基于Matlab的AM振幅调制与解调仿真..(优.选)

合集下载

基于matlab的-AM-FM调制与解调报告

基于matlab的-AM-FM调制与解调报告

基于matlab的-AM-FM调制与解调报告AM调制与解调100%% AMµ÷ÖÆfigure('Name','Ðźŵ÷Öƹý³ÌÖв¨Ðμ°ÆäƵÆ×','NumberTitle','off')a0=1;f0=2000;fc=20000;fs=1000000;t=[1:0.000001:4];am1=0*cos(2*pi*f0*t); %µ÷ÖÆÐźÅam=a0+am1;t1=cos(2*pi*fc*t); %Ôز¨s_am=am.*t1;AM1=fft(am1); T1=fft(t1); S_AM=fft(s_am);f=(0:3000000)*fs/3000001-fs/2;subplot(3,2,1); plot(t(1:1000),am1(1:1000)); title('ÐÅÏ¢ÐźŲ¨ÐÎ');subplot(3,2,2); plot(f,fftshift(abs(AM1))); title('ÐÅÏ¢ÐźÅƵÆ×');subplot(3,2,3); plot(t(1:1000),t1(1:1000)); title('Ôز¨ÐźÅ');subplot(3,2,4); plot(f,fftshift(abs(T1))); title('Ôز¨ÐźÅƵÆ×');subplot(3,2,5); plot(t(1:1000),s_am(1:1000)); title('Òѵ÷ÐźÅ');subplot(3,2,6); plot(f,fftshift(abs(S_AM))); title('Òѵ÷ÐźÅƵÆ×');%²úÉúÔëÉùfigure('Name','Ìí¼ÓÔëÉù¼°´øͨÂ˲¨¹ý³Ì²¨Ðμ°ÆäƵÆ×','NumberTitle','off ');snr=5;y=awgn(s_am,snr);fcuts=[16000 17500 22500 24000];mags=[0 1 0];devs=[0.05 0.01 0.05];[n,Wn,beta,ftype]=kaiserord(fcuts,mags,devs,fs);hh=fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');[H,f]=freqz(hh,1,1024,fs);st_p=fftfilt(hh,y);Q=fft(st_p);Y=fft(y);f=(0:3000000)*fs/3000001-fs/2;subplot(2,2,1);plot(t(1500001:1501000),y(1500001:1501000));title('Ìí¼ÓÔëÉùºóÐźŲ¨ÐÎ');subplot(2,2,2);plot(f,fftshift(abs(Y)));title('Ìí¼ÓÔëÉùºóÐźÅƵÆ×');subplot(2,2,3);plot(t(1500001:1501000),st_p(1500001:1501000));title('´øͨÂ˲¨ºóÐźŲ¨ÐÎ');subplot(2,2,4); plot(f,fftshift(abs(Q)));title('´øͨÂ˲¨ºóÐźÅƵÆ×');%½âµ÷figure('Name','Ïà¸É½âµ÷ËùµÃ²¨Ðμ°ÆäƵÆ×','NumberTitle','off');ss_am=st_p.*t1;SS_AM=fft(ss_am)f=(0:3000000)*fs/3000001-fs/2;subplot(2,1,1);plot(t(1500001:1503000),ss_am(1500001:1503000));title( 'Ïà³ËÐźÅ');subplot(2,1,2); plot(f,fftshift(abs(SS_AM)));title('Ïà³ËÐźÅƵÆ×');fcuts1=[2500,30000];mags1=[1 0];devs1=[0.01 0.05];[n,Wn,beta,ftype]=kaiserord(fcuts1,mags1,devs1,fs);hh1=fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');[H,f]=freqz(hh1,1,1024,fs);m0=fftfilt(hh1,ss_am);M0=fft(m0);f=(0:3000000)*fs/3000001-fs/2;figuresubplot(2,1,1);plot(t(1500001:1501000),m0(1500001:1501000));title('½âµ÷ÐźÅ');subplot(2,1,2); plot(f,fftshift(abs(M0)));title('½âµ÷ÐźÅƵÆ×');11.0005 1.001-101信息信号波形-505x 1050126信息信号频谱11.0005 1.001-101载波信号-505x 1050126载波信号频谱11.00051.001-202已调信号-55x 105012x 106已调信号频谱2.52.50052.501-4-2024添加噪声后信号波形-505x 105051015x 105添加噪声后信号频谱2.52.50052.501-2024带通滤波后信号波形-55x 10500.511.526带通滤波后信号频谱50%% AMµ÷ÖÆ2.5 2.5005 2.501 2.5015 2.502 2.5025 2.503 2.5035-1012相乘信号-5-4-3-2-1012345x 1050510155相乘信号频谱2.52.50012.50022.50032.50042.50052.50062.50072.50082.5009 2.501-0.500.51解调信号-5-4-3-2-1012345x 1050510155解调信号频谱figure('Name','Ðźŵ÷Öƹý³ÌÖв¨Ðμ°ÆäƵÆ×','NumberTitle','off')a0=2;f0=2000;fc=20000;fs=1000000;t=[1:0.000001:4];am1=0*cos(2*pi*f0*t); %µ÷ÖÆÐźÅam=a0+am1;t1=cos(2*pi*fc*t); %Ôز¨s_am=am.*t1;AM1=fft(am1); T1=fft(t1); S_AM=fft(s_am);f=(0:3000000)*fs/3000001-fs/2;subplot(3,2,1); plot(t(1:1000),am1(1:1000)); title('ÐÅÏ¢ÐźŲ¨ÐÎ');subplot(3,2,2); plot(f,fftshift(abs(AM1))); title('ÐÅÏ¢ÐźÅƵÆ×');subplot(3,2,3); plot(t(1:1000),t1(1:1000)); title('Ôز¨ÐźÅ');subplot(3,2,4); plot(f,fftshift(abs(T1))); title('Ôز¨ÐźÅƵÆ×');subplot(3,2,5); plot(t(1:1000),s_am(1:1000)); title('Òѵ÷ÐźÅ');subplot(3,2,6); plot(f,fftshift(abs(S_AM))); title('Òѵ÷ÐźÅƵÆ×');%²úÉúÔëÉùfigure('Name','Ìí¼ÓÔëÉù¼°´øͨÂ˲¨¹ý³Ì²¨Ðμ°ÆäƵÆ×','NumberTitle','off ');snr=5;y=awgn(s_am,snr);fcuts=[16000 17500 22500 24000];mags=[0 1 0];devs=[0.05 0.01 0.05];[n,Wn,beta,ftype]=kaiserord(fcuts,mags,devs,fs);hh=fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');[H,f]=freqz(hh,1,1024,fs);st_p=fftfilt(hh,y);Q=fft(st_p);Y=fft(y);f=(0:3000000)*fs/3000001-fs/2;subplot(2,2,1);plot(t(1500001:1501000),y(1500001:1501000));title('Ìí¼ÓÔëÉùºóÐźŲ¨ÐÎ');subplot(2,2,2);plot(f,fftshift(abs(Y)));title('Ìí¼ÓÔëÉùºóÐźÅƵÆ×');subplot(2,2,3);plot(t(1500001:1501000),st_p(1500001:1501000));title('´øͨÂ˲¨ºóÐźŲ¨ÐÎ');subplot(2,2,4); plot(f,fftshift(abs(Q)));title('´øͨÂ˲¨ºóÐźÅƵÆ×');%½âµ÷figure('Name','Ïà¸É½âµ÷ËùµÃ²¨Ðμ°ÆäƵÆ×','NumberTitle','off');ss_am=st_p.*t1;SS_AM=fft(ss_am)f=(0:3000000)*fs/3000001-fs/2;subplot(2,1,1);plot(t(1500001:1503000),ss_am(1500001:1503000));title( 'Ïà³ËÐźÅ');subplot(2,1,2); plot(f,fftshift(abs(SS_AM)));title('Ïà³ËÐźÅƵÆ×'); fcuts1=[2500,30000];mags1=[1 0];devs1=[0.01 0.05];[n,Wn,beta,ftype]=kaiserord(fcuts1,mags1,devs1,fs);hh1=fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');[H,f]=freqz(hh1,1,1024,fs);m0=fftfilt(hh1,ss_am);M0=fft(m0);f=(0:3000000)*fs/3000001-fs/2;figuresubplot(2,1,1);plot(t(1500001:1501000),m0(1500001:1501000));title('½âµ÷ÐźÅ');subplot(2,1,2); plot(f,fftshift(abs(M0)));title('½âµ÷ÐźÅƵÆ×');11.0005 1.001-101信息信号波形-505x 1050126信息信号频谱11.0005 1.001-101载波信号-505x 1050126载波信号频谱11.00051.001-505已调信号-55x 105024x 106已调信号频谱2.52.50052.501-505添加噪声后信号波形-505x 1050123x 106添加噪声后信号频谱2.52.50052.501-4-2024带通滤波后信号波形-55x 105012346带通滤波后信号频谱0%% AMµ÷ÖÆ2.5 2.5005 2.501 2.5015 2.502 2.5025 2.503 2.5035-10123相乘信号-5-4-3-2-1012345x 10501236相乘信号频谱2.52.50012.50022.50032.50042.50052.50062.50072.50082.5009 2.50100.511.5解调信号-5-4-3-2-1012345x 10501236解调信号频谱figure('Name','Ðźŵ÷Öƹý³ÌÖв¨Ðμ°ÆäƵÆ×','NumberTitle','off')a0=10^100;f0=2000;fc=20000;fs=1000000;t=[1:0.000001:4];am1=0*cos(2*pi*f0*t); %µ÷ÖÆÐźÅam=a0+am1;t1=cos(2*pi*fc*t); %Ôز¨s_am=am.*t1;AM1=fft(am1); T1=fft(t1); S_AM=fft(s_am);f=(0:3000000)*fs/3000001-fs/2;subplot(3,2,1); plot(t(1:1000),am1(1:1000)); title('ÐÅÏ¢ÐźŲ¨ÐÎ');subplot(3,2,2); plot(f,fftshift(abs(AM1))); title('ÐÅÏ¢ÐźÅƵÆ×');subplot(3,2,3); plot(t(1:1000),t1(1:1000)); title('Ôز¨ÐźÅ');subplot(3,2,4); plot(f,fftshift(abs(T1))); title('Ôز¨ÐźÅƵÆ×');subplot(3,2,5); plot(t(1:1000),s_am(1:1000)); title('Òѵ÷ÐźÅ');subplot(3,2,6); plot(f,fftshift(abs(S_AM))); title('Òѵ÷ÐźÅƵÆ×');%²úÉúÔëÉùfigure('Name','Ìí¼ÓÔëÉù¼°´øͨÂ˲¨¹ý³Ì²¨Ðμ°ÆäƵÆ×','NumberTitle','off ');snr=5;y=awgn(s_am,snr);fcuts=[16000 17500 22500 24000];mags=[0 1 0];devs=[0.05 0.01 0.05];[n,Wn,beta,ftype]=kaiserord(fcuts,mags,devs,fs);hh=fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');[H,f]=freqz(hh,1,1024,fs);st_p=fftfilt(hh,y);Q=fft(st_p);Y=fft(y);f=(0:3000000)*fs/3000001-fs/2;subplot(2,2,1);plot(t(1500001:1501000),y(1500001:1501000));title('Ìí¼ÓÔëÉùºóÐźŲ¨ÐÎ');subplot(2,2,2);plot(f,fftshift(abs(Y)));title('Ìí¼ÓÔëÉùºóÐźÅƵÆ×');subplot(2,2,3);plot(t(1500001:1501000),st_p(1500001:1501000));title('´øͨÂ˲¨ºóÐźŲ¨ÐÎ');subplot(2,2,4); plot(f,fftshift(abs(Q)));title('´øͨÂ˲¨ºóÐźÅƵÆ×');%½âµ÷figure('Name','Ïà¸É½âµ÷ËùµÃ²¨Ðμ°ÆäƵÆ×','NumberTitle','off');ss_am=st_p.*t1;SS_AM=fft(ss_am)f=(0:3000000)*fs/3000001-fs/2;subplot(2,1,1);plot(t(1500001:1503000),ss_am(1500001:1503000));title( 'Ïà³ËÐźÅ');subplot(2,1,2); plot(f,fftshift(abs(SS_AM)));title('Ïà³ËÐźÅƵÆ×'); fcuts1=[2500,30000];mags1=[1 0];devs1=[0.01 0.05];[n,Wn,beta,ftype]=kaiserord(fcuts1,mags1,devs1,fs);hh1=fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');[H,f]=freqz(hh1,1,1024,fs);m0=fftfilt(hh1,ss_am);M0=fft(m0);f=(0:3000000)*fs/3000001-fs/2;figuresubplot(2,1,1);plot(t(1500001:1501000),m0(1500001:1501000));title('½âµ÷ÐźÅ');subplot(2,1,2); plot(f,fftshift(abs(M0)));title('½âµ÷ÐźÅƵÆ×');11.0005 1.001-101信息信号波形-505x 1050126信息信号频谱1 1.0005 1.001-101载波信号-505x 1050126载波信号频谱11.00051.001-101x 10100已调信号-55x 105012x 10106已调信号频谱2.52.5005 2.501-1-0.500.51x 10100添加噪声后信号波形-505x 105051015x 10105添加噪声后信号频谱2.52.5005 2.501-2-1012100带通滤波后信号波形-55x 10501106带通滤波后信号频谱FM 调制与解调%%FMfigure('Name','FMµ÷ÖƲ¨ÐÎÓëƵÆ×')2.5 2.5005 2.501 2.5015 2.502 2.5025 2.503 2.5035-50510x 1099相乘信号-5-4-3-2-1012345x 105051015105相乘信号频谱2.52.50012.50022.50032.50042.50052.50062.50072.50082.5009 2.5013.93.913.923.93x 1099解调信号-1-0.500.51x 105123105解调信号频谱f0=2000; fc=20000; fs=1000000; Am=1; kf=0.5; Tc=8; Ta=0.001; dt=0.000001;t=[0:1/fs:3];f=(0:length(t)-1)*fs/(length(t))-fs/2;fm0=cos(2*pi*f0*t);mt=fm0;%»ý·ÖÆ÷Éè¼Æw1=0;w2=0;for m=1:length(t)w1=mt(m)+w2;w2=mt(m)+w1;fi(m)=w1/(2*fs);endfi=fi*2*pi/max(abs(fi));I=cos(kf*fi);Q=sin(kf*fi);y1=Am*cos(2*pi*fc*t).*I-Am*sin(2*pi*fc*t).*Q;subplot(2,1,1);plot(t,y1);title('²¨ÐÎ')axis([1e-3 4e-3 -2 2]);Y1=fft(y1);subplot(2,1,2);plot(f,fftshift(abs(Y1))/1e6); title('ƵÆ×') %%Ôز¨ÆµÆ×axis([-4e4 4e4 0 1]);figure('Name','FMµ÷Öƺó¼ÓÔëÉù²¨ÐÎÓë½âµ÷ºó²¨ÐÎÒÔ¼°Â˳ýÖ±Á÷·ÖÁ¿ºóµÄ²¨ÐÎ')y1o=awgn(y1,40);subplot(3,1,1);plot(t,y1o); title('¼ÓÔëÉùºó²¨ÐÎ') %%¼ÓÔëÉùºóµÄÐźÅaxis([1e-3 4e-3 -2 2]);%%´øͨÂ˲¨KSband=2*(3+1)*f0;fcutsb=[fc-KSband-2000 fc-KSband fc+KSbandfc+KSband+2000]; %%½ÓÊÕ»úÇ°¶Ë´øͨÂ˲¨magsb=[0 1 0];devsb=[0.05 0.01 0.05];[nb,Wnb,betab,ftypeb]=kaiserord(fcutsb,magsb,devsb,fs);hhb=fir1(nb,Wnb,ftypeb,kaiser(nb+1,betab),'noscale'); %´øͨÂ˲¨Æ÷£»st_pb=fftfilt(hhb,y1o);subplot(3,1,2);st_pb=st_pb/1e6;plot(t,st_pb); title('´øͨÂ˲¨Æ÷ºóµÄ²¨ÐÎ')axis([1e-3 4e-3 -2e-6 2e-6]);%΢·ÖÆ÷Éè¼Æfor i=1:length(t)-1 %½ÓÊÕÐźÅͨ¹ý΢·ÖÆ÷´¦Àídiff_st_pb(i)=(st_pb(i+1)-st_pb(i))/dt;endsfm=abs(hilbert(diff_st_pb));subplot(3,1,2);plot(t,[sfm*20 0]);axis([1e-3 4e-3 0 4]);%%¸ôÖ±% KSbandh=2*(3+1)*f0;fcutsh=[0.01 3000];magsh=[0 1];devsh=[0.01 0.05];[nh,Wnh,betah,ftypeh]=kaiserord(fcutsh,magsh,devsh,fs);hhh=fir1(nh,Wnh,ftypeh,kaiser(nh+1,betah),'noscale');sfm_out=fftfilt(hhh,sfm*20);subplot(3,1,3);plot(t,[sfm_out 0]);title('¸ôÖ±ºóµÄ²¨ÐÎ')axis([1e-3 4e-3 -2 2]);11.522.533.54x 10-3-2-1012波形-4-3-2-101234x 10400.51频谱11.522.533.54x 10-3-202加噪声后波形11.522.53 3.54x 10-302411.522.533.54x 10-3-202隔直后的波形。

