人教版七年级数学上册期末全套复习资料
七年级数学人教版(上册)期末复习(一)有理数
每年减少 10%的过度包装纸的用量,那么可减排二氧化碳 4 280 000
t.把数 4 280 000 用科学记数法表示为 4.28×106
.
用科学记数法将一个数表示成 a×10n 形式的方法:(1)确定 a, |a|大于或等于 1 且小于 10;(2)确定 n,当原数的绝对值大于或等于 10 时,n 为正整数,且等于原数的整数位数减 1.
1 解:(3)相反数分别为-0.5,2,-2.5,2.5,0,1.4,-4,3.
1 绝对值分别为 0.5,2,2.5,2.5,0,1.4,4,3.
13.(20 分)计算: (1)0.125×(-7)×8. 解:原式=0.125×8×(-7) =1×(-7) =-7.
(2)-32-(-8)×(-1)5÷(-1)4. 解:原式=-9-(-8)×(-1)÷1 =-9-8 =-17.
(2)如果振子每振动 1 mm 用时 0.02 s,那么完成 8 次振动共需要 多少秒?
【解答】 (2)|+10|+|-9|+|+8|+|-6|+|+7.5|+|-6|+|+8| +|-7|=10+9+8+6+7.5+6+8+7=61.5(mm).
61.5×0.02=1.23(s). 答:完成 8 次振动共需 1.23 s.
|a+b| 当 m=2 时,2m2+1+m-3cd=0+2-3=-1;
|a+b| 当 m=-2 时,2m2+1+m-3cd=0-2-3=-5.
15.(14 分)如图,数轴上有 A,B,C 三点,它们分别表示数 a, b,c,已知|a+24|+(b+10)2=0,且 b,c 互为相反数.
(1)求 a,b,c 的值. 解:(1)因为|a+24|+(b+10)2=0, 所以 a+24=0,b+10=0,解得 a=-24,b=-10. 因为 b,c 互为相反数,所以 b+c=0.所以 c=10.
期末复习人教版七年级(上册)数学课本知识点归纳
人教版七年级上册数学课本知识点归纳第一章有理数(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
(四)有理数的加减法1.先定符号,再算绝对值。
2.加法运算法则:同号相加,到相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5.a−b = a +(−b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab= b a4.乘法结合律:(ab)c = a (b c)5.乘法分配律:a(b +c)= a b+ ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。
新人教版七年级数学上册期末专题总复习资料
新人教版七年级数学上册期末专题总复习资料人教版七年级数学上册期末专题总复资料类比归纳专题:有理数加、减、乘、除中的简便运算——灵活变形,举一反三类型一加减混合运算的技巧一、相反数相结合或同号结合1.计算:【方法2】515-3;1-(+6)-3+(-1.25)- 48/82.3+(-1.7)+6.2+(-2.2)-1.1.二、同分母或凑整结合2.计算:【方法2】6.82)+3.78+(-3.18)-3.78;311/-5 + (-9)/8 - 1.25.三、计算结果成规律的数相结合3.计算1+2-3-4+5+6-7-8+…+2013+2014-2015-2016的结果是()A。
B。
-1 C。
2016 D。
-20164.★阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥时,|a|=a;当a<0时,|a|=-a.根据以上阅读完成下列问题:1)|3.14-π|=________;1/1-1/11+1/111-1/1111+…-1/2013+1/2014-1/2015-1/2016 2)计算:2/3-3/2+4/3-9/8+10/9类型二运用分配律解题的技巧一、正用分配律5.计算.131/2-4+8×(-24);39×(-14).二、逆用分配律666/(-3)-3×(-3)-6×3.6.计算:4×7/7.三、除法变乘法,再利用分配律122/6-7+3÷(-42).参考答案与解析1.解:(1)原式=1+(-1.25)-6+4/8= -4.75.2)原式=2.3+6.2-(-1.7-2.2-1.1)= 3.5.2.解:(1)原式=[(-6.82)+(-3.18)]+(3.78-3.78)= -10.2)原式=19+8/4-9/8-1.25= 3.3.D4.解:(1)π-3.14=π-3.14.2)原式=1-1/2-1/10= 3/5.5.解:(1)原式=-12+18-3=3.2)原式=2/3-3/2+4/3-9/8+10/9= 55/72.1.下列说法正确的是()A。
人教版七年级数学(上册)期末全套复习资料全
第一章有理数总复习一、知识归纳:1、数轴是一条规定了原点、方向、长度单位的直线。
有了数轴,任何一个有理数都可以用它上面的一个确定的点来表示。
在数的研究上它起着重要的作用。
它使数和最简单的图形——直线上的点建立了对应关系,它揭示了数和形之间的内在关系,因此它是数形结合的基础。
但要注意数轴上的所有点并不是都有有理数和它对应。
借助于数轴上点的位置关系可以比较有理数的大小,法则是:在数轴上表示的两个有理数,右边的数总比左边的数大。
2、相反数是指只有符号不同的两个数。
零的相反数是零。
互为相反的两个数位于数轴上原点的两边,离开原点的距离相等。
有了相反数的概念后,有理数的减法运算就可以转化为加法运算。
3、绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
显然有:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。
对于任何有理数a,都有a≥0 。
4、倒数可以这样理解:如果a与b是非零的有理数,并且有a×b=1,我们就说a与b互为倒数。
有了倒数的概念后,有理数的除法运算就可以转化为乘法运算。
5、有理数的大小比较:(1)正数都大于零,负数都小于零,即负数<零<正数;(2)两个正数,绝对值大的数较大;(3)两个负数,绝对值大的数反而小;(4)在数轴上表示的有理数,右边的数总比左边的大;6、科学记数法:是指任何数记成a×10n的形式,其中用式子表示|a|的范围是0<|a|<10。
7、近似数与精确度:近似数:一个与实际数很接近的数,称为近似数;精确度:右边最后一位数所在的位数,就是精确到的数位。
二、有理数的运算法则1、有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
由此可得,互为相反数的两数相加的0;三个数相加先把前两个数相加,或先把后两个数相加,和不变。
人教版七年级数学上册期末复习大纲【五篇】
关注我谢谢你
人教版七年级数学上册期末复习大纲【五篇】
【篇一】第一章有理数
--------------1.1正数与负数
①大于0的数叫正数。
②在正数前面加上“-”号的数,叫做负数。
③0既不是正数也不是负数。
0是正数和负数的分界,是的中性数。
④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。
⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。
整数和分数统称有理数。
⑥非负数就是正数和零;非负整数就是正整数和0。
⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。
-------------1.2数轴
①通常用一条直线上的点表示数,这条直线叫数轴。
②数轴三要素:原点、正方向、单位长度。
③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表
15。
2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题
2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题1.某中学学生步行到郊外旅行.七(1)班学生组成前队,步行速度为4千米/时,七(2)班的学生组成后队,速度为6千米/时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/时.(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员骑车的路程是多少千米?2.某开发公司生产出若干件新产品,需要精加工后才能投放市场,现有甲、乙两个工厂每天分别能加工这种产品16件和24件,已知甲单独加工这批产品比乙单独加工这批产品要多用20天,又知若由甲厂单独做,公司需付甲厂每天加工费用80元;若由乙厂单独做,公司需付乙厂每天加工费用120元。
