高考数学一轮复习(北师大版理科):第2章函数、导数及其应用第2节函数的单调性与最值学案

合集下载

高考数学一轮复习第2章第节导数与函数的单调性教师用书文北师大版

高考数学一轮复习第2章第节导数与函数的单调性教师用书文北师大版

学习资料汇编第十一节导数与函数的单调性[考纲传真] 了解函数的单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).函数的导数与单调性的关系函数y=f (x)在某个区间内可导,则(1)若f ′(x)>0,则f (x)在这个区间内增加的;(2)若f ′(x)<0,则f (x)在这个区间内减少的;(3)若f ′(x)=0,则f (x)在这个区间内是常数函数.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)若函数f (x)在区间(a,b)上增加,那么在区间(a,b)上一定有f ′(x)>0.( )(2)如果函数在某个区间内恒有f ′(x)=0,则函数f (x)在此区间上没有单调性.( )(3)f ′(x)>0是f (x)为增函数的充要条件.( )[答案] (1)×(2)√(3)×2.f (x)=x3-6x2的递减区间为( )A.(0,4) B.(0,2)C.(4,+∞) D.(-∞,0)A[f ′(x)=3x2-12x=3x(x-4),由f ′(x)<0,得0<x<4,∴递减区间为(0,4).] 3.(教材改编)如图2­11­1所示是函数f (x)的导函数f ′(x)的图像,则下列判断中正确的是( )【导学号:66482105】A.函数f (x)在区间(-3,0)上是减少的B.函数f (x)在区间(1,3)上是减少的C.函数f (x)在区间(0,2)上是减少的D .函数f (x )在区间(3,4)上是增加的图2­11­1A [当x ∈(-3,0)时,f ′(x )<0,则f (x )在(-3,0)上是减少的.其他判断均不正确.]4.(2015·陕西高考)设f (x )=x -sin x ,则f (x )( ) A .既是奇函数又是减函数 B .既是奇函数又是增函数 C .是有零点的减函数 D .是没有零点的奇函数B [因为f ′(x )=1-cos x ≥0,所以函数为增函数,排除选项A 和C.又因为f (0)=0-sin0=0,所以函数存在零点,排除选项D ,故选B.]5.(2014·全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)D [由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)递增⇔f ′(x )=k -1x≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1,即k 的取值范围为[1,+∞).]已知函数f (x )=x 3+ax 2+b (a ,b ∈R ).试讨论f (x )的单调性.【导学号:66482106】[解] f ′(x )=3x 2+2ax ,令f ′(x )=0,3当a =0时,因为f ′(x )=3x 2≥0,所以函数f (x )在(-∞,+∞)上是增加的;4分 当a >0时,x ∈⎝ ⎛⎭⎪⎫-∞,-2a 3∪(0,+∞)时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫-2a 3,0时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上是增加的,在⎝ ⎛⎭⎪⎫-2a 3,0上是减少的;7分当a <0时,x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫-2a 3,+∞时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫0,-2a 3时,f ′(x )<0,10分所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上是增加的,在⎝ ⎛⎭⎪⎫0,-2a 3上是减少的. 12分[规律方法] 用导数证明函数f (x )在(a ,b )内的单调性的步骤 (1)一求.求f ′(x );(2)二定.确认f ′(x )在(a ,b )内的符号;(3)三结论.作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.易错警示:研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.[变式训练1] (2016·四川高考节选)设函数f (x )=ax 2-a -ln x ,g (x )=1x -e e x ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性; (2)证明:当x >1时,g (x )>0.[解] (1)由题意得f ′(x )=2ax -1x =2ax 2-1x(x >0). 2分当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内是减少的. 当a >0时,由f ′(x )=0有x =12a ,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )是减少的;5分当x ∈⎝⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )是增加的. 7分(2)证明:令s (x )=e x -1-x ,则s ′(x )=ex -1-1. 9分当x >1时,s ′(x )>0,所以ex -1>x ,x e(2016·天津高考节选)设函数f (x)=x3-ax-b,x∈R,其中a,b∈R.求f (x)的单调区间.[解]由f (x)=x3-ax-b,可得f ′(x)=3x2-a.下面分两种情况讨论:①当a≤0时,有f ′(x)=3x2-a≥0恒成立,所以f (x)的递增区间为(-∞,+∞). 5分②当a>0时,令f ′(x)=0,解得x=3a3或x=-3a3.当x变化时,f ′(x),f (x)的变化情况如下表:12分[规律方法]求函数单调区间的步骤:(1)确定函数f (x)的定义域;(2)求f ′(x);(3)在定义域内解不等式f ′(x)>0,得递增区间;(4)在定义域内解不等式f ′(x)<0,得递减区间.[变式训练2] 已知函数f (x)=(-x2+2x)e x,x∈R,e为自然对数的底数,则函数f (x)的递增区间为________.(-2,2)[因为f (x)=(-x2+2x)e x,所以f ′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x.令f ′(x)>0,即(-x2+2)e x>0,因为e x>0,所以-x2+2>0,解得-2<x<2,所以函数f (x)的递增区间为(-2,2).]若f (x)在R上为增函数,求实数a的取值范围.[解]因为f (x)在(-∞,+∞)上是增函数,所以f ′(x)=3x2-a≥0在(-∞,+∞)上恒成立,即a≤3x2对x∈R恒成立. 5分因为3x2≥0,所以只需a≤0.又因为a=0时,f ′(x)=3x2≥0,f (x)=x3-1在R上是增函数,所以a≤0,即实数a的取值范围为(-∞,0]. 12分[迁移探究1] (变换条件)函数f (x)不变,若f (x)在区间(1,+∞)上为增函数,求a的取值范围.[解]因为f ′(x)=3x2-a,且f (x)在区间(1,+∞)上为增函数,所以f ′(x)≥0在(1,+∞)上恒成立,即3x2-a≥0在(1,+∞)上恒成立,7分所以a≤3x2在(1,+∞)上恒成立,所以a≤3,即a的取值范围为(-∞,3]. 12分[迁移探究2] (变换条件)函数f (x)不变,若f (x)在区间(-1,1)上为减函数,试求a的取值范围.[解]由f ′(x)=3x2-a≤0在(-1,1)上恒成立,得a≥3x2在(-1,1)上恒成立. 5分因为-1<x<1,所以3x2<3,所以a≥3.即当a的取值范围为[3,+∞)时,f (x)在(-1,1)上为减函数. 12分[迁移探究3] (变换条件)函数f (x)不变,若f (x)在区间(-1,1)上不单调,求a的取值范围.[解]∵f (x)=x3-ax-1,∴f ′(x)=3x2-a.由f ′(x)=0,得x=±3a3(a≥0).5分∵f (x)在区间(-1,1)上不单调,∴0<3a3<1,得0<a<3,即a的取值范围为(0,3).12分[规律方法]根据函数单调性求参数的一般方法(1)利用集合间的包含关系处理:y=f (x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)转化为不等式的恒成立问题,即“若函数递增,则f ′(x)≥0;若函数递减,则f ′(x)≤0”来求解.易错警示:(1)f (x)为增函数的充要条件是对任意的x∈(a,b)都有f ′(x)≥0,且在(a,b)内的任一非空子区间上f ′(x)不恒为0.应注意此时式子中的等号不能省略,否则漏解.(2)函数在其区间上不具有单调性,但可在子区间上具有单调性,如迁移3中利用了3a3∈(0,1)来求解.[变式训练3] (2016·全国卷Ⅰ)若函数f (x )=x -13sin2x +a sin x 在(-∞,+∞)递增,则a 的取值范围是( )A .[-1,1]B .⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13 D .⎣⎢⎡⎦⎥⎤-1,-13 C [取a =-1,则f (x )=x -13sin2x -sin x ,f ′(x )=1-23cos2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)递增的条件,故排除A ,B ,D.故选C.][思想与方法]1.已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意函数f (x )的定义域.2.含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性. 3.已知函数单调性可以利用已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决.[易错与防范]1.求单调区间应遵循定义域优先的原则.2.注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.3.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.4.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是:对任意x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0),且f ′(x )在(a ,b )的任何子区间内都不恒为零.敬请批评指正。