(完整word版)基于Matlab的AM振幅调制与解调仿真..

(完整word版)基于Matlab的AM振幅调制与解调仿真..

基于Matlab的AM振幅调制与解调仿真摘要:本次高频电子电路大作业的设计,我组所选的题目为振幅调制电路(AM)及解调。

在本课程设计报告中,首先说明了进行此次课程设计的目的、内容及要求;阐明了标准振幅调制与解调的基本原理以及操作方法,同时也对滤波电路的原理加以说明。

接着叙述了利用Matlab软件对振幅调制、解调以及滤波器等所设计编写的程序,并附上了调试后输出的载波信号、调制信号、AM已调信号及滤波前后的解调信号等的波形图和频谱图,另外还附上了滤波器的增益响应和双边带总功率与平均总功率之比。

报告的最后,是个人对本次大作业结果的分析、过程反思以及总结。

关键词:振幅调制解调AM Matlab仿真Abstract:In The high-frequency electronic circuit designing job, our group selected the topic as amplitude modulation circuit (AM) and demodulation. In this course design report, first explains the purpose, content and requirements of the curriculum design; clarify the basic principles and methods of operation standard amplitude modulation and demodulation, and also to illustrate the principles of the filter circuit. Then describes the use of Matlab and other amplitude modulation, demodulation and filter design program written, along with the carrier signal debugging output modulation signal, AMmodulated and demodulated signal waveform signal before and after filtering, etc. map and spectrum, also attached a total power and average power ratio of the total gain response and bilateral band filter. At the end of the report is to analyze the individual results of this large operation, process reflection and summary.Keywords: amplitude modulation, demodulation, Matlab simulation引言:无线通信系统中,信号通过一定的传输介质在发射机和接受机之间进行传送时,信号的原始形式一般不适合传输。

基于matlab的正交振幅调制与解调仿真分析文档

基于matlab的正交振幅调制与解调仿真分析文档

基于matlab的正交振幅调制与解调仿真分析文档it168文库文档会议文集图书全部 DOC PDF PPT XLS TXT我要上传当前已有1161330份文档首页分类浏览文集排行榜合作机构会议图书iPad客户端文库首页基于MATLAB的正交振幅调制与解调仿真分析.doc相关文档共94条,当前页显示 0-30基于MATLAB的正交振幅调制与解调仿真分析7>2013-03-19摘要:MATLAB由于其强大的功能而被广泛应用于很多工程技术领域,尤其在通信和信息处理领域更有其突出地位。

众所周知,在物理级的产品作出之前,先用MATLAB进行这种电子产品的输入输出以估计这种产品的性能好坏,从而可以看出什么地方需要从新设计,什么地方需要优化等来进一步提高系统的性能,因此,伴标签:QA 信号仿真 MATLAB 通信分类:网络通信-嵌入式开发贡献者:he97yuyu| 下载: 0次评分: 收藏到书房基于MATLAB的正交振幅调制与解调仿真分析2013-03-19摘要:MATLAB由于其强大的功能而被广泛应用于很多工程技术领域,尤其在通信和信息处理领域更有其突出地位。

众所周知,在物理级的产品作出之前,先用MATLAB进行这种电子产品的输入输出以估计这种产品的性能好坏,从而可以看出什么地方需要从新设计,什么地方需要优化等来进一步提高系统的性能,因此,伴标签:QA 信号仿真 MATLAB 通信分类:软件与测试-C/C++贡献者:OraBSD| 下载: 0次评分: 收藏到书房基于MATLAB模拟调制系统的仿真2013-03-20MATLAB模拟调制系统的仿真标签:调制系统 MATLAB分类:软件与测试调研报告贡献者:lo岁月静好ve| 下载: 0次评分: 收藏到书房MATLAB实现信号的调制与解调2012-07-20MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。