(1)求这批新产品共有多少件?(2)若公司董事会制定了如下方案:可以由每个工厂单独完成,也可以由两个工厂合作完成,但在加工过程中,公司需派一名工程师到工厂进行技术指导,并由公司为其提供每天10元的午餐补助,请你帮助公司选择一种既省时又省钱的加工方案,并通过计算说明理由.3.某中学将举行“歌唱祖国”主题歌咏比赛,七年级需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知每袋贴纸有50张,每袋小红旗有20面,贴纸和小红旗需整袋购买,两家文具店的标价相同,每袋贴纸价格比每袋小红旗价格少5元,且4袋贴纸与3袋小红旗价格相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果购买贴纸和小红旗共90袋,给每位演出学生分发国旗图案贴纸2张、小红旗1面,恰好全部分完,请问贴纸和小红旗各多少袋?某校七年级(1)和(2)班共105人去游玩,其中七(1)班40多人不足50人,经计算,如果两个班都以班为单位购票,则一共应付1401元.(1)两班各有多少人?(2)如果两班联合起来,作为一个团体购票,能省多少钱?7.某中学举行校运会,初一(1)班同学准备用卡纸制成乒乓球拍和小旗作道具.若一张卡纸可以做3个球拍或6面小旗,用21张卡纸,刚好能够让每位同学拿一个球拍和一面小旗.(1)应用多少张卡纸做球拍,多少张卡纸做小旗?(2)若每个人的工作效率都相同,一个人完成道具制作要6个小时,先安排2个人做半小时,再增加几个人做1小时可以刚好完成?8.一段道路,甲工程队单独铺设需10天完成,乙工程队单独铺设需15天完成.(1)若两队自始至终合作铺设, 天可以完成;(2)实际由甲工程队先单独铺设几天后,为了加快进度,余下的部分由甲乙两个工程队合作完成,共用8天铺设完成了这段道路.甲工程队先铺设了几天道路?9. “双十二”期间,某个体商户在网上购进某品牌A 、B 两款羽绒服来销售,若购进3件A 和4件B 需支付2400元,若购进1件A 和1件B 则需支付700元.(1)求A 、B 两款羽绒服在网上的售价分别是每件多少元?(2)若个体商户把网上购买的A 、B 两款羽绒服各10件,均按每件600元进行销售,销售一段时间后,把剩下的羽绒服按6折销售完,若总获利为3800元,求个体商户打折销售的羽绒服是多少件?10.下雪了,学校七年级准备为同学们定制一批冬帽,现有甲、乙两个工厂都想加工这 批冬帽,已知甲工厂每天能加工这种冬帽20件,乙工厂每天能加工这种冬帽30件,且单独加工这批冬帽甲厂比乙厂要多用16天.(1)求这批冬帽共有多少件?(2)为了尽快完成这批冬帽,若先由甲、乙两厂按原生产速度合作一段时间后,甲工厂停工了,由乙工厂单独完成剩余部分,为此乙工厂每天的生产速度也提高20%.已知乙工厂的全部工作时间是甲工厂工作时间的2倍还少2天,求乙工厂共加工多少天?11.一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形.(1)设长方形的长为cm x ,请列出关于x 的方程.(2)说明8x =是(1)中所列方程的解,而10x =不是它的解.(3)设长方形的宽是cm y ,请列出关于y 的方程.(1)若小泮购买了25千克的柑橘,则他需要付多少元?(2)若小钱一次购买柑橘共付了200元,则小钱购买柑橘多少千克?(3)小王分两次共购买了柑橘90千克,第二次购买的数量要多于第一次购买的数量,共付出376元,请问小王第一次、第二次分别购买柑橘多少千克?14.某校开展劳动教育,在植树节当天组织植树活动,该校七年级共有120人参加活动,分成树苗保障组和种植组,种植组的人数是树苗保障组人数的2倍.(1)求树苗保障组的人数;(2)已知种植点有甲、乙两处,种植组在甲处有a人.①用含a的代数式表示种植组在乙处的人数;a ,树苗保障组人员在运送完树苗后全部去支援种植组,使在甲处种植的人数②若46是乙处种植人数的2倍,问应调往甲、乙两处各多少人?15.甲、乙两地相距72km ,一辆工程车和一辆洒水车上午6时同时从甲地出发,分别以1km/h v 、2km/h v 的速度匀速驶往乙地.工程车到达乙地后停留了2h ,沿原路以原速返回,中午12时到达甲地,此时洒水车也恰好到达乙地.(1)1v =______,2=v ______;(2)求出发多长时间后,两车相遇?(3)求出发多长时间后,两车相距30km ?(直接写出答案)______16.某同学进入初中后,家长为他买了一个电话手表.现从某电信运营商那里了解到,有两种电话卡,A 类卡收费标准如下:无月租,每通话1分钟交费0.6元;B 类卡收费标准如下:月租费15元,每通话1分钟交费0.3元.(1)若每月平均通话时间为100分钟,他应该选择哪类卡?(2)如果这位同学这个月预交话费120元,按A 、B 两类卡收费标准分别可以通话多长时间?(3)根据一个月的通话时间,你认为选择哪种卡更实惠?17.用80m 的篱笆围成一个长方形场地.(1)如果长比宽多6m ,求这个长方形的面积;(2)如果一边靠墙,墙长为32m ,长比宽多11m (长边与墙平行),这样设计是否可行?请说明理由.18.请列一元一次方程解决下面的问题:某超市计划购进甲、乙两种型号的钢笔共900支,这两种钢笔的进价、售价如下表:(1)如果进货款恰好为28500元,那么可以购进甲、乙两种型号的钢笔各多少支?(2)售完这批钢笔一共可以获利多少元钱?参考答案:1.(1)2小时(2)20千米2.(1)这批新产品共有960件.(2)甲、乙合作同时完成时,既省钱又省时间,理由见解析.3.(1)每袋国旗图案贴纸和每袋小红旗的价格各是15和20元(2)购买贴纸40袋,购买小红旗50袋4.(1)买卡合算,小张能节省400元(2)这台冰箱的进价是2480元5.(1)第一批购进文具盒40个,则第二批购进文具盒30个.(2)第二批文具盒中按标价售出的有7个.6.(1)七年级(1)班47人,(2)班58人(2)两个班联合起来,作为一个团体购票,可省351元7.(1)用14张卡纸做球拍,7张卡纸做小旗;(2)再增加3个人做1小时可以刚好完成8.(1)6(2)5天9.(1)A、B两款羽绒服在网上的售价分别是每件400元,300元(2)个体商户打折销售的羽绒服是5件10.(1)这批冬帽共有960件(2)乙工厂共加工22天(2)售完这批钢笔一共可以获利7500元钱。
新人教版七年级上册数学总复习知识点和练习题
新人教版七年级上册数学总复习知识点和练习题新人教版数学七年级上期末总复期末复一有理数的意义一、双基回顾1、前进8米的相反意义的量是;盈利50元的相反意义的量是。
2、向东走5m记作+5m,则向西走8记作,原地不动用表示。
正数{…};负数{…};分数{…};整数{…};非负整数{…};非正数{…}。
4、与表示-1的点距离为3个单位的点所表示的数是。
5、数轴上到原点的距离为2的点所表示的数是。
6、3的相反数的倒数是。
7、最小的自然数是;最小的正整数是;绝对值最小的数是;最大的负整数是。
8、相反数等于它本身的数是,绝对值等于它本身的数是,平方等于它本身的数是,,倒数即是它自己的数是。
9、如图,如果a<,b>0,那么a、b、-a、-b的大小关系是.10、已知︱a+2︱+(3- b)2=0,则a b =。
ab二、例题导引例1(1)大于-3且小于2.1的整数有哪些?(2)绝对值大于1小于4.3的整数的和是多少?例2已知a、b互为相反数,m、n互为倒数,︱x︱=3,求(a+b)2-3mn+2x的值。
例3(1)若a<,a2=4,b3=-8,求a+b的值。
(2)已知︱a︱= 2,︱b︱=5,求a-b的值;3、操演升华1、判断下列叙述是否正确:①零上6℃的相反意义的量是零下6℃,而不是零下8℃()②如果a是负数,那末-a就是正数()③正数与负数互为相反数()④一个数的相反数长短正数,那末这个数肯定长短负数()⑤若a=b,则︱a︱=︱b︱;若︱a︱=︱b︱,则a=b()2、一种零件标明的要求是Ф10(单位:mm)表示这种零件的标准尺寸是10mm,加工零件要求最大直径不超过mm,最小直径不小于mm.。
3、某天气温上升了-2℃的意义是。
5、12的相反数与-7的绝对值的和是。
6、若a<0,b<0,则下列各式正确的是( )A、a-b<0 B、a-b>0 C、a-b=0 D、(-a)+(-b)>07、两个非零有理数的和是,它们的商是()A、0B、-1C、1D、不能确定8、若|x|=-x,则x=_____;若︱x-2︱=3,则x= .9、古希腊科学家把数1,3,6,10,15,21,……叫做三角形数它有一定的规律性,第个三角形数为_______。
人教版七年级数学上册期末复习知识点大全