高考数学北师大理一轮复习 第章 导数及其应用 课时导数与函数的单调性 文档

高考数学北师大理一轮复习 第章 导数及其应用  课时导数与函数的单调性 文档

1.函数的单调性如果在某个区间内,函数y=f(x)的导数f′(x)>0,则在这个区间上,函数y=f(x)是增加的;如果在某个区间内,函数y=f(x)的导数f′(x)<0,则在这个区间上,函数y=f(x)是减少的.2.函数的极值如果函数y=f(x)在区间(a,x0)上是增加的,在区间(x0,b)上是减少的,则x0是极大值点,f(x0)是极大值.如果函数y=f(x)在区间(a,x0)上是减少的,在区间(x0,b)上是增加的,则x0是极小值点,f(x0)是极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.(×)(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.(√)(3)函数的极大值不一定比极小值大.(√)(4)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.(×)(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( √ )1.函数f (x )=x 2-2ln x 的单调递减区间是( ) A.(0,1) B.(1,+∞) C.(-∞,1) D.(-1,1)答案 A解析 ∵f ′(x )=2x -2x =2(x +1)(x -1)x (x >0).∴当x ∈(0,1)时,f ′(x )<0,f (x )为减函数; 当x ∈(1,+∞)时,f ′(x )>0,f (x )为增函数.2.已知定义在实数集R 上的函数f (x )满足f (1)=3,且f (x )的导数f ′(x )在R 上恒有f ′(x )<2(x ∈R ),则不等式f (x )<2x +1的解集为( ) A.(1,+∞) B.(-∞,-1)C.(-1,1)D.(-∞,-1)∪(1,+∞) 答案 A解析 令g (x )=f (x )-2x -1,∴g ′(x )=f ′(x )-2<0, ∴g (x )在R 上为减函数,且g (1)=f (1)-2-1=0. 由g (x )<0=g (1),得x >1,故选A.3.已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则( ) A.当k =1时,f (x )在x =1处取到极小值 B.当k =1时,f (x )在x =1处取到极大值 C.当k =2时,f (x )在x =1处取到极小值 D.当k =2时,f (x )在x =1处取到极大值 答案 C解析 当k =1时,f ′(x )=e x ·x -1,f ′(1)≠0, ∴x =1不是f (x )的极值点.当k =2时,f ′(x )=(x -1)(x e x +e x -2), 显然f ′(1)=0,且在x =1附近的左侧,f ′(x )<0, 当x >1时,f ′(x )>0,∴f (x )在x =1处取到极小值.故选C.4.(教材改编)如图是f (x )的导函数f ′(x )的图像,则f (x )的极小值点的个数为________.答案 1解析 由题意知在x =-1处f ′(-1)=0,且其左右两侧导数符号为左负右正. 5.设1<x <2,则ln x x ,(ln x x )2,ln x 2x 2的大小关系是__________________.(用“<”连接)答案 (ln x x )2<ln x x <ln x 2x2解析 令f (x )=x -ln x (1<x <2), 则f ′(x )=1-1x =x -1x >0,∴函数y =f (x )(1<x <2)为增函数, ∴f (x )>f (1)=1>0,∴x >ln x >0⇒0<ln xx <1,∴(ln x x )2<ln x x. 又ln x 2x 2-ln x x =2ln x -x ln x x 2=(2-x )ln x x 2>0, ∴(ln x x )2<ln x x <ln x 2x2.课时1 导数与函数的单调性题型一 不含参数的函数的单调性例1 求函数f (x )=ln xx 的单调区间.解 函数f (x )的定义域为(0,+∞). 因为f (x )=ln xx ,所以f ′(x )=1-ln x x2.当f ′(x )>0,即0<x <e 时,函数f (x )单调递增;当f ′(x )<0,即x >e 时,函数f (x )单调递减. 故函数f (x )的单调递增区间为(0,e), 单调递减区间为(e ,+∞).思维升华 确定函数单调区间的步骤: (1)确定函数f (x )的定义域; (2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; (4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.函数y =12x 2-ln x 的单调递减区间为( )A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)答案 B解析 y =12x 2-ln x ,y ′=x -1x =x 2-1x=(x -1)(x +1)x(x >0). 令y ′≤0,得0<x ≤1,∴递减区间为(0,1].题型二 含参数的函数的单调性例2 已知函数f (x )=ln(e x +1)-ax (a >0). (1)若函数y =f (x )的导函数是奇函数,求a 的值; (2)求函数y =f (x )的单调区间. 解 (1)函数f (x )的定义域为R . 由已知得f ′(x )=e xe x +1-a .∵函数y =f (x )的导函数是奇函数, ∴f ′(-x )=-f ′(x ),即e -xe -x +1-a =-e x e x +1+a ,解得a =12.(2)由(1)知f ′(x )=e x e x +1-a =1-1e x +1-a .①当a ≥1时,f ′(x )<0恒成立, ∴a ∈[1,+∞)时,函数y =f (x )在R 上单调递减. ②当0<a <1时,由f ′(x )>0得(1-a )(e x +1)>1, 即e x >-1+11-a ,解得x >ln a1-a .由f ′(x )<0得(1-a )(e x +1)<1, 即e x <-1+11-a ,解得x <ln a1-a .∴a ∈(0,1)时,函数y =f (x )在(ln a1-a ,+∞)上单调递增,在(-∞,ln a1-a)上单调递减.综上,当a ≥1时,f (x )在R 上单调递减;当0<a <1时,f (x )在⎝ ⎛⎭⎪⎫ln a 1-a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫-∞,ln a 1-a 上单调递减.思维升华 (1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点. (3)个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.讨论函数f (x )=(a -1)ln x +ax 2+1的单调性.解 f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x .①当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; ②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减;③当0<a <1时,令f ′(x )=0,解得x =1-a2a,则当x ∈(0, 1-a2a)时,f ′(x )<0;当x ∈( 1-a2a,+∞)时,f ′(x )>0,故f (x )在(0, 1-a2a)上单调递减,在( 1-a2a,+∞)上单调递增.题型三 利用函数单调性求参数例3 设函数f (x )=13x 3-a2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围. 解 (1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞), 单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立, 即x ∈(-2,-1)时,a <(x +2x )max =-22,当且仅当x =2x即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22). 引申探究:在本例3(3)中,1.若g (x )在(-2,-1)内为减函数,如何求解? 解 方法一 ∵g ′(x )=x 2-ax +2,且g (x )在(-2,-1)内为减函数,∴g ′(x )≤0,即x 2-ax +2≤0在(-2,-1)内恒成立,∴⎩⎪⎨⎪⎧ g ′(-2)≤0,g ′(-1)≤0,即⎩⎪⎨⎪⎧4+2a +2≤0,1+a +2≤0,解之得a ≤-3,即实数a 的取值范围为(-∞,-3]. 方法二 ∵g ′(x )=x 2-ax +2,由题意可得g ′(x )≤0在(-2,-1)上恒成立, 即a ≤x +2x在(-2,-1)上恒成立,又y =x +2x ,x ∈(-2,-1)的值域为(-3,-2 2 ],∴a ≤-3,∴实数a 的取值范围是(-∞,-3]. 2.若g (x )的单调减区间为(-2,-1),求a 的值. 解 ∵g (x )的单调减区间为(-2,-1), ∴x 1=-2,x 2=-1是g ′(x )=0的两个根, ∴(-2)+(-1)=a ,即a =-3.3.若g (x )在(-2,-1)上不单调,求a 的取值范围.解 由引申探究1知g (x )在(-2,-1)上为减函数,a 的范围是(-∞,-3],若g (x )在(-2,-1)上为增函数,可知a ≥x +2x 在(-2,-1)上恒成立,又y =x +2x 的值域为(-3,-2 2 ],∴a 的范围是[-22,+∞),∴函数g (x )在(-2,-1)上单调时,a 的取值范围是 (-∞,-3]∪[-22,+∞),故g (x )在(-2,-1)上不单调时,实数a 的取值范围是 (-3,-22).思维升华 已知函数单调性,求参数范围的两个方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集. (2)转化为不等式的恒成立问题:即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.已知函数f (x )=e x ln x -a e x (a ∈R ).(1)若f (x )在点(1,f (1))处的切线与直线y =1e x +1垂直,求a 的值;(2)若f (x )在(0,+∞)上是单调函数,求实数a 的取值范围. 解 (1)f ′(x )=e x ln x +e x ·1x -a e x =(1x -a +ln x )e x ,f ′(1)=(1-a )e ,由(1-a )e·1e =-1,得a =2.(2)由(1)知f ′(x )=(1x-a +ln x )e x ,若f (x )为单调递减函数,则f ′(x )≤0,在x >0时恒成立. 即1x -a +ln x ≤0,在x >0时恒成立. 所以a ≥1x +ln x ,在x >0时恒成立.令g (x )=1x +ln x (x >0),则g ′(x )=-1x 2+1x =x -1x 2(x >0),由g ′(x )>0,得x >1; 由g ′(x )<0,得0<x <1.故g (x )在(0,1)上为单调递减函数,在[1,+∞)上为单调递增函数,此时g (x )的最小值为g (x )=1,但g (x )无最大值(且无趋近值). 故f (x )不可能是单调递减函数. 若f (x )为单调递增函数,则f ′(x )≥0,在x >0时恒成立,即1x -a +ln x ≥0,在x >0时恒成立,所以a ≤1x +ln x ,在x >0时恒成立,由上述推理可知此时a ≤1.故实数a 的取值范围是(-∞,1].5.分类讨论思想研究函数的单调性典例 (12分)已知函数f (x )=ln x ,g (x )=f (x )+ax 2+bx ,其中函数g (x )的图像在点(1,g (1))处的切线平行于x 轴. (1)确定a 与b 的关系;(2)若a ≥0,试讨论函数g (x )的单调性.思维点拨 依据g (x )的切线条件可得g ′(1)=0得a ,b 关系,代g (x )后消去b ,对a 进行分类讨论确定g ′(x )的符号. 规范解答解 (1)依题意得g (x )=ln x +ax 2+bx , 则g ′(x )=1x+2ax +b .[2分]由函数g (x )的图像在点(1,g (1))处的切线平行于x 轴得:g ′(1)=1+2a +b =0,∴b =-2a -1.[4分](2)由(1)得g ′(x )=2ax 2-(2a +1)x +1x=(2ax -1)(x -1)x.∵函数g (x )的定义域为(0,+∞), ∴当a =0时,g ′(x )=-x -1x.由g ′(x )>0,得0<x <1,由g ′(x )<0,得x >1,[6分] 当a >0时,令g ′(x )=0,得x =1或x =12a ,[7分]若12a <1,即a >12, 由g ′(x )>0,得x >1或0<x <12a ,由g ′(x )<0,得12a<x <1,若12a >1,即0<a <12, 由g ′(x )>0,得x >12a 或0<x <1,由g ′(x )<0,得1<x <12a;[9分]若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0.[11分] 综上可得:当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <12时,函数g (x )在(0,1)上单调递增,在(1,12a )上单调递减,在(12a ,+∞)上单调递增;当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )在(0,12a)上单调递增,在(12a,1)上单调递减,在(1,+∞)上单调递增.[12分] 温馨提醒 (1)含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法. (2)本题求解先分a =0或a >0两种情况,再比较12a和1的大小.[方法与技巧]1.已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意定义域.2.含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性.3.已知函数单调性可以利用已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决.[失误与防范]1.f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.2.注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.3.讨论函数单调性要在定义域内进行,不要忽略函数的间断点.A 组 专项基础训练(时间:40分钟)1.函数f (x )=(x -3)e x 的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)答案 D解析 函数f (x )=(x -3)e x 的导数为f ′(x )=[(x -3)e x ]′=e x +(x -3)e x =(x -2)e x .由函数导数与函数单调性的关系,得当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=(x -2)e x >0,解得x >2.2.若f (x )=ln xx ,e<a <b ,则( )A.f (a )>f (b )B.f (a )=f (b )C.f (a )<f (b )D.f (a )f (b )>1答案 A解析 f ′(x )=1-ln xx 2,当x >e 时,f ′(x )<0,f (x )为减函数. ∴f (a )>f (b ).3.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为() A.(-∞,2) B.(-∞,2]C.(-∞,52) D.(-∞,52]答案 D解析 ∵f ′(x )=6x 2-6mx +6,当x ∈(2,+∞)时,f ′(x )≥0恒成立,即x 2-mx +1≥0恒成立,∴m ≤x +1x恒成立. 令g (x )=x +1x ,g ′(x )=1-1x 2, ∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上单调递增,∴m ≤2+12=52,故选D. 4.定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则1e x f (x 2)与2e x f (x 1)的大小关系为( )A.1e x f (x 2)>2e x f (x 1)B.1e x f (x 2)<2e x f (x 1)C.1e x f (x 2)=2e x f (x 1)D.1e x f (x 2)与2e x f (x 1)的大小关系不确定答案 A解析 设g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,由题意得g ′(x )>0,所以g (x )单调递增,当x 1<x 2时,g (x 1)<g (x 2),即1212()()e e x x f x f x <, 所以1e x f (x 2)>2e x f (x 1).5.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a=f (0),b =f (12),c =f (3),则( ) A.a <b <cB.c <b <aC.c <a <bD.b <c <a答案 C解析 依题意得,当x <1时,f ′(x )>0,f (x )为增函数;又f (3)=f (-1),且-1<0<12<1, 因此有f (-1)<f (0)<f (12), 即有f (3)<f (0)<f (12),c <a <b .6.若函数f (x )=ax 3+x 恰有三个单调区间,则a 的取值范围是________.答案 (-∞,0)解析 f (x )=ax 3+x 恰有三个单调区间,即函数f (x )恰有两个极值点,即f ′(x )=0有两个不等实根.∵f (x )=ax 3+x ,∴f ′(x )=3ax 2+1.要使f ′(x )=0有两个不等实根,则a <0.7.已知a ≥0,函数f (x )=(x 2-2ax )e x ,若f (x )在[-1,1]上是单调减函数,则a 的取值范围是________.答案 [34,+∞) 解析 f ′(x )=(2x -2a )e x +(x 2-2ax )e x=[x 2+(2-2a )x -2a ]e x ,由题意得,当x ∈[-1,1]时,f ′(x )≤0恒成立,即x 2+(2-2a )x -2a ≤0在x ∈[-1,1]时恒成立.令g (x )=x 2+(2-2a )x -2a ,则有⎩⎪⎨⎪⎧ g (-1)≤0,g (1)≤0, 即⎩⎪⎨⎪⎧(-1)2+(2-2a )·(-1)-2a ≤0,12+2-2a -2a ≤0, 解得a ≥34. 8.已知函数f (x )=3x a-2x 2+ln x (a >0).若函数f (x )在[1,2]上为单调函数,则a 的取值范围是________________.答案 (0,25]∪[1,+∞) 解析 f ′(x )=3a -4x +1x, 若函数f (x )在[1,2]上为单调函数,即f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x≤0在[1,2]上恒成立,即3a ≥4x -1x 或3a ≤4x -1x在[1,2]上恒成立. 令h (x )=4x -1x,则h (x )在[1,2]上单调递增, 所以3a ≥h (2)或3a≤h (1), 即3a ≥152或3a≤3, 又a >0,所以0<a ≤25或a ≥1. 9.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x . (1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x, 由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54. (2)由(1)知f (x )=x 4+54x -ln x -32, 则f ′(x )=x 2-4x -54x 2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数.综上,f (x )的单调增区间为(5,+∞),单调减区间为(0,5).10.已知函数f (x )=ln x ,g (x )=12ax +b . (1)若f (x )与g (x )在x =1处相切,求g (x )的表达式;(2)若φ(x )=m (x -1)x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.解 (1)由已知得f ′(x )=1x ,∴f ′(1)=1=12a ,a =2.又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1.(2)∵φ(x )=m (x -1)x +1-f (x )=m (x -1)x +1-ln x 在[1,+∞)上是减函数.∴φ′(x )=-x 2+(2m -2)x -1x (x +1)2≤0在[1,+∞)上恒成立.即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立,则2m -2≤x +1x ,x ∈[1,+∞),∵x +1x ∈[2,+∞),∴2m -2≤2,m ≤2.故实数m 的取值范围是(-∞,2].B 组 专项能力提升(时间:25分钟)11.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是() A.1<a ≤2 B.a ≥4C.a ≤2D.0<a ≤3答案 A解析 ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x (x >0),当x -9x ≤0时,有0<x ≤3,即在(0,3]上原函数是减函数,∴a -1>0且a +1≤3,解得1<a ≤2.12.已知f (x )是可导的函数,且f ′(x )<f (x )对于x ∈R 恒成立,则( )A.f (1)<e f (0),f (2016)>e 2016f (0)B.f (1)>e f (0),f (2016)>e 2016f (0)C.f (1)>e f (0),f (2016)<e 2016f (0)D.f (1)<e f (0),f (2016)<e 2016f (0)答案 D解析 令g (x )=f (x )e x , 则g ′(x )=(f (x )e x )′=f ′(x )e x -f (x )e xe 2x =f ′(x )-f (x )e x<0, 所以函数g (x )=f (x )e x 是单调减函数, 所以g (1)<g (0),g (2016)<g (0),即f (1)e 1<f (0)1,f (2016)e 2016<f (0)1, 故f (1)<e f (0),f (2016)<e 2016f (0).13.若函数f (x )=-13x 3+12x 2+2ax 在[23,+∞)上存在单调递增区间,则a 的取值范围是________. 答案 (-19,+∞) 解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-(x -12)2+14+2a . 当x ∈[23,+∞)时, f ′(x )的最大值为f ′(23)=29+2a . 令29+2a >0,解得a >-19. 所以a 的取值范围是(-19,+∞). 14.已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________. 答案 (0,1)∪(2,3)解析 由题意知f ′(x )=-x +4-3x=-(x -1)(x -3)x, 由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3.15.已知函数f (x )=a ln x -ax -3(a ∈R ).(1)求函数f (x )的单调区间;(2)若函数y =f (x )的图像在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2[f ′(x )+m 2]在区间(t,3)上总不是单调函数,求m 的取值范围. 解 (1)函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x, 当a >0时,f (x )的增区间为(0,1),减区间为(1,+∞);当a <0时,f (x )的增区间为(1,+∞),减区间为(0,1);当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a 2=1, 即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x. ∴g (x )=x 3+(m 2+2)x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数,即g ′(x )=0在区间(t,3)上有变号零点.由于g ′(0)=-2,∴⎩⎪⎨⎪⎧g ′(t )<0,g ′(3)>0.当g′(t)<0,即3t2+(m+4)t-2<0时对任意t∈[1,2]恒成立,由于g′(0)<0,故只要g′(1)<0且g′(2)<0,即m<-5且m<-9,即m<-9;由g′(3)>0,得m>-373.所以-373<m<-9.,-9).即实数m的取值范围是(-373。