基于Matlab的AM振幅调制及解调仿真

基于Matlab的AM振幅调制及解调仿真

目录摘要: (2)1实验原理 (4)1.1调制 (4)1.2调幅电路分析 (4)2 MATLAB仿真 (5)2.1 载波信号 (5)2.1.1 仿真程序 (5)2.1.2仿真波形 (6)2.2调制信号 (6)2.2.1 仿真程序 (6)2.2.2仿真波形 (7)2.3 AM调制 (8)2.3.1 仿真程序 (8)2.3.2仿真波形 (9)2.4 AM波解调(包络检波法) (9)2.4.1 仿真程序 (9)2.4.2仿真波形 (10)2.5 AM波解调(同步乘积型检波法) (11)2.5.1 仿真程序 (11)2.5.2仿真波形 (12)2.6 AM波的功率 (14)2.6.1 仿真程序 (14)2.6.2仿真波形 (15)2.7 调制度m对AM调制的影响 (15)2.7.1 仿真程序 (15)2.7.2仿真波形 (17)3结果分析: (18)4总结: (19)基于Matlab的AM振幅调制及解调仿真摘要:本课程设计主要是为了进一步理解AM调制系统的构成及其工作原理,并能通过matlab软件来实现对AM调制系统的仿真,且通过对各个元件的参数进行不同的设置,来观察系统中各个模块的输出波形。

在课程设计中,我们将用到matlab仿真平台,学习AM调制原理,AM调制就是由调制信号去控制高频载波的幅度,使之随调制信号作线性变化的过程。

在波形上,幅度已调信号的幅度随基带信号的规律而呈正比地变化。

解调方法利用相干解调。

解调就是实现频谱搬移,通过相乘器与载波相乘来实现。

通过相干解调,通过低通滤波器得到解调信号。

相干解调时,接收端必须提供一个与接受的已调载波严格同步的本地载波,它与接受的已调信号相乘后,经低通滤波器取出低频分量,得到原始的基带调制信号。

利用Matlab仿真建立AM调制的系统模型,用Matlab仿真程序画出调制信号、载波、已调信号、相干解调之后信号的波形以及功率频谱密度,分析所设计系统性能。

关键字:AM调制,解调,Matlab仿真,滤波Abstract: This course is designed primarily to further understanding of the composition and working principle of AM modulation system , and through matlab software to achieve the AM modulation system simulation , and the parameters of the various components through different settings , to observe the system output waveforms of respective modules. Curriculum design, we will use matlab simulation platform , learning AM modulation principle , AM modulation is controlled by the modulation signal to the amplitude of the high frequency carrier , making the process with the modulated signal as a linear change. On the waveform , the amplitude of the amplitude modulated signal is a baseband signal with the law and is proportional to the change . Demodulation method using coherent demodulation. Demodulation is to move the spectrum , multiplied by multiplication with the carrier to achieve. By coherent demodulation , a demodulated signal obtained through the low -pass filter. The coherent demodulation , the receiver must be provided with a local carrier wave modulated carrier received strict synchronization , after it is multiplied with the received modulated signal , the low pass filter to remove low frequency components to get the original modulating baseband signal . Create a system model simulation using Matlab AM modulation , using Matlab simulation program to draw modulated signal carrier modulated signal waveform signal after coherent demodulation and the power spectral density analysis of the design of the system performance.Keywords:AM modulation, demodulation, Matlab simulation, filter1实验原理1.1调制所谓调制,就是在传送信号的一方将所要传送的信号附加在高频振荡上,再由天线发射出去。

基于MATLAB的AM信号的调制与解调

基于MATLAB的AM信号的调制与解调

基于MATLAB的AM信号的调制与解调(陕西理工学院物理与电信工程学院通信工程专业1203班,陕西汉中 723003)指导教师:井敏英[摘要]:本文主要的研究内容是了解AM信号的数学模型及调制方式以及其解调的方法。

不同的解调方法在不同的信噪比情况下的解调结果,那种方法更好,作出比较。

进行AM信号的调制与解调。

先从AM的调制研究,研究它的功能及在现实生活中的运用.其次研究AM的解调,以及一些有关的知识点,以及通过它在通信方面的运用更加深入的了解它。

从AM信号的数学模型及调制解调方式出发,得出AM调制与解调的框图和调制解调波形。

利用MATLAB编程语言实现对AM信号的调制与解调,给出不同信噪比情况下的解调结果对比。

[关键词]:AM信号;调制;解调;信噪比MATLAB。

Modulation and demodulation of AM signalbased on MATLAB(Grade 2012,Class 3,Major of Communication Engineering,School of Physics and Telecommunication Engineering of Shaanxi University of Technology,Hanzhong 723000,Shaanxi)Tutor: Jing Mingying[Abstract]: The main content of this paper is to understand the mathematical model of the AM signal and the modulation and the demodulation method. Demodulation different methods in different circumstances of the demodulation signal to noise ratio the results of methods that better, to make the comparison。

基于matlab的am信号的调制与解调

基于matlab的am信号的调制与解调

目录第一章绪论.....................................................................................................................................1 1.1 背景以及意义..................................................................................................................1 1.2 发展前景 (1)第二章AM 信号的原理以及特点.................................................................................................4 2.1 噪声模型 (4)2.1.1 噪声的分类 (4)2.1.2 本文噪声模型 (4)2.2 通用调制模型 (5)2.3.1 AM 信号数字模型以及特点 (6)8 AM 信号的非相干解调 (8)3.4 抗噪声性能的分析模型 (9)3.5 相干解调的抗噪声性能............................................................................................. . 9 3.6 非相干解调的抗噪声性能.. (11)3.6.1 大信噪比的情况 (11)3.6.2 小信噪比情况 (12)第四章仿真结果及结论 (13)参考文献(References) (18)致谢 (19)附录 (20)基于MATLAB 的AM 信号的调制与解调摘要: 摘要:现在的社会越来越发达,科学技术不断的在更新,在信号模拟电路里面经常要用到调制与解调,而AM 的调制与解调是最基本的,也是经常用到的.用AM 调制与解调可以在电路里面实现很多功能, 制造出很多有用又实惠的电子产品, 为我们的生活带来便利. 在我们日常生活中用的收音机也是采用了AM 调制方式,而且在军事民用领域都有十分重要的研究课题.本文主要的研究内容是了解AM 信号的数学模型及调制方式以及其方法.不同的解调方法在不同的信噪比情况下的解调结果,那种方法更好,作出比较.要求是进行双音及以上的AM 信号的调制与解调.先从AM 的调制研究,研究它的功能及在现实生活中的运用.其次研究AM 的解调,以及一些有关的知识点,以及通过它在通信方面的运用更加深入的了解它.从单音AM 信号的数学模型及调制解调方式出发,得出双音AM 信号的数学模型及其调制与框图调制解调波形.利用MATLAB 编程语言实现对双音AM 信号的调制与解调,给出不同信噪比情况下的解调结果对比. 关键词:AM 信号,调制,解调,信噪比,MA TLAB 关键词第二章AM 信号的原理以及特点2.2 通用调制模型从理论上来说,各种信号都可以用正交调制的方法来实现,其时域形式都可以表示为: s (t ) = I (t ) cos(ω0t ) + Q(t ) sin(ω0t ) 若调制信号在数字域上实现时要对式(2.2.1)进行数字化: (2.2.1) nω nω s (n) = I (n) cos 0 + Q(n) sin 0 ωs ωs (2.2.2) 从式(2.2.1)和式(2.2.2)可以看出, 调制信号的信息都应该包括在I (t ) 和Q (t ) 内. 2.2.1 图给出了调制信号的正交调制框图. 本文规定所有调制信号所调制时所用载波的初始相位均为0, 在后面的分析中不再另作说明. cos(ω0t ) 信源I 多相滤波相乘相加信源Q 多相滤波相乘sin(ω0t ) 图2.2.1 调制信号正交调制框图5 2.3 AM 信号的调制原理2.3.1 AM 信号数字模型以及特点AM 是指调制信号去控制高频载波的幅度,使其随调制信号呈线性变化的过程.AM 信号的调制原理模型如下[6]: 图 2.3.1 AM 信号的调制原理模型M(t)为基带信号,它可以是确知信号,也可以是随机信号,但通常认为它的平均值为0. 载波为 C ( t ) = A0 cos( w C t + ¢0 ) 上式中, A0 为载波振幅, Wc 为载波角频率0 为载波的初始相位. 2.3.2 AM 信号的波形和频谱特性(2.3.1) 虽然实际模拟基带信号m(t)是随机的,但我们还是从简单入手, 先考虑m(t)是确知信号的傅氏频谱,然后在分析m(t)是随机信号时调幅信号的功率谱密度. 可知[7] S AM = [ A0 + m( t )]cosw c t = A0 cosw c t + m( t )cosw c t 设m(t)的频谱为M(w) ,由傅氏变换的理论可得已调信号(2.3.2) 1 S AM ( w ) = лA 0 [δ(w - w c ) + δ(w + w c )] + [ M (w - w c ) + M (w + w c )] 2 AM 的波形和相应的频谱图如下(2.3.3) 6 图2.3.2 AM 信号的时域波形及其频谱可以看出,第一:AM 的频谱与基带信号的频谱呈线性关系,只是将基带信号的频谱搬移,并没有产生新的频谱成分,因此AM 调制属于线性调制;第二:AM 信号波形的包络与基带信号成正比,所以AM 信号的解调即可以采用相干解调,也可以采用非相干解调(包络检波) .第三:AM 的频谱中含有载频和上,下两个边带,无论是上边带还是下边带,都含有原调制信号的完整信息,股已调波形的带宽为原基带信号带宽的两倍,即BAM = 2 f 其中f H 为调制信号的最高频率. H (2.3.4) 7第三章AM 信号的解调原理以及特点3.1 AM 信号的解调原理及方式解调是将位于载波的信号频谱再搬回来,并且不失真的恢复出原始基带信号. 解调的方式有两种[6]:相干解调与非相干解调.相干解调适用于各种线性调制系统,非相干解调一般适用幅度调制(AM)信号.3.2 AM 信号的相干解调所谓相干解调是为了从接受的已调信号中, 不失真地恢复原调制信号, 要求本地载波和接收信号的载波保证同频同相.相干载波的一般模型如下: 图 3.2.1 AM 信号的相干解调原理框图将已调信号乘上一个与调制器同频同相的载波,得S AM ( t) cosw c t = [ A0 + m(t )] cos 2 wc t 1 1 = [ A0 + m(t )] + [ A0 + m(t )] cos 2 wc t 2 2 原始的调制信号(3.2.1) 由上式可知,只要用一个低通滤波器,就可以将第1项与第2项分离,无失真的恢复出1 M 0 (T ) = [ A0 + M (T )] 2 不到满足,则会破坏原始信号的恢复.3.3 AM 信号的非相干解调(3.2.2) 相干关键是必须产生一个与调制器同频同相位的载波. 如果同频同相位的条件得所谓非相干解调是在接收端解调信号时不需要本地载波, 而是利用已调信号中的包络信号来恢复原基带信号[7].因此,非相干解调一般只适用幅度调制(AM)系统.忧郁包络解调器电路简单,效率高,所以几乎所有的幅度调制(AM)接收机都采用这种电路.如下为串联型包络检波器的具体电路. 图 3.3.1 AM 信号的非相干解调原理8 当RC 满足条件1 w c ≤ RC ≤ 1 w h 时,包络检波器的输出基本与输入信号的包络变化呈线性关系,即m(t) A0 + m(t) = o 其中, A0 ≥ m(t) .隔去直流后就得到原信号m(t ) max3.4 抗噪声性能的分析模型(3.3.1) 各种线性已调信号在传输过程中不可避免地要受到噪声的干扰, 为了讨论问题的简单起见,我们这里只研究加性噪声对信号的影响.因此,接收端收到的信号是发送信号与加性噪声之[8]. 由于加性噪声只对已调信号的接收产生影响, 因而调制系统的抗噪声性能主要用解调器的抗噪声性能来衡量. 为了对不同调制方式下各种解调器性能进行度量, 通常采用信噪比增益G(又称调制制度增益)来表示解调器的抗噪声性能,即[9] G= 输出信噪比S 0 N 0 = 输入信噪比S i N i (3.4.1) 有加性噪声时解调器的数学模型如图图3.4.1 AM 信号的解调原理图图中S m (t ) 为已调信号,n(t)为加性高斯白噪声. S m (t ) n(t)首先经过一带通滤波器, 滤出有用信号,滤除带外的噪声.经过带通滤波器后到达解调器输入端的信号为S m (t ) ,噪声为高斯窄带噪声n i (t ) ,显然解调器输入端的噪声带宽与已调信号的带宽是相同的.最后经解调器解调输出的有用信号为m 0 (t ) ,噪声为n0 (t ) ..5 相干抗噪声性能各种线性调制系统的相干解调模型如下图所示. 9 图3.5.1 线性调制系统的相干解调模型图中S m (t ) 可以是各种调幅信号,如AM,DSB,SSB VSB,带通滤波器的带宽等于已调信号带宽[10].下面讨论各种线性调制系统的抗噪声性能[11]. AM 信号的时域表达式为S AM ( t ) = [ A0 + m( t )]cosw c t 通过分析可得AM 信号的平均功率为(3.5.1) ( S i ) AM = A02 m 2 ( t ) + 2 2 (3.5.2) 又已知输入功率N i = n 0 B , 其中B 表示已调信号的带宽. 由此可得AM 信号在解调器的输入信噪比为( S i N i ) AM = AM 信号经相干解调器的输出信号为2 A02 + m 2 ( t ) A0 + m 2 ( t ) = 2n 0 B AM 4n 0 f H (3.5.3) m 0 (t) = 因此解调后输出信号功率为1 m( t ) 2 1 2 m (t ) 4 (3.5.4) 2 ( S 0 ) AM = m 0 ( t ) = (3.5.5) 在上图中输入噪声通过带通滤波器之后,变成窄带噪声n i ( t ) ,经乘法器相乘后的输出噪声为n p (t) = n i (t)cosw c t = [n c (t)cosw c t-n s (t)sinw c t]cosw c t = 经LPF 后, 1 1 n c (t) + [nc (t)cos2w c t-n s (t)sin2w c t] 2 2 1 n c (t ) 2 (3.5.6) n 0 (t) = 因此解调器的输出噪声功率为(3.5.7) 10 2 N 0 = n 0 (t) = 1 2 1 n c (t ) = N i 4 4 m 2 (t) m 2 (t ) = n0B 2n 0 f H (3.5.8) 可得AM 信号经过解调器后的输出信噪比为( S 0 N 0 ) AM = (3.5.9) 由上面分析的解调器的输入,输出信噪比可得AM 信号的信噪比增益为G AM =3.6 非相干抗噪声性能S0 N 0 2m 2 ( t ) = Si N i A02 + m 2 ( t ) (3.5.10) 只有AM 信号可以采用非相干解调[12].实际中,AM 信号常采用包络检波器解调,有噪声时包络检波器的数字模型如下: 图 3.6.1 有噪声时包络检波器的数字模型设包络检波器输入信号S m ( t ) 为S m ( t ) = [ A0 + m( t )]cosw c t ,其中A0 ≥ m( t ) max 输入噪声n i ( t ) 为(3.6.1) ni ( t ) = n c ( t )cosw c t - n s ( t )sinw c t 显然,解调器输入信噪功率(3.6.2) A02 m 2 ( t ) Si = +2 2 噪声功率(3.6.3) N i = n i2 ( t ) = n 0 B 3.6.1 大信噪比的情况(3.6.4) 所谓大信噪比是指输入信号幅度远大于噪声幅度[13].即满足条件A0 + m(t) n i (t) 由此可知,包络检波器输出的有用信号是m(t) ,输出噪声是n c (t) ,信号与噪声是分开的. 直流成分A0 可被低通滤波器滤除.故输出的平均信号功率及平均噪声功率分别为11 S0 = m 2 (t) 2 N 0 = n c ( t ) = n i2 ( t ) = n 0 B (3.6.5) 于是,可以得到G AM S0 N 0 2m 2 ( t ) = = Si N i A02 + m 2 ( t ) (3.6.7) 此结果与相干解调时得到的噪声增益一致.可见在大噪声比情况下,AM 信号包络检波器的性能几乎与相干解调性能相同. 3.6.2 小信噪比情况所谓小信噪比是指噪声幅度远大于信号幅度.在此情况下,包络检波器会把有用信号扰乱成噪声,即有用信号"淹没"在噪声中,这种现象通常称为门限效应.进一步说,所谓门限效应, 就是当包络检波器的输入信噪比降低到一个特定的数值后, 检波器输出信噪比出现急剧恶化的一种现象[14-16]. 小信噪比输入时,包络检波器输出信噪比计算很复杂,而且详细计算它一般也无必要. 12。

