一次函数综合练习及答案
中考数学《一次函数》专题训练(附带答案)
中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。
一次函数练习题(附答案)
一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题1. 函数y=中,自变量x的取值范围是() x?1A.x≥0 B.x>1 C.x>0且x≠1 D.x≥0且x≠1 2. 已知正比例函数y=-2x,当x=-1时,函数y的值是()A.2 B.-2 C.-0.5 D.0.5 3. 一次函数y=-2x-3的图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数关系,则以下判断错误的是() A.骑车的同学比步行的同学晚出发30分钟 B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟 D.步行的速度是6千米/小时。
5. 已知一次函数y=(m+2)x+(1-m),若y随x的增大而减小,且此函数图像与y轴的交点在x轴上方,则m的取值范围是()A.m>-2 B.m<1 C.<-2 D.-2<m<16. (2021福建福州)已知一次函数y?(a?1)x?b的图象如图所示,那么a的取值范围是()A.a?1 B.a?1C.a?0D.a?07. (2021上海市)如果一次函数y?kx?b的图象经过第一象限,且与y轴负半轴相交,那么() A.k?0,b?0B.k?0,b?0C.k?0,b?0D.k?0,b?08. (2021陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为() A.y??x?2C.y?x?2B.y?x?2 D.y??x?2)9. (2021浙江湖州)将直线y=2x向右平移2个单位所得的直线的解析式是(。
CA、y=2x+2B、y=2x-2C、y=2(x-2)D、y=2(x+2) 10. 已知两点M(3,5),N(1,-1),点P是x轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2,0) 3C.(4,0) 3D.(3,0) 2二、填空题 11. 若点A(2,,-4)在正比例函数y=kx的图像上,则k=_____。
一次函数专题练习题含答案
一次函数专题练习题含答案一次函数知识点专题练题一、相信你一定能填对!(每小题3分,共30分)1.下列函数中,自变量x的取值范围是x≥2的是()A.y=2-x。
B.y=1/x。
C.y=4-x^2.D.y=x+2/(x-2)答案:D5.若函数y=(2m+1)x^2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>1/2.B.m=1/2.C.0<m<1/2.D.m<0答案:D11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,该函数的解析式为_______答案:m=1,y=x+1二、相信你也能找到正确答案!(每小题6分,共36分)2.下面哪个点在函数y=x+1的图象上()A.(2,1)B.(-2,1)C.(2,3)D.(-2,-1)答案:A15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.答案:a+b=818.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.答案:a=0,b=717.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组x-y-3=02x-y+2=0的解是________.答案:(-1,-2)4.一次函数y=-5x+3的图象经过的象限是()A.一、二、三。
B.二、三、四。
C.一、二、四。
D.一、三、四答案:B6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3.B.0<k≤3.C.-1≤k<3.D.0<k<3答案:-1≤k<3三、最后,再来几道大题吧!(每小题12分,共54分)7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()答案:y=-x+1010.一次函数y=kx+b的图象经过点(2,-1)和(4,3),那么这个一次函数的解析式为()答案:y=2x-512.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为()答案:y=3x1.农民卖土豆一位农民带了一些土豆去卖。
一次函数综合题(难度较大)带答案
一次函数综合题一.解答题(共10小题)1.如图,在直角坐标系中,△ABC满足∠BCA=90°,点A、C分别在x轴和y轴上,AC=BC=2,当点A从原点开始沿x轴的正方向运动时,则点C始终在y轴上运动,点B始终在第一象限运动.(1)当AB∥y轴时,求B点坐标.(2)随着A、C的运动,当点B落在直线y=3x上时,求此时A点的坐标.(3)在(2)的条件下,在y轴上是否存在点D,使以O、A、B、D为顶点的四边形面积是16?如果存在,请直接写出点D的坐标;如果不存在,请说明理由.2.如图,在平面直角坐标系中,直线y=2x+6与x轴,y轴分别交于点A,C,经过点C的直线与x轴交于点B(6,0).(1)求直线BC的解析式;(2)点G是线段BC上一动点,若直线AG把△ABC的面积分成1:2的两部分,请求点G的坐标;(3)已知D为AC的中点,点P是平面内一点,当△CDP是以CD为直角边的等腰直角三角形时,直接写出点P 的坐标.3.如图,在平面直角坐标系中,直线l1:y=kx+1交y轴于点A,交x轴于点B(4,0),过点E(2,0)的直线l2平行于y轴,交直线l1于点D,点P是直线l2上一动点(异于点D),连接P A、PB.(1)求直线l1的解析式;(2)设P(2,m),求△ABP的面积S的表达式(用含m的代数式表示);(3)当△ABP的面积为3时,则以点B为直角顶点作等腰直角△BPC,请直接写出点C的坐标.4.如图,在平面直角坐标系中,一次函数y=﹣2x﹣1的图象分别交x轴、y轴于点A和B,已知点C的坐标为(﹣3,0).若点P是x轴上的一个动点,(1)求直线BC的函数解析式;(2)过点P作y轴的平行线交AB于点M,交BC于点N,当点P恰好是MN的中点时,求出P点坐标.(3)若以点B、P、C为顶点的△BPC为等腰三角形时,请直接写出所有符合条件的P点坐标.5.如图,在平面直角坐标系中,直线m经过点(﹣1,2),交x轴于点A(﹣2,0),交y轴于点B,直线n与直线m交于点P,与x轴、y轴分别交于点C、D(0,﹣2),连接BC,已知点P的横坐标为﹣4.(1)求直线m的函数表达式和点P的坐标;(2)求证:△BOC是等腰直角三角形;(3)直线m上是否存在点E,使得S△ACE=S△BOC?若存在,求出所有符合条件的点E的坐标,若不存在,请说明理由.6.如图,在平面直角坐标系中,A(﹣1,0),B(0,3),直线y=﹣x+1与x轴相交于点C,与直线AB交于点D,交y轴于点E.(1)求直线AB的解析式及点D的坐标;(2)如图2,H是直线AB上位于第一象限内的一点,连接HC,当S△HCD=时,点M、N为y轴上两动点,点M在点N的上方,且MN=,连接HM、NC,求HM+MN+NC的最小值;(3)将△OEC绕平面内某点旋转90°,旋转后的三角形记为△O'E'C',若点E'落在直线AB上,点O'落在直线CD上,请直接写出满足条件的点E'的坐标.7.如图所示,平面直角坐标系中,直线l1:y=﹣2x+3与直线l2:y=x+1相交于点A,直线l2与x轴相交于点B.过直线l2上的一点P(a,﹣1)作y轴的垂线,交直线l1于点C,连接BC.(1)求点A的坐标;(2)求△ABC的面积;(3)将直线l1向下平移4个单位长度得到直线l3,设直线l3与y轴相交于点D,则直线l2上是否存在一点Q,使得△DPQ是以DP为腰的等腰三角形?若存在,请直接写出Q的坐标,若不存在,请说明理由.8.如图,在平面直角坐标系中,一次函数y=kx+b经过A(a,0),B(0,b)两点,且a,b满足(a+8)2+=0,∠ABO的平分线交x轴于点E.(1)求直线AB的表达式;(2)求直线BE的表达式;(3)点B关于x轴的对称点为点C,过点A作y轴的平行线交直线BE于点D,点M是线段AD上一动点,点P 是直线BE上一动点,则△CPM能否为不以点C为直角顶点的等腰直角三角形?若能,请直接写出点P的坐标;若不能,说明理由.9.如图,直线y=﹣x+8与x轴,y轴分别交于A,B两点,点C的坐标为(﹣6,0),连结BC,过点O作OD⊥AB于点D,点Q为线段BC上一个动点.(1)求BC,OD的长;(2)在线段BO上是否存在一点P,使得△BPQ与△ADO全等?若存在,请求出点Q的坐标;若不存在,请说明理由;(3)当点C关于OQ的对称点恰好落在△OBD的边上,请直接写出点Q的坐标.10.已知,如图1,直线AB分别交平面直角坐标系中x轴和y轴于A,B两点,点A坐标为(﹣3,0),点B坐标为(0,6),点C在直线AB上,且点C坐标为(﹣a,a).(1)求直线AB的表达式和点C的坐标;(2)点D是x轴上的一动点,当S△AOB=S△ACD时,求点D坐标;(3)如图2,点E坐标为(0,﹣1),连接CE,点P为直线AB上一点,且∠CEP=45°,求点P坐标.参考答案与试题解析一.解答题(共10小题)1.【分析】(1)根据勾股定理,可得AB的长,根据勾股定理,可得AO的长,可得B点坐标;(2)根据全等三角形的判定与性质,可得BE=OC =x,EC=OA=x,根据勾股定理,可得x的长,可得A点坐标;(3)分类讨论:①D在y轴的正半轴上;②D在y 轴的负半轴上,根据面积的和差,可得关于y的方程,根据解方程,可得答案.【解答】解:(1)∵∠BCA=90°,AC=BC=2,∴∠BAC=45°,AB ==2,∵AB∥y轴,∴∠BAO=90°=∠COA,∴∠CAO=45°=∠OCA,∴CO=AO,∵AO2+CO2=AC2,∴2AO2=(2)2,∴AO =,∴点B 坐标为(,2);(2)如图,过点B作BE⊥y轴,垂足为点E,∵∠BCE+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCE=∠CAO,且AC=BC,∠BEO=∠AOC,∴△AOC≌△CEB(AAS),∴BE=CO,AO=CE,∵点B落在直线y=3x上,∴设B(x,3x),∴BE=x=OC,OE=3x,∴CE=OA=2x,∵OA2+OC2=AC2,∴(2x)2+x2=20,∴x=2,∴OA=2x=4,∴点A(4,0);(3)设点D(0,y),由(2)得B(2,6),当点D在y轴正半轴上,如图,连接OB,∵S四边形ABDO=S△AOB+S△BDO=16,∴×4×6+×y×2=16,∴y=4,∴点D(0,4);若点D在y轴负半轴上,如图,连接OB,∵S四边形ABDO=S△AOB+S△ADO=16,∴×4×6+×4×(﹣y)=16,∴y=﹣2,∴点D坐标为(0,﹣2).综上,存在点D,使以O、A、B、D为顶点的四边形面积是16,点D的坐标为(0,4)或(0,﹣2).2.【分析】(1)根据题意,求得点C的坐标,结合B的坐标,利用待定系数法求解析式即可;(2)求出S△ABC=27,设G(m,﹣m+6),分两种情况:①S△ABG:S△ACG=1:2时,②S△ABG:S△ACG=2:1时,分别求得m的值,进而求得G点的坐标;(3)分类讨论,①当点D为直角顶点时,②当点C 为直角顶点时,根据等腰直角三角形以及全等三角形的性质即可求解.【解答】解:(1)由y=2x+6得:A(﹣3,0),C(0,6),∵点B(6,0).设直线BC的解析式为y=kx+b(k≠0):∴,解得:,∴直线BC的解析式为y=﹣x+6;(2)∵A(﹣3,0),C(0,6),B(6,0).∴AB=9,∴S△ABC =×9×6=27,设G(m,﹣m+6),(0<m<6),①当S△ABG:S△ACG=1:2时,即S△ABG =S△ABC=9,∴×9(﹣m+6)=9,∴m=4,∴G(4,2);当S△ABG:S△ACG=2:1时,即S△ABG =S△ABC=18,∴×9(﹣m+6)=18,∴m=2,∴G(2,4).综上,点G的坐标为(4,2)或(2,4);(3)∵A(﹣3,0),C(0,6),D为AC的中点,∴D (﹣,3),①当点D为直角顶点时,如图,过点D作DE⊥y轴于E,过点P作PF⊥DE交ED的延长线于F,交x 轴于H,∴∠F=∠CED=90°,∵△CDP是等腰直角三角形,∴DP=CD,∠CDB=90°,∴∠PDF+∠CDE=∠DCE+∠CDE=90°,∴△PDF≌△CDE(AAS),∴DF=CE,PF=DE,∵D (﹣,3),C(0,6).∴DE=PF =,OE=3,CE=DF=6﹣3=3,∴EF=3+=,PH=3+=,∴P (﹣,),同理得:P ′(,);∴P (﹣,)或(,);②当点C为直角顶点时,如图,过点D作DN⊥y轴于N,过点P作PM⊥y轴于M,同①可得△PCM≌△CDN(AAS),∴DN=CM,PM=CN,∵D (﹣,3),C(0,6).∴DN=CM =,ON=3,CN=PM=6﹣3=3,∴OM=6﹣=,∴P(3,),同理得:P′(﹣3,);∴P(3,)或(﹣3,).综上,点P的坐标为(﹣,)或(,)或(3,)或(﹣3,).3.