人教版七年级数学上册期末复习知识点大全一、选择题1.购买单价为a元的物品10个,付出b元(b>10a),应找回()A.(b﹣a)元B.(b﹣10)元C.(10a﹣b)元D.(b﹣10a)元2.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是()A.B.C.D.3.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1064.﹣3的相反数是()A.13-B.13C.3-D.35.如果﹣2xy n+2与 3x3m-2y 是同类项,则|n﹣4m|的值是()A.3 B.4 C.5 D.66.如图,OA⊥OC,OB⊥OD,①∠AOB=∠COD;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个()A.1个B.2个C.3个D.4个7.96.已知a<0,-1<b<0,则a,ab,ab2之间的大小关系是()A.a>ab>ab2 B.ab>ab2>a C.ab>a>ab2 D.ab<a<ab28.解方程121123x x+--=时,去分母得()A.2(x+1)=3(2x﹣1)=6 B.3(x+1)﹣2(2x﹣1)=1C.3(x+1)﹣2(2x﹣1)=6 D.3(x+1)﹣2×2x﹣1=69.如图,已知AB∥CD,点E、F分别在直线AB、CD上,∠EPF=90°,∠BEP=∠GEP,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠2 10.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180° 11.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .12.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( ) ①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB . A .1个B .2个C .3个D .4个 二、填空题13.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.14.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____.15.把53°30′用度表示为_____.16.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.17.已知单项式245225n m x y x y ++与是同类项,则m n =______.18.若3750'A ∠=︒,则A ∠的补角的度数为__________.19.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 20.15030'的补角是______.21.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.22.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.23.如图,将△ABE向右平移3cm得到△DCF,若BE=8cm,则CE=______cm.24.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).三、解答题25.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等, B款瓷砖的长大于宽.已知一块A 款瓷砖和-块B款瓷砖的价格和为140元; 3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).26.在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)小龙共抽取______名学生;(2)补全条形统计图;(3)在扇形统计图中,“其他”部分对应的圆心角的度数是_______;(4)若全校共2100名学生,请你估算“立定跳远”部分的学生人数.27.如图,直线AB、CD、MN相交于O,∠DOB=60°,BO⊥FO,OM平分∠DOF.(1)求∠MOF的度数;(2)求∠AON的度数;(3)请直接写出图中所有与∠AON互余的角.28.计算:(1)﹣7﹣2÷(﹣12)+3;(2)(﹣34)×49+(﹣16)29.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C 所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.30.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A .1.5小时以上;B .1~1.5小时;C .0.5~1小时;D .0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B 的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.四、压轴题31.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.32.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示);(2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?33.已知:A 、O 、B 三点在同一条直线上,过O 点作射线OC ,使∠AOC :∠BOC =1:2,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 按逆时针方向旋转至图2的位置,使得ON 落在射线OB 上,此时三角板旋转的角度为 度;(2)继续将图2中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在∠AOC 的内部.试探究∠AOM 与∠NOC 之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM 所在直线恰好平分∠BOC 时,时间t 的值为 (直接写结果).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意知:花了10a 元,剩下(b ﹣10a )元.【详解】购买单价为a元的物品10个,付出b元(b>10a),应找回(b﹣10a)元.故选D.【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.B解析:B【解析】【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.【详解】解:A、5+3×6+1×6×6=59(颗),故本选项错误;B、1+3×6+2×6×6=91(颗),故本选项正确;C、2+3×6+1×6×6=56(颗),故本选项错误;D、1+2×6+3×6×6=121(颗),故本选项错误;故选:B.【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.3.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】试题分析:384 000=3.84×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.5.C解析:C【解析】【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解.【详解】解:∵﹣2xy n+2与 3x3m-2y 是同类项,∴3m-2=1,n+2=1,解得:m=1,n=-1,∴|n﹣4m|=|-1-4|=5,故选C.【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键.6.C解析:C【解析】【分析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解.【详解】∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;∠AOB+∠COD不一定等于90°,故③错误;图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD一共6个,故④正确;综上所述,说法正确的是①②④.故选C.【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.7.B解析:B【解析】先根据同号得正的原则判断出ab的符号,再根据不等式的基本性质判断出ab2及a的符号及大小即可.解:∵a <0,b <0,∴ab >0,又∵-1<b <0,ab >0,∴ab 2<0.∵-1<b <0,∴0<b 2<1,∴ab 2>a ,∴a <ab 2<ab .故选B本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.8.C解析:C【解析】【分析】方程两边都乘以分母的最小公倍数即可.【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=,故选:C .【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.9.B解析:B【解析】【分析】延长EP 交CD 于点M ,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP ,继而根据平角定义以及∠BEP=∠GEP 即可求得答案.