利用MATLAB实现信号的AM调制与解调

利用MATLAB实现信号的AM调制与解调

郑州轻工业学院课程设计任务书题目利用MATLAB实现信号的AM调制与解调专业、班级电子信息工程级班学号姓名主要内容、基本要求、主要参考资料等:主要内容:利用MATLAB对信号()()⎪⎩⎪⎨⎧≤=其他,0t,1002ttSatm进行AM调制,载波信号频率为1000Hz,调制深度为0.5。

t0=0.2;首先在MATLAB中显示调制信号的波形和频谱,已调信号的波形和频谱,比较信号调制前后的变化。

然后对已调信号解调,并比较解调后的信号与原信号的区别。

基本要求:1、掌握利用MATLAB实现信号AM调制与解调的方法。

2、学习MATLAB中信号表示的基本方法及绘图函数的调用,实现对常用连续时间信号的可视化表示。

3、加深理解调制信号的变化;验证信号调制的基本概念、基本理论,掌握信号与系统的分析方法。

主要参考资料:1、王秉钧等. 通信原理[M].北京:清华大学出版社,2006.112、陈怀琛.数字信号处理教程----MATLAB释义与实现[M].北京:电子工业出版社,2004.完成期限:2014.6.9—2014.6.13指导教师签名:课程负责人签名:2014年6月5日目录摘要 (1)1.matlab简介 (2)1.1matlab基本功能 (2)1.2matlab应用 (2)2.系统总体设计方案 (4)2.1调制信号 (4)2.1.1 matlab实现调制信号的波形 (4)2.1.2 matlab实现调制信号的频谱 (4)2.1.3 matlab实现载波的仿真 (5)2.2信号的幅度调制 (6)2.2.1信号的调制 (6)2.2.2幅度调制原理 (6)2.2.3 matlab实现双边带幅度调制 (8)2.2.4 matlab实现已调信号的频谱图 (8)2.2.5 幅度调制前后的比较 (9)2.3已调信号的解调 (9)2.3.1 AM信号的解调原理及方式 (9)2.3.2 matlab实现已调信号的解调 (11)2.3.3信号解调前后的比较 (12)结论与展望 (13)参考文献 (14)附录 (15)摘要现在的社会越来越发达,科学技术不断的在更新,在信号和模拟电路里面经常要用到调制与解调,而信号幅度调制与解调是最基本,也是经常用到的。

基于MATLAB的AM信号的调制与解调

基于MATLAB的AM信号的调制与解调

基于MATLAB的AM信号的调制与解调(陕西理工学院物理与电信工程学院通信工程专业1203班,陕西汉中723003)指导教师:井敏英[摘要]:本文主要的研究内容是了解AM信号的数学模型及调制方式以及其解调的方法。

不同的解调方法在不同的信噪比情况下的解调结果,那种方法更好,作出比较。

进行AM信号的调制与解调。

先从AM的调制研究,研究它的功能及在现实生活中的运用。

其次研究AM的解调,以及一些有关的知识点,以及通过它在通信方面的运用更加深入的了解它。

从AM信号的数学模型及调制解调方式出发,得出AM调制与解调的框图和调制解调波形。

利用MA TLAB编程语言实现对AM 信号的调制与解调,给出不同信噪比情况下的解调结果对比。

[关键词]:AM信号;调制;解调;信噪比MATLAB.Modulation and demodulation of AM signalbased on MATLAB(Grade 2012,Class 3,Major of Communication Engineering,School of Physics and Telecommunication Engineering of Shaanxi University of Technology,Hanzhong 723000,Shaanxi)Tutor: Jing Mingying[Abstract]: The main content of this paper is to understand the mathematical model of the AM signal and the modulation and the demodulation method. Demodulation different methods in different circumstances of the demodulation signal to noise ratio the results of methods that better, to make the comparison. Requirement is more than double the sound and the AM signal modulation and demodulation. AM modulation first study of its function and in real life use. AM demodulation followed by research, as well as some related knowledge, as well as through its use of communications more in-depth understanding of it. AM signal from the tone of the mathematical model and the modulation and demodulation methods,the two-tone AM signal to draw a mathematical model and the block diagram of modulation and demodulation and modulation and demodulation waveforms. MATLAB programming language to use to achieve the two-tone AM signal modulation and demodulation, given the different circumstances of the demodulation signal to noise ratio compared the results.[Keywords]: AM signal, Modulation, Demodulation, Noise ratio signal, MATLAB目录1.绪论背景以及意义现在的社会越来越发达,科学技术不断的在更新,在信号和模拟通信的中心问题是要把载有消息的信号经系统加工处理后,送入信道进行传送,从而实现消息的相互传递。

基于MATLAB的AM信号的调制与解调

基于MATLAB的AM信号的调制与解调

基于MATLAB的AM信号的调制与解调(陕西理工学院物理与电信工程学院通信工程专业1203班,陕西汉中723003)指导教师:井敏英[摘要]:本文主要的研究内容是了解AM信号的数学模型及调制方式以及其解调的方法。

