全国高考文科数学试卷及答案解析_全国卷.pdf

合集下载

2023年高考真题及答案解析《数学文》(全国甲卷)

2023年高考真题及答案解析《数学文》(全国甲卷)

甲卷文科2023年普通高等学校招生全国统一考试(甲卷)文科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集U ={1,2,3,4,5},集合M ={1,4},N ={2,5},则N ∪∁U M =()A.{2,3,5}B.{1,3,4}C.{1,2,4,5}D.{2,3,4,5}2.5(1+i 3)(2+i )(2-i )=()A.-1B.1C.1-iD.1+i3.已知向量a =(3,1),b =(2,2),则cos a +b ,a -b =()A.117B.1717C.55D.2554.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.235.记S n 为等差数列{a n }的前n 项和,若a 2+a 6=10,a 4a 8=45,则S 5=()A.25B.22C.20D.156.执行右边的程序框图,则输出的B =()n ≤3n =1,A =1,B =2开始A =A +B B =A +B n =n +1结束输出B否A.21B.34C.55D.897.设F 1,F 2为椭圆C :x 25+y 2=1的两个焦点,点P 在C 上,若PF 1 ⋅PF 2 =0,则|PF 1|⋅|PF 2|=()A.1B.2C.4D.58.曲线y =e xx +1在点(1,e 2)处的切线方程为()A.y =e4xB.y =e2x C.y =e4x +e 4 D.y =e 2x +3e4ABC A 1B 1C 19.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为5,C 的一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,则|AB |=()A.55B.255C.355D.45510.在三棱锥P -ABC 中,△ABC 是边长为2的等边三角形,PA =PB =2,PC =6,则该棱锥的体积为()A.1B.3C.2D.311.已知函数f (x )=e-(x -1)2,记a =f 22,b =f 32 ,c =f 62 ,则()A.b >c >aB.b >a >cC.c >b >aD.c >a >b12.函数y =f (x )的图象由y =cos (2x +π6)的图象向左平移π6个单位长度得到,则y =f (x )的图象与直线y =12x -12的交点个数为()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分。

2023年高考文科数学全国甲卷试卷及解析完整版

2023年高考文科数学全国甲卷试卷及解析完整版

2023年高考文科数学全国甲卷试卷及解析_完整版高三数学复习的方法一、注重综合考查,关注知识交汇对数学知识的考查,既要全面又突出重点。

注重学科的内在联系和知识的综合性,从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点设计试题。

二、坚持能力立意,专题复习应对数学是一门思维的科学,思维能力是数学学科能力的核心。

数学思维能力是以数学知识为素材,通过空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明和模式构建等诸方面,对客观事物中的空间形式、数量关系和数学模式进行思考和判断,形成和发展理性思维,构成数学能力的主体。

三、回归课本,让课本习题焕发新活力高考万变不离其宗,其中的“宗”和“本”指的都是课本。

很多高考题都源自课本中的定理或定理中的思想方法,或是例题、习题的重新组合等。

课本题大多蕴涵着丰富、深刻的背景。

实践证明,以课本为素材组织高考复习不仅不会影响高考成绩,而且是提高成绩非常有效的途径。

平时学习要用好课本,到了高三复习阶段,更要以课本为主,充分发挥教材的作用。

应在深入研究的基础上充分感悟教材的编写意图,积极开发课本的潜在功能,创设问题链情境,通过改变问题的某一“属性”,探索问题的引申、推广、拓展、变通,开展高考复习中的研究性学习。

这不仅能跳出“题海”,又能巩固基础知识,掌握数学思想方法,深化数学的本质内涵,更为重要的是能激发问题意识,培养综合素养。

高考数学题的解答方法一、夯实基础知识高考数学题中容易题、中等题、难题的比重为3:5:2,即基础题占80%,难题占20%。

无论是一轮、二轮,还是三轮复习都把“三基”即基础知识、基本技能、基本思想方法作为重中之重,死握一些难题的做法非常危险!也只有“三基”过关,才有能力去做难题。

二、建构知识网络数学教学的本质,是在数学知识的教学中,把大量的数学概念、定理、公式等陈述性知识,让学生在主动参与、积极构建的基础上,形成越来越有层次的数学知识网络结构,使学生体验整个学习过程中所蕴涵的数学思想、数学方法,形成解决问题的产生方式,因此,在高考复习中,在夯实基础知识的基础上,把握纵横联系,构建知识网络。

2009年全国统一高考数学试卷(文科)(全国卷ⅰ)(含解析版)

2009年全国统一高考数学试卷(文科)(全国卷ⅰ)(含解析版)