高考数学一轮复习第二章函数导数及其应用2-2函数的单调性与最值学案理含解析北师大版

高考数学一轮复习第二章函数导数及其应用2-2函数的单调性与最值学案理含解析北师大版

第二节函数的单调性与最值命题分析预测学科核心素养从近五年的情况来看,本节是高考的热点,常考查求函数的单调区间,判断函数的单调性,利用单调性比较大小、解不等式等,题型有选择题、填空题,也有解答题,多在第(1)问中考查,难度中等.本节通过函数的单调性、奇偶性、周期性的应用考查数形结合思想、分类讨论思想以及考生的逻辑推理和数学运算核心素养.授课提示:对应学生用书第14页知识点一函数的单调性1.单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图像描述自左向右看图像是上升的自左向右看图像是下降的如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.二级结论•温馨提醒•函数单调性的常用结论(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数.(2)若k>0,则kf(x)与f(x)的单调性相同,若k<0,则kf(x)与f(x)的单调性相反.(3)函数y=f(x)(f(x)>0)与y=-f(x),y=1f(x)在公共定义域内的单调性相反.必明易错1.若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f(x)在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数.2.两函数f(x),g(x)在x∈(a,b)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但f(x)·g(x),1f(x)等的单调性与其正负有关,切不可盲目类比.3.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.1.函数y=x2-6x-6在区间〖2,4〗上是()A.递减函数B.递增函数C.先递减再递增函数D.先递增再递减函数〖解析〗函数y=x2-6x-6的对称轴为直线x=3,且抛物线开口向上,所以函数在〖2,3〗上为减函数,在〖3,4〗上为增函数.〖答案〗C2.函数y=log12(x2-2x)的单调递减区间是()A.(-∞,1)B.(1,+∞)C.(2,+∞)D.(-∞,0)〖解析〗因为函数的定义域是(-∞,0)∪(2,+∞),令g(x)=x2-2x,由复合函数的单调性可知,原函数的递减区间即为函数g(x)的递增区间,也即为(2,+∞).〖答案〗C知识点二函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意x∈I,都有f(x)≤M;(2)存在x∈I,使得f(x)=M(1)对于任意x∈I,都有f(x)≥M;(2)存在x∈I,使得f(x)=M结论M为最大值M为最小值1.已知函数f (x )=2x -1,x ∈〖2,6〗,则f (x )的最大值为 ,最小值为__________.〖解 析〗可判断函数f (x )=2x -1在〖2,6〗上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25. 〖答 案〗2 252.(2021·龙岩模拟)函数f (x )=⎝⎛⎭⎫13x-log 2(x +4)在区间〖-2,2〗上的最大值为__________. 〖解 析〗由函数的解析式可知f (x )=⎝⎛⎭⎫13x-log 2(x +4)在区间〖-2,2〗上是单调递减函数,则函数的最大值为f (-2)=⎝⎛⎭⎫13-2-log 2(-2+4)=9-1=8.〖答 案〗83.函数y =|x 2-4x +3|的单调递增区间是__________.〖解 析〗先作出函数y =x 2-4x +3的图像,由于绝对值的作用,把x 轴下方的部分翻折到上方,可得函数的图像如图所示.由图像可知,函数的递增区间为〖1,2〗,〖3,+∞).〖答 案〗〖1,2〗,〖3,+∞)授课提示:对应学生用书第15页题型一 函数单调性的判断与单调区间的求法1.函数f (x )=ln (x 2-2x -8)的单调递增区间是( ) A.(-∞,-2) B.(-∞,1) C.(1,+∞)D.(4,+∞)〖解 析〗由x 2-2x -8>0,得x <-2或x >4.因此,函数f (x )=ln (x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln (x 2-2x -8)的单调递增区间是(4,+∞). 〖答 案〗D2.判断并证明函数f (x )=ax 2+1x (其中1<a <3)在x ∈〖1,2〗上的单调性.〖解 析〗设1≤x 1<x 2≤2,则 f (x 2)-f (x 1)=ax 22+1x 2-⎝⎛⎭⎫ax 21+1x 1 =(x 2-x 1)⎣⎡⎦⎤a (x 1+x 2)-1x 1x 2, 由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4, 1<x 1x 2<4,-1<-1x 1x 2<-14.又1<a <3,所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故当a ∈(1,3)时,函数f (x )在〖1,2〗上单调递增.确定已知解析式的函数单调区间的三种方法题型二 函数的值域(最值)的求法1.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1,x +6x-6,x >1,则f (x )的最小值是__________.〖解 析〗当x ≤1时,f (x )min =0,当x >1时,f (x )min =26-6,当且仅当x =6时取到最小值,又26-6<0,所以f (x )min =26-6. 〖答 案〗26-62.(一题多解)对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,设函数f (x )=-x +3,g(x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是__________.〖解 析〗法一:在同一直角坐标系中,作出函数f (x ),g (x )的图像,依题意,h (x )的图像如图所示.易知点A (2,1)为图像的最高点, 因此h (x )的最大值为h (2)=1.法二:依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, 所以h (x )在x =2处取得最大值h (2)=1. 〖答 案〗13.函数f (x )=1x -1在区间〖a ,b 〗上的最大值是1,最小值是13,则a +b =__________.〖解 析〗易知f (x )在〖a ,b 〗上为减函数,所以⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎪⎨⎪⎧1a -1=1,1b -1=13,所以⎩⎪⎨⎪⎧a =2,b =4.所以a +b =6. 〖答 案〗64.函数y =3x -52x +1的值域为__________.〖解 析〗(分离常数法)y =3x -52x +1=32(2x +1)-1322x +1=32-1322x +1≠32,所以所求函数的值域为⎩⎨⎧⎭⎬⎫y ⎪⎪y ∈R 且y ≠32.〖答 案〗⎩⎨⎧⎭⎬⎫y ⎪⎪y ∈R 且y ≠32求函数最值(值域)的方法(1)单调性法:先确定函数的单调性,再由单调性结合端点值求出最值(值域).(2)图像法:先作出函数的图像,再观察其最高点、最低点求出最值(值域),若函数的解析式的几何意义较明显,如距离、斜率等,可用数形结合法求解.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后,用基本不等式求最值(值域).(4)导数法:先求出导函数,然后求出给定区间上的极值,再结合端点值,求出最值(值域). (5)换元法:对比较复杂的函数可先通过换元转化为熟悉的函数,再用相应的方法求最值(值域).(6)分离常数法:形如y =cx +dax +b (a ≠0)的函数的值域,经常使用“分离常数法”求解.(7)配方法:它是求“二次函数型函数”值域的基本方法,形如F (x )=a 〖f (x )〗2+bf (x )+c (a ≠0)的函数的值域问题均可使用配方法,求解时要注意f (x )整体的取值范围.题型三 函数单调性的应用高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题某一问中.常见的命题角度有:(1)比较两个函数值或两个自变量的大小;(2)解函数不等式;(3)利用单调性求参数的取值范围或值.考法(一) 利用函数的单调性比较大小〖例1〗 已知函数f (x )的图像关于直线x =1对称,当x 2>x 1>1时,〖f (x 2)-f (x 1)〗(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e ),则a ,b ,c 的大小关系为( ) A.c >a >b B.c >b >a C.a >c >bD.b >a >c〖解析〗 因为f (x )的图像关于直线x =1对称. 所以f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时, 〖f (x 2)-f (x 1)〗(x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.因为1<2<52<e ,所以f (2)>f ⎝⎛⎭⎫52>f (e ),所以b >a >c . 〖答案〗 D利用函数的单调性比较函数值或自变量的大小比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题通常选用数形结合的思想方法进行求解. 考法(二) 利用单调性解不等式〖例2〗 已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A.(-∞,-1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(-1,2)D.(-2,1)〖解析〗 ∵当x =0时,两个表达式对应的函数值都为零, ∴函数的图像是一条连续的曲线.∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln (x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1. 〖答案〗 D利用函数的单调性求解或证明不等式若f (x )在定义域上(或某一区间上)是增(减)函数,则f (x 1)<f (x 2)⇔x 1<x 2(x 1>x 2),在解决“与抽象函数有关的不等式”问题时,可通过“脱去”函数符号“f ”化为一般不等式求解,但无论如何都必须在同一单调区间内进行.需要说明的是,若不等式一边没有“f ”,而是常数,应将常数转化为函数值. 考法(三) 利用单调性求参数的取值范围〖例3〗 (1)(2021·太原模拟)若f (x )=-x 2+4mx 与g (x )=2m x +1在区间〖2,4〗上都是减函数,则m 的取值范围是( ) A.(-∞,0)∪(0,1〗 B.(-1,0)∪(0,1〗 C.(0,+∞) D.(0,1〗(2)已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log a x ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是( ) A.(0,1) B.⎝⎛⎭⎫0,13 C.⎣⎡⎭⎫17,13D.⎣⎡⎭⎫17,1〖解析〗 (1)由题意得f (x )关于直线x =2m 对称, ∴2m ≤2,即m ≤1. ∵易知y =1x +1在〖2,4〗上是减函数,若2m <0,则g (x )为增函数,故2m >0,即m >0,综上,0<m ≤1.(2)∵f (x )是(-∞,+∞)上的减函数. ∴当x ≥1时,0<a <1;当x <1时,⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0,即17≤a <13,综上,a 的取值范围是⎣⎡⎭⎫17,13. 〖答案〗 (1)D (2)C利用函数的单调性求参数的取值范围根据函数的单调性构建含参数的方程(组)或不等式(组)进行求解,或先得到图像的升降情况,再结合图像求解.〖注意〗 讨论分段函数的单调性时,除注意各段的单调性外,还要注意分段点处的函数值.〖题组突破〗1.已知定义在R 上的函数f (x )=2|x-m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A.a <b <c B.a <c <b C.c <a <bD.c <b <a〖解 析〗∵f (x )为偶函数,∴f (-x )=f (x ),∴m =0, ∴f (x )=2|x |-1.图像如图所示,由函数的图像可知,函数f (x )在(-∞,0)上是减函数,在(0,+∞)上是增函数.∵a =f (log 0.53)=f (log 23),b =f (log 25),c =f (0),又log 25>log 23>0,∴b >a >c . 〖答 案〗C2.(2021·武汉模拟)若函数f (x )=2|x -a |+3在区间〖1,+∞)上不单调,则a 的取值范围是( ) A.〖1,+∞) B.(1,+∞) C.(-∞,1)D.(-∞,1〗〖解 析〗因为函数f (x )=2|x -a |+3=⎩⎪⎨⎪⎧2x -2a +3,x ≥a ,-2x +2a +3,x <a , 因为函数f (x )=2|x -a |+3在区间〖1,+∞)上不单调,所以a >1.所以a 的取值范围是(1,+∞). 〖答 案〗B3.(2021·南阳调研)已知函数f (x )=x -a x +a 2在(1,+∞)上是增函数,则实数a 的取值范围是__________.〖解 析〗由f (x )=x -a x +a 2,得f ′(x )=1+ax 2,由题意得1+ax2≥0(x >1),可得a ≥-x 2,当x ∈(1,+∞)时,-x 2<-1. 所以a 的取值范围是〖-1,+∞). 〖答 案〗〖-1,+∞)函数单调性应用问题中的核心素养(一)逻辑推理——判断函数单调性的核心素养〖例1〗 已知函数f (x )对定义在(-∞,2〗上的任意两个值x 1,x 2,都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1)成立,且函数满足f (x +2)=f (2-x ),若f (a )≤f (3),则实数a 的取值范围是( ) A.(-∞,1〗 B.〖3,+∞)C.〖1,3〗D.(-∞,1〗∪〖3,+∞)〖解析〗 由函数f (x )对定义在(-∞,2〗上的任意两个值x 1,x 2,都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1)成立可知(x 1-x 2)〖f (x 1)-f (x 2)〗>0成立,即函数f(x)是(-∞,2〗上的增函数,又函数满足f(x+2)=f(2-x),则函数f(x)关于直线x=2对称,由f(a)≤f(3)可知|a-2|≥|3-2|,所以a-2≤-1或a-2≥1,即a≤1或a≥3.所以实数a的取值范围是(-∞,1〗∪〖3,+∞).〖答案〗 D求解与函数的单调性有关的问题,首先应判断函数的单调性,然后根据函数的单调性求解,而判断函数的单调性需要利用推理论证法.(二)数学抽象——抽象函数中的单调性应用问题〖例2〗已知定义在R上的函数f(x)满足:①f(x+y)=f(x)+f(y)+1,②当x>0时,f(x)>-1.(1)求f(0)的值,并证明f(x)在R上是单调递增函数;(2)若f(1)=1,解关于x的不等式f(x2+2x)+f(1-x)>4.〖解析〗(1)令x=y=0,得f(0)=-1.证明如下:在R上任取x1>x2,则x1-x2>0,f(x1-x2)>-1.又f(x1)=f〖(x1-x2)+x2〗=f(x1-x2)+f(x2)+1>f(x2),所以函数f(x)在R上是单调递增函数.(2)由f(1)=1,得f(2)=3,f(3)=5.由f(x2+2x)+f(1-x)>4得f(x2+x+1)>f(3),又函数f(x)在R上是增函数,故x2+x+1>3,解得x<-2或x>1,故原不等式的解集为{x|x<-2或x>1}.求解抽象函数问题的切入点与关键点切入点:(1)对于抽象函数的单调性的证明,只能考虑用定义证明;(2)将不等式中的抽象函数符号“f”运用单调性“去掉”.关键点:(1)根据单调性定义,赋值构造出f(x2)-f(x1),并与0比较大小;(2)根据已知条件,将所求的不等式转化为f(M)<f(N)的形式,从而利用单调性求解.〖题组突破〗1.已知函数f(x)=x2-(2a+1)x+5,若对任意的x1,x2∈(4,+∞),当x1>x2时,总有f(x1)-f(x2)>x2-x1,则实数a的取值范围是__________.〖解析〗由x1>x2时,总有f(x1)-f(x2)>x2-x1,可知f(x1)+x1>f(x2)+x2,因此函数h(x)=f(x)+x在区间(4,+∞)上是增函数.因为h(x)=f(x)+x=x2-2ax+5的单调递增区间是(a,+∞),因此a≤4.〖答案〗(-∞,4〗2.已知函数f(x)的定义域为{x|x∈R,且x≠0},对定义域内的任意x1,x2,都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>0.(1)求证:f(x)是偶函数;(2)求证:f(x)在(0,+∞)上是增函数.证明:(1)因为对定义域内的任意x1,x2都有f(x1·x2)=f(x1)+f(x2),令x1=x,x2=-1,则有f(-x)=f(x)+f(-1).又令x1=x2=-1,得2f(-1)=f(1).再令x1=x2=1,得f(1)=0,从而f(-1)=0,于是有f(-x)=f(x),所以f(x)是偶函数.(2)设0<x 1<x 2,则f (x 1)-f (x 2)=f (x 1)-f ⎝⎛⎭⎫x 1·x 2x 1=f (x 1)-⎣⎡⎦⎤f (x 1)+f ⎝⎛⎭⎫x 2x 1=-f ⎝⎛⎭⎫x 2x 1, 由于0<x 1<x 2,所以x 2x 1>1,从而f ⎝⎛⎭⎫x 2x 1>0,故f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以f (x )在(0,+∞)上是增函数.。