【分析】(1)将B(4,0)代入y=kx+1得到y =﹣x+1;(2)由两直线交点的求法得到点D的坐标;易得线段PD的长度,所以根据三角形的面积公式即可得到结论;(3)根据三角形的面积公式列方程求得m=2,于是得到点P(2,2),推出∠EPB=∠EBP=45°.第1种情况,如图2,过点C作CF⊥x轴于点F根据全等三角形的性质得到BF=CF=PE=EB=2,于是得到C(6,2);第2种情况,如图3根据全等三角形的性质得到PC =CB=PE=EB=2,于是得到C(2,﹣2);第3种情况,当点P在点D下方时,得到(3,2)或(5,﹣2).【解答】解:(1)∵直线l1:y=kx+1交x轴于点B (4,0),∴0=4k+1.∴k =﹣.∴直线l1:y =﹣x+1;(2)由得:.∴D(2,).∵P(2,m),∴PD=|m ﹣|.∴S =×|4﹣0|•PD =×|m ﹣|×4=|2m﹣1|.当m时,S=2m﹣1;当m <时,S=1﹣2m;(3)当S△ABP=3时,2m﹣1=3,解得m=2,∴点P(2,2),∵E(2,0),∴PE=BE=2,∴∠EPB=∠EBP=45°,如图2,∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F,∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°,在△CBF与△PBE中,,∴△CBF≌△PBE(AAS).∴BF=CF=PE=EB=2.∴OF=OB+BF=4+2=6.∴C(6,2);如图3,△PBC是等腰直角三角形,∴PE=CE,∴C(2,﹣2),∴以点B为直角顶点作等腰直角△BPC,点C的坐标是(6,2)或(2,﹣2).当1﹣2m=3时,n=﹣1,可得P(2,﹣1),同法可得C(3,2)或(5,﹣2).综上所述,满足条件的点C坐标为(6,2)或(2,﹣2)或(3,2)或(5,﹣2).4.【分析】(1)由y=﹣2x﹣1得A (﹣,0),B(0,﹣1),设直线BC为y=kx﹣1,用待定系数法可得直线BC为y =﹣x﹣1;(2)设P(m,0),则M(m,﹣2m﹣1),N (﹣m ﹣1),根据点P恰好是MN的中点,可得﹣2m﹣1﹣0=0﹣(﹣m﹣1),即可解得P (﹣,0);(3)设P(t,0),则BC2=10,BP2=t2+1,CP2=(t+3)2,分三种情况:①当BC=BP时,BC2=BP2,10=t2+1,解得P(3,0);②当BC=CP时,10=(t+3)2,解得P (﹣3,0)或(﹣﹣3,0);③当BP=CP时,t2+1=(t+3)2,解得P (﹣,0).【解答】解:(1)在y=﹣2x﹣1中,令x=0得y=﹣1,令y=0得x =﹣,∴A (﹣,0),B(0,﹣1),设直线BC为y=kx﹣1,将C(﹣3,0)代入得:﹣3k﹣1=0,解得k =﹣,∴直线BC解析式为y =﹣x﹣1;(2)设P(m,0),则M(m,﹣2m﹣1),N (﹣m ﹣1),∵点P恰好是MN的中点,∴PM=PN,即﹣2m﹣1﹣0=0﹣(﹣m﹣1),解得m =﹣,∴P (﹣,0);(3)设P(t,0),∵B(0,﹣1),C(﹣3,0),∴BC2=10,BP2=t2+1,CP2=(t+3)2,①当BC=BP时,BC2=BP2,∴10=t2+1,解得t=3或t=﹣3(与B重合,舍去),∴P(3,0);②当BC=CP时,∴10=(t+3)2,解得t =﹣3或t =﹣﹣3,∴P (﹣3,0)或(﹣﹣3,0);③当BP=CP时,∴t2+1=(t+3)2,解得t =﹣,∴P (﹣,0);综上所述,P坐标为(3,0)或(﹣3,0)或(﹣﹣3,0)或(﹣,0).5.【分析】(1)设直线m的函数表达式为y=kx+b(k≠0),把(﹣1,2),(﹣2,0)代入,得,解方程组即可得到结论;(2)设直线n的函数表达式为y=sx+t(s≠0),根据直线n经过点(﹣4,﹣4),(0,﹣2),得到方程组,解方程组得到.求得点B的坐标为(0,4),点C的坐标为(4,0),于是得到结论;(3)根据三角形的面积公式得到,根据题意列方程即可得到结论.【解答】(1)解:设直线m的函数表达式为y=kx+b (k≠0).∵直线m经过点(﹣1,2),(﹣2,0),∴,解得,∴直线m的函数表达式为y=2x+4.将x=﹣4代入y=2x+4,得y=2×(﹣4)+4=﹣4,∴点P的坐标为(﹣4,﹣4);(2)证明:设直线n的函数表达式为y=sx+t(s≠0).∵直线n经过点(﹣4,﹣4),(0,﹣2),∴,解得,∴直线n 的函数表达式为.在y=2x+4中,令x=0,得y=4,即点B的坐标为(0,4).在中,令y=0,得,解得x=4,即点C的坐标为(4,0),∴OB=OC=4,又∵∠BOC=90°,∴△BOC是等腰直角三角形;(3)解:∵OB=OC=4,∠BOC=90°,∴,又∵S△ACE=S△BOC,∴S△ACE=8,即,∵AC=6,∴,即或.①当时,,解得,∴此时点E 的坐标为;②当时,,解得,∴此时点E 的坐标为.综上可知,直线m上存在点E,使得S△ACE=S△BOC,点E 的坐标为或.6.【分析】(1)用待定系数法求函数解析式,再将两个一次函数的解析式联立方程组即可求交点D的坐标;(2)判断△HCD是直角三角形,利用△HCD的面积求出HD的长,再由两点间距离公式求出H点的坐标,作H点关于y轴的对称点H',过点C作CG⊥x轴,且CG =,连接H'G交y轴于点M,当H'、M'、G 三点共线时,HM+MN+NC的值最小,求出H'G的长即可求解;(3)分两种情况,△AOB逆时针旋转90°和顺时针旋转90°分别讨论;根据旋转后O'E'∥x轴,OE=O'E'=1,求出DE'=,设E'(m,3m+3),即可求E'的坐标.【解答】解:(1)设直线AB的解析式为y=kx+b,将A(﹣1,0),B(0,3)代入,∴,∴,∴y=3x+3,联立方程组,∴,∴D (﹣,);(2)设H(t,3t+3),∵OA=1,OB=3,∴tan∠ABO =,直线y =﹣x+1与y轴的交点为(0,1),与x轴的交点C(3,0),∴tan∠DCA =,∴∠DCA=∠ABO,∴∠CDB=90°,∵CD =,∵S△HCD ==××DH,∴DH =,∵=,∴t=﹣3或t =,∵H是直线AB上位于第一象限内的一点,∴t =,∴H (,),如图1,作H点关于y轴的对称点H',过点C作CG ⊥x轴,且CG =,∴G(3,),H'(﹣,),连接H'G交y轴于点M,∵MN =,∴四边形MNCG是平行四边形,∴MG=CN,由对称性可知,MH=MH',∴HM+MN+NC=MH'+MN+MG≥1+H'G,∴当H'、M'、G三点共线时,HM+MN+NC的值最小,∵H'G =,∴HM+MN+NC 的最小值为+;(3)令x=0,则y=1,∴E(0,1),令y=0,则x=3,∴C(3,0),当△OCE绕点逆时针旋转90°时,∵点E'落在直线AB上,点O'落在直线CD上,∴E'O'∥CO,∴∠DO'E'=∠ECO,∵OE=O'E'=1,CO=3,∴EC =,∴sin∠ECO ==,∴DE'=,设E'(m,3m+3),∴=(﹣﹣m)2+(3m+3﹣)2,∴m =﹣或m =﹣,∵此时E'在D点下方,∴m =﹣,∴E'(﹣,);当△OCE绕点顺时针旋转90°时,∵点E'落在直线AB上,点O'落在直线CD上,∴E'O'∥CO,∴∠DO'E'=∠ECO,∵OE=O'E'=1,CO=3,∴EC =,∴sin∠ECO ==,∴DE'=,设E'(m,3m+3),∴=(﹣﹣m)2+(3m+3﹣)2,∴m =﹣或m =﹣,∵此时E'在D点上方,∴m =﹣,∴E'(﹣,);综上所述:E'点坐标为(﹣,)或(﹣,).7.【分析】(1)联立方程组可求解;(2)分别求出点B,点C坐标,由三角形的面积公式可求解;(3)先求出点D坐标,由等腰三角形的性质和两点之间的距离公式可求解.【解答】解:(1)由题意可得:,解得:,∴点A (,);(2)∵直线l2与x轴相交于点B,∴点B(﹣1,0),∵点P(a,﹣1)在直线l2上,∴﹣1=a+1,∴a=﹣2,∴点P(﹣2,﹣1),∴点C的纵坐标为﹣1,∴﹣1=﹣2x+3,∴x=2,∴点C(2,﹣1),如图,设直线l1与x轴相交于点H,∴0=﹣2x+3,∴x =,∴点H (,0),∴BH =,∴△ABC 的面积=××(+1)=;(3)存在,理由如下:∵将直线l1向下平移4个单位长度得到直线l3,∴直线l3,的解析式为:y=﹣2x﹣1,∴点D(0,﹣1),如图,∵点P(﹣2,﹣1),点D(0,﹣1),∴PD⊥y轴,PD=2,设点Q(a,a+1),∵△DPQ是以DP为腰的等腰三角形,∴PQ=PD=2或PD=QD=2,当PQ=PD=2时,则(﹣2﹣a)2+(﹣1﹣a﹣1)2=4,∴a =±﹣2,∴点Q (﹣2,﹣1)或(﹣﹣2,﹣﹣1);当PD=QD=2时,则(a﹣0)2+(﹣1﹣a﹣1)2=4,∴a=0或﹣2(不合题意舍去),∴点Q(0,1),综上所述:点Q坐标为:(﹣2,﹣1)或(﹣﹣2,﹣﹣1)或(0,1).8.【分析】(1)求出点A与点B的坐标,再由待定系数法求直线AB的解析式即可;(2)过点E作EH⊥AB于点H,求出点E的坐标,再由再由待定系数法求直线BE的解析式即可;(3)①当∠MPC=90°时,P点在C点下,过点P 作GH⊥y轴交AD于点G,交y轴于点H,证明△PMG ≌△CPH(AAS),可得8+t=2t+12,求出t即可求P (﹣4,2);②当∠MPC=90°,P点在C点上时,由①得8+t=﹣2t﹣12,求出t即可求P (﹣,);③当∠PMC=90°时,过点M作KL⊥y轴交y轴于点L,过P点作PK⊥KL交于K,证明△PKM≌△MLC (AAS),由8=﹣2t﹣6﹣(14+t),求出t =﹣,即可求P (﹣,).【解答】解:(1)∵(a+8)2+=0,∴a=﹣8,b=﹣6,∴A(﹣8,0),B(0,﹣6),∵一次函数y=+b经过A(﹣8,0),B(0,﹣6),∴,∴,∴直线AB的表达式y =﹣x﹣6;(2)∵A(﹣8,0),B(0,﹣6),∴OA=8,OB=6,∴在Rt△AOB中AB=10,过点E作EH⊥AB于点H,∵∠ABO的平分线交x轴于点E,∴EH=EO,AE=8﹣EO,AH=10﹣6=4,在Rt△AEH中,(8﹣EO)2=42+EO2,解得:EO=3,∴E(﹣3,0),设直线BE的表达式为y=k1x+b1,∴,∴,∴直线BE的表达式为y=﹣2x﹣6;(3)设P(t,﹣2t﹣6),①如图1,当∠MPC=90°时,P点在C点下,过点P作GH⊥y轴交AD于点G,交y轴于点H,∵∠MPC=90°,∴∠MPG+∠CPH=90°,∵∠MPG+∠GMP=90°,∴∠CPH=∠GMP,∵PM=PC,∴△PMG≌△CPH(AAS),∴MG=PH,CH=GP,∵PH=﹣t,CH=6﹣(﹣2t﹣6)=2t+12,∴GP=8﹣(﹣t)=8+t=2t+12,∴t=﹣4,∴P(﹣4,2);②如图2,当∠MPC=90°,P点在C点上时,由①得,HC=﹣2t﹣6﹣6=﹣2t﹣12,GP=8﹣(﹣t)=8+t,∴8+t=﹣2t﹣12,∴t =﹣,∴P (﹣,);③如图3,当∠PMC=90°时,过点M作KL⊥y轴交y轴于点L,过P点作PK⊥KL 交于K,∵∠PMC=90°,∴∠PMK+∠CML=90°,∵∠PMK+∠MPK=90°,∴∠CML=∠MPK,∵PM=CM,∴△PKM≌△MLC(AAS),∴KM=CL,PK=ML,∴ML=PK=8,CL=KM=﹣8﹣t,∴LO=6﹣(﹣8﹣t)=14+t,∴PK=8=﹣2t﹣6﹣(14+t),∴t =﹣,∴P (﹣,);综上所述:点P的坐标为:(﹣4,2)或(﹣,)或(﹣,).9.【分析】(1)先求出点A,点B坐标,由勾股定理和面积法可求解;(2)分两种情况讨论,先求出BQ解析式,由全等三角形的性质可求解;(3)分两种情况讨论,利用折叠的性质,三角形面积公式,等腰三角形的性质可求解.【解答】解:(1)∵直线y =﹣x+8与x轴,y轴分别交于A,B两点,∴点A(6,0),点B(0,8),∴OA=6,OB=8,∵点C的坐标为(﹣6,0),∴OC=6,∴BC ===10,∵OA=OC=6,BO⊥AC,∴AB=BC=10,∵S△AOB =×AB×OD =×OA×OB,∴OD ==;(2)存在,理由如下:∵AB=BC,∴∠BCA=∠BAO,∵∠CBO+∠BCA=90°=∠AOD+∠BAO,∴∠CBO=∠AOD,设直线BC的解析式为y=kx+b,,解得:,∴直线BC的解析式为y =x+8,设点Q(a ,a+8)当△BPQ≌△OAD时,BQ=OD =,∴(a﹣0)2+(a+8﹣8)2=,∴a =±,∵点Q在第二象限,∴点Q (﹣,),当△BPQ≌△ODA时,BQ=OA=6,∴(a﹣0)2+(a+8﹣8)2=36,∴a =±,∵点Q在第二象限,∴点Q (﹣,),综上所述:点Q坐标为:(﹣,)或(﹣,);(3)如图,当点C关于OQ的对称点落在OB上时,作OE⊥CO于点E,OF⊥BO于点F,∴∠COQ=∠C'OQ=45°,又∵OE⊥CO,OF⊥BO,∴OE=OF,∵S△OBC =×OB×OC =×OC×OE +×OB×OF,∴6×8=(6+8)×OE,∴OE=OF =,∴点Q 的坐标为(﹣,).点C关于OQ的对称点落在AB上时,∴OC=OC'=OA,CQ=C'Q,∠OCQ=∠OC'Q,∴∠C'AO=∠OC'A,∴∠OCQ=∠OC'Q=∠C'AO=∠OC'A,∴∠CBA=∠QC'B,∴BQ=C'Q,∴CQ=BQ=C'Q,∴点Q是BC的中点,∴点Q(﹣3,4),综上所述:点Q坐标为(﹣3,4)或(﹣,).10.