2009年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)sin585°的值为( )A.B.C.D.2.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有( )A.3个B.4个C.5个D.6个3.(5分)不等式<1的解集为( )A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}4.(5分)已知tana=4,cotβ=,则tan(a+β)=( )A.B.﹣C.D.﹣5.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为( )A.B.2C.D.6.(5分)已知函数f(x)的反函数为g(x)=1+2lgx(x>0),则f(1)+g(1)=( )A.0B.1C.2D.47.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A.150种B.180种C.300种D.345种8.(5分)设非零向量、、满足,则=( )A.150°B.120°C.60°D.30°9.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为( )A.B.C.D.10.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为( )A.B.C.D.11.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为( )A.1B.2C.D.412.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF 交C于点B,若=3,则||=( )A.B.2C.D.3二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于 .14.(5分)设等差数列{a n}的前n的和为S n,若S9=72,则a2+a4+a9= .15.(5分)已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M.若圆M的面积为3π,则球O的表面积等于 .16.(5分)若直线m被两平行线l1:x﹣y+1=0与l2:x﹣y+3=0所截得的线段的长为,则m的倾斜角可以是①15°②30°③45°④60°⑤75°其中正确答案的序号是 (写出所有正确答案的序号)三、解答题(共6小题,满分70分)17.(10分)设等差数列{a n}的前n项和为S n,公比是正数的等比数列{b n}的前n项和为T n,已知a1=1,b1=3,a3+b3=17,T3﹣S3=12,求{a n},{b n}的通项公式.18.(12分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b ,且sinAcosC=3cosAsinC,求b.19.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.20.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(Ⅰ)求再赛2局结束这次比赛的概率;(Ⅱ)求甲获得这次比赛胜利的概率.21.(12分)已知函数f(x)=x4﹣3x2+6.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设点P在曲线y=f(x)上,若该曲线在点P处的切线l通过坐标原点,求l的方程.22.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.2009年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)sin585°的值为( )A.B.C.D.【考点】GE:诱导公式.【分析】由sin(α+2kπ)=sinα、sin(α+π)=﹣sinα及特殊角三角函数值解之.【解答】解:sin585°=sin(585°﹣360°)=sin225°=sin(45°+180°)=﹣sin45°=﹣,故选:A.【点评】本题考查诱导公式及特殊角三角函数值.2.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有( )A.3个B.4个C.5个D.6个【考点】1H:交、并、补集的混合运算.【分析】根据交集含义取A、B的公共元素写出A∩B,再根据补集的含义求解.【解答】解:A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴∁U(A∩B)={3,5,8}故选A.也可用摩根律:∁U(A∩B)=(∁U A)∪(∁U B)故选:A.【点评】本题考查集合的基本运算,较简单.3.(5分)不等式<1的解集为( )A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}【考点】7E:其他不等式的解法.【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:∵<1,∴|x+1|<|x﹣1|,∴x2+2x+1<x2﹣2x+1.∴x<0.∴不等式的解集为{x|x<0}.故选:D.【点评】本题主要考查解绝对值不等式,属基本题.解绝对值不等式的关键是去绝对值,去绝对值的方法主要有:利用绝对值的意义、讨论和平方.4.(5分)已知tana=4,cotβ=,则tan(a+β)=( )A.B.﹣C.D.﹣【考点】GP:两角和与差的三角函数.【专题】11:计算题.【分析】由已知中cotβ=,由同角三角函数的基本关系公式,我们求出β角的正切值,然后代入两角和的正切公式,即可得到答案.【解答】解:∵tana=4,cotβ=,∴tanβ=3∴tan(a+β)===﹣故选:B.【点评】本题考查的知识点是两角和与差的正切函数,其中根据已知中β角的余切值,根据同角三角函数的基本关系公式,求出β角的正切值是解答本题的关键.5.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为( )A.B.2C.D.【考点】KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b 的关系,从而推断出a和c的关系,答案可得.【解答】解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得ax2﹣bx+a=0,因渐近线与抛物线相切,所以b2﹣4a2=0,即,故选:C.【点评】本小题考查双曲线的渐近线方程直线与圆锥曲线的位置关系、双曲线的离心率,基础题.6.(5分)已知函数f(x)的反函数为g(x)=1+2lgx(x>0),则f(1)+g(1)=( )A.0B.1C.2D.4【考点】4R:反函数.【专题】11:计算题.【分析】将x=1代入即可求得g(1),欲求f(1),只须求当g(x)=1时x的值即可.从而解决问题.【解答】解:由题令1+2lgx=1得x=1,即f(1)=1,又g(1)=1,所以f(1)+g(1)=2,故选:C.【点评】本小题考查反函数,题目虽然简单,却考查了对基础知识的灵活掌握情况,也考查了运用知识的能力.7.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A.150种B.180种C.300种D.345种【考点】D1:分类加法计数原理;D2:分步乘法计数原理.【专题】5O:排列组合.【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有C51•C31•C62=225种选法;(2)乙组中选出一名女生有C52•C61•C21=120种选法.故共有345种选法.故选:D.【点评】分类加法计数原理和分类乘法计数原理,最关键做到不重不漏,先分类,后分步!8.(5分)设非零向量、、满足,则=( )A.150°B.120°C.60°D.30°【考点】9S:数量积表示两个向量的夹角.【分析】根据向量加法的平行四边形法则,两个向量的模长相等可构成菱形的两条相邻边,三个向量起点处的对角线长等于菱形的边长,这样得到一个含有特殊角的菱形.【解答】解:由向量加法的平行四边形法则,∵两个向量的模长相等∴、可构成菱形的两条相邻边,∵∴、为起点处的对角线长等于菱形的边长,∴两个向量的夹角是120°,故选:B.【点评】本小题考查向量的几何运算、考查数形结合的思想,基础题.向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体.9.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为( )A.B.C.D.【考点】LO:空间中直线与直线之间的位置关系.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选:D.【点评】本题主要考查异面直线的夹角与余弦定理.10.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为( )A.B.C.D.【考点】HB:余弦函数的对称性.【专题】11:计算题.【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选:A.【点评】本题主要考查余弦函数的对称性.属基础题.11.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为( )A.1B.2C.D.4【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;16:压轴题.【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD 则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可.【解答】解:如图分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PDB=60°,,又∵当且仅当AP=0,即点A与点P重合时取最小值.故选:C.【点评】本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题. 12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=( )A.B.2C.D.3【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】过点B作BM⊥x轴于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据,求出BM,AN,进而可得|AF|.【解答】解:过点B作BM⊥x轴于M,并设右准线l与x轴的交点为N,易知FN=1.由题意,故FM=,故B点的横坐标为,纵坐标为±即BM=,故AN=1,∴.故选:A.【点评】本小题考查椭圆的准线、向量的运用、椭圆的定义,属基础题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于 ﹣240 .【考点】DA:二项式定理.【专题】11:计算题.【分析】首先要了解二项式定理:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,各项的通项公式为:T r+1=C n r a n﹣r b r.然后根据题目已知求解即可.【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.【点评】此题主要考查二项式定理的应用问题,对于公式:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,属于重点考点,同学们需要理解记忆.14.(5分)设等差数列{a n}的前n的和为S n,若S9=72,则a2+a4+a9= 24 .【考点】83:等差数列的性质.【分析】先由S9=72用性质求得a5,而3(a1+4d)=3a5,从而求得答案.【解答】解:∵∴a5=8又∵a2+a4+a9=3(a1+4d)=3a5=24故答案是24【点评】本题主要考查等差数列的性质及项与项间的内在联系.15.(5分)已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M.若圆M的面积为3π,则球O的表面积等于 16π .【考点】LG:球的体积和表面积.【专题】11:计算题;16:压轴题.【分析】由题意求出圆M的半径,设出球的半径,二者与OM构成直角三角形,求出球的半径,然后可求球的表面积.【解答】解:∵圆M的面积为3π,∴圆M的半径r=,设球的半径为R,由图可知,R2=R2+3,∴R2=3,∴R2=4.∴S球=4πR2=16π.故答案为:16π【点评】本题是基础题,考查球的体积、表面积的计算,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口,解题重点所在,仔细体会.16.(5分)若直线m被两平行线l1:x﹣y+1=0与l2:x﹣y+3=0所截得的线段的长为,则m的倾斜角可以是①15°②30°③45°④60°⑤75°其中正确答案的序号是 ①或⑤ (写出所有正确答案的序号)【考点】I2:直线的倾斜角;N1:平行截割定理.【专题】11:计算题;15:综合题;16:压轴题.【分析】先求两平行线间的距离,结合题意直线m被两平行线l1与l2所截得的线段的长为,求出直线m与l1的夹角为30°,推出结果.【解答】解:两平行线间的距离为,由图知直线m与l1的夹角为30°,l1的倾斜角为45°,所以直线m的倾斜角等于30°+45°=75°或45°﹣30°=15°.故填写①或⑤故答案为:①或⑤【点评】本题考查直线的斜率、直线的倾斜角,两条平行线间的距离,考查数形结合的思想.三、解答题(共6小题,满分70分)17.(10分)设等差数列{a n}的前n项和为S n,公比是正数的等比数列{b n}的前n项和为T n,已知a1=1,b1=3,a3+b3=17,T3﹣S3=12,求{a n},{b n}的通项公式.【考点】8M:等差数列与等比数列的综合.【专题】11:计算题.【分析】设{a n}的公差为d,数列{b n}的公比为q>0,由题得,由此能得到{a n},{b n}的通项公式.【解答】解:设{a n}的公差为d,数列{b n}的公比为q>0,由题得,解得q=2,d=2∴a n=1+2(n﹣1)=2n﹣1,bn=3•2n﹣1.【点评】本小题考查等差数列与等比数列的通项公式、前n项和,基础题.18.(12分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b ,且sinAcosC=3cosAsinC,求b.【考点】HR:余弦定理.【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC化成边的关系,再根据a2﹣c2=2b即可得到答案.【解答】解:法一:在△ABC中∵sinAcosC=3cosAsinC,则由正弦定理及余弦定理有:,化简并整理得:2(a2﹣c2)=b2.又由已知a2﹣c2=2b∴4b=b2.解得b=4或b=0(舍);法二:由余弦定理得:a2﹣c2=b2﹣2bccosA.又a2﹣c2=2b,b≠0.所以b=2ccosA+2①又sinAcosC=3cosAsinC,∴sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC,即sinB=4cosAsinC由正弦定理得,故b=4ccosA②由①,②解得b=4.【点评】本题主要考查正弦定理和余弦定理的应用.属基础题.19.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(Ⅰ)法一:要证明M是侧棱SC的中点,作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,解RT△MNE即可得x的值,进而得到M为侧棱SC的中点;法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,并求出S点的坐标、C点的坐标和M点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.(Ⅱ)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B的大小.【解答】证明:(Ⅰ)作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,在RT△MEB中,∵∠MBE=60°∴.在RT△MNE中由ME2=NE2+MN2∴3x2=x2+2解得x=1,从而∴M为侧棱SC的中点M.(Ⅰ)证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz ,则.设M(0,a,b)(a>0,b>0),则,,由题得,即解之个方程组得a=1,b=1即M(0,1,1)所以M是侧棱SC的中点.(I)证法三:设,则又故,即,解得λ=1,所以M是侧棱SC的中点.(Ⅱ)由(Ⅰ)得,又,,设分别是平面SAM、MAB的法向量,则且,即且分别令得z 1=1,y1=1,y2=0,z2=2,即,∴二面角S﹣AM﹣B的大小.【点评】空间两条直线夹角的余弦值等于他们方向向量夹角余弦值的绝对值;空间直线与平面夹角的余弦值等于直线的方向向量与平面的法向量夹角的正弦值;空间锐二面角的余弦值等于他的两个半平面方向向量夹角余弦值的绝对值;20.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(Ⅰ)求再赛2局结束这次比赛的概率;(Ⅱ)求甲获得这次比赛胜利的概率.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】12:应用题.【分析】根据题意,记“第i局甲获胜”为事件A i(i=3,4,5),“第j局甲获胜”为事件B i(j=3,4,5),(1)“再赛2局结束这次比赛”包含“甲连胜3、4局”与“乙连胜3、4局”两个互斥的事件,而每局比赛之间是相互独立的,进而计算可得答案,(2)若“甲获得这次比赛胜利”,即甲在后3局中,甲胜2局,包括3种情况,根据概率的计算方法,计算可得答案.【解答】解:记“第i局甲获胜”为事件A i(i=3,4,5),“第j局甲获胜”为事件B i(j=3,4,5).(Ⅰ)设“再赛2局结束这次比赛”为事件A,则A=A3•A4+B3•B4,由于各局比赛结果相互独立,故P(A)=P(A3•A4+B3•B4)=P(A3•A4)+P(B3•B4)=P(A3)P(A4)+P(B3)P (B4)=0.6×0.6+0.4×0.4=0.52.(Ⅱ)记“甲获得这次比赛胜利”为事件H,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而B=A3•A4+B3•A4•A5+A3•B4•A5,由于各局比赛结果相互独立,故P(H)=P(A3•A4+B3•A4•A5+A3•B4•A5)=P(A3•A4)+P(B3•A4•A5)+P(A3•B4•A5)=P(A3)P(A4)+P(B3)P(A4)P(A5)+P(A3)P(B4)P(A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648【点评】本小题考查互斥事件有一个发生的概率、相互独立事件同时发生的概率,解题之前,要分析明确事件间的关系,一般先按互斥事件分情况,再由相互独立事件的概率公式,进行计算.21.(12分)已知函数f(x)=x4﹣3x2+6.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设点P在曲线y=f(x)上,若该曲线在点P处的切线l通过坐标原点,求l的方程.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题.【分析】(1)利用导数求解函数的单调性的方法步骤进行求解.(2)根据已知,只需求出f(x)在点P处的导数,即斜率,就可以求出切线方程.【解答】解:(Ⅰ)令f′(x)>0得或;令f′(x)<0得或因此,f(x)在区间和为增函数;在区间和为减函数.(Ⅱ)设点P(x0,f(x0)),由l过原点知,l的方程为y=f′(x0)x,因此f(x0)=f′(x0)x0,即x04﹣3x02+6﹣x0(4x03﹣6x0)=0,整理得(x 02+1)(x02﹣2)=0,解得或.所以的方程为y=2x或y=﹣2x【点评】本题比较简单,是一道综合题,主要考查函数的单调性、利用导数的几何意义求切线方程等函数基础知识,应熟练掌握.22.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.【考点】IR:两点间的距离公式;JF:圆方程的综合应用;K8:抛物线的性质.【专题】15:综合题;16:压轴题.【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标.【解答】解:(Ⅰ)将抛物线E:y2=x代入圆M:(x﹣4)2+y2=r2(r>0)的方程,消去y2,整理得x2﹣7x+16﹣r2=0(1)抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是:方程(1)有两个不相等的正根∴即.解这个方程组得,.(II)设四个交点的坐标分别为、、、.则直线AC、BD的方程分别为y﹣=•(x﹣x 1),y+=(x﹣x1),解得点P的坐标为(,0),则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,则∴令,则S2=(7+2t)2(7﹣2t)下面求S2的最大值.由三次均值有:当且仅当7+2t=14﹣4t,即时取最大值.经检验此时满足题意.故所求的点P的坐标为.【点评】本题主要考查抛物线和圆的综合问题.圆锥曲线是高考必考题,要强化复习.。

2022年全国统一高考数学试卷(文科)(甲卷)【含解析】

2022年全国统一高考数学试卷(文科)(甲卷)【含解析】

2022年全国统一高考数学试卷(文科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{2A =-,1-,0,1,2},5{|0}2B x x =< ,则(AB =)A.{0,1,2}B.{2-,1-,0}C.{0,1}D.{1,2}2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差3.若1z i =+,则|3|(iz z +=)A.45B.42C.25D.224.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.205.将函数()sin(0)3f x x πωω=+>的图像向左平移2π个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是()A.16B.14C.13D.126.从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.237.函数()(33)cos x x f x x -=-在区间[2π-,2π的图像大致为()A.B.C.D.8.当1x =时,函数()bf x alnx x =+取得最大值2-,则f '(2)(=)A.1-B.12-C.12D.19.在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30︒,则()A.2AB AD=B.AB 与平面11AB C D 所成的角为30︒C.1AC CB =D.1B D 与平面11BB C C 所成的角为45︒10.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若2S S =甲乙,则(VV =甲乙)B.D.411.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为13,1A ,2A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为()A.2211816x y +=B.22198x y +=C.22132x y +=D.2212x y +=12.已知910m =,1011m a =-,89m b =-,则()A.0a b>>B.0a b >>C.0b a >>D.0b a>>二、填空题:本题共4小题,每小题5分,共20分。

2014年全国高考数学卷文科卷1试题及答案解析-精选.pdf

2014年全国高考数学卷文科卷1试题及答案解析-精选.pdf

( II )估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间 的中点值作代表) ; ( III )根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指 标值不低于 95 的产品至少要占全部产品的 80%”的规定?
20.已知点 P ( 2,2) ,圆 C : x2 y2 8y 0 ,过点 P 的动直线 l 与圆 C 交于 A, B 两点,线段 AB 的中点为 M , O 为坐标原点 .
23.已知曲线
x2 C:
y2
x2t
1,直线 l :
( t 为参数)
49
y 2 2t
写出曲线 C 的参数方程,直线 l 的普通方程;
过曲线 C 上任意一点 P 作与 l 夹角为 30°的直线,交 l 于点 A ,求 PA 的最大
值与最小值 .
22.如图,四边形 ABCD 是 交于点 E ,且 CB CE .
(1) 求 M 的轨迹方程; (2) 当 OP OM 时,求 l 的方程及 POM 的面积
试卷第 3 页,总 4 页
21.设函数 f x a ln x
处的切线斜率为 0
1a2 x
2
bx a
1 ,曲线 y
f x 在点 1,f 1
求 b; 若存在 x0 1, 使得 f x0
a
,求 a 的取值范围。
a1
试卷第 4 页,总 4 页
1. B 【解析】
参考答案
试题分析:根据集合的运算法则可得: M N x | 1 x 1 ,即选 B.
[115 ,且12A5O)
8
平面 BB1C1C .
( I )在答题卡上作出这些数据的频率分布直方图:
A1B1C1 中,侧面 BB1C1C 为菱形, B1C 的中点为 O ,

2020年高考文科数学试卷 全国Ⅰ卷(含答案)

2020年高考文科数学试卷 全国Ⅰ卷(含答案)

2020年高考文科数学试卷全国Ⅰ卷(含答案)2020年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 $A=\{x|x^2-3x-4<0\}$,$B=\{-4,1,3,5\}$,则$A$ 为A。

$ \{-4,1\}$B。

$\{1,5\}$C。

$\{3,5\}$D。

$\{1,3\}$2.若 $z=1+2i+i^3$,则 $|z|$ 等于A。

$1$B。

$2$___$D。

$3$3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥。

以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A。

$\dfrac{5-\sqrt{5}}{4}$B。

$\dfrac{1}{2}$C。

$\dfrac{5+\sqrt{5}}{4}$D。

$\dfrac{5+\sqrt{10}}{2}$4.设 $O$ 为正方形 $ABCD$ 的中心,在 $O$,$A$,$B$,$C$,$D$ 中任取 $3$ 点,则取到的 $3$ 点共线的概率为A。

$\dfrac{1}{5}$B。

$\dfrac{2}{5}$C。

$\dfrac{4}{5}$D。

$1$5.某校一个课外研究小组为研究某作物种子的发芽率$y$ 和温度 $x$(单位:℃)的关系,在 $20$ 个不同的温度条件下进行种子发芽实验,由实验数据$(x_i,y_i)(i=1,2,\dots,20)$ 得到下面的散点图:在 $10℃$ 至 $40℃$ 之间,下面四个回归方程类型中最适宜作为发芽率 $y$ 和温度 $x$ 的回归方程类型的是A。