北师大版版高考数学一轮复习函数导数及其应用导数的应用导数与函数的单调性教学案理解析版

北师大版版高考数学一轮复习函数导数及其应用导数的应用导数与函数的单调性教学案理解析版

[考纲传真] 1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).3.会利用导数解决某些实际问题(生活中的优化问题).1.导函数的符号和函数的单调性的关系(1)如果在某个区间内,函数y=f(x)的导数f′(x)≥0,则在这个区间上,函数y=f(x)是增加的;(2)如果在某个区间内,函数y=f(x)的导数f′(x)≤0,则在这个区间上,函数y=f(x)是减少的.2.函数的极值与导数(1)函数的极大值点和极大值:在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都小于x0点的函数值,称点x0为函数y=f(x)的极大值点.其函数值f(x0)为函数的极大值.(2)函数的极小值点和极小值:在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都大于x0点的函数值,称点x0为函数y=f(x)的极小值点,其函数值f(x0)为函数的极小值.(3)极值和极值点:极大值与极小值统称为极值,极大值点与极小值点统称为极值点.(4)求可导函数极值的步骤:1求f′(x).2求方程f′(x)=0的根.3检查f′(x)在方程f′(x)=0的根的左右两侧的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.3.函数的最值与导数(1)最大值点:函数y=f(x)在区间[a,b]上的最大值点x0指的是:函数在这个区间上所有点的函数值都不超过f(x0).函数的最小值点也有类似的意义.(2)函数的最大值:最大值或者在极值点取得,或者在区间的端点取得.(3)最值:函数的最大值和最小值统称为最值.(4)求f(x)在[a,b]上的最大值和最小值的步骤1求f(x)在(a,b)内的极值;2将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.错误!1.可导函数f(x)在(a,b)上是增(减)函数的充要条件是:对任意x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子区间内都不恒为零.2.对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.3.闭区间上连续函数的最值在端点处或极值点处取得.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)若函数f(x)在区间(a,b)上是增加的,那么在区间(a,b)上一定有f′(x)>0.()(2)函数的极大值不一定比极小值大.()(3)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.()(4)若实际问题中函数定义域是开区间,则不存在最优解.()[答案] (1)×(2)√(3)√(4)×2.(教材改编)如图是函数y=f(x)的导函数y=f′(x)的图像,则下面判断正确的是()A.在区间(—2,1)上,f(x)是增加的B.在区间(1,3)上f(x)是减少的C.在区间(4,5)上f(x)是增加的D.当x=2时,f(x)取到极小值C[结合原函数与导函数的关系可知,当x∈(4,5)时,f′(x)>0,∴y=f(x)在(4,5)上是增函数,故选C.]3.函数f(x)=cos x—x在(0,π)上的单调性是()A.先增后减B.先减后增C.增函数D.减函数D[∵f′(x)=—sin x—1,∴当x∈(0,π)时,f′(x)<0,∴f(x)在(0,π)上是减函数.]4.已知a是函数f(x)=x3—12x的极小值点,则a=()A.—4B.—2C.4D.2D[由f′(x)=3x2—12=0得x=±2,又当x<—2时,f′(x)>0,当—2<x<2时,f′(x)<0,当x>2时,f′(x)>0,∴x=2是f(x)的极小值点,即a=2.]5.函数y=2x3—2x2在区间[—1,2]上的最大值是________.8 [y′=6x2—4x,令y′=0,得x=0或x=错误!.∵f(—1)=—4,f(0)=0,f错误!=—错误!,f(2)=8,∴最大值为8.]第1课时导数与函数的单调性利用导数求函数的单调区间【例1】(1)函数y=错误!x2—ln x的递减区间为()A.(—1,1] B.(0,1]C.[1,+∞)D.(0,+∞)(2)(2016·北京高考)设函数f(x)=x e a—x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e—1)x+4.1求a,b的值;2求f(x)的单调区间.(1)B[∵y=错误!x2—ln x,∴x∈(0,+∞),y′=x—错误!=错误!.由y′≤0可解得0<x≤1,∴y=错误!x2—ln x的递减区间为(0,1],故选B.](2)[解] 1f′(x)=e a—x—x e a—x+b,由切线方程可得错误!解得a=2,b=e.2f(x)=x e2—x+e x,f′(x)=(1—x)e2—x+e.令g(x)=(1—x)e2—x,则g′(x)=—e2—x—(1—x)e2—x=e2—x(x—2).令g′(x)=0得x=2.当x<2时,g′(x)<0,g(x)递减;当x>2时,g′(x)>0,g(x)递增.所以x=2时,g(x)取得极小值—1,也是最小值.所以f′(x)=g(x)+e≥e—1>0.所以f(x)的增区间为(—∞,+∞),无减区间.[规律方法] 1.掌握利用导数求函数单调区间的3个步骤(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)由f′(x)>0(或f′(x)<0)解出相应的x的取值范围,对应的区间为f(x)的递增(减)区间.2.理清有关函数单调区间的3个点(1)单调区间是函数定义域的子区间,所以求解函数的单调区间要先求函数的定义域;(2)求可导函数f(x)的单调区间,可以直接转化为f′(x)>0与f′(x)<0这两个不等式的解集问题来处理;(3)若可导函数f(x)在指定区间D上递增(减),则应将其转化为f′(x)≥0(f′(x)≤0)来处理.2A.(0,1)B.(1,+∞)C.(—∞,1)D.(—1,1)(2)(2019·威海模拟)函数f(x)=(x—3)e x的递增区间是________.(1)A(2)(2,+∞)[(1)∵f′(x)=2x—错误!=错误!(x>0),∴当x∈(0,1)时,f′(x)<0,f(x)为减函数;当x∈(1,+∞)时,f′(x)>0,f(x)为增函数.(2)函数f(x)=(x—3)e x的导数为f′(x)=[(x—3)e x]′=e x+(x—3)e x=(x—2)e x.f′(x)=(x—2)e x>0,解得x>2.]利用导数讨论函数的单调性【例2】设函数f(x)=a ln x+错误!,其中a为常数.(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)的单调性.[解] (1)由题意知a=0时,f(x)=错误!,x∈(0,+∞).此时f′(x)=错误!.可得f′(1)=错误!,又f(1)=0,所以曲线y=f(x)在(1,f(1))处的切线方程为x—2y—1=0.(2)函数f(x)的定义域为(0,+∞).f′(x)=错误!+错误!=错误!.当a≥0时,f′(x)>0,函数f(x)在(0,+∞)上递增.当a<0时,令g(x)=ax2+(2a+2)x+a,由于Δ=(2a+2)2—4a2=4(2a+1),1当a=—错误!时,Δ=0,f′(x)=错误!≤0,函数f(x)在(0,+∞)上递减.2当a<—错误!时,Δ<0,g(x)<0,f′(x)<0,函数f(x)在(0,+∞)上递减.3当—错误!<a<0时,Δ>0.设x1,x2(x1<x2)是函数g(x)的两个零点,则x1=错误!,x2=错误!.由x1=错误!=错误!>0,所以x∈(0,x1)时,g(x)<0,f′(x)<0,函数f(x)递减;x∈(x1,x2)时,g(x)>0,f′(x)>0,函数f(x)递增;x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)递减.综上可得:当a≥0时,函数f(x)在(0,+∞)上递增;当a≤—错误!时,函数f(x)在(0,+∞)上递减;当—错误!<a<0时,f(x)在错误!,错误!上递减,在错误!上递增.[规律方法] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.1讨论分以下四个方面,1二次项系数讨论,2根的有无讨论,3根的大小讨论,4根在不在定义域内讨论.2讨论时要根据上面四种情况,找准参数讨论的分类.3讨论完必须写综述.2调性.[解] 函数的定义域为(0,+∞),f′(x)=x—错误!+a—2=错误!.1当—a=2,即a=—2时,f′(x)=错误!≥0,f(x)在(0,+∞)内递增.2当0<—a<2,即—2<a<0时,∵0<x<—a或x>2时,f′(x)>0;—a<x<2时,f′(x)<0,∴f(x)在(0,—a),(2,+∞)内递增,在(—a,2)内递减.3当—a>2,即a<—2时,∵0<x<2或x>—a时,f′(x)>0;2<x<—a时,f′(x)<0,∴f(x)在(0,2),(—a,+∞)内递增,在(2,—a)内递减.综上所述,当a=—2时,f(x)在(0,+∞)内递增;当—2<a<0时,f(x)在(0,—a),(2,+∞)内递增,在(—a,2)内递减;当a<—2时,f(x)在(0,2),(—a,+∞)内递增,在(2,—a)内递减.函数单调性的应用►考法1比较大小或解不等式【例3】(1)设函数f′(x)是定义在(0,2π)上的函数f(x)的导函数,f(x)=f(2π—x),当0<x<π时,若f(x)sin x—f′(x)cos x<0,a=错误!f错误!,b=0,c=—错误!f错误!,则()A.a<b<cB.b<c<aC.c<b<aD.c<a<b(2)(2019·山师大附中模拟)已知f′(x)是函数f(x)的导函数,f(1)=e,任意x∈R,2f (x)—f′(x)>0,则不等式f(x)<e2x—1的解集为()A.(—∞,1)B.(1,+∞)C.(—∞,e)D.(e,+∞)(1)A(2)B[(1)由f(x)=f(2π—x),得函数f(x)的图像关于直线x=π对称,令g(x)=f(x)cos x,则g′(x)=f′(x)cos x—f(x)sin x>0,所以当0<x<π时,g(x)在(0,π)内递增,所以g错误!<g错误!<g错误!=g错误!,即a<b<c,故选A.(2)设F(x)=错误!,则F′(x)=错误!′=错误!.因为2f(x)—f′(x)>0,所以F′(x)=错误!<0,即F(x)是减函数,f(x)<e2x—1等价于错误!<1,即F(x)<1.又因为f(1)=e,所以F(1)=错误!=1,则不等式f(x)<e2x—1的解集是(1,+∞),故选B.]►考法2求参数的取值范围【例4】已知函数f(x)=ln x,g(x)=错误!ax2+2x(a≠0).(1)若函数h(x)=f(x)—g(x)存在递减区间,求a的取值范围;(2)若函数h(x)=f(x)—g(x)在[1,4]上递减,求a的取值范围.[解] (1)h(x)=ln x—错误!ax2—2x,x∈(0,+∞),所以h′(x)=错误!—ax—2,由于h(x)在(0,+∞)上存在递减区间,所以当x∈(0,+∞)时,错误!—ax—2<0有解,即a>错误!—错误!有解.设G (x )=错误!—错误!,所以只要a >G (x )min 即可.而G (x )=错误!2—1,所以G (x )min =—1.所以a >—1,即a 的取值范围为(—1,+∞).(2)由h (x )在[1,4]上递减得,当x ∈[1,4]时,h ′(x )=错误!—ax —2≤0恒成立,即a ≥错误!—错误!恒成立.所以a ≥G (x )m ax ,而G (x )=错误!2—1,因为x ∈[1,4],所以错误!∈错误!,所以G (x )m ax =—错误!(此时x =4),所以a ≥—错误!,即a 的取值范围是错误!.[母题探究] (1)本例(2)中,若函数h (x )=f (x )—g (x )在[1,4]上递增,求a 的取值范围.(2)本例(2)中,若h (x )在[1,4]上存在递减区间,求a 的取值范围.[解] (1)由h (x )在[1,4]上递增得,当x ∈[1,4]时,h ′(x )≥0恒成立,∴当x ∈[1,4]时,a ≤错误!—错误!恒成立,又当x ∈[1,4]时,错误!min =—1(此时x =1),∴a ≤—1,即a 的取值范围是(—∞,—1].(2)h (x )在[1,4]上存在递减区间,则h ′(x )<0在[1,4]上有解,∴当x ∈[1,4]时,a >错误!—错误!有解,又当x ∈[1,4]时,错误!min =—1,∴a >—1,即a 的取值范围是(—1,+∞). [规律方法] 1.已知函数的单调性,求参数的取值范围,应用条件f ′x ≥0或f ′x ≤0,x ∈a ,b 恒成立,解出参数的取值范围一般可用不等式恒成立的理论求解,应注意参数的取值是f ′x 不恒等于0的参数的范围.2.若函数y=f x在区间a,b上不单调,则转化为f′x=0在a,b上有解.3.利用导数比较大小或解不等式的常用技巧,利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.常见构造的辅助函数形式有:y=f′(x),当x>0时,xf′(x)—f(x)<0,若a=错误!,b=错误!,c=错误!,则a,b,c的大小关系正确的是()A.a<b<cB.b<c<aC.a<c<bD.c<a<b(2)(2019·兰州模拟)已知函数f(x)=错误!x2—2a ln x+(a—2)x.1当a=—1时,求函数f(x)的单调区间;2是否存在实数a,使函数g(x)=f(x)—ax在(0,+∞)上递增?若存在,求出a的取值范围;若不存在,说明理由.(1)D[设g(x)=错误!,则g′(x)=错误!,∵当x>0时,xf′(x)—f(x)<0,∴g′(x)<0.∴g(x)在(0,+∞)上是减函数.由f(x)为奇函数,知g(x)为偶函数,则g(—3)=g(3),又a=g(e),b=g(ln 2),c=g(—3)=g(3),∴g(3)<g(e)<g(ln 2),故c<a<B.](2)[解] 1当a=—1时,f(x)=错误!x2+2ln x—3x,则f′(x)=x+错误!—3=错误!=错误!.当0<x<1或x>2时,f′(x)>0,f(x)递增;当1<x<2时,f′(x)<0,f(x)递减.∴f(x)的单调增区间为(0,1)与(2,+∞),减区间为(1,2).2假设存在实数a,使g(x)=f(x)—ax在(0,+∞)上是增函数,∴g′(x)=f′(x)—a=x—错误!—2≥0恒成立.即错误!≥0在x∈(0,+∞)上恒成立.∴x2—2x—2a≥0当x>0时恒成立,∴a≤错误!(x2—2x)=错误!(x—1)2—错误!恒成立.又φ(x)=错误!(x—1)2—错误!,x∈(0,+∞)的最小值为—错误!.∴当a≤—错误!时,g′(x)≥0恒成立.又当a=—错误!,g′(x)=错误!当且仅当x=1时,g′(x)=0.故当a∈错误!时,g(x)=f(x)—ax在(0,+∞)上递增.1.(2016·全国卷Ⅰ)若函数f(x)=x—错误!sin 2x+a sin x在(—∞,+∞)递增,则a的取值范围是()A.[—1,1] B.错误!C.错误!D.错误!C[取a=—1,则f(x)=x—错误!sin 2x—sin x,f′(x)=1—错误!cos 2x—cos x,但f′(0)=1—错误!—1=—错误!<0,不具备在(—∞,+∞)递增的条件,故排除A,B,D.故选C.]2.(2015·全国卷Ⅱ)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(—1)=0,当x>0时,xf′(x)—f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(—∞,—1)∪(0,1)B.(—1,0)∪(1,+∞)C.(—∞,—1)∪(—1,0)D.(0,1)∪(1,+∞)A[设y=g(x)=错误!(x≠0),则g′(x)=错误!,当x>0时,xf′(x)—f(x)<0,∴g′(x)<0,∴g(x)在(0,+∞)上为减函数,且g(1)=f(1)=—f(—1)=0.∵f(x)为奇函数,∴g(x)为偶函数,∴g(x)的图像的示意图如图所示.当x>0,g(x)>0时,f(x)>0,0<x<1,当x<0,g(x)<0时,f(x)>0,x<—1,∴使得f(x)>0成立的x的取值范围是(—∞,—1)∪(0,1),故选A.]。

