,+∞的唯一零点为0x ,当()00x x ∈,时,()f x '<0;当()0x x ∈+∞,时,()f x '>0. 故()f x 在()0+∞,单调递减,在()0x +∞,单调递增,所以0x x =时, ()f x 取得最小值,最小值为()0f x . 由于02020x a e x -=,所以()0002221212a f x ax a n a a n x a a=++≥+. 故当0a 〉时,()221f x a a na ≥+. ……12分 23、解:(I )因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-, 2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=. ……5分 (II )将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得12ρρ==.故12ρρ-=,即MN = 由于2C 的半径为1,所以2C MN ∆的面积为12. ……10分 24、解:(I )当1a =时,()1f x >化为12110x x +--->. 当1x ≤-时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<; 当1x ≥,不等式化为-x +2>0,解得1≤x <2.所以()1f x >的解集为223x x ⎧⎫⎨⎬⎩⎭︱<<. ……5分 (II )由题设可得,()12,1312,1,12,.x a x f x x a x a x a x a --⎧⎪=+--≤≤⎨⎪-++⎩<<所以函数()f x 的图像与x 轴围成的三角形的三个丁点分别为()()21,0,21,0,,13a A B a C a a -⎛⎫++ ⎪⎝⎭,△ABC 的面积为()2213a +. 由题设得()2213a +>6,故a >2. 所以a 的取值范围为()2+∞,. ……10分。

2015-2013文科数学新课标一真题及解析

2015-2013文科数学新课标一真题及解析

2015年全国统一高考数学试卷(文科)(新课标I)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2015春•河南校级月考)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合2.(5分)已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=()A.(﹣7,﹣4)B.(7,4)C.(﹣1,4)D.(1,4)4.(5分)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,.B.C.D.5.(5分)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有().B.C8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()A .(k π﹣,k π+,),k ∈z B .(2k π﹣,2k π+),k ∈z .(k ﹣,k+),k ∈zD . (,2k+),k ∈z9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=( )10.(5分)(2015春•河南校级月考)已知函数f (x )=且f (a )=﹣3,则f.﹣B .﹣ C .﹣ D .﹣11.(5分)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( )12.(5分)(2015春•河南校级月考)设函数y=f (x )的图象与y=2x+a 的图象关于y=﹣x 对称,且f (﹣二、本大题共4小题,每小题5分.13.(5分)在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=.14.(5分)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=.15.(5分)若x,y满足约束条件,则z=3x+y的最大值为.16.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C的左支上一点,A(0,6).当△APF周长最小时,该三角形的面积为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别是△ ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.18.(12分)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ ABC=120°,AE⊥ EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i ﹣)2(x i﹣)(y i﹣)(w i﹣)(y i ﹣)46.6 563 6.8 289.8 1.6 1469 108.8表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M、N两点.(1)求k的取值范围;(2)若•=12,其中O为坐标原点,求|MN|.21.(12分)(2015春•河南校级月考)设函数f(x)=e2x﹣alnx.(Ⅰ)讨论f(x)的导函数f′(x)零点的个数;(Ⅱ)证明:当a>0时,f(x)≥2a+aln.四、请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.【选修4-1:几何证明选讲】22.(10分)如图,AB是⊙O的直径,AC是⊙ O的切线,BC交⊙ O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙ O的切线;(Ⅱ)若OA=CE,求∠ ACB的大小.五、【选修4-4:坐标系与参数方程】23.(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△ C2MN的面积.六、【选修4-5:不等式选讲】24.已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2014年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的3.(5分)(2014•河南)设z=+i,则|z|=().B.C.D4.(5分)(2014•河南)已知双曲线﹣=1(a>0)的离心率为2,则a=()A.2B.C.D.15.(5分)(2014•河南)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,6.(5分)(2014•河南)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=().B.C.D.7.(5分)(2014•河南)在函数①y=cos丨2x丨,②y=丨cosx丨,③y=cos(2x+)④y=tan(2x﹣)中,最小正周期为π的所有函数为()8.(5分)(2014•河南)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)(2014•河南)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=().B.C.D.10.(5分)(2014•河南)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,x0=11.(5分)(2014•河南)设x,y满足约束条件,且z=x+ay的最小值为7,则a=()12.(5分)(2014•河南)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的二、填空题:本大题共4小题,每小题5分13.(5分)(2014•河南)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_________.14.(5分)(2014•河南)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为_________.15.(5分)(2014•河南)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是_________.16.(5分)(2014•河南)如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°,以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,则山高MN=_________m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)(2014•河南)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)(2014•河南)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)(2014•河南)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥ AB;(2)若AC⊥ AB1,∠ CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)(2014•河南)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B 两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△ POM的面积.21.(12分)(2014•河南)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分,作答时清写清题号。

2013年高考真题——文科数学(新课标I卷)解析版_1

2013年高考真题——文科数学(新课标I卷)解析版_1

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题。

每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =I ( )(A ){0}(B ){-1,,0} (C ){0,1}(D ){-1,,0,1}(2)212(1)ii +=-( )(A )112i --(B )112i -+(C )112i +(D )112i -(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )12 (B )13 (C )14 (D )16(4)已知双曲线2222:1x y C a b-=(0,0)a b >>的离心率为5,则C 的渐近线方程为( )(A )14y x =±(B )13y x =± (C )12y x =±(D )y x =±(5)已知命题:p x R ∀∈,23xx<;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( ) (A )p q ∧(B )p q ⌝∧(C )p q ∧⌝ (D )p q ⌝∧⌝(6)设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-(7)执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S 属于(A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]-(8)O 为坐标原点,F 为抛物线2:42C y x =的焦点,P 为C 上一点,若||42PF =,则POF ∆的面积为( ) (A )2(B )22(C )23(D )4(9)函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )(10)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10 (B )9(C )8(D )5(11)某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+ (C )1616π+ (D )816π+(12)已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-第Ⅱ卷本卷包括必考题和选考题两个部分。

2015年普通高等学校招生全国统一考试数学文试题精品解析(新课标Ⅰ卷)

2015年普通高等学校招生全国统一考试数学文试题精品解析(新课标Ⅰ卷)

2015年高考新课标Ⅰ卷文数试题解析(精编版)(解析版)一、选择题:每小题5分,共60分1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2 【答案】D2、已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( ) (A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)3、已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) (A )310 (B )15(C )110 (D )1205、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = ( )(A ) 3 (B )6 (C )9 (D )12 【答案】B6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172(B )192 (C )10 (D )128、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13(2,2),44k k k Z -+∈9、执行右面的程序框图,如果输入的0.01t =,则输出的n =( )(A ) 5 (B )6 (C )10 (D )12 【答案】C【解析】执行第1次,t =0.01,S=1,n =0,m =12=0.5,S =S -m =0.5,2mm ==0.25,n =1,S =0.5>t =0.01,是,循环, 执行第2次,S =S -m =0.25,2mm ==0.125,n =2,S=0.25>t =0.01,是,循环, 执行第3次,S =S -m =0.125,2mm ==0.0625,n =3,S=0.125>t =0.01,是,循环,执行第4次,S=S-m =0.0625,2mm ==0.03125,n =4,S=0.0625>t =0.01,是,循环,执行第5次,S=S-m =0.03125,2mm ==0.015625,n =5,S=0.03125>t =0.01,是,循环, 执行第6次,S=S-m =0.015625,2mm ==0.0078125,n =6,S=0.015625>t =0.01,是,循环,执行第7次,S=S-m =0.0078125,2mm ==0.00390625,n=7,S=0.0078125>t =0.01,否,输出n =7,故选C.【考点定位】程序框图【名师点睛】本题是已知程序框图计算输出结果问题,对此类问题,按程序框图逐次计算,直到输出时,即可计算出输出结果,是常规题,程序框图还可考查已知输入、输出,不全框图或考查程序框图的意义,处理方法与此题相同.10、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -=( )(A )74-(B )54- (C )34- (D )14-11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2 (C )4 (D )812、设函数()y f x =的图像与2x ay +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .14、已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = .15、若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .【答案】4【解析】作出可行域如图中阴影部分所示,作出直线0l :30x y +=,平移直线0l ,当直线l :z =3x +y 过点A 时,z 取最大值,由2=021=0x y x y +-⎧⎨-+⎩解得A (1,1),∴z =3x +y 的最大值为4.【考点定位】简单线性规划解法【名师点睛】对线性规划问题,先作出可行域,在作出目标函数,利用z 的几何意义,结合可行域即可找出取最值的点,通过解方程组即可求出做最优解,代入目标函数,求出最值,要熟悉相关公式,确定目标函数的意义是解决最优化问题的关键,目标函数常有距离型、直线型和斜率型.16、已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,(0,66A ,当APF ∆周长最小时,该三角形的面积为 . 【答案】126【解析】设双曲线的左焦点为1F ,由双曲线定义知,1||2||PF a PF =+,∴△APF 的周长为|PA |+|PF |+|AF |=|PA |+12||a PF ++|AF |=|PA |+1||PF +|AF |+2a ,由于2||a AF +是定值,要使△APF 的周长最小,则|PA |+1||PF 最小,即P 、A 、1F 共线,∵(0,66A ,1F (-3,0),∴直线1AF 的方程为1366x =-,即326x =-代入2218y x -=整理得266960y +-=,解得26y =86y =-舍),所以P 点的纵坐标为26,∴11APF AFF PFF S S S ∆∆∆=-=1166662622⨯⨯-⨯⨯126【考点定位】双曲线的定义;直线与双曲线的位置关系;最值问题【名师点睛】解决解析几何问题,先通过已知条件和几何性质确定圆锥曲线的方程,再通过方程研究直线与圆锥曲线的位置关系,解析几何中的计算比较复杂,解决此类问题的关键要熟记圆锥曲线的定义、标准方程、几何性质及直线与圆锥曲线位置关系的常见思路. 三、解答题: 解答应写出文字说明,证明过程或演算步骤.17、(本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B(II )若90B =,且2,a 求ABC ∆的面积. 【答案】(I )14(II )1(II )由(1)知22b ac =.因为B =90°,由勾股定理得222a cb +=.故222a c ac +=,得2c a =.所以D ABC 的面积为1.【考点定位】正弦定理;余弦定理;运算求解能力【名师点睛】解三角形问题的主要工具就是正弦定理、余弦定理,在解题过程中要注意边角关系的转化,根据题目需要合理选择合理的变形复方向,本题考查利用正余弦定理解三角形和计算三角形面积,是基础题.18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积. 【答案】(I )见解析(II )3+25(II )设AB =x ,在菱形ABCD 中,由ÐABC =120°,可得AG =GC =32x ,GB =GD =2x .因为AE ^EC ,所以在Rt D AEC 中,可得EG =32x .由BE ^平面ABCD ,知D EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E-ACD 的体积3116632E ACD V AC GD BE x -=醋?=.故x =2 从而可得AE =EC =ED 6.所以D EAC 的面积为3,D EAD 的面积与D ECD 5. 故三棱锥E-ACD 的侧面积为3+25【考点定位】线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力【名师点睛】对空间面面垂直问题的证明有两种思路,思路1:几何法,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;思路2:利用向量法,通过计算两个平面的法向量,证明其法向量垂直,从而证明面面垂直;对几何体的体积和表面积问题,常用解法有直接法和等体积法.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值.46.6 56.3 6.8 289.8 表中i w i x ,w =1881ii w=∑(I )根据散点图判断,y a bx =+与y c =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题: (i )当年宣传费90x =时,年销售量及年利润的预报值时多少? (ii )当年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:121()()=()niii nii u u v v u u β==---∑∑,=v u αβ-【答案】(Ⅰ)y c x =+适合作为年销售y 关于年宣传费用x 的回归方程类型(Ⅱ)100.668y x =+(Ⅲ)46.24(Ⅲ)(ⅰ)由(Ⅱ)知,当x =49时,年销售量y 的预报值100.66849y =+,576.60.24966.32z =⨯-=. ……9分(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值0.2(100.66813.620.12z x x x x =+-=-+,x 13.6=6.82,即46.24x =时,z 取得最大值. 故宣传费用为46.24千元时,年利润的预报值最大.……12分【考点定位】非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识【名师点睛】本题考查了非线性拟合及非线性回归方程的求解与应用,是源于课本的试题类型,解答非线性拟合问题,先作出散点图,再根据散点图选择合适的函数类型,设出回归方程,利用换元法将非线性回归方程化为线性回归方程,求出样本数据换元后的值,然后根据线性回归方程的计算方法计算变换后的线性回归方程系数,即可求出非线性回归方程,再利用回归方程进行预报预测,注意计算要细心,避免计算错误.20.(本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围; (II )12OM ON⋅=,其中O 为坐标原点,求MN .【答案】(I )4747,33骣-琪琪桫(II )2(II )设1122(,),(,)M x y N x y . 将1y kx =+代入方程()()22231x y -+-=,整理得22(1)-4(1)70k x k x +++=,所以1212224(1)7,.11k x x x x k k ++==++21212121224(1)1181k k OM ON x x y y k x x k x x k +?+=++++=++,由题设可得24(1)8=121k k k+++,解得=1k ,所以l 的方程为1y x =+. 故圆心在直线l 上,所以||2MN =.【考点定位】直线与圆的位置关系;设而不求思想;运算求解能力【名师点睛】直线与圆的位置关系问题是高考文科数学考查的重点,解决此类问题有两种思路,思路1:将直线方程与圆方程联立化为关于x 的方程,设出交点坐标,利用根与系数关系,将1212,x x y y 用k 表示出来,再结合题中条件处理,若涉及到弦长用弦长公式计算,若是直线与圆的位置关系,则利用判别式求解;思路2:利用点到直线的距离计算出圆心到直线的距离,与圆的半径比较处理直线与圆的位置关系,利用垂径定理计算弦长问题.21.(本小题满分12分)设函数()2ln xf x ea x =-.(I )讨论()f x 的导函数()f x '的零点的个数; (II )证明:当0a >时()22lnf x a a a≥+. 试题解析:(I )()f x 的定义域为()0+¥,,()2()=20xaf x ex x¢->. 当0a £时,()0f x ¢>,()f x ¢没有零点; 当0a >时,因为2xe 单调递增,ax-单调递增,所以()f x ¢在()0+¥,单调递增.又()0f a ¢>,当b 满足04ab <<且14b <时,(b)0f ¢<,故当0a >时,()f x ¢存在唯一零点.请考生在(22)、(23)、(24)三题中任选一题作答。