不同的解调方法在不同的信噪比情况下的解调结果,那种方法更好,作出比较。

进行AM信号的调制与解调。

先从AM的调制研究,研究它的功能及在现实生活中的运用。

其次研究AM的解调,以及一些有关的知识点,以及通过它在通信方面的运用更加深入的了解它。

从AM信号的数学模型及调制解调方式出发,得出AM调制与解调的框图和调制解调波形。

利用MA TLAB编程语言实现对AM 信号的调制与解调,给出不同信噪比情况下的解调结果对比。

[关键词]:AM信号;调制;解调;信噪比MATLAB.Modulation and demodulation of AM signalbased on MATLAB(Grade 2012,Class 3,Major of Communication Engineering,School of Physics and Telecommunication Engineering of Shaanxi University of Technology,Hanzhong 723000,Shaanxi)Tutor: Jing Mingying[Abstract]: The main content of this paper is to understand the mathematical model of the AM signal and the modulation and the demodulation method. Demodulation different methods in different circumstances of the demodulation signal to noise ratio the results of methods that better, to make the comparison. Requirement is more than double the sound and the AM signal modulation and demodulation. AM modulation first study of its function and in real life use. AM demodulation followed by research, as well as some related knowledge, as well as through its use of communications more in-depth understanding of it. AM signal from the tone of the mathematical model and the modulation and demodulation methods, the two-tone AM signal to draw a mathematical model and the block diagram of modulation and demodulation and modulation and demodulation waveforms. MATLAB programming language to use to achieve the two-tone AM signal modulation and demodulation, given the different circumstances of the demodulation signal to noise ratio compared the results.[Keywords]: AM signal, Modulation, Demodulation, Noise ratio signal, MATLAB目录1.绪论 (1)1.1 背景以及意义 (1)1.2 发展前景 (1)2. AM信号调制原理以及特点 (3)2.1 噪声模型 (3)2.1.1 噪声的分类 (3)2.1.2 本文噪声模型 (3)2.2 通用调制模型 (4)2.3 AM信号的调制原理 (4)2.3.1 AM信号数字模型以及特点 (4)2.3.2 AM信号的波形和频谱特性 (5)3. AM信号的解调原理以及特点 (6)3.1 AM信号的解调原理及方式 (6)3.2 AM信号的相干解调 (6)3.3 AM信号的非相干解调 (6)4. 抗噪声性能的分析模型 (7)4.1 相干解调的抗噪声性能 (7)4.2非相干解调的抗噪声性能 (9)4.3小信噪比情况 (9)5. AM调制与解调的仿真 (9)5.1 AM调制 (9)5.1.1 建立仿真模型 (9)5.1.2 参数设置 (10)5.1.3 仿真波形图 (12)5.2 AM信号的解调仿真 (13)5.2 .1AM相干解调模型仿真 (13)5.2.2参数设置 (13)5.2.3 仿真波形图 (14)5.2.4相干解调抗噪声性能分析 (15)6.AM信号的频谱分析 (16)7.总结 (20)致谢 (21)参考文献 (22)1.绪论1.1 背景以及意义现在的社会越来越发达,科学技术不断的在更新,在信号和模拟通信的中心问题是要把载有消息的信号经系统加工处理后,送入信道进行传送,从而实现消息的相互传递。

基于Matlab的AM调制系统仿真综述

基于Matlab的AM调制系统仿真综述

基于Matlab的AM调制系统仿真摘要:调制(modulation)就是对信号源的信息进行处理加到载波上,使其变为适合于信道传输的形式的过程,就是使载波随信号而改变的技术。

基带信号往往不能作为传输信号,因此必须把基带信号转变为一个相对基带频率而言频率非常高的信号以适合于信道传输。

这个信号叫做已调信号,而基带信号叫做调制信号。

调制是通过改变高频载波即消息的载体信号的幅度、相位或者频率,使其随着基带信号幅度的变化而变化来实现的。

其中正弦载波幅度随调制信号而变化的调制,简称调幅(AM)。

Abstract:Modulation (modulation) is the source of information for processing to the carrier, make it into asuitable form of channel transmission process, is the technology of carrier change according to the signal.Often cannot transmit signal as a base band signal, therefore must convert baseband signal into a very high frequency relative to the baseband frequency signal suitable for transmission.This signal is called a modulated signal, and the baseband signal is called modulation signal.High frequency carrier wave is modulated by changing the carrier of the message signal amplitude, phase, or frequency, to make it as the change of baseband signal amplitude changes.The sine carrier amplitude varies with the modulation signal modulation, hereinafter referred to as amplitude modulation (AM).关键词:调制标准调制 AM MATLAB仿真一,引言:正弦载波幅度随调制信号而变化的调制,简称调幅(AM)。

基于MATLAB的AM调制及解调系统仿真解析

基于MATLAB的AM调制及解调系统仿真解析

基于MATLAB的AM调制及解调系统仿真摘要:振幅调制、解调电路是信号在发射机和接收机之间进行传送时的信号处理电路。

标准振幅调制与解调电路实际上是完成信号频谱的线性搬移,以便于信号的传送。

MATLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,具有强大的软件仿真建模能力,可通过MATLAB建立完整的AM调制、解调系统的仿真模型,描绘出信号在调制与解调过程的波形变化,探究调制解调的影响因素,以便于更好的了解AM调制与解调的过程。

关键词:MATLAB AM 调制解调Abstract:the amplitude modulation and demodulation circuit is the signals between the transmitter and receiver of the signal processing circuit. Standard of amplitude modulation and demodulation circuit is actually the complete spectrum of linear move, so that the transfer of a signal. MATLAB is a kind of for algorithm development, data visualization, data analysis and numerical calculation of senior technical computing language and interactive environment, is a powerful software simulation modeling ability, can build complete AM modulation and demodulation system by MATLAB, a simulation model of describing the waveform of the signal in the modulation and demodulation process changes, to explore the influencing factors of modem, so as to better understand the AM modulation and demodulation process.Keywords:MATLAB AM modulation demodulation1.引言在无线电技术中,调制与解调占有十分重要的地位。

基于matlab的am信号的调制与解调

基于matlab的am信号的调制与解调

通信专业课程设计一(论文)太原科技大学课程设计(论文)设计(论文)题目:基于MATLAB的AM信号的调制与解调姓名张壮阔学号 200822080132班级通信082201H学院华科学院指导教师郑秀萍2011年12 月23 日太原科技大学课程设计(论文)任务书学院(直属系):华科学院电子信息工程系时间:2011年12月9日学生姓名张壮阔指导教师郑秀萍设计(论文)题目基于MATLAB的AM信号的调制与解调主要研究内容1.通过满调幅情况下的,欠调幅情况下的以及过调幅情况下的已调的AM信号波形,研究双音信号的调制。

2.通过信噪比为-5dB时的过调幅情况下,满调幅情况下的AM 信号在信噪比为-5dB,0dB和5dB情况下的相干解调波形,研究双音信号的解调。

研究方法基于MATLAB的波形模拟系统,模拟需要的各种情况下的波形情况。

主要技术指标(或研究目标) 1、基于MATLAB的波形模拟系统的建立;2、AM信号的调制与解调。

教研室意见教研室(负责人)签字:年月日目录通信专业课程设计一(论文) (1)太原科技大学课程设计(论文)任务书 (2)第1章绪论.................................................................................................................................................... - 2 -1.1 AM信号调制解调的背景、意义和发展前景.............................................................................. - 2 -1.2 本文研究的主要内容..................................................................................................................... - 2 -第2章AM信号调制解调的原理以及特点 .................................................................................................... - 4 -2.1 噪声模型......................................................................................................................................... - 4 -2.1.1噪声的分类........................................................................................................................... - 4 -2.1.2本文噪声模型....................................................................................................................... - 4 -2.2 通用调制模型................................................................................................................................. - 5 -2.3 AM信号的调制原理...................................................................................................................... - 6 -2.4 AM信号的解调原理及方式.......................................................................................................... - 6 -2.5 抗噪声性能的分析模型................................................................................................................. - 6 -2.6 相干解调的抗噪声性能.............................................................................................................. - 7 -第3章基于双音信号的AM调制与解调的仿真及结论 .............................................................................. - 9 -3.1 设定的双音信号............................................................................................................................. - 9 -3.2基于双音信号的AM调解与解调的仿真结果......................................................................... - 9 -参考文献........................................................................................................................................................ - 14 -附录.............................................................................................................................................................. - 17 -基于MATLAB的AM信号的调制与解调第1章绪论1.1 AM信号调制解调的背景、意义和发展前景现在的社会越来越发达,科学技术不断的在更新,在信号和模拟通信的中心问题是要把载有消息的信号经系统加工处理后,送入信道进行传送,从而实现消息的相互传递。

基于Matlab的模拟(AM、FM、PM)调制系统仿真

基于Matlab的模拟(AM、FM、PM)调制系统仿真

通信系统模拟调制系统仿真一 课题内容 AM FM PM 调制 二 设计要求1.掌握AM FM PM 调制和解调原理。

2.学会Matlab 仿真软件在AM FM PM 调制和解调中的应用。

3.分析波形及频谱1.AM 调制解调系统设计1.振幅调制产生原理所谓调制,就是在传送信号的一方将所要传送的信号附加在高频振荡上,再由天线发射出去。

这里高频振荡波就是携带信号的运载工具,也叫载波。

振幅调制,就是由调制信号去控制高频载波的振幅,直至随调制信号做线性变化。

在线性调制系列中,最先应用的一种幅度调制是全调幅或常规调幅,简称为调幅(AM )。

在频域中已调波频谱是基带调制信号频谱的线性位移;在时域中,已调波包络与调制信号波形呈线性关系。

设正弦载波为)cos()(0ϕω+=t A t c c式中,A 为载波幅度;c ω为载波角频率;0ϕ为载波初始相位(通常假设0ϕ=0).调制信号(基带信号)为)(t m 。

根据调制的定义,振幅调制信号(已调信号)一般可以表示为)cos()()(t t Am t s c m ω=设调制信号)(t m 的频谱为)(ωM ,则已调信号)(t s m 的频谱)(ωm S :)]()([2)(c c m M M AS ωωωωω-++=2.调幅电路方案分析标准调幅波(AM )产生原理调制信号是只来来自信源的调制信号(基带信号),这些信号可以是模拟的,亦可以是数字的。

为首调制的高频振荡信号可称为载波,它可以是正弦波,亦可以是非正弦波(如周期性脉冲序列)。

载波由高频信号源直接产生即可,然后经过高频功率放大器进行放大,作为调幅波的载波,调制信号由低频信号源直接产生,二者经过乘法器后即可产生双边带的调幅波。

设载波信号的表达式为t c ωcos ,调制信号的表达式为t A t m m m ωcos )(= ,则调幅信号的表达式为t t m A t s c AM ωcos )]([)(0+=图5.1 标准调幅波示意图 3.信号解调思路从高频已调信号中恢复出调制信号的过程称为解调(demodulation ),又称为检波(detection )。

基于MATLAB的模拟调制系统仿真与测试(AM调制)

基于MATLAB的模拟调制系统仿真与测试(AM调制)

《通信原理设计报告》题目:基于MATLAB的模拟调制系统仿真与测试摘要在通信技术的发展中,通信系统的仿真是一个重点技术,通过调制能够将信号转化成适用于无线信道传输的信号。