高考数学一轮专项复习讲义-导数与函数的单调性(北师大版)

高考数学一轮专项复习讲义-导数与函数的单调性(北师大版)

§3.2导数与函数的单调性课标要求1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).3.会利用函数的单调性判断大小,求参数的取值范围等简单应用.知识梳理1.函数的单调性与导数的关系条件恒有结论函数y =f (x )在区间(a ,b )上可导f ′(x )>0f (x )在区间(a ,b )上单调递增f ′(x )<0f (x )在区间(a ,b )上单调递减f ′(x )=0f (x )在区间(a ,b )上是常数函数2.利用导数判断函数单调性的步骤第1步,确定函数f (x )的定义域;第2步,求出导数f ′(x )的零点;第3步,用f ′(x )的零点将f (x )的定义域划分为若干个区间,列表给出f ′(x )在各区间上的正负,由此得出函数y =f (x )在定义域内的单调性.常用结论1.若函数f (x )在(a ,b )上单调递增,则当x ∈(a ,b )时,f ′(x )≥0恒成立;若函数f (x )在(a ,b )上单调递减,则当x ∈(a ,b )时,f ′(x )≤0恒成立.2.若函数f (x )在(a ,b )上存在单调递增区间,则当x ∈(a ,b )时,f ′(x )>0有解;若函数f (x )在(a ,b )上存在单调递减区间,则当x ∈(a ,b )时,f ′(x )<0有解.自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.(√)(2)在(a ,b )内f ′(x )≤0且f ′(x )=0的根有有限个,则f (x )在(a ,b )内单调递减.(√)(3)若函数f (x )在定义域上都有f ′(x )>0,则f (x )在定义域上一定单调递增.(×)(4)函数f (x )=x -sin x 在R 上是增函数.(√)2.(多选)如图是函数y =f (x )的导函数y =f ′(x )的图象,则下列判断正确的是()A .在区间(-2,1)上f (x )单调递增B .在区间(2,3)上f (x )单调递减C .在区间(4,5)上f (x )单调递增D .在区间(3,5)上f (x )单调递减答案BC解析在区间(-2,1)上,当x ∈-2,-32f ′(x )<0,当x ∈-32,1f ′(x )>0,故f (x )在区间-2,-32在区间-32,1A 错误;在区间(3,5)上,当x ∈(3,4)时,f ′(x )<0,当x ∈(4,5)时,f ′(x )>0,故f (x )在区间(3,4)上单调递减,在区间(4,5)上单调递增,C 正确,D 错误;在区间(2,3)上,f ′(x )<0,所以f (x )单调递减,B 正确.3.已知f (x )=x 3+x 2-x 的单调递增区间为________.答案(-∞,-1),13,+∞解析令f ′(x )=3x 2+2x -1>0,解得x >13或x <-1,所以f (x )=x 3+x 2-x 的单调递增区间为(-∞,-1)13,+∞4.已知f (x )=2x 2-ax +ln x 在区间(1,+∞)上单调递增,则实数a 的取值范围是________.答案(-∞,5]解析f ′(x )=4x -a +1x =4x 2-ax +1x,x ∈(1,+∞),故只需4x 2-ax +1≥0在x ∈(1,+∞)上恒成立,则a ≤4x +1x 在x ∈(1,+∞)上恒成立,令y =4x +1x,因为y ′=4-1x 2=4x 2-1x 2>0在x ∈(1,+∞)上恒成立,所以y =4x +1x 在(1,+∞)上单调递增,故4x +1x>5,所以a ≤5.题型一不含参函数的单调性例1(1)函数f(x)=x ln x-3x+2的单调递减区间为________.答案(0,e2)解析f(x)的定义域为(0,+∞),f′(x)=ln x-2,当x∈(0,e2)时,f′(x)<0,当x∈(e2,+∞)时,f′(x)>0,∴f(x)的单调递减区间为(0,e2).(2)若函数f(x)=ln x+1e x,则函数f(x)的单调递增区间为________.答案(0,1)解析f(x)的定义域为(0,+∞),f′(x)=1x-ln x-1e x,令φ(x)=1x-ln x-1(x>0),φ′(x)=-1x2-1x<0,φ(x)在(0,+∞)上单调递减,且φ(1)=0,∴当x∈(0,1)时,φ(x)>0,即f′(x)>0,当x∈(1,+∞)时,φ(x)<0,即f′(x)<0,∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.∴函数f(x)的单调递增区间为(0,1).思维升华确定不含参数的函数的单调性,按照判断函数单调性的步骤即可,但应注意两点,一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.跟踪训练1已知函数f(x)=x sin x+cos x,x∈[0,2π],则f(x)的单调递减区间为()A.0,π2 B.π2,3π2C.(π,2π) D.3π2,2π答案B解析由题意f(x)=x sin x+cos x,x∈[0,2π],则f ′(x )=x cos x ,当x f ′(x )>0,当x f ′(x )<0,故f (x )题型二含参数的函数的单调性例2已知函数g (x )=(x -a -1)e x -(x -a )2,讨论函数g (x )的单调性.解g (x )的定义域为R ,g ′(x )=(x -a )e x -2(x -a )=(x -a )(e x -2),令g ′(x )=0,得x =a 或x =ln 2,①若a >ln 2,则当x ∈(-∞,ln 2)∪(a ,+∞)时,g ′(x )>0,当x ∈(ln 2,a )时,g ′(x )<0,∴g (x )在(-∞,ln 2),(a ,+∞)上单调递增,在(ln 2,a )上单调递减;②若a =ln 2,则g ′(x )≥0恒成立,∴g (x )在R 上单调递增;③若a <ln 2,则当x ∈(-∞,a )∪(ln 2,+∞)时,g ′(x )>0,当x ∈(a ,ln 2)时,g ′(x )<0,∴g (x )在(-∞,a ),(ln 2,+∞)上单调递增,在(a ,ln 2)上单调递减.综上,当a >ln 2时,g (x )在(-∞,ln 2),(a ,+∞)上单调递增,在(ln 2,a )上单调递减;当a =ln 2时,g (x )在R 上单调递增;当a <ln 2时,g (x )在(-∞,a ),(ln 2,+∞)上单调递增,在(a ,ln 2)上单调递减.思维升华(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点.跟踪训练2(2023·北京模拟)已知函数f (x )=2x -a(x +1)2.(1)当a =0时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )的单调区间.解(1)当a =0时,f (x )=2x(x +1)2(x ≠-1),则f (0)=0,因为f ′(x )=-2x +2(x +1)3,所以f ′(0)=2.所以曲线y =f (x )在(0,0)处的切线方程为y =2x .(2)函数的定义域为(-∞,-1)∪(-1,+∞).f ′(x )=(-2x +2a +2)(x +1)(x +1)4=-2(x -a -1)(x +1)3,令f ′(x )=0,解得x =a +1.①当a +1=-1,即a =-2时,f ′(x )=-2x -2(x +1)3=-2(x +1)(x +1)3=-2(x +1)2<0,所以函数f (x )的单调递减区间为(-∞,-1)和(-1,+∞),无单调递增区间;②当a +1<-1,即a <-2时,令f ′(x )<0,则x ∈(-∞,a +1)∪(-1,+∞),令f ′(x )>0,则x ∈(a +1,-1),函数f (x )的单调递减区间为(-∞,a +1)和(-1,+∞),单调递增区间为(a +1,-1);③当a +1>-1,即a >-2时,令f ′(x )<0,则x ∈(-∞,-1)∪(a +1,+∞),令f ′(x )>0,则x ∈(-1,a +1),函数f (x )的单调递减区间为(-∞,-1)和(a +1,+∞),单调递增区间为(-1,a +1).综上所述,当a =-2时,函数f (x )的单调递减区间为(-∞,-1)和(-1,+∞),无单调递增区间;当a <-2时,函数f (x )的单调递减区间为(-∞,a +1)和(-1,+∞),单调递增区间为(a +1,-1);当a >-2时,函数f (x )的单调递减区间为(-∞,-1)和(a +1,+∞),单调递增区间为(-1,a +1).题型三函数单调性的应用命题点1比较大小或解不等式例3(1)(多选)(2024·深圳模拟)若0<x 1<x 2<1,则()A .21e e xx->ln x 2+1x 1+1B .21e e xx-<ln x 2+1x 1+1C .1221e e x x x x >D .1221e e x x x x <答案AC解析令f (x )=e x -ln(x +1)且x ∈(0,1),则f ′(x )=e x -1x +1>0,故f (x )在区间(0,1)上单调递增,因为0<x 1<x 2<1,所以f (x 1)<f (x 2),即1e x-ln(x 1+1)<2e x-ln(x 2+1),故21e e x x ->lnx 2+1x 1+1,所以A 正确,B 错误;令f (x )=e xx 且x ∈(0,1),则f ′(x )=e x (x -1)x 2<0,故f (x )在区间(0,1)上单调递减,因为0<x 1<x 2<1,所以f (x 1)>f (x 2),即1212e e >x x x x ,故1221e e x x x x >,所以C 正确,D错误.常见组合函数的图象在导数的应用中常用到以下函数,记住以下的函数图象对解题有事半功倍的效果.典例(多选)如果函数f (x )对定义域内的任意两实数x 1,x 2(x 1≠x 2)都有x 1f (x 1)-x 2f (x 2)x 1-x 2>0,则称函数y =f (x )为“F 函数”.下列函数不是“F 函数”的是()A .f (x )=e xB .f (x )=x 2C .f (x )=ln xD .f (x )=sin x答案ACD解析依题意,函数g (x )=xf (x )为定义域上的增函数.对于A ,g (x )=x e x ,g ′(x )=(x +1)e x ,当x ∈(-∞,-1)时,g ′(x )<0,∴g (x )在(-∞,-1)上单调递减,故A 中函数不是“F 函数”;对于B ,g (x )=x 3在R 上为增函数,故B 中函数为“F 函数”;对于C ,g (x )=x ln x ,g ′(x )=1+ln x ,x >0,当x g ′(x )<0,∴g (x )故C 中函数不是“F 函数”;对于D ,g (x )=x sin x ,g ′(x )=sin x +x cos x ,当x -π2,g ′(x )<0,∴g (x )-π2,故D 中函数不是“F 函数”.(2)(2023·成都模拟)已知函数f (x )=e x -e -x-2x +1,则不等式f (2x -3)+f (x )>2的解集为________.答案(1,+∞)解析令g (x )=f (x )-1=e x -e -x -2x ,定义域为R ,且g (-x )=e -x -e x +2x =-g (x ),所以g (x )=f (x )-1=e x -e -x -2x 为奇函数,f (2x -3)+f (x )>2变形为f (2x -3)-1>1-f (x ),即g (2x -3)>-g (x )=g (-x ),g ′(x )=e x +e -x -2≥2e x ·e -x -2=0,当且仅当e x =e -x ,即x =0时,等号成立,所以g (x )=f (x )-1=e x -e -x -2x 在R 上单调递增,所以2x -3>-x ,解得x >1,所以所求不等式的解集为(1,+∞).命题点2根据函数的单调性求参数例4已知函数f (x )=ln x -12ax 2-2x (a ≠0).(1)若f (x )在[1,4]上单调递减,求实数a 的取值范围;(2)若f (x )在[1,4]上存在单调递减区间,求实数a 的取值范围.解(1)因为f (x )在[1,4]上单调递减,所以当x ∈[1,4]时,f ′(x )=1x -ax -2≤0恒成立,即a ≥1x2-2x 恒成立.设G (x )=1x 2-2x ,x ∈[1,4],所以a ≥G (x )max ,而G (x )-1,因为x ∈[1,4],所以1x ∈14,1,所以G (x )max =-716(此时x =4),所以a ≥-716,又因为a ≠0,所以实数a 的取值范围是-716,(0,+∞).(2)因为f (x )在[1,4]上存在单调递减区间,则f ′(x )<0在[1,4]上有解,所以当x ∈[1,4]时,a >1x 2-2x 有解,又当x ∈[1,4]=-1(此时x =1),所以a >-1,又因为a ≠0,所以实数a 的取值范围是(-1,0)∪(0,+∞).