人教A版数学必修一祁阳二中—高一上学期数学期中考试试题

合集下载

人教A版数学必修一高一上学期期中考试数学(A版)测试题.doc

人教A版数学必修一高一上学期期中考试数学(A版)测试题.doc

高中数学学习材料唐玲出品高一上学期期中考试数学(必修1A 版)测试题班级: 姓名:一、选择题:(5分*10)1、不等式453x -<的解集为( )(A )2x > (B ) 2 x < (C )()2,+∞ (D )(),2-∞ 2、设集合{}24A x x =≤<,{}3782B x x x =-≥-,则A B ⋃=( ) (A )(3,4) (B )[)2,+∞ (C )[)2,4 (D )[]2,3 3、函数1y x=-的定义域为( ) (A )(),0-∞ (B )()0,+∞ (C )()(),00,-∞⋃+∞ (D )R 4、函数2y x =-的单调区间为( )(A )(),0-∞为减区间 (B )()0,+∞为增区间(C )(),-∞+∞ (D )(),0-∞为增区间,()0,+∞为减区间5、计算341681-⎛⎫⎪⎝⎭的值为( )(A )278 (B )278- (C )32 (D )32-6、已知4个数:32,412-⎛⎫⎪⎝⎭,ln 3,ln 2,其中最小的是( )(A )32 (B )412-⎛⎫⎪⎝⎭(C )ln 3 (D )ln 27、函数232y x x =-+的零点是( )(A )()1,0 (B )()2,0 (C )()1,0,()2,0 (D )1,2 8、函数()0.5log 43y x =-的定义域为( )(A )[)1,+∞ (B )3,04⎛⎫ ⎪⎝⎭ (C )3,4⎛⎫-∞ ⎪⎝⎭ (D )3,14⎛⎤⎥⎝⎦9.函数6x )5a (2x y 2--+=在]5,(--∞上是减函数,则a 的范围是 A .0a ≥ B .0a ≤ C .10a ≥ D .10a ≤10.指数函数x x x x d y c y b y a y ====,,,在同一坐标系内的图象如右图所示,则d c b a ,,,的大小顺序是 ( ) A .c d a b <<<B .c d b a <<<C .d c a b <<<D .d a c b <<<二、填空题: (5分*4)11、24,02(),(2)2,2x x f x f x x ⎧-≤≤==⎨>⎩已知函数则 ;若00()8,f x x ==则 .12、已知函数1log ey x = 1,x e e ⎡⎤∈⎢⎥⎣⎦, 则函数的最小值为 最大值为13、函数2x y =的图象关于直线y x =对称所得图象对应的函数解析式为 14、以下五个函数中:①21y x =,②22y x =,③2y x x =+,④1y =,⑤1y x=,幂函数的是 (填写符合的序号)三、解答题:(共80分)15、设平面内直线1l 上的点的集合为1L ,直线2l 上的点的集合为2L ,试用集合的运算表示1l ,2l 的位置关系:(12分)o1 y xx a y =x dy =x by = xc y =16、(14分)已知函数y x = (1)作出函数图象(2)判断函数的奇偶性。

人教A版数学必修一高一第一学期期中数学试题.doc

人教A版数学必修一高一第一学期期中数学试题.doc

高一第一学期期中数学试题班级__________姓名_________一、 选择题:(每小题4分,共48分)1、已知A ={x |x +1≥0},B ={y |y 2-2>0},全集I =R ,则A ∩∁I B 为( )A .{x |x ≥2或x ≤-2}B .{x |x ≥-1或x ≤2}C .{x |-1≤x ≤2}D .{x |-2≤x ≤-1}2、已知全集U ={a ,b ,c ,d ,e },M ={a ,b ,c },若M ∩∁U N ={b },则集合M ∩N 的子集的个数为( )A .1B .2C .3D .4 3、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( )A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5 4、已知集合A ={1,3,5,7,9},B ={0,3,6,9,12},则A ∩∁N B =( )A .{1,5,7}B .{3,5,7}C .{1,3,9}D .{1,2,3}5、已知集合P ={(x ,y )|y =k },Q ={(x ,y )|y =a x +1},且P ∩Q =Ø,那么k 的取值范围是( )A .(-∞,1)B .(-∞,1]C .(1,+∞)D .(-∞,+∞) 6、对于函数()y f x =,以下说法正确的有 ( ) ①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。

A 、1个B 、2个C 、3个D 、4个 7、下列各组函数是同一函数的是 ( )①3()2f x x =-与()2g x x x =-;②()f x x =与2()g x x =;③0()f x x =与1()g x x=;④2()21f x x x =--与2()21g t t t =--。

人教A版数学必修一~第一学期期中考试高一数学试题参考答案.docx

人教A版数学必修一~第一学期期中考试高一数学试题参考答案.docx

高中数学学习材料鼎尚图文*整理制作高一数学参考答案一.填空题(1){2} (2) 3 (3) -1 (4)(1,+∞) (5)3(6)(-5,-1) (7)(3,4) (8)0 (9)352x -- (10)3(11)【2,5】 (12)c,a,b (13)0 (14)a ≥2二.解答题:15. A=【-2,1】………………………………………………3分B=(-∞,a )………………………………………………3分(1)【-2,0)………………………………………………3分(2)a >1………………………………………………5分16.(1)251±=a ………………………………………4分 31)(2221=+∴=---aa a a ………………………………………4分 (2) 0)2)(1(2322>--=+-∴>m m m m m ,即232->m m ,x x f 2log )(= 是增函数。

)23(l o g l o g 222->∴m m , 即m m 22log 2)23(log <-…………………………………………6分……………………………………………3分17. (Ⅰ)即1(040)80y t t =<≤ ……………………………………………… 3分2800(40)y t t =>……………………………………3分 y 关于t 的函数是y =21,04080800,40t t t t⎧≤≤⎪⎪⎨⎪>⎪⎩ …………………………………… 2分 (Ⅱ)由题意知,28000.08x ≤, 解得100x ≥或100x ≤-(舍)……………5分 又1004060-=(天) 答:按这个标准,这个家庭在装潢后60天方可入住. …………… 2分18.(1)奇函数,证明略. ………………………………………………5分(2)单调减,证明略. ………………………………………………5分(3)由题意知方程211x x x x +=+等价于310x x ++= 设3()1g x x x =++则(1)0,(0)0g g -<>,所以方程在(1,0)-上必有根 又因为1(1)()02g g -⋅-<,所以方程在1(1,)2--上必有一根。

湖南省祁阳二中高一上学期水平测试(数学)(人教a版必修1).doc

湖南省祁阳二中高一上学期水平测试(数学)(人教a版必修1).doc

湖南省祁阳二中高一上学期水平测试(数学)(人教A 版必修1)(内容:必修一第二章)一、选择题(本大题共6小题,每小题5分,共30分.在每小题列出的四个选项中,选出符合题目要求的一项) 1、21)a >=A. 1-aB. a -1C. 33-aD. a 33- 2、.函数)13lg(13)(2++-=x xx x f 的定义域是A. (,1)-∞ B.1(, 1)3-C.1[, 1)3-D. 1(, )3-+∞3、若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(1,0)-和(0,1),则 A .2,2a b ==B .2a b ==C .2,1a b ==D.a b == 4、三个数60.7 ,0.76 ,6log 7.0的大小顺序是A .0.76<6log 7.0<60.7 B. 0.76<60.7<6log 7.0 C. 6log 7.0<60.7<0.76 D. 6log 7.0<0.76<60.75、设[]1232,2() (2)log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, A 、0 B 、1 C 、2 D 、3 6、下列函数中,是奇函数且在区间),0(+∞上是减函数的为A.x y -=3B. 3x y =C. 1-=x yD.x y )21(=二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上) 7、若函数()x f 既是幂函数又是反比例函数,则这个函数是()x f =______; 8、已知x 、y 为实数, 且22(2)(1)0x y -+-=,则x log (4y)=________;9、将用小于号连接为_______________________;10、不等式12133x x --⎛⎫< ⎪⎝⎭的解集为_______________________;11、若函数22log (21)y ax x =++的定义域为R ,则实数a 的范围为__________. 三、解答题(本大题共4小题,共45分.解答应写出文字说明,证明过程或演 算步骤) 12、(本小题满分11分)计算下列各式的值:(1)463)(2008)+--; (2) 2lg 5lg 20(lg 2)+13、(本小题满分11分) 解方程:-=-+x x 22log (94)log (32)314. (本小题11分)函数21()21x x f x -=+,求证:(1)函数()f x 是奇函数; (2)函数()f x 在R上增函数.15.(本小题12分)212325x x y -=-⨯+. (1)如果y <13,求x的取值范围;(2)如果0≤x≤2,求y的取值范围.参考答案1—6 ABADCC7.1x8.2 9< 10.{x|x<-1} 11.(1, )+∞ 12、(本小题满分11分)计算下列各式的值:(1)4603)(2008)+--;(2) 2lg 5lg 20(lg 2)+ 解:(1)原式=11632(23)⨯+141232(22)⨯⨯-1=2323⨯+2332(2)-1=108+2-1=109(2)原式=lg5(lg2+1)+(lg2)2=lg5lg2+lg5+(lg2)2=lg2(lg5+lg2)+lg5=lg2+lg5=1 13、(本小题满分11分) 解方程: -=-x x22log (94)log (32)+3 解:原方程可化为:8log )23(log )49(log 222+-=-xx,即 012389=+⋅-x x. 解得: 23=x(舍去)或63=x, 所以,原方程的解是6log 3=x14. (本小题11分)函数21()21x x f x -=+,求证:(1)函数()f x 是奇函数; (2)函数()f x 在R上增函数.证明:(1)2112()()2112x xxxf x f x -----===-++ 所以,()f x 是奇函数;(2) 任取12, x x R ∈,且12x x <,则1212122(22)()()(21)(21)x x x x f x f x --=++1212 22x x x x <∴<又 12210, 210xx+>+>∴ 12()()0f x f x -<,即12()()f x f x <所以,()f x 在R上增函数 15.(本小题12分)212325x x y -=-⨯+.(1)如果y <13,求x的取值范围; (2)如果0≤x≤2,求y的取值范围.解:y=21(2)3252x x ⋅-⋅+ (1) 由y<13,得2(2)62160x x-⋅-< ∴ (28)(22)0xx-+< ∵ 220x +> ∴ 280x -<,x<3 所以,x的取值范围为(,3)-∞ (2)∵ 0≤x≤2 ∴ 1≤2x≤4 而 211(23)22x y =-+ 于是,2x=3,最小值y=1/2 2x=1,最大值y=5/2 所以,y的取值范围为15, 22⎡⎤⎢⎥⎣⎦。

高一数学a版必修一期中考试试题及答案

高一数学a版必修一期中考试试题及答案

高一数学a版必修一期中考试试题及答案一、选择题(本题共10小题,每小题3分,共30分。

每小题只有一个选项是正确的,请将正确答案的序号填在题后的括号内)1. 下列函数中,不是一次函数的是()A. y = 2x + 3B. y = 3x - 1C. y = x^2 - 4D. y = 5x2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B等于()A. {1}B. {2, 3}C. {3}D. {2, 3, 4}3. 若方程x^2 - 5x + 6 = 0的两个根为x1和x2,则x1 + x2等于()A. 5B. 6C. -5D. -64. 函数y = 2x - 1的图象经过点(3, 5),则函数y = -2x + 1的图象经过点()A. (3, -5)B. (-3, 5)C. (-3, -5)D. (3, -1)5. 已知等差数列{an}的公差d=2,且a1=1,则a5等于()A. 9B. 11C. 15D. 176. 函数y = 3x^2 - 6x + 2的顶点坐标是()A. (1, -1)B. (2, -2)C. (1, 1)D. (2, 2)7. 已知a,b,c是三角形的三边长,且a^2 + b^2 = c^2,那么这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定8. 函数y = 1/x的图象是()A. 一条直线B. 两条直线C. 一个抛物线D. 两个分支9. 已知f(x) = x^2 - 6x + 8,那么f(-x)等于()A. x^2 + 6x + 8B. x^2 + 6x - 8C. x^2 - 6x - 8D. -x^2 + 6x + 810. 函数y = x^3 - 3x^2 + 4x - 2的导数是()A. 3x^2 - 6x + 4B. x^2 - 6x + 4C. 3x^2 - 6x + 2D. x^2 - 6x + 2二、填空题(本题共5小题,每小题4分,共20分。

高中数学高一上(人教版A版必修一、二) 期中测试-答案

高中数学高一上(人教版A版必修一、二) 期中测试-答案

EG 平面 BDD1B1 ,所以直线 EG∥ 平面 BDD1B1 .
(2)连接 SD ,因为 F ,G 分别是 DC , SC 的中点,所以 FG∥SD .又因为 SD 平面 BDD1B1 , FG 平
面 BDD1B1 ,所以 FG∥ 平面 BDD1B1 ,且 EG 平面 EFG ,FG 平面 EFG ,EG FG G ,所以平面 EFG∥

x1x2>0
,1
x1x2>0
,∴
x2
x1
1
x1 x2
>0
x1 x2
所以 f x1 f x2 >0 ,即 f x1 >f x2 ,所以 f (x) 1 x 在 (,0) 上是单调减函数.
x 21.【答案】(1)证明:如图所示,取 PA 的中点 H ,连接 EH , DH ,
因为 E 为 PB 的中点,
平面 BDD1B1 .
20.【答案】(1) 1;
(2) f (x) 为奇函数,见解析;
(3)见解析
【解析】解题思路:(1)由题意 f (2) 3 ,即可求出 的值; 2
(2)判断函数的奇偶性分为两步,第一步:求定义域;第二步:计算 f (x) 并与 f (x) 比较;
(3)用定义法证明函数的单调性分为五步,第一步:设元;第二步:作差;第三步:变形;第四步:判
1 所以 EH∥AB , EH AB ,
2 1 又 AB∥CD , CD AB . 2 所以 EH∥CD , EH CD , 因此四边形 DCEH 是平行四边形, 所以 CE∥DH , 又 DH 平面 PAD , CE 平面 PAD , 所以 CE∥ 平面 PAD . (2)如图所示,取 AB 的中点 F ,连接 CF , EF ,
(2) f (x) 图象是开口向上,对称轴为 x a 为抛物线,讨论轴和区间的关系,得到函数的最值即可. 2

最新人教A版高一数学上册期中试卷(共4套-含答案)

最新人教A版高一数学上册期中试卷(共4套-含答案)