【分析】(1)用待定系数法求直线AB的解析式即可;(2)由题意可得AD=9,设D(x,0),则|x+3|=9,即可求D的坐标;(3)分两种情况讨论:①当点P在射线CB上时,过点C作CF⊥CE交直线EP于点F,过C作x轴垂线l,分别过F,E作FM⊥l,EN⊥l,证明△FMC≌△CNE(AAS),即可得F点坐标为(1,4),用待定系数法求出直线EF的解析式为y=5x﹣1,联立方程组,即可求P (,);②当点P在射线CA上时,过点C作CH⊥CE交直线EP于点H,过点H作HK⊥y轴交于K,过点H作GH⊥x轴,过点C作CG⊥GH交于G,证明△CHG≌△EHK(AAS),可求得H (﹣,﹣),求出直线HE的解析式为y=﹣x﹣1,联立方程组,则可求P (﹣,﹣).【解答】解:(1)设直线AB的解析式为y=kx+b,∵A(﹣3,0),B(0,6),则有,∴,∴y=2x+6,∵C(﹣a,a),∴C(﹣2,2);(2)∴S△AOB =×3×6=9,∴S△ACD =×2×AD=9,∴AD=9,设D(x,0),∴|x+3|=9,∴x=6或x=﹣12,∴D(6.0)或(﹣12,0);(3)①如图,当点P在射线CB上时,过点C作CF ⊥CE交直线EP于点F,∵∠CEF=45°,∴CE=CF,过C作x轴垂线l,分别过F,E作FM⊥l,EN⊥l,∴∠FMC=∠CNE=90°,∠MCF+∠MFC=90°,∵CF⊥CE,∴∠MCF+∠NCE=90°,∴∠MFC=∠NCE,∴△FMC≌△CNE(AAS),∴FM=CN=3,CM=EN=2,即F点坐标为(1,4),设直线EF的解析式为y=kx+b,∴,∴,∴直线EF的解析式为y=5x﹣1,联立,解得,∴P (,);②当点P在射线CA上时,过点C作CH⊥CE交直线EP于点H,过点H作HK ⊥y轴交于K,过点H作GH⊥x轴,过点C作CG⊥GH交于G,∵∠CHK=90°,∴∠CHG+∠KHE=90°,∵∠CHG+∠HCG=90°,∴∠KHE=∠HCG,∵∠DEP=45°,∴DH=HE,∴△CHG≌△EHK(AAS),∴CG=KE,GH=HK,∵E(0,﹣1),C(﹣2,2),∴GH=3﹣CG=2+OK=2+CG,∴CG =,∴H (﹣,﹣),设直线HE的解析式为y=k'x+b',,∴,∴y =﹣x﹣1,联立方程组,解得,∴P (﹣,﹣),综合上所述,点P 坐标为(,)或(﹣,﹣).第21页(共21页)。
一次函数综合测试卷试题及含答案.docx
精品文档一次函数测试题一、填空(10× 3′=30′)1、已知一个正比例函数的图象经过点(- 2, 4),则这个正比例函数的表达式是。
2、若函数y= - 2x m+2是正比例函数,则m 的值是。
3、已知一次函数y=kx+5的图象经过点( - 1,2),则 k=。
4、已知 y 与 x 成正比例,且当 x=1 时, y=2,则当 x=3 时, y=____。
5、点 P(a,b)在第二象限,则直线y=ax+b 不经过第象限。
6、已知一次函数 y=kx-k+4 的图象与 y 轴的交点坐标是 (0 , -2) ,那么这个一次函数的表达式是 ______________。
7、已知点 A(-1 , a), B(2 ,b) 在函数 y=-3x+4 的象上 , 则 a 与 b 的大小关系是____。
8、地面气温是 20℃,如果每升高 1000m,气温下降 6℃,则气温(t℃)与高度 h(m)的函数关系式是 __________。
9 、一次函数y=kx+b与y=2x+1平行,且经过点(-3,4),则表达式为:。
10 、写出同时具备下列两个条件的一次函数表达式(写出一个即可)。
( 1) y 随着 x 的增大而减小,( 2)图象经过点( 1,-3 )。
二、选择题 (10×3′=30′)11、下列函数( 1)y=πx (2)y=2x-1(3)y=1(4) y=2-1-3x中,是一次xy函数的有()( A) 4 个( B) 3 个(C)2 个( D) 1 个112、下面哪个点不在函数 y 2 x 3 的图像上()O2x ( A)(-5 ,13)(B)( 0.5 ,2)( C)(3,0)(D)(1,1)13、直线 y=kx+b 在坐标系中的位置如图,则 ()(第13题图)( A)1111 2222 14、下列一次函数中,随着增大而减小而的是()( A)y 3x(B)y 3x 2( C)y 3 2x(D)y3x 215、已知一次函数y=kx+b的图象如图所示,则 k,b的符号是 ()(A) k>0 ,b>0(B) k>0,b<0(C) k<0,b>0(D) k<0,b<0(第 15 题图)16、函数 y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么 m的取值范围是 ()( A)3()3()()1 m B 1 m C m 1 D m4417、一支蜡烛长 20 厘米 ,点燃后每小时燃烧 5 厘米 ,燃烧时剩下的高度 h (厘米 )与燃烧时间 t (时)的函数关系的图象是 ()(A)(B)(C)(D)18、下图中表示一次函数y= mx+n与正比例函数 y= mnx(m ,n 是常数,且 mn<0)图像的是 ( ).19. 一次函数y=ax+1与y=bx-2的图象交于x轴上一点,那么a:b等于113A. 2B.2C.2D.以上答案都不对20. 某公司市场营业员销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示 .由图中给出的信息可知,营销人员没有销售时的收入是A.310B.300C.290D.280三、计算题(21、22、25 各 8 分, 23、24、26 各 12 分)21、已知一个正比例函数和一个一次函数的图象相交于点A(1,4) ,且一次函数的图象与 x 轴交于点 B(3,0)(1)求这两个函数的解析式;(2)画出它们的图象;22、已知 y - 2 与 x 成正比,且当 x=1 时, y= - 6(1)求 y 与 x 之间的函数关系式(2)若点 (a,2)在这个函数图象上,求a 的值1 23、已知一次函数y=kx+b的图象经过点 (- 1, - 5),且与正比例函数y=2 x 的图象相交于点 (2, a),求(1)a 的值(2)k, b 的值(3)这两个函数图象与x 轴所围成的三角形的面积。
一次函数综合练习(全等三角形,勾股定理)答案
1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.考点:一次函数综合题。
分析:(1)如图1,作CQ⊥x轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;(2)同(1)的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;(3)依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得出ON.解答:解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN•=×,∴BN=,ON=,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).点评:本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.2.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。
一次函数练习题及答案
一次函数练习题及答案本文将为大家提供一系列有关一次函数的练习题,同时附带相应的答案。
一次函数,也叫线性函数,是初中数学中的重要知识点之一。
希望通过这些练习题的训练,大家能够更好地掌握一次函数的概念、性质和解题方法。
一、选择题1.已知函数y=3x+2,则它的斜率是多少?– A. 2– B. 3– C. -2– D. -3答案:B2.若一次函数图像上两点的坐标分别为(1,4)和(3,y),则y的值是多少?– A. 10– B. 12– C. 14– D. 16答案:D3.已知函数经过点(−2,1)和(4,y),则y的值是多少?– A. -5– B. 0– C. 3– D. 6答案:C二、填空题1.若一次函数y=kx+3经过点(2,5),则k的值为 \\\_。
答案:12.一次函数y=−2x+b经过点(3,−1),则b的值为 \\\_。
答案:53.若一次函数图像上两点的坐标分别为(1,y1)和(2,y2),则$\\frac{{y_1}}{{y_2}}$ 的值为 \\\_。
答案:$\\frac{1}{2}$三、计算题1.求函数y=2x−1和y=x+3的交点坐标。
解:将两个方程联立起来,得到方程组:$$ \\begin{cases} y = 2x - 1\\\\ y = x + 3\\\\ \\end{cases} $$解方程组可得:$$ x + 3 = 2x - 1 \\\\ \\Rightarrow x = 4 $$将x=4代入其中一个方程,得到y=8−1=7。
因此,交点坐标为(4,7)。
2.已知函数y=3x+b经过点(2,−1),求b的值。
解:代入点(2,−1),得到方程 $-1 = 3 \\cdot 2 + b$,解方程可得b=−7。
3.一辆汽车以匀速行驶,开车起点距离目的地 600 公里。
如果行驶 4小时后,已行驶距离为 320 公里,求每小时行驶的公里数。
解:设每小时行驶的公里数为x,根据题意可得方程 $\\frac{320}{4} = x$,解方程可得x=80。
一次函数综合练习含答案
2021 年11月20日6094675的初中数学组卷一.解答题〔共7小题〕1.〔2004•〕*市的A县和B县春季育苗,急需化肥分别为90吨和60吨.该市的C县和D县分别储存化肥100吨和50吨,全部调配给A县和B县,C、D两县运化肥到A、B 两县的运费〔元/吨〕如以下表所示:目的地运费出发地 C DA 35 40B 30 45〔1〕设C县到A县的化肥为*吨,求总运费W〔元〕与*〔吨〕的函数关系式,并写出自变量*的取值围;〔2〕求最低总运费,并说明总运费最低时的运送方案.2.如图,一次函数图象交正比例函数图象于第二象限的A点,交*轴于点B〔﹣6,0〕,△AOB 的面积为15,且AB=AO,求正比例函数和一次函数的解析式.3.〔2021秋•龙岗区期末〕如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣*﹣〔k+1〕在第二象限的交点.AB⊥*轴于B,且S△ABO=.〔1〕求这两个函数的解析式;〔2〕求△AOC的面积.4.〔2021秋•金堂县期末〕如图,在平面直角坐标系中,直线l1:与直线l2:y=k*+b 相交于点A,点A的横坐标为3,直线l2交y轴于点B,且|OA|=|OB|.〔1〕试求直线l2的函数表达式;〔2〕假设将直线l1沿着*轴向左平移3个单位,交y轴于点C,交直线l2于点D.试求△BCD 的面积.5.〔2021秋•校级期末〕如图,在平面直角坐标系*Oy中,一次函数与*轴、y轴分别相交于点A和点B,直线y2=k*+b〔k≠0〕经过点C〔1,0〕且与线段AB交于点P,并把△ABO分成两局部.〔1〕求△ABO的面积;〔2〕假设△ABO被直线CP分成的两局部的面积相等,求点P的坐标及直线CP的函数表达式.6.〔2006秋•海淀区校级期末〕一个一次函数的自变量的取值围是2≤*≤6,函数值的取值围是5≤y≤9,求这个一次函数解析式.7.〔2007春•石景山区期末〕在平面直角坐标系中,一个一次函数的图象过点B〔﹣3,4〕,与y轴交于点A,且OA=OB,求这个一次函数的解析式.2021 年11月20日6094675的初中数学组卷参考答案与试题解析一.解答题〔共7小题〕1.〔2004•〕*市的A县和B县春季育苗,急需化肥分别为90吨和60吨.该市的C县和D县分别储存化肥100吨和50吨,全部调配给A县和B县,C、D两县运化肥到A、B 两县的运费〔元/吨〕如以下表所示:目的地运费出发地 C DA 35 40B 30 45〔1〕设C县到A县的化肥为*吨,求总运费W〔元〕与*〔吨〕的函数关系式,并写出自变量*的取值围;〔2〕求最低总运费,并说明总运费最低时的运送方案.【考点】一次函数的应用.【专题】方案型.【分析】〔1〕可设由C县运往A县的化肥为*吨,则C县运往B县的化肥为〔100﹣*〕吨,D县运往A县的化肥为〔90﹣*〕吨,D县运往B县的化肥为〔*﹣40〕吨,所以W=35*+40〔90﹣*〕+30〔100﹣*〕+45〔*﹣40〕.其中40≤*≤90;〔2〕由函数解析式可知,W随着*的增大而增大,所以当*=40时,W最小.因此即可解决问题.【解答】解:〔1〕由C县运往A县的化肥为*吨,则C县运往B县的化肥为〔100﹣*〕吨,D县运往B县的化肥为〔*﹣40〕吨依题意W=35*+40〔90﹣*〕+30〔100﹣*〕+45〔*﹣40〕=10*+4800,40≤*≤90;∴W=10*+4800,〔40≤*≤90〕;〔2〕∵10>0,∴W随着*的增大而增大,当*=40时,W最小=10×40+4800=5200〔元〕,即运费最低时,*=40,∴100﹣*=60,90﹣*=50,*﹣40=0,运送方案为C县的100吨化肥40吨运往A县,60吨运往B县,D县的50吨化肥全部运往A县.【点评】此题需仔细分析题意,利用函数解析式即可解决问题.2.如图,一次函数图象交正比例函数图象于第二象限的A点,交*轴于点B〔﹣6,0〕,△AOB 的面积为15,且AB=AO,求正比例函数和一次函数的解析式.【考点】两条直线相交或平行问题.【专题】计算题.