2015年高考试题及解析:文科数学(全国新课标Ⅰ卷)

2015年高考试题及解析:文科数学(全国新课标Ⅰ卷)

2015年普通高等学校招生全国统一考试(新课标1卷)文一、选择题:每小题5分,共60分1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( ). (A ) 5 (B )4 (C )3 (D )2 【答案】D【难度】容易【点评】本题考查集合之间的运算关系,即包含关系.在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,其中第02节中有完全相同类型题目的计算.在高考精品班数学(文)强化提高班中有对集合相关知识的总结讲解.2、已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC = ( ).(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)【答案】A【难度】容易【点评】本题考查向量的计算问题。

在高一数学强化提高班上学期课程讲座1,第六章《平面向量》有详细讲解,其中第01讲,有向量计算问题的专题讲解。

在高考精品班数学(文)强化提高班中有对向量相关知识的总结讲解,在百日冲刺班有向量与三角形综合类型题目的讲解。

3、已知复数z 满足(1)1z i i -=+,则z =( ).(A ) 2i -- (B )2i -+ (C )2i - (D )2i +【答案】C【难度】容易【点评】本题考查复数的计算。

在高二数学(文)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(文)强化提高班中有对复数相关知识的总结讲解。

4、如果3个正数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ).(A )310 (B )15 (C )110 (D )120【答案】C【难度】容易【点评】本题考查概率的计算。