2020年高考文科数学全国卷1及答案

2020年高考文科数学全国卷1及答案

绝密★启用前2020年普通高等学校招生全国统一考试·全国Ⅰ卷文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}2340A x x x =--<,{}4135B =-,,,,则A B = ()A .{}41-,B .{}15,C .{}35,D .{}13,2.若312i i z =++,则z =()A .0B .1C .2D .23.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A .514-B .512-C .514+D .512+4.设O 为正方形ABCD 的中心,在O A B C D ,,,,中任取3点,则取到的3点共线的概率为()A .15B .25C .12D .455.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据()()1220i i x y i =⋅⋅⋅,,,,得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是()A .y a bx=+B .2y a bx =+C .xy a be =+D .ln y a b x=+6.已知圆2260x y x +-=,过点()12,的直线被该圆所截得的弦的长度的最小值为()A .1B .2C .3D .47.设函数()cos()6f x x πω=+在[]ππ-,的图像大致如下图,则()f x 的最小正周期为()毕业学校_____________姓名________________考生号_____________________________________________-------------在------------------此-------------------卷-------------------上-------------------答-------------------题-------------------无----------------------------------A .109πB .76πC .43πD .32π8.设3a log 42=,则4a -=()A .116B .19C .18D .169.执行右面的程序框图,则输出的n =()A .17B .19C .21D .2310.设{}n a 是等比数列,且123+1a a a +=,2342a a a ++=,则678+a a a +=()A .12B .24C .30D .3211.设1F ,2F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且=2OP ,则12PF F △的面积为()A .72B .3C .52D .212.已知A ,B ,C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆.若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为()A .64πB .48πC .36πD .32π二、填空题:本题共4小题,每小题5分,共20分。

2021年全国乙卷高考文科数学真题试卷及答案解析【完整版】

2021年全国乙卷高考文科数学真题试卷及答案解析【完整版】

2021年全国统一高考数学试卷(文科)(乙卷)一、选择题(共12小题,每小题5分,共60分).1.已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M∪N)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4} 2.设iz=4+3i,则z=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i3.已知命题p:∃x∈R,sin x<1;命题q:∀x∈R,e|x|≥1,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬(p∨q)4.函数f(x)=sin+cos的最小正周期和最大值分别是()A.3π和B.3π和2C.6π和D.6π和25.若x,y满足约束条件则z=3x+y的最小值为()A.18B.10C.6D.46.cos2﹣cos2=()A.B.C.D.7.在区间(0,)随机取1个数,则取到的数小于的概率为()A.B.C.D.8.下列函数中最小值为4的是()A.y=x2+2x+4B.y=|sin x|+C.y=2x+22﹣x D.y=lnx+9.设函数f(x)=,则下列函数中为奇函数的是()A.f(x﹣1)﹣1B.f(x﹣1)+1C.f(x+1)﹣1D.f(x+1)+1 10.在正方体ABCD﹣A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.B.C.D.11.设B是椭圆C:+y2=1的上顶点,点P在C上,则|PB|的最大值为()A.B.C.D.212.设a≠0,若x=a为函数f(x)=a(x﹣a)2(x﹣b)的极大值点,则()A.a<b B.a>b C.ab<a2D.ab>a2二、填空题:本题共4小题,每小题5分,满分20分。

13.已知向量=(2,5),=(λ,4),若∥,则λ=.14.双曲线﹣=1的右焦点到直线x+2y﹣8=0的距离为.15.记△ABC的内角A,B,C的对边分别为a,b,c,面积为,B=60°,a2+c2=3ac,则b=.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).三、解答题:共70分。