【分析】作AC⊥OB于C点,如图,根据等腰三角形的性质得BC=OC=BC=3,则C〔﹣3,0〕,再利用三角形面积公式得×6•AC=15,解得AC=5,所以A〔﹣3,5〕,然后利用待定系数法分别求直线OA的解析式和直线AB的解析式即可.【解答】解:作AC⊥OB于C点,如图,∵AB=AO,∴BC=OC=BC=3,∴C〔﹣3,0〕,∵△AOB的面积为15,∴OB•AC=15,即×6×AC=15,解得AC=5,∴A〔﹣3,5〕,设直线OA的解析式为y=k*,把A〔﹣3,5〕代入得﹣3k=5,解得k=﹣,∴直线OA的解析式为y=﹣*;设直线AB的解析式为y=a*+b,把A〔﹣3,5〕、B〔﹣6,0〕分别代入得,解得,∴直线AB的解析式为y=*+10,即正比例函数和一次函数的解析式分别为y=﹣*,y=*+10.【点评】此题考察了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;假设两条直线是平行的关系,则他们的自变量系数一样,即k值一样.也考察了待定系数法求一次函数解析式.3.〔2021秋•龙岗区期末〕如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣*﹣〔k+1〕在第二象限的交点.AB⊥*轴于B,且S△ABO=.〔1〕求这两个函数的解析式;〔2〕求△AOC的面积.【考点】反比例函数与一次函数的交点问题.【分析】〔1〕欲求这两个函数的解析式,关键求k值.根据反比例函数性质,k绝对值为3且为负数,由此即可求出k;〔2〕由函数的解析式组成方程组,解之求得A、C的坐标,然后根据S△AOC=S△ODA+S△ODC 即可求出.【解答】解:〔1〕设A点坐标为〔*,y〕,且*<0,y>0,则S△ABO=•|BO|•|BA|=•〔﹣*〕•y=,∴*y=﹣3,又∵y=,即*y=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣*+2;〔2〕由y=﹣*+2,令*=0,得y=2.∴直线y=﹣*+2与y轴的交点D的坐标为〔0,2〕,∵A、C在反比例函数的图象上,∴,解得,,∴交点A为〔﹣1,3〕,C为〔3,﹣1〕,∴S△AOC=S△ODA+S△ODC=OD•〔|*1|+|*2|〕=×2×〔3+1〕=4.【点评】此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.4.〔2021秋•金堂县期末〕如图,在平面直角坐标系中,直线l1:与直线l2:y=k*+b 相交于点A,点A的横坐标为3,直线l2交y轴于点B,且|OA|=|OB|.〔1〕试求直线l2的函数表达式;〔2〕假设将直线l1沿着*轴向左平移3个单位,交y轴于点C,交直线l2于点D.试求△BCD 的面积.【考点】一次函数综合题.【专题】代数综合题.【分析】〔1〕根据A点的横坐标和直线l1的解析式,得出A点的纵坐标,即可得出OA的长度,从而可得出OB的长度,即得点B的坐标,分别代入直线l2的解析式中,解方程组即可得出直线l2的解析式;〔2〕根据平移的性质,得出平移后的直线l1的解析式,可得出点C的坐标,联立直线l2的解析式,即可得出点D的坐标,即可根据三角形面积公式即可得出.【解答】解:〔1〕根据题意,点A的横坐标为3,代入直线l1:中,得点A的纵坐标为4,即点A〔3,4〕;即OA=5,又|OA|=|OB|.即OB=10,且点B位于y轴上,即得B〔0,﹣10〕;将A、B两点坐标代入直线l2中,得4=3k+b;﹣10=b;解之得,k=,b=﹣10;即直线l2的解析式为y=*﹣10;〔2〕根据题意,设平移后的直线l1的解析式为y=*+m,代入〔﹣3,0〕,可得:﹣4+m=0,解得:m=4,平移后的直线l1的直线方程为;即点C的坐标为〔0,4〕;联立线l2的直线方程,解得*=,y=,即点D〔,〕;又点B〔0,﹣10〕,如下列图:故△BCD的面积S=××14=.【点评】此题主要考察了一次函数的综合应用,要求学生在学习的过程中要挖掘问题中的隐含条件,理解题意.5.〔2021秋•校级期末〕如图,在平面直角坐标系*Oy中,一次函数与*轴、y轴分别相交于点A和点B,直线y2=k*+b〔k≠0〕经过点C〔1,0〕且与线段AB交于点P,并把△ABO分成两局部.〔1〕求△ABO的面积;〔2〕假设△ABO被直线CP分成的两局部的面积相等,求点P的坐标及直线CP的函数表达式.【考点】一次函数综合题.【专题】综合题.【分析】〔1〕直线y1的解析式,分别令*=0,y=0求出A,B的坐标,继而求出S△ABO.〔2〕由〔1〕得S△ABO,推出S△APC的面积为,求出y p=,继而求出点P的坐标,依题意可知点C,P的坐标,联立方程组求出k,b的值后求出函数解析式.【解答】解:〔1〕在直线中,令*=0,得y1=2,∴B〔0,2〕,令y1=0,得*=3,∴A〔3,0〕,∴;〔2〕,∵点P在第一象限,∴,解得,而点P又在直线y1上,∴,解得,∴P〔〕,将点C〔1,0〕、P〔〕,代入y=k*+b中,有,∴.∴直线CP的函数表达式为y=﹣6*+6.【点评】此题考察的是一次函数的性质以及三角形面积的综合运用,难度中等.6.〔2006秋•海淀区校级期末〕一个一次函数的自变量的取值围是2≤*≤6,函数值的取值围是5≤y≤9,求这个一次函数解析式.【考点】一次函数的性质;待定系数法求一次函数解析式.【专题】待定系数法.【分析】根据自变量的取值围确定*,y的值,用待定系数法可求出函数关系式.【解答】解:设该一次函数的关系式是:y=k*+b〔k≠0〕.一次函数y=k*+b的自变量的取值围是:2≤*≤6,相应函数值的取值围是:5≤y≤9,则①当k>0函数为递增函数,即*=2,y=5时,*=6时,y=9.根据题意列出方程组:,解得:,则这个函数的解析式是:y=*+3;②当k<0函数为递减函数时,则,解得,所以该一次函数的解析式为y=﹣*+11,综上所述,该一次函数的解析式是y=*+3,或y=﹣*+11.【点评】此题考察了一次函数的性质、待定系数法求一次函数的解析式;解答该题时,采用了分类讨论的方法,以防漏解.7.〔2007春•石景山区期末〕在平面直角坐标系中,一个一次函数的图象过点B〔﹣3,4〕,与y轴交于点A,且OA=OB,求这个一次函数的解析式.【考点】待定系数法求一次函数解析式.【分析】设出一次函数式y=k*+b,代入点B,根据OA=OB列方程可确定解析式.【解答】解:设一次函数式为y=k*+b,4=﹣3k+bb=4+3k∴y=k*+4+3kOB==5.∴|4+3k|=5k=或k=﹣3.∴y=*+5或y=﹣3*﹣5.∴这个一次函数的解析式y=*+5或y=﹣3*﹣5.【点评】此题考察待定系数法求一次函数式,关键用b表示出k确定k的值,从而求出解.。
一次函数与几何综合(通用版)(含答案)
一次函数与几何综合(通用版)试卷简介:一次函数与几何综合一、单选题(共10道,每道10分)1.如图,已知一条直线经过A(0,2),B(1,0)两点,将这条直线向左平移与x轴,y轴分别交于点C,点D.若DB=DC,则直线CD的函数解析式为( )A. B.C. D.答案:C解题思路:由题意可求得直线AB的解析式为y=-2x+2,AB∥CD.由DB=DC,DO⊥BC可得,OC=OB=1,∴C(-1,0).由AB∥CD可设直线CD的解析式为y=-2x+b,把C点坐标代入可得,b=-2,∴直线CD的函数解析式为y=-2x-2.试题难度:三颗星知识点:一次函数图象与几何变换2.如图,一束光线从点A(3,3)出发,经过y轴上的点C反射后经过点B(1,0),则光线从点A到点B 经过的路径长为( )A. B.C. D.5答案:D解题思路:如图,延长AC交x轴于点B′.则点B,B′关于y轴对称,CB=CB′.作AD⊥x轴于点D,则AD=3,DB′=3+1=4,AB′=5.∴AC+CB=AC+CB′=AB′=5.即光线从点A到点B经过的路径长为5.试题难度:三颗星知识点:坐标与图形性质3.如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标为(0,2),直线AC的解析式为,则tanA的值是( )A. B.C. D.答案:B解题思路:根据三角形内心的定义可知∠ABO=∠CBO,∵C(2,0),B(0,2),∴OB=OC,∠CBO=∠ABO=45°,,∴∠ABC=90°即AB⊥BC,可求得直线AB的表达式为:,由得,,即A(-6,-4),∴,在Rt△ABC中,.试题难度:三颗星知识点:一次函数综合题4.如图,直线⊥x轴于点(1,0),直线⊥x轴于点(2,0),直线⊥x轴于点(3,0)…,直线⊥x轴于点(n,0).函数y=x的图象与直线,,,…,分别交于点,…,;函数y=2x的图象与直线,,,…,分别交于点,…,.如果△的面积为,四边形的面积为,四边形的面积为,…,四边形的面积为,那么=( )A.4025B.4023C. D.答案:C解题思路:∵函数y=x的图象与直线,,,…,分别交于点,∴∵函数y=2x的图象与直线,,,…,分别交于点∴,,…….当n=2013时,.试题难度:三颗星知识点:一次函数综合题5.如图,在平面直角坐标系中,直线经过原点O,且与x轴正半轴的夹角为30°.点M在x轴上,⊙M的半径为2,⊙M与直线相交于A,B两点.若△ABM为等腰直角三角形,则点M的坐标为( )A. B.C. D.答案:B解题思路:如图,当点M在原点右边时,过点M作MN⊥AB,垂足为N,则,∵△ABM为等腰直角三角形,∴AN=MN,∴,∵AM=2,∴,∴,∵直线与x轴正半轴的夹角为30°,∴,∴点M的坐标为,由对称性可知,点M′的坐标为.试题难度:三颗星知识点:一次函数之存在性6.已知在直角坐标系中有两条直线,直线所对应的函数解析式为y=x-2,如果将坐标纸折叠,使与重合,则点(-1,0)与点(0,-1)也重合,那么直线所对应的函数解析式为( )A.y=x-2B.y=x+2C.y=-x-2D.y=-x+2答案:B解题思路:∵折叠坐标纸可以使点(-1,0)与点(0,-1)重合,∴是沿直线y=x折叠的(也就是对称轴为直线y=x).∵y=x-2过点(0,-2),(2,0),折叠后的对应点为(-2,0),(0,2),即直线过两点(-2,0),(0,2).可以求得:y=x+2.试题难度:三颗星知识点:一次函数图象与几何变换7.如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围是( )A.3<b<6B.2<b<6C.3≦b≦6D.2<b<5答案:C解题思路:题干意思是指直线与小正方形有交点时,求b的取值范围.我们知道直线是由直线向上平移b个单位得到的,若直线与小正方形有交点,可知当直线经过A(1,1)时b的值最小,此时b=3;当直线经过C(2,2)时,b最大,此时b=6.∴能够使黑色区域变白的b的取值范围为3≦b≦6.试题难度:三颗星知识点:一次函数综合题8.已知矩形ABCD中,AB=9,AD=3,将此矩形置于平面直角坐标系中,使AB在x轴正半轴上,若经过点C的直线与x轴交于点E,则四边形AECD的面积为( )A.9B.18C.6D.21答案:B解题思路:在矩形ABCD中,要求四边形AECD的面积,只需求出△EBC的面积即可,即求BE的长.∵点C的纵坐标是3,代入直线解析式可得点C(10,3),∴OB=10,∵直线与x轴交于点E,∴点E(4,0),∴OE=4,BE=6,则△EBC的面积为9,∴四边形AECD的面积为18.试题难度:三颗星知识点:一次函数综合题9.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A,B,C三点为顶点的三角形是等腰三角形,则满足条件的点C的个数为( )A.2B.3C.4D.5答案:B解题思路:由于点A,B是固定点,要使△ABC是等腰三角形,只需根据一线两圆,判断与直线的交点即可.①作线段AB的垂直平分线,交直线于点,则是以AB为底的等腰三角形;②以点A为圆心,AB长为半径作圆,交直线于两点,,则,分别是以为底的等腰三角形;③以点B为圆心,AB长为半径作圆,我们发现该圆与直线无交点,原因在于:过点B作直线的垂线BM,垂足为M,.试题难度:三颗星知识点:一次函数之存在性10.如图,在以点O为原点的平面直角坐标系中,一次函数的图象与x轴交于点A,与y轴交于点B,点C在直线AB上,且,反比例函数的图象经过点C,则所有可能的k值为( )A. B.C. D.答案:C解题思路:由题意得,A(2,0),B(0,1),.显然当点为线段AB的中点时,有,此时点的坐标为,.如图,以点O为圆心,的长为半径作圆,交直线AB于另一点,则点也符合条件.过点O作OE⊥AB于点E,过点作⊥x轴于点F,则,.在中,,,则;在中,,且,则,∴点,综上:,试题难度:三颗星知识点:一次函数综合题。
苏科版八年级数学上册第六章《一次函数》综合提优测试(含答案)