最新人教A 版高一数学上册期中试卷(含答案)(第Ⅰ套)一、选择题1. 已知U ={1,2,3,4,5},A ={2,3},B ={3,4,5},则下列运算中错误的是( )A.ðU A ={1,4,5}B.ðU B ={1,2}C.A ∪B ={2,3,4,5}D.A ∩ðU B ={1,2,3}2. 设集合A ={x|x 2+3x −4<0},B ={x|2x +3≥0},则A ∩B =( )A.(−4,−32]B.[−32,−1)C.[−32,1)D.[32,4)3. 设x ∈R ,则“x ≤3”是“x 2−3x ≤0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件4. 命题“∀x >0,都有x 2−x ≤0”的否定是( )A.∃x >0,使得x 2−x ≤0B.∃x >0,使得x 2−x >0C.∀x >0,都有x 2−x >0D.∀x ≤0,都有x 2−x >05. 设函数f(x)={x 2+1,x ≤1,2x ,x >1,则 f(f(3))=( )A.15B.3C.23D.139 6. 已知f(x)是定义在[−1, 1]上的增函数,且f(x −1)<f(1−3x),则x 的取值范围是( )A.[0,12)B.(0,12)C.(12,1]D.(1,+∞)7. 已知f (x )=3ax 2+bx −5a +5b 是偶函数,且其定义域为[3a −1,a ],则a +b =( )A.17B.12C.14D.78. 已知函数f (x )={(a −2)x +3, x ≤1,2a x , x >1,在(−∞,+∞)上是减函数,则a 的取值范围为( )A.(0,1)B.(0,1]C.(0,2)D.(0,2]二、多选题9.已知A ⊆B ,A ⊆C ,B ={2,0,1,8},C ={1,9,3,8},则A 可以是( )A.{1,8}B.{2,3}C.{1}D.{2}10.设a >1>b >−1,b ≠0,则下列不等式中恒成立的是( )A.1a <1bB.1a >1bC.a >b 2D.a 2>b 211.下列各组函数中,两个函数是同一函数的有( )A.f (x )=|x|与g (x )=√x 2B.f (x )=x +1与g (x )=x 2−1x−1C.f (x )=|x|x 与g (x )={1, x >0,−1, x <0D.f (x )=√x 2−1与g (x )=√x +1√x −1 12.已知f(x)={x +2, x ≤−1,x 2, −1<x <2,2x, x ≥2,若f (x )=1,则x 的值是( )A.−1B.12C.−√3D.1三、填空题13.函数f(x)=√x−1x−2的定义域为________.14.已知f (x )=x 2+x +1,则f (x +1)=_______.15.设f (x )是定义在R 上的偶函数,且f (x )在[0,+∞)上是减函数,若f (2m −1)>f (m ),则实数m 的取值范围是________.16.已知函数f(x)是定义在R 上的偶函数,当x ≥0时,f(x)=x(1+x),则x <0时,f(x)=________.四、解答题17.函数f(x)=(m 2−m −5)x m−1是幂函数,且当x ∈(0, +∞)时,f(x)是增函数,试确定m 的值.18.已知集合A ={x|1<x <3},集合B ={x|2m <x <1−m }.(1)当m =−1时,求AUB ;(2)若A ∩B =A ,求实数m 的取值范围.19.(1)求函数y=1x−3+x(x>3)的最小值;(2)已知x>0,y>0,且1x +1y=1,求x+y的最小值.20.(1)已知函数f(√x+1)=x+2,求f(x);(2)若函数f(x)为一次函数,且f(f(x))=4x−1,求函数f(x)的解析式.21.已知函数f(x)=x+1x.(1)判断f(x)在[1, +∞)上的单调性并证明;(2)求f(x)在[1, 4]上的最大值及最小值.22.已知函数f(x)=x+b是定义域(−1,1)上的奇函数,x2−1(1)确定f(x)的解析式,指出函数f(x)在(−1,1)上的单调性(不需要证明);(2)解不等式f(t−1)+f(t)<0参考答案:一、1-4 DCBB 5-8 DACB二、9.A,C 10.C,D 11.A,C 12.A,D三、13.{x|x ≥1且x ≠2}14.x 2+3x +315.(13,1)16.x(x −1)四、17.解:由幂函数的定义,得m 2−m −5=1,解得m =3或m =−2.当m =3时,f(x)=x 2在(0, +∞)上是增函数;当m =−2时,f(x)=x −3在(0, +∞)上是减函数;故m =3.18.解:(1)m =−1时,B ={x|−2<x <2).又A ={x|1<x <3},∴ A ∪B ={x|−2<x <3}.(2)∴ A ∩B =A ,∴ A ⊆B ,∴ {2m ≤1,1−m ≥3,解得m ≤−2,∴ 实数m 的取值范围为{m|m ≤−2}.19.解:(1)∴ x >3,∴ x −3>0,∴ y =1x−3+x =1x−3+(x −3)+3≥2√1x−3×(x −3)+3=5,当且仅当1x−3=x −3,即x =4时等号成立.∴ 函数y =1x−3+x (x >3)的最小值为5.(2)∴ x>0,y>0,且1x +1y=1,∴ x+y=(x+y)(1x +1y)=2+yx+xy≥2+2√yx ×xy=4,当且仅当yx =xy,即x=y=2时,等号成立.∴ x+y的最小值为4.20.解:(1)令t=√x+1≥1,则x=(t−1)2,所以f(t)=(t−1)2+2=t2−2t+3,即f(x)=x2−2x+3(x≥1).(2)因为函数f(x)为一次函数,设f(x)=ax+b(a≠0),因为f(f(x))=4x−1,所以a(ax+b)+b=a2x+ab+b=4x−1,则{a2=4,ab+b=−1,解得{a=2,b=−13或{a=−2,b=1,所以函数f(x)的解析式为:f(x)=−2x+1或f(x)=2x−13.21.解:(1)f(x)在[1, +∞)上是增函数,证明如下:在[1, +∞)上任取x1,x2,且x1<x2,f(x1)−f(x2)=x1+1x1−(x2+1x2)=(x1−x2)⋅x1x2−1x1x2.∴ x1<x2,∴ x1−x2<0.∴ x1∈[1, +∞),x2∈[1, +∞),∴ x1x2−1>0.∴ f(x1)−f(x2)<0,即f(x1)<f(x2),故f(x)在[1, +∞)上是增函数.(2)由(1)知:f(x)在[1, 4]上是增函数,∴ 当x=1时,f(x)有最小值2;当x=4时,f(x)有最大值174.22.解:(1)根据题意,函数f(x)=x+bx2−1是定义域(−1,1)上的奇函数,则有f(0)=b−1=0,则b=0此时f(x)=xx−1,为奇函数,符合题意,故f(x)=xx2−1.设−1<x1<x2<1,f(x1)−f(x2)=x1x12−1−x2x22−1=x1(x22−1)−x2(x12−1) (x12−1)(x22−1)=(x2−x1)(1+x1x2)(x12−1)(x22−1),又由−1<x1<x2<1,则x2−x1>0,1+x1x2>0,x12−1<0,x22−1<0,则有f(x1)−f(x2)>0,即函数f(x)在(−1,1)上为减函数.(2)由(1)知,函数f(x)在(−1,1)上为减函数,由题知f(t−1)+f(t)<0,即f(t−1)<−f(t),由函数的奇偶性可得f(t−1)<f(−t),则{−1<t−1<1,−1<−t<1, t−1>−t,解得12<t<1,即不等式的解集为(12,1).最新人教A版高一数学上册期中试卷(含答案)(第Ⅱ套)一、选择题1. 设集合A ={1,2,3},B ={x |−1<x <2,x ∈Z},则A ∪B =( )A.{1}B.{1,2}C.{0,1,2,3}D.{−1,0,1,2,3}2. 命题“ ∀x ∈R,x 2−2x +1≥0”的否定为( )A.∀x ∈R,x 2−2x +1≤0B.∃x 0∈R,x 02−2x 0+1<0C.∃x 0∈R,x 02−2x 0+1≤0 D .∀x ∉R,x 2−2x +1≥03. 设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( )A.a <c <bB.a <b <cC.b <a <cD.b <c <a 4. “x >12”是“2x 2+x −1>0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5. 已知f(x)=(x −a)(x −b)(其中b <a ),若f(x)的图象如图所示,则函数g(x)=a x +b 的图象是( )A.B. C. D . 6. 若f(x)={(3a −1)x +4a,x ≤1,a x ,x >1是R 上的减函数,那么a 的取值范围是( ) A.(0,1) B.(0,13) C.[16,13) D.[17,1)7. 若函数f(x)=x−4mx 2+4mx+3的定义域为R ,则实数m 的取值范围是( )A.(0, 34] B .[0, 34] C.[0, 34) D.(0, 34)8. 若定义在R 的奇函数f (x )在(−∞,0)单调递减,且f (2)=0,则满足xf (x −1)≥0的x 的取值范围是( )A. [−1,1]∪[3,+∞)B.[−3,−1]∪[0,1]C.[−1,0]∪[1,+∞)D.[−1,0]∪[1,3] 二、多选题9.命题“若∀x ∈[1,3],x 2−a ≤0”是真命题的一个充分不必要条件是( )A.a ≥9B.a ≥11C.a ≥10D.a ≤1010.下列结论正确的是()A.{−1,2,3}⊆{x|x<5}B.函数y=3x+2的最小值为2C.“实数x,y中至少有一个数大于1”的充分条件是“x+y≥2D.若a≥b>0,则a1+a ≥b1+b11.狄利克雷函数f(x)满足:当x取有理数时,f(x)=1;当x取无理数时,f(x)=0.则下列选项成立的是()A.f(x)≥0B.f(x)≤1C.f(x)−x3=0有1个实数根D.f(x)−x3=0有2个实数根12.已知定义在R上函数f(x)的图象是连续不断的,且满足以下条件:∴∀x∈R,f(−x)=f(x);∴∀x1,x2∈(0, +∞),当x1≠x2时,都有f(x2)−f(x1)x2−x1>0;∴f(−1)=0.则下列选项成立的是()A.f(3)>f(−4)B.若f(m−1)<f(2),则m∈(−∞, 3)C.若f(x)x>0,则x∈(−1, 0)∪(1, +∞) D.∀x∈R,∃M∈R,使得f(x)≥M三、填空题13.函数y=a x−2020+1(a>0且a≠1)的图象必经过定点________.14.若函数y=mx2+x+2在[3,+∞)上是减函数,则m的取值范围是________.15.函数f(x)的定义域为(0, 3),则函数y=f(x+1)x−1的定义域是________.16.若x,y是正数,且x+2y=1,则xy的最大值为________,1x +xy的最小值为________.四、解答题17.化简求值:(1)0.064−13−(−18)0+1634+0.2512;(2)已知x+x−1=3,求x2−x−2.18.已知全集U=R,集合A={x∈R|2x−1≤30},集合B={x∈R|12<2x≤4}.(1)求A∩B及(C R A)∪B;(2)若集合C={x∈R|(x−a)(x−2a)<0},C⊆B,求实数a的取值范围.19.已知函数f(x)为定义在R上的奇函数,当x>0时,f(x)=x−1x.(1)求f(−2)的值;(2)用函数单调性的定义证明:函数f(x)在(0, +∞)上单调递增;(3)求函数f(x)在x∈R上的解析式.20.已知定义域为R的函数f(x)=−12+a2x+1是奇函数.(1)求a的值;(2)若关于m的不等式f(−2m2+m+1)+f(m2−2mt)≤0在m∈(1,2)恒成立,求实数t的取值范围.21.某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)x2−200x+80000,且每处理一吨二氧化碳得到可利用之间的函数关系可近似地表示为y=12的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?22.函数f(x)=2ax2+2x−3−a.(1)当a=1时,求函数f(x)在区间[−1,3]上的值域;(2)若任意x1,x2∈[0,1],对任意a∈(0,1],总有不等式|f(x1)−f(x2)|<m2−2am+1成立,求m的取值范围.参考答案:一、1-4 CBCA 5-8 ACCD二、9.B,C10.A,D11.A,B,C12.C,D三、13.(2020,2)14.m≤−1615.{x|−1<x<2且x≠1},1+2√216.18四、17.解:(1)原式=[(0.4)3]−13−1+(24)34+0.5=(0.4)−1−1+8+0.5 =10.(2)把x+x−1=3两边平方,可得x2+x−2=7,则(x−x−1)2=x2−2+x−2=5,所以x−x−1=±√5,所以x2−x−2=(x+x−1)(x−x−1)=±3√5.18.解:(1)由2x−1≤30=1得x≤1,所以A={x|x≤1}.<2x≤4,由12即2−1<2x≤22得−1<x≤2,所以B={x|−1<x≤2},所以A∩B={x|−1<x≤1},(C R A)={x|x>1},(C R A)∪B={x|x>−1}.(2)因为C⊆B,∴当a>0时,C={x|a<x<2a},所以2a ≤2,0<a ≤1;∴a =0时,C =⌀满足题意;∴a <0时,C ={x|2a <x <a },所以2a ≥−1, −12≤a <0.故所求a 的取值范围为:−12≤a ≤1.19.(1)解:根据题意,当x >0时,f(x)=x −1x 2,则f(2)=2−14=74.又由f(x)为奇函数,则f(−2)=−f(2)=−74.(2)证明:设0<x 1<x 2,f(x 1)−f(x 2)=(x 1−1x 12)−(x 2−1x 22) =(x 1−x 2)−(1x 12−1x 22) =(x 1−x 2)(1+x 1+x 2(x 1x 2)),又由0<x 1<x 2,则x 1−x 2<0,则f(x 1)−f(x 2)<0,即函数f(x)在(0, +∞)上单调递增.(3)解:函数f(x)为定义在R 上的奇函数,则f(0)=0,设x <0,则−x >0,即f(−x)=−x −1x 2,又由f(x)为奇函数,则f(x)=−f(−x)=x +1x 2,故f(x)={x −1x 2,x >0,0,x =0,x +1x 2,x <0. 20.解:(1)由f (x )为奇函数可知,f (−x )=−f (x ),解得a =1.(2)由y =2x +1递增可知f (x )=−12+12x +1在R 上为减函数,关于m 的不等式f (−2m 2+m +1)+f (m 2−2mt )≤0,等价于f (−2m 2+m +1)≤f (−m 2+2m ),即−2m 2+m +1≥−m 2+2mt .∵m ∈(1,2),∴2t ≤−m +1m+1 原问题转化为2t ≤−m +1m +1在m ∈(1,2)上恒成立,:y =−m +1m +1在区间(1,2)上为减函数,∴ y =−m +1m +1, m ∈(1,2)的值域为(−12,1),∴ 2t ≤−12,解得t ≤−14,∴ t 的取值范围是t ∈(−∞,−14).21.解:(1)由题意可知,二氧化碳的每吨平均处理成本为:y x =12x +80000x−200≥2√12x ⋅80000x −200=200, 当且仅当12x =80000x ,即x =400时,该单位每月处理量为400吨,才能使每吨的平均处理成本最低,最低成本为200元.(2)设该单位每月获利为S ,则S =100x −y=100x −(12x 2−200x +80000) =−12x 2+300x −80000 =−12(x −300)2−35000,因为400≤x ≤600,所以当x =400时,S 有最大值−40000.故该单位不获利,需要国家每月至少补贴40000元,才能不亏损.22.解:(1)当a =1时, f (x )=2x 2+2x −4=2(x +12)2−92,对称轴x =−12∈[−1,3],f (x )min =f (−12)=−92,f (x )max =f (3)=20,∴ 函数f (x )在[−1,3]上的值域为[−92,20].(2)∴ a>0,∴ 对称轴x=−12a<0,∴ f(x)在区间[0,1]上单调递增,∴ f(x)max=f(1)=a−1,f(x)min=f(0)=−a−3,∴ f(x)max−f(x)min=2a+2,即对任意a∈(0,1],不等式m2−2am+1>2a+2恒成立.设g(a)=(m2−2am+1)−(2a+2)=−2(m+1)a+m2−1,由于g(a)>0在区间(0,1]上恒成立,∴则{g(0)≥0,g(1)>0,即{m2−1≥0,−2(m+1)+m2−1>0,解得m<−1成m>3.最新人教A版高一数学上册期中试卷(含答案)(第Ⅲ套)一、选择题1. 设集合A={1,2,3},B={x|x2=1},则A∪B=()A.⌀B.{1,2,3}C.{1}D.{−1,1,2,3}2. 命题“∃x 0∈R ,x 2+4x +5>0”的否定是( )A.