【详解】延长EP 交CD 于点M ,∵∠EPF 是△FPM 的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD ,∴∠BEP=∠FMP ,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP ,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.10.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.11.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D.【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.12.A解析:A【解析】①项,因为AP=BP,所以点P是线段AB的中点,故①项正确;②项,点P可能是在线段AB的延长线上且在点B的一侧,此时也满足BP=12AB,故②项错误;③项,点P可能是在线段BA的延长线上且在点A的一侧,此时也满足AB=2AP,故③项错误;④项,因为点P为线段AB上任意一点时AP+PB=AB恒成立,故④项错误.故本题正确答案为①.二、填空题13.2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.14.﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣解析:﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣3,y=2时,x+y=﹣1,当x=﹣3,y=﹣2时,x+y=﹣5,所以,x+y的值是﹣1或﹣5.故答案为:﹣1或﹣5.【点睛】本题主要考查了有理数的乘方、绝对值的性质有理数的加法等知识,,解题的关键是确定x、y的值.15.5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:5330’用度表示为53.5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.16.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣,m=2或﹣2,当m=2时,原式=2(a+b)解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣13,m=2或﹣2,当m=2时,原式=2(a+b)﹣3c+2m=1+4=5;当m=﹣2时,原式=2(a+b)﹣3c+2m=1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.17.9【解析】【分析】根据同类项的定义进行解题,则,解出m 、n 的值代入求值即可.【详解】解:和是同类项且,【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出 解析:9【解析】【分析】根据同类项的定义进行解题,则25,24n m +=+=,解出m 、n 的值代入求值即可.【详解】解:242n x y +和525m x y +是同类项∴25n +=且24m +=∴3n =,2m =∴239m n ==【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出m 、n 的值即可.18.【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵,∴的补角=180°-=.故填.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒解析:14210'︒【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵3750'A ∠=︒,∴A ∠的补角=180°-3750'︒=14210'︒.故填14210'︒.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒是60进制.19.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.20.【解析】【分析】 利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】 此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:18015030'2930'-=.故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.21.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,,,平分,.故答案为60.【点睛】解析:60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=,BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.22.从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图, “横看成岭侧成峰”从数解析:从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.【点睛】本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.23.5【解析】【分析】根据平移的性质可得BC=3cm ,继而由BE=8cm ,CE=BE-BC 即可求得答案.【详解】∵△ABE 向右平移3cm 得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.24.>.【解析】【分析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小解析:>.【解析】【分析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小,比较两个负数的大小的解题关键是绝对值大的反而小.三、解答题25.(1)A款瓷砖单价为80元,B款单价为60元.(2)买了11块A款瓷砖,2块B款;或8块A款瓷砖,6块B款.(3)B款瓷砖的长和宽分别为1,34或1,15.【解析】【分析】(1)设A款瓷砖单价x元,B款单价y元,根据“一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等”列出二元一次方程组,求解即可;(2)设A款买了m块,B款买了n块,且m>n,根据共花1000 元列出二元一次方程,求出符合题意的整数解即可;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米,根据图形以及“A款瓷砖的用量比B款瓷砖的2倍少14块”可列出方程求出a的值,然后由92bb-+是正整教分情况求出b的值.【详解】解: (1)设A款瓷砖单价x元,B款单价y元,则有14034x yx y+=⎧⎨=⎩,解得8060 xy=⎧⎨=⎩,答: A款瓷砖单价为80元,B款单价为60元;(2)设A款买了m块,B款买了n块,且m>n,则80m+60n=1000,即4m+3n=50∵m,n为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.由题意得:7997 22114 22b ba ab a b a--⎛⎫⨯⨯=+⨯-⎪++⎝⎭,解得a=1.由题可知,92bb-+是正整教.设92bkb-=+(k为正整数),变形得到921kbk-=+,当k=1时,77(122b=>,故合去),当k=2时,55(133b=>,故舍去),当k=3时,34b=,当k=4时,15b=,答: B款瓷砖的长和宽分别为1,34或1,15.【点睛】本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.26.(1)50;(2)补图见解析;(3)72°;(4)672人.【解析】【分析】(1)画出统计图,根据跳绳的人数除以占的百分比即可得出抽取的学生总数;(2)根据总学生数,求出踢毽子与其他的人数,补全条形统计图即可(3)根据其他占的百分比乘以360°即可得到结果(4)由立定跳远的百分比,乘以2100即可得到结果【详解】(1)根据题意得:15÷30%=50(名)则共抽取50名学生(2)根据题意得:踢毽子人数为50×18%=9(名),其他人数为50×(1-30%-18%-32%)=10名,补全条形统计图,如图所示(3)根据题意得:360°×20%=72°则“其他"部分对应的圆心角的度数是72°;(4)根据题意得'立定跳远"部分的学生有2100×32%=672(名)【点睛】此题考查条形统计图,用样本估计总体和扇形统计图,看懂图中数据是解题关键27.