A.y=3八上数学第六章综合提优测试(时间:90分钟满分:100分)一、选择题(每题2分,共26分)1.在圆的周长C=2R中,常量与变量分别是().A.2是常量,C、、R是变量 B.2是常量,C、R是变量C.C、2是常量,R是变量D.2是常量,C、R是变量2.如果每盒圆珠笔有12枝,售价18元,那么购买圆珠笔的总金额y(元)与购买圆珠笔的数量x(枝)之间的关系是().2x B.y=x C.y=12x D.y=18x233.图中的折线ABCDE描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)和行驶的时间t(h)之间的函数关系,根据图中提供的信息.给出下列说法:①汽车共行驶了120km;②汽车在行驶途中停留了0.5h;③汽车在整个行驶过程中的平均速度为803km/h;④汽车自出发后3~4.5h之间行驶的速度在逐渐减少.其中正确的说法有()A.1个B.2个C.3个D.4个4.下列函数:①y=x;②y=2x+11;③y=x2+x+1;④y=1x中.是关于x的一次函数的有().A.4个B.3个C.2个D.1个5.函数y=(m2)x n-1+n是关于x的一次函数,m,n应满足的条件是().A.m≠2且n=0B.m=2且n=2C.m≠2且n=2D.m=2且n=06.若点(3,m)在函数y=13x+2的图象上.则m的值为().A.0B.1C.2D.37.下列图象中,表示一次函数y=mx+n与正比例函数y=mx(m,n是常数且mn≠0)图象的是().A.x y20,8.在平面直角坐标系中,已知点A(4,0),B(2,0),若点C在一次函数y=12x+2的图象上,且△ABC为直角三角形.则满足条件的点C有().A.1个B.2个C.3个D.4个9.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象.如图所示,则所解的二元一次方程组是().2x y10,B.3x2y103x2y10C.2x y10,3x2y50D.x y20,2x y1010.弹簧的长度y(cm)与断挂物体的质量x(kg)为一次函数的关系,如图所示.由图象可知,不挂物体时.弹簧的长度为().A.7cm B.8cmC.9cm D.10cm11.某游客为了爬上3km高的山顶看日出,先用了1h爬了2km,休息0.5h后,再用1h爬上山顶,游客爬山所用的时间t(h)与山高h(km)间的函数关系用图象表示是().12.以下四条直线中,与直线y=2x+3相交于第三象限的是直线().A.y=2x1B.y=x+3C.y=x+2D.y=x413.一次函数y=kx+b,当3≤x≤1时.对应的y值为l≤y≤9,则kb的值为().A.14 B.6C.1和21D.6和142二、填空题(每题 3 分,共 27 分)14.已知函数:①y=0.3x 7;②y= 2x+5;(9y=4 3x ; ④y= x ;⑤y=3x ;⑥y= (1 x).其中,y 值随 x 值增大而增大的函数是________.(写出序号) 15.点( 5,y 1)和点( 2,y 2)都在直线 y= 2x 上,则 y 1 与 y 2 的大小关系是________. 16.已知 m 是整数,且一次函数 y=(m +4)x+m +2 的图象不经过第二象限,则 m =_______.17.在一次函数 y= 1 1x+ 的图象上,和 x 轴的距离等于 1 的点的坐标是__________.2 22 7 2 1 18 .两直线 l :y= x 与 l : y = x 的交点坐标可以看作是二元一次方程组1 5 5 3 3_________的解.19.若直线 y= x+a 和直线 y=x+b 的交点坐标为(m ,8).则 a+b=_________. 20.一次函数 y=kx+b 的图象经过点(0,4),且与两坐标轴所围成的三角形的面积为 8,则 k=________,b=__________21.如图,OA 、BA 分别表示甲、乙两名学生运动的一次函数图象,图中 s(m )和 t(s)分别表示运动路程和时间,根据图象,判断快者的速度 比慢者的速度每秒快____________.22.已知一次函数 y=(n 4)x+(4 2m )和 y=(n+1)x+m 3,(1)若它们的图象与 y 轴的交点分别是点 P 和点 Q .若点 P 与点 Q 关 于 x 轴对称,m 的值为__________;(2)若这两个一次函数的图象交于点(1,2),则,m ,n 的值为_________. 三、解答题(第 23~26 题每题 9 分,第 27 题 11 分,共 47 分) 23.已知函数 y=(1 2m )x+m +1 ,求当 m 为何值时. (1)y 随 x 的增大而增大?(2)图象经过第一、二、四象限? (3)图象经过第一、三象限?(4)图象与 y 轴的交点在 x 轴的上方?24.已知一次函数y=kx+b的图象经过点(1,5),且与正比例函数y=点(2,a).求:(1)a的值;(2)k,b的值;(3)这两个函数图象与x轴所围成的三角形面积.12x的图象相交于25.如图,点A的坐标为(4,0).点P是直线y=12x+3在第一象限内的点,过P作PM x轴于点M,O是原点.(1)设点P的坐标为(x,y),试用它的纵坐标y表示△OP A的面积S;(2)S与y是怎样的函数关系?它的自变量y的取值范围是什么?(3)如果用P的坐标表示△OP A的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?(4)在直线y=12x+3上求一点Q,使△QOA是以OA为底的等腰三角形.26.我国是世界上严重缺水的国家之一.为了增强居民节水意识.某市自来水公司对居民用水采用以户为单位分段汁费办法收费.即一月用水10t以内(包括10t)的用户.每吨收水费a元,一月用水超过10t的用户,10t水仍按每吨a元收费,超过10t的部分,按每吨b元(b>a)收费.设一户居民月用水x(t),应缴水费y(元).y与x之间的函数关系如图所示.(1)求a的值,某户居民上月用水8t.应收水费多少元?(2)求b的值,并写出当x>10时.y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4t.两家共收消费46元.求他们上月分别用水多少吨?27.夏天容易发生腹泻等肠道疾病。
人教版数学八年级下册第19章《一次函数》单元综合练习含答案解析
人教版数学八年级下册第19章《一次函数》单元综合练习含答案解析一.选择题(共10小题)1.一本笔记本3元,买x本需要y元,在这一问题中,自变量是()A.笔记本B.3C.x D.y2.下列变量之间的关系不是函数关系的是()A.一天的气温和时间B.y2=x中的y与x的关系C.在银行中利息与时间D.正方形的周长与面积3.某商场自行车存放处每周的存车量为5000辆次,其中变速车存车费是每辆一次1元,普通车存车费为每辆一次0.5元,若普通车存车量为x辆次,存车的总收入为y元,则y与x之间的关系式是()A.y=0.5x+5000B.y=0.5x+2500C.y=﹣0.5x+5000D.y=﹣0.5x+25004.函数中自变量x的取值范围是()A.x≥3B.x≤7C.3≤x≤7D.x≤3或x≥7 5.当x=3时,函数y=x﹣2的值是()A.﹣2B.﹣1C.0D.16.下列函数中y是x的一次函数的是()A.B.y=3x+1C.D.y=3x2+17.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的面积S随着边长x的变化而变化B.正方形的周长C随着边长x的变化而变化C.水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t (min)的变化而变化D.面积为20的三角形的一边a随着这边上的高h的变化而变化8.两条直接y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A.B.C.D.9.下列图象中,可以表示一次函数y=kx+b与正比例函数y=kbx(k,b为常数,且kb≠0)的图象的是()A.B.C.D.10.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>2C.函数图象与y轴的交点坐标为(0,2)D.函数图象经过第一、二、四象限二.填空题(共8小题)11.快餐每盒5元,买n盒需付m元,则其中常量是.12.当m=时,函数y=(m﹣1)x+m是常值函数.13.佛山移动公司有一种手机资费套餐,月租费16元,免费市话通话时间40分钟,超出部分每分钟0.25元,设该套餐每月市话话费为y元,月市话通话时间为x(x>40)分钟,则y与x的函数关系式为.14.已知函数,则自变量x的取值范围.15.函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=.16.若函数y=(m﹣2)是正比例函数,则m的值是.17.在平面直角坐标系中,函数y=kx+b的图象如图所示,则kb0(填“>”、“=”或“<”).18.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是;若x+y =0,则点P在坐标平面内的位置是;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.三.解答题(共7小题)19.“十一”期间,小华约同学一起开车到距家100千米的景点旅游,出发前,汽车油箱内储油35升,当行驶80千米时,发现油箱余油量为25升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每干米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=60(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.20.已知等式y﹣ax2+2a﹣1=0(1)若等式中,已知a是非零常量,请写出因变量y与自变量x的函数解析式;当﹣1≤x≤3时,求y的最大值和最小值及对应的x的取值;(2)若等式中,x是非零常量,请写出因变量y与自变量a的函数解析式,并判断x在什么范围内取值时,y随a的增大而增大.21.已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…﹣﹣﹣m…小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:.22.如图1,A是上一动点,D是弦BC上一定点,连接AB,AC,AD.设线段AB的长是xcm,线段AC的长是y1cm,线段AD的长是y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点A在上的不同位置,画图、测量,得到了y1,y2的长度与x的几组值:位置1位置2位置3位置4位置5位置6位置7位置8 x/cm0.000.99 2.01 3.46 4.98 5.847.078.00y1/cm8.007.46 6.81 5.69 4.26 3.29 1.620.00y2/cm 2.50 2.08 1.88 2.15 2.99 3.61 4.62m 请直接写出上表中的m值是;(2)在同一平面直角坐标系xOy中,描出补全后表中各组数据所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为cm;当AC=2AD时,AB的长度约为cm.23.已知函数y=(m﹣1)x+n,(1)m为何值时,该函数是一次函数(2)m、n为何值时,该函数是正比例函数24.已知一次函数y=﹣2x+4,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当x时,y>2.25.在同一平面直角坐标系中,画出函数y=2x,y=﹣x+6,y=x+2,y=4x﹣4的图象.(1)观察这四个图象,说出它们共同特点;(2)若函数y=kx+5的图象也有该特点,求k的值.参考答案与试题解析一.选择题(共10小题)1.一本笔记本3元,买x本需要y元,在这一问题中,自变量是()A.笔记本B.3C.x D.y【分析】根据函数的定义进行解答即可.【解答】解:在这个问题中,x和y都是变量,且x是自变量.故选:C.2.下列变量之间的关系不是函数关系的是()A.一天的气温和时间B.y2=x中的y与x的关系C.在银行中利息与时间D.正方形的周长与面积【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:A、一天的气温和时间的关系是函数关系,故本选项不合题意;B、y2=x中的y与x的关系不是函数关系,故本选项符合题意;C、在银行中利息与时间是函数关系,故本选项不合题意;D、正方形的周长与面积是函数关系,故本选项不合题意;故选:B.3.某商场自行车存放处每周的存车量为5000辆次,其中变速车存车费是每辆一次1元,普通车存车费为每辆一次0.5元,若普通车存车量为x辆次,存车的总收入为y元,则y与x之间的关系式是()A.y=0.5x+5000B.y=0.5x+2500C.y=﹣0.5x+5000D.y=﹣0.5x+2500【分析】根据题意可以写出题目中的函数解关系式,从而可以解答本题.【解答】解:由题意可得,y=0.5x+(5000﹣x)×1=﹣0.5x+5000,故选:C.4.函数中自变量x的取值范围是()A.x≥3B.x≤7C.3≤x≤7D.x≤3或x≥7【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得x﹣3≥0且7﹣x≥0,解得x≥3且x≤7,所以3≤x≤7.故选:C.5.当x=3时,函数y=x﹣2的值是()A.﹣2B.﹣1C.0D.1【分析】把x的值代入函数关系式计算,得到答案.【解答】解:当x=3时,函数y=x﹣2=3﹣2=1,故选:D.6.下列函数中y是x的一次函数的是()A.B.y=3x+1C.D.y=3x2+1【分析】一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.根据一次函数的定义条件进行逐一分析即可.