2022年全国高考文科数学(乙卷)试题及答案解析

2022年全国高考文科数学(乙卷)试题及答案解析

2022年普通高等学校招生全国统一考试(乙卷)文科数学一、单选题(本大题共12小题,共60.0分)1. 集合M ={2,4,6,8,10},N ={x|−1<x <6},则M ∩N =( )A. {2,4}B. {2,4,6}C. {2,4,6,8}D. {2,4,6,8,10}2. 设(1+2i)a +b =2i ,其中a ,b 为实数,则( )A. a =1,b =−1B. a =1,b =1C. a =−1,b =1D. a =−1,b =−13. 已知向量a ⃗ =(2,1),b ⃗ =(−2,4),则|a ⃗ −b ⃗ |=( )A. 2B. 3C. 4D. 54. 分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:ℎ),得如图茎叶图:则下列结论中错误的是( )A. 甲同学周课外体育运动时长的样本中位数为7.4B. 乙同学周课外体育运动时长的样本平均数大于8C. 甲同学周课外体育运动时长大于8的概率的估计值大于0.4D. 乙同学周课外体育运动时长大于8的概率的估计值大于0.65. 若x ,y 满足约束条件{x +y ≥2,x +2y ≤4,y ≥0,则z =2x −y 的最大值是( )A. −2B. 4C. 8D. 126. 设F 为抛物线C :y 2=4x 的焦点,点A 在C 上,点B(3,0),若|AF|=|BF|,则|AB|=( )A. 2B. 2√2C. 3D. 3√27. 执行如图的程序框图,输出的n =( )A. 3B. 4C. 5D. 68.如图是下列四个函数中的某个函数在区间[−3,3]的大致图像,则该函数是()A. y=−x3+3xx2+1B. y=x3−xx2+1C. y=2xcosxx2+1D. y=2sinxx2+19.在正方体ABCD−A1B1C1D1中,E,F分别为AB,BC的中点,则()A. 平面B1EF⊥平面BDD1B. 平面B1EF⊥平面A1BDC. 平面B1EF//平面A1ACD. 平面B1EF//平面A1C1D10.已知等比数列{a n}的前3项和为168,a2−a5=42,则a6=()A. 14B. 12C. 6D. 311.函数f(x)=cosx+(x+1)sinx+1在区间[0,2π]的最小值、最大值分别为()A. −π2,π2B. −3π2,π2C. −π2,π2+2 D. −3π2,π2+212.已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()A. 13B. 12C. √33D. √22二、填空题(本大题共4小题,共20.0分)13. 记S n 为等差数列{a n }的前n 项和.若2S 3=3S 2+6,则公差d =______.14. 从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为______. 15. 过四点(0,0),(4,0),(−1,1),(4,2)中的三点的一个圆的方程为______. 16. 若f(x)=ln|a +11−x |+b 是奇函数,则a =______,b =______.三、解答题(本大题共7小题,共82.0分)17. 记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinCsin(A −B)=sinBsin(C −A).(1)若A =2B ,求C ; (2)证明:2a 2=b 2+c 2.18. 如图,四面体ABCD 中,AD ⊥CD ,AD =CD ,∠ADB =∠BDC ,E 为AC 的中点. (1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F 在BD 上,当△AFC 的面积最小时,求三棱锥F −ABC 的体积.19. 某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据: 样本号i12345678910 总和根部横截面积x i 0.04 0.06 0.04 0.08 0.08 0.05 0.05 0.07 0.07 0.06 0.6 材积量y i0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i 10i=1y i =0.2474.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01); (3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =∑(n i=1x i −x −)(y i −y −)√∑(ni=1x i −x −)2∑(n i=1y i −y −)2,√1.896≈1.377.20. 已知函数f(x)=ax −1x −(a +1)lnx .(1)当a =0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a 的取值范围.21. 已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A(0,−2),B(32,−1)两点.(1)求E 的方程;(2)设过点P(1,−2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT ⃗⃗⃗⃗⃗⃗ =TH⃗⃗⃗⃗⃗⃗ .证明:直线HN 过定点. 22. 在直角坐标系xOy 中,曲线C 的参数方程为{x =√3cos2t,y =2sint(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin(θ+π3)+m =0.(1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围.已知a ,b ,c 都是正数,且a 32+b 32+c 32=1,证明:(1)abc ≤19;(2)a b+c+b a+c+c a+b≤2√abc.答案解析1.【答案】A【解析】解:∵M ={2,4,6,8,10},N ={x|−1<x <6}, ∴M ∩N ={2,4}. 故选:A .直接利用交集运算求解即可.本题考查集合的交集运算,属于基础题.2.【答案】A【解析】解:∵(1+2i)a +b =2i , ∴a +b +2ai =2i ,即{a +b =02a =2,解得{a =1b =−1.故选:A .根据已知条件,结合复数相等的条件,即可求解. 本题主要考查复数相等的条件,属于基础题.3.【答案】D【解析】解:a ⃗ −b ⃗ =(4,−3),故∣a ⃗ −b ⃗ ∣=√42+(−3)2=5,故选:D .先计算处a ⃗ −b ⃗ 的坐标,再利用坐标模长公式即可. 本题主要考查向量坐标公式,属于基础题.4.【答案】C【解析】解:由茎叶图可知,甲同学周课外体育运动时长的样本中位数为7.3+7.52=7.4,选项A 说法正确;由茎叶图可知,乙同学周课外体育运动时长的样本平均数大于8,选项B 说法正确; 甲同学周课外体育运动时长大于8的概率的估计值为616=38<0.4,选项C 说法错误; 乙同学周课外体育运动时长大于8的概率的估计值为1316=0.8125>0.6,选项D 说法正确.故选:C.根据茎叶图逐项分析即可得出答案.本题考查茎叶图,考查对数据的分析处理能力,属于基础题.5.【答案】C【解析】解:作出可行域如下图阴影部分所示,由图可知,当(x,y)取点C(4,0)时,目标函数z=2x−y取得最大值,且最大为8.故选:C.作出可行域,根据图象即可得解.本题考查简单的线性规划问题,考查数形结合思想,属于基础题.6.【答案】B【解析】解:F为抛物线C:y2=4x的焦点(1,0),点A在C上,点B(3,0),|AF|=|BF|=2,由抛物线的定义可知A(1,2)(A不妨在第一象限),所以|AB|=2√2.故选:B.利用已知条件,结合抛物线的定义,求解A的坐标,然后求解即可.本题考查抛物线的简单性质的应用,距离公式的应用,是基础题.7.【答案】B【解析】解:模拟执行程序的运行过程,如下:输入a=1,b=1,n=1,计算b=1+2=3,a=3−1=2,n=2,判断|3222−2|=14=0.25≥0.01,计算b=3+4=7,a=7−2=5,n=3,判断|7252−2|=125=0.04≥0.01;计算b=7+10=17,a=17−5=12,n=4,判断|172122−2|=1144<0.01;输出n=4.故选:B.模拟执行程序的运行过程,即可得出程序运行后输出的n值.本题考查了程序的运行与应用问题,也考查了推理与运算能力,是基础题.8.【答案】A【解析】解:首先根据图像判断函数为奇函数,其次观察函数在(1,3)存在零点,而对于B选项:令y=0,即x3−xx2+1=0,解得x=0,或x=1或x=−1,故排除B选项,对于D选项,令y=0,即2sinxx2+1=0,解得x=kπ,k∈Z,故排除D选项,C选项分母为x2+1恒为正,但是分子中cosx是个周期函数,故函数图像在(0,+∞)必定是正负周期出现,故错误,故选:A.首先分析函数奇偶性,然后观察函数图像在(1,3)存在零点,可排除B,D选项,再利用cosx 在(0,+∞)的周期性可判断C选项错误.本题主要考查函数图像的识别,属于基础题.9.【答案】A【解析】解:对于A,由于E,F分别为AB,BC的中点,则EF//AC,又AC⊥BD,AC⊥DD1,BD∩DD1=D,且BD,DD1⊂平面BDD1,∴AC⊥平面BDD1,则EF⊥平面BDD1,又EF⊂平面B1EF,∴平面B1EF⊥平面BDD1,选项A正确;对于B,由选项A可知,平面B1EF⊥平面BDD1,而平面BDD1∩平面A1BD=BD,故平面B1EF不可能与平面A1BD垂直,选项B错误;对于C,在平面ABB1A1上,易知AA1与B1E必相交,故平面B1EF与平面A1AC不平行,选项C错误;对于D,易知平面AB1C//平面A1C1D,而平面AB1C与平面B1EF有公共点B1,故平面B1EF 与平面A1C1D不可能平行,选项D错误.故选:A.对于A,易知EF//AC,AC⊥平面BDD1,从而判断选项A正确;对于B,由选项A及平面BDD1∩平面A1BD=BD可判断选项B错误;对于C,由于AA1与B1E必相交,容易判断选项C错误;对于D,易知平面AB1C//平面A1C1D,而平面AB1C与平面B1EF有公共点B1,由此可判断选项D错误.本题考查空间中线线,线面,面面间的位置关系,考查逻辑推理能力,属于中档题.10.【答案】D【解析】解:设等比数列{a n}的公比为q,q≠0,由题意,q≠1.∵前3项和为a1+a2+a3=a1(1−q3)1−q=168,a2−a5=a1⋅q−a1⋅q4=a1⋅q(1−q3)= 42,∴q=12,a1=96,则a6=a1⋅q5=96×132=3,故选:D.由题意,利用等比数列的定义、性质、通项公式,求得a6的值.本题主要考查等比数列的定义、性质、通项公式,属于基础题.11.【答案】D【解析】解:f(x)=cosx+(x+1)sinx+1,x∈[0,2π],则f′(x)=−sinx+sinx+(x+1)cosx=(x+1)cosx,令cosx=0得,x=π2或3π2,∴当x∈[0,π2)时,f′(x)>0,f(x)单调递增;当x∈(π2,3π2)时,f′(x)<0,f(x)单调递减;当x∈(3π2,2π]时,f′(x)>0,f(x)单调递增,∴f(x)在区间[0,2π]上的极大值为f(π2)=π2+2,极小值为f(3π2)=−3π2,又∵f(0)=2,f(2π)=2,∴函数f(x)在区间[0,2π]的最小值为−3π2,最大值为π2+2,故选:D.先求出导函数f′(x)=(x+1)cosx,令cosx=0得,x=π2或3π2,根据导函数f′(x)的正负得到函数f(x)的单调性,进而求出函数f(x)的极值,再与端点值比较即可.本题主要考查了利用导数研究函数的最值,属于中档题.12.【答案】C【解析】解:由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为a,底面所在圆的半径为r,则r=√22a,∴该四棱锥的高ℎ=√1−a22,∴该四棱锥的体积V=13a2√1−a22=43√a24⋅a24⋅(1−a22)≤4 3√(a24+a24+1−a223)3=43√(13)3=4√327,当且仅当a24=1−a22,即a2=43时,等号成立,∴该四棱锥的体积最大时,其高ℎ=√1−a22=√1−23=√33,故选:C.由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为a,由勾股定理可知该四棱锥的高ℎ=√1−a22,所以该四棱锥的体积V=13a2√1−a22,再利用基本不等式即可求出V的最大值,以及此时a的值,进而求出ℎ的值.本题主要考查了四棱锥的结构特征,考查了基本不等式的应用,属于中档题.13.【答案】2【解析】解:∵2S3=3S2+6,∴2(a1+a2+a3)=3(a1+a2)+6,∵{a n}为等差数列,∴6a2=3a1+3a2+6,∴3(a2−a1)=3d=6,解得d=2.故答案为:2.根据已知条件,可得2(a 1+a 2+a 3)=3(a 1+a 2)+6,再结合等差中项的性质,即可求解.本题主要考查等差数列的前n 项和,考查转化能力,属于基础题.14.【答案】310【解析】解:由题意,从甲、乙等5名学生中随机选出3人,基本事件总数C 53=10, 甲、乙被选中,则从剩下的3人中选一人,包含的基本事件的个数C 31=3,根据古典概型及其概率的计算公式,甲、乙都入选的概率P =C 31C 53=310.故答案为:310.从甲、乙等5名学生中随机选出3人,先求出基本事件总数,再求出甲、乙被选中包含的基本事件的个数,由此求出甲、乙被选中的概率.本题主要考查古典概型及其概率计算公式,熟记概率的计算公式即可,属于基础题.15.【答案】x 2+y 2−4x −6y =0(或x 2+y 2−4x −2y =0或x 2+y 2−83x −143y =0或x 2+y 2−165x −2y −165=0)【解析】解:设过点(0,0),(4,0),(−1,1)的圆的方程为x 2+y 2+Dx +Ey +F =0, 即{F =016+4D +F =02−D +E +F =0,解得F =0,D =−4,E =−6, 所以过点(0,0),(4,0),(−1,1)圆的方程为x 2+y 2−4x −6y =0. 同理可得,过点(0,0),(4,0),(4,2)圆的方程为x 2+y 2−4x −2y =0. 过点(0,0),(−1,1),(4,2)圆的方程为x 2+y 2−83x −143y =0.过点(4,0),(−1,1),(4,2)中的三点的一个圆的方程为x 2+y 2−165x −2y −165=0.故答案为:x 2+y 2−4x −6y =0(或x 2+y 2−4x −2y =0或x 2+y 2−83x −143y =0或x 2+y 2−165x −2y −165=0).选其中的三点,利用待定系数法即可求出圆的方程.本题考查了过不在同一直线上的三点求圆的方程应用问题,是基础题.16.【答案】−12 ln2【解析】解:f(x)=ln|a+11−x|+b,若a=0,则函数f(x)的定义域为{x|x≠1},不关于原点对称,不具有奇偶性,∴a≠0,由函数解析式有意义可得,x≠1且a+11−x≠0,∴x≠1且x≠1+1a,∵函数f(x)为奇函数,∴定义域必须关于原点对称,∴1+1a =−1,解得a=−12,∴f(x)=ln|1+x2(1−x)|+b,定义域为{x|x≠1且x≠−1},由f(0)=0得,ln12+b=0,∴b=ln2,故答案为:−12;ln2.显然a≠0,根据函数解析式有意义可得,x≠1且x≠1+1a ,所以1+1a=−1,进而求出a的值,代入函数解析式,再利用奇函数的性质f(0)=0即可求出b的值.本题主要考查了奇函数的定义和性质,属于中档题.17.【答案】解:(1)由sinCsin(A−B)=sinBsin(C−A),又A=2B,∴sinCsinB=sinBsin(C−A),∵sinB≠0,∴sinC=sin(C−A),即C=C−A(舍去)或C+C−A=π,联立{A=2B2C−A=πA+B+C=π,解得C=58π;证明:(2)由sinCsin(A−B)=sinBsin(C−A),得sinCsinAcosB−sinCcosAsinB=sinBsinCcosA−sinBcosCsinA,由正弦定理可得accosB−bccosA=bccosA−abcosC,由余弦定理可得:ac⋅a2+c2−b22ac =2bc⋅b2+c2−a22bc−ab⋅a2+b2−c22ab,整理可得:2a2=b2+c2.【解析】(1)由sinCsin(A−B)=sinBsin(C−A),结合A=2B,可得sinC=sin(C−A),即C+C−A=π,再由三角形内角和定理列式求解C;(2)把已知等式展开两角差的正弦,由正弦定理及余弦定理化角为边即可证明结论.本题考查三角形的解法,考查正弦定理及余弦定理的应用,考查运算求解能力,是中档题.18.【答案】证明:(1)∵AD =CD ,∠ADB =∠BDC ,BD =BD , ∴△ADB≌△CDB ,∴AB =BC ,又∵E 为AC 的中点. ∴AC ⊥BE ,∵AD =CD ,E 为AC 的中点. ∴AC ⊥DE ,又∵BE ∩DE =E , ∴AC ⊥平面BED , 又∵AC ⊂平面ACD , ∴平面BED ⊥平面ACD ; 解:(2)由(1)可知AB =BC ,∴AB =BC =2,∠ACB =60°,∴△ABC 是等边三角形,边长为2, ∴BE =√3,AC =2,AD =CD =√2,DE =1, ∵DE 2+BE 2=BD 2,∴DE ⊥BE , 又∵DE ⊥AC ,AC ∩BE =E , ∴DE ⊥平面ABC ,由(1)知△ADB≌△CDB ,∴AF =CF ,连接EF ,则EF ⊥AC , ∴S △AFC =12×AC ×EF =EF ,∴当EF ⊥BD 时,EF 最短,此时△AFC 的面积最小, 过点F 作FG ⊥BE 于点G ,则FG//DE ,∴FG ⊥平面ABC , ∵EF =DE×BE BD=√32, ∴BF =√BE 2−EF 2=32,∴FG =EF×BF BE=34, ∴三棱锥F −ABC 的体积V =13×S △ABC ×FG =13×√34×22×34=√34.【解析】(1)易证△ADB≌△CDB ,所以AC ⊥BE ,又AC ⊥DE ,由线面垂直的判定定理可得AC ⊥平面BED ,再由面面垂直的判定定理即可证得平面BED ⊥平面ACD ; (2)由题意可知△ABC 是边长为2的等边三角形,进而求出BE =√3,AC =2,AD =CD =√2,DE =1,由勾股定理可得DE ⊥BE ,进而证得DE ⊥平面ABC ,连接EF ,因为AF =CF ,则EF ⊥AC ,所以当EF ⊥BD 时,EF 最短,此时△AFC 的面积最小,求出此时点F 到平面ABC 的距离,从而求得此时三棱锥F −ABC 的体积.本题主要考查了面面垂直的判定定理,考查了三棱锥的体积公式,同时考查了学生的空间想象能力与计算能力,是中档题.19.【答案】解:(1)设这棵树木平均一棵的根部横截面积为x −,平均一棵的材积量为y −, 则根据题中数据得:x −=0.610=0.06,y −=3.910=0.39;(2)由题可知,r =10i=1i −i −√∑(i=1x i −x −)2∑(i=1y i −y −)2=i 10i=1i −−√(∑x i i=1−nx −2)(∑y i i=1−ny −2)=√0.002×0.0948=0.01×√1.896=0.01340.01377=0.97;(3)设从根部面积总和X ,总材积量为Y ,则XY=x−y−,故Y =0.390.06×186=1209(m 3).【解析】根据题意结合线性回归方程求平均数、样本相关系数,并估计该林区这种树木的总材积量的值即可.本题考查线性回归方程,属于中档题.20.【答案】解:(1)当a =0时,f(x)=−1x −lnx(x >0),则f′(x)=1x 2−1x =1−x x 2,易知函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减, ∴f(x)在x =1处取得极大值,同时也是最大值, ∴函数f(x)的最大值为f(1)=−1; (2)f′(x)=a +1x 2−a+1x=ax 2−(a+1)x+1x 2=(x−1)(ax−1)x 2,①当a =0时,由(1)可知,函数f(x)无零点;②当a <0时,易知函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减, 又f(1)=a −1<0,故此时函数f(x)无零点;③当0<a <1时,易知函数f(x)在(0,1),(1a ,+∞)上单调递增,在(1,1a )单调递减, 且f(1)=a −1<0,f(1a )=1−a +(a +1)lna <0,且当x →+∞时,f(x)>0,此时f(x)在(0,+∞)上存在唯一零点; ④当a =1时,f′(x)=(x−1)2x 2≥0,函数f(x)在(0,+∞)上单调递增,又f(1)=0,故此时函数f(x)有唯一零点;⑤当a >1时,易知函数f(x)在(0,1a ),(1,+∞)上单调递增,在(1a ,1)上单调递减, 且f(1)=a −1>0,且当x →0时,f(x)<0,故函数f(x)在(0,+∞)上存在唯一零点; 综上,实数a 的取值范围为(0,+∞).【解析】(1)将a =0代入,对函数f(x)求导,判断其单调性,由此可得最大值; (2)对函数f(x)求导,分a =0,a <0,0<a <1,a =1及a >1讨论即可得出结论.本题考查里利用导数研究函数的单调性,极值及最值,考查函数的零点问题,考查分类讨论思想及运算求解能力,属于难题.21.【答案】解:(1)设E 的方程为x 2a 2+y2b2=1, 将A(0,−2),B(32,−1)两点代入得{4b 2=194a2+1b2=1,解得a 2=3,b 2=4, 故E 的方程为x 23+y 24=1;(2)由A(0,−2),B(32,−1)可得直线AB :y =23x −2 ①若过P(1,−2)的直线的斜率不存在,直线为x =1, 代入x 23+y 24=1,可得M(1,2√63),N(1,−2√63), 将y =2√63代入AB :y =23x −2,可得T(√6+3,2√63),由MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗⃗ ,得H(2√6+5,2√63), 易求得此时直线HN :y =(2−2√63)x −2,过点(0,−2);②若过P(1,−2)的直线的斜率存在,设kx −y −(k +2)=0,M(x 1,y 1),N(x 2,y 2), 联立{kx −y −(k +2)=0x 23+y 24=1,得(3k 2+4)x 2−6k(2+k)x +3k(k +4)=0,故有{x 1+x 2=6k(2+k)3k 2+4x 1x 2=3k(4+k)3k 2+4,{y 1+y 2=−8(2+k)3k 2+4y 1y 2=4(4+4k−2k 23k 2+4,且x 1y 2+x 2y 1=−24k3k 2+4(∗), 联立{y =y 1y =23x −2,可得T(3y 12+3,y 1),H(3y 1+6−x 1,y 1),可求得此时HN :y −y 2=y 1−y 23y1+6−x 1−x 2(x −x 2),将(0,−2)代入整理得2(x 1+x 2)−6(y 1+y 2)+x 1y 2+x 2y 1−3y 1y 2−12=0, 将(∗)代入,得24k +12k 2+96+48k −24k −48−48k +24k 2−36k 2−48=0, 显然成立.综上,可得直线HN 过定点(0,−2). 【解析】(1)设E 的方程为x 2a 2+y 2b 2=1,将A ,B 两点坐标代入即可求解;(2)由A(0,−2),B(32,−1)可得直线AB :y =23x −2,①若过P(1,−2)的直线的斜率不存在,直线为x =1,代入椭圆方程,根据MT ⃗⃗⃗⃗⃗⃗ =TH⃗⃗⃗⃗⃗⃗ 即可求解;②若过P(1,−2)的直线的斜率存在,设kx−y−(k+2)=0,M(x1,y1),N(x2,y2),联立{kx−y−(k+2)=0x23+y24=1,得(3k2+4)x2−6k(2+k)x+3k(k+4)=0,结合韦达定理和已知条件即可求解.本题考查了直线与椭圆的综合应用,属于中档题.22.【答案】解:(1)由ρsin(θ+π3)+m=0,得ρ(sinθcosπ3+cosθsinπ3)+m=0,∴12ρsinθ+√32ρcosθ+m=0,又x=ρcosθ,y=ρsinθ,∴12y+√32x+m=0,即l的直角坐标方程为√3x+y+2m=0;(2)由曲线C的参数方程为{x=√3cos2t,y=2sint(t为参数).消去参数t,可得y2=−2√33x+2,联立{√3x+y+2m=0y2=−2√33x+2,得3y2−2y−4m−6=0(−2≤y≤2).−3≤√3≤6,即−193≤4m≤10,−1912≤m≤52,∴m的取值范围是[−1912,5 2 ].【解析】(1)由ρsin(θ+π3)+m=0,展开两角和的正弦,结合极坐标与直角坐标的互化公式,可得l的直角坐标方程;(2)化曲线C的参数方程为普通方程,联立直线方程与曲线C的方程,化为关于y的一元二次方程,再求解m的取值范围.本题考查简单曲线的极坐标方程,考查参数方程化普通方程,考查直线与抛物线位置关系的应用,是中档题.23.【答案】解:(1)证明:∵a,b,c都是正数,∴a32+b32+c32≥33a32⋅b32⋅c32=3(abc)12,当且仅当a=b=c=3−23时,等号成立.因为a32+b32+c32=1,所以1≥3(abc)12,所以13≥(abc)12,所以abc≤19,得证.(2)证明:要使ab+c +ba+c+ca+b≤2√abc成立,只需证a32√bcb+c+b32√aca+c+c32√aba+b≤12,又因为b+c≥2√bc,a+c≥2√ac,a+b≥2√ab,当且仅当a=b=c=3−23时,同时取等.所以a 32√bcb+c +b32√aca+c+c32√aba+b≤a32√bc2√bcb32√ac2√ac32√ab2√ab=a32+b32+c322=12,得证.【解析】结合基本不等式与恒成立问题证明即可.本题考查基本不等式的应用,属于中档题.。