(1)15°;(2)75 ;(3)∠CON、∠DOM、∠MOF.【解析】【分析】(1)根据∠DOF=∠BOF-∠DOB,首先求得∠DOF的度数,然后根据角平分线的定义求解;(2)首先求得∠BOM的度数,然后根据对顶角相等即可求解;(3)根据∠MOF=∠MOF=15°,∠AON=∠BOM=75°,据此即可写出.【详解】(1)∵∠DOB=60°,BO⊥FO,∴∠DOF=∠BOF-∠DOB=90°-60°=30°,又∵OM平分∠DOF,∴∠MOF=12∠DOF=15°;(2)∵∠BOM=∠MOF+∠DOB=15°+60°=75°,∴∠AON=∠BOM=75°;(3)与∠AON互余的角有:∠CON、∠DOM、∠MOF.【点睛】本题考查了角的平分线的定义,以及对顶角相等,正确理解角平分线的定义是关键.28.(1)0;(2)﹣52【解析】【分析】(1)原式先计算除法运算,再计算加减运算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】(1)原式=﹣7+4+3=0;(2)原式=﹣8149⨯-16=﹣36﹣16=﹣52.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.29.(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【解析】【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.【详解】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,AB+BC=AC,∴AB=4,BC=2,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.30.(1)本次一共调查了200名学生;(2)补图见解析;(3)学校有600人平均每天参加体育锻炼在1小时以下.【解析】【分析】(1)根据A类人数和占比即可求出总人数;(2)用总人数减去A类,C类,D类的人数得到B类人数,即可补全图形;(3)用3000乘以C、D类人数占比即可得出答案.【详解】解:(1)读图可得:A类有60人,占30%;则本次一共调查了60÷30%=200人;(2)“B”有200﹣60﹣30﹣10=100人,如图所示;(3)每天参加体育锻炼在1小时以下占15%,每天参加体育锻炼在0.5小时以下占5%;则3000×(15%+5%)=3000×20%=600人.因此学校有600人平均每天参加体育锻炼在1小时以下.【点睛】本题考查统计图知识,理解条形图和扇形图中数据的对应关系是解题的关键.四、压轴题31.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°,∠PON=12×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t=152或15;当OI在直线AO的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.32.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.33.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB,从而可得到问题的答案;(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB=90°.故答案为:90°(2)∠AOM﹣∠NOC=30°.理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,∴∠AOC=60°.∴∠NOC=60°﹣∠AON.∵∠NOM=90°,∴∠AOM=90°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.(3)如图1所示:当OM为∠BOC的平分线时,∵OM为∠BOC的平分线,∴∠BOM=∠BOC=60°,∴t=60°÷5°=12秒.如图2所示:当OM的反向延长为∠BOC的平分线时,∵ON为为∠BOC的平分线,∴∠BON=60°.∴旋转的角度=60°+180°=240°.∴t=240°÷5°=48秒.故答案为:12秒或48秒.【点睛】本题主要考查的是三角形的综合应用,解答本题主要应用了旋转的定义、直角三角形的定义以及角的和差计算,求得三角板旋转的角度是解题的关键.。
人教版七年级数学上册期末复习大纲【五篇】
【导语】数学是研究数量、结构、变化、空间以及信息等概念的⼀门学科,从某种⾓度看属于形式科学的⼀种。
数学家和哲学家对数学的确切范围和定义有⼀系列的看法。
下⾯是⽆忧考为您整理的⼈教版七年级数学上册期末复习⼤纲【五篇】,仅供⼤家查阅。
【篇⼀】第⼀章有理数 --------------1.1正数与负数 ①⼤于0的数叫正数。
②在正数前⾯加上“-”号的数,叫做负数。
③0既不是正数也不是负数。
0是正数和负数的分界,是的中性数。
④搞清相反意义的量:南北;东西;上下;左右;上升下降;⾼低;增长减少等。
⑤正整数、0、负整数统称整数(结合数轴和⼀元⼀次⽅程出题),正分数和负分数统称分数。
整数和分数统称有理数。
⑥⾮负数就是正数和零;⾮负整数就是正整数和0。
⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相⽐较的数的代数和;平均数的求法:基准数+与基准数相⽐较的数的代数和÷个数(写出原数,也可⽤⼩学知识解答);“⾮基准”题:⽆固定的基准数,如明天和今天⽐,后天和明天⽐。
-------------1.2数轴 ①通常⽤⼀条直线上的点表⽰数,这条直线叫数轴。
②数轴三要素:原点、正⽅向、单位长度。
③数轴上的点和有理数的关系:所有的有理数都可以⽤数轴上的点表⽰出来,但数轴上的点,不都是表⽰有理数。
④只有符号不同的两个数叫做互为相反数(和为零)。
(例:2的相反数是-2,如:2+(-2)=0;0的相反数是0) ⑤数轴上表⽰数a的点与原点的距离叫做数a的绝对值,记作|a|。
从⼏何意义上讲,数的绝对值是两点间的距离(⽆⽅向性,有两个点)。
⑥数轴上两点间的距离=|M—N| ⑥正数的绝对值是它本⾝;负数的绝对值是它的相反数;0的绝对值是0。
⑦两个负数,绝对值⼤的反⽽⼩。
⑧|a|≥0(即⾮负性);绝对值等于⼀个正数的值有两个(两个互为相反数)如:|a|=5,a=5或a=-5 -------------1.3有理数的⼤⼩ ①数轴上不同的两个点表⽰的数,右边点表⽰的数总⽐左边点表⽰的数⼤。
新人教版七年级上册数学总复习知识点和练习题
新人教版七年级上册数学总复习知识点和练习题新人教版数学七年级上期末总复期末复一:有理数的意义一、双基回顾1.前进8米的相反数是后退8米,盈利50元的相反数是亏损50元。
2.向东走5m记作+5m,则向西走8m记作-8m,原地不动用0表示。
3.把下列各数填入相应的大括号中:正数{7,11/2,0.25};负数{-9.25,-301,-7/3};分数{11/2,-7/3,0};整数{7,-9,-301,0};非负整数{0,7,11/2};非正数{-9.25,-301,-7/3,0}。
4.与表示-1的点距离为3个单位的点所表示的数是-4.5.数轴上到原点的距离为2的点所表示的数是±2.6.3的相反数的倒数是-1/3.7.最小的自然数是1;最小的正整数是1;绝对值最小的数是0;最大的负整数是-1.8.相反数等于它本身的数是0,绝对值等于它本身的数是0,平方等于它本身的数是1,立方等于它本身的数是0,倒数等于它本身的数是1.9.如图,如果a0,那么-a>b>-b>a。
10.已知|a+2|+(3-b)²=0,则a=-2,b=3/2.二、例题导引例11) 大于-3且小于2.1的整数有-2,-1,0,1.2) 绝对值大于1小于4.3的整数的和是-3+2+1+3+4=7.例2由a、b互为相反数可得a+b=0,由m、n互为倒数可得mn=1,代入(a+b)²-3mn+2|x|的式子中得(-6)²-3+6=33.例31) 由a²=4得a=±2,由b³=-8得b=-2,故a+b=0.2) 由|a|=2,|b|=5得a=-2,b=5,故a-b=-7.三、练升华1.判断下列叙述是否正确:①零上6℃的相反数是零下6℃,而不是零下8℃。
(错误)②如果a是负数,那么-a就是正数。
(正确)③正数与负数互为相反数。
(正确)④一个数的相反数是非正数,那么这个数一定是非负数。
人教版七年级上册数学期末复习资料(20200424150036)
12、甲乙两数的和为 -23.4 ,乙数为 -8.1 ,甲比乙大
13、在数轴上表示两个数,
的数总比
的大。(用“左边”“右
边”填空)
14、数轴上原点右边 4.8 厘米处的点表示的有理数是 32,那么,数轴左边 18 厘
米处的点表示的有理数是 ____________。
15、温度由-5℃下降3℃后,结果可记为_____.