【解答】解:A、y=不是一次函数,是反比例函数,不合题意;B、y=3x+1是一次函数,符合题意;C、y=不是一次函数,不合题意;D、y=3x2+1不是一次函数,是二次函数,不合题意.故选:B.7.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的面积S随着边长x的变化而变化B.正方形的周长C随着边长x的变化而变化C.水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t (min)的变化而变化D.面积为20的三角形的一边a随着这边上的高h的变化而变化【分析】先依据题意列出函数关系式,然后依据函数关系式进行判断即可.【解答】解:A、S=x2是二次函数,故A错误;B、C=4x是正比例函数,故B正确;C、V=10﹣0.5t,是一次函数,故C错误;D、a=,是反比例函数,故D错误.故选:B.8.两条直接y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A.B.C.D.【分析】根据一次函数图象的性质加以分析即可,一次项系数决定直线的走向,常数项决定直线与y轴的交点位置.【解答】解:根据一次函数的图象与性质分析如下:A.y1=ax﹣b:a>0,b<0;y2=bx﹣a:a<0,b<0.A错误;B.y1=ax﹣b:a>0,b<0;y2=bx﹣a:a>0,b<0.B正确;C.y1=ax﹣b:a>0,b>0;y2=bx﹣a:a<0,b<0.C错误;D.y1=ax﹣b:a>0,b>0;y2=bx﹣a:a>0,b<0.D错误;故选:B.9.下列图象中,可以表示一次函数y=kx+b与正比例函数y=kbx(k,b为常数,且kb≠0)的图象的是()A.B.C.D.【分析】根据一次函数的图象与系数的关系,由一次函数y=kx+b图象分析可得k、b的符号,进而可得k•b的符号,从而判断y=kbx的图象是否正确,进而比较可得答案.【解答】解:根据一次函数的图象分析可得:A、由一次函数y=kx+b图象可知k<0,b>0,kb<0;正比例函数y=kbx的图象可知kb<0,故此选项正确;B、由一次函数y=kx+b图象可知k>0,b>0;即kb>0,与正比例函数y=kbx的图象可知kb<0,矛盾,故此选项错误;C、由一次函数y=kx+b图象可知k<0,b>0;即kb<0,与正比例函数y=kbx的图象可知kb>0,矛盾,故此选项错误;D、由一次函数y=kx+b图象可知k>0,b<0;即kb<0,与正比例函数y=kbx的图象可知kb>0,矛盾,故此选项错误;故选:A.10.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>2C.函数图象与y轴的交点坐标为(0,2)D.函数图象经过第一、二、四象限【分析】利用一次函数的性质逐一判断后即可确定正确的选项.【解答】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∵y的值随着x增大而减小,∴当x>0时,y<2,∴选项B符合题意;C、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项C不符合题意;D、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项D不符合题意;当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.故选:B.二.填空题(共8小题)11.快餐每盒5元,买n盒需付m元,则其中常量是5.【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.【解答】解:单价5元固定,是常量.故答案为:5.12.当m=1时,函数y=(m﹣1)x+m是常值函数.【分析】直接利用常值函数的定义分析得出答案.【解答】解:当m﹣1=0时,函数y=(m﹣1)x+m是常值函数,故m=1时,y=1.故答案为:1.13.佛山移动公司有一种手机资费套餐,月租费16元,免费市话通话时间40分钟,超出部分每分钟0.25元,设该套餐每月市话话费为y元,月市话通话时间为x(x>40)分钟,则y与x的函数关系式为y=0.25x+6.【分析】根据题意可得等量关系:话费=月租费16元+超出40分钟部分话费,根据等量关系列出函数解析式即可.【解答】解:由题意得:y=16+(x﹣40)×0.25=16+0.25x﹣10=0.25x+6,故答案为:y=0.25x+6.14.已知函数,则自变量x的取值范围x>.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,2x﹣3>0,解得x>.故答案为:x>.15.函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=﹣2.【分析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,即可得出m的值.【解答】解:根据一次函数的定义可得:m﹣2≠0,|m|﹣1=1,由|m|﹣1=1,解得:m=﹣2或2,又m﹣2≠0,m≠2,则m=﹣2.故答案为:﹣2.16.若函数y=(m﹣2)是正比例函数,则m的值是﹣2.【分析】直接利用正比例函数的定义直接得出答案.【解答】解:∵函数y=(m﹣2)是正比例函数,∴m2﹣3=1,m﹣2≠0,解得:m=±2,m≠2,故m=﹣2.故答案为:﹣2.17.在平面直角坐标系中,函数y=kx+b的图象如图所示,则kb<0(填“>”、“=”或“<”).【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,∴kb<0.故答案为:<18.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是在一、三象限的角平分线上;若x+y=0,则点P在坐标平面内的位置是在二、四象限的角平分线上;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.【分析】(1)根据互为相反数的两个数的和等于0判断出x、y互为相反数,然后解答.(2)根据点Q到两坐标轴的距离相等列出方程,然后求解得到a的值,再求解即可.【解答】解:(1)∵点P的坐标为(x,y),若x=y,∴点P在一、三象限内两坐标轴夹角的平分线上.∵x+y=0,∴x、y互为相反数,∴P点在二、四象限内两坐标轴夹角的平分线上.故答案为:在一、三象限的角平分线上.在二、四象限的角平分线上.(2)∵点Q到两坐标轴的距离相等,∴|2﹣2a|=|8+a|,∴2﹣2a=8+a或2﹣2a=﹣8﹣a,解得a=﹣2或a=10,当a=﹣2时,2﹣2a=2﹣2×(﹣2)=6,8+a=8﹣2=6,当a=10时,2﹣2a=2﹣20=﹣18,8+a=8+10=18,所以,点Q的坐标为(6,6)或(﹣18,18).三.解答题(共7小题)19.“十一”期间,小华约同学一起开车到距家100千米的景点旅游,出发前,汽车油箱内储油35升,当行驶80千米时,发现油箱余油量为25升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每干米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=60(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.【分析】(1)单位耗油量=耗油量÷行驶里程,剩余油量=油箱内油的升数﹣行驶路程的耗油量;(2)把x=60千米代入剩余油量公式,计算即可;(3)计算出35﹣3=32升油能行驶的距离,与200千米比较大小即可得.【解答】解:(1)该汽车平均每千米的耗油量为(35﹣25)÷80=0.125(升/千米),∴行驶路程x(千米)与剩余油量Q(升)的关系式为Q=35﹣0.125x;(2)当x=60时,Q=35﹣0.125×60=27.5(升),答:当x=60(千米)时,剩余油量Q的值为27.5升;(3)他们能在汽车报警前回到家,(35﹣3)÷0.125=256(千米),由256>200知他们能在汽车报警前回到家.20.已知等式y﹣ax2+2a﹣1=0(1)若等式中,已知a是非零常量,请写出因变量y与自变量x的函数解析式;当﹣1≤x≤3时,求y的最大值和最小值及对应的x的取值;(2)若等式中,x是非零常量,请写出因变量y与自变量a的函数解析式,并判断x在什么范围内取值时,y随a的增大而增大.【分析】(1)解方程得到y=ax2﹣4a+2,当x=﹣1时,y=5a+2,当x=3时,y=﹣3a+2,当a>0时当a<0时,根据题意求出结论即可;(2)解方程得到y=(x2﹣4)a+2,根据一次函数的性质解答即可..【解答】解:(1)∵y﹣ax2+2a﹣1=0,∴y=ax2﹣4a+2,当x=﹣1时,y=5a+2,当x=3时,y=﹣3a+2,当a>0时,﹣3a+2≤y≤5a+2,∴y的最大值是5a+2,对应的x的取值﹣1,最小值是﹣3a+2,对应的x的取值是3,当a<0时,5a+2≤y≤﹣3a+2,∴y的最大值是﹣3a+2,对应的x的取值3,最小值是5a+2,对应的x的取值是﹣1;(2)∵y﹣ax2+2a﹣1=0,∴y=(x2﹣4)a+2,当x2﹣4>0时,y随a的增大而增大,即x<﹣2或x>2时,y随a的增大而增大.21.已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…﹣﹣﹣m…小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:当0<x<1时,y随x的增大而减小.【分析】(1)根据表中x,y的对应值即可得到结论;(2)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为7所对应的函数值即可;②利用函数图象的图象求解.【解答】解:(1)当自变量是﹣2时,函数值是;故答案为:(2)该函数的图象如图所示;(3)当x=2时所对应的点如图所示,且m=;故答案为:;(4)函数的性质:当0<x<1时,y随x的增大而减小.故答案为:当0<x<1时,y随x的增大而减小.22.如图1,A是上一动点,D是弦BC上一定点,连接AB,AC,AD.设线段AB的长是xcm,线段AC的长是y1cm,线段AD的长是y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点A在上的不同位置,画图、测量,得到了y1,y2的长度与x的几组值:位置1位置2位置3位置4位置5位置6位置7位置8 x/cm0.000.99 2.01 3.46 4.98 5.847.078.00y1/cm8.007.46 6.81 5.69 4.26 3.29 1.620.00y2/cm 2.50 2.08 1.88 2.15 2.99 3.61 4.62m 请直接写出上表中的m值是 5.5;(2)在同一平面直角坐标系xOy中,描出补全后表中各组数据所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为 5.7cm;当AC=2AD时,AB的长度约为 4.2cm.【分析】(1)由位置可知,AB=0时,即AB两点重合,此时AC=BC=8,AD=BD=2.5,再根据当y1=AC时,即A与重合即可求出表格中m=CD.(2)根据表中数据描点连线即可.(3)根据函数图象分别找出y1=y2和y1=2y2时对应的x即可.【解答】解:(1)∵当x=0时,y1=8,y2=2.5,∴BC=8cm,BD=2.5,∴当x=8.0时,即A点与C点重合,∴y2=AB=CD=BC﹣BD=8﹣2.5=5.5(cm),故答案为:5.5(2)(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为5.7cm;当AC=2AD时,AB的长度约为4.2cm.故答案为:5.7;4.2.23.已知函数y=(m﹣1)x+n,(1)m为何值时,该函数是一次函数(2)m、n为何值时,该函数是正比例函数【分析】(1)直接利用一次函数的定义得出答案;(2)直接利用正比例函数的定义得出答案.【解答】解:(1)∵函数y=(m﹣1)x+n,∴当m﹣1≠0时,该函数是一次函数,即m≠1;(2)当m≠1,且n=0时,该函数是正比例函数.24.已知一次函数y=﹣2x+4,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当x<1时,y>2.【分析】(1)分别求出直线与x轴、y轴的交点,画出函数图象即可;(2)根据函数图象可直接得出结论.【解答】解:(1)∵当x=0时y=4,∴函数y=﹣2x+4的图象与y轴的交点坐标为(0,4);∵当y=0时,﹣2x+4=0,解得:x=2,∴函数y=﹣2x+4的图象与x轴的交点坐标(2,0).函数图象如图所示.(2)由图象可得,当x<1时,y>2.故答案为:<1.25.在同一平面直角坐标系中,画出函数y=2x,y=﹣x+6,y=x+2,y=4x﹣4的图象.(1)观察这四个图象,说出它们共同特点;(2)若函数y=kx+5的图象也有该特点,求k的值.【分析】(1)根据一次函数的图象是直线,画出图象即可;(2)根据图象过定点,代入得出k的值即可.【解答】(1)解:如图:共同特点是:此组直线均经过(2,4),∵解方程组得,,∴直线y=2x,y=﹣x+6过(2,4)点.对于直线y=x+2,当x=2时,y=4;对于直线y=4x﹣4,当x=2时,y=4;∴验证发现此组直线均经过(2,4);(2)把(2,4)代入y=kx+5得4=2k+5,得k=﹣.。