2017全国高考文科数学试卷及答案解析_全国卷-精选.pdf

2017全国高考文科数学试卷及答案解析_全国卷-精选.pdf
WORD 格式整理
2016 年全国高考新课标 1 卷文科数学试题
第Ⅰ卷
一、选择题,本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有
一项是符合题目要求的.
1.设集合 A= {1,3,5,7} ,B= { x|2 ≤x≤ 5,} 则 A∩B= ( )
A . {1,3}
B .{3,5}
(Ⅰ )若 n=19 ,求 y 与 x 的函数解析式; (Ⅱ )若要求 “需更换的易损零件数不大于 n”的频率不小于 0.5,求 n 的最小值;
(Ⅲ )假设这 100 台机器在购机的同时每台都购买 19 个易损零件,或每台都购买 20 个易 损零件,分别计算这 100 台机器在购买易损零件上所需费用的平均数,以此作为决策依据,
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.把答案填在横线上.
13.设向量 a=(x, x+1) , b=(1 , 2),且 a⊥ b,则 x=
.
14.已知 θ是第四象限角,且
π
sin(θ+ )=
3 ,则
tan(θ-
π
)=
.
45
4
15.设直线 y=x +2a 与圆 C: x2+y2-2ay-2=0 相交于 A,B 两点,若 |AB|= 2 3 ,则圆 C 的面积
200 元 . 在机器使用期间,如果备件不足再
购买,则每个 500 元 .现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了
100 台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
记 x 表示 1 台机器在三年使用期内需更换的易损零件数,
y 表示 1 台机器在购买易损零

2022年全国高考甲卷数学(文)试题(解析版)

2022年全国高考甲卷数学(文)试题(解析版)