在高二数学(理)强化提高班下学期,第六章《概率》有详细讲解,其中第04讲主要讲解“高考中的概率题”,有完全相似题目的讲解。

2015年全国高考新课标卷Ⅰ(文科)答案及考点分析

2015年全国高考新课标卷Ⅰ(文科)答案及考点分析

杨建民整理2015年普通高等学校招生全国统一考试文科数学答案一、 选择题 (1)【答案】D【解析】由条件知,当n =2时,3n +2=8,当n =4时,3n +2=14,故A ∩B ={8,14},故选D. (2)【答案】A【解析】)1,3(=-=OA OB AB ,)4,7(--=-=∴AB AC BC . (3)【答案】C【解析】i 1i )1(+=-z ,i 2ii21-=+=∴z ,故选C. (4)【答案】C【解析】从1,2,3,4,5中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为101,故选C. (5)【答案】B【解析】 抛物线x y C 8:2=的焦点为)0,2(,准线方程为2-=x ,∴椭圆E 的右焦点为)0,2(, ∴椭圆E 的的焦点在x 轴上,设方程为)0(12222>>=+b a by a x ,2=c ,21==∴a c e .12,4222=-==∴c a b a ,∴椭圆方程为1121622=+y x .将2-=x 代入椭圆方程,得)3,2(),3,2(---B A ,6||=∴AB ,选B.(6)【答案】B【解析】设圆锥底面半径为r ,则8241=⨯r π,所以31616≈=πr .所以米堆的体积93205)316(31412=⨯⨯=πV .所以堆放的米约有2262.19320≈÷斛.选B.(7)【答案】B【解析】∵公差1=d ,484S S =,)34214(47821811⨯⨯+=⨯⨯+∴a a ,解得211=a ,2199219110=+=+=∴d a a ,故选B. (8)【答案】D【解析】由“五点作图”法,可知24πϕω=+,2345πϕω=+,解得4,2πϕω==.所以)4cos()(ππ+=x x f .由πππππ+<+<k x k 242,解得432412+<<-k x k ,Z ∈k故单调减区间为Z ∈+-k k k ),432,412(,故选D.(9)【答案】C【解析】执行第1次,01.0=t ,S =1,n =0,21=m =0.5,S =S -m =0.5,2mm ==0.25,n =1,S =0.5>01.0=t ,是,循环; 执行第2次,m S S -==0.25,2mm ==0.125,n =2,S =0.25>01.0=t ,是,循环; 执行第3次,m S S -==0.125,2mm ==0.0625,n =3,S =0.125>01.0=t ,是,循环; 执行第4次,m S S -==0.0625,2mm ==0.03125,n =4,S =0.0625>01.0=t ,是,循环; 执行第5次,m S S -==0.03125,2mm ==0.015625,n =5,S =0.03125>01.0=t ,是,循环; 执行第6次,m S S -==0.015625,2mm ==0.0078125,n =6,S=0.015625>01.0=t ,是,循环;执行第7次,m S S -==0.0078125,2mm ==0.00390625,n =7,S=0.0078125>01.0=t ,否,输出n =7,故选C. (10)【答案】A【解析】3)(-=a f ,∴当1≤a 时,322)(1-=-=-a a f ,即121-=-a ,此等式显然不成立,当1>a 时,3)1(log 2-=+-a ,解得7=a . 2722)1()6(11-=-=-=-∴--f a f ,故选A.(11)【答案】B【解析】由三视图可知,此组合体是由半个圆柱与半个球体的组合体.其表面积为22222)54(242r r r r r ππππ+=+++.由ππ2016)54(2+=+r ,得2=r .故选B. (12)【答案】C【解析】设),(y x 是函数)(x f y =的图像上任意一点,它关于直线x y -=对称为(,y x --),由已知知),(x y --在函数a x y +=2的图像上,a y x +-=-∴2,解得a x y +--=)(l o g 2,即a x x f +--=)(log )(2,14log 2log )4()2(22=+-+-=-+∴a a f f ,解得2=a ,故选C.二、填空题 (13)【答案】6【解析】n n a a a 2,211==+ ,∴数列}{n a 是首项为2,公比为2的等比数列, 12621)21(2=--=∴n n S ,642=∴n ,6=∴n .(14)【答案】1【解析】13)(2+='ax x f ,13)1(+='∴a f ,即切线斜率13+=a k . 又2)1(+=a f ,∴切点为)2,1(+a , 切线过(2,7),132172+=--+∴a a ,解得1=a . (15)【答案】4【解析】作出可行域如图中阴影部分所示,作出直线03:0=+y x l ,平移直线0l ,当直线l :z =3x +y 过点A 时,z 取最大值,由⎩⎨⎧=+-=-+,012,02y x y x 解得A (1,1),∴z =3x +y 的最大值为4.(16)【答案】612【解析】设双曲线的左焦点为1F ,由双曲线定义,知||2||1PF a PF +=.APF ∆∴的周长为||||2||||||||1AF PF a PA AF PF PA +++=++a AF PF PA 2||||||1+++.由于||2AF a +是定值,要使APF ∆周长最小,只需||||1PF PA +最小,即1,,F A P 共线. )0,3(),66,0(1-F A ,∴直线1AF 的方程为1663=+-y x ,即362-=y x ,代入1822=-y x ,并整理得096662=-+y y .解得62=y 或68-=y (舍去),所以P 点的纵坐标为62. 612626216662111=⨯⨯-⨯⨯=-=∴∆∆∆PFF AFF APF S S S . 三、解答题(17)【解析】(Ⅰ)由题设及正弦定理可得ac b 22=. 又b a =,所以412cos 222=-+=ac b c a B .(Ⅱ)由(Ⅰ)知2b =2ac .因为 90=B ,由勾股定理得222b c a =+. 故ac c a 222=+,2==a c .所以△ABC 的面积为1.(18)【解析】(Ⅰ)因为四边形ABCD 为菱形, 所以AC ⊥BD .因为BE ⊥平面ABCD ,所以AC ⊥BE . 故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED . (Ⅱ)设AB =x .在菱形ABCD 中,因为120=∠ABC ,ABCDEG所以AG =GC =x 23,GB =GD =2x .因为AE ⊥EC ,所以在AEC ∆Rt 中,可得x EG 23=. 因为BE ⊥平面ABCD ,所以△EBG 为直角三角形,可得BE =x 22. 由已知得,三棱锥E -ACD 的体积3624621313==⋅⋅⨯⨯=-x BE GD AC V AC D E . 解得x =2.从而可得AE =EC =ED =6.所以EAC ∆的面积为3,EAD ∆的面积与ECD ∆的面积均为5. 所以,三棱锥E -ACD 的侧面积为523+.(19)【解析】(Ⅰ)由散点图可以判断,x d c y +=适宜作为年销售量y 关于年宣传费x 的回归方程式类型.(Ⅱ)令x =ω,先建立y 关于w 的线性回归方程式.由于686.18.108)())((81281==---=∑∑==i ii i iy y d ωωωω,6.1008.668563=⨯-=-=ωd y c. 所以y 关于w 的线性回归方程为ω686.100+=y, 因此y 关于x 的回归方程为x y 686.100+=.(Ⅲ)(i )由(Ⅱ)知,当x =49时,年销售量y 的预报值6.57649686.100=+=y,年利润z 的预报值32.66492.06.576=-⨯=z.(ii )根据(Ⅱ)的结果知,年利润z 的预报值12.206.13)686.100(6.2.0++-=-+⨯=x x x x z .所以当8.626.13==x ,即x =46.24时,z 取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大. (20)【解析】(Ⅰ)由题设,可知直线l 的方程为1+=kx y ,即01=+-y kx . 因为l 与C 交于两点,所以11|132|2<++-kk .解得374374+<<-k . 所以k 的取值范围为)374,374(+-. (Ⅱ)设),(11y x M ,),(22y x N .将1+=kx y 代入方程1)3()2(22=-+-y x ,整理得07)1(4)1(22=++-+x k x k .所以2211)1(4k k x x ++=+,22117k x x +=. 所以2121y y x x +=⋅1)()1(21212++++=x x k x x k 81)1(4+++=k k k .由题设可得1281)1(42=+++k k k ,解得k =1,所以l 的方程是1+=x y .故圆心C 在l 上,所以2||=MN .(21)【解析】(Ⅰ))(x f 的定义域为),0(+∞,)0(e 2)(2>-='x xax f x .当0≤a 时,0)(>'x f ,)(x f '没有零点;当0>a 时,因为x 2e 单调递增,xa-单调递增,所以)(x f '在),0(+∞单调递增. 又01e 2)(2>-='a a f ,当b 满足40a b <<且41<b 时,0)(<'b f . 所以,当0>a 时)(x f '存在唯一零点.(Ⅱ)由(Ⅰ),可设)(x f '在),0(+∞的唯一零点为0x . 当),0(0x x ∈时,0)(<'x f ;当),(0+∞∈x x 时,0)(>'x f . 所以)(x f 在),0(0x 单调递减,在),(0+∞x 单调递增, 所以0x x =时,)(x f 取得最小值,最小值为)(0x f . 由于0e 2020=-x a x ,所以020ln e )(0x a x f x -=a a ax x a 2ln 2200++=aa a 2ln 2+≥.所以,当0>a 时,aa a x f 2ln 2)(+≥.(22)【解析】(Ⅰ)连接AE ,由已知得,BC AE ⊥,AB AC ⊥. 在AEC ∆Rt 中,由已知得,DE =DC ,故DCE DEC ∠=∠. 连接OE ,则∠OBE =∠OEB . 又∠ACB +∠ABC =90°,所以∠DEC +∠OEB =90°.故 90=∠OED ,DE 是⊙O 得切线.(Ⅱ)设CE =1,AE =x ,由已知得32=AB ,212x BE -=. 由射影定理可得,BE CE AE ⋅=2,所以2212x x -=, 即42120x x +-=,解得3=x .所以 60=∠ACB . (23)【解析】(Ⅰ)因为θρcos =x ,θρsin =y ,所以1C 的极坐标方程为2cos -=θρ,2C 的极坐标方程为04sin 4cos 22=+--θρθρρ.(Ⅱ)将4πθ=代入04sin 4cos 22=+--θρθρρ,得04232=+-ρρ,解得221=ρ,22=ρ.故221=-ρρ,即2||=MN . 由于2C 的半径为1,所以MN C 2∆的面积为21. AOBD C E(24)【解析】(Ⅰ)当1a =时,1)(>x f 化为01|1|2|1|>---+x x . 当1x ≤-时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得132<<x ;当1x ≥时,不等式化为20x -+>,解得12x ≤<.所以1)(>x f 的解集为}232|{<<x x . (Ⅱ)由题设可得,()12,1,312,1,12,,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩所以函数)(x f 的图像与x 轴围成的三角形的三个顶点分别为)0,312(-a A ,)0,12(+a B ,)1,(+a a C ,ABC ∆的面积为2)1(32+a .由题设得6)1(322>+a ,故2a >.所以a 的取值范围为),2(+∞.2015年普通高等学校招生全国统一考试文科数学考点分析。

2015年全国新课标卷1文科数学高考真题及答案

2015年全国新课标卷1文科数学高考真题及答案

2015年普通高等学校招生全国统一考试文科数学I (新课标)一、选择题:每小题5分,共60分1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )22、已知点(0,1),(3,2)A B ,向量(4,3)AC =-- ,则向量BC = ( )(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)3、已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i + 4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )(A )310 (B )15 (C )110 (D )1205、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = ( )(A ) 3 (B )6 (C )9 (D )126、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( )(A )172 (B )192(C )10 (D )128、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13(2,2),44k k k Z -+∈ 9、执行右面的程序框图,如果输入的0.01t =,则输出的n =( )(A ) 5 (B )6 (C )7 (D )810、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -= ( )(A )74- (B )54- (C )34- (D )14- 11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1(B )2(C )4(D )812、设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .14.已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = . 15. 若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .16.已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,()0,66A ,当APF ∆周长最小时,该三角形的面积为 .三、解答题17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B(II )若90B = ,且2,a = 求ABC ∆的面积.18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠= ,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积.19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i = 数据作了初步处理,得到下面的散点图及一些统计量的值.(I )根据散点图判断,y a bx =+与y c d x =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题: (i )当年宣传费x =49时,年销售量及年利润的预报值时多少?(ii )当年宣传费x 为何值时,年利润的预报值最大?20. (本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )若12OM ON ⋅= ,其中O 为坐标原点,求MN .21. (本小题满分12分)设函数()2ln xf x e a x =-. (I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22lnf x a a a≥+.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图AB 是 O 直径,AC 是 O 切线,BC 交 O 与点E .(I )若D 为AC 中点,证明:DE 是 O 切线;(II )若3OA CE = ,求ACB ∠的大小.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积.24. (本小题满分10分)选修4-5:不等式选讲已知函数()12,0f x x x a a =+--> .(I )当1a = 时求不等式()1f x > 的解集;(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.。

2013年高考真题——文科数学(新课标I卷)解析版(1)

2013年高考真题——文科数学(新课标I卷)解析版(1)

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题。

每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( )(A ){0}(B ){-1,,0} (C ){0,1}(D ){-1,,0,1}(2)212(1)ii +=-( )(A )112i --(B )112i -+(C )112i +(D )112i -(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )12 (B )13 (C )14 (D )16(4)已知双曲线2222:1x y C a b-=(0,0)a b >>,则C 的渐近线方程为( )(A )14y x =±(B )13y x =± (C )12y x =±(D )y x =±(5)已知命题:p x R ∀∈,23xx<;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( ) (A )p q ∧(B )p q ⌝∧(C )p q ∧⌝ (D )p q ⌝∧⌝(6)设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-(7)执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S 属于(A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]-(8)O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,若||PF =则POF ∆的面积为( )(A )2(B )(C )(D )4(9)函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )(10)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10 (B )9(C )8(D )5(11)某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+ (C )1616π+ (D )816π+(12)已知函数22,0,()ln(1),x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-第Ⅱ卷本卷包括必考题和选考题两个部分。