在模拟调制系统中最常用最重要的调制方式是用正弦波作为载波的幅度调制和角度调制。

在幅度调制中,文中以调幅、双边带和单边带调制为研究对象,从原理等方面阐述并进行仿真分析;在角度调制中,以常用的调频和调相为研究对象,说明其调制原理,并进行仿真分析。

利用MATLAB下的Simulink工具箱对模拟调制系统进行仿真,并对仿真结果进行时域及频域分析,比较各个调制方式的优缺点,从而更深入地掌握模拟调制系统的相关知识,通过研究发现调制方式的选取通常决定了一个通信系统的性能。

关键词模拟调制;仿真;Simulink目录第一章绪论 (1)1.1 引言 (1)1.2 关键技术 (1)1.3 研究目的及意义 (2)1.4 本文工作及内容安排 (2)第二章模拟调制原理 (3)2.1 幅度调制原理 (3)2.1.1 AM调制 (4)第三章基于Simulink的模拟调制系统仿真与分析 (6)3.1 Simulink工具箱简介 (6)3.2 幅度调制解调仿真与分析 (8)3.2.1 AM调制解调仿真及分析 (8)第四章总结 (12)4.1 代码 (13)4.2 总结 (14)第一章绪论1.1引言在通信技术的发展中,通信系统的仿真是一个技术重点。

通常情况下,调制可以分为模拟调制和数字调制。

在模拟调制中,调制信号为连续的信号,而在数字调制中调制信号为离散信号。

调制对通信系统有着非常重要的作用。

经过调制,不仅能够实现频谱的搬移,把调制信号的频谱搬移到其所需要的位置上,从而使调制信号被转换成适合于信道传输或利于信道多路复用的已调制信号,而且它对于系统传输的可靠性和有效性有着非常大的影响和作用[1]。

调制方式的选取直接影响了一个通信系统的性能。

在模拟通信系统中最常用最重要的调制方式是用正弦波作为载波的幅度调制和角度调制。

基于matlab编程和simulink仿真的AM调制与解调解读

基于matlab编程和simulink仿真的AM调制与解调解读

东北大学秦皇岛分校计算机与通信工程学院综合课程设计设计题目专业名称通信工程班级学号学生姓名指导教师设计时间2013.12.30~2014.1.15课程设计任务书专业:通信工程学号:学生姓名(签名):设计题目:基于simulink和matlab编程的AM调制与解调一、设计实验条件AM调制与解调实验室二、设计任务及要求1.熟悉使用matlab和simulink软件环境及使用方法,包括函数、原理和方法的应用;2.熟悉AM信号的调制和解调方法;3.调制出AM信号的时域波形图和频谱图;4.定性的分析高斯白噪声对于信号波形的影响;三、设计报告的内容1.设计题目与设计任务AM调制与解调电路的实现及调制性能分析2.前言利用matlab中的建模仿真工具Simulink对通信原理实验进行仿真,随着通信技术的发展日新月异,通信系统也日趋复杂,在通信通信系统的设计研发过程中,软件仿真已成为不可缺少的一部分,电子设计自动化EDA技术已成为电子设计的潮流。

随着信息技术的不断发展电子EDA仿真技术也在突飞猛进之中,涌现出了许多功能强大的电子仿真软件,如Workbeench、Protel、Systemview、Matlab等。

许多知名IT企业其实在产品开发阶段也是应用仿真软件进行开发,虚拟实验技术发展迅速,应用领域广泛,一些在现实世界无法开展的科研项目可借助于虚拟实验技术完成,例如交通网的智能控制,军事上新型武器开发等。

3.设计主体3.1实验步骤:(1)产生AM调制信号;(2)对信号进行调制,产生调制信号;(3)绘制调制及解调时域图、频谱图;(4)改变采样频率后,绘制调制及解调信号的时域图、频谱图;(5)加上高斯噪声,绘制调制及解调的时域图和频谱图,分析噪声对调制信号和解调信号的影响。