2022年普通高等学校招生全国统一考试(全国甲卷文科)注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上、写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=≤<⎨⎩⎭∣,则A B = ()A.{}0,1,2 B.{2,1,0}-- C.{0,1}D.{1,2}【答案】A 【解析】【分析】根据集合的交集运算即可解出.【详解】因为{}2,1,0,1,2A =--,502B xx ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B = .故选:A.2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B 【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为70%75%70%2+>,所以A 错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B 对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C 错;讲座后问卷答题的正确率的极差为100%80%20%-=,讲座前问卷答题的正确率的极差为95%60%35%20%-=>,所以D 错.故选:B.3.若1i z =+.则|i 3|z z +=()A. B. C. D.【答案】D 【解析】【分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z +==故选:D.4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.20【答案】B 【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,则该直四棱柱的体积2422122V +=⨯⨯=.故选:B.5.将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是()A.16B.14C.13D.12【答案】C 【解析】【分析】先由平移求出曲线C 的解析式,再结合对称性得,232k k ωππππ+=+∈Z ,即可求出ω的最小值.【详解】由题意知:曲线C 为sin sin()2323y x x ππωππωω⎡⎤⎛⎫=++=++ ⎪⎢⎝⎭⎣⎦,又C 关于y 轴对称,则,232k k ωππππ+=+∈Z ,解得12,3k k ω=+∈Z ,又0>ω,故当0k =时,ω的最小值为13.故选:C.6.从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15 B.13C.25D.23【答案】C 【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有()()()()()()1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62155=.故选:C.7.函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A. B.C. D.【答案】A 【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令()()33cos ,,22xxf x x x ππ-⎡⎤=-∈-⎢⎣⎦,则()()()()()33cos 33cos xx x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x xx -->>,所以()0f x >,排除C.故选:A.8.当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=()A.1-B.12-C.12D.1【答案】B 【解析】【分析】根据题意可知()12f =-,()10f '=即可解得,a b ,再根据()f x '即可解出.【详解】因为函数()f x 定义域为()0,∞+,所以依题可知,()12f =-,()10f '=,而()2a b f x x x '=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x'=-+,因此函数()f x 在()0,1上递增,在()1,+∞上递减,1x =时取最大值,满足题意,即有()112122f '=-+=-.故选:B.9.在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30°,则()A.2AB AD =B.AB 与平面11AB C D 所成的角为30°C.1AC CB =D.1B D 与平面11BB C C 所成的角为45︒【答案】D 【解析】【分析】根据线面角的定义以及长方体的结构特征即可求出.【详解】如图所示:不妨设1,,AB a AD b AA c ===,依题以及长方体的结构特征可知,1B D 与平面ABCD 所成角为1B DB ∠,1B D 与平面11AA B B 所成角为1DB A ∠,所以11sin 30c b B D B D== ,即b c =,12B D c ==,解得a =.对于A ,AB a =,AD b =,AB =,A 错误;对于B ,过B 作1BE AB ⊥于E ,易知BE ⊥平面11AB C D ,所以AB 与平面11AB C D 所成角为BAE ∠,因为2tan 2c BAE a ∠==,所以30BAE ∠≠ ,B 错误;对于C,AC ==,1CB ==,1AC CB ≠,C 错误;对于D ,1B D 与平面11BB C C 所成角为1DB C ∠,112sin 22CD a DB C B D c ∠===,而1090DB C <∠<,所以145DB C ∠=.D 正确.故选:D .10.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙()A.B.C.D.5104【答案】C 【解析】【分析】设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,根据圆锥的侧面积公式可得122r r =,再结合圆心角之和可将12,r r 分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,则11222S rl r S r l r ππ===甲乙,所以122r r =,又12222r r l l πππ+=,则121r r l+=,所以1221,33r l r l ==,所以甲圆锥的高13h ==,乙圆锥的高23h ==,所以22112221453931122393r h l V V r h ππ⨯==甲乙.故选:C.11.已知椭圆2222:1(0)x y C a a b+=>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为()A.2211816x y += B.22198x y += C.22132x y += D.2212x y +=【答案】B 【解析】【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率13c e a ===,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=- BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y +=.故选:B.12.已知910,1011,89m m m a b ==-=-,则()A.0a b >>B.0a b >> C.0b a >> D.0b a>>【答案】A 【解析】【分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出.【详解】由910m =可得9lg10log 101lg 9m ==>,而()222lg 9lg11lg 99lg 9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg 922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg 9lg10lg8lg 9>,即8log 9m >,所以8log 989890m b =-<-=.综上,0a b >>.故选:A.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(,3),(1,1)a m b m ==+.若a b ⊥ ,则m =______________.【答案】34-##0.75-【解析】【分析】直接由向量垂直的坐标表示求解即可.【详解】由题意知:3(1)0a b m m ⋅=++=,解得34m =-.故答案为:34-.14.设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.【答案】22(1)(1)5x y -++=【解析】【分析】设出点M 的坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆的方程.【详解】解:∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上,∴点M 到两点的距离相等且为半径R ,==R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,R =M 的方程为22(1)(1)5x y -++=.故答案为:22(1)(1)5x y -++=15.记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值______________.【答案】2(满足1e <≤皆可)【解析】【分析】根据题干信息,只需双曲线渐近线by x a =±中02b a<≤即可求得满足要求的e 值.【详解】解:2222:1(0,0)x y C a b a b -=>>,所以C 的渐近线方程为b y x a =±,结合渐近线的特点,只需02b a <≤,即224b a≤,可满足条件“直线2y x =与C 无公共点”所以==≤c e a又因为1e >,所以1e <≤,故答案为:2(满足1e <≤皆可)16.已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________.【答案】1-##-【解析】【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++,在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-++-===-+++++++44≥--,当且仅当311mm +=+即1m =-时,等号成立,所以当ACAB取最小值时,1m=.1-.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22题为选考题,考生根据要求作答.(一)必考题:共60分.17.甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A 24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k 0.1000.0500.010k2.7063.8416.635【答案】(1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有【解析】【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据及公式计算2K ,再利用临界值表比较即可得结论.【小问1详解】根据表中数据,A 共有班次260次,准点班次有240次,设A 家公司长途客车准点事件为M ,则24012()26013==P M ;B 共有班次240次,准点班次有210次,设B 家公司长途客车准点事件为N ,则210()27840==P N .A 家公司长途客车准点的概率为1213;B 家公司长途客车准点的概率为78.【小问2详解】列联表准点班次数未准点班次数合计A 24020260B 21030240合计4505050022()()()()()n ad bc K a b c d a c b d -=++++=2500(2403021020) 3.205 2.70626024045050⨯⨯-⨯≈>⨯⨯⨯,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.18.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.【答案】(1)证明见解析;(2)78-.【解析】【分析】(1)依题意可得222n n S n na n +=+,根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得.【小问1详解】解:因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n +-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.【小问2详解】解:由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭,所以,当12n =或13n =时()min 78n S =-.19.小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在的平面都与平面ABCD 垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;(2【解析】【分析】(1)分别取,AB BC 的中点,M N ,连接MN ,由平面知识可知,EM AB FN BC ⊥⊥,EM FN =,依题从而可证EM ⊥平面ABCD ,FN ⊥平面ABCD ,根据线面垂直的性质定理可知//EM FN ,即可知四边形EMNF //EF MN ,最后根据线面平行的判定定理即可证出;(2)再分别取,AD DC 中点,K L ,由(1)知,该几何体的体积等于长方体KMNL EFGH -的体积加上四棱锥B MNFE -体积的4倍,即可解出.【小问1详解】如图所示:,分别取,AB BC 的中点,M N ,连接MN ,因为,EAB FBC 为全等的正三角形,所以,EM AB FN BC ⊥⊥,EM FN =,又平面EAB ⊥平面ABCD ,平面EAB ⋂平面ABCD AB =,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知//EM FN ,而EM FN =,所以四边形EMNF 为平行四边形,所以//EF MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以//EF 平面ABCD .【小问2详解】如图所示:,分别取,AD DC 中点,K L ,由(1)知,//EF MN 且EF MN =,同理有,//,HE KM HE KM =,//,HG KL HG KL =,//,GF LN GF LN =,由平面知识可知,BD MN ⊥,MN MK ⊥,KM MN NL LK ===,所以该几何体的体积等于长方体KMNL EFGH -的体积加上四棱锥B MNFE -体积的4倍.因为MN NL LK KM ====,8sin 60EM == B 到平面MNFE 的距离即为点B 到直线MN 的距离d ,d =(2143V =⨯⨯⨯==.20.已知函数32(),()f x x x g x x a =-=+,曲线()y f x =在点()()11,x f x 处的切线也是曲线()y g x =的切线.(1)若11x =-,求a ;(2)求a 的取值范围.【答案】(1)3(2)[)1,-+∞【解析】【分析】(1)先由()f x 上的切点求出切线方程,设出()g x 上的切点坐标,由斜率求出切点坐标,再由函数值求出a 即可;(2)设出()g x 上的切点坐标,分别由()f x 和()g x 及切点表示出切线方程,由切线重合表示出a ,构造函数,求导求出函数值域,即可求得a 的取值范围.【小问1详解】由题意知,(1)1(1)0f -=---=,2()31x f x '=-,(1)312f '-=-=,则()y f x =在点()1,0-处的切线方程为2(1)y x =+,即22y x =+,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()22g x x '==,解得21x =,则(1)122g a =+=+,解得3a =;【小问2详解】2()31x f x '=-,则()y f x =在点()11(),x f x 处的切线方程为()()32111131()y x x x x x --=--,整理得()2311312y x x x =--,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()2g x x '=,则切线方程为()22222()y x a x x x -+=-,整理得2222y x x x a =-+,则21232123122x x x x a ⎧-=⎨-=-+⎩,整理得2223343212111113193122222424x a x x x x x x ⎛⎫=-=--=--+ ⎪⎝⎭,令432931()2424h x x x x =--+,则32()9633(31)(1)h x x x x x x x '=--=+-,令()0h x '>,解得103x -<<或1x >,令()0h x '<,解得13x <-或01x <<,则x 变化时,(),()h x h x '的变化情况如下表:x1,3⎛⎫-∞- ⎪⎝⎭13-1,03⎛⎫- ⎪⎝⎭0()0,11()1,+∞()h x '-+0-+()h x527141-则()h x 的值域为[)1,-+∞,故a 的取值范围为[)1,-+∞.21.设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.【答案】(1)24y x =;(2):4AB x =+.【解析】【分析】(1)由抛物线的定义可得=2pMF p +,即可得解;(2)设点的坐标及直线:1MN x my =+,由韦达定理及斜率公式可得2MN AB k k =,再由差角的正切公式及基本不等式可得2AB k =,设直线:AB x n =+,结合韦达定理可解.【小问1详解】抛物线的准线为2px =-,当MD 与x 轴垂直时,点M 的横坐标为p ,此时=32pMF p +=,所以2p =,所以抛物线C 的方程为24y x =;【小问2详解】设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,直线:1MN x my =+,由214x my y x=+⎧⎨=⎩可得2440y my --=,120,4y y ∆>=-,由斜率公式可得12221212444MN y y k y y y y -==+-,34223434444AB y y k y y y y -==+-,直线112:2x MD x y y -=⋅+,代入抛物线方程可得()1214280x y y y --⋅-=,130,8y y ∆>=-,所以322y y =,同理可得412y y =,所以()34124422MNAB k k y y y y ===++又因为直线MN 、AB 的倾斜角分别为,αβ,所以tan tan 22MN AB k k αβ===,若要使αβ-最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 12tan 11tan tan 1242k k k k αβαβαβ--===≤+++,当且仅当12k k =即2k =时,等号成立,所以当αβ-最大时,2AB k =,设直线:AB x n =+,代入抛物线方程可得240y n --=,34120,4416y y n y y ∆>=-==-,所以4n =,所以直线:4AB x =+.【点睛】关键点点睛:解决本题的关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间的关系.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线1C的参数方程为26t x y +⎧=⎪⎨⎪=⎩(t 为参数),曲线2C的参数方程为26s x y +⎧=-⎪⎨⎪=⎩(s 为参数).(1)写出1C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线3C 的极坐标方程为2cos sin 0θθ-=,求3C 与1C 交点的直角坐标,及3C 与2C 交点的直角坐标.【答案】(1)()2620y x y =-≥;(2)31,C C 的交点坐标为1,12⎛⎫⎪⎝⎭,()1,2,32,C C 的交点坐标为1,12⎛⎫-- ⎪⎝⎭,()1,2--.【解析】【分析】(1)消去t ,即可得到1C 的普通方程;(2)将曲线23,C C 的方程化成普通方程,联立求解即解出.【小问1详解】因为26t x +=,y =,所以226y x +=,即1C 的普通方程为()2620y x y =-≥.【小问2详解】因为2,6sx y +=-=,所以262x y =--,即2C 的普通方程为()2620y x y =--≤,由2cos sin 02cos sin 0θθρθρθ-=⇒-=,即3C 的普通方程为20x y -=.联立()262020y x y x y ⎧=-≥⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩或12x y =⎧⎨=⎩,即交点坐标为1,12⎛⎫ ⎪⎝⎭,()1,2;联立()262020y x y x y ⎧=--≤⎨-=⎩,解得:121x y ⎧=-⎪⎨⎪=-⎩或12x y =-⎧⎨=-⎩,即交点坐标为1,12⎛⎫-- ⎪⎝⎭,()1,2--.[选修4-5:不等式选讲]23.已知a ,b ,c 均为正数,且22243a b c ++=,证明:(1)23a b c ++≤;(2)若2b c =,则113a c+≥.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据()22222242a b c a b c ++=++,利用柯西不等式即可得证;(2)由(1)结合已知可得043a c <+≤,即可得到1143a c ≥+,再根据权方和不等式即可得证.【小问1详解】证明:由柯西不等式有()()()222222221112a b c a b c ⎡⎤++++≥++⎣⎦,所以23a b c ++≤,当且仅当21a b c ===时,取等号,所以23a b c ++≤;【小问2详解】证明:因为2b c =,0a >,0b >,0c >,由(1)得243a b c a c ++=+≤,即043a c <+≤,所以1143a c ≥+,由权方和不等式知()22212111293444a c a c a c a c++=+≥=≥++,当且仅当124a c =,即1a =,12c =时取等号,所以113a c+≥.。

2020年全国卷Ⅰ高考文科数学试题真题及答案(完整版)

2020年全国卷Ⅰ高考文科数学试题真题及答案(完整版)

2020年全国卷Ⅰ高考文科数学试题真题及答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出 四个选项中,只有一项是符合题目要求 .1.已知合集,,则{}2340A x x x =--<{}4,1,3,5B =-A B =I A. {}4,1-B. {}1,5C. {}3,5D. {}1,32.若,则 312z i i =++z =A.0 B.1D. 23. 埃及胡夫金字塔是古代世界建筑奇迹之一,它 形状可视为一个正四棱锥,以该四棱锥 高为边长 正方形面积等于该四棱锥一个侧面三角形 面积,则其侧面三角形底边上 高与底面正方形 边长 比值为4. 设O 为正方形ABCD 中心,在O, A ,B, C, D 中任取3点,则取到 3点共线 概率为A. 15B.25C.12D.455. 某校一个课外学习小组为研究某作物种子 发芽率y 和温度x ( 单位:) 关系,在20C o 个不同 温度条件下进行种子 发芽实验,由实验数据1,2,…,20)得到下面 散点,)(i i y i =(x 图:由此散点图,在10至40之间,下面四个回归方程类型中最适宜作为发芽率y 和温度C o C o x 回归方程类型 是 A. y a bx =+B. 2y a bx =+C. x y a be =+D. ln y a b x =+6. 已知圆,过点( 1,2) 直线被该圆所截得 弦 长度 最小值为 2260x y x +-=A. 1 B. 2 C. 3D. 47. 设函数在 图像大致如下图,则 最小正周期为()cos(6f x x πω=+[]-ππ,()f xA. 109πB.76πC.43πD.32π8. 设,则3a log 42=-a4A. 116B.19C.18D.169.执行右面 程序框图,则输出 n =A. 17 B. 19 C. 21 D. 2310.设是等比数列,且,,则 {}n a 123+1a a a +=2342a a a ++=678+a a a +=A. 12 B. 24 C. 30 D. 3211. 设,是双曲线 两个焦点,为坐标原点,点在上且|| 1F 2F 22:13y C x -=O P C OP =2,则 面积为∆12PF F A. 72B.3C.52D.212. 已知,,为球 球面上 三个点,为 外接圆. 若 面积为A B C O e 1O △ABC e 1O ,,则球 表面积为4π1AB BC AC OO ===O A . 64πB . 48πC . 36πD .32π二、填空题:本题共4小题,每小题5分,共20分.13. 若x ,y 满足约束条件,则z=x+7y 最大值为_____.2x -20x -10y 10y y +≤⎧⎪-≥⎨⎪+≥⎩14.设向量a=(1,-1),b=(m+1,2m-4),若a b ,则m=______.⊥15. 曲线 一条切线 斜率为2,则该切线 方程为____. ln 1y x x =++16. 数列满足,前16项和为540,则=____.{}n a ()2131nn n a a n ++-=-1a三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个考题考生都必须作答.第22、23题为选考题,考生根据要求作答. ( 一)必考题:共60分 综合题分割17.( 12分)某厂接受了一项加工业务,加工出来 产品( 单位:件)按标准分为A,B,C ,D 四个等级,加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元、50元、20元;对于D 级品,厂家每件赔偿原料损失费50元,该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品 等级,整理如下:甲分厂产品等级 频数分布表等级 A B C D 频数40202020乙分厂产品等级 频数分布表等级 A B C D 频数28173421(1) 分别估计甲、乙两分厂加工出来 一件产品为A 级品 概率; (2) 分别求甲、乙两分厂加工出来 100件产品 平均利润,以平均利润 为依据,厂家应该选哪个分厂承接加工业务?18.( 12分)内角 对边分别为,已知.△ABC ,,A B C ,,a b c 150B =o( 1)若,,求 面积;a =b =△ABC( 2)若. sin A C =C19. ( 12分)如图,为圆锥 顶点,是圆锥底面 圆心,是底面 内接正三D O △ABC 角形,为上一点,. P DO 90APC ∠=o ( 1)证明:平面平面; PAB ⊥PAC( 2)设,圆锥 π,求三棱锥 体积.DO =P ABC -20.(12分)已知函数 ()(2).xf x e a x =-+(1) 当a=1时,讨论 单调性; ()f x (2) 若有两个零点,求 取值范围. ()f x a21.( 12分)已知A,B 分别为椭圆E: (a>1) 左右顶点,G 为E 上顶点,,P 为直222x +y 1a=线x=6上 动点,PA 与E 另一交点为C ,PB 与E 另一交点为D. (1) 求E 方程;(2) 证明:直线CD 过顶点.( 二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做,则按所做 第一题计分.22.[选修4-4:坐标系与参数方程]( 10分)在直角坐标系中,曲线 参数方程为,( 为参数),以坐标原点为极xOy 1C cos sin kkx ty t⎧=⎪⎨=⎪⎩t 点,轴正半轴为极轴建立极坐标系,曲线 极坐标方程为x 2C .4cos 16cos 30ρθρθ-+=( 1)当k=1时,是什么曲线?1C ( 2)当k=4时,求与 公共点 直角坐标. 1C 2C23.[选修4—5:不等式选讲]( 10分) 已知函数=│3+1│-2│-1│.()f x xx(1)画出y= 图像;()f x (2)求不等式> 解集. ()f x (1)f x文科数学参考答案全卷完 1、相信自己吧!坚持就是胜利!祝考试顺利,榜上有名! 2、愿全国所有的考生都能以平常的心态参加考试,发挥自己的水平,考上理想的学校。