思维升华由函数的单调性求参数的取值范围的方法(1)函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立.(2)函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集.跟踪训练3(1)(2024·郑州模拟)函数f (x )的图象如图所示,设f (x )的导函数为f ′(x ),则f (x )·f ′(x )>0的解集为()A .(1,6)B .(1,4)C .(-∞,1)∪(6,+∞)D .(1,4)∪(6,+∞)答案D解析由图象可得,当x <4时,f ′(x )>0,当x >4时,f ′(x )<0.结合图象可得,当1<x <4时,f ′(x )>0,f (x )>0,即f (x )·f ′(x )>0;当x >6时,f ′(x )<0,f (x )<0,即f (x )·f ′(x )>0,所以f (x )·f ′(x )>0的解集为(1,4)∪(6,+∞).(2)已知函数f (x )=(1-x )ln x +ax 在(1,+∞)上不单调,则a 的取值范围是()A .(0,+∞)B .(1,+∞)C .[0,+∞)D .[1,+∞)答案A解析依题意f ′(x )=-ln x +1x+a -1,故f ′(x )在(1,+∞)上有零点,令g (x )=-ln x +1x +a -1,令g (x )=0,得a =ln x -1x +1,令z (x )=ln x -1x +1,则z ′(x )=1x +1x2,由x >1,得z ′(x )>0,z (x )在(1,+∞)上单调递增,又由z(1)=0,得z(x)>0,故a=z(x)>0,所以a的取值范围是(0,+∞).课时精练一、单项选择题1.函数f(x)=(x-3)e x的单调递减区间是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)答案A解析由已知得,f′(x)=e x+(x-3)e x=(x-2)e x,当x<2时,f′(x)<0,当x>2时,f′(x)>0,所以f(x)的单调递减区间是(-∞,2),单调递增区间是(2,+∞).2.已知f′(x)是函数y=f(x)的导函数,且y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()答案D解析根据导函数的图象可得,当x<0时,f′(x)<0,f(x)在(-∞,0)上单调递减;当0<x<2时,f′(x)>0,f(x)在(0,2)上单调递增;当x>2时,f′(x)<0,f(x)在(2,+∞)上单调递减,所以只有D选项符合.3.(2023·重庆模拟)已知函数f(x)=13ax3+x2+x+4,则“a≥0”是“f(x)在R上单调递增”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案C解析由题意知,f′(x)=ax2+2x+1,若f(x)在R上单调递增,则f′(x)≥0恒成立,>0,=4-4a≤0,解得a≥1,故“a≥0”是“f(x)在R上单调递增”的必要不充分条件.4.(2023·新高考全国Ⅱ)已知函数f(x)=a e x-ln x在区间(1,2)上单调递增,则a的最小值为()A.e2B.e C.e-1D.e-2答案C解析依题可知,f′(x)=a e x-1x≥0在(1,2)上恒成立,显然a>0,所以x e x≥1a在(1,2)上恒成立,设g(x)=x e x,x∈(1,2),所以g′(x)=(x+1)e x>0,所以g(x)在(1,2)上单调递增,g(x)>g(1)=e,故e≥1a,即a≥1e=e-1,即a的最小值为e-1.5.(2024·苏州模拟)已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=e x+sin x,则不等式f(2x-1)<eπ的解集是()答案D解析当x≥0时,f′(x)=e x+cos x,因为e x≥1,cos x∈[-1,1],所以f′(x)=e x+cos x≥0在[0,+∞)上恒成立,所以f(x)在[0,+∞)上单调递增,又因为f(x)是定义在R上的偶函数,所以f(x)在(-∞,0]上单调递减,所以f(-π)=f(π)=eπ,所以由f(2x-1)<eπ可得-π<2x-1<π,解得x6.(2023·信阳模拟)已知a=1100,b=99100e-,c=ln101100,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a 答案B解析设函数f(x)=e x-x-1,x∈R,则f′(x)=e x-1,当x<0时,f′(x)<0,f(x)在(-∞,0)上单调递减;当x>0时,f′(x)>0,f(x)在(0,+∞)上单调递增,故f(x)≥f(0)=0,即e x≥1+x,当且仅当x=0时取等号,∵e x≥1+x,∴99100e->1-99100=1100,∴b>a,由以上分析可知当x>0时,有e x-1≥x成立,当x=1时取等号,即ln x≤x-1,当且仅当x=1时取等号,∴ln 101100<101100-1=1100,∴a>c,故b>a>c.二、多项选择题7.(2023·临汾模拟)若函数f (x )=12x 2-9ln x 在区间[m -1,m +1]上单调,则实数m 的值可以是()A .1B .2C .3D .4答案BD解析f ′(x )=x -9x =x 2-9x (x >0),令f ′(x )>0,得x >3,令f ′(x )<0,得0<x <3,所以函数f (x )的单调递增区间为(3,+∞),单调递减区间为(0,3),因为函数f (x )在区间[m -1,m +1]上单调,-1>0,+1≤3或m -1≥3,解得1<m ≤2或m ≥4.8.(2024·邯郸模拟)已知函数f (x )x ,且a =f b =f c =12(e )f ,则()A .a >bB .b >aC .c >bD .c >a答案ACD解析由f (x )x ,得f ′(x )x 当x ∈(0,1)时,f ′(x )<0,f (x )单调递减,因为c =f 0<1e <23<45<1,所以f f f c >a >b .三、填空题9.函数f (x )=e -x cos x (x ∈(0,π))的单调递增区间为________.答案解析f ′(x )=-e -x cos x -e -x sin x =-e -x (cos x +sin x )=-2e -x当x e -x >0,,则f ′(x )<0;当x e -x >0,,则f ′(x )>0,∴f (x )在(0,π)10.若函数f (x )=x 3+bx 2+x 恰有三个单调区间,则实数b 的取值范围为________.答案(-∞,-3)∪(3,+∞)解析由题意得f ′(x )=3x 2+2bx +1,函数f (x )=x 3+bx 2+x 恰有三个单调区间,则函数f (x )=x 3+bx 2+x 有两个极值点,即f ′(x )=3x 2+2bx +1的图象与x 轴有两个交点,则判别式Δ=4b 2-12>0,解得b >3或b <- 3.所以实数b 的取值范围为(-∞,-3)∪(3,+∞).11.(2024·上海模拟)已知定义在(-3,3)上的奇函数y =f (x )的导函数是f ′(x ),当x ≥0时,y =f (x )的图象如图所示,则关于x 的不等式f ′(x )x>0的解集为________.答案(-3,-1)∪(0,1)解析依题意f (x )是奇函数,图象关于原点对称,由图象可知,f (x )在区间(-3,-1),(1,3)上单调递减,f ′(x )<0;f (x )在区间(-1,1)上单调递增,f ′(x )>0.所以f ′(x )x>0的解集为(-3,-1)∪(0,1).12.已知函数f (x )=3x a-2x 2+ln x (a >0),若函数f (x )在[1,2]上不单调,则实数a 的取值范围是________.答案解析f ′(x )=3a -4x +1x,若函数f (x )在[1,2]上单调,即f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x≤0在[1,2]上恒成立,即3a ≥4x -1x 或3a ≤4x -1x在[1,2]上恒成立.令h (x )=4x -1x,则h (x )在[1,2]上单调递增,所以3a ≥h (2)或3a≤h (1),即3a ≥152或3a≤3,又a >0,所以0<a ≤25或a ≥1.因为f (x )在[1,2]上不单调,所以25<a <1.四、解答题13.(2024·毕节模拟)已知函数f (x )=(a -x )ln x .(1)求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )在(0,+∞)上单调递减,求实数a 的取值范围.解(1)根据题意,函数f (x )的定义域为(0,+∞),f (1)=0,f ′(x )=-ln x +a -x x,∴f ′(1)=a -1,∴曲线f (x )在点(1,f (1))处的切线方程为y =(a -1)(x -1).(2)f (x )的定义域为(0,+∞),f ′(x )=-ln x +a -x x =-x ln x -x +a x,令g (x )=-x ln x -x +a ,则g ′(x )=-ln x -2,令g ′(x )=0,则x =1e2,令g ′(x )>0,则0<x <1e2,令g ′(x )<0,则x >1e2,∴g (x )g (x )max ==1e 2+a ,∵f (x )在(0,+∞)上单调递减,∴f ′(x )≤0在(0,+∞)上恒成立,即1e2+a ≤0,∴a ≤-1e2.14.(2023·郑州模拟)已知函数f (x )=ln x +1.(1)若f (x )≤x +c ,求c 的取值范围;(2)设a >0,讨论函数g (x )=f (x )-f (a )x -a的单调性.解(1)f (x )≤x +c 等价于ln x -x ≤c -1.令h (x )=ln x -x ,x >0,则h ′(x )=1x -1=1-x x.当0<x <1时,h ′(x )>0,所以h (x )在(0,1)上单调递增;当x >1时,h ′(x )<0,所以h (x )在(1,+∞)上单调递减.故h (x )max =h (1)=-1,所以c -1≥-1,即c ≥0,所以c 的取值范围是[0,+∞).(2)g (x )=ln x +1-(ln a +1)x -a =ln x -ln a x -a(x >0且x ≠a ),因此g ′(x )=x -a -x ln x +x ln a x (x -a )2,令m (x )=x -a -x ln x +x ln a ,则m ′(x )=ln a -ln x ,当x >a 时,ln x >ln a ,所以m ′(x )<0,m (x )在(a ,+∞)上单调递减,当0<x <a 时,ln x <ln a ,所以m ′(x )>0,m (x )在(0,a )上单调递增,因此有m (x )<m (a )=0,即g ′(x )<0在x >0且x ≠a 上恒成立,所以函数g (x )在区间(0,a )和(a ,+∞)上单调递减.15.已知函数f (x )=e x x -ax ,当0<x 1<x 2时,不等式f (x 1)x 2-f (x 2)x 1<0恒成立,则实数a 的取值范围为()A .(-∞,e)B .(-∞,e]-∞,e 2答案D解析因为当0<x 1<x 2时,不等式f (x 1)x 2-f (x 2)x 1<0恒成立,所以f (x 1)x 2<f (x 2)x 1,即x 1f (x 1)<x 2f (x 2),令g (x )=xf (x )=e x -ax 2,则g (x 1)<g (x 2),又因为0<x 1<x 2,所以g (x )在(0,+∞)上单调递增,所以g ′(x )=e x -2ax ≥0在(0,+∞)上恒成立,分离参数得2a ≤e x x恒成立,令h (x )=e x x(x >0),则只需2a ≤h (x )min ,而h ′(x )=e x ·x -1x2,令h ′(x )>0,得x >1,令h ′(x )<0,得0<x <1,所以h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以h (x )≥h (1)=e ,故2a ≤e ,即a ≤e 2.16.已知偶函数f (x )在R 上存在导函数f ′(x ),当x >0时,f (x )x>-f ′(x ),且f (2)=1,则不等式(x 2-x )f (x 2-x )>2的解集为()A .(-∞,-2)∪(1,+∞)B .(2,+∞)C .(-∞,-1)∪(2,+∞)D .(-1,2)答案C 解析令g (x )=xf (x ),由于f (x )为偶函数,则g (x )为奇函数,所以g ′(x )=f (x )+xf ′(x ).因为当x >0时,f (x )x >-f ′(x ),即f (x )+xf ′(x )x>0,所以f(x)+xf′(x)>0,即g′(x)>0.所以当x>0时,g(x)在(0,+∞)上单调递增.因为g(x)在R上为奇函数且在R上存在导函数,所以g(x)在R上为增函数.因为f(2)=1,所以g(2)=2f(2)=2,又(x2-x)f(x2-x)>2等价于g(x2-x)>g(2),所以x2-x>2,解得x<-1或x>2.综上所述,x的取值范围为(-∞,-1)∪(2,+∞).。