3.2 AM 调制原理调制信号是指来自信源的的信号,又称基带信号,这些信号可以是模拟信号的也可以是数字信号。

调制所使用的高频振荡信号成为载波,可以是正弦波,也可以是非正选波。

基于matlab的 AM,FM调制与解调报告

基于matlab的 AM,FM调制与解调报告

AM调制与解调100%% AMµ÷ÖÆfigure('Name','Ðźŵ÷Öƹý³ÌÖв¨Ðμ°ÆäƵÆ×','NumberTitle','off')a0=1;f0=2000;fc=20000;fs=1000000;t=[1:0.000001:4];am1=0*cos(2*pi*f0*t); %µ÷ÖÆÐźÅam=a0+am1;t1=cos(2*pi*fc*t); %Ôز¨s_am=am.*t1;AM1=fft(am1); T1=fft(t1); S_AM=fft(s_am);f=(0:3000000)*fs/3000001-fs/2;subplot(3,2,1); plot(t(1:1000),am1(1:1000)); title('ÐÅÏ¢ÐźŲ¨ÐÎ');subplot(3,2,2); plot(f,fftshift(abs(AM1))); title('ÐÅÏ¢ÐźÅƵÆ×');subplot(3,2,3); plot(t(1:1000),t1(1:1000)); title('Ôز¨ÐźÅ');subplot(3,2,4); plot(f,fftshift(abs(T1))); title('Ôز¨ÐźÅƵÆ×');subplot(3,2,5); plot(t(1:1000),s_am(1:1000)); title('Òѵ÷ÐźÅ');subplot(3,2,6); plot(f,fftshift(abs(S_AM))); title('Òѵ÷ÐźÅƵÆ×');%²úÉúÔëÉùfigure('Name','Ìí¼ÓÔëÉù¼°´øͨÂ˲¨¹ý³Ì²¨Ðμ°ÆäƵÆ×','NumberTitle','off ');snr=5;y=awgn(s_am,snr);fcuts=[16000 17500 22500 24000];mags=[0 1 0];devs=[0.05 0.01 0.05];[n,Wn,beta,ftype]=kaiserord(fcuts,mags,devs,fs);hh=fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');[H,f]=freqz(hh,1,1024,fs);st_p=fftfilt(hh,y);Q=fft(st_p);Y=fft(y);f=(0:3000000)*fs/3000001-fs/2;subplot(2,2,1);plot(t(1500001:1501000),y(1500001:1501000));title('Ìí¼ÓÔëÉùºóÐźŲ¨ÐÎ');subplot(2,2,2);plot(f,fftshift(abs(Y)));title('Ìí¼ÓÔëÉùºóÐźÅƵÆ×');subplot(2,2,3);plot(t(1500001:1501000),st_p(1500001:1501000));title('´øͨÂ˲¨ºóÐźŲ¨ÐÎ');subplot(2,2,4); plot(f,fftshift(abs(Q)));title('´øͨÂ˲¨ºóÐźÅƵÆ×');%½âµ÷figure('Name','Ïà¸É½âµ÷ËùµÃ²¨Ðμ°ÆäƵÆ×','NumberTitle','off');ss_am=st_p.*t1;SS_AM=fft(ss_am)f=(0:3000000)*fs/3000001-fs/2;subplot(2,1,1);plot(t(1500001:1503000),ss_am(1500001:1503000));title( 'Ïà³ËÐźÅ');subplot(2,1,2); plot(f,fftshift(abs(SS_AM)));title('Ïà³ËÐźÅƵÆ×');fcuts1=[2500,30000];mags1=[1 0];devs1=[0.01 0.05];[n,Wn,beta,ftype]=kaiserord(fcuts1,mags1,devs1,fs);hh1=fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');[H,f]=freqz(hh1,1,1024,fs);m0=fftfilt(hh1,ss_am);M0=fft(m0);f=(0:3000000)*fs/3000001-fs/2;figuresubplot(2,1,1);plot(t(1500001:1501000),m0(1500001:1501000));title('½âµ÷ÐźÅ');subplot(2,1,2); plot(f,fftshift(abs(M0)));title('½âµ÷ÐźÅƵÆ×');11.0005 1.001-101信息信号波形-505x 105012x 106信息信号频谱11.0005 1.001-101载波信号-505x 105012x 106载波信号频谱11.00051.001-202已调信号-55x 105012x 106已调信号频谱2.52.50052.501-4-2024添加噪声后信号波形-505x 105051015x 105添加噪声后信号频谱2.52.50052.501-2024带通滤波后信号波形-55x 10500.511.526带通滤波后信号频谱50%% AMµ÷ÖÆfigure('Name','Ðźŵ÷Öƹý³ÌÖв¨Ðμ°ÆäƵÆ×','NumberTitle','off')2.5 2.5005 2.501 2.5015 2.502 2.5025 2.503 2.5035-1012相乘信号-5-4-3-2-1012345x 1050510155相乘信号频谱2.52.50012.50022.50032.50042.50052.50062.50072.50082.5009 2.501-0.500.51解调信号-5-4-3-2-1012345x 1050510155解调信号频谱a0=2;f0=2000;fc=20000;fs=1000000;t=[1:0.000001:4];am1=0*cos(2*pi*f0*t); %µ÷ÖÆÐźÅam=a0+am1;t1=cos(2*pi*fc*t); %Ôز¨s_am=am.*t1;AM1=fft(am1); T1=fft(t1); S_AM=fft(s_am);f=(0:3000000)*fs/3000001-fs/2;subplot(3,2,1); plot(t(1:1000),am1(1:1000)); title('ÐÅÏ¢ÐźŲ¨ÐÎ');subplot(3,2,2); plot(f,fftshift(abs(AM1))); title('ÐÅÏ¢ÐźÅƵÆ×');subplot(3,2,3); plot(t(1:1000),t1(1:1000)); title('Ôز¨ÐźÅ');subplot(3,2,4); plot(f,fftshift(abs(T1))); title('Ôز¨ÐźÅƵÆ×');subplot(3,2,5); plot(t(1:1000),s_am(1:1000)); title('Òѵ÷ÐźÅ');subplot(3,2,6); plot(f,fftshift(abs(S_AM))); title('Òѵ÷ÐźÅƵÆ×');%²úÉúÔëÉùfigure('Name','Ìí¼ÓÔëÉù¼°´øͨÂ˲¨¹ý³Ì²¨Ðμ°ÆäƵÆ×','NumberTitle','off ');snr=5;y=awgn(s_am,snr);fcuts=[16000 17500 22500 24000];mags=[0 1 0];devs=[0.05 0.01 0.05];[n,Wn,beta,ftype]=kaiserord(fcuts,mags,devs,fs);hh=fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');[H,f]=freqz(hh,1,1024,fs);st_p=fftfilt(hh,y);Q=fft(st_p);Y=fft(y);f=(0:3000000)*fs/3000001-fs/2;subplot(2,2,1);plot(t(1500001:1501000),y(1500001:1501000));title('Ìí¼ÓÔëÉùºóÐźŲ¨ÐÎ');subplot(2,2,2);plot(f,fftshift(abs(Y)));title('Ìí¼ÓÔëÉùºóÐźÅƵÆ×');subplot(2,2,3);plot(t(1500001:1501000),st_p(1500001:1501000));title('´øͨÂ˲¨ºóÐźŲ¨ÐÎ');subplot(2,2,4); plot(f,fftshift(abs(Q)));title('´øͨÂ˲¨ºóÐźÅƵÆ×');%½âµ÷figure('Name','Ïà¸É½âµ÷ËùµÃ²¨Ðμ°ÆäƵÆ×','NumberTitle','off');ss_am=st_p.*t1;SS_AM=fft(ss_am)f=(0:3000000)*fs/3000001-fs/2;subplot(2,1,1);plot(t(1500001:1503000),ss_am(1500001:1503000));title( 'Ïà³ËÐźÅ');subplot(2,1,2); plot(f,fftshift(abs(SS_AM)));title('Ïà³ËÐźÅƵÆ×'); fcuts1=[2500,30000];mags1=[1 0];devs1=[0.01 0.05];[n,Wn,beta,ftype]=kaiserord(fcuts1,mags1,devs1,fs);hh1=fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');[H,f]=freqz(hh1,1,1024,fs);m0=fftfilt(hh1,ss_am);M0=fft(m0);f=(0:3000000)*fs/3000001-fs/2;figuresubplot(2,1,1);plot(t(1500001:1501000),m0(1500001:1501000));title('½âµ÷ÐźÅ');subplot(2,1,2); plot(f,fftshift(abs(M0)));title('½âµ÷ÐźÅƵÆ×');11.0005 1.001-101信息信号波形-505x 1050126信息信号频谱11.0005 1.001-101载波信号-505x 1050126载波信号频谱11.00051.001-505已调信号-55x 105024x 106已调信号频谱2.52.50052.501-505添加噪声后信号波形-505x 1050123x 106添加噪声后信号频谱2.52.50052.501-4-2024带通滤波后信号波形-55x 105012346带通滤波后信号频谱2.5 2.5005 2.501 2.5015 2.502 2.5025 2.503 2.5035-10123相乘信号-5-4-3-2-1012345x 10501236相乘信号频谱0%% AMµ÷ÖÆfigure('Name','Ðźŵ÷Öƹý³ÌÖв¨Ðμ°ÆäƵÆ×','NumberTitle','off')a0=10^100;f0=2000;fc=20000;fs=1000000;t=[1:0.000001:4];am1=0*cos(2*pi*f0*t); %µ÷ÖÆÐźÅam=a0+am1;t1=cos(2*pi*fc*t); %Ôز¨s_am=am.*t1;AM1=fft(am1); T1=fft(t1); S_AM=fft(s_am);f=(0:3000000)*fs/3000001-fs/2;subplot(3,2,1); plot(t(1:1000),am1(1:1000)); title('ÐÅÏ¢ÐźŲ¨ÐÎ');subplot(3,2,2); plot(f,fftshift(abs(AM1))); title('ÐÅÏ¢ÐźÅƵÆ×');2.52.50012.50022.50032.50042.50052.50062.50072.50082.5009 2.50100.511.5解调信号-5-4-3-2-1012345x 10501236解调信号频谱subplot(3,2,3); plot(t(1:1000),t1(1:1000)); title('Ôز¨ÐźÅ');subplot(3,2,4); plot(f,fftshift(abs(T1))); title('Ôز¨ÐźÅƵÆ×');subplot(3,2,5); plot(t(1:1000),s_am(1:1000)); title('Òѵ÷ÐźÅ');subplot(3,2,6); plot(f,fftshift(abs(S_AM))); title('Òѵ÷ÐźÅƵÆ×');%²úÉúÔëÉùfigure('Name','Ìí¼ÓÔëÉù¼°´øͨÂ˲¨¹ý³Ì²¨Ðμ°ÆäƵÆ×','NumberTitle','off ');snr=5;y=awgn(s_am,snr);fcuts=[16000 17500 22500 24000];mags=[0 1 0];devs=[0.05 0.01 0.05];[n,Wn,beta,ftype]=kaiserord(fcuts,mags,devs,fs);hh=fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');[H,f]=freqz(hh,1,1024,fs);st_p=fftfilt(hh,y);Q=fft(st_p);Y=fft(y);f=(0:3000000)*fs/3000001-fs/2;subplot(2,2,1);plot(t(1500001:1501000),y(1500001:1501000));title('Ìí¼ÓÔëÉùºóÐźŲ¨ÐÎ');subplot(2,2,2);plot(f,fftshift(abs(Y)));title('Ìí¼ÓÔëÉùºóÐźÅƵÆ×');subplot(2,2,3);plot(t(1500001:1501000),st_p(1500001:1501000));title('´øͨÂ˲¨ºóÐźŲ¨ÐÎ');subplot(2,2,4); plot(f,fftshift(abs(Q)));title('´øͨÂ˲¨ºóÐźÅƵÆ×');%½âµ÷figure('Name','Ïà¸É½âµ÷ËùµÃ²¨Ðμ°ÆäƵÆ×','NumberTitle','off');ss_am=st_p.*t1;SS_AM=fft(ss_am)f=(0:3000000)*fs/3000001-fs/2;subplot(2,1,1);plot(t(1500001:1503000),ss_am(1500001:1503000));title( 'Ïà³ËÐźÅ');subplot(2,1,2); plot(f,fftshift(abs(SS_AM)));title('Ïà³ËÐźÅƵÆ×'); fcuts1=[2500,30000];mags1=[1 0];devs1=[0.01 0.05];[n,Wn,beta,ftype]=kaiserord(fcuts1,mags1,devs1,fs);hh1=fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');[H,f]=freqz(hh1,1,1024,fs);m0=fftfilt(hh1,ss_am);M0=fft(m0);f=(0:3000000)*fs/3000001-fs/2;figuresubplot(2,1,1);plot(t(1500001:1501000),m0(1500001:1501000));title('½âµ÷ÐźÅ');subplot(2,1,2); plot(f,fftshift(abs(M0)));title('½âµ÷ÐźÅƵÆ×');11.0005 1.001-101信息信号波形-505x 1050126信息信号频谱1 1.0005 1.001-101载波信号-505x 1050126载波信号频谱11.00051.001-101x 10100已调信号-55x 105012x 10106已调信号频谱2.52.5005 2.501-1-0.500.51x 10100添加噪声后信号波形-505x 105051015x 10105添加噪声后信号频谱2.52.5005 2.501-2-1012x 10100带通滤波后信号波形-55x 1051x 10106带通滤波后信号频谱FM 调制与解调%%FMfigure('Name','FMµ÷ÖƲ¨ÐÎÓëƵÆ×')2.5 2.5005 2.501 2.5015 2.502 2.5025 2.503 2.5035-50510x 1099相乘信号-5-4-3-2-1012345x 105051015105相乘信号频谱2.52.50012.50022.50032.50042.50052.50062.50072.50082.5009 2.5013.93.913.923.93x 1099解调信号-1-0.500.51x 105123105解调信号频谱f0=2000; fc=20000; fs=1000000; Am=1; kf=0.5; Tc=8; Ta=0.001; dt=0.000001;t=[0:1/fs:3];f=(0:length(t)-1)*fs/(length(t))-fs/2;fm0=cos(2*pi*f0*t);mt=fm0;%»ý·ÖÆ÷Éè¼Æw1=0;w2=0;for m=1:length(t)w1=mt(m)+w2;w2=mt(m)+w1;fi(m)=w1/(2*fs);endfi=fi*2*pi/max(abs(fi));I=cos(kf*fi);Q=sin(kf*fi);y1=Am*cos(2*pi*fc*t).*I-Am*sin(2*pi*fc*t).*Q;subplot(2,1,1);plot(t,y1);title('²¨ÐÎ')axis([1e-3 4e-3 -2 2]);Y1=fft(y1);subplot(2,1,2);plot(f,fftshift(abs(Y1))/1e6); title('ƵÆ×') %%Ôز¨ÆµÆ×axis([-4e4 4e4 0 1]);figure('Name','FMµ÷Öƺó¼ÓÔëÉù²¨ÐÎÓë½âµ÷ºó²¨ÐÎÒÔ¼°Â˳ýÖ±Á÷·ÖÁ¿ºóµÄ²¨ÐÎ')y1o=awgn(y1,40);subplot(3,1,1);plot(t,y1o); title('¼ÓÔëÉùºó²¨ÐÎ') %%¼ÓÔëÉùºóµÄÐźÅaxis([1e-3 4e-3 -2 2]);%%´øͨÂ˲¨KSband=2*(3+1)*f0;fcutsb=[fc-KSband-2000 fc-KSbandfc+KSbandfc+KSband+2000]; %%½ÓÊÕ»úÇ°¶Ë´øͨÂ˲¨magsb=[0 1 0];devsb=[0.05 0.01 0.05];[nb,Wnb,betab,ftypeb]=kaiserord(fcutsb,magsb,devsb,fs);hhb=fir1(nb,Wnb,ftypeb,kaiser(nb+1,betab),'noscale'); %´øͨÂ˲¨Æ÷£»st_pb=fftfilt(hhb,y1o);subplot(3,1,2);st_pb=st_pb/1e6;plot(t,st_pb); title('´øͨÂ˲¨Æ÷ºóµÄ²¨ÐÎ')axis([1e-3 4e-3 -2e-6 2e-6]);%΢·ÖÆ÷Éè¼Æfor i=1:length(t)-1 %½ÓÊÕÐźÅͨ¹ý΢·ÖÆ÷´¦Àídiff_st_pb(i)=(st_pb(i+1)-st_pb(i))/dt;endsfm=abs(hilbert(diff_st_pb));subplot(3,1,2);plot(t,[sfm*20 0]);axis([1e-3 4e-3 0 4]);%%¸ôÖ±% KSbandh=2*(3+1)*f0;fcutsh=[0.01 3000];magsh=[0 1];devsh=[0.01 0.05];[nh,Wnh,betah,ftypeh]=kaiserord(fcutsh,magsh,devsh,fs);hhh=fir1(nh,Wnh,ftypeh,kaiser(nh+1,betah),'noscale');sfm_out=fftfilt(hhh,sfm*20);subplot(3,1,3);plot(t,[sfm_out 0]);title('¸ôÖ±ºóµÄ²¨ÐÎ')axis([1e-3 4e-3 -2 2]);11.522.533.54x 10-3-2-1012波形-4-3-2-101234x 10400.51频谱11.522.533.54x 10-3-202加噪声后波形11.522.53 3.54x 10-302411.522.533.54x 10-3-202隔直后的波形。

基于MATLAB的AM调制解调及...

基于MATLAB的AM调制解调及...