)
D. a 2b2
学习必备
欢迎下载
A. x 的次数是 0
B. 1 是单项式 y
C. 1 是单项式 2
D. 5a 的系数是 5
3.如图 1,为做一个试管架, 在 a cm 长的木条上钻了 4 个圆孔,每个孔直径 2cm,
则 x 等于
()
x
x
x
x
x
图1
a8
A.
cm
5
a 16
B.
cm
5
a4
C.
cm
5
4. a (b c d) (a c) (
13. 当 x 2 时,代数式 6x 5 的值是
;
1x
14. 计算: 4( a2b 2ab 2) (a2b 2ab2 )
;
16. 规 定 一 种 新 运 算 : a b a b a b 1 , 如 3 4 3 4 3 4 1 , 请 比 较 大
小: 3 4
4 3 ( 填“ >”、“ =”或“ >”).
(2) 3x2 7 x (4x 3) 2x2 ;
22.(8 分 )化简求值 ( 1) (4a 2 2a 6) 2(2a 2 2a 5) 其中 a 1 .
( 2) 1 a 2(a 1 b 2 ) ( 3 a 1 b 2 ) 其中 a 2, b 2 .
人教版七年级数学上册期末复习资料
1 / 22第一章:有理数一、有理数的基础知识 1、三个重要的定义(1)正数:像1、2.5、这样大于0的数叫做正数;正数大于零 (2)负数:在正数前面加上“-”(负)号的数叫做负数;负数小于零 (3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。
概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别。
②正数和负数的应用:正数和负数通常表示具有相反意义的量。
③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;例1 下列说法正确的是( )A 、一个数前面有“-”号,这个数就是负数;B 、非负数就是正数;C 、一个数前面没有“-”号,这个数就是正数;D 、0既不是正数也不是负数; 例2 把下列各数填在相应的大括号中 8,43,0.125,0,31-,6-,25.0-, 正整数集合{} 整数集合{}负整数集合{} 正分数集合{}例3 如果向南走50米记为是50-米,那么向北走782米记为是 ____________, 0米的意义是______________。
例4 对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么5-克表示_________________________知识窗口:正数和负数通常表示具有相反意义的量,一个记为正数,另一个就记为负数,我们习惯上把向东、向北、上升、盈利、运进、增加、收入、高于海平面等等规定为正,把相反意义的量规定为负。
例5 若0>a,则a 是 ;若0<a ,则a 是 ;若b a <,则b a -是 ;若b a >,则b a -是 ;(填正数、负数或0) 2、有理数的概念及分类整数和分数统称为有理数。
新人教版七年级数学上册重点知识复习资料(全册)
新人教版七年级数学上册重点知识复习资
料(全册)
单元一:整数
- 整数的概念:整数由正整数、0和负整数组成。
- 整数的比较:比较整数大小时,先比较绝对值大小,再根据
正负确定大小关系。
- 整数的加法和减法:同号相加减取结果的绝对值,符号与原
值相同;异号相加减取结果的绝对值,符号与较大数相同。
- 整数的乘法和除法:同号相乘除结果为正,异号相乘除结果
为负。
单元二:分数
- 分数的概念:分数由分子和分母组成,表示真数、假数和零。
- 分数的相等:两个分数相等表示代表同一量的两个数。
- 分数的大小比较:分数大小比较可以通过求公共分母,比较
分子大小进行。
- 分数的加法和减法:分数加减法可以通过通分,然后对分子进行加减。
- 分数的乘法:分数乘法可以直接对分子和分母进行相乘。
- 分数的除法:分数除法可以先求倒数,再进行相乘。
单元三:代数式
- 代数式的概念:含有变量的数学式子称为代数式。
- 代数式的运算:代数式的运算包括加法、减法和乘法。
- 代数式的化简:对代数式进行合并同类项、提取公因式、运用分配律等方法进行化简。
...
(继续写下去,覆盖全册)。
人教版七年级数学上册期末复习资料
1第一章:有理数一、有理数的基础知识 1、三个重要的定义(1)正数:像1、2.5、这样大于0的数叫做正数;正数大于零(2)负数:在正数前面加上“-”(负)号的数叫做负数;负数小于零(3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。
概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别。
②正数和负数的应用:正数和负数通常表示具有相反意义的量。
③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等; 例1 下列说法正确的是( )A 、一个数前面有“-”号,这个数就是负数;B 、非负数就是正数;C 、一个数前面没有“-”号,这个数就是正数;D 、0既不是正数也不是负数;例2 把下列各数填在相应的大括号中 8,43,0.125,0,31-,6-,25.0-, 正整数集合{} 整数集合{}负整数集合{} 正分数集合{}例3 如果向南走50米记为是50-米,那么向北走782米记为是 ____________, 0米的意义是______________。
例4 对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么5-克表示_________________________ 知识窗口:正数和负数通常表示具有相反意义的量,一个记为正数,另一个就记为负数,我们习惯上把向东、向北、上升、盈利、运进、增加、收入、高于海平面等等规定为正,把相反意义的量规定为负。
例5 若0>a,则a 是 ;若0<a ,则a是 ;若b a <,则b a -是 ;若b a >,则b a -是 ;(填正数、负数或0)2、有理数的概念及分类整数和分数统称为有理数。
人教版七年级数学上册期末总复习课件(共20张PPT)
•
17、儿童是中心,教育的措施便围绕 他们而 组织起 来。2021/8/102021/8/102021/8/102021/8/10
• 2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四
点C在线段AB上(A,B除外); 不可以;理由:两点之间线段最短.