∃x 0∈R ,x 2+4x +5>0B.∃x 0∈R ,x 2+4x +5≤0C.∀x ∈R ,x 2+4x +5>0D.∀x ∈R ,x 2+4x +5≤03. 设x ∈R ,则“x >2”是“x 2>4”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4. 函数f(x)=2x −1,x ∈{−1, 1},则f(x)的值域为( )A.[−3, 1)B.(−3, 1]C.[−3, 1]D.{−3, 1}5. 下列函数中,既是偶函数又在(0, +∞)单调递增的函数是( )A.y =x 3B.y =|x|+1C.y =−x 2+1D.y =2−|x| 6. 已知函数f (x )={2x , x ≤0,−(12)x ,x >0,则f(f (2))=( ) A.−4 B.−12 C.−8D.12 7. 已知α∈{−3, −2, 13, 2},若幂函数f(x)=x α为奇函数,且在(0, +∞)上单调递减,则α的值为( )A.−3B.−2C.13D.2 8. 已知y =f(x)是奇函数,若g(x)=f(x)+2,且g(1)=1,则g(−1)=( )A.1B.2C.3D.4二、多选题9.已知集合A ={1, 16, 4x},B ={1, x 2},若B ⊆A ,则x 可能取值有( )A.0B.−4C.1D.410.以下说法正确的有( )A.实数x >y >0是1x <1y 成立的充要条件B.不等式ab ≤(a+b 2)2对a , b ∈R 恒成立C.命题“∃x ∈R ,x 2+x +1≥0”的否定是“∀x ∈R ,x 2+x +1<0"D.若1x +1y =1,则x +y 的最小值是411.已知a ,b ,c 为实数,且a >b >0,则下列不等式正确的是( )A.1a <1bB.ac2>bc2C.ba<abD.a2>ab>b212.已知f(x)是定义在R上的奇函数,且f(x)的图象关于直线x=1对称,当0≤x≤1时,f(x)=x,关于函数g(x)=|f(x)|+f(|x|),下列说法正确的是()A.g(x)为偶函数B.g(x)在(−1,0)上单调递增C.方程g(x)=0在[0,4]上恰有三个实根D.g(x)的最大值为2三、填空题13.已知f(2x+1)=3x−5,f(3)=________.14.已知函数f(x)=1−m5x+1是奇函数,则实数m的值为________.15.若函数y=f(x)的定义域是[0, 4],则函数g(x)=√x−1的定义域是________.16.设a>0,b>0,称2aba+b为a,b的调和平均数.如图,C为线段AB上的点,且AC=a,CB=b,O为AB中点,以AB为直径做半圆.过点C作AB的垂线交半圆于D.连接OD,AD,BD.过点C作OD的垂线,垂足为E.则图中线段OD的长度是a,b的算术平均数,线段________的长度是a,b的几何平均数,线段________的长度是a,b的调和平均数.四、解答题17.已知函数f(x)=√4−x+√x+3的定义域为集合A.(1)求集合A;(2)若集合B={x∈N|0<x<3},求A∩B并写出它的所有子集.18.已知命题p:∀x∈[1, 2],x2−a≥0,命题q:∃x∈R,x2+2ax+2−a=0.若命题p与q都是真命题,求实数a的取值范围.19.已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.(1)现已画出函数f(x)在y轴左侧的图像,如图所示,请补出完整函数f(x)的图像,并根据图像写出函数f(x)的增区间;(2)写出函数f(x)的解析式和值域.20.已知函数f(x)=x+m,且此函数图象过点(1, 5).x(1)求f(x)的解析式;(2)讨论函数f(x)在[2, +∞)上的单调性?并证明你的结论.(3)求函数f(x)在区间[2, 4]上的最小值和最大值.21.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D 点在AN上,且对角线MN过C点,已知AB=3米,AD=4米.(1)要使矩形AMPN的面积大于50平方米,则DN的长应在什么范围?(2)当AN的长为多少米时,矩形花坛AMPN的面积最小?并求出最小值.22.定义在非零实数集上的函数f(x)对任意非零实数x,y满足:f(xy)=f(x)+f(y),且当0<x<1时,f(x)<0.(1)求f(−1)及f(1)的值;(2)求证:f(x)是偶函数;)≤0.(3)解不等式:f(2)+f(x2−12参考答案:一、1-4 DDAD 5-8 BCAC二、9.A,B10.B,C11.A,C,D12.A,D三、13.−214.215.(1, 2]16.CD,DE四、17.解:(1)∴ 函数f(x)=√4−x+√x+3,∴ 函数的定义域为:{4−x≥0,x+3>0,解得−3<x≤4,∴ 集合A={x|−3<x≤4}.(2)∴ 集合B={x∈N|0<x<3}={1, 2},集合A={x|−3<x≤4},∴ A∩B={1, 2},∴ A∩B的所有子集为:⌀,{1},{2},{1, 2}.18.解:根据题意,命题p:∀x∈[1, 2],x2−a≥0,若命题p为真,必有a≤(x2)min=1,即a≤1;对于命题q,∃x∈R,x2+2ax+2−a=0,若命题q为真,即方程x2+2ax+2−a=0有解,则有Δ=4a2−4(2−a)≥0,解可得:a≥1或a≤−2.若命题p与q都是真命题,即{a≤1,a≥1或a≤−2,则有a≤−2或a=1.故a的取值范围为{a|a≤−2或a=1}.19.解:(1)函数图像如图所示:f(x)的递增区间是(−1, 0),(1, +∞).(2)∵x ≤0时,f(x)=x 2+2x ,令x >0, 则−x <0,故f(−x)=x 2−2x ,∴ 函数f(x)为偶函数,∴ f(x)=f(−x),∴当x >0时,f(x)=x 2−2x .∴ f(x)={x 2+2x ,x ≤0,x 2−2x ,x >0,值域为:{y|y ≥−1}.20.解:(1)∴ 函数图象过点(1, 5).得1+m =5,解得m =4,∴ f(x)=x +4x .(2)函数f(x)在[2, +∞)上的单调递增,证明如下:∀x 1,x 2∈[2,+∞),且x 1<x 2,f (x 1)−f (x 2)=x 1+4x 1−x 2−4x 2 =(x 1−x 2)+4(x 2−x 1)x 1x 2=(x 1−x 2)(x 1x 2−4)x 1x 2,∴ x 1,x 2∈[2,+∞)且x 1<x 2,∴ x 1−x 2<0,x 1x 2>4,x 1x 2>0,∴ f (x 1)−f (x 2)<0,即f (x 1)<f (x 2),∴ f (x )在[2,+∞)上单调递增.(3)由f(x)在[2, +∞)上单调递增,可知函数f(x)在区间[2, 4]上也单调递增,当x =2时,函数取得最小值4,当x =4时,函数取得最大值5.21.解:(1) 设DN 的长为x (x >0)米,则AN =x +4米.∴ DN AN =DC AM , ∴ AM =3(x+4)x , ∴ S AMPN =AN ⋅AM =3(x+4)2x ,由矩形AMPN 的面积大于50得: 3(x+4)2x >50,又x >0,得: 3x 2−26x +48>0,解得: 0<x <83或x >6,即DN 长的取值范围为: (0,83)∪(6,+∞). (2)由(1)得,矩形花坛AMPN 的面积为:y =3(x +4)2x =3x 2+24x +48x =3x +48x+24 ≥2√3x ⋅48x +24=48,当且仅当3x =48x ,即x =4时,矩形花坛AMPN 的面积取得最小值48,故DN 的长为4米时,矩形AMPN 的面积最小,最小值为48平方米.22.解:(1)在f(xy)=f(x)+f(y)中,令x =y =1,则f(1)=f(1)+f(1),∴ f(1)=0,再令x =y =−1,则f(1)=f(−1)+f(−1),∴ f(−1)=0.(2)在f(xy)=f(x)+f(y)中,令y =−1,则f(−x)=f(x)+f(−1)=f(x),∴ f(−x)=f(x),∴ f(x)为偶函数.(3)任取x 1,x 2∈(0, +∞),且x 1<x 2,∴ 0<x 1x 2<1,∴ f(x1x 2)<0, ∴ f(x 1)=f(x 2⋅x 1x 2)=f(x 2)+f(x1x 2)<f(x 2),∴ f(x)在(0, +∞)是增函数,∴ f(x)在(−∞, 0)是减函数,∴ f(2)+f(x 2−12)=f(2x 2−1)≤0=f(1)=f(−1),∴ {2x 2−1<0,2x 2−1≥−1,或{2x 2−1>0,2x 2−1≤1,解得−√22<x <√22或−1≤x <−√22或√22<x ≤1, ∴ 不等式的解集为[−1, −√22)∪(−√22, √22)∪(√22, 1].最新人教A 版高一数学上册期中试卷(含答案)(第Ⅳ套)一、选择题1. 已知集合A ={−1,0,1,2}, B ={x|0<x <3},则A ∩B =( )A.{−1,0,1}B.{0,1}C.{−1,1,2}D.{1,2}2. 下列四组函数,表示同一函数的是( )A.f (x )=x 2x ,g (x )=xB.f (t )=t 4−1t 2+1,g (x )=x 2−1 C.f (x )=√x 2,g (x )=x D.f (x )=|x|,g (x )=(√x)23. 已知函数 f (x )={x 2−x,x ≤1,11−x,x >1, 则f(f (−1))的值为( ) A.−1 B.15 C.−15 D.14. 已知a >b >0,下列不等式中正确的是( )A.c a >c bB.ab <b 2C.−a 2<−abD.1a−1<1b−15. 设f(x)是定义在R 上的奇函数,当x ≥0时,f(x)=x 2−x ,则f(−3)=( )A.−3B.3C.6D.−66. 若正实数x ,y 满足x +y =1,则4x+1+1y 的最小值为( )A.447B.275 C .143 D .92 7. 若p:|1−2x|<3,q:−1<x <1,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8. 已知函数f(x)=ax 3+bx +7(其中a ,b 为常数),若f(−7)=−17,则f(7)的值为( )A.31B.17C.−17D.159. 已知R 上的奇函数f (x )在区间(−∞,0)内单调增加,且f (−2)=0,则不等式xf (x )>0的解集为( )A.(−2,2)B.(−∞,−2)∪(0,2)C.(−∞,−2)∪(2,+∞)D.(−2,0)∪(2,+∞) 10. 已知函数f (x )={−a x , x ≤−1,(3−2a )x +2,x >−1,在 (−∞,+∞)上为增函数,则实数a 的取值范围是( )A.(0,32]B.(0,32)C.[1,32)D.[1,32]二、多选题11.下列函数是奇函数的有( )A.f (x )=x −2+xB.f (x )=2x −1xC.f (x )=x 3+xD.f (x )=e x −e −x 12.下列四个函数中,在(0,+∞)上为增函数的是( )A.f (x )=5−3x B .f (x )=x 2+2x +5C.f (x )=|x +5|D.f (x )=−5x+1 三、填空题13.函数f (x )=√3−x +√x+2的定义域为________.14.若函数f (x )=(x −b )2+ax +1是定义在[a −12,2a ]上的偶函数,则a +b =__________. 15.lg14−2lg 73+lg7−lg18=________.16.已知f (x )是定义在R 上的偶函数,且对于任意的a ,b ∈[0,+∞),当a <b 时,都有f (a )−f (b )a−b <0,若f (3)<f (2m −1),则实数m 的取值范围为________.四、解答题17.化简: (1)(279)0.5+0.1−2+(21027)−23−3π0+3748;(2)已知log 189=a ,18b =5,求log 8145 (用a ,b 表示).18.已知集合A ={x|1≤x <7},B ={x|2<x <10},C ={x|x <a},全集为实数集R .(1)求A ∪B ;(2)(∁R A)∩B;(3)如果A∩C≠⌀,求a的取值范围.19.已知f(x)=ax2+bx+18,且f(x)>0的解集也是不等式x2+x−6<0解集.(1)求f(x)的解析式;(2)若f(x)在区间[2c,c+1]上不单调,求实数c的取值范围.20.已知f(x)=x+1,g(x)=5.x(1)在答题卡的同一坐标系中,画出f(x)和g(x)的草图(能体现关键点,弯曲方向和单调性的大致图象);(2)根据图象,写出f(x)的单调区间,并用定义证明其中一个区间的单调性;(3)若x +1x =5,求x −1x 的值.21.已知奇函数f(x)={x 2−6x +4,x >0,0,x =0,g(x),x <0.(1)求g (x )的解析式;(2)求g (x )在[−4,−1]上的最大值和最小值.22.某渔业公司今年初用98万元购进一艘远洋渔船,每年的捕捞可有50万元的总收入,已知使用x 年(x ∈N ∗)所需(包括维修费)的各种费用总计为2x 2+10x 万元.(1)该船捞捕第几年开始赢利(总收入超过总支出,今年为第一年)?(2)该船若干年后有两种处理方案:∴当赢利总额达到最大值时,以8万元价格卖出;∴当年平均赢利达到最大值时,以26万元卖出,问哪一种方案较为合算?请说明理由.参考答案:一、1-5 DBACD 6-10 DBACC 二、11.B,C,D12.B,C,D三、13.(−2,3]14.615.016.(−1,2)四、17.解:(1)原式=√259+102+(6427)−23−3+3748=5+100+9−3+37 =8048+100+2748−3+3748=100.(2)由已知得,b=log185,∴ log8145=log1845log1881=log185+log1892log189=b+a2a.18.解:(1)∴ A={x|1≤x<7},B={x|2<x<10},∴ A∪B={x|1≤x<10}.(2)由(1)可知,∁R A={x|x<1或x≥7}.又B={x|2<x<10},∴ (∁R A)∩B={x|7≤x<10}.(3)∴ A∩C≠⌀,C={x|x<a},∴ a >1,∴ a 的取值范围为(1,+∞).19.解:(1)由题意可知,不等式x 2+x −6<0的解集为(−3,2),则方程ax 2+bx +18=0的两个根为−3和2,由根与系数关系可得{−3+2=−b a ,−3×2=18a ,解得{a =−3,b =−3, 所以f (x )的解析式为f (x )=−3x 2−3x +18.(2)由(1)可知,函数f (x )的图象的对称轴为直线x =−12, 若f (x )在区间[2c,c +1]上不单调,则有2c <−12<c +1,解得−32<c <−14,所以实数c 的取值范围是(−32,−14).20.解:(1)图象如图所示.(2)f (x )的单调递减区间为(−1,0)和(0,1),单调递增区间为(−∞,−1)和(1,+∞). 证明f (x )在(1,+∞)上单调递增,过程如下:∀x 1,x 2∈(1,+∞)且x 1<x 2,则f (x 1)−f (x 2)=x 1+1x 1−x 2−1x 2 =(x 1−x 2)x 1x 2−1x 1x 2.∵ x 2>x 1>1,∴ x 1−x 2<0,x 1x 2>1,∴ f (x 1)−f (x 2)<0,即f (x 1)<f (x 2),∴ f (x )在(1,+∞)上单调递增.(3)由已知得,(x +1x )2=25,则x 2+1x 2=23,∴ (x −1x )2=21,∴ x −1x =±√21.21.解:(1)当x <0时,−x >0,∴ f (−x )=x 2+6x +4.又f (x )为奇函数,∴ f (x )=−f (−x )=−x 2−6x −4,即g (x )=−x 2−6x −4.(2)由(1)得,g (x )=−x 2−6x −4的对称轴为x =−3.又g (x )在[−4,−3]上单调递增,在[−3,−1]上单调递减,∴ g (x )的最大值为g (−3)=5.又g (−1)=1<g (−4)=4,∴ g (x )最小值为1,最大值为5.22.解:(1)∴ 每年的捕捞可有50万元的总收入,使用x 年(x ∈N ∗)所需(包括维修费)的各种费用总计为2x 2+10x 万元, 根据题意可得50x >2x 2+10x +98,∴ x 2−20x +49<0,解得:10−√51<x <10+√51(x ∈N ∗).又2<10−√<3,17<10+√<18,∴ x ∈[3, 17](x ∈N ∗),∴ 该船捞捕第4年开始赢利.(2)∴令y 1=50x −2x 2−10x −98=−2(x −10)2+102,当x =10时,赢利总额达到最大值102万元,∴ 10年赢利总额为102+8=110万元;令y2=−2x−98x +40,则由基本不等式可得−2x−98x+40≤12,当且仅当−2x=−98x,即x=7时,等号成立,此时,x=7,年平均赢利达到最大值为12万元,∴ 7年赢利总额为7×12+26=110万元.综上,两种情况的盈利额一样,但方案∴的时间短,故方案∴合算.。