一次函数与几何综合(习题及答案)
一次函数与几何综合(习题)1.如图,点B,C 分别在直线y=2x 和直线y=kx 上,A,D 是x轴上的两点.若四边形ABCD 是长方形,且AB:AD=1:2,则k 的值为.2.如图,一次函数y=-2x+4 的图象与坐标轴分别交于点A,B,把线段AB 绕着点A 沿逆时针方向旋转90°,点B 落在点B′ 处,则直线AB′的表达式为.3.如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点A 的坐标是(4,0),P 为AB 边上一点,沿CP 折叠正方形,折叠后的点B 落在平面内的点B′处.已知直线CB′的解析式为y =-3x +b ,则点B′的坐标为,直线CP 的表达式为.134.如图,点A 的坐标是( -,0),点B 的坐标是(6,0),点C在第一象限内,且△OBC 为等边三角形,直线BC 交y 轴于点D,过点A 作直线AE⊥BD,垂足为点E,交OC 于点F,则点C 的坐标为,直线AE 的表达式为.第4 题图第5 题图5.如图,一次函数的图象交x 轴于点B(-6,0),交正比例函数的图象于点A,且点A 的横坐标为-4,S△AOB =15,S△BOD=45,则一次函数的表达式为,正比例函数的表达式为.6.如图,在平面直角坐标系中,已知直线y =-3x + 3 与x 轴、y 4轴分别交于A,B 两点,点C(0,n)是y 轴上一点,把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是.7.如图,在平面直角坐标系中,函数y=-x 的图象l 是第二、四象限的角平分线.实验与探究:由图观察易知A(0,2)关于直线l 的对称点A′的坐标为(-2,0),请在图中分别标出B(-5,-3),C(-2,5)关于直线l 的对称点B′,C′的位置,并写出它们的坐标:B′,C′.归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(m,n)关于第二、四象限的角平分线l 的对称点P′的坐标为.运用与拓广:已知两点D(0,-3),E(1,-4),试在直线l 上确定一点Q,使点Q 到D,E 两点的距离之和最小,并求出点Q 的坐标.8.如图,在平面直角坐标系中,直线y =x - 4 与x 轴、y 轴分别交于点A,B,P 为y 轴上B 点下方的一点,且PB=m(m>0),以点P 为直角顶点,AP 为腰在第四象限内作等腰Rt△APM.(1)用含m 的代数式表示点M 的坐标;(2)若直线MB 与x 轴交于点Q,求点Q 的坐标.5 5 【参考答案】➢ 巩固练习1. 252. y = 1 x + 423. (2, 4 - 2 ), y = -3 x +4 3 4. (3, 3 3 ), y =3 x + 13 5.y = x + 15 , y = - x 2 46. (0, 4 ),(0,-12)37. 实验与探究:(3,5),(-5,2) 归纳与发现:(-n ,-m )运用与拓广:点 Q 的坐标为(2,-2)8. (1)M (4+m ,-8-m )(2)Q (-4,0)3。
2013年中考真题——一次函数(填空题)综合练习(带解析)
2013年中考真题—一次函数(填空题)综合练习2013年中考真题—一次函数(填空题)综合练习一.填空题(共30小题)1.(2013•重庆)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC 绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为_________.2.(2013•雨花台区一模)已知一次函数y=kx+b(k、b是常数,且k≠0),x与y的部分对应值如下表所示,那么不等式kx+b<0的解集是_________.x ﹣2 ﹣1 0 1 2 3y 3 2 1 0 ﹣1 ﹣23.(2013•鹰潭模拟)一次函数y=kx+b(kb<0)图象一定经过第_________象限.4.(2013•义乌市)如图,直线l1⊥x轴于点A(2,0),点B是直线l1上的动点.直线l2:y=x+1交l1于点C,过点B作直线l3垂直于l2,垂足为D,过点O,B的直线l4交l2于点E,当直线l1,l2,l3能围成三角形时,设该三角形面积为S1,当直线l2,l3,l4能围成三角形时,设该三角形面积为S2.(1)若点B在线段AC上,且S1=S2,则B点坐标为_________;(2)若点B在直线l1上,且S2=S1,则∠BOA的度数为_________.5.(2013•燕山区一模)如图,已知直线l1:y=﹣x+2与l2:,过直线l1与x轴的交点P1作x轴的垂线交l2于Q1,过Q1作x轴的平行线交l1于P2,再过P2作x轴的垂线交l2于Q2,过Q2作x轴的平行线交l1于P3,…,这样一直作下去,可在直线l1上继续得到点P4,P5,…,P n,….设点P n的横坐标为x n,则x2=_________,x n+1与x n的数量关系是_________.6.(2013•杨浦区二模)将直角坐标系中一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数图象与x、y轴分别交于点A、B,则△ABO为此一次函数的坐标三角形,一次函数的坐标三角形的周长是_________.7.(2013•孝感)如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起_________分钟该容器内的水恰好放完.8.(2013•武汉模拟)在一条笔直的航道上有A、B、C三个港口,一艘轮船从A港出发,匀速航行到C港后返回到B港,轮船离B港的距离y(千米),与航行时间x(小时)之间的函数关系如图所示,若航行过程中水流速度和轮船的静水速度保持不变,则水流速度为_________(千米/小时).9.(2013•武汉)设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度是_________米/秒.10.(2013•温州)如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(﹣2,0),(﹣1,0),BC⊥x 轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是_________.11.(2013•随州)甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发_________小时时,行进中的两车相距8千米.12.(2013•南京)如图,在梯形ABCD中,AD∥BC,AB=DC,AC与BD相交于P.已知A(2,3),B(1,1),D(4,3),则点P的坐标为(_________,_________).13.(2013•内江)如图,已知直线l:y=x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M10的坐标为_________.14.(2013•溧水县一模)如图,在平面直角坐标系中,A、B为正比例函数图象上的两点,且OB=2,AB=.点P在y轴上,△BPA是以∠B为顶角的等腰三角形,则OP的长为_________.15.(2013•晋江市质检)如图,直线y=mx+n(m≠0)经过第二象限的点P(﹣4,6),并分别与x轴的负半轴、y 轴的正半轴相交于点A、B.(1)填空:n=_________(用含m的代数式表示);(2)若线段AB的长为,则m=_________.16.(2013•建宁县质检)正方形OA1B1C1、A1A2B2C2、A2A3B3C3┅按如图放置,其中点A1、A2、A3┅在x轴的正半轴上,点B1、B2、B3┅在直线y=﹣x+2上,依此类推┅,则点A n的坐标为_________.17.(2013•黄冈)钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是_________.18.(2013•湖州模拟)如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别为a,b (a>0,b>0).设直线AB的解析式为y=kx+m,若是整数时,k也是整数,满足条件的k值共有_________个.19.(2013•湖州)如图,已知点A是第一象限内横坐标为2的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是_________.20.(2013•河东区一模)如图,点A的坐标为(﹣2,0),点B在直线上运动,当线段AB最短时,点B的坐标是_________.21.(2013•广安)已知直线y=x+(n为正整数)与坐标轴围成的三角形的面积为S n,则S1+S2+S3+…+S2012=_________.22.(2013•拱墅区二模)若点P(m2﹣2,m)在直线y=﹣x上,则点(|m|,m﹣1)关于y轴的对称点坐标是_________.23.(2013•包头)如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为_________.24.(2013•安徽模拟)函数的最大值为_________.25.(2013•宝山区一模)如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标为O(0,0),A(2,0),B(2,2),C(4,2),D(4,4),E(0,4),若如图过点M(1,2)的直线MP(与y轴交于点P)将多边形OABCDE 分割成面积相等的两部分,则直线MP的函数表达式是_________.26.(2013•江都市模拟)若点(a,b)在一次函数y=2x﹣3上,则代数式3b﹣6a+1的值是_________.27.(2013•浦东新区模拟)已知点P在直线y=﹣2x﹣3上,且点P到x轴的距离是4,那么点P的坐标是_________.28.(2013•上海)李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是_________升.29.(2013•瑶海区一模)小明同学从家步行到公交车站台,在等公交车去学校,图中的折线表示小明同学的行程s (km)与所花时间t(min)之间的函数关系,从图中可以看出公交车的速度是_________m/min.30.(2013•邢台一模)如图,正方形ABCD的边长为2,M是CD边上的动点,设CM=x,梯形ABCM的面积为y,那么y与x之间的函数关系表达式是_________.2013年中考真题—一次函数(填空题)综合练习参考答案与试题解析一.填空题(共30小题)1.(2013•重庆)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC 绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为(,).分析:过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,求出∠MCP=∠DPN,证△MCP≌△NPD,推出DN=PM,PN=CM,设AD=x,求出DN=2x﹣1,得出2x﹣1=1,求出x=1,得出D的坐标,在Rt△DNP中,由勾股定理求出PC=PD=,在Rt△MCP中,由勾股定理求出CM=2,得出C的坐标,设直线CD的解析式是y=kx+3,把D(3,2)代入求出直线CD的解析式,解由两函数解析式组成的方程组,求出方程组的解即可.解答:解:过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,∴∠MCP+∠CPM=90°,∠MPC+∠DPN=90°,∴∠MCP=∠DPN,∵P(1,1),∴OM=BN=1,PM=1,在△MCP和△NPD中∴△MCP≌△NPD,∴DN=PM,PN=CM,∵BD=2AD,∴设AD=x,BD=2x,∵P(1,1),∴DN=2x﹣1,则2x﹣1=1,x=1,即BD=2,C的坐标是(0,3),∵直线y=x,∴AB=OB=3,在Rt△DNP中,由勾股定理得:PC=PD==,在Rt△MCP中,由勾股定理得:CM==2,则C的坐标是(0,3),设直线CD的解析式是y=kx+3,把D(3,2)代入得:k=﹣,即直线CD的解析式是y=﹣x+3,即方程组得:,即Q的坐标是(,),故答案为:(,).2.(2013•雨花台区一模)已知一次函数y=kx+b(k、b是常数,且k≠0),x与y的部分对应值如下表所示,那么不等式kx+b<0的解集是x>1.x ﹣2 ﹣1 0 1 2 3y 3 2 1 0 ﹣1 ﹣2分析:首先求出一次函数的解析式,由k的值确定图象经过一二四象限,根据与X轴交点的坐标即可求出答案.解答:解:把(﹣1,2),(0,1)代入y=kx+b得:,解得:k=﹣1,b=1,∴y=﹣x+1,由表可知与X轴交于(1,0),k=﹣1<0,图象经过一二四象限,∴不等式kx+b<0的解集是x>1.3.(2013•鹰潭模拟)一次函数y=kx+b(kb<0)图象一定经过第一、四象限.分析:根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.