• 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成 。2021/8/102021/8/102021/8/102021/8/108/10/2021
•
14、谁要是自己还没有发展培养和教 育好, 他就不 能发展 培养和 教育别 人。2021年8月 10日星 期二2021/8/102021/8/102021/8/10
•பைடு நூலகம்
(2)当COD绕着点O不停地旋转(比如旋转到图 2 的位置),你原来的猜想还成立吗?
(2)成立.
题组训练
最基本题组:
4.“嫦娥一号”在一次变轨中环绕月亮运行 14 圈,
其长度约为 591000000 千米,用科学计数法表示为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章有理数总复习一、知识归纳:1、数轴是一条规定了原点、方向、长度单位的直线。
有了数轴,任何一个有理数都可以用它上面的一个确定的点来表示。
在数的研究上它起着重要的作用。
它使数和最简单的图形——直线上的点建立了对应关系,它揭示了数和形之间的内在关系,因此它是数形结合的基础。
但要注意数轴上的所有点并不是都有有理数和它对应。
借助于数轴上点的位置关系可以比较有理数的大小,法则是:在数轴上表示的两个有理数,右边的数总比左边的数大。
2、相反数是指只有符号不同的两个数。
零的相反数是零。
互为相反的两个数位于数轴上原点的两边,离开原点的距离相等。
有了相反数的概念后,有理数的减法运算就可以转化为加法运算。
3、绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
显然有:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。
对于任何有理数a,都有a≥0 。
4、倒数可以这样理解:如果a与b是非零的有理数,并且有a ×b=1,我们就说a与b互为倒数。
有了倒数的概念后,有理数的除法运算就可以转化为乘法运算。
5、有理数的大小比较:(1)正数都大于零,负数都小于零,即负数<零<正数;(2)两个正数,绝对值大的数较大;(3)两个负数,绝对值大的数反而小;(4)在数轴上表示的有理数,右边的数总比左边的大;6、科学记数法:是指任何数记成a×10n的形式,其中用式子表示|a|的范围是0<|a|<10。
7、近似数与精确度:近似数:一个与实际数很接近的数,称为近似数;精确度:右边最后一位数所在的位数,就是精确到的数位。
二、有理数的运算法则1、有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
由此可得,互为相反数的两数相加的0;三个数相加先把前两个数相加,或先把后两个数相加,和不变。
2、有理数的减法法则:减去一个数等于加上这个数的相反数。
注意:一切加法和减法运算都可以统一成加法运算。
3、有理数的乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。
任何数同零相乘都得零。
4、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不为零的数都得零。
5、有理数混合运算的顺序:有理数混合运算中,先算乘方,再算乘除,最后算加减。
运算中,如果有括号,就先算括号里面的。
、6、有理数的运算律:交换律:a+b=b+a , ab=ba.结合律:(a+b)+c=a+(b+c) , (ab)c=a(bc).乘法对加法的分配律:a(b+c)=ab+ac.三、值得注意的几个问题1、数的范围扩大到有理数后,一定要注意考虑负数。
如不能认为“最小的整数是零”。
2、有理数都可以用数轴上的点表示;但数轴上的点不都表示有理数。
3、单独的一个数或字母,省略的指数是“1”,而不是零。
4、对负数或分数进行乘方运算要注意加括号。
如当a=-3时,a2=(-3)2=9;而不是a2=-32=-9。
5、有理数的运算要特别注意符号。
基础回顾与练习一、【正负数】有理数的分类:★☆▲_____________统称整数,试举例说明。
_____________统称分数,试举例说明。
____________统称有理数。
[基础练习]1☆把下列各数填在相应额大括号内:有理数有理数71,-,-789,25,0,-20,,-590,6·正整数集{…};·正有理数集{…};·负有理数集{…};·负整数集{…};·自然数集{…};·正分数集{…}·负分数集{…}2☆某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则元的意义是;如果这种油的原价是76元,那么现在的卖价是。
二、【数轴】规定了、、的直线,叫数轴[基础练习]1.☆如图所示的图形为四位同学画的数轴,其中正确的是()2.☆在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
4,-|-2|,,1,03.下列语句中正确的是()A.数轴上的点只能表示整数B.数轴上的点只能表示分数C.数轴上的点只能表示有理数D.所有有理数都可以用数轴上的点表示出来4.★①比-3大的负整数是_______;②已知m是整数且-4<m<3,则m为_______________。
③有理数中,最大的负整数是 ,最小的正整数是 。
最大的非正数是 。
④与原点的距离为三个单位的点有 个,他们分别表示的有理数是 和 。
5.★★在数轴上点A 表示-4,如果把原点O 向负方向移动1个单位,那么在新数轴上点A 表示的数是( ) ,三、【相反数】的概念像2和-2、-5和5、和这样,只有 不同的两个数叫做互为相反数。
0的相反数是 。
一般地:若a 为任一有理数,则a 的相反数为-a相反数的相关性质:1.相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O 的两边,并且到原点的距离相等。
2.互为相反数的两个数,和为0。
[基础练习]1.☆-5的相反数是 ;-(-8)的相反数是 ;- [+(-6)]= 0的相反数是 ; a 的相反数是 ;81 的相反数的倒数是_ _2.☆若a 和b 是互为相反数,则a+b=( )D.任意有理数3.★(1)如果a=-13,那么-a=______;(2)如果-a=,那么a=______;(3)如果-x=-6,那么x=______;(4)-x=9,那么x=______.4.★★已知a 、b 都是有理数,且|a|=a ,|b|=-b 、,则ab 是( )A .负数; B.正数; C.负数或零; D.非负数四、【绝对值】一般地,数轴上表示数a的点与原点的 叫做数a记作∣a ∣. 一个正数的绝对值是 ;一个负数的绝对值是它的 ;0的绝对值是 .[基础练习]1.☆—2的绝对值表示它离开原点的距离是 个单位,记作 .2.☆ |-8|= 。
-|-5|= 。
绝对值等于4的数是______。