最新版高一数学上学期期中试题及答案(新人教A版 第25套)

最新版高一数学上学期期中试题及答案(新人教A版 第25套)

南开区度第一学期期中质量检测高一年级数学(必修1)试卷一、选择题: (本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)设全集为{}1,2,3,4,5,6,7,8U =,集合{}{}1,3,5,3,6S T ==,则 等于( )(A)∅ (B){}2,4,7,8 (C){}1,3,5,6 (D){}2,4,6,8(2)在下列函数中,与函数y=x 表示同一函数的是( ).(A)2y = (B)y =y =2x y x = (3)下列函数中是偶函数,且在()0.+∞上单调递增的是( ).(A)y (B)2y x =- (C) 2x y = (D)y x =(4)函数ln 62y x x =-+的零点一定位于区间( ).(A)(1,2) (B)(2,3) (C)(3 , 4) (D)(5 , 6)(5)己知()3x f x =,下列运算不正确的是( ).(A) ()()()f x f y f x y ⋅=+ (B)()()()f x f y f x y ÷=-(C) ()()()f x f y f x y ⋅=⋅ (D)3(log 4)4f =(6)若函数()y f x =的定义域是[0,3],则函数(3)()1f xg x x =-的定义域是 ( ). (A)[0,1) (B)[0,1] (C)[0,1)U(1,9] (D)(0,1)(7)函数log (0,1)a y x a a =>≠且的反函数的图象过1,22⎛⎝⎭点,则a 的值为( ). (A)12 (B)2 (C)12或2 (D)3 (8)三个数 3.3320.99,log ,log 0.8π的大小关系为( ).(A) 3.332log 0.99log 0.8π<< (B) 3.323log 0.8log 0.99π<<( C) 3.323log 0.80.99log π<< (D) 3.3230.99log 0.8l og π<<(9)已知函数()f x 是奇函数,当x>0时,()(1)f x x x =+;当x<0时,()f x 等于( ).(A) -x(l-x) (B) x(l-x) (C) -x(l +x) (D)x (1+x)(10)设集合110,,,122A B ⎡⎫⎡⎤==⎪⎢⎢⎥⎣⎭⎣⎦,函数1,()22(1).x x A f x x x B⎧+∈⎪=⎨⎪-∈⎩,若0x A ∈,且0(())f f x A ∈,则0x 的取值范围是( ) (A)10,4⎛⎤ ⎥⎝⎦ (B)30,8⎡⎤⎢⎥⎣⎦ (C)11,42⎛⎤ ⎥⎝⎦ (D)11,42⎛⎫ ⎪⎝⎭二、填空题:.(本大题共5个小题,每小题,4分,共20分.请将答案填在题中横线上)(11)函数1()3(0,1)x f x a a a -=+>≠且的图象一定过定点___________.(12)若2510a b ==,则11a b +=__________. (13)函数y =___________.(14)已知函数2()48f x kx x =--在[5,20]上是单调函数,则实数k 的取值范围是________.(15)已知函数()log (21)(0,1)x a f x a a =->≠且在区间(0,1)内恒有()0f x >,则函数2log (23)a y x x =--的单调递增区间是__________.三、解答题: (本大题共5个小题、,共40分.解答应写出文字说明,证明过程或演算步骤)(16)(本小题满分6分)计算:(I)1037188-⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭( II)2lg25lg2lg50(lg2)+⨯+.(17)(本小题满分8分)己知全集U=R ,集合{}{}|7217,|132A x x B x m x m =-≤-≤=-≤≤-(I)当3m =时,求A B 与:(Ⅱ)若A B =B ,求实数m 的取值范围.(18)(本小题满分8分)已知函数()log (1),()log (1)(0,1)a a f x x g x x a a =+=->≠且.(I)求函数()()f x g x +的定义域;(Ⅱ)判断函数()()f x g x +的奇偶性,并说明理由;(III)求使()()0f x g x +<成立的x 的集合.(19)(本小题满分9分)已知函数52, 0,()2, 0,1, 0.x x f x x x x ->⎧⎪==⎨⎪--<⎩,(I)求((3))f f -及0.25(1log 3)f -的值;( II)当53x -≤<时,在坐标系中作出函数()f x 的图象并求值域,(20)(本小题满分9分)设函数33()log (9)log (3)f x x x =⋅,且199x ≤. (I)求(3)f 的值;(n)令3log t x =,将()f x 表示成以t 为自变量的函数;并由此,求函数()f x 的最大值与最小值及与之对应的x 的值.。

人教版新教材高中数学高一上学期期中考试数学试卷(共四套)

人教版新教材高中数学高一上学期期中考试数学试卷(共四套)

人教版新教材高中数学高一上学期期中考试数学试卷(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{0,1,2}A =,那么( ) A .0A ⊆B .0A ∈C .{1}A ∈D .{0,1,2}A2.集合{|14}A x x =∈-<<N 的真子集个数为( ) A .7B .8C .15D .163.命题“x ∀∈R ,||10x x -+≠”的否定是( ) A .x ∃∈R ,||10x x -+≠ B .x ∃∈R ,||10x x -+= C .x ∀∈R ,||10x x -+=D .x ∀∉R ,||10x x -+≠4.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( ) A .62%B .56%C .46%D .42%5.已知集合{|10}A x x =-≥,2{|280}B x x x =--≥,则()AB =R( )A .[2,1]-B .[1,4]C .(2,1)-D .(,4)-∞6.甲、乙两人沿着同一方向从A 地去B 地,甲前一半的路程使用速度1v ,后一半的路程使用速度2v ;乙前一半的时间使用速度1v ,后一半的时间使用速度2v ,关于甲,乙两人从A 地到达B 地的路程与时间的函数图像及关系(其中横轴t 表示时间,纵轴s 表示路程12v v <)可能正确的图示分析为( )A .B .C .D .7.若函数24()43x f x mx mx -=++的定义域为R ,则实数m 的取值范围是( )A .3(0,]4B .3[0,]4C .3[0,)4D .3(0,)48.若定义在R 的奇函数()f x 在(,0)-∞单调递减,且(2)0f =,则满足(1)0xf x -≥的x 的取值范围是( ) A .[1,1][3,)-+∞ B .[3,1][0,1]-- C .[1,0][1,)-+∞ D .[1,0][1,3]-二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.21x ≤的一个充分不必要条件是( ) A .10x -≤<B .1x ≥C .01x <≤D .11x -≤≤10.下列各项中,()f x 与()g x 表示的函数不相等的是( )A .()f x x =,()g x =B .()f x x =,2()g x =C .()f x x =,2()x g x x=D .()|1|f x x =-,1(1)()1(1)x x g x x x -≥⎧=⎨-<⎩11.若函数22,1()4,1x a x f x ax x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则a 的取值可能是( )A .0B .1C .32D .312.下列函数中,既是偶函数又在(0,3)上是递减的函数是( )A .21y x =-+B .3y x =C .1y x =-+D .y =第Ⅱ卷三、填空题:本大题共4小题,每小题5分.13.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20182018a b +=________.14.已知(1)f x +的定义域为[2,3)-,则(2)f x -的定义域是 . 15.若12a b <-≤,24a b ≤+<,则42a b -的取值范围_________.16.已知函数21()234f x x x =-++,3()|3|2g x x =-,若函数(),()()()(),()()f x f xg x F x g x f x g x <⎧=⎨≥⎩, 则(2)F = ,()F x 的最大值为 .四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)设集合{25}A x x =-≤≤,{121}B x m x m =-≤≤+. (1)若A B =∅,求m 的范围; (2)若A B A =,求m 的范围.18.(12分)已知命题:p x ∃∈R ,2(1)(1)0m x ++≤,命题:q x ∀∈R ,210x mx ++>恒成立.若,p q 至少有一个为假命题,求实数m 的取值范围.19.(12分)已知函数26,0()22,0x x f x x x x +≤⎧=⎨-+>⎩.(1)求不等式()5f x >的解集;(2)若方程2()02m f x -=有三个不同实数根,求实数m 的取值范围.20.(12分)已知奇函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩. (1)求实数m 的值; (2)画出函数的图像;(3)若函数()f x 在区间[1,||2]a --上单调递增,试确定a 的取值范围.21.(12分)在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x 台(x 是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费. (1)求该月需用去的运费和保管费的总费用()f x ;(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.22.(12分)已知()f x 是定义在[5,5]-上的奇函数,且(5)2f -=-,若对任意的m ,[5,5]n ∈-,0m n +≠,都有()()0f m f n m n+>+.(1)若(21)(33)f a f a -<-,求a 的取值范围;(2)若不等式()(2)5f x a t ≤-+对任意[5,5]x ∈-和[3,0]a ∈-都恒成立,求t 的取值范围.【参考答案】第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】B【解析】∵集合{0,1,2}A =,∴0A ∈,故A 错误,B 正确; 又∵{1}A ⊆,∴C 错误; 而{0,1,2}A =,∴D 错误. 2.【答案】C【解析】{0,1,2,3}A =中有4个元素,则真子集个数为42115-=. 3.【答案】B【解析】全称量词命题的否定是存在量词命题. 4.【答案】C【解析】由Venn 图可知,既喜欢足球又喜欢游泳的学生所占比60%82%96%46%X =+-=, 故选C .5.【答案】C【解析】∵{|10}{|1}A x x x x =-≥=≥,2{|280}{|2B x x x x x =--≥=≤-或4}x ≥,∴{|2A B x x =≤-或1}x ≥,则()(2,1)A B =-R.6.【答案】A【解析】因为12v v <,故甲前一半路程使用速度1v ,用时超过一半,乙前一半时间使用速度1v , 行走路程不到一半. 7.【答案】C【解析】2430mx mx ++≠,所以0m =或000m m Δ≠⎧⇒=⎨<⎩或2030416120m m m m ≠⎧⇒≤<⎨-<⎩. 8.【答案】D【解析】∵()f x 为R 上奇函数,在(,0)-∞单调递减,∴(0)0f =,(0,)+∞上单调递减.由(2)0f =,∴(2)0f -=,由(1)0xf x -≥,得0(1)0x f x ≥⎧⎨-≥⎩或0(1)0x f x ≤⎧⎨-≤⎩,解得13x ≤≤或10x -≤≤,∴x 的取值范围是[1,0][1,3]-,∴选D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.【答案】AC【解析】∵不等式21x ≤,∴11x -≤≤,“01x <≤”和“10x -≤<”是不等式21x ≤成立的一个充分不必要条件. 10.【答案】ABC【解析】A ,可知()||g x x =,()f x x =,两个函数对应关系不一样,故不是同一函数;B ,()f x x =,x ∈R ,2()g x x ==,0x ≥,定义域不一样;C ,()f x x =,x ∈R ,2()x g x x=,0x ≠,定义域不一样;D ,1(1)()|1|1(1)x x f x x x x -≥⎧=-=⎨-<⎩与()g x 表示同一函数.11.【答案】BC【解析】当1x ≤-时,2()2f x x a =-+为增函数, 所以当1x >-时,()4f x ax =+也为增函数,所以0124a a a >⎧⎨-+≤-+⎩,解得503a <≤.12.【答案】AC【解析】A :21y x =-+是偶函数,且在(0,3)上递减,∴该选项正确; B :3y x =是奇函数,∴该选项错误;C :1y x =-+是偶函数,且在(0,3)上递减,∴该选项错误;D :y =第Ⅱ卷三、填空题:本大题共4小题,每小题5分. 13.【答案】1【解析】由集合相等可知0ba=,则0b =, 即{}{}21,,00,,a a a =,故21a =,由于1a ≠,故1a =-,则20182018101a b +=+=. 14.【答案】[)1,6【解析】∵(1)f x +的定义域为[2,3)-,∴23x -≤<,∴114x -≤+<, ∴()f x 的定义域为[1,4)-; ∴124x -≤-<,∴16x ≤<,∴(2)f x -的定义域为[1,6). 15.【答案】(5,10)【解析】由题设42()()a b x a b y a b -=-++,42()()a b x y a y x b -=++-,则42x y y x +=⎧⎨-=-⎩,解得31x y =⎧⎨=⎩,所以423()()a b a b a b -=-++,12a b <-≤,33()6a b <-≤,24a b ≤+<,所以53()()10a b a b <-++<,故54210a b <-<. 16.【答案】0,6【解析】因为(2)6f =,(2)0g =,所以(2)0F =,画出函数()F x 的图象(实线部分),由图象可得,当6x =时,()F x 取得最大值6.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)6m >或32m <-;(2)2m <-或12m -≤≤.【解析】(1)已知{25}A x x =-≤≤,{121}B x m x m =-≤≤+. 当B =∅时,有121m m ->+,即2m <-,满足A B =∅; 当B ≠∅时,有121m m -≤+,即2m ≥-,又A B =∅,则15m ->或212m +<-,即6m >或322m -≤<-,综上可知,m 的取值范围为6m >或32m <-.(2)∵A B A =,∴B A ⊆,当B =∅时,有121m m ->+,即2m <-,满足题意;当B ≠∅时,有121m m -≤+,即2m ≥-,且12215m m -≥-⎧⎨+≤⎩,解得12m -≤≤,综上可知,m 的取值范围为2m <-或12m -≤≤. 18.【答案】2m ≤-或1m >-.【解析】当命题p 为真时,10m +≤,解得1m ≤-; 当命题q 为真时,24110Δm =-⨯⨯<,解得22m -<<,当命题p 与命题q 均为真时,则有12122m m m ≤-⎧⇒-<≤-⎨-<<⎩,命题q 与命题p 至少有一个为假命题,所以此时2m ≤-或1m >-.19.【答案】(1)(1,0](3,)-+∞;(2)(2,(2,2)-. 【解析】(1)当0x ≤时,由65x +>,得10x -<≤; 当0x >时,由2225x x -+>,得3x >, 综上所述,不等式的解集为(1,0](3,)-+∞.(2)方程2()02m f x -=有三个不同实数根, 等价于函数()y f x =与函数22m y =的图像有三个不同的交点,如图所示,由图可知,2122m <<,解得2m -<<2m <<,所以实数m 的取值范围为(2,(2,2)-.20.【答案】(1)2m =;(2)图像见解析;(3)[3,1)(1,3]--. 【解析】(1)当0x <时,0x ->,22()()2()2f x x x x x -=--+-=--, 又因为()f x 为奇函数,所以()()f x f x -=-, 所以当0x <时,2()2f x x x =+,则2m =.(2)由(1)知,222,0()0,02,0x x x f x x x x x ⎧-+>⎪==⎨⎪+<⎩,函数()f x 的图像如图所示.(3)由图像可知()f x 在[1,1]-上单调递增,要使()f x 在[1,||2]a --上单调递增, 只需1||21a -<-≤,即1||3a <≤,解得31a -≤<-或13a <≤, 所以实数a 的取值范围是[3,1)(1,3]--. 21.【答案】(1)144()4f x x x=+(036x <≤,*x ∈N );(2)只需每批购入6张书桌,可以使资金够用.【解析】(1)设题中比例系数为k ,若每批购入x 台,则共需分36x批,每批价值为20x 元,由题意36()420f x k x x=⋅+⋅, 由4x =时,()52f x =,得161805k ==,所以144()4f x x x=+(036x <≤,*x ∈N ). (2)由(1)知,144()4f x x x=+(036x <≤,*x ∈N ),所以()48f x ≥=(元),当且仅当1444x x=,即6x =时,上式等号成立,故只需每批购入6张书桌,可以使资金够用.22.【答案】(1)8(2,]3;(2)3(,]5-∞.【解析】(1)设任意1x ,2x 满足1255x x -≤<≤, 由题意可得12121212()()()()()0()f x f x f x f x x x x x +--=-<+-,即12()()f x f x <,所以()f x 在定义域[5,5]-上是增函数,由(21)(33)f a f a -<-,得521553352133a a a a -≤-≤⎧⎪-≤-≤⎨⎪-<-⎩,解得823a <≤,故a 的取值范围为8(2,]3.(2)由以上知()f x 是定义在[5,5]-上的单调递增的奇函数,且(5)2f -=-, 得在[5,5]-上max ()(5)(5)2f x f f ==--=,在[5,5]-上不等式()(2)5f x a t ≤-+对[3,0]a ∈-都恒成立, 所以2(2)5a t ≤-+,即230at t -+≥,对[3,0]a ∈-都恒成立, 令()23g a at t =-+,[3,0]a ∈-,则只需(3)0(0)0g g -≥⎧⎨≥⎩,即530230t t -+≥⎧⎨-+≥⎩,解得35t ≤,故t 的取值范围为3(,]5-∞.人教版新教材高中数学高一上学期期中考试数学试卷(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