2015年全国新课标卷1文科数学高考真题及答案

2015年全国新课标卷1文科数学高考真题及答案

2015年全国新课标卷1文科数学高考真题及答案2015年普通高等学校招生全国统一考试(新课标1卷)文一、选择题:每小题5分,共60分 1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B I 中的元素个数为(A ) 5 (B )4 (C )3 (D )22、已知点(0,1),(3,2)A B ,向量(4,3)AC =--u u u r ,则向量BC =u u u r(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)3、已知复数z 满足(1)1z i i -=+,则z =()(A ) 2i -- (B )2i -+ (C )2i - (D )2i + 4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()(A )310 (B )15 (C )110 (D )1205、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =(A ) 3 (B )6 (C )9 (D )126、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()(A )14斛(B )22斛(C )36斛(D )66斛7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =()(A ) 172 (B )192(C )10 (D )12 8、函数()cos()f x x ω?=+的部分图像如图所示,则()f x 的单调递减区间为()(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈(D)13 (2,2),44k k k Z-+∈9、执行右面的程序框图,如果输入的0.01t=,则输出的n=()(A)5(B)6(C)7 (D)810、已知函数1222,1log(1),1x xf xx x--≤=?-+>,且()3f a=-,则(6) f a-=(A)74-(B)54-(C)34-(D)1411、圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r=( )(A)1(B)2(C)4(D)812、设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n =.14.已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则a = . 15. 若x ,y 满足约束条件20210220x y x y x y +-≤??-+≤??-+≥?,则z =3x +y 的最大值为.16.已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,()0,66A ,当APF ?周长最小时,该三角形的面积为.三、解答题17. (本小题满分12分)已知,,a b c 分别是ABC ?内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B(II )若90B =o ,且2,a = 求ABC ?的面积.18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=o ,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积.19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =L 数据作了初步处理,得到下面的散点图及一些统计量的值.(I )根据散点图判断,y a bx =+与y c d x =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题:(i )当年宣传费x =49时,年销售量及年利润的预报值时多少?(ii )当年宣传费x 为何值时,年利润的预报值最大?20. (本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点. (I )求k 的取值范围;(II )若12OM ON ?=u u u u r u u u r ,其中O 为坐标原点,求MN .21. (本小题满分12分)设函数()2ln x f x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22lnf x a a a≥+.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图AB 是e O 直径,AC 是e O 切线,BC 交e O 与点E .(I )若D 为AC 中点,证明:DE 是e O 切线;(II )若3OA CE =,求ACB ∠的大小.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ? 的面积.24. (本小题满分10分)选修4-5:不等式选讲已知函数()12,0f x x x a a =+--> .(I )当1a = 时求不等式()1f x > 的解集;(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.2015年普通高等学校招生全国统一考试(新课标1卷)文答案一、选择题(1)D (2)A (3)C (4)C (5)B (6)B(7)B (8)D (9)C (10)A (11)B (12)C二、填空题(13)6 (14)1 (15)4 (16)三、解答题17、解:(I )由题设及正弦定理可得2b =2ac. 又a=b ,可得cosB=2222ac b ac +-=14……6分(II )由(I )知2b =2ac.因为B=o 90,由勾股定理得222a c =b +.故22a c =2ac +,的所以△ABC 的面积为1. ……12分18、解:(I )因为四边形ABCD 为菱形,所以AC ⊥BD.因为BE ⊥平面ABCD,所以AC ⊥BE,故AC ⊥平面BED. 又AC ?平面AEC,所以平面AEC ⊥平面BED. ……5分(II )设AB=x ,在菱形ABCD 中,又∠ABC=o120 ,可得AG=GC=2x ,GB=GD=2x .因为AE ⊥EC,所以在Rt △AEC 中,可的x .由BE ⊥平面ABCD,知△EBG 为直角三角形,可得x . 由已知得,三棱锥E-ACD 的体积E ACD V -=13×12AC ·GD ·BE=3243x =. 故x =2 ……9分从而可得.所以△EAC 的面积为3,△EAD 的面积与△ECD故三棱锥E-ACD 的侧面积为……12分19、解:(I )由散点图可以判断,适宜作为年销售量y 关于年宣传费x 的回归方程式类型.(II)令w =y 关于w 的线性回归方程式.由于28181()()108.8d=681.6()i i i i i w w y y w w ==--==-∑∑), 56368 6.8100.6c y d w =-=-?=)),所以y 关于w 的线性回归方程为y=100.668w +),因此y 关于x 的回归方程为y 100.6=+)(Ⅲ)(i )由(II )知,当x =49时,年销售量y 的预报值y 100.6=+),年利润z 的预报值z=576.60.24966.32?-=) ……9分(ii )根据(II )的结果知,年利润z 的预报值=-20.12x x +).13.6=6.82=,即x =46.24时,z )取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大. ……12分20、解:(I )由题设,可知直线l 的方程为1y kx =+.因为l 与C1.解得k 所以k的取值范围为. ……5分(II )设()1122,,(,)M x y N x y .将1y kx =+代入方程22(2)(3)1x y -+-=,整理得22(1)4(1)70k x k x +-++=. 所以1212224(1)7,11k x x x x k k++==++. 1212OM ON c x y y ?=+()()2121211k x x k x x =++++ ()24181k k k +=++. 由题设可得()24181k k k+=++=12,解得k=1,所以l 的方程是y=x+1. 故圆心C 在l 上,所以2MN =. ……12分21、解:(I )()f x 的定义域为()()20,,2(0)x a f x ex x '+∞=-?. 当a ≤0时,()()0f x f x ''?,没有零点;当0a ?时,因为2x e 单调递增,a x -单调递减,所以()f x '在()0,+∞单调递增,又()0f a '?,当b 满足0<b <4a 且b <14时,()0f b '?,故当a <0时()f x '存在唯一零点. ……6分(II )由(I ),可设()f x '在()0,+∞的唯一零点为0x ,当()00x x ∈,时,()f x '<0;当()0x x ∈+∞,时,()f x '>0.故()f x 在()0+∞,单调递减,在()0x +∞,单调递增,所以0x x =时,()f x 取得最小值,最小值为()0f x . 由于02020x a e x -=,所以()0002221212a f x ax a n a a n x a a=++≥+. 故当0a ?时,()221f x a a na≥+. ……12分 22、解:(I )连接AE ,由已知得,AE ⊥BC,AC ⊥AB.在Rt △AEC 中,由已知得,DE=DC,故∠DEC=∠DCE.连结OE ,则∠OBE=∠OEB.又∠OED+∠ABC=o 90,所以∠DEC+∠OEB=o 90,故∠OED=o 90,DE 是e O 的切线.……5分(II )设CE=1,AE=x ,由已知得AB=23212x -由射影定理可得,2AE CE BE =?,所以2212x x =-,即42120x x +-=.可得3x =ACB=60o .……10分23、解:(I )因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=. ……5分(II )将4πθ=代入22cos 4sin 40ρρθρθ--+=,得2240ρρ-+=,解得1222,2ρρ==.故122ρρ-=2MN =由于2C 的半径为1,所以2C MN ?的面积为12. ……10分 24、解:(I )当1a =时,()1f x >化为12110x x +--->.当1x ≤-时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<;当1x ≥,不等式化为-x +2>0,解得1≤x <2. 所以()1f x >的解集为223x x︱<<. ……5分(II )由题设可得,()12,1312,1,12,.x a x f x x a x a x a x a --??=+--≤≤??-++?<<所以函数()f x 的图像与x 轴围成的三角形的三个丁点分别为()()21,0,21,0,,13a A B a C a a -??++,△ABC 的面积为()2213a +. 由题设得()2213a +>6,故a >2. 所以a 的取值范围为()2+∞,. ……10分。

2015年普通高等学校招生全国统一考试数学文试题精品解析(新课标Ⅰ卷)

2015年普通高等学校招生全国统一考试数学文试题精品解析(新课标Ⅰ卷)