课程设计课程设计名称:通信综合课程设计专业班级:学生姓名:。

学号: ***************:***课程设计时间: 2010.12.27-2011.1.8电子信息工程专业课程设计任务书1 需求分析幅度调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。

幅度调制器的一般模型如图2.1所示。

图2.1 幅度调制模型在图2-1中,若假设滤波器为全通网络(=1),调制信号()t m 叠加直流0A 后再与载波相乘,则输出的信号就是常规双边带(AM )调幅 .AM 调制器模型如图2-2所示图2.2 AM 调制模型AM 信号波形的包络与输入基带信号()t m 成正比,故用包络检波的方法很容易恢复原始调制信号。

但为了保证包络检波时不发生失真,必须满足()max 0t m A ≥,否则将出现过调幅现象而带来失真。

AM 信号的频谱是由载频分量和上、下两个边带组成(通常称频谱中画斜线的部分为上边带,不画斜线的部分为下边带)。

上边带的频谱与原调制信号的频谱结构相同,下边带是上边带的镜像。

显然,无论是上边带还是下边带,都含有原调制信号的完整信息。

故AM 信号是带有载波的双边带信号,它的带宽信号带宽的两倍。

相干解调由AM 信号的频谱可知,如果将已调信号的频谱搬回到原点位置,即可得到原始的调制信号频谱,从而恢复出原始信号。

解调中的频谱搬移同样可用调制时的相乘运算来实现。

相干解调的关键是是必须产生一个与调制器同频同相位的载波。

如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。

2 概要设计如上图所示:(1)先产生100HZ的调制信号及500HZ的载波(2)对调制信号进行AM调制。

调制时注意载波分量必须大于信号的幅度,防止过条幅的发生。

(3)产生随机噪声,并将之与已调am信号叠加,模拟信号经过信道收到噪声干扰的情况。

(4)对信号进行相干解调,乘以载波并通过凯瑟窗低通滤波器,减去直流分量,滤出信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于Matlab的AM振幅调制与解调仿真摘要:本次高频电子电路大作业的设计,我组所选的题目为振幅调制电路(AM)及解调。

在本课程设计报告中,首先说明了进行此次课程设计的目的、内容及要求;阐明了标准振幅调制与解调的基本原理以及操作方法,同时也对滤波电路的原理加以说明。

接着叙述了利用Matlab软件对振幅调制、解调以及滤波器等所设计编写的程序,并附上了调试后输出的载波信号、调制信号、AM已调信号及滤波前后的解调信号等的波形图和频谱图,另外还附上了滤波器的增益响应和双边带总功率与平均总功率之比。

报告的最后,是个人对本次大作业结果的分析、过程反思以及总结。

关键词:振幅调制解调 AM Matlab仿真Abstract:In The high-frequency electronic circuit designing job, our group selected the topic as amplitude modulation circuit (AM) and demodulation. In this course design report, first explains the purpose, content and requirements of the curriculum design; clarify the basic principles and methods of operation standard amplitude modulation and demodulation, and also to illustrate the principles of the filter circuit. Then describes the use of Matlab and other amplitude modulation, demodulation and filter design program written, along with the carrier signal debugging output modulation signal, AM modulated and demodulated signal waveform signal before and after filtering, etc. map and spectrum, also attached a total power and average power ratioof the total gain response and bilateral band filter. At the end of the report is to analyze the individual results of this large operation, process reflection and summary.Keywords: amplitude modulation, demodulation, Matlab simulation引言:无线通信系统中,信号通过一定的传输介质在发射机和接受机之间进行传送时,信号的原始形式一般不适合传输。

因此,为了将信号从发射端传输到接收端,必须转换它们的形式。

而把信息加载到信息载体上以便传输的处理过程便是调制。

通常称代表信息的信号为调制信号,称信息载体为载波信号,称调制后的频带信号为已调波信号。

调制的种类很多,分类方法各不同,按调制信号的形式,可分为模拟调制和数字调制;模拟调制中的正弦波调制又分为振幅调制、频率调制和相位调制。

其中的振幅调制是由调制信号去控制载波的振幅,使之按调制信号的规律变化,严格地讲,是使高频振荡的振幅与调制信号成线性关系,其他参数(频率和相位)不变。

这是使高频振荡的振幅有消息的调制方式。

振幅调制分为三种方式:普通的调幅方式(AM)、抑制载波的双边带调制(DSB)及抑制载波的单边带调制(SSB)方式。

解调是与调制相反的过程,即从接收到的已调波信号中恢复原调制信息的过程。

与振幅调制、频率调制和相位调制相对应,有振幅解调、频率解调和相位解调,并分别称为检波、鉴频和鉴相。

本次课程设计所使用软件Matlab是1984年由美国Mathworks公司推向市场。

它是一种科学计算软件,专门以矩阵的形式处理数据。

Matlab将高性能的数值计算和可视化集成在一起,并提供了大量的内置函数,从而被广泛的应用于科学计算、控制系统和信息处理等领域的分析、仿真和设计工作。

Matlab软件包括五大通用功能,数值计算功能(Nemeric)、符号运算功能(Symbolic)、数据可视化功能(Graphic)、数字图形文字统一处理功能(Notebook)和建模仿真可视化功能(Simulink)。

该软件有三大特点,一是功能强大;二是界面友善、语言自然;三是开放性强。

Matlab的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故Matlab来解算问题要比用C,Fortran等语言完相同的事情简捷得多,并且math work也吸收了像Maple等软件的优点,使Matlab成为一个强大的数学软件。

在新的版本中也加入了对C,Fortran,C++ ,Java的支持。

可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的Matlab爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。

Matlab的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。

附加的工具箱(单独提供的专用Matlab函数集)扩展了Matlab环境,以解决这些应用领域内特定类型的问题。

一、作业题目1.类型:设计性课程作业。

2.题目:基于Matlab的振幅调制(AM)与解调。

二、作业要求1.掌握振幅调制和解调的原理。

2.学会Matlab仿真软件在振幅调制和解调中的应用。

3.掌握参数设置方法和性能分析方法。

4.通过实验中波形的变换,学会分析实验现象。

5.建立较为完善的信号链路模型,能够较好的描述电路的工作过程;6.正确分析输入输出信号的特征,关键步骤有相关图形输出。

三、设计原理3.1振幅调制的一般模型振幅是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。

幅度调制器的一般模型如图3.1所示。

图3.1振幅调制的一般模型图中,为调制信号,为已调信号,为滤波器的冲激响应,则已调信号的时域和频域一般表达式分别为:(3-1)(3-2)式中,为调制信号的频谱,为载波角频率。

由以上表达式可见,对于幅度调制信号,在波形上它的幅度随基带信号规律而变化;在频谱结构上它的频谱完全是基带信号频谱在频域内的简单搬移。

由于这种搬移是线性的,因此幅度调制通常又称为线性调制,相应地,幅度调制系统也称为线性调制系统。

在图3.1的一般模型中,适当选择滤波器的特性,便可得到各种幅度调制信号,例如:常规双边带调幅(AM)、抑制载波双边带调幅(DSB-SC)、单边带调制(SSB)和残留边带调制(VSB)信号等。

3.2 标准振幅调制(AM)3.2.1 AM信号的表达式、频谱及带宽在图3.1中,若假设滤波器为全通网络(=1),调制信号叠加直流后再与载波相乘,则输出的信号就是常规双边带调幅(AM)信号。

AM调制器模型如图3.2.1所示。

图3.2.1 AM调制器模型AM信号的时域和频域表示式分别为:(3-3)(3-4)式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。

AM信号的典型波形和频谱分别如图3-3(a)、(b)所示,图中假定调制信号的上限频率为。

显然,调制信号的带宽为。

由图3-3(a)可见,AM信号波形的包络与输入基带信号成正比,故用包络检波的方法很容易恢复原始调制信号。

但为了保证包络检波时不发生失真,必须满足,否则将出现过调幅现象而带来失真。

AM信号的频谱是由载频分量和上、下两个边带组成(通常称频谱中画斜线的部分为上边带,不画斜线的部分为下边带)。

上边带的频谱与原调制信号的频谱结构相同,下边带是上边带的镜像。

显然,无论是上边带还是下边带,都含有原调制信号的完整信息。

故AM信号是带有载波的双边带信号,它的带宽为基带信号带宽的两倍,即:(3-5)式中,为调制信号的带宽,为调制信号的最高频率。

3.2.2 AM信号的功率分配及调制效率AM信号在1电阻上的平均功率应等于的均方值。

当为确知信号时,的均方值即为其平方的时间平均,即:因为调制信号不含直流分量,即,且,所以:(3-6)式中,为载波功率;为边带功率,它是调制信号功率的一半。

由此可见,常规双边带调幅信号的平均功率包括载波功率和边带功率两部分。

只有边带功率分量与调制信号有关,载波功率分量不携带信息,定义调制效率:(3-7)3.3 AM信号的解调调制过程的逆过程叫做解调。

振幅波解调方法可分为包络检波和同步检波两大类。

包络检波是指解调器输出电压与输入已调波的包络成正比的检波方法。

由于AM信号的包络与调制信号成线性关系,因此包络检波只适用于AM波。

AM信号的解调是把接收到的已调信号还原为调制信号。

图3.3.1 包络检波原理图下图是二极管峰值包络检波器的原理电路。

它是由输入回路、二极管VD和RC低通滤波器组成。

uiC RV-+uo(a)C R-+uo+-ui(b)C R(c)-+uo+-图3.3.2二极管峰值包络检波器(a)原理电路; (b)二极管导通; (c)二极管截止当RC满足条件:包络检波器的输出与输入信号的包络十分相近,即:(3-9)根据对电路的分析,可以知道:检波过程就是信号源通过二极管给电容充电与电容对电阻R放电的交替重复过程;由于RC时常数远大于输入电压载波周期,放电慢,使得二极管负极永远处于正的较高的电位(因为输出电压接近于高频正弦波的峰值,即Uo ≈Um);二极管电流iD 包含平均分量(此种情况为直流分量)Iav 及高频分量。

t(a )(b )t 0u C (t )U o (t )图3.3.3输入为AM 信号时检波器的输出波形图 包络检波法特点是:解调效率高;解调电路简单,特别是接收端不需要与发送端同频同相位的载波信号,大大降低实现难度。

故几乎所有的调幅(AM )式接收机都采用这种电路。

3.4 巴特沃斯低通滤波器巴特沃斯滤波器的特点是同频带内的频率响应曲线最为平坦,没有起伏,而在组频带则逐渐下降为零。

在振幅的对数对角频率的波特图上,从某一边界见频率开始,振幅随着角频率的增加而逐渐减少,趋向于负无穷大。

一阶巴特沃斯滤波器的衰减率为每倍频20分贝,二阶巴特沃斯滤波器的衰减率为每倍频12分贝,三阶的衰减率为每分贝18分贝,如此类推,巴特沃斯滤波器的振幅对角频率单调下降,并且滤波器的结束越高,在组频带振幅衰减速度越快,其他滤波器高阶的振幅对角频率图和低阶数的振幅对角频率有不同的形状。

相关文档
最新文档