人教A版高中数学高一上期中检测数学题(含答案)

人教A版高中数学高一上期中检测数学题(含答案)

高一年级第一学期期中考试试卷一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合{}22|≤≤-=x x M ,{}0)3(|=-=x x x N ,则M ∩N =( ) A .{0} B .{3} C .{0, 2} D .{0, 3}2、=+5lg 2lg ( )A .7lgB .10C .1D .52lg 3、函数12)(-=x x f 的定义域是( )A .),2(∞+ B .),1[∞+ C .),0[∞+ D .R4、下列函数中,在),0(∞+是增函数的是( )A .2x y -= B .1-=x y C . xy -=2 D .xy 1=5、下列函数中,是奇函数的是( )A .1y x =+B .2y x =- C .1y x= D .y x x =+1 6、对数函数)(x f 的图象经过点)2,4(,则=)21(f ( )A .2B .-3C .1D .-1 7、已知函数]2,1[,13)(∈+=x x x f ,则函数的最大值和最小值是( )A . 最大值是2,最小值是1B . 最大值23,最小值是1 C . 无最大值,最小值是1 D . 最大值是23,无最小值 8、函数))(1()(a x x x f -+=是区间[]a b ,上的偶函数,则b 的值是( )A . -1B . 1C . 0D . -29、函数()1,31,3x x f x x x -<⎧=⎨+≥⎩,则()5f f =⎡⎤⎣⎦( ) A .7 B .6 C .5 D .410、设定义在),(∞+-∞上的函数()22,032,02x x f x x x x ≤⎧⎪=⎨-->⎪⎩,()()g x f x a =+,则当实数a 满足 522a <<时,函数()y g x =与x 轴交点的个数为( )A .0个B .1个C .2个D .3个二、填空题(本大题共4小题,每小题5分,共20分.)11、设{}{}01|,054|22=-==--=x x B x x x A ,则=B A Y .12、比较大小:2log 7 4)2(.(填>、<或=)13、函数1212-+=x x y 为 函数.(填奇、偶或非奇非偶)14、已知偶函数()f x 在区间[)0,+∞上单调递增,则满足不等式)21()12(f x f >-的x 的取值范围 是 .三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 15、(本小题满分12分)已知全集U R =,集合{}41|≤<-=x x A ,⎭⎬⎫⎩⎨⎧≥-=-0812|xx B ,{}Z x x x C ∈≤≤-=,23|.求C A I ,B A C U Y )(.16、(本小题满分14分)求下列式子的值: ()12031)2(20162764-+-⎪⎭⎫ ⎝⎛; ()22511022552log log log log 2+-+.17、(本小题满分14分)解关于x 的不等式: (1)1472+-<x x a a (1,0≠>a a 且); (2)xa x a log log)21(≤-(1>a ).18、(本小题满分12分)已知函数x x x f 2)(2+-=(]4,2[∈x ),x x x g 2)(2+-=.(1) 求)(),(x g x f 的单调区间; (2)求)(),(x g x f 的最大值.19、(本小题满分14分)已知函数是定义在R 上的偶函数,当0≥x 时,)4()(+=x x x f . (1)求)3(),1(-f f 的值; (2)求函数)(x f 在R 上的解析式.20、(本小题满分14分)已知函数)1()1(log log )(x a x a x f -+-=(0a >且1a ≠).(1)求()f x 的定义域; (2)判断()f x 的奇偶性并予以证明; (3)是否存在不同的实数n m ,对于任意的],[n m x ∈,函数)(x f 的值域都为]log ,log [)1()1(n a m a ++,若存在求出n m ,的值,若不存在说明理由.参考答案一、选择题:本大题共10小题,每小题5分,共50分.二、填空题:本大题共4小题,每小题5分,共20分11.{}5,1,1- 12.< 13. 奇 14.⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛∞-,4341,Y三、解答题:本大题共6小题,共80分,解答须写出文字说明、证明过程或演算步骤. 15.(12分)解:(1)依题意:{}2,1,0,1,2,3---=C ,………………2分 {}2,1,0=C A I ………………3分 (2){}41|)(>-≤=x x x A C U 或………………2分 {}3|≤=x x B ………………2分{}43|)(>≤=x x x B A C U 或Y ………………3分16. (14分)(1)2031)2(20162764-+-⎪⎭⎫⎝⎛; (2)2511022552log log log log 2+-+.解:原式=2134+-………………6分 解:原式=2152510252log log log log ++-……2分=37………………1分 =15212log log + ……3分=-1……2分17.(本小题满分14分)解关于x 的不等式: (1)1472+-<x x a a(1,0≠>a a 且);解:当1>a 时,1472+<-x x 82<-x 解得4->x所以不等式解集为}4|{->x x ……………4分当10<<a 时,1472+>-x x 82>-x解得4-<x 所以不等式解集为}4|{-<x x ……………4分(2)xa x alog log )21(≤-(1>a ).解:依题意:⎪⎩⎪⎨⎧≤->>-xx x x 210021……………3分 ,解得⎭⎬⎫⎩⎨⎧<≤2131|x x ……………3分18.(本小题满分12分)解:(1) 在]4,2[上,1)1()(2+--=x x f 无单调增区间,单调减区间为]4,2[;)(x g 的单调增区间为]1,(-∞,单调减区间为),1[+∞.……………6分(2)在]4,2[上)(x f 函数单调递减,则)(x f 的最大值为0)2(=f ……………3分; 1)1()(2+--=x x g 的最大值为1)1(=g .……………3分19.(本小题满分14分)解:(1)551)1(=⨯=f ,313)3(-=⨯-=-f ……………4分;(2)当0<x 时,0>-x ,则)4()4()(-=+--=-x x x x x f ,……………3分; 又函数是定义在R 上的偶函数,于是)()(x f x f =-,所以)4()(-=x x x f .……………4分;所以函数)(x f 在R 上的解析式为⎩⎨⎧≤-≥+=.0),4(,0),4()(x x x x x x x f ……………3分;20、(本小题满分14分)解:(1)依题意⎪⎩⎪⎨⎧>+>-0101x x ,解得定义域为(-1,1)……………4分(2)是奇函数.……………2分设x ∈(-1,1),由)1()1(log log )(x a x a x f ++--=-=)(]log [log )1()1(x f x a x a -=---+,所以函数)(x f 是奇函数.……………4分 (3)假设存在这样的实数n m ,,则)1,1(],[-⊆n m .当1>a 时,)1()1(log log )(x a x a x f -+-=在)1,1(-上单调递增,于是)1()1()1(log log log )(m a m a m am f +-+=-=,解得0=m ,同理解得0=n ,不符合.当10<<a 时,)1()1(log log )(x a x ax f -+-=在)1,1(-上单调递减,此时,值域为]log ,log [)1()1(n a m a ++,有)1()1(log log n a m a ++<,于是n m >,不符合规定的],[n m ,因此,假设不成立,所以不存在这样的实数nm ,对于任意的],[n m x ∈,函数)(x f 的值域都为]log ,log [)1()1(n a m a ++.……………6分。

2022-2023学年人教A版高一上数学期中试卷(含解析)

2022-2023学年人教A版高一上数学期中试卷(含解析)