2015年高考新课标Ⅰ卷文数试题解析(精编版)(解析版)一、选择题:每小题5分,共60分1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2 【答案】D2、已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( ) (A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)3、已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()(A)310(B)15(C)110(D)1205、已知椭圆E的中心为坐标原点,离心率为12,E的右焦点与抛物线2:8C y x=的焦点重合,,A B是C的准线与E的两个交点,则AB= ( )(A)3(B)6(C)9(D)12【答案】B6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172 (B )192(C )10 (D )128、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13(2,2),44k k k Z -+∈9、执行右面的程序框图,如果输入的0.01t =,则输出的n =( )(A ) 5 (B )6 (C )10 (D )12 【答案】C【解析】执行第1次,t =0.01,S=1,n =0,m =12=0.5,S =S -m =0.5,2mm ==0.25,n =1,S =0.5>t =0.01,是,循环, 执行第2次,S =S -m =0.25,2mm ==0.125,n =2,S=0.25>t =0.01,是,循环, 执行第3次,S =S -m =0.125,2mm ==0.0625,n =3,S=0.125>t =0.01,是,循环,执行第4次,S=S-m =0.0625,2mm ==0.03125,n =4,S=0.0625>t =0.01,是,循环, 执行第5次,S=S-m =0.03125,2mm==0.015625,n =5,S=0.03125>t =0.01,是,循环,执行第6次,S=S-m =0.015625,2mm ==0.0078125,n =6,S=0.015625>t =0.01,是,循环,执行第7次,S=S-m =0.0078125,2mm ==0.00390625,n=7,S=0.0078125>t =0.01,否,输出n =7,故选C.【考点定位】程序框图【名师点睛】本题是已知程序框图计算输出结果问题,对此类问题,按程序框图逐次计算,直到输出时,即可计算出输出结果,是常规题,程序框图还可考查已知输入、输出,不全框图或考查程序框图的意义,处理方法与此题相同.10、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -=( )(A )74-(B )54- (C )34- (D )14- 11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2 (C )4 (D )812、设函数()y f x =的图像与2x ay +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .14、已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a=.15、若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .【答案】4【解析】作出可行域如图中阴影部分所示,作出直线0l :30x y +=,平移直线0l ,当直线l :z =3x +y 过点A时,z 取最大值,由2=021=0x y x y +-⎧⎨-+⎩解得A (1,1),∴z =3x +y 的最大值为4.【考点定位】简单线性规划解法【名师点睛】对线性规划问题,先作出可行域,在作出目标函数,利用z 的几何意义,结合可行域即可找出取最值的点,通过解方程组即可求出做最优解,代入目标函数,求出最值,要熟悉相关公式,确定目标函数的意义是解决最优化问题的关键,目标函数常有距离型、直线型和斜率型.16、已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,()0,66A ,当APF ∆周长最小时,该三角形的面积为 . 【答案】126【解析】设双曲线的左焦点为1F ,由双曲线定义知,1||2||PF a PF =+,∴△APF 的周长为|PA |+|PF |+|AF |=|PA |+12||a PF ++|AF |=|PA |+1||PF +|AF |+2a , 由于2||a AF +是定值,要使△APF 的周长最小,则|PA |+1||PF 最小,即P 、A 、1F 共线,∵()0,66A ,1F (-3,0),∴直线1AF 的方程为1366x y +=-,即326y x =-代入2218y x -=整理得266960y y +-=,解得26y =或86y =-(舍),所以P 点的纵坐标为26,∴11APF AFF PFF S S S ∆∆∆=-=1166662622⨯⨯-⨯⨯=126. 【考点定位】双曲线的定义;直线与双曲线的位置关系;最值问题【名师点睛】解决解析几何问题,先通过已知条件和几何性质确定圆锥曲线的方程,再通过方程研究直线与圆锥曲线的位置关系,解析几何中的计算比较复杂,解决此类问题的关键要熟记圆锥曲线的定义、标准方程、几何性质及直线与圆锥曲线位置关系的常见思路. 三、解答题: 解答应写出文字说明,证明过程或演算步骤.17、(本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =. (I )若a b =,求cos ;B (II )若90B =,且2,a = 求ABC ∆的面积.【答案】(I )14(II )1(II )由(1)知22b ac .因为B 90°,由勾股定理得222ac b .故222ac ac ,得2c a .所以ABC 的面积为1.【考点定位】正弦定理;余弦定理;运算求解能力【名师点睛】解三角形问题的主要工具就是正弦定理、余弦定理,在解题过程中要注意边角关系的转化,根据题目需要合理选择合理的变形复方向,本题考查利用正余弦定理解三角形和计算三角形面积,是基础题.18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -6. 【答案】(I )见解析(II )3+25(II )设AB =x ,在菱形ABCD 中,由ABC =120°,可得AG =GC =32x ,GB =GD =2x . 因为AE EC ,所以在Rt AEC 中,可得EG =32x . 由BE 平面ABCD ,知EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E-ACD 的体积3116632243E ACDV AC GD BE x .故x =2 从而可得AE =EC =ED =6.所以EAC 的面积为3,EAD 的面积与ECD 的面积均为5. 故三棱锥E-ACD 的侧面积为3+25.【考点定位】线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力【名师点睛】对空间面面垂直问题的证明有两种思路,思路1:几何法,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;思路2:利用向量法,通过计算两个平面的法向量,证明其法向量垂直,从而证明面面垂直;对几何体的体积和表面积问题,常用解法有直接法和等体积法.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值.x y w821()ii x x =-∑821()ii w w =-∑81()()iii x x y y =--∑ 81()()i ii w w yy =--∑46.6 56.3 6.8 289.8 1.6 1469 108.8表中i w i x ,w =1881ii w=∑(I )根据散点图判断,y a bx =+与y c x =+y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题: (i )当年宣传费90x =时,年销售量及年利润的预报值时多少? (ii )当年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:121()()=()niii nii u u v v u u β==---∑∑,=v u αβ-【答案】(Ⅰ)y c x =+适合作为年销售y 关于年宣传费用x 的回归方程类型(Ⅱ)100.668y x =+(Ⅲ)46.24(Ⅲ)(ⅰ)由(Ⅱ)知,当x =49时,年销售量y 的预报值100.66849y =+,576.60.24966.32z =⨯-=. ……9分(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值0.2(100.668)13.620.12z x x x x =+-=-+,x 13.6=6.82,即46.24x =时,z 取得最大值. 故宣传费用为46.24千元时,年利润的预报值最大.……12分【考点定位】非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识【名师点睛】本题考查了非线性拟合及非线性回归方程的求解与应用,是源于课本的试题类型,解答非线性拟合问题,先作出散点图,再根据散点图选择合适的函数类型,设出回归方程,利用换元法将非线性回归方程化为线性回归方程,求出样本数据换元后的值,然后根据线性回归方程的计算方法计算变换后的线性回归方程系数,即可求出非线性回归方程,再利用回归方程进行预报预测,注意计算要细心,避免计算错误.20.(本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )12OM ON ⋅=,其中O 为坐标原点,求MN .【答案】(I)4747,33(II )2(II )设1122(,),(,)M x y N x y . 将1ykx 代入方程22231x y ,整理得22(1)-4(1)70k x k x ,所以1212224(1)7,.11k x x x x k k21212121224(1)1181k k OM ON x x y y k x x k x x k , 由题设可得24(1)8=121k k k ,解得=1k ,所以l 的方程为1y x .故圆心在直线l 上,所以||2MN .【考点定位】直线与圆的位置关系;设而不求思想;运算求解能力【名师点睛】直线与圆的位置关系问题是高考文科数学考查的重点,解决此类问题有两种思路,思路1:将直线方程与圆方程联立化为关于x 的方程,设出交点坐标,利用根与系数关系,将1212,x x y y 用k 表示出来,再结合题中条件处理,若涉及到弦长用弦长公式计算,若是直线与圆的位置关系,则利用判别式求解;思路2:利用点到直线的距离计算出圆心到直线的距离,与圆的半径比较处理直线与圆的位置关系,利用垂径定理计算弦长问题.21.(本小题满分12分)设函数()2ln xf x ea x =-.(I )讨论()f x 的导函数()f x '的零点的个数; (II )证明:当0a >时()22lnf x a a a≥+.试题解析:(I )()f x 的定义域为0+,,2()=20xaf x ex x. 当0a时,()0f x ,()f x 没有零点;当0a时,因为2x e 单调递增,ax单调递增,所以()f x 在0+,单调递增.又()0f a ,当b 满足04a b且14b 时,(b)0f ,故当0a 时,()f x 存在唯一零点.请考生在(22)、(23)、(24)三题中任选一题作答。

2013年高考文科数学全国新课标卷1试题与标准答案word解析版

2013年高考文科数学全国新课标卷1试题与标准答案word解析版

2013年普通高等学校招生全国统一考试(新课标全国卷I)数学(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B=( ).A.{1,4} B.{2,3} C.{9,16} D .{1,2}(2) = ﻩﻩﻩ ﻩﻩﻩ ﻩ ﻩ ( ) (A)-1 - i ﻩ(B)-1 + iﻩﻩ(C )1 + i ﻩﻩ(D) 1 - i3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12 B.13 C.14 D.164.已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C的渐近线方程为( ). A. B.C.12y x =±D. 5.已知命题p :∀x ∈R,2x<3x ;命题q:∃x∈R ,x3=1-x2,则下列命题中为真命题的是( ).A .p ∧q B.⌝p ∧q C.p ∧⌝q D .⌝p ∧⌝q(6)设首项为1,公比为ﻩ的等比数列{an }的前n 项和为S n ,则ﻩ( )(A)Sn =2a n-1 (B)S n =3a n -2 (C)S n ﻩ=4-3an (D)S n=3-2a n7.执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于(). A .[-3,4]B.[-5,2] C .[-4,3]D.[-2,5]8.O 为坐标原点,F 为抛物线C :y 2=2x 的焦点,P为C 上一点,若|PF |=2,则△POF 的面积为( ).A.2B.22.23 D.49.函数f(x )=(1-cos x )sin x 在[-π,π]的图像大致为( ).10.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( ).A.10 B.9 C.8 D.511.某几何体的三视图如图所示,则该几何体的体积为( ).A.16+8πB .8+8π C .16+16πD.8+16π12已知函数f (x )=22,0,ln(1),0.x x x x x ⎧-+≤⎨+>⎩若|f(x )|≥ax ,则a 的取值范围是( ).A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =______.14.设x ,y满足约束条件13,10,x x y ≤≤⎧⎨-≤-≤⎩则z=2x -y 的最大值为______.15.已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.16.设当x =θ时,函数f(x )=sin x -2cos x 取得最大值,则cos θ=______.。

2013年高考真题——文科数学(新课标I卷)解析版(1)

2013年高考真题——文科数学(新课标I卷)解析版(1)

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题。

每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =( )(A ){0}(B ){-1,,0} (C ){0,1}(D ){-1,,0,1}(2)212(1)ii +=-( )(A )112i --(B )112i -+(C )112i +(D )112i -(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )12 (B )13 (C )14 (D )16(4)已知双曲线2222:1x y C a b-=(0,0)a b >>的离心率为52,则C 的渐近线方程为( ) (A )14y x =±(B )13y x =± (C )12y x =±(D )y x =±(5)已知命题:p x R ∀∈,23xx<;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( ) (A )p q ∧(B )p q ⌝∧(C )p q ∧⌝ (D )p q ⌝∧⌝(6)设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-(7)执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S 属于(A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]-(8)O 为坐标原点,F 为抛物线2:42C y x =的焦点,P 为C 上一点,若||42PF =,则POF ∆的面积为( ) (A )2(B )22(C )23(D )4(9)函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )(10)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10 (B )9(C )8(D )5(11)某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+ (C )1616π+ (D )816π+(12)已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-第Ⅱ卷本卷包括必考题和选考题两个部分。

2015年全国高考文科数学试题及答案-新课标1

2015年全国高考文科数学试题及答案-新课标1

绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试(新课标I 卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷4至6页。

注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科 目”与考生本人准考证号、姓名是否一致。

2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3. 考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B 中元素的个数为( ) (A )5 (B )4 (C )3 (D )2(2)已知点A (0,1),B (3,2),向量AC =(-4,-3),则向量BC =( )(A )(-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4) (3)已知复数z 满足(z-1)i=i+1,则z=( )(A )-2-I (B )-2+I (C )2-I (D )2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为( )(A )103(B )15 (C )110 (D )120(5)已知椭圆E 的中心在坐标原点, 离心率为12,E 的右焦点与抛物线C :y ²=8x 的焦点重合,A ,B 是C 的准线与E 的两个焦点,则|AB|=( )(A )3 (B )6 (C )9 (D )12 (6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

2013-2015高考数学文科试题及详细解析-全国卷1

2013-2015高考数学文科试题及详细解析-全国卷1

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题。

每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( ) (A ){0}(B ){-1,,0} (C ){0,1}(D ){-1,,0,1}(2)212(1)ii +=-( ) (A )112i --(B )112i -+(C )112i +(D )112i -(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )12 (B )13 (C )14 (D )16(4)已知双曲线2222:1x y C a b -=(0,0)a b >>C 的渐近线方程为( ) (A )14y x =± (B )13y x =± (C )12y x =±(D )y x =±(5)已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( ) (A )p q ∧(B )p q ⌝∧(C )p q ∧⌝ (D )p q ⌝∧⌝(6)设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-(7)执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S 属于(A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]-(8)O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,若||PF =,则POF ∆的面积为( )(A )2(B )(C )(D )4(9)函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )(10)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10 (B )9(C )8(D )5(11)某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+(C )1616π+ (D )816π+(12)已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-第Ⅱ卷本卷包括必考题和选考题两个部分。