202新数学复习第二章函数导数及其应用2.2函数的单调性与最值学案含解析

202新数学复习第二章函数导数及其应用2.2函数的单调性与最值学案含解析

第二节函数的单调性与最值课标要求考情分析1。

理解函数的单调性、最大值、最小值及其几何意义.2.会运用基本初等函数的图象分析函数的性质。

1。

主要考查函数单调性的判定、求单调区间、比较大小、解不等式、求最值及不等式恒成立问题.2.题型以选择题、填空题为主,若与导数交汇命题则以解答题的形式出现,属中高档题.知识点一函数的单调性1.增函数、减函数的定义定义:一般地,设函数f(x)的定义域为I,如果对于定义域I 内某个区间D上的任意两个自变量x1,x2:(1)增函数:当x1〈x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;(2)减函数:当x1〈x2时,都有f(x1)〉f(x2),那么就说函数f(x)在区间D上是减函数.2.单调性、单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y =f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间.注意以下结论1.对∀x1,x2∈D(x1≠x2),错误!>0⇔f(x)在D上是增函数,错误!<0⇔f(x)在D上是减函数.2.对勾函数y=x+错误!(a〉0)的增区间为(-∞,-错误!]和[错误!,+∞),减区间为[-错误!,0)和(0,错误!].3.在区间D上,两个增函数的和仍是增函数,两个减函数的和仍是减函数.4.函数f(g(x))的单调性与函数y=f(u)和u=g(x)的单调性的关系是“同增异减”.知识点二函数的最值1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)对于函数f(x),x∈D,若对任意x1,x2∈D,且x1≠x2有(x1-x2)[f(x1)-f(x2)]〉0,则函数f(x)在区间D上是增函数.(√)(2)函数y=1x的单调递减区间是(-∞,0)∪(0,+∞).(×)(3)对于函数y=f(x),若f(1)<f(3),则f(x)为增函数.(×)(4)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)解析:(2)此单调区间不能用并集符号连接,取x1=-1,x2=1,则f(-1)〈f(1),故应说成单调递减区间为(-∞,0)和(0,+∞).(3)应对任意的x1<x2,f(x1)〈f(x2)成立才可以.(4)若f(x)=x,f(x)在[1,+∞)上为增函数,但y=f(x)的单调递增区间是R.2.小题热身(1)下列函数中,在区间(0,+∞)内单调递减的是(A)A.y=错误!-x B.y=x2-xC.y=ln x-x D.y=e x(2)函数f(x)=-x+错误!在区间错误!上的最大值是(A)A.错误!B.-错误!C.-2 D.2(3)设定义在[-1,7]上的函数y=f(x)的图象如图所示,则函数y=f(x)的增区间为[-1,1]和[5,7].(4)函数f(x)=错误!的值域为(-∞,2).(5)函数f(x)=错误!在[2,6]上的最大值和最小值分别是4,错误!.解析:(1)对于A,y1=错误!在(0,+∞)内是减函数,y2=x在(0,+∞)内是增函数,则y=1x-x在(0,+∞)内是减函数;B,C选项中的函数在(0,+∞)上均不单调;选项D中,y=e x 在(0,+∞)上是增函数.(2)∵函数y=-x与y=错误!在x∈错误!上都是减函数,∴函数f(x)=-x+错误!在错误!上是减函数,故f(x)的最大值为f(-2)=2-错误!=错误!.(3)由图可知函数的增区间为[-1,1]和[5,7].(4)当x≥1时,f(x)=log错误!x是单调递减的,此时,函数的值域为(-∞,0];x<1时,f(x)=2x是单调递增的,此时,函数的值域为(0,2).综上,f(x)的值域是(-∞,2).(5)函数f(x)=错误!=错误!=2+错误!在[2,6]上单调递减,所以f(x)min=f(6)=错误!=错误!。

2016届高考数学理科一轮复习(北师大版)课件第2章2.2函数的单调性与最大(小)值

2016届高考数学理科一轮复习(北师大版)课件第2章2.2函数的单调性与最大(小)值

3 在区间 ( - ∞ , 4) 上是单调递增 的,则实数a的取值范围是( ) 1 1 A.a>-4 B.a≥-4 1 1 C.-4≤a<0 D.-4≤a≤0
题型二
例2
利用单调性求参数范围
解析
答案
思维升华
(1)如果函数f(x)=ax2+2x-
3 在区间 ( - ∞ , 4) 上是单调递增 的,则实数a的取值范围是( D ) 1 1 A.a>-4 B.a≥-4 1 1 C.-4≤a<0 D.-4≤a≤0
题型一
函数单调性的判断
解析
思维升华
(2) 复合函数 y = f[g(x)] 的单调 性规律是“同则增,异则 减 ” ,即 y = f(u) 与 u = g(x) 若 具有相同的单调性,则y= f[g(x)]为增函数,若具有不同 的单调性,则 y = f[g(x)] 必为
减函数.
解析
思维升华
例1 (2)求函数y= x2+x-6 的单调区间.
A.(-1,0)∪(0,1) C.(0,1)
B.(-1,0)∪(0,1] D.(0,1]
ax, x>1, (2)已知 f(x)= a 4 - x + 2 , x ≤ 1 2
是 R 上的增函数,则
实数 a 的取值范围为( A.(1,+∞) C.(4,8)
) B.[4,8) D.(1,8)
减函数
在函数f(x)的定义域内的一个区间A上,如果对于任意两 定 义
图 象 描 述 自左向右看图象是上升的 自左向右看图象是下降的
(2)单调区间的定义
如果函数y=f(x)在区间A上是增加的 或是 减少的 ,那么就
称A为单调区间.
2.函数的最值

高考数学大一轮总复习 第二章 函数、导数及其应用 计时双基练14 导数与函数的单调性 理 北师大版

高考数学大一轮总复习 第二章 函数、导数及其应用 计时双基练14 导数与函数的单调性 理 北师大版

计时双基练十四导数与函数的单调性A组基础必做1.已知函数f(x)的导函数f′(x)的图像如图所示,那么函数f(x)的图像最有可能是( )解析 由导函数图像可知,f (x )在(-∞,-2],[0,+∞)上单调递减,在[-2,0]上单调递增,选A 。

答案 A2.函数f (x )=x +eln x 的单调递增区间为( ) A .(0,+∞)B .(-∞,0)C .(-∞,0)和(0,+∞)D .R解析 函数定义域为(0,+∞),f ′(x )=1+ex>0,故单调增区间是(0,+∞)。

答案 A3.已知函数f (x )=x sin x ,x ∈R ,则f ⎝ ⎛⎭⎪⎫π5,f (1),f ⎝ ⎛⎭⎪⎫-π3的大小关系为( ) A .f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5B .f (1)>f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5C .f ⎝ ⎛⎭⎪⎫π5>f (1)>f ⎝ ⎛⎭⎪⎫-π3D .f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5>f (1) 解析 由f (-x )=-x sin(-x )=x sin x =f (x )知,函数f (x )=x sin x 为偶函数,当x∈⎝ ⎛⎭⎪⎫0,π2时,f ′(x )=sin x +x cos x >0知,函数f (x )=x sin x 在⎝⎛⎭⎪⎫0,π2上单调递增,由π2>π3>1>π5>0知,f ⎝ ⎛⎭⎪⎫π3>f (1)>f ⎝ ⎛⎭⎪⎫π5,即f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5,故选A 。

答案 A4.若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)解析 因为f (x )=kx -ln x ,所以f ′(x )=k -1x。

一轮复习北师大版第2章第2节 函数的单调性与最值课件(59张)

一轮复习北师大版第2章第2节 函数的单调性与最值课件(59张)

考点二 函数单调性的判断与证明 1.定义法证明函数单调性的步骤
2.判断函数单调性的四种方法 (1)图像法;(2)性质法;(3)导数法;(4)定义法. 3.证明函数单调性的两种方法 (1)定义法;(2)导数法.
[典例 2] 试讨论函数 f (x)=x-ax1(a≠0)在(-1,1)上的单调性. 【四字解题】
3.若函数 y=(2k+1)x+b 在 R 上是减函数,则 k 的取值范围是 ________.
-∞,-12 [因为函数 y=(2k+1)x+b 在 R 上是减函数,所以 2k+1<0,即 k<-12.]
4.已知函数 f (x)=x-2 1,x∈[2,6],则 f (x)的最大值为________, 最小值为________.
前提 设函数 y=f (x)的定义域为 D,如果存在实数 M 满 足
①对于任意的 x∈D,都 ①对于任意的 x∈D,都
条件 结论
有__f _(x_)_≤_M____;
②存在 x0∈D,使得 _f_(_x_0_)=__M___
M 为 y=f (x)的最大值
有_f_(_x_)≥__M____;
②存在 x0∈D,使得 __f _(x_0_)_=__M__
A [函数 y=e-x 定义域为 R 且为减函数.y=x3 定义域为 R 且为 增函数.函数 y=ln x 定义域为(0,+∞).函数 y=|x|定义域为 R, 但在(-∞,0]上是减函数,在[0,+∞)上是增函数,故选 A.]
2.函数 f (x)=x2-2x 的单调递增区间是________. [1,+∞) [f (x)=x2-2x=(x-1)2-1,因此函数 f (x)的单调递 增区间为[1,+∞).]
2.函数 f (x)=x-x 1的单调递减区间为________. (-∞,1)和(1,+∞) [由 x-1≠0 得 x≠1, 即函数 f (x)的定义域为(-∞,1)∪(1,+∞), 又 f (x)=x-x 1=x-x-11+1=1+x-1 1,其图像 如图所示,由图像知,函数 f (x)的单调递减区间为(-∞,1)和(1,+ ∞).]