2022-2023学年高中高一上数学期中试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:110 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 设集合,,若,则实数的取值范围是( )A.B.C.D.2. 若,则下列不等式中成立的是()A.B.C.D.3. 函数的最大值为( )A.B.C.D.A ={(x,y)≤+≤}∣∣m2(x −2)2y 2m 2B ={(x,y)|2m ≤x +y ≤2m +1}A ∩B ≠∅m [,2+]122–√[2−,2+]2–√2–√[1+,+∞]2–√2∅a <b <0>1a −b 1aa +>b +1b 1a<b a b −1a −1>(1−a)a (1−b)by =3−−x(x >0)4x −11−55y =x −ln 2()4. 函数的图象大致为 A.B. C. D.5. 关于抛物线,下面几点结论中,正确的有( )①当时,对称轴左边随的增大而减小,对称轴右边随的增大而增大,当时,情况相反.②抛物线的最高点或最低点都是指抛物线的顶点.③只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同.④一元二次方程的根,就是抛物线与轴交点的横坐标.A.①②③④B.①②③C.①②D.①6. 已知,则指数函数①,②的图象为( ) A.y =x −ln x 2()y =a +bx +c(a ≠0)x 2a >0y x y x a <0a +bx +c =0x 2(a ≠0)y =a +bx +c x 2x 1>n >m >0y =m x y =n xB. C. D.7. 若函数在上单调递增,则实数的取值范围是( )A.B.C.D.8. 已知是定义在上的奇函数,在上是增函数,且.则使得成立的的取值范围是 A.B.C.D.二、 多选题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 设,,若,则实数的值可以为( )A.B.C.D.f(x)=+a |x −1|x 2[0,+∞)a (−∞,0][−2,0][1,2][−2,+∞)f(x)R (0,+∞)f (−4)=0xf (x)>0x ()(−4,4)(−4,0)∪(0,4)(0,4)∪(4,+∞)(−∞,−4)∪(4,+∞)A ={x|−x −2=0}x 2B ={x|mx −1=0}A ∩B =B m 12−1−12y =(α∈R)α(2,8)10. 已知幂函数的图象过点,下列说法正确的是( )A.函数的图象过原点B.函数是偶函数C.函数是单调减函数D.函数的值域为11. 已知函数若关于Ⅰ的方程恰有个不同的实数解,则关于的方程的正整数解的取值可能是A.1B.2C.3D.412. 已知函数,则( )A.B.若有两个不相等的实根,,则C.D.若,,均为正数,则卷II (非选择题)三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13. 命题“,,使得”的否定形式是________.14. 已知函数在上是减函数,则实数的取值范围是________.15. 函数的值域为________.16. 如图,一块边长为的正方形区域,在处有一个可转动的探照灯,其照射角始终为,记探照灯照射在正方形内部区域(阴影部分)的面积为,剩余部分面积为.则y =(α∈R)x α(2,8)y =x αy =x αy =x αy =x αRf (x)={−−4x −2,x ≤1x 2ln x +1,x >1,f (x)=m 3,x 1x 2(<<)x 3x 1x 2x 3π=−(−−4)(−1)e n−1+x 1x 14x 21x 1x 3f (x)=ln x xf (2)>f (5)f (x)=m x 1x 2<x 1x 2e 2ln 2>2e−−√=2x 3y x y 2x >3y ∀x ∈R ∃n ∈N ∗n ≤+23x f(x)=(−ax +3a)log 12x 2[2,+∞)a y =x +(4−x)log 2log 2a ABCD A ∠MAN π4ABCD S 1S 2S的最小值为________ . 四、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 ) 17. 求值与化简.;. 18. 已知集合=,=.(1)若=,则;(2)若=,求实数的取值范围. 19. 已知函数,其中是常数.若是奇函数,求的值;求证:是单调增函数.20.假如你的公司计划购买台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用元,另外实际维修一次还需向维修人员支付小费,小费每次元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了台这种机器在三年使用期内的维修次数,得下面统计表:维修次数频数记表示台机器在三年使用期内的维修次数,表示台机器在维修上所需的费用(单位:元),表示购机的同时购买的维修服务次数.(1)若,求与的函数解析式;(2)若要求“维修次数不大于”的频率不小于,求的最小值;(3)假设这台机器在购机的同时每台都购买次维修服务,或每台都购买次维修服务,分别计算这台机器在维修上所需费用的平均数,以此作为决策依据,购买台机器的同时应购买次还是次维修服务? 21. 函数,且,当是函数图象上的点时,是函数图象上的点.S 2S 1(1)(1)+(−791232)−1(−23–√)2−−−−−−−−√(2)+−9×22lg6−lg31+lg0.36+lg8121324log 2log 2log 3A {x |(x +3)≤3}log 2B {x |2m −1<x ≤m +3}m 3A ∪B A ∩B B m f(x)=lg(+2x)4+b x 2−−−−−−√b (1)y =f(x)b (2)y =f(x)120050500100891011121020303010x 1y 1n n =10y x n 0.8n 100101110011011f(x)=(x −3a)(a >0log a a ≠1)P(x,y)y =f(x)Q(x −a,−y)y =g(x)y =g(x)(I)求函数的解析式;(II)当时,恒有,试确定的取值范围.22. (1)求函数=的最大值;(2)若,,,=,求的最小值.y=g(x)x∈[a+3,a+4]f(x)−g(x)≤1a f(x)|2x−1|−|2x+3|ma>1b>1c>1a+b+c m参考答案与试题解析2022-2023学年高中高一上数学期中试卷一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】A【考点】交集及其运算【解析】此题暂无解析【解答】此题暂无解答2.【答案】C【考点】不等式性质的应用不等式比较两数大小不等式的基本性质【解析】利用不等式的性质,结合特值法,作差法逐项判定即可.【解答】解:对于, ,则,∴,即,则不成立;对于,,则,A a <b <0a −b <0−==<01a −b 1a a −a +b a (a −b)b a (a −b)<1a −b 1a A B a <b <0<<01b 1a+<b +<011∴,则不成立;对于,,则,,∴,则成立;对于,若,时,不成立.故选.3.【答案】A【考点】基本不等式在最值问题中的应用【解析】此题暂无解析【解答】解:由题,,令,当且仅当,即时,有最小值..函数的最大值为.故选.4.【答案】A【考点】函数图象的作法函数的图象【解析】a +<b +<01b 1a B C a <b <0a −b <0a (a −1)>0−=<0b a b −1a −1a −b a (a −1)C D a =−2b =−1C y =3−−x 4x ∴y =3−(+x)4xt =+x ≥2⋅=44x ⋅x 4x−−−−√=x 4xx =2(x >0)t 4∴y =3−t ≤3−4=−1∴−1A此题暂无解析【解答】解:,讨论:当时,,;当时,;当时,,所以函数在上单调递减,在上单调递增;当时,,令,引入 ,,∴当时,,∴函数在上单调递减,∴函数在上单调递增.故选.5.【答案】A【考点】二次函数的性质【解析】利用二次函数的性质逐一判断后即可确定正确的选项.【解答】解:①当时,对称轴左边随的增大而减小,对称轴右边随的增大而增大,当时,情况相反,正确;②抛物线的最高点或最低点都是指抛物线的定点,正确;③只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同,正确;④一元二次方程的根,就是抛物线与轴交点的横坐标,正确.故选.6.【答案】C【考点】指数函数的性质y =x −ln x 2x >0y =x−2ln x ∴=1−=y ′2x x −2x 0<x <2<0y ′x >2>0y ′y =x −ln x 2(0,2)(2,+∞)x <0y =x −2ln(−x)−x =t(t >0)G(t)=−t−2ln t(t >0)∴(t)=−1−G ′2t t >0(t)G ′<0G(t)=−t −2ln t (0,+∞)y =x −2ln(−x)(−∞,0)A a >0y x y x a <0a +bx +c =0x 2(a ≠0)y =a +bx +c x 2x A【解析】利用指数函数底数的大小与单调性的关系去判断.【解答】解:由可知①②应为两条递减指数函数曲线,故只可能是选项或,进而再判断①②与和的对应关系,不妨选择特殊点,令,则①②对应的函数值分别为和,由知选.故选:.7.【答案】B【考点】二次函数的性质【解析】去绝对值原函数变成:,由已知条件知,函数在单调递增,在单调递增,所以,解该不等式组即得的取值范围.【解答】解:,要使在上单调递增,则:,解得:,∴实数的取值范围是.故选.8.【答案】D【考点】其他不等式的解法函数奇偶性的性质a 1>n >m >0C D n m x =1m n m <n C C f(x)={+ax −a x 2−ax +a x 2x ≥1x <1+ax −a x 2[1,+∞)−ax +a x 2[0,1) −≤1a 2≤0a 2a f(x)=+a |x −1|={x 2+ax −a ,x ≥1x 2−ax +a ,x <1x 2f(x)[0,+∞) −≤1a 2≤0a 2−2≤a ≤0a [−2,0]B函数单调性的性质【解析】此题暂无解析【解答】解:函数是定义在上的奇函数,在上为增函数,在上为增函数,,或的取值范围是.故选.二、 多选题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】A,B,C【考点】交集及其运算集合关系中的参数取值问题【解析】由题意:,可得,那么有可能是空集或是的真子集.【解答】解:,由,可得,当时,,满足;当时, ,要使,则或,∴或,解得或,综上所述,实数的值可以为,或.故选.10.∵f(x)R (0,+∞)(−∞,0)f(0)=0∴{x <0,f(x)<f(−4),{x >0,f(x)>f(4),∴x (−∞,−4)∪(4,+∞)D A ∩B =B B ⊆A B B A A ={x|−x −2=0}={−1,2}x 2A ∩B =B B ⊆A m =0B =∅B ⊆A m ≠0B ={x|mx −1=0}={}1m B ⊆A B ={−1}B ={2}=−11m =21m m =−1m =12m 0−112ABC【答案】A,D【考点】幂函数的单调性、奇偶性及其应用幂函数的概念、解析式、定义域、值域【解析】利用函数过点解得解析式,再逐项判定函数的性质.【解答】解:由题设幂函数过,所以得,,故幂函数为,函数过原点,值域为,故正确.函数为奇函数,且为单调增函数,故错误.故选.11.【答案】A,B【考点】函数单调性的性质函数单调性的判断与证明【解析】此题暂无解析【解答】【解析】在同一平面直角坐标系中作出的函数图像如下图所示:当时,,当时,,所以由图像可知当时,关于~的方程恰有个不同实数解,又,所以,又所以,y =x α(2,8)8=2αα=3y =x 3y =x 3R AD y =x 3BC AD AB y =f (x)y =m x ≤1y =−+2≤2(x +2)2x >1y =ln x+1>1m ∈(1,2)f (x)=m 3+=2×(−2)=x 1x 2−4,−−4−2=ln +1x 21x 1x 3=−e x−1+x 1x 24(−−4)(−1)=(ln +3)(−1)x 21x 1x 3x 3x 3m ∈(1,2)ln +1∈(1,2)x 3∈(1,e)g(x)=(ln x+(x −1)(x ∈(1,e)所以.设3),所以,显然在区间内单调递增,所以,所以在区间内单调递增,所以,即,所以,且,所以可取,.故选项.12.【答案】A,D【考点】利用导数研究函数的单调性函数的零点利用导数研究函数的极值利用导数研究函数的最值指数函数的性质【解析】求出导函数,由导数确定函数日单调性,极值,函数的变化趋势,然后根据函数的性质判断各选项,由对数函数的单调性及指数函数单调性判断,由函数性质判断,设 ,且均为正数,求得,再由函数性质判断.【解答】解:由得:,令得, ,当变化时,,变化如表: 单调递增极大值单调递减故在上单调递增,在上单调递减,则是极大值也是最大值.,,,因为,所以 ,所以,故正确;∈(1,e)r 3g(x)=(ln x+(x −1)(x ∈(1,e)(x)=+ln x +3=g ′x −1x ln x −+41x (x)g ′(1,e)(x)>(1)=3>0g ′g ′g(x)(1,e)g(x)∈(g(1),g(e))g(x)∈(0,4e −4)∈(0,4e −4)e x−11<e <4e −4<e 3n 12AB A f (x)B,C ==k 2x 3y x,y 2x =ln k,3y =ln k 2ln 23ln 3f (x)D f (x)=(x >0)ln x x (x)=f ′1−ln x x 2(x)=0f ′x =e x (x)f ′f (x)x(0,e)e (e,+∞)(x)f ′+0−f (x)1e f (x)=ln x x (0,e)(e,+∞)f (e)=1e A f (2)==ln ln 22212f (5)=ln 515=>=()2121025()5151052>212515f (2)>f (5)A,不妨设,则要证: ,即要证: ,因为,所以,因为在上单调递增,所以只需证 ,只需证 ,①令, ,则,当时,,,所以,则在上单调递增,因为,所以 ,即 ,这与①矛盾,故错误;,因为,且在上单调递增,所以,所以 ,所以,所以 ,故错误;,设,且,均为正数,则,,所以,,因为,,,所以,所以,则 ,故正确.故选.三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13.【答案】,,使得【考点】命题的否定B 0<<e <x 1x 2<x 1x 2e 2<x 1e 2x 2>e x 2<e e 2x 2f (x)(0,e)f ()<f ()x 1e 2x 2f ()−f ()<0x 2e 2x 2g(x)=f (x)−f ()e 2x x >e (x)=(ln x −1)(−)g ′1e 21x 2x >e ln x >1>1e 21x 2(x)>0g ′g(x)(e,+∞)>e x 2g()>g(e)=0x 2f ()−f ()>0x 2e 2x 2B C <<e 2–√e √f (x)(0,e)f ()<f ()2–√e √<ln 2–√2ln e √e <ln 2122–√lne 12e √ln 2<2e −−√C D ==k 2x 3y x y x =k =log 2ln k ln 2y =k =log 3ln k ln 32x =ln k 2ln 23y =ln k 3ln 3=ln ln 22212=ln ln 33313<212313<ln 22ln 33>2ln 23ln 32x >3y D AD ∃x ∈R ∀n ∈N ∗n >+23x【解析】此题暂无解析【解答】此题暂无解答14.