2013年新课标I高考数学文科试卷带详解

2013年新课标I高考数学文科试卷带详解

2013年普通高等学校招生全国统一考试文科数学 第Ⅰ卷一、选择题:本大题共12小题.每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( ) A .{1,4} B.{2,3} C. {9,16} D.{1,2} 【测量目标】集合的含义和交集运算.【考查方式】考查了集合的表示方法(描述法),集合的交集运算 【参考答案】A【试题解析】先求集合B ,再进行交集运算.{1,2,3,4},{A B x == |2,},x n n A =∈ {1,4,9,16},B ∴=(步骤1) {1,4}.A B ∴= (步骤2) 2.212i(1i)+=- ( ) A. 11i 2--B. 11i 2-+ C. 11i 2+D. 11i 2-【测量目标】复数的四则运算【考查方式】先进行复数的乘方运算,再进行除法运算. 【参考答案】B【试题解析】先进行复数的乘方运算,再进行除法运算.2212i 12i 12i (12i)i 11i (1i)12i i 2i 22++++====-+--+-3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A.12 B. 13 C. 14 D. 16【测量目标】随机事件古典概型.【考查方式】用列举法求出事件的个数,再利用古典概型求概率. 【参考答案】B【试题解析】用列举法求出事件的个数,再利用古典概型求概率.从1,2,3,4中任取2个不同的数,有(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12种情形,(步骤1)而满足条件“2个数之差的绝对值为2”的只有(1,3),(2,4),(3,1),(4,2),共4种情形,所以取出的2个数之差的绝对值为2的概率为41123=.(步骤2)4.已知双曲线2222:1x y C a b -=(0,0)a b >>,则C 的渐近线方程为 ( ).A. 14y x =±B. 13y x =±C. 12y x =±D. y x =±【测量目标】双曲线的简单几何性质.【考查方式】先由已知双曲线的离心率建立字母之间的关系,再求双曲线渐近线方程. 【参考答案】C【试题解析】先由双曲线的离心率建立字母之间的关系,再求渐近线方程.由e =得1,.2c c b a a =∴===(步骤1) 而22221(0,0)x y a b a b-=>>的渐近线方程为,b y x a =±∴所求渐近线方程为12y x =±.(步骤2)5.已知命题:p x ∀∈R ,23x x <;命题:q x ∃∈R ,321x x =-,则下列命题中为真命题的是 ( ). A. p q ∧B. p q ⌝∧C. p q ∧⌝D. p q ⌝∧⌝【测量目标】判断命题的真假,简单的逻辑联结词.【考查方式】先判断已知命题p,q 的真假,再结合含有一个逻辑联结词命题真假的判断真值表求解. 【参考答案】B【试题解析】先判断命题p,q 的真假,再结合含有一个逻辑联结词命题真假的判断真值表求,第5题图当x =0时,有23,x x =不满足23,:,23x x x xp x <∴∀∈<R 是假命题.(步骤1)如图,函数3y x =与21y x =-有交点,即方程321x x =-有解,32:,1q x x x ∴∃∈=-R 是真命题.p q ∴∧为假命题,排除A. (步骤2) p ⌝ 为真命题,p q ∴⌝∧是真命题. (步骤3)6.设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则 ( ) A. 21n n S a =- B. 32n n S a =-C. 43n n S a =-D. 32n n S a =-【测量目标】等比数列的通项和前n 项和.【考查方式】根据已知首项及公比的条件,利用公式求等比数列前n 项和. 【参考答案】D【试题解析】可以直接利用等比数列的求和公式求解,也可以先求出通项和前n 项和,再建立关系.方法一:在等比数列{}n a 中,1213322113n n n na a a qS a q --===---•.(步骤1)方法二:在等比数列{}n a 中,121,,3a q ==11221()().33n n n a --∴=⨯=(步骤2) 121[1()]22233[1()]3[1()]32.233313n n n n n S a -⨯-==-=-=--(步骤3) 7.执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的s 属于 ( )第7题图A. [3,4]-B. [5,2]-C. [4,3]-D. [2,5]-【测量目标】选择结构的程序框图.【考查方式】先识别已知的程序框图的功能,即求分段函数的值域,在分别求出未知结果. 【参考答案】A【试题解析】先识别程序框图的功能,即求分段函数的值域,再分别求出.因为[1,3],t ∈-当[1,3]t ∈时,2224(4)(2)4[3,4],s t t t t t =-=--=--+∈(步骤1) 当[1,1]t ∈-时3[3,3);s t =∈-所以[3,4].s ∈- (步骤2)8.O 为坐标原点,F为抛物线2:C y =的焦点,P 为C上一点,若||PF =,则POF △的面积为 ( )A .2B. C. D. 4【测量目标】顶点在坐标原点的抛物线的标准方程与几何性质.【考查方式】先利用抛物线的焦半径公式求出点的坐标,再结合图形利用三角形面积公式求解. 【参考答案】C【试题解析】先利用抛物线的焦半径公式求出点的坐标,再结合三角形面积公式求解.设00(,),P x y 则00PF x x ===(步骤1)200024,y y ∴===∴=(步骤2)01122POF F S OF y ∴== •(步骤3) 9.函数()(1cos )sin f x x x =-在[,]-ππ的图象大致为 ( )A. B.C. D. 第9题图【测量目标】三角函数的概念及基本性质.【考查方式】利用已知三角函数关系式,结合三角函数奇偶性、极值、最值的关系判断函数图象. 【参考答案】C【试题解析】先利用函数的奇偶性排除B ,再利用特殊的函数值的符号排除A ,而最后答案的选择则利用了特定区间上的极值点. 在[,]-ππ上,()[1cos()]sin()(1cos )(sin )(1cos )sin (),f x x x x x x x f x -=---=--=--=-()f x ∴为奇函数,(步骤1)()f x ∴的图象关于原点对称,排除B.(步骤2)取2x π=,则()(1cos )sin 10222f πππ=-=>,排除A (步骤3) ()(1cos )sin ,f x x x =-222'()sin sin (1cos )cos 1cos cos cos 2cos cos 1.f x x x x x x x x x x ∴=+-=-+-=-++·(步骤4)令'()0f x =,则cos 1x =或1cos .2x =-结合[,],x ∈-ππ求得()f x 在(0,]π上的极大值点为23π,靠近π.(步骤5) 10.已知锐角ABC △的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( )A. 10B. 9C. 8D.5 【测量目标】二倍角公式及余弦定理.【考查方式】先运用三角恒等变换公式求出角A 的余弦值,再利用余弦定理解三角形对应的一条边b 的值. 【参考答案】D【试题解析】先求出角A 的余弦值,再利用余弦定理求解.由223cos cos 20A A +=得223cos cos 210A A +-=,解得1cos .5A =±(步骤1)A 是锐角1cos .5A ∴=,(步骤2)又222212cos ,493626,5a b c bc A b b =+-∴=+-⨯⨯⨯5b ∴=或13.5b =-又0, 5.b b >∴= (步骤3) 11.某几何函数的三视图如图所示,则该几何的体积为 ( )A. 168+πB. 88+πC. 1616+πD. 816+π 【测量目标】三视图,几何体体积.【考查方式】将三视图还原为原来的几何体,再利用几何体体积公式求解体积. 【参考答案】A【试题解析】将三视图还原为原来的几何体,再利用体积公式求解.原几何体为组合体:上面是长方体,下面是圆柱的一半(如图所示),其体积为 2142224168.2V =⨯⨯+π⨯⨯=+π 12.已知函数22,0,()ln(1),0x x x f x x x ⎧-+=⎨+>⎩…,若|()|f x ax …,则a 的取值范围是( )A, (,0]-∞ B, (,1]-∞ C. [2,1]- D. [2,0]- 【测量目标】函数的图象及其变换,导数的几何意义.【考查方式】利用函数的基本性质画出分段函数图象,结合图象求解字母的取值范围. 【参考答案】 D【试题解析】先画出函数的图象,数形结合求解. 作出函数()y f x =的图象,(步骤1) 如图,当()f x ax ≥时,必有k a ≤≤0,其中k 是22(0)y x x x =-≤在原点处的切线斜率,(步骤2) 显然, 2.k =-a ∴的取值范围是[2,0]-.(步骤3)第Ⅱ卷本卷包括必考题和选考题两个部分.第(13)题——第(21)题为必考题,每个考生都必须作答.第(22)题——第(24)题为选考题,考生根据要求作答. 二.填空题:本大题共四小题,每小题5分.13.已知两个单位向量a ,b 的夹角为60 ,(1)t t =+-c a b ,若0⋅=b c ,则t =_____. 【测量目标】平面向量的数量积的运算.【考查方式】利用平面向量的运算以及数量积与向量垂直的转化关系求解未知数取值. 【参考答案】2【试题解析】直接利用平面向量的数量积运算求解. 1,,60.==〈〉=a b a b(1),t t =+-∴ c a b 21(1)11(1)111.222t tt t t t t =+-=⨯⨯⨯+-⨯=+-=-b c a b b (步骤1) 0,10, 2.2tt =∴-=∴=b c (步骤2) 14.设,x y 满足约束条件 13,10x x y⎧⎨--⎩剟剟,则2z x y =-的最大值为______.【测量目标】线性规划解最值.【考查方式】直接给出约束条件,利用线性规划性质求z . 【参考答案】3【试题解析】作出可行域,进一步探索最大值. 作出可行域如图阴影部分.(步骤1)作直线20x y -=,并向右平移,当平移至直线过点B 时,2z x y =-取得最大值.而由3,0,x x y =⎧⎨-=⎩得B (3,3).max 233 3.z ∴=⨯-=(步骤2) 15.已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为_______.【测量目标】球的截面性质及球的表面积求法.【考查方式】给出球的直径被截面所截线段的比例及截面积建立直角三角形,求出球的半径和球的表面积. 【参考答案】92π 【试题解析】利用球的截面建立直角三角形求解.(第15题图)如图,设球O 的半径为R ,则 由:1:2AH HB =得 122,.333RHA R R OH ==∴= (步骤1) 截面面积为2(),HM π=π 1HM ∴=.(步骤2)在Rt HMO中,222,OM OH HM =+2222111,994R R HM R R ∴=+=+∴=(步骤3)22944.2S R ∴=π=π=π球(步骤4) 16.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______. 【测量目标】三角恒等变换.【考查方式】利用三角恒等变换公式化简三角函数进而求函数最值(方程思想). 【试题解析】先利用三角恒等变换求得函数的最大值,再利用方程思想求解.sin 2cos ),y x x x x =-=cos sin ,αα==则cos cos sin )).y x x x ααα-=-(步骤1)max ,,x x y α∈∴-∈∴=R R (步骤2) 又x θ= 时,()f x 取得最大值,()sin 2cos f θθθ∴=-(步骤3) 又22sin cos 1,θθ+=sin cos θθ⎧=⎪⎪∴⎨⎪=⎪⎩即cos θ=(步骤4)三.解答题:本大题共5小题,每小题12分,共60分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列21211{}n n a a -+的前n 项和.