3.☆绝对值等于其相反数的数一定是( )A .负数B .正数C .负数或零D .正数或零4.★7=x ,则x= ;7-=x ,则x=5.★如果a a 22-=-,则a 的取值范围是( )A .a >O B .a ≥O C .a ≤O D .a <O .6.★★如果3>a ,则3-a = ,a -3= .7.★★绝对值不大于11的整数有( )A .11个 B .12个个D .23个五、【有理数的运算】有理数加减法法则·先定符号,再计算,同号相加不变号;异号相加“大”减“小”,符号跟着“大数”跑;减负加正不混淆。
有理数乘除法法则·同号得 ,异号得 ,绝对值相乘(除)。
求几个相同因数的积的运算,叫做有理数的乘方。
即:a n =aa …a(有n 个a)[基础练习]1☆从运算上看式子a n,可以读作 ;从结果上看式子a n可以读作 .2★ 33= ;2)21( = ;-52= ;22的平方是 ; 3★下列各式正确的是( )=(-5)2 B.(-1)2013=-2013 C.(-1)2013-(-1)=0D.(-1)99-1=04★★下列说法正确的是( )A.如果b a >,那么22b a >B.如果22b a >,那么b a >C.如果b a >,那么22b a >D.如果b a >,那么b a >5★在2+32×(-6)这个算式中,存在着 种运算.请你们讨论、交流,上面这个式子应该先算 、再算 、最后算 .6▲有理数的运算: ①)]95(32[)3(2-+-⨯-②4)2(2)1(310÷-+⨯-③43)21(3)5(-⨯-- ④45113)2131(511÷⨯-⨯⑤]2)33()4[()10(222⨯+--+- ⑥33)32(942-⨯÷- ⑦)5(]24)1276185(1321[-÷⨯+--⑧)3()4()2(8102-⨯---⨯+-⑨1032)1()2181()5.0(25.0-⨯-+-÷- ⑩22)32(9)321(4)32(3-÷--⨯--⨯-7★★已知b=且,32,求b,4=a>aba+的值。
8★★某大楼地上共有12层,地下共有4层,每层高米,请用正负数表示这栋楼每层的楼层号,某人乘电梯从地下3层升至地上7层,电梯一共上了多少米五、【科学记数法】【近似数及精确度】把一个大于10的数记成a ×10n的形式(其中a是整数数位只有一位的数),叫做科学记数法.[基础练习]1☆用科学记数数表示:00= ;-1020= .2☆水星和太阳的平均距离约为km用科学记数法表示为 .3★120万用科学记数法应写成;万的原数是 .4★近似数万精确到 位;5★近似数精确到 , 6★×105精确到 位;7★.×105精确到千位是 .8★★某数有四舍五入得到,那么原来的数一定介于 和 之间.9★★用四舍五入法求30951的近似值(精确到百位),结果是 .本章精练一(内容:有理数)一、选择题(每题4分,共40分)1.有理数6的相反数是( ) C.61 61 2.如果向东走4千米记为+4千米,那么走了-2千米表示( )A.向北走了2千米B.向西走了2千米C.向南走了2千米D.向东走了2千米3.下列各式中,不正确的是( )(-16)>0 B.2.02.0-= C.7574->- D.06<-4.如果两个非零有理数的和为零,那么它们的商是( )C.+1D.±15.在数轴上,下面说法不正确...的是( )A.在两个有理中数绝对值大的离原点远B.在两个有理数中较大的在右边C.在两个有理数中,较大的离原点远D.在两个负有理数中,较大的离原点近6.若a与b互为相反数,则下列式子不成立的是( )A.0+b=a =-a-ba =-b C.0=7.一个有理数的相反数大于它本身,这个数是( )A.负有理数B. 零C.正有理数D.不可能存在8.下列说法:正确的是()(1)在+3和+4之间没有正数;(2)在0与-1之间没有负数;(3)在+1和+2之间有很多个正分数;(4)在和之间没有正分数,A.(3)B.(4)C.(1)(2)(3)D.(3)(4)9.某商店规定:用4个矿泉水空瓶可以换取矿泉水一瓶.小明现有16个矿泉水空瓶,若小明只用这16个矿泉水空瓶,且不再花钱,那么他最多可以换矿泉水( ) 瓶瓶瓶瓶10.下列叙述正确的是:()A.若ba=,则a=b B.若b,a>则a>bC.若a<b,则ba=,则ba< D.若b=a±二、填空题(每题4分,共20分)11.式子:-(-5)表示的意义是 .6的绝对值是 .12.-513.小于5的非负整数是 .14.数轴上离开原点5个单位的数是,其和为 .为最小的正整数,b为a的相反数,c为绝对值最小的数.则a-b-(-c)= .三、解答题(共40分)16.(10分)把下列各数填在相应的集合里:-5 +31 4 0 67 -7 -731. 正整数集合{ …} 负整数集合{ …} 非负数集合{ …} 负数集合{ …} 正数集合{ …} 17.(10分)计算:⑴-20+(-14)-(-18)-13 ⑵(-5 21)+(-821)-(+875)-(+272)1∣18.(10分)比较大小:-[-()]和-∣-319.(10分)某检修站检修线路,甲小组乘一辆汽车,约定向东为正,从A地出发到收工时,行走记录为(单位:千米):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.同时,乙小组也从A地出发,沿南北方向的公路检修线路,约定向北为正,行走记录为:-17,+9,-2,+8,+6,+9,-5,-1,+4,-7,-8.(1)分别计算收工时,甲、乙两组各在A地的什么方位分别距A 地多远(2)若每千米汽车耗油升,求出发到收工时两组各耗油多少升本章精练二(内容:有理数本章末)一、选择题(每题4分,共36分)1.在32)5(,5,)5(),5(-------中正数有( ) 个 个 个 个2.乘积)3()3()3()3(-⨯-⨯-⨯-记法正确的是( ) A.43- B.4)3(- C.4)3(+- D.4)3(--3.下列运算正确的是( )A.422=-B.4)2(2-=-C.6)2(3-=-D.9)3(2=-4.近似数×104的有效数字有( ) 个 个 个 个5.我国最长的河流长江全长约为6300千米,用科学记数法表示为( )×102千米 千米 千米 千米6.下列各对数中,数值相等的是( )与(-2)7 与(-3)2 ×23与-32×2 (-3)2与-(-2)37.将边长为1的正方形对折5次后,得到图形的面积是( ) 如果有5个有理数,其中至少有一个有理数是正数,且它们的积是负数,那么这五个因数中,负因数的个数是( )或4 和39.计算:(-2)100+(-2)101的结果是( ) B.-1 C.-2 D.-2100 二、填空题(每题4分,共20分) 10.计算-1÷9×91= .11.( )2=16, (-32)3= .12.若10032a a a a A ++++= ,则当a=1时,A= ;当a=-1时,A= .13.如果式子(x-8)2+3有最小值时,那么5x-30= . 14.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为1,p 是数轴到原点距离为1的数,那么122013++++-m abcdba cd p 的值是 . 三、解答题(共40分) 15.(共12分)计算:(1)()⨯⨯400 (2)-72+2⨯(-3)2+(-6)2)31(-÷16.(10分)一天小明和小冬利用温差来测量山峰的高度。