【答案】【考点】复合函数的单调性【解析】令 由题意可得 在上是增函数,它的对称轴,且,由此求得实数的取值范围.【解答】解:令,由函数在上是减函数,可得 在上是增函数,故有对称轴,且.解得,故答案为:.15.【答案】【考点】对数函数的值域与最值对数的运算性质【解析】由对数的真数大于可得函数的定义域,将函数解析式化成后,考虑这个二次函数的值域,即可得出结论.【解答】解:∵函数中,且,故的定义域是;∵函数(−4,4]t(x)=−ax +3a x 2t(x)=−ax +3a x 2[2,+∞)x =≤2a 2t(2)=4−2a +3a >0a t(x)=−ax +3a x 2f(x)=(−ax +3a)log 12x 2[2,+∞)t(x)=−ax +3a x 2[2,+∞)x =≤2a 2t(2)=4−2a +3a >0−4<a ≤4(−4,4](−∞,2]0[x(4−x)]log 2x(1−x)f(x)=x +(4−x)log 2log 2x >04−x >0f(x)(0,4)f(x)=x +(4−x)=[x(4−x)]log 2log 2log 2∵,∴∴,∴函数的值域为.故答案为:16.【答案】【考点】基本不等式在最值问题中的应用两角和与差的正切公式函数最值的应用【解析】此题暂无解析【解答】解:设,,则,∴,,∴,设,,当且仅当时取等号成立,因为是定值,所以最小时,同时取到最大值,的最小值为.故答案为:.四、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )0<x <40<x(4−x)≤[=4x +(4−x)2]2[x(4−x)]≤2log 2y =x +(4−x)log 2log 2(−∞,2](−∞,2]2–√2∠BAM =αα∈[0,]π4|=tan α|BM||AB||BM|=atan α∠DAN =−απ4|DN|=a tan(−α)=()a π41−tan α1+tan αtan α=t,0≤t ≤1=|AB|⋅|BM|+|AD|⋅|DN|S 21212=(t +)=(t +−1)a 221−t1+t a 2221+t =(t +1+−2)≥(2−2)a 2221+t a 22(t +1)×21+t −−−−−−−−−−−−√=(−1)a 22–√t =−12–√+S 2S 1a 2S 2S1S 2S 1=(−1)a 22–√−(−1)a 2a 22–√2–√22–√217.【答案】解:;.【考点】有理数指数幂的运算性质及化简求值对数的运算性质【解析】(1)化带分数为假分数,化负指数为正指数,再由有理指数幂的运算性质求解;(2)直接利用对数的运算性质化简求值.【解答】解:;.18.【答案】若=,则=,依题意,===,(1)(1)+(−791232)−1(−23–√)2−−−−−−−−√=(+−(2−)169)12233–√=+−2+43233–√=3–√(2)+−9×22lg6−lg31+lg0.36+lg8121324log 2log 2log 3=+4−23×2lg36−lg31+lg0.6+lg2log 2log 3=+4−2lg12lg12=3(1)(1)+(−791232)−1(−23–√)2−−−−−−−−√=(+−(2−)169)12233–√=+−2+43233–√=3–√(2)+−9×22lg6−lg31+lg0.36+lg8121324log 2log 2log 3=+4−23×2lg36−lg31+lg0.6+lg2log 2log 3=+4−2lg12lg12=3m 3B {x |5<x ≤8}A {x |(x +3)≤4}log 2{x |(x +3)≤8}log 2log 2{x |−3<x ≤7}A ∪B {x |−3<x ≤6}故=.因为=,故,若,即时,符合题意;若,即时,,综上所述,实数的取值范围为:.【考点】交集及其运算并集及其运算【解析】(1)将=代入可得集合,解对数不等式可得集合,由并集运算即可求解;(2)由=可知为的子集,分类讨论,当=,符合题意;当不为空集时,由不等式关系即可求解的取值范围.【解答】若=,则=,依题意,===,故=.因为=,故,若,即时,符合题意;若,即时,,综上所述,实数的取值范围为:.19.【答案】解:设的定义域为,∵是奇函数,∴对任意,有,得,此时,,为奇函数.证明:设定义域内任意,令,则当时,总有,,,∴,A ∪B {x |−3<x ≤6}A ∩B B B ⊆A 3m −1≥m +3m ≥62m −1<m +4m <4m [−1,+∞)m 3B A A ∩B B B A B ∅B m m 3B {x |5<x ≤8}A {x |(x +3)≤4}log 2{x |(x +3)≤8}log 2log2{x |−3<x ≤7}A ∪B {x |−3<x ≤6}A ∩B B B ⊆A 3m −1≥m +3m ≥62m −1<m +4m <4m [−1,+∞)(1)y =f(x)D y =f(x)x ∈D f(x)+f(−x)=0b =1f(x)=lg(+2x)4+1x 2−−−−−−√D =R (2)<x 1x 2h(x)=+2x 4+b x 2−−−−−−√h()−h()=+2−−2x 1x 24+b x 21−−−−−−√x 14+b x 22−−−−−−√x 2=2[+−]2−2x 21x 22+4+b x 21−−−−−−√4+b x 22−−−−−−√x1x 2=2(−)[+1]x 1x22(+)x1x 2+4+b x 21−−−−−−√4+bx 22−−−−−−√b ≤00<<x 1x 2≤24+b x 21−−−−−−√x 1≤24+b x 22−−−−−−√x 2≥12(+)x 1x 2+4+b x 21−−−−−−√4+bx 22−−−−−−√h()<h()得,当时,∵,,,∴,得,故总有在定义域上单调递增.【考点】函数奇偶性的性质函数单调性的判断与证明【解析】(1)根据函数的奇偶性以及对数函数的性质求出的值即可;(2)根据函数单调性的定义判断函数的单调性即可.【解答】解:设的定义域为,∵是奇函数,∴对任意,有,得,此时,,为奇函数.证明:设定义域内任意,令,则当时,总有,,,∴,得,当时,∵,,,∴,得,故总有在定义域上单调递增.20.【答案】h()<h()x 1x 2b >0−<0x 1x 2>24+b x 21−−−−−−√x 1>24+b x 22−−−−−−√x 2−1<<12(+)x 1x 2+4+b x 21−−−−−−√4+bx 22−−−−−−√h()<h()x 1x 2f(x)b (1)y =f(x)D y =f(x)x ∈D f(x)+f(−x)=0b =1f(x)=lg(+2x)4+1x 2−−−−−−√D =R (2)<x 1x 2h(x)=+2x 4+b x 2−−−−−−√h()−h()=+2−−2x 1x 24+b x 21−−−−−−√x 14+b x 22−−−−−−√x 2=2[+−]2−2x 21x 22+4+b x 21−−−−−−√4+bx 22−−−−−−√x 1x 2=2(−)[+1]x 1x 22(+)x 1x 2+4+b x 21−−−−−−√4+b x 22−−−−−−√b ≤00<<x 1x 2≤24+b x 21−−−−−−√x 1≤24+b x 22−−−−−−√x 2≥12(+)x 1x 2+4+b x 21−−−−−−√4+bx 22−−−−−−√h()<h()x 1x 2b >0−<0x 1x 2>24+b x 21−−−−−−√x 1>24+b x 22−−−−−−√x 2−1<<12(+)x 1x 2+4+b x 21−−−−−−√4+bx 22−−−−−−√h()<h()x 1x 2f(x)={200×10+50x ,x ≤10,解:(1)即.(2)因为“维修次数不大于”的频率,“维修次数不大于”的频率,所以若要求“维修次数不大于”的频率不小于,则的最小值为.(3)若每台都购买次维修服务,则有下表:维修次数频数费用此时这台机器在维修上所需费用的平均数为(元).若每台都购买次维修服务,则有下表:维修次数频数费用此时这台机器在维修上所需费用的平均数为(元).因为,所以购买台机器的同时应购买次维修服务.【考点】函数模型的选择与应用y ={200×10+50x ,x ≤10,250×10+500(x −10),x >10,y ={50x +2000,x ≤10,500x −2500,x >10,x ∈N 10==0.6<0.810+20+3010011==0.9≥0.810+20+30+30100n 0.8n 1110x891011121020303010y 24002450250030002500100=y 12400×10+2450×20+2500×30+3000×30+3500×10100=273011x891011121020303010y 26002650270027503250100=y 22600×10+2650×20+2700×30+2750×30+3250×10100=2750<y 1y 2110函数的最值及其几何意义频率分布直方图【解析】此题暂无解析【解答】解:(1)即.(2)因为“维修次数不大于”的频率,“维修次数不大于”的频率,所以若要求“维修次数不大于”的频率不小于,则的最小值为.(3)若每台都购买次维修服务,则有下表:维修次数频数费用此时这台机器在维修上所需费用的平均数为(元).若每台都购买次维修服务,则有下表:维修次数频数费用此时这台机器在维修上所需费用的平均数为y ={200×10+50x ,x ≤10,250×10+500(x −10),x >10,y ={50x +2000,x ≤10,500x −2500,x >10,x ∈N 10==0.6<0.810+20+3010011==0.9≥0.810+20+30+30100n 0.8n 1110x891011121020303010y 24002450250030002500100=y 12400×10+2450×20+2500×30+3000×30+3500×10100=273011x891011121020303010y 26002650270027503250100=y 22600×10+2650×20+2700×30+2750×30+3250×10100(元).因为,所以购买台机器的同时应购买次维修服务.21.【答案】解:设是图象上点,,则,∴,∴,∴ .(II )令,由,得,由题意知,故,从而,故函数在区间上单调递增,①若,则在区间是单调递减,∴在上的最大值为,在区间上不等式恒成立,等价于不等式成立,从而,解得或,结合.得,.(2)若,则在区间上单调递增,∴上的最大值为,在上不等式恒成立.等价于不等式成立,从而,即,解得.∵,∴不符合.综上可知:的取值范围为.【考点】对数函数图象与性质的综合应用【解析】(I )设是图象上点,,由此能求出函数的解析式.(II )令,由,得,所以函数在区间上单调递增,由此能求出的取值范围为.【解答】=2750<y 1y 2110(I)P(,)x 0y 0y =f(x)Q(x,y){x =−a x 0y =−y 0{=x +a x 0=−y y 0−y =(x +a −3a)log a y =log a 1x −2a (x >2a)∅(x)=f(x)−g(x)=[(x −2a)(x −3a)]=[(x −−]log a log a 5a 2)2a 24{x −2a >0x −3a >0x >3a a +3>3a a <32(a +3)−=(a −2)>05a 232∅(x)=(x −−5a 2)2a 24[a +3,a +4]0<a <1∅(x)[a +3,a +4]∅(x)[a +3,a +4]∅(a +3)=(2−9a +9)log a a 2[a +3,a +4]f9x)≤1(2−9a +9)≤1log a a 22−9a +9≥a a 2a ≥5+7–√2a ≤5−7–√20<a <10<a 11<a <32∅(x)[a +3,a +4]∅(a +3,a +4]∅(a +4)=(2−12a +16)log a a 2[a +3,a +4]∅(x)≤1(2−12a +16)≤1log a a 22−12a +16≤a a 22−13a +16≤0a 2<a ≤13−41−−√413+41−−√4>13−41−−√432a (0,1)P(,)x 0y 0y =f(x)Q(x,y)y =g(x)∅(x)=f(x)−g(x)=[(x −2a)(x −3a)]=[(x −−]log a log a 5a 2)2a 24{x −2a >0x −3a >0x >3a ∅(x)=(x −−5a 2)2a 24[a +3,a +4]a (0,1)解:设是图象上点,,则,∴,∴,∴ .(II )令,由,得,由题意知,故,从而,故函数在区间上单调递增,①若,则在区间是单调递减,∴在上的最大值为,在区间上不等式恒成立,等价于不等式成立,从而,解得或,结合.得,.(2)若,则在区间上单调递增,∴上的最大值为,在上不等式恒成立.等价于不等式成立,从而,即,解得.∵,∴不符合.综上可知:的取值范围为.22.【答案】由绝对值不等式的性质可得,==,当,且时,取得最大值,所以=.由(1)知:=,即=,由柯西不等式:,当且仅当,等号成立,即的最小值为.【考点】基本不等式及其应用函数的最值及其几何意义【解析】(1)利用绝对值三角不等式,直接求出的最大值;(I)P(,)x 0y 0y =f(x)Q(x,y){x =−a x 0y =−y 0{=x +a x 0=−y y 0−y =(x +a −3a)log a y =log a 1x −2a (x >2a)∅(x)=f(x)−g(x)=[(x −2a)(x −3a)]=[(x −−]log a log a 5a 2)2a 24{x −2a >0x −3a >0x >3a a +3>3a a <32(a +3)−=(a −2)>05a 232∅(x)=(x −−5a 2)2a 24[a +3,a +4]0<a <1∅(x)[a +3,a +4]∅(x)[a +3,a +4]∅(a +3)=(2−9a +9)log a a 2[a +3,a +4]f9x)≤1(2−9a +9)≤1log a a 22−9a +9≥a a 2a ≥5+7–√2a ≤5−7–√20<a <10<a 11<a <32∅(x)[a +3,a +4]∅(a +3,a +4]∅(a +4)=(2−12a +16)log a a 2[a +3,a +4]∅(x)≤1(2−12a +16)≤1log a a 22−12a +16≤a a 22−13a +16≤0a 2<a ≤13−41−−√413+41−−√4>13−41−−√432a (0,1)f(x)|2x −1|−|3x +3|≤|2x −3−2x −3|2(2x −1)(7x +3)≥0|6x −1|≥|2x +2|f(x)2m 4m 4a +b +c 39f(x)M a +b +c a −1+b −1+c −1(2)=,所以=,由柯西不等转化求解最小值即可.【解答】由绝对值不等式的性质可得,==,当,且时,取得最大值,所以=.由(1)知:=,即=,由柯西不等式:,当且仅当,等号成立,即的最小值为.a +b +c 4a −1+b −1+c −11f(x)|2x −1|−|3x +3|≤|2x −3−2x −3|2(2x −1)(7x +3)≥0|6x −1|≥|2x +2|f(x)2m 4m 4a +b +c 39。