【测量目标】等差数列的通项、前n 项和及性质.【考查方式】给出等差数列前n 项和求解等差数列首项和公差,运用裂项相消法求和. 【试题解析】(1)结合等差数列的求和公式列出关于首相和公差的方程组求解;(2)列项求和,但要注意裂项后的系数.解:(1)设{}n a 的公差为d ,则1(1).2n n n S na d -=+(步骤1) 由已知可得11330,5105,a d a d +=⎧⎨+=-⎩解得111a d =⎧⎨=-⎩.故{}n a 的通项公式为2.n a n =-(步骤2) (2)由(1)知212111111(),(32)(12)22321n n a a n n n n -+==-----(步骤3)从而数列21211n n a a -+⎧⎫⎪⎨⎬⎪⎭⎩ 的前n 项和为1111111().21113232112n n n n -+-++-=---- (步骤4) 18(本小题满分共12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ),试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5 (1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(3)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?(第18题图)【测量目标】离散型随机变量的分布列和均值.【考查方式】根据所给的图表数据求平均值,并比较大小分析意义:观察茎叶图,看看数据的离散情况及中位数的位置.【试题解析】(1)直接求解平均数,并比较大小;(2)观察茎叶图,看看数据的离散情况及中位数的位置.解:(1)设A 药观测数据的平均数为x ,B 药观测数据的平均数为y . 由观测结果可得 1(0.6 1.2 1.2 1.5 1.5 1.8 2.2 2.3 2.3 2.4 2.5 2.6 2.720x =++++++++++++ 2.7 2.8 2.9 3.0 3.1 3.2 3.5+++++++=(步骤1) 1(0.50.50.60.80.9 1.1 1.2 1.2 1.3 1.4 1.61.71.820y =++++++++++++1.92.1 2.4 2.5 2.6 2.73.2) 1.6+++++++=.(步骤2) 由以上计算结果可得,x y >因此可看出A 药的疗效更好.(步骤3) (2)由观测结果可绘制茎叶图如图:(步骤4)(第18题图) 从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎“2.”,“3.”上,而B 药疗效的实验结果有710的叶集中在茎“0.”,“1.”上,由此可看出A 药的疗效更好.(步骤5) 19.(本小题满分12分)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠= . (Ⅰ)证明:1AB AC ⊥;(Ⅱ)若2AB CB ==,1AC =111ABC A B C -的体积.(第19题图)【测量目标】直线与平面的位置关系,三棱柱的体积的求解【考查方式】给出三棱柱棱长之间的关系,利用线线垂直、线面垂直定理及其性质,证明线线垂直,再利用体积公式求出棱柱体积.【试题解析】(1)先证明直线与平面垂直,再利用线面垂直的性质求解;(2)先证明三棱柱的高,再利用体积公式求体积.解:(1)取AB 的中点O ,连接11,,.OC OA A B (步骤1) 因为,CA CB =所以OC AB ⊥.(步骤2)由于11,60,AB AA BAA =∠= 故1B AA△为等边三角形, 所以1.OA AB ⊥(步骤3)因为1,OC OA O = 所以AB ⊥平面1OAC .(步骤4) 又1AC ⊂平面1OAC ,故1.AB AC ⊥(步骤5)(2)由题设知ABC △与1AA B △都是边长为2的等边三角形,所以1OC OA ==(步骤6)又1AC =则22211,AC OC OA =+故1.OA OC ⊥(步骤7) 因为,OC AB O = 所以1OA ⊥平面1,ABC OA 为三棱柱111ABC A B C -的高.(步骤8)又ABC △的面积11222ABC S AB OC =⨯⨯=⨯=△故三棱柱111ABC A B C -的体积1 3.ABC V S OA == △(步骤9)20.(本小题满分共12分)已知函数2()e ()4xf x ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为44y x =+. (Ⅰ)求,a b 的值;(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值. 【测量目标】函数的导数,函数的单调性,极值.【考查方式】已知函数式,利用已知点处的切线方程求解原函数关系式中未知字母,利用函数的导数确定函数的单调性和极值.【试题解析】(1)利用函数值和导函数值列出方程(组)求解字母的值;(2)先求出函数的导数、极值点,进一步确定单调区间,再根据极值点左右两边的符号判断函数的极值.解:(1)'()e ()2 4.x f x ax a b x =++--(步骤1)由已知得(0)4,'(0) 4.f f ==故4,8.b a b =+=从而4, 4.a b ==(步骤2)(2)由(1)知,2()4e (1)4,x f x x x x =+--1'()4e (2)244(2)(e ).2x x f x x x x =+--=+-(步骤3)令'()0,f x =得ln 2x =-或 2.x =-(步骤4)从而当(,2)(ln 2,)x ∈-∞--+∞ 时,'()0;f x >当(2,ln 2)x ∈--时,'(f x )0….(步骤5)故()f x 在(,2),(ln 2,)-∞--+∞上单调递增,在(2,ln 2)--上单调递减.当2x =-时,函数()f x 取得极大值,极大值为2(2)4(1e ).f --=-(步骤6)21.(本小题满分12分)已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求||AB .【测量目标】圆的方程及其几何性质,椭圆的定义及其几何性质以及直线与曲线的位置关系.【考查方式】给出两个已知圆的方程,根据圆与圆的位置关系确定动圆圆心轨迹曲线方程;再利用直线与圆的位置关系求解出线段的长度.【试题解析】(1)结合圆的几何性质和椭圆的定义求解;(2)利用直线与圆相切的性质求解,要注意直线的斜率是不是存在.解:由已知得圆M 的圆心为(1,0),M -半径11;r =圆N 的圆心为(1,0),N 半径2 3.r =设圆P的圆心为(),,P x y 半径为R.(步骤1)(1)因为圆P 与圆M 外切并且与圆N 内切,所以1212()() 4.PM PN R r r R r r +=++-=+=(步骤2)由椭圆的定义可知,曲线C 是以M,N 为左,右焦点,长半轴长为2圆(左顶点除外),其方程为221(2).43x y x +=≠-(步骤3) (2)对于曲线C 上任意一点(,),P x y 由于22PM PN R -=-≤2,所以R ≤2,(步骤4)当且仅当圆P 的圆心为(2,0)时,R =2,所以当圆P 的半径最长时,其方程为22(2) 4.x y -+=(步骤5)若l 的倾斜角为90,则l 与y轴重合,可得AB =(步骤6) 若l 的倾斜角不为90 ,由1r R ≠知l 不平行于x 轴,(步骤7)设l 与x 轴的交点为Q ,则1,QPR QM r =可求得(4,0)Q -,所以可设:(4).l y k x =+由l 与圆M1,=解得k =(步骤8)当4k =时,将4y x =代入221,43x y +=并整理得27880,x x +-=解得1,2x =所以2118.7AB x =-=(步骤9)当4k =时,由图象的对称性可知18.7AB =(步骤10)综上,AB =18.7AB =(步骤11) 请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(Ⅰ)证明:DB DC =;(Ⅱ)设圆的半径为1,BC =,延长CE 交AB 于点F ,求BC F △外接圆的半径.(第22题图)【测量目标】圆的几何性质,勾股定理及直角三角形的性质.【考查方式】根据已知的圆与直线的位置关系及角平分线的条件,利用弦切角定理证明线段相等;构造辅助线,结合圆的几何性质求圆的半径.【试题解析】(1)利用圆的性质结合弦切角定理证明线段相等;(2)先证明中垂线,再结合圆的几何性质求圆的半径.(第22题图)解 (1)证明:如图,连接DE ,交BC 于点G (步骤1)由弦切角定理,得A B E B C E ∠=∠,而ABE CBE ∠=∠,故BCE CBE ∠=∠,所以.B E C E =(步骤2)又因为,DB BE ⊥所以DE 为圆的直径,90.DCE ∠= (步骤3)DBC DCB ∠=∠∴.DB DC =(步骤4)(2)解:由(1)知,,,CDE BDE DB DC ∠=∠=故DG 是BC 边的中垂线,所以BG =(步骤5) 设DE 的中点为O ,连接BO ,则60,BOG ∠= 从而30,ABE BCE CBE ∠=∠=∠= (步骤6)所以CF BF ⊥,故Rt BCF △外接圆的半径等于2.(步骤7) 23.(本小题10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=.(Ⅰ)把1C 的参数方程化为极坐标方程;(Ⅱ)求1C 与2C 交点的极坐标(0,02ρθπ<厔).【测量目标】参数方程、极坐标方程.【考查方式】根据已知的参数方程,利用同角三角函数的平方关系将参数方程化为普通方程再转化为极坐标方程;根据求出的1C ,2C 的普通方程,联立方程组求出交点极坐标.【试题解析】(1)利用同角三角函数的平方关系将参数方程化为普通方程;(2)利用联立方程组求解曲线的交点.解:(1)将45cos ,55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程22(4)(5)25,x y -+-=即221:810160.C x y x y +--+=(步骤1)将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得28cos 10sin 160.ρρθρθ--+=(步骤2)(2)2C 的普通方程为2220.x y y +-=由2222810160,20,x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩(步骤3) 所以1C 与2C交点的极坐标分别为),(2,).42ππ(步骤4)24.(本小题满分10分)选修4—5:不等式选讲已知函数()|21||2|f x x x a =-++,()3g x x =+.(Ⅰ)当2a =-时,求不等式()()f x g x <的解集;(Ⅱ)设1a >-,且当1[,)22a x ∈-时,()()f x g x …,求a 的取值范围. 【测量目标】绝对值的意义、分段函数及其图象、恒成立问题的求解方法.【考查方式】给出一个含未知参量的绝对值方程和一个一般方程,当未知参量取特定值时,利用绝对值的代数意义将函数化为分段函数,进而比较两个函数的大小关系;根据未知数的取值范围及两函数的大小关系,结合函数的图象将问题转化为恒成立问题求解.【试题解析】(1)利用绝对值的代数意义将函数转化为分段函数;(2)结合函数的图象将问题转化为恒成立问题求解.解:(I )当2a =-时,不等式()f x <g(x )化为21223x x x -+---<0.(步骤1)设函数y =21223x x x -+---,则15,214,1,236, 1.x x y x x x x ⎧-<⎪⎪⎪--⎨⎪->⎪⎪⎩剟 (步骤2) 其图像如图所示第24题图 从图象可知,当且仅当x (0,2)∈时,y <0,所以原不等式的解集是{}02x x <<;(步骤3) (II )当)1,,()1.22a x f x a ⎡∈-=+⎢⎣ 不等式()f x ≤g (x )化为1+a ≤x +3.所以x ≥a -2(步骤4) 对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立,故22a a --…,即43a …, 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.(步骤5)。