2023版高考数学一轮总复习第二章函数导数及其应用第二讲函数的单调性与最值课件

2023版高考数学一轮总复习第二章函数导数及其应用第二讲函数的单调性与最值课件
答案:[2,+∞) (-∞,-3]
3.判断并证明函数 f(x)=ax2+1x(其中 1<a<3)在 x∈[1,2] 上的单调性.
解:f(x)在[1,2]上单调递增,证明如下. 设 1≤x1<x2≤2,则 f(x2)-f(x1)=ax22+x12-ax21-x11= (x2-x1)ax1+x2-x11x2, 由 1≤x1<x2≤2,得 x2-x1>0,2<x1+x2<4,
所以 a=f-12=f52.
当x2>x1>1时,[f(x2)-f(x1)](x2-x1)<0恒成立,等价于 函数 f(x)在(1,+∞)上单调递减,所以 b>a>c.
答案:D
考向 2 解函数不等式 通性通法:求解含“f ”的函数不等式的解题思路 先利用函数的相关性质将不等式转化为 f(g(x))>f(h(x))
[例 2]已知函数 f(x)的图象向左平移 1 个单位长度后关
于 y 轴对称,当 x2>x1>1 时,[f(x2)-f(x1)]·(x2-x1)<0 恒成立,
设 a=f-12,b=f(2),c=f(3),则 a,b,c 的大小关系为(
)
A.c>a>b C.a>c>b
B.c>b>a D.b>a>c
解析:由于函数 f(x)的图象向左平移 1 个单位长度后 得到的图象关于 y 轴对称,故函数 y=f(x)的图象关于直线 x=1 对称,
A.对于函数 f(x),x∈D,若对任意 x1,x2∈D,且 x1≠x2 有(x1-x2)[f(x1)-f(x2)]>0,则函数 f(x)在区间 D 上单调递增
B.函数 y=1x的单调递减区间是(-∞,0)∪(0,+∞) C.对于函数 y=f(x),若 f(1)<f(3),则 f(x)为增函数 D.函数 y=f(x)在[1,+∞)上单调递增,则函数 f(x)是 增函数

超实用高考数学专题复习(北师大版):第二章函数导数及其应用 第二节函数的单调性与最值

超实用高考数学专题复习(北师大版):第二章函数导数及其应用   第二节函数的单调性与最值

2.单调性的两种等价形式 (1)设任意 x1,x2∈[a,b]且 x1<x2,那么f(x1)x1--fx(2 x2)>0⇔f(x)在[a,b]上是增 函数;f(x1)x1--xf(2 x2)<0⇔f(x)在[a,b]上是减函数.
(2)(x1-x2)[f(x1)-f(x2)]>0⇔f(x)在[a,b]上是增函数;(x1-x2)[f(x1)-f(x2)]<0⇔f(x)
在[a,b]上是减函数.
3.函数最值存在的两条结论 (1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值 一定在端点取到. (2)开区间上的“单峰”函数一定存在最大(小)值. (3)f(x)的最大值记为 f(x)max,f(x)最小值记为 f(x)min.
[四基自测]
1.(基础点:一次函数的单调性)函数 y=(2m-1)x+b 在 R 上是减函数,则( )
养成良好的答题习惯,是决定高考数学成败的决定性因素之一。做题前, 要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌 跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要 善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检 查,查漏补缺,纠正错误。总之,在最后的复习阶段,学生们不要加大练习量 。在这个时候,学生要尽快找到适合自己的答题方式,最重要的是以平常心去 面对考试。数学最后的复习要树立信心,考试的时候遇到难题要想“别人也难 ”,遇到容易的则要想“细心审题”。越到最后,考生越要回归基础,单词最 好再梳理一遍,这样有利于提高阅读理解的效率。另附高考复习方法和考前30 天冲刺复习方法。
若 a>0,当 x1<x2<1 时,x1-1<0,x2-1<0,x2-x1>0,f(x1)-f(x2)>0. 当 1<x1<x2 时,x1-1>0,x2-1>0,x2-x1>0, ∴f(x1)-f(x2)>0, ∴f(x)在(-∞,1),(1,+∞)上为减函数. 若 a<0 时,当 x1<x2<1 时,f(x1)-f(x2)<0, 当 1<x1<x2 时,f(x1)-f(x2)<0 f(x)在(-∞,1),(1,+∞)上为增函数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 函数的单调性与最值[考纲传真] (教师用书独具)1.理解函数的单调性、最大(小)值及其几何意义.2.会运用基本初等函数的图像分析函数的性质.(对应学生用书第10页)[基础知识填充]1.函数的单调性(1)单调函数的定义增函数 减函数定 义在函数y =f (x )的定义域内的一个区间A 上,如果对于任意两数x 1,x 2∈A 当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间A 上是增加的当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间A 上是减少的图 像 描 述自左向右看图像是上升的自左向右看图像是下降的(2)单调区间的定义如果函数y =f (x )在区间A 上是增加的或减少的,那么称A 为单调区间. 2.函数的最值前提函数y =f (x )的定义域为D ,如果存在实数M 满足条件 (1)对于任意的x ∈D ,都有f (x )≤M ;(2)存在x 0∈D ,使得f (x 0)=M(3)对于任意的x ∈D ,都有f (x )≥M ;(4)存在x 0∈D ,使得f (x 0)=M结论M 为函数y =f (x )的最大值,记作y max =f (x 0)M 为函数y =f (x )的最小值,记作y min =f (x 0)[知识拓展] 函数单调性的常用结论(1)对任意x 1,x 2∈D (x 1≠x 2),f x 1-f x 2x 1-x 2>0⇔f (x )在D 上是增函数,f x 1-f x 2x 1-x 2<0⇔f (x )在D 上是减函数,即Δx 与Δy 同号增,异号减.(2)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数. (3)函数f (g (x ))的单调性与函数y =f (u )和u =g (x )的单调性的关系是“同增异减”.(4)函数f (g (x ))的单调性与函数y =f (u )和u =g (x )的单调性的关系是“同增异减”.(5)f (x )=x +a x(a >0)的单调性,如图2­2­1可知,(0,a ]减,[a ,+∞)增,[-a ,0)减,(-∞,-a ]增.图2­2­1 [基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)对于函数f (x ),x ∈D ,若对任意x 1,x 2∈D ,x 1≠x 2且(x 1-x 2)·[f (x 1)-f (x 2)]>0,则函数f (x )在区间D 上是增函数.( )(2)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( )(3)若定义在R 上的函数f (x )有f (-1)<f (3),则函数f (x )在R 上为增函数.( ) (4)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( )(6)所有的单调函数都有最值.( )[答案] (1)√ (2)× (3)× (4)× (5)× (6)×2.下列函数中,在区间(0,1)上是增函数的是( )A .y =|x |B .y =3-xC .y =1xD .y =-x 2+4A [y =3-x 在R 上递减,y =1x在(0,+∞)上递减,y =-x 2+4在(0,+∞)上递减,故选A.]3.设定义在[-1,7]上的函数y =f (x )的图像如图2­2­2所示,则函数y =f (x )的增区间为________.图2­2­2[答案] [-1,1],[5,7]4.函数y =(2k +1)x +b 在R 上是减函数,则k 的取值范围是________.⎝ ⎛⎭⎪⎫-∞,-12 [由题意知2k +1<0,得k <-12.] 5.(教材改编)已知f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 2 25 [易知函数f (x )=2x -1在x ∈[2,6]上为减函数,故f (x )max =f (2)=2,f (x )min =f (6)=25.](对应学生用书第11页)(1)(·全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)D .(4,+∞)(2)试讨论函数f (x )=x +k x(k >0)的单调性. (1)D [由x 2-2x -8>0,得x >4或x <-2. 设t =x 2-2x -8,则y =ln t 为增函数.要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8的单调递增区间. ∵函数t =x 2-2x -8的单调递增区间为(4,+∞), ∴函数f (x )的单调递增区间为(4,+∞). 故选D.](2)法一:(导数法)f ′(x )=1-k x2.令f ′(x )>0得x 2>k ,即x ∈(-∞,-k )或x ∈(k ,+∞),故函数的单调增区间为(-∞,-k )和(k ,+∞).令f ′(x )<0得x 2<k ,即x ∈(-k ,0)或x ∈(0,k ),故函数的单调减区间为(-k ,0)和(0,k ).故函数f (x )在(-∞,-k )和(k ,+∞)上单调递增,在(-k ,0)和(0,k )上单调递减.法二:(定义法)由解析式可知,函数的定义域是(-∞,0)∪(0,+∞).在(0,+∞)内任取x 1,x 2,令0<x 1<x 2,那么f (x 2)-f (x 1)=⎝⎛⎭⎪⎫x 2+k x 2-⎝ ⎛⎭⎪⎫x 1+k x 1=(x 2-x 1)+k ⎝ ⎛⎭⎪⎫1x 2-1x 1=(x 2-x 1)·x 1x 2-k x 1x 2. 因为0<x 1<x 2,所以x 2-x 1>0,x 1x 2>0. 故当x 1,x 2∈(k ,+∞)时,f (x 1)<f (x 2), 即函数在(k ,+∞)上单调递增. 当x 1,x 2∈(0,k )时,f (x 1)>f (x 2), 即函数在(0,k )上单调递减.考虑到函数f (x )=x +k x(k >0)是奇函数,在关于原点对称的区间上具有相同的单调性,故在(-∞,-k )上单调递增,在(-k ,0)上单调递减.综上,函数f (x )在(-∞,-k )和(k ,+∞)上单调递增,在(-k ,0)和(0,k )上单调递减.[规律方法] 1.对于选择题,填空题可用下面四种方法判断函数单调性1定义法:取值、作差、变形因式分解、配方、有理化、通分、定号、下结论. 2复合法:同增异减,即内外函数的单调性相同时为增函数,不同时为减函数. 3图像法:如果f x 是以图像形式给出的,或者f x 的图像易作出,可由图像的直观性判断函数单调性.4导数法:利用导函数的正负判断函数单调性.2.证明函数的单调性有定义法、导数法.但在高考中,见到有解析式,尽量用导数法. 易错警示:1求函数的单调区间,应先求定义域,在定义域内求单调区间. 2如有多个单调增减区间应分别写,不能用“∪”联结. A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x(2)y =-x 2+2|x |+3的单调递增区间为________.【导学号:79140025】(1)D (2)(-∞,-1],[0,1] [(1)选项A 中,y =11-x 在(-∞,1)和(1,+∞)上为增函数,故y =11-x在(-1,1)上为增函数;选项B 中,y =cos x 在(-1,1)上先增后减;选项C 中,y =ln(x +1)在(-1,+∞)上为增函数,故y =ln(x +1)在(-1,1)上为增函数;选项D 中,y =2-x=⎝ ⎛⎭⎪⎫12x在R 上为减函数,故y =2-x在(-1,1)上是减函数.(2)由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4,二次函数的图像如图.由图像可知,函数y =-x 2+2|x |+3在(-∞,-1],[0,1]上是增函数.]求函数的最值(1)函数y =x +x -1的最小值为________; (2)函数f (x )=xx -1(x ≥2)的最大值为________.(1)1 (2)2 [(1)令x -1=t ,则t ≥0,x =t 2+1,∴y =t 2+t +1=⎝ ⎛⎭⎪⎫t +122+34,由二次函数的性质可知,当t ≥0时,函数为增函数,∴当t =0时,y min =1. (2)法一:∵f ′(x )=-1x -12,∴x ≥2时,f ′(x )<0恒成立, ∴f (x )在[2,+∞)上单调递减,∴f (x )在[2,+∞)上的最大值为f (2)=2. 法二:∵f (x )=xx -1=x -1+1x -1=1+1x -1, ∴f (x )的图像是将y =1x的图像向右平移1个单位,再向上平移1个单位得到的.∵y =1x在[1,+∞)上单调递减,∴f (x )在[2,+∞)上单调递减,故f (x )在[2,+∞)上的最大值为f (2)=2. 法三:由题意可得f (x )=1+1x -1.∵x ≥2,∴x -1≥1,∴0<1x -1≤1, ∴1<1+1x -1≤2,即1<x x -1≤2. 故f (x )在[2,+∞)上的最大值为2.] [规律方法] 求函数最值的常用方法1单调性法:先确定函数的单调性,再由单调性求最值.2图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.3换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. [跟踪训练] (1)函数f (x )=⎩⎪⎨⎪⎧1x,x ≥1,-x 2+2,x <1的最大值是________.【导学号:79140026】(2)(·浙江高考)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关(1)2 (2)B [(1)当x ≥1时,函数f (x )=1x为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.(2)法一:设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关. 故选B.法二:由题意可知,函数f (x )的二次项系数为固定值,则二次函数图像的形状一定.随着b 的变动,相当于图像上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图像左右移动,故函数f (x )在区间[0,1]的最大值M 和最小值m 变化,则M -m 的值在变化,故与a 有关.故选B.]函数单调性的应用已知函数f (x )的图像向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >cD [根据已知可得函数f (x )的图像关于直线x =1对称,且在(1,+∞)上是减函数.所以a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,f (2)>f (2.5)>f (3),所以b >a >c .] ◎角度2 解抽象不等式f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,则不等式f (x )+f (x -8)≤2的解集为________.(8,9] [因为2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2可得f [x (x -8)]≤f (9),f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x x -8≤9,解得8<x ≤9.]◎角度3 求参数的取值范围已知函数f (x )=⎩⎪⎨⎪⎧a -2x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________. (2,3] [要使函数f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,a -2>0,f 1≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3].][规律方法] 函数单调性应用问题的常见类型及解题策略,1比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(3)利用单调性求参数.视参数为已知数,依据函数的图像或单调性定义,确定函数的单调区间,与已知单调区间比较求参数. 易错警示:1若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;2分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.[跟踪训练] (1)若函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-14,+∞B.⎣⎢⎡⎭⎪⎫-14,+∞C.⎣⎢⎡⎭⎪⎫-14,0 D.⎣⎢⎡⎦⎥⎤-14,0 (2)定义在R 上的奇函数y =f (x )在(0,+∞)上递增,且f ⎝ ⎛⎭⎪⎫12=0,则满足f (log 19x )>0的x 的集合为________.(1)D (2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <13或1<x <3[(1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增; 当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综上所述,实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,0.(2)如图,由题意知f ⎝ ⎛⎭⎪⎫12=0,f ⎝ ⎛⎭⎪⎫-12=0, 由f (log 19x )>0,得log 19x >12,或-12<log 19x <0,解得0<x <13或1<x <3.]。

相关文档
最新文档