高中数学 期中检测试卷精品练习(含解析)新人教A版必修第一册-新人教A版高一第一册数学试题

高中数学 期中检测试卷精品练习(含解析)新人教A版必修第一册-新人教A版高一第一册数学试题

期中检测试卷C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <12或x <-12 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <0或x >12 8.已知正方形ABCD 的边长为4,动点P 从B 点开始沿折线BCDA 向A 点运动.设点P 运动的路程为x ,△ABP 的面积为S ,则函数S =f (x )的图象是( )二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.如果a <b <0,那么下列不等式正确的是( ) A.1a <1bB .ac 2<bc 2C .a +1b <b +1aD .a 2>ab >b 210.如果函数f (x )在[a ,b ]上是增函数,对于任意的x 1,x 2∈[a ,b ](x 1≠x 2),则下列结论中正确的是( )A.f x 1-f x 2x 1-x 2>0 B .(x 1-x 2)[f (x 1)-f (x 2)]>0C .f (a )≤f (x 1)<f (x 2)≤f (b )D .f (x 1)>f (x 2) 11.下列表达式的最小值为2的有( ) A .当ab =1时,a +b B .当ab =1时,b a +a bC .a 2-2a +3 D.a 2+2+1a 2+212.下列说法中正确的是( )A .“a >1,b >1”是“ab >1”成立的充分条件B .命题p :∀x ∈R ,x 2>0,则綈p :∃x ∈R ,x 2<0C .命题“若a >b >0,则1a <1b”的否定是假命题 D .“a >b ”是“a 2>b 2”成立的充分不必要条件三、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知集合A ={1,2},B ={a ,a 2+3},若A ∩B ={1},则实数a 的值为________. 14.函数f (x )=ax 3+bx -2,f (1)=3,则f (-1)=________.15.正数a ,b 满足1a +9b=1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值X 围是________.16.设集合A =⎣⎢⎡⎭⎪⎫0,12,B =⎣⎢⎡⎦⎥⎤12,1,函数f (x )=⎩⎪⎨⎪⎧x +12,x ∈A 21-x ,x ∈B.(1)f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫56=________;(2)若f [f (t )]∈A ,则t 的取值X 围是________.(本题第一空2分,第二空3分) 四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)设全集U =R ,集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -3x +2<0,B ={x |x ≥1},C ={x |2a ≤x ≤a +3}. (1)求∁U A 和A ∩B ;(2)若A ∪C =A ,某某数a 的取值X 围.18.(12分)设p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0,若p 是q 的必要不充分条件,某某数a 的取值X 围.19.(12分)已知函数f (x )=1a -1x(x >0).(1)用函数单调性的定义证明:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.20.(12分)已知幂函数f (x )=x 223m m -++ (m ∈Z )为偶函数,且在区间(0,+∞)上是单调增函数.(1)求函数f (x )的解析式;(2)设函数g (x )=f x +2x +c ,若g (x )>2对任意的x ∈R 恒成立,某某数c 的取值X 围.21.(12分)为迎接2021年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量p 万件与促销费用x 万元满足:p =3-2x +1(其中0≤x ≤a ,a 为正常数).已知生产该产品还需投入成本(10+2p )万元(不含促销费用),产品的销售价格定为⎝⎛⎭⎪⎫4+20p 元/件,假定厂家的生产能力完全能满足市场的销售需求.(1)将该产品的利润y 万元表示为促销费用x 万元的函数;(2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.22.(12分)已知函数f (x )=2x +b ,g (x )=x 2+bx +c (b ,c ∈R ),h (x )=g xf x.对任意的x ∈R ,恒有f (x )≤g (x )成立.(1)如果h (x )为奇函数,求b ,c 满足的条件;(2)在(1)的条件下,若h (x )在[2,+∞)上为增函数,某某数c 的取值X 围.期中检测试卷1.解析:根据补集的定义可得∁U B ={2,5,8},所以A ∩(∁U B )={2,5},故选A. 答案:A2.解析:3x -12-x ≥1⇔3x -12-x -1≥0⇔4x -32-x ≥0⇔x -34x -2≤0⇔⎩⎪⎨⎪⎧⎝⎛⎭⎪⎫x -34x -2≤0,x -2≠0解得34≤x <2.故选B.答案:B3.解析:根据存在量词命题的否定是全称量词命题可知原命题的否定形式为“∀x ∈R ,f (x )≤1或f (x )>2”.答案:D4.解析:当a =3,集合A ={1,3},B ={1,2,3},所以B ⊇A 正确,反之,不成立,即“a =3”是“B ⊇A ”的充分条件,所以正确选项为A.答案:A5.解析:由题意知,不等式ax 2+2ax +1>0恒成立, 当a =0时,1>0,不等式恒成立,当a ≠0时,则⎩⎪⎨⎪⎧a >0,Δ<0,解得0<a <1,综上有0≤a <1,故选C. 答案:C6.解析:f (x )=2(x -1)+8x -1+2≥22x -1·8x -1+2=10,当且仅当2(x -1)=8x -1,即x =3时取等号, 所以当x =3时,f (x )min =10,故选D. 答案:D7.解析:y =f (x )的草图如图,xf (x )>0的解集为⎝ ⎛⎭⎪⎫-12,0∪⎝⎛⎭⎪⎫0,12.答案:B8.解析:依题意可知,当0≤x ≤4时,f (x )=2x ; 当4<x ≤8时,f (x )=8;当8<x ≤12时,f (x )=24-2x ,观察四个选项知选D. 答案:D9.解析:∵a <b <0,∴b -a >0,a -b <0,ab >0,A.1a -1b =b -a ab>0,故错误;B.ac 2-bc2=c 2(a -b ),当c =0时,ac 2-bc 2=0,故错误;C.a +1b -⎝ ⎛⎭⎪⎫b +1a =a -b +a -b ab=(a -b )⎝ ⎛⎭⎪⎫1+1ab <0,故正确;D.a 2-ab =a (a -b )>0,ab -b 2=b (a -b )>0,故正确.故选CD.答案:CD10.解析:由函数单调性的定义可知,若函数y =f (x )在给定的区间上是增函数,则x 1-x 2与f (x 1)-f (x 2)同号,由此可知,选项A ,B 正确;对于选项C ,D ,因为x 1,x 2的大小关系无法判断,则f (x 1)与f (x 2)的大小关系确定也无法判断,故C ,D 不正确.故选AB.答案:AB11.解析:对选项A ,当a ,b 均为负值时,a +b <0,故最小值不为2;对选项B ,因为ab =1,所以a ,b 同号,所以b a >0,ab>0,所以b a +ab ≥2b a ·a b =2,当且仅b a =ab,即a =b =±1时取等号,故最小值为2; 对选项C ,a 2-2a +3=(a -1)2+2,当a =1时,取最小值2; 对选项D ,a 2+2+1a 2+2≥2a 2+2·1a 2+2=2,当且仅当a 2+2=1a 2+2,即a 2+2=1时,取等号,但等号显然不成立,故最小值不为2.故选BC. 答案:BC12.解析:对于选项A ,a >1,b >1时,易得ab >1,故A 正确;对于选项B ,全称量词命题的否定为存在量词命题,所以命题p :∀x ∈R ,x 2>0的否定为綈p :∃x ∈R ,x 2≤0,故B 错误;对于选项C ,“若a >b >0,则1a <1b”为真命题,所以其否定为假命题,故C 正确;对于选项D ,由“a >b ”并不能推出“a 2>b 2”,如a =1,b =-1,故D 错误;故选AC.答案:AC13.解析:由A ∩B ={1}知,1∈B ,又因为a 2+3≥3,所以a =1. 答案:114.解析:∵f (x )=ax 3+bx -2,f (1)=3,∴f (1)=a +b -2=3,即a +b =5,∴f (-1)=-a -b -2=-(a +b )-2=-5-2=-7.答案:-715.解析:因为a >0,b >0,1a +9b=1,所以a +b =(a +b )·⎝ ⎛⎭⎪⎫1a +9b=10+b a +9a b≥10+29=16, 当且仅当b a =9ab即a =4,b =12时,等号成立, 由题意,得16≥-x 2+4x +18-m , 即x 2-4x -2≥-m 对任意实数x 恒成立. 又设f (x )=x 2-4x -2=(x -2)2-6, 所以f (x )的最小值为-6, 所以-6≥-m ,即m ≥6. 答案:[6,+∞)16.解析:(1)根据题意,f (x )=⎩⎪⎨⎪⎧x +12,x ∈A21-x ,x ∈B ,即f (x )=⎩⎪⎨⎪⎧x +12,0≤x <1221-x ,12≤x ≤1,则f ⎝ ⎛⎭⎪⎫56=2⎝ ⎛⎭⎪⎫1-56=13,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫56=f ⎝ ⎛⎭⎪⎫13=13+12=56;(2)根据题意,分2种情况讨论:①当t ∈A 时,f (t )=t +12,则有12≤f (t )<1,此时f [f (t )]=2(1-f (t ))=2-2⎝ ⎛⎭⎪⎫t +12=1-2t ,若f [f (t )]∈A ,即0≤1-2t <12,解可得:14<t ≤12,此时t 的取值X 围为⎝ ⎛⎦⎥⎤14,12;②当t ∈B 时,f (t )=2(1-t ),则有0≤f (t )=2(1-t )≤1,其中当34≤t ≤1时,0≤f (t )≤12,此时f [f (t )]=f (t )+12=52-2t ,若f [f (t )]∈A ,即0≤52-2t ≤12,解可得:1≤t ≤54,舍去, 当12≤t <34时,12<f (t )≤1,此时f [f (t )]=2-2×2(1-t )=4t -2,若f [f (t )]∈A ,即0≤4t -2<12,解可得:12≤t <58,此时t 的取值为⎣⎢⎡⎭⎪⎫12,58;综合可得:t 的取值X 围为⎝ ⎛⎭⎪⎫14,58.答案:(1)56 (2)⎝ ⎛⎭⎪⎫14,5817.解析:(1)A ={x |-2<x <3},∁U A ={x |x ≤-2或x ≥3},A ∩B ={x |1≤x <3}. (2)由A ∪C =A 知C ⊆A当2a >a +3时,即a >3时,C =∅,满足条件;当2a ≤a +3时,即a ≤3时,2a >-2且a +3<3,∴-1<a <0 综上,a >3或-1<a <0.18.解析:解不等式组⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0,得2<x ≤3,∴q :2<x ≤3,当a >0时,不等式x 2-4ax +3a 2<0的解集为{x |a <x <3a }, ∴p :a <x <3a .∵p 是q 的必要不充分条件,∴⎩⎪⎨⎪⎧a ≤2,3a >3,解得1<a ≤2.当a <0时,不等式x 2-4ax +3a 2<0的解集为{x |3a <x <a }, ∴p :3a <x <a .∵p 是q 的必要不充分条件,∴⎩⎪⎨⎪⎧3a ≤2,a >3,此时无解.综上所述,a 的取值X 围是(1,2].19.解析:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), ∴f (x )在(0,+∞)上是增函数.(2)由(1)可知, f (x )在⎣⎢⎡⎦⎥⎤12,2上为增函数,∴f ⎝ ⎛⎭⎪⎫12=1a -2=12,且f (2)=1a -12=2,解得a =25 .20.解析:(1)∵f (x )在区间(0,+∞)上是单调增函数,∴-m 2+2m +3>0,即m 2-2m -3<0,解得-1<m <3.又m ∈Z ,∴m =0,1,2, 而m =0,2时,f (x )=x 3不是偶函数,m =1时,f (x )=x 4是偶函数. ∴f (x )=x 4.(2)由(1)知f (x )=x 4,则g (x )=x 2+2x +c =(x +1)2+(c -1). ∴g (x )min = c -1.∵g (x )>2对任意的x ∈R 恒成立,∴g (x )min >2,且x ∈R ,即c -1>2,解得c >3. 故实数c 的取值X 围是(3,+∞).21.解析:(1)由题意知,y =⎝⎛⎭⎪⎫4+20p p -x -(10+2p ),将p =3-2x +1代入化简得y =16-4x +1-x (0≤x ≤a ). (2)当a ≥1时,y =17-⎝⎛⎭⎪⎫4x +1+x +1≤17-24x +1×x +1=13,当且仅当4x +1=x +1,即x =1时,上式取等号. 当0<a <1时,y =16-4x +1-x 在(0,1)上单调递增, 所以当x =a 时,y 取最大值为16-4a +1-a . 所以当a ≥1时,促销费用投入1万元时,厂家的利润最大为13万元. 当0<a <1时,促销费用投入a 万元时,厂家的利润最大为16-4a +1-a . 22.解析:(1)设h (x )=g xf x的定义域为D , 因为h (x )为奇函数,所以对任意x ∈D ,h (-x )=-h (x )成立,解得b =0. 因为对任意的x ∈R ,恒有f (x )≤g (x )成立, 所以对任意的x ∈R ,恒有2x +b ≤x 2+bx +c , 即x 2+(b -2)x +c -b ≥0对任意的x ∈R 恒成立. 由(b -2)2-4(c -b )≤0,得c ≥b 24+1,即c ≥1.于是b ,c 满足的条件为b =0,c ≥1.(2)当b =0时,h (x )=g x f x =x 2+c 2x =12x +c2x(c ≥1).因为h (x )在[2,+∞)上为增函数, 所以任取x 1,x 2∈[2,+∞),且x 1<x 2,h (x 2)-h (x 1)=12(x 2-x 1)⎝⎛⎭⎪⎫1-c x 1x 2>0恒成立, 即任取x 1,x 2∈[2,+∞),且x 1<x 2,1-cx 1x 2>0恒成立,也就是c <x 1x 2恒成立,所以c ≤4, 结合(1),得实数c 的取值X 围是[1,4].。

高一数学上学期单元测试试题(期中考试)新人教A版

高一数学上学期单元测试试题(期中考试)新人教A版

高一数学上学期单元测试试题(期中考试)新人教A 版命题范围:期中(必修1)第Ⅰ卷为选择题,共60分;第Ⅱ卷为非选择题共90分。

满分150分,考试时间为120分钟。

第Ⅰ卷(选择题,共60分)一、选择题:本大题共l2小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{1,3},A =集合{1,2,4,5}B =,则集合A B ⋃= ( ) A .{1,3,1,2,4,5}B .{1}C .{1,2,3,4,5}D .{2,3,4,5}2.化简1327()125-的结果是( ) A .35 B .53C .3D .5 3.若幂函数()af x x =在()0,+∞上是增函数,则( ) A .a >0 B .a <0C .a =0D .不能确定4.与||y x =为同一函数的是( )A .2y =B .yC .{,(0),(0)x x y x x >=-< D .log a x y a =5.设()338x f x x =+-, 用二分法求方程3380(1,2)x x x +-=∈在内近似解的过程中, 计算得到(1)0,(1.5)0,(1.25)0,f f f <>< 则方程的根落在区间 ( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定6.下列各式错误..的是( )A .0.80.733>B .0.50.5log 0.4log 0.6>C .0.10.10.750.75-<D .lg1.6lg1.4>7.已知753()2f x ax bx cx =-++,且(5),f m -= 则(5)(5)f f +-的值为 ( )A .4B .0C .2mD .4m -+ 8.函数)6(log 26.0x x y -+=的单调增区间是( )A .⎥⎦⎤ ⎝⎛∞-21,B .⎪⎭⎫⎢⎣⎡+∞,21C .⎥⎦⎤ ⎝⎛-21,2D .⎪⎭⎫⎢⎣⎡3,219.函数111+--=x y 的图象是下列图象中的 ( )10.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为( ) A .9 B .14 C .18 D .2111x 1 2 3 f (x ) 6.1 2.9 -3.5( )A .(-∞,1)B .(1,2)C .(2,3)D .(3,+∞)12.某研究小组在一项实验中获得一组关于y 、t 之间的数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y 与t 之间关系的是 ( ) A .2ty =B .22y t =C .3y t =D .2log y t =第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.函数3log y x =的定义域为 .(用区间表示)y t14.24,02(),(2)2,2x x f x f x x ⎧-≤≤==⎨>⎩已知函数则 ;若00()8,f x x ==则 .15.函数)1(log )(-=x x f a (a>0且a ≠1)的反函数的图像经过点(1,4),则a = 16.已知f (x )是定义在[)2,0-∪(]0,2上的奇函数,当0>x 时,f (x ) 的图象如右图所示,那么f (x ) 的值域是 .三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)计算:(1)0021)51(1212)4(2---+-+-(2)91log 161log 25log 532••18.(本小题满分12分)已知集合A={x|x ≤a+3},B={x|x<-1或x>5}.(1) 若2R a AC B =-,求;(2) 若B A ⊆,求a 的取值范围.19.(本小题满分12分) 已知函数[]2()22,5,5f x x ax x =++∈-(1)当1a =-时,求函数的最大值和最小值;(2)求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调减函数20.(本小题满分12分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

祁阳二中2009—2010学年度高一上学期期中考试
数 学 试 题
亲爱的同学:
走进考场,你就是这里的主人。

只要你心平气和,只要你认真思考,只要你细心、细致,你就会感到试题都在意料之中,一切都在你的掌握之中,相信自己!开始吧!
一、选择题:(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)
1.设集合{1,2,3,4,5},{1,2,3},{2,3,4},U A B ===则()U C A B ⋂= ( )
A . {2,3}
B . {1,4,5}
C . {4,5}
D . {1,5}
2.函数432x y x
+=
-的定义域是 ( ) A.3(,]2-∞ B. 3[,)2+∞ C. 3(,)2-∞ D. 3(,)2
+∞ 3.已知13x x -+=,则1122
x x -+值为 ( ) A. 5 B. 3 C.5± D. 5-
4.若01x y <<<,则 ( )
A .33y x <
B .11()()44x y <
C .log 3log 3x y <
D .44log log x y <
5.根据表格中的数据,可以断定方程02=--x e x 的一个根所在的区间是 ( ) x
-1 0 1 2 3 x e 0.37 1 2.72 7.39 20.09
2+x
1 2 3 4 5
A .(-1,0)
B .(0,1)
C .(1,2)
D .(2,3)
6.已知()f x 是奇函数,且方程()0f x =有且仅有3个实根123x x x 、、,则123x x x ++的值为 ( )
A.0
B.-1
C.1
D.无法确定。

相关文档
最新文档