2015年全国高考新课标1卷文科数学试题(word文档完整版小题也有详解)

2015年全国高考新课标1卷文科数学试题(word文档完整版小题也有详解)

2015年全国高考新课标1卷文科数学试题一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中的元素个数为()A.5 B.4 C.3 D.22.已知点A(0,1),B(3,2),向量(4,3)AC=--,则向量BC=( ) A.(—7,-4)B.(7,4)C.(—1,4) D.(1,4)3.已知复数z满足(z-1)i=1+i,则z=()A.-2-i B.-2+i C.2-i D.2+i4.如果3个正数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.1205.已知椭圆E的中心为坐标原点,离心率为12,E的右焦点与抛物线C:y2=8x,的焦点重合,A,B是C的准线与E的两个交点,则|AB|=() A.3 B.6 C.9 D.126.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?"其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1。

62立方尺,圆周率约为3,估算出堆放的米有()A.14斛B.22斛C.36斛D.66斛7.已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=( )A.172B.192C.10 D.128.函数f(x)=cos(ωx+φ)的部分图像如图所示,则f(x)的单调递减区间为( )A.13(,),44k k k Zππ-+∈B.13(2,2),44k k k Zππ-+∈C.13(,),44k k k Z-+∈D.13(2,2),44k k k Z-+∈9.执行右面的程序框图,如果输入的t =0.01,则输出的n=( )A .5B .6C .7D .810.已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且f (a )=—3,则f (6—a )=( )A .74-B .54-C .34-D .14-11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .812.设函数y =f (x )的图像与y =2x+a 的图像关于直线y =—x对称,且f (—2)+f (—4)=1,则a =( ) A .—1 B .1 C .2 D .4二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上. 13.数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n = . 14.已知函数f (x )=ax 3+x +1的图像在点(1, f (1))的处的切线过点(2,7),则a = .15.若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .16.已知F 是双曲线C :2218y x -=的右焦点,P 是C 左支上一点,(0,66)A , 当ΔAPF 周长最小时,该三角形的面积为 .三、解答题:解答应写出文字说明,证明过程或演算步骤。

2013年高考真题——文科数学(新课标I卷)解析版(1)

2013年高考真题——文科数学(新课标I卷)解析版(1)

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题。

每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =I ( )(A ){0}(B ){-1,,0} (C ){0,1}(D ){-1,,0,1}(2)212(1)ii +=-( )(A )112i --(B )112i -+(C )112i +(D )112i -(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )12 (B )13 (C )14 (D )16(4)已知双曲线2222:1x y C a b-=(0,0)a b >>的离心率为5,则C 的渐近线方程为( )(A )14y x =±(B )13y x =± (C )12y x =±(D )y x =±(5)已知命题:p x R ∀∈,23xx<;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( ) (A )p q ∧(B )p q ⌝∧(C )p q ∧⌝ (D )p q ⌝∧⌝(6)设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =-(7)执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S 属于(A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]-(8)O 为坐标原点,F 为抛物线2:42C y x =的焦点,P 为C 上一点,若||42PF =,则POF ∆的面积为( ) (A )2(B )22(C )23(D )4(9)函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )(10)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10 (B )9(C )8(D )5(11)某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+ (C )1616π+ (D )816π+(12)已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]-第Ⅱ卷本卷包括必考题和选考题两个部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-2015年高考新课标卷I 文科数学试卷及其答案解析(全)2013年普通高等学校招生全国统一考试文 科 数 学注意事项:1.本试卷分第Ⅰ卷(选择题)和第II 卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I 卷一. 选择题:本大题共12小题,第小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合}3,3,2,1{=A ,},|{2A n n x x B ∈==,则=⋂B A(A )}4,1{ (B )}3,2{ (C ) }16,9{ (D )}2,1{(2)2)1(21i i-+=(A )i 211-- (B )i 211+- (C )i 211+ (D )i 211-(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是(A )21 (B )31 (C )41 (D )61(4) 已知双曲线C :)0,0(12222>>=-b a by a x 的离心率为25,则C 的渐近线方程为(A )x y 41±= (B )x y 31±= (C )x y 21±= (D )x y ±=(5)已知命题;32,:x x R x p <∈∀命题231,:x x R x q -=∈∃,则下列命题中为真命题的是(A )q p ∧ (B )q p ∧⌝ (C )q p ⌝∧ (D )q p ⌝∧⌝(6)设首项为1,公比为32的等比数列}{n a 的前n 项和为n S ,则 (A )12-=n n a S (B )23-=n n a S (C )n n a S 34-= (D )n n a S 23-= (7)执行右边的程序框图,如果输入的]3,1[-∈t ,则输出的s 属于(A) ]4,3[- (B) ]2,5[- (C) ]3,4[- (D) ]5,2[-(8)O 为坐标原点,F 为抛物线x y C 24:2=的焦点,P 为C 上一点,若24||=PF ,则POF ∆的面积为(A) 2 (B) 22 (C) 32 (D) 4 (9)函数x x x f sin )cos 1()(-=在],[ππ-的图像大致为(10)已知锐角△ABC 的内角A 、B 、C 的对边分别为c b a ,,,,7,02cos cos 232==+a A A 6=c ,则=b(A )10 (B )9(C )8 (D )5(11)某几何体的三视图如图所示,则该几何体的体积为(A )16+8π(B )8+8π (C )16+16π (D )8+16π(12) 已知函数=)(x f ⎩⎨⎧>+≤+-.0),1ln(,0,22x x x x x 若|)(|x f ≥ax ,则a 的取值范围是(A) ]0,(-∞ (B) ]1,(-∞ (C) ]1,2[-(D) ]0,2[-第Ⅱ卷本卷包括必考题和选考题两部分。

第13题-第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答。

二、填空题:本大题共4小题,每小题5分。

(13)已知两个单位向量a ,b 的夹角为60°,c = ta+ (1-t) b. 若b ·c =0,则t = .(14)设y x ,满足约束条件⎩⎨⎧≤-≤-≤≤,01,31y x x 则y x z -=2的最大值为 .(15)已知H 是球O 的直径AB 上一点,2:1:=HB AH ,⊥AB 平面α,H 为垂足,α截球O 所截得的面积为π,则球O 的表面积为 .(16)设当θ=x 时,函数x x x f cos 2sin )(-=取得最大值,则=θcos .三、解答题:解答应写出文字说明,证明过程或演算步骤。

(17)(本小题满分12分) 已知等差数列{}n a 的前n 项和为n S 满足5,053-==S S . (Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列⎭⎬⎫⎩⎨⎧+-12121n n a a 的前n 项和.(18)(本小题满分12分)为了比较两种治疗失眠的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ).试验的观测结果如下:服用A药的日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.32.4 服用B 药的日平均增加的睡眠时间:3.2 1. 7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.70.5(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?(19)(本小题满分12分)如图,三棱柱111C B A ABC -中,CB CA =,1AA AB =,︒=∠601BAA . (Ⅰ)证明:C A AB 1⊥;(Ⅱ)若,2==CB AB 61=C A ,求三棱柱111C B A ABC -的体积(20)(本小题满分12分)已知函数x x b ax e x f x 4)()(2--+=,曲线)(x f y =在点))0(,0(f 处的切线方程为44+=x y . (Ⅰ)求b a ,的值;(Ⅱ)讨论)(x f 的单调性,并求)(x f 的极大值.(21)(本小题满分12分)已知圆M :1)1(22=++y x ,圆N :9)1(22=+-y x ,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于B A ,两点,当圆P 的半径最长时,求||AB .药A 药B .01.2.3.ABC1C 1B 1A请考生在第22、23、24题中任选一道作答。

注意:只能做所选定的题目。

如果多做,则按所做的第一题计分。

作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑。

22.(本小题满分10分)选修4—1;几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE交圆与点E ,DB 垂直BE 交圆与点D 。

(1) 证明:DB =DE ;(2) 设圆的半径为1, 3=BC ,延长CE 交AB 与点F ,求BCF ∆外接圆的半径。

23.(本小题满分10分)选修4—4;坐标系与参数方程已知曲线C 1的参数方程式⎩⎨⎧+=+=,sin 55,cos 54t y t x (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C2的极坐标方程式为θρsin 2=. (Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C2交点的极坐标)(πθρ20,0<≤≥。

24.(本小题满分10分)选修4—5;不等式选讲 已知函数|2||12|)(a x x x f ++-=,3)(+=x x g . (Ⅰ)当2-=a 时,求不等式)()(x g x f <的解集; (2)设1->a ,且当)21,2[a x -∈时,)()(x g x f ≤,求a 的取值范围。

2014年普通高等学校招生全国统一考试(新课标I )文科数学一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M N =IA. )1,2(-B. )1,1(-C. )3,1(D. )3,2(- (2)若0tan >α,则A. sin 20α>B. 0cos >αC. sin 0α>D. 02cos >α (3)设i iz ++=11,则=||z A.21B. 22C. 23D. 2(4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=aA. 2B.26C.25D. 1(5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数 (6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EBA. ADB.C.D. BC (7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱输出的9.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则M =( ) A.203 B.72 C.165 D.15810.已知抛物线C :x y =2的焦点为F ,()y x A 0,是C上一点,x F A 045=,则=x 0( ) A. 1 B. 2 C. 4 D. 8(11)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3 (C )-5或3 (D )5或-3 (12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是(A )()2,+∞ (B )()1,+∞ (B )(C )(),2-∞- (D )(),1-∞-第II 卷二、填空题:本大题共4小题,每小题5分(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. (14)甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.(15)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.(16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。

相关文档
最新文档