2022年高考真题:全国乙卷(文科)数学【含答案及解析】

2022年高考真题:全国乙卷(文科)数学【含答案及解析】
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.集合 ,则 ()
A. B. C. D.
【答案】A
【解析】
【分析】根据集合的交集运算即可解出.
【详解】因为 , ,所以 .
故选:A.
2.设 ,其中 为实数,则()
A. B. C. D.
【答案】A
【解析】
22.[选修4—4:坐标系与参数方程](10分)
在直角坐标系 中,曲线C的参数方程为 (t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为 .
(1)写出l的直角坐标方程;
(2)若l与C有公共点,求m的取值范围.
23.[选修4—5:不等式选讲](10分)
已知a,b,c都是正数,且 ,证明:
【分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.
【详解】因为 R, ,所以 ,解得: .
故选:A.
3.已知向量 ,则 ()
A. 2B. 3C. 4D. 5
【答案】D
【解析】
【分析】先求得 ,然后求得 .
【详解】因为 ,所以 .
故选:D
4.分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:
(1)证明:平面 平面ACD;
(2)设 ,点F在BD上,当 的面积最小时,求三棱锥 的体积.
19.(12分)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位: )和材积量(单位: ),得到如下数据:
样本号i
1
2
【解析】
【分析】根据奇函数的定义即可求出.

2021年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2021年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2021年普通高等学校招生全国统一考试(全国乙卷)数学(文)一、选择题1.已知全集{1,2,3,4,5}U =,集合{1,2}M =,{3,4}N =,则)(U C M N =U ( )A.{5}B.{1,2}C.{3,4}D.{1,2,3,4} 2.设43izi =+,则z =( )A.34i --B.–34i +C.34i -D.34i +3.已知命题:,sin 1p x R x ∃∈<;命题||:,1x q x R e ∈∀≥,则下列命题中为真命题的是( )A.p q ∧B.p q ⌝∧C.p q ∧⌝D.()p q ⌝∨答案: A 解析:根据正弦函数的值域sin [1,1]x ∈-,sin 1x <,故x R ∃∈,p 为真命题,而函数||x y e =为偶函数,且0x ≥时,1xy e =≥,故x R ∀∈,||1x y e =≥恒成立.则q 也为真命题,所以p q ∧为真,选A.4.函数()sin cos 33x xf x =+的最小正周期和最大值分别是( ) A.3πB.3π和2C.6πD.6π和2 答案: C 解析:()sin()34x f x π=+max ()f x =,2613T ππ==.故选C.5.若,x y 满足约束条件2,3,4,y x y x y ≤≤+≥⎧⎪-⎨⎪⎩则3z x y =+的最小值为( )A.18B.10C.6D.4答案: C 解析:根据约束条件可得图像如下,3z x y =+的最小值,即3y x z =-+,y 轴截距最小值.根据图像可知3y x z =-+过点(1,3)B 时满足题意,即min 336z =+=.6.225cos cos 1212ππ-=( ) A.12B.33 C.22 D.32答案: D 解析:2222223()sin cos 25cos cos cos cos cos 12121212121262ππππππππ-=-=--==∴选D. 7.在区间1(0,)2随机取1个数,则取到的数小于13的概率为( )A.34 B.23 C.13 D.16答案: B解析:在区间1(0,)2随机取1个数,可知总长度12d =,取到的数小于13,可知取到的长度范围13d '=,根据几何概型公式123132d p d '===,∴选B.8.下列函数中最小值为4的是( ) A.224y x x =++B.4|sin ||sin |y x x =+C.222x x y -=+D.4n ln l y x x=+答案: C 解析:对于A ,22224213(1)33y x x x x x =++=+++=++≥.不符合,对于B ,4|sin ||sin |y x x =+,令|sin |[0,1]t x =∈,∴4y t t=+,根据对勾函数min 145y =+=不符合,对于C ,242222x x x xy -==++,令20xt =>,∴4224y t t =+≥=⨯=, 当且仅当2t =时取等,符合,对于D ,4n ln l y x x =+,令ln t x R =∈,4y t t=+. 根据对勾函数(,4][4,)y ∈-∞-+∞U ,不符合. 9.设函数1(1)xf x x-=+,则下列函数中为奇函数的是( ) A.1()1f x --B.1()1f x -+C.1()1f x +-D.1()1f x ++答案: B 解析:12()111x f x x x-==-+++, ()f x 向右平移一个单位,向上平移一个单位得到2()g x x=为奇函数. 所以选B.10.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为A.2πB.3πC.4πD.6π 答案: D 解析:做出图形,11//AD BC ,所以1PBC ∠为异面直线所成角,设棱长为1.1BC =,12B P =,12PC =,2BP =. 2221111312cos 22BC BP C P PBC BP BC +-+-∠===⋅,即16PBC π∠=,故选D.11.设B 是椭圆C :2215x y +=的上顶点,点P 在C 上,则PB 的最大值为 A.526 5D.2 答案: A 解析:方法一:由22:15x C y +=,(0,1)B则C 的参数方程:5sin x y θθ⎧=⎪⎨=⎪⎩.22||(sin 1)(5cos )PB θθ=-+24sin 2sin 6θθ=--+212554(sin )442θ=-++≥.∴max 5||2PB =,故选A. 方法二:设00(,)P x y ,则220001([1,1])5x y y +=∈-①,(0,1)B . 因此22200||(1)PB x y =+-② 将①式代入②式化简得:22012525||4()444PB y =-++≥,当且仅当014y =-时||PB 的最大值为52,故选A.12.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则 A.a b < B.a b > C.2ab a < D.2ab a > 答案: D 解析:2()2()()()()(32)f x a x a x b a x a a x a x b a '=--+-=---当0a >时,原函数先增再减后增.原函数在()0f x '=的较小零点时取得极大值. 即23a b a +<,即a b <,∴2a ab <. 当0a <时,原函数先减再增后减.原函数在()0f x '=的较大零点时取得极大值. 即23a b a +>,a b >,2a ab <,故选D. 二、填空题13.已知向量(2,5)a =r,(,4)b λ=r ,若//a b r r ,则λ= .答案:85解析:由已知//a b r r 可得82455λλ⨯=⇒=.14.双曲线22145x y -=的右焦点到直线280x y +-=的距离为 . 答案:5解析:22145x y -=的右焦点为(3,0),到直线280x y +-=的距离22|38|512d -==+. 15.记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,面积为3,60B =︒,223a c ac +=,则b = .答案:22解析: 由面积公式1sin 32S ac B ==,且60B =︒,解得4ac =, 又由余弦定理2222cos b a c ac B =+-,223a c ac +=,且0b > 解得22b =.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).答案: ②⑤或③④ 解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面PAC ⊥平面ABC ,2PA PC ==5BA BC ==,2AC =,俯视图为⑤.俯视图为③,如图(2),PA ⊥平面ABC ,1PA =,5AC AB ==,2BC =,俯视图为④.17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备 9.810.310.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7 新设备 10.1 10.4 10.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s . (1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥不认为有显著提高). 答案:见解析 解析:9.810.31010.29.99.81010.110.29.71010x ++++++++==+;10.110.410.11010.110.310.610.510.410.510.310y ++++++++==+.211(0.040.090.040.010.040.010.040.09)10s =+++++++10.360.03610=⨯= 221(0.040.010.040.090.040.090.040.010.04)10s =++++++++10.40.0410=⨯=. (2)10.3100.3y x -=-=22120.0360.04221010s s ++=20.0076=. ∵则0.30.0920.0760.0304=>=,所以可判断新设备生产产品的该项指标的均值较旧设备有显著提高; 没有显著提高.18.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ﹔(2)若1PD DC ==,求四棱锥P ABCD -的体积.答案: 见解析 解析:19.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a ,成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S ,和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 答案: 见解析 解析:设{}n a 的公比为q ,则1n n a q-=,因为1a ,23a ,39a 成等差数列,所以21923q q +=⨯,解得13q =, 故11()3n n a -=,11313(1)12313n n n S -==--. 又3n n n b =,则1231123133333n n n n nT --=+++++L ,两边同乘13,则234111231333333n n n n n T +-=+++++L ,两式相减,得23412111113333333n n n nT +=+++++-L ,即1111(1)1133(1)332333121n n n n n n n T ++-=-=---, 整理得31323(1)4323423n n n nn n T +=--=-⨯⨯, 323314322()(1)04232323n n n n nn n T S ++-=---=-<⨯⨯,故2n n S T <.20.已知抛物线C :22(0)y px p =>的焦点F 到准线的距离为2. (1)求C 的方程,(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =u u u r u u u r,求直线OQ 斜率的最大值.答案:见解析 解析:(1)由焦点到准线的距离为p ,则2p =. 抛物线c 的方程:24y x =.(2)设点200(,)4y P y ,(,)Q Q Q x y ,(1,0)F .∵9PQ QF =u u u r u u u r .∴222000009499(,)9(1,)4104910Q Q Q Q Q Q Q Q Q Q y y x x x y x y y x y y y x y y ⎧+⎪⎧-=-=⎪⎪--=--⇒⇒⎨⎨⎪⎪-=-⎩=⎪⎩则020001193944Q OQ Qy y k y y x y ===≤=++. ∴直线OQ 斜率的最大值为13. 21.已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 答案: 见解析 解析:(1)2()32f x x x a '=-+(i )当4120a ∆=-≤,即13a ≥时,()0f x '≥恒成立,即()f x 在()f x 在x ∈R 上单调递增.(ii )当4120∆=->,即13a <时,()0f x '=解得,113x =,213x +=.∴()f x 在113(,3a --∞,113(,)3a -+∞单调递增,在113113(33a a-++单调递减,综上所述:当13a ≥时,()f x 在R 上单调递增;当13a <时,()f x 在113113(,33a a--+单调递减.(2)设可原点切线的切点为32(,1)t t t at -++,切线斜率2()32k f t t t a '==-+.又321t t at k t-++=,可得322132t t at t t a t -++=-+.化简得2(1)(21)0t t t -++=,即1t =.∴切点为(1,1)a +,斜率1k a =+,切线方程为(1)y a x =+,将(1)y a x =+,321y x x ax =-++联立可得321(1)x x ax a x -++=+,化简得2(1)(1)0x x -+=,解得11x =,21x =-.∴过原点的切线与()y f x =公共点坐标为(1,1)a +,(1,1)a ---.22.在直角坐标系xOy 中,C e 的圆心为)(2,1C ,半径为1. (1)写出C e 的一个参数方程;(2)过点)(4,1F 作C e 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立坐标系,求这两条切线的极坐标方程. 答案: 见解析 解析:(1)C e 的参数方程为2cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数)(2)C e 的方程为22(2)(1)1x y -+-=①当直线斜率不存在时,直线方程为4x =,此时圆心到直线距离为2r >,舍去;②当直线斜率存在时,设直线方程为1(4)y k x -=-,化简为410kx y k --+=, 此时圆心(2,1)C 到直线的距离为1d r ===,化简得2||k =,两边平方有2241k k =+,所以3k =±代入直线方程并化简得40x -+-=或40x =化为极坐标方程为5cos sin 4sin()46πρθθρθ-=-⇔+=-或cos sin 4sin()46πρθθρθ+=+⇔+=23.已知函数()|||3|f x x a x =-++. (1)当1a =时,求不等式()6f x ≥的解集; (2)若()f x a >-,求a 的取值范围. 答案: 见解析 解析:当1a =时,()6|1||3|6f x x x ≥⇔-++≥,当3x ≤-时,不等式136x x ⇔---≥,解得4x ≤-; 当31x -<<时,不等式136x x ⇔-++≥,解得x ∈∅; 当1x ≥时,不等式136x x ⇔-++≥,解得2x ≥. 综上,原不等式的解集为(,4][2,)-∞-+∞U . (2)若()f x a >-,即min ()f x a >-,因为()|||3||()(3)||3|f x x a x x a x a =-++≥--+=+(当且仅当()(3)0x a x -+≤时,等号成立),所以min ()|3|f x a =+,所以|3|a a +>-,即3a a +<或3a a +>-,解得3(,)2a ∈-+∞.。

高考新课标全国1卷文科数学试题及答案解析(1)

高考新课标全国1卷文科数学试题及答案解析(1)

a
③若 a
0 , 则由 f ( x)
0得 x
ln(
) 2.
x(

a
a
,ln(
)) 2 时,
f ( x)
0 ;当 x
(ln(
), 2
)
时,
f ( x)
0 , 故 f (x) 在
a
a
( ,ln( ))
(ln( ), )
2 单调递减, 在
2
单调递增 .
(2)①若 a 0, 则 f ( x) e2x , 所以 f ( x) 0 .
x 3cos , 在直角坐标系 xOy 中, 曲线 C 的参数方程为 y sin , ( θ 为参数), 直线 l 的
x a 4t,
参数方程为
( t为参数) .
y 1 t,
( 1)若 a=- 1, 求 C与 l 的交点坐标; ( 2)若 C上的点到 l 的距离的最大值为 17 , 求 a. 23. [ 选修 4— 5:不等式选讲 ] ( 10 分) 已知函数 f ( x) =–x2+ax+4, g( x)=│ x+1│+│ x–1│. ( 1)当 a=1 时, 求不等式 f ( x)≥ g( x)的解集; ( 2)若不等式 f ( x)≥ g(x)的解集包含 [ –1, 1] , 求 a 的取值范围 .
件的尺寸:
抽取次序
1
2
3
4
5
6
7
8
零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04
抽取次序
9
10
11
12
13
14
15
16

2023年高考全国乙卷数学(文)真题及答案

2023年高考全国乙卷数学(文)真题及答案

=0,
则 x = (a 一 1)x ,即1 = a 一 1 ,解得a = 2 .
故选:D.


6. 正方形 ABCD 的边长是 2 , E 是 AB 的中点,则E C E.D = ( )
A.
B. 3
C. 2
D. 5
【答案】B
【解析】


恳 } 【分析】方法一:以AB AD,
为基底向量表示
再结合数量积的运算律运算求解;方法二:建
该几何体的表面积和原来的长方体的表面积相比少2 个边长为 1 的正方形,
其表面积为: 2〉(2〉2 )+ 4〉(2〉3 )_ 2〉(1〉1 ) = 30 .
故选:D.
4. 在 ABC 中, 内角A, B, C 的对边分别是 a, b, c ,若 acosB _ bcosA = c ,且 C = 冗 ,则 三B = ( ) 5
整理可得 sin B cos A = 0 ,由于 B =(0, π ) ,故 sin B > 0 ,
据此可得cos A = 0, A = ,
则 B=π_A_C=π_ _ = .
故选:C.
x
5. 已知 f(x) =
是偶函数,则 a = ( 一1
)
A. 一2
B. 一1
C. 1
D. 2
【答案】D
【解析】

π 大于 的概率为 (
4
A.
) B.
C.
D.
【答案】C 【解析】
【分析】根据题意分析区域的几何意义,结合几何概型运算求解.
恳 } 【详解】因为区域 (x, y )|1 共 x2 + y2 共 4 表示以O(0, 0) 圆心,外圆半径 R = 2 ,内圆半径r = 1 的圆环,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学 海 无 涯 XXXX年全国高考新课标1卷文科数学试题 第Ⅰ卷 一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=( ) A.{1,3} B.{3,5} C.{5,7} D.{1,7} 2.设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=( ) A.-3 B.-2 C.2 D. 3 3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )

A.13 B.12 C.23 D.56

4.ΔABC的内角A,B,C的对边分别为a,b,c.已知25,2,cos3acA===, 则b=( ) A. 2 B.3 C.2 D.3 5.直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的 1

4,则该椭圆的离心率为( )

A.13 B.12 C.23 D.34 6.若将函数y=2sin (2x+6)的图像向右平移14个周期后,所得图像对应的函数为 ( ) A.y=2sin(2x+4) B.y=2sin(2x+3) C.y=2sin(2x–4) D.y=2sin(2x–3) 7.如图,某几何体的三视图是三个半径相等的圆及每个 圆中两条相互垂直的半径.若该几何体的体积是283, 则它的表面积是( ) A.17π B.18π C.20π D.28π 8.若a>b>0,0A.logaccb 9.函数y=2x2–e|x|在[–2,2]的图像大致为( )

y x y 2 O -2 1 C x 2 O -2 1 B y x 2 O -2 1 A x 2 O -2 1 D y 学 海 无 涯 10.执行右面的程序框图,如果输入的x=0,y=1,n=1, 则输出x,y的值满足( ) A.y=2x B.y=3x C.y=4x D.y=5x

11.平面α过正方体ABCD-A1B1C1D1的顶点A, α//平面CB1D1,α∩平面ABCD=m, α∩平面ABB1A1=n,则m,n所成角的正弦值为( )

A.32 B.22 C.33 D.13

12.若函数1()sin2sin3fxx-xax=+在(-∞,+∞)单调递增,则a的取值范围是( ) A.[-1,1] B.[-1,13] C.[-13,13] D.[-1,-13] 第Ⅱ卷 本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答.

二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.

13.设向量a=(x,x+1),b=(1,2),且a⊥b,则x= . 14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)= .

15.设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=23,则圆C的面积为 . 16.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为 元.

开始 x2+y2≥36?

结束 输出x,y

否 n=n+1 输入x,y,n 1,2nxxyny−=+=学 海 无 涯

B E G

P

D C A

三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分. 17.(本题满分12分)

已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2=31,anbn+1+bn+1=nbn. (Ⅰ)求{an}的通项公式; (Ⅱ)求{bn}的前n项和.

18.(本题满分12分) 如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E, 连接PE并延长交AB于点G. (Ⅰ)证明G是AB的中点; (Ⅱ)在答题卡第(18)题图中作出点E在平面PAC 内的正投影F(说明作法及理由),并求四面体PDEF的体积. 学 海 无 涯 19.(本小题满分12分) 某公司计划购买1台机器,该种机器使用三年后即被淘汰. 机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元. 在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数. (Ⅰ)若n=19,求y与x的函数解析式; (Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值; (Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?

20.(本小题满分12分) 在直角坐标系xoy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.

(Ⅰ)求OHON; (Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由. 学 海 无 涯 21.(本小题满分12分) 已知函数f(x)=(x -2)ex+a(x -1)2. (Ⅰ)讨论f(x)的单调性; (Ⅱ)若有两个零点,求a的取值范围.

请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 22.(本小题满分10分)选修4-1:几何证明选讲

如图,ΔOAB是等腰三角形,∠AOB=120°. 以O为圆心,12OA为半径作圆. (Ⅰ)证明:直线AB与⊙O相切; (Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.

23.(本小题满分10分)选修4—4:坐标系与参数方程 在直线坐标系xoy中,曲线C1的参数方程为cos1sinxatyat==+(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ. (Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程; (Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a. 学 海 无 涯 24.(本小题满分10分),选修4—5:不等式选讲 已知函数f(x)=| x+1| -|2x-3|. (Ⅰ)在答题卡第24题图中画出y=f(x)的图像; (Ⅱ)求不等式| f(x)|>1的解集. 学 海 无 涯 XXXX年全国高考新课标1卷文科数学试题参考答案 一、选择题,本大题共12小题,每小题5分,共60分. 1B 2A 3C 4D 5B 6D 7A 8B 9D 10C 11A 12C 【12题解析】

二、填空题:本大题共4小题,每小题5分,共20分. 13.23− 14.43− 15.4π 16.216000 学 海 无 涯

B E G

P F

D C A

三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分. 17.解:(Ⅰ)依题a1b2+b2=b1,b1=1,b2=31,解得a1=2 …2分 通项公式为 an=2+3(n-1)=3n-1 …6分 (Ⅱ)由(Ⅰ)知3nbn+1=nbn,bn+1=31bn,所以{bn}是公比为31的等比数列.…9分

所以{bn}的前n项和Sn=111()313122313nn−−=−− …12分 18.(Ⅰ)证明:PD⊥平面ABC,∴PD⊥AB. 又DE⊥平面PAB,∴DE⊥AB.∴AB⊥平面PDE. …3分 又PG 平面PDE,∴AB⊥PG.依题PA=PB,∴G是AB的中点.…6分 学 海 无 涯 (Ⅱ)解:在平面PAB内作EF⊥PA(或EF// PB)垂足为F, 则F是点E在平面PAC内的正投影. …7分 理由如下:∵PC⊥PA,PC⊥PB,∴ PC⊥平面PAB. ∴EF ⊥PC 作EF⊥PA,∴EF⊥平面PAC.即F是点E在平面PAC内的正投影.…9分 连接CG,依题D是正ΔABC的重心,∴D在中线CG上,且CD=2DG.

易知DE// PC,PC=PB=PA= 6,∴DE=2,PE=22322233PG==. 则在等腰直角ΔPEF中,PF=EF=2,∴ΔPEF的面积S=2. 所以四面体PDEF的体积1433VSDE==. …12分 19.解:(Ⅰ)当x≤19时,y=3800;当x>19时,y=3800+500(x-19)=500x-5700. 所以y与x的函数解析式为3800,19(*)5005700,19xyxNxx=− …3分 (Ⅱ)由柱状图知,需更换的易损零件数不大于18为0.46,不大于19为0.7,所以n的最小值为19. …6分 (Ⅲ)若每台机器都购买19个易损零件,则有70台的费用为3800,20台的费用为4300,10台的费用为4800,所以100台机器购买易损零件费用的

平均数为1100(3800×70+4300×20+4800×10)=4000. …9分 若每台机器都购买20个易损零件,则有90台的费用为4000,10台的费用为4500,所以100台机器购买易损零件费用的

平均数为1100(4000×90+4500×10)=4050. …11分 比较两个平均数可知,购买1台机器的同时应购买19个易损零件.…12分

20.解:(Ⅰ)依题M(0, t),P(22tp, t). 所以N(2tp, t),ON的方程为pyxt=. 联立y2=2px,消去x整理得y2=2ty. 解得y1=0,y2=2t. …4分 所以H(22tp,2t). 所以N是OH的中点,所以OHON=2. …6分

(Ⅱ)直线MH的方程为2pytxt−=,联立y2=2px,消去x整理得y2-4ty+4t2=0. 解得y1=y2=2t. 即直线MH与C只有一个交点H. 所以除H以外,直线MH与C没有其它公共点. …12分

21.解:(Ⅰ) f '(x)=(x -1)ex+a(2x -2)=(x -1)(ex+2a). x∈R …2分 (1)当a≥0时,在(-∞,1)上,f '(x)<0,f(x)单调递减; 在(1,+∞)上,f '(x)>0,f(x)单调递增. …3分 (2)当a<0时,令f '(x)=0,解得x =1或x=ln(-2a).

相关文档
最新文档