解答:解:∵kb<0,∴k、b异号.①当k>0时,b<0,此时一次函数y=kx+b(kb<0)图象经过第一、三、四象限;②当当k<0时,b>0,此时一次函数y=kx+b(kb<0)图象经过第一、二、四象限;综上所述,一次函数y=kx+b(kb<0)图象一定经过第一、四象限.故答案是:一、四.4.(2013•义乌市)如图,直线l1⊥x轴于点A(2,0),点B是直线l1上的动点.直线l2:y=x+1交l1于点C,过点B作直线l3垂直于l2,垂足为D,过点O,B的直线l4交l2于点E,当直线l1,l2,l3能围成三角形时,设该三角形面积为S1,当直线l2,l3,l4能围成三角形时,设该三角形面积为S2.(1)若点B在线段AC上,且S1=S2,则B点坐标为(2,0);(2)若点B在直线l1上,且S2=S1,则∠BOA的度数为15°或75°.分析:(1)设B的坐标是(2,m),则△BCD是等腰直角三角形,即可表示出S1,求得直线l1的解析式,解方程组即可求得E的坐标,则S2的值即可求得,根据S1=S2,即可得到一个关于m的方程从而求得m的值;(2)根据S2=S1,即可得到一个关于m的方程从而求得m的值,得到AB的长,从而求得∠BOA的正切值,求得角的度数.解答:解:(1)设B的坐标是(2,m),则△BCD是等腰直角三角形.BC=|3﹣m|,则BD=CD=BC=|3﹣m|,S1=×(|3﹣m|)2=(3﹣m)2.设直线l4的解析式是y=kx,则2k=m,解得:k=,则直线的解析式是y=x.根据题意得:,解得:,则E的坐标是(,).S△BCD=BC•||=|3﹣m|•||=.∴S2=S△BCD﹣S1=﹣(3﹣m)2.当S1=S2时,﹣(3﹣m)2=(3﹣m)2.解得:m=0,则B的坐标是(2,0);(2)当S2=S1时,﹣(3﹣m)2=(3﹣m)2.解得:m=+1或3﹣.则AB=+1或3﹣.∴tan∠BOA=或.∴∠BOA=15°或75°.5.(2013•燕山区一模)如图,已知直线l1:y=﹣x+2与l2:,过直线l1与x轴的交点P1作x轴的垂线交l2于Q1,过Q1作x轴的平行线交l1于P2,再过P2作x轴的垂线交l2于Q2,过Q2作x轴的平行线交l1于P3,…,这样一直作下去,可在直线l1上继续得到点P4,P5,…,P n,….设点P n的横坐标为x n,则x2=,x n+1与x n 的数量关系是x n+2x n+1=3.分析:令y=0求出点P1的坐标,再根据点Q1与P1的横坐标相同求出点Q1的坐标,根据Q1、P2的纵坐标相同求出点P2的坐标,然后求出Q2、P3的坐标,然后根据变化规律解答即可.解答:解:令y=0,则﹣x+2=0,解得x=2,所以,P1(2,0),∵P1Q1⊥x轴,∴点Q1与P1的横坐标相同,∴点Q1的纵坐标为×2+=,∴点Q1的坐标为(2,),∵P2Q1∥x轴,∴点P2与Q1的纵横坐标相同,∴﹣x+2=,解得x=,所以,点P2(,),∵P2Q2⊥x轴,∴点Q2与P2的横坐标相同,∴点Q2的纵坐标为×+=,∴点Q2的坐标为(,),∵P3Q2∥x轴,∴点P3与Q2的纵横坐标相同,∴﹣x+2=,解得x=,所以,点P3(,),…,∵P1(2,0),P2(,),P3(,),∴x2=,2+2×=3,+2×=3,∴x n+2x n+1=3.故答案为:;x n+2x n+1=3.6.(2013•杨浦区二模)将直角坐标系中一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数图象与x、y轴分别交于点A、B,则△ABO为此一次函数的坐标三角形,一次函数的坐标三角形的周长是12.分析:先把y=0或x=0代入解析式可确定A点坐标为(3,0),B点坐标为(0,4),再利用勾股定理计算出AB,然后利用三角形周长的定义进行计算.解答:解:把y=0代入次得﹣x+4=0,解得x=3,则A点坐标为(3,0),把x=0代入得y=4,则B点坐标为(0,4),所以OA=3,OB=4,所以AB==5,所以△ABC的周长为3+4+5=12.故答案为12.7.(2013•孝感)如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起8分钟该容器内的水恰好放完.分析:先根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论.解答:解:由函数图象得:进水管每分钟的进水量为:20÷4=5升设出水管每分钟的出水量为a升,由函数图象,得20+8(5﹣a)=30,解得:a=,故关闭进水管后出水管放完水的时间为:30÷=8分钟.故答案为:8.8.(2013•武汉模拟)在一条笔直的航道上有A、B、C三个港口,一艘轮船从A港出发,匀速航行到C港后返回到B港,轮船离B港的距离y(千米),与航行时间x(小时)之间的函数关系如图所示,若航行过程中水流速度和轮船的静水速度保持不变,则水流速度为10(千米/小时).分析:设轮船在静水的速度为a千米/小时,水流速度为b千米/小时,根据图象求出从A到B时的速度a+b,再根据从B到C与从C到B的路程相同列出方程求出a﹣b,然后联立两方程求解即可.解答:解:设轮船在静水的速度为a千米/小时,水流速度为b千米/小时,在0到0.5小时时,从A到B,a+b=20÷0.5=40①,在从B到C时与从C返回B时,(a+b)×(2﹣0.5)=(a﹣b)×(5﹣2),整理得,a﹣b=20②,联立,解得,所以,水流速度为10千米/小时.故答案为:10.9.(2013•武汉)设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度是20米/秒.分析:设甲车的速度是x米/秒,乙车的速度为y米/秒,根据函数图象反应的数量关系建立方程组求出其解即可.解答:解:设甲车的速度是x米/秒,乙车的速度为y米/秒,由题意,得,解得:.故答案为20.10.(2013•温州)如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(﹣2,0),(﹣1,0),BC⊥x 轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是(1,3).分析:根据轴对称的性质可得OB=OB′,然后求出AB′,再根据直线y=x+b可得AB′=B′C′,然后写出点C′的坐标即可.解答:解:∵A(﹣2,0),B(﹣1,0),∴AO=2,OB=1,∵△A′B′C′和△ABC关于y轴对称,∴OB=OB′=1,∴AB′=AO+OB′=2+1=3,∵直线y=x+b经过点A,C′,∴AB′=B′C′=3,∴点C′的坐标为(1,3).故答案为:(1,3).11.(2013•随州)甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发或小时时,行进中的两车相距8千米.分析:根据图象求出小明和父亲的速度,然后设小明的父亲出发x小时两车相距8千米,再分相遇前和相遇后两种情况列出方程求解即可.解答:解:由图可知,小明的速度为:36÷3=12千米/时,父亲的速度为:36÷(3﹣2)=36千米/时,设小明的父亲出发x小时两车相距8千米,则小明出发的时间为(x+2)小时,根据题意得,12(x+2)﹣36x=8或36x﹣12(x+2)=8,解得x=或x=,所以,出发或小时时,行进中的两车相距8千米.故答案为:或.12.(2013•南京)如图,在梯形ABCD中,AD∥BC,AB=DC,AC与BD相交于P.已知A(2,3),B(1,1),D(4,3),则点P的坐标为(3,).分析:过A作AM⊥x轴与M,交BC于N,过P作PE⊥x轴与E,交BC于F,根据点的坐标求出各个线段的长,根据△APD∽△CPB和△CPF∽△CAN得出比例式,即可求出答案.解答:解:过A作AM⊥x轴与M,交BC于N,过P作PE⊥x轴与E,交BC于F,∵AD∥BC,A(2,3),B(1,1),D(4,3),∴AD∥BC∥x轴,AM=3,MN=EF=1,AN=3﹣1=2,AD=4﹣2=2,BN=2﹣1=1,∴C的坐标是(5,1),BC=5﹣1=4,CN=4﹣1=3,∵AD∥BC,∴△APD∽△CPB,∴===,∴=∵AM⊥x轴,PE⊥x轴,∴AN∥PF,∴△CPF∽△CAN,∴===,∵AN=2,CN=3,∴PF=,PE=+1=,CF=2,BF=2,∴P的坐标是(3,),故答案为:3,.13.(2013•内江)如图,已知直线l:y=x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M10的坐标为(884736,0).分析:本题需先求出OA1和OA2的长,再根据题意得出OA n=4n,求出OA4的长等于44,即可求出A4的坐标.解答:解:∵直线l的解析式是y=x,∴∠NOM=60°.∵点M的坐标是(2,0),NM∥x轴,点N在直线y=x上,∴NM=2,∴ON=2OM=4.又∵NM1⊥l,即∠ONM1=90°∴OM1=2ON=41OM=8.同理,OM2=4OM1=42OM,OM3=4OM2=4×42OM=43OM,…OM10=410OM=884736.∴点M10的坐标是(884736,0).故答案是:(884736,0).14.(2013•溧水县一模)如图,在平面直角坐标系中,A、B为正比例函数图象上的两点,且OB=2,AB=.点P在y轴上,△BPA是以∠B为顶角的等腰三角形,则OP的长为+1或﹣1.分析:根据B为正比例函数图象上的点,且OB=2,求出B点的坐标,设P点坐标为(0,a),由题意,△BPA是以∠B为顶角的等腰三角形,则BP=PA,列出关于a的一元二次方程,求出a的值,OP的长即可求出.解答:解:设B点的坐标为(m,n),∵B为正比例函数图象上的点,且OB=2,∴,解得:或(舍去),∴点B的坐标为(1,),设P点坐标为(0,a),由题意,∵△BPA是以∠B为顶角的等腰三角形,∴BP=PA,∴=|AB|=,整理得(a﹣)2=1,解得a=+1或﹣1,则OP的长为+1或﹣1,故答案为+1或﹣1.15.(2013•晋江市质检)如图,直线y=mx+n(m≠0)经过第二象限的点P(﹣4,6),并分别与x轴的负半轴、y轴的正半轴相交于点A、B.(1)填空:n=6+4m(用含m的代数式表示);(2)若线段AB的长为,则m=.分析:(1)把(﹣4,6)代入y=mx+n中,即可得到n=6+4m;(2)根据直线解析式表示出A、B两点坐标,再利用勾股定理表示出AB2,进而得到(6+4m)2(1+)=81(1+),再计算出m即可.解答:解:(1)∵直线y=mx+n(m≠0)经过第二象限的点P(﹣4,6),∴﹣4m+n=6,n=6+4m;(2)∵直线y=mx+n(m≠0)分别与x轴的负半轴、y轴的正半轴相交于点A、B,∴B(0,n),A(﹣,0),∴AB2=AO2+BO2=+n2=+(6+4m)2=(6+4m)2(1+),∵线段AB的长为,∴(6+4m)2(1+)=81(1+),∴(6+4m)2=81,6+4m=±9,①6+4m=9时,m=;②6+4m=﹣9时,m=﹣,∵直线从左往右呈上升趋势,∴m>0,∴m=.16.(2013•建宁县质检)正方形OA1B1C1、A1A2B2C2、A2A3B3C3┅按如图放置,其中点A1、A2、A3┅在x轴的正半轴上,点B1、B2、B3┅在直线y=﹣x+2上,依此类推┅,则点A n的坐标为(,0)或(,0)或(,0).分析:首先根据直线的解析式,分别求得B1,B2,B3…的坐标,可以得到一定的规律,从而求得A1,A2,A3…的坐标,得到规律,据此即可求解.解答:解:∵四边形OA1B1C1是正方形,∴A1B1=B1C1.∵点B1在直线y=﹣x+2上,∴设B1的坐标是(x,﹣x+2),∴x=﹣x+2,x=1.∴B1的坐标是(1,1).∴点A1的坐标为(1,0).∵A1A2B2C2是正方形,∴B2C2=A1C2,∵点B2在直线y=﹣x+2上,∴B2C2=B1C2,∴B2C2=A1B1=,∴OA2=OA1+A1A2=1+,∴点A2的坐标为(1+,0).同理,可得到点A3的坐标为(1++,0).依此类推,可得到点A n的坐标为(,0).==.故答案为(,0)或(,0)或(,0).17.(2013•黄冈)钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是7:00.分析:根据函数图象和题意可以求出开始的速度为80海里/时,故障排除后的速度是100海里/时,设计划行驶的路程是a海里,就可以由时间之间的关系建立方程求出路程,再由路程除以速度就可以求出计划到达时间.解答:解:由图象及题意,得故障前的速度为:80÷1=80海里/时,故障后的速度为:(180﹣80)÷1=100海里/时.设航行额全程由a海里,由题意,得,解得:a=480,则原计划行驶的时间为:480÷80=6小时,故计划准点到达的时刻为:7:00.故答案为:7:00.18.(2013•湖州模拟)如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别为a,b (a>0,b>0).设直线AB的解析式为y=kx+m,若是整数时,k也是整数,满足条件的k值共有2个.分析:先求出点A、B的坐标,再把点A、B的坐标代入函数解析式得到两个关于k、m的等式,整理得到k的表达式,再根据是整数、k也是整数判断出1﹣的值,然后求出k值可以有两个.解答:解:当x=a时,y=a;当x=b时,y=8b;∴A、B两点的坐标为A(a,a)B(b,8b),∴直线AB的解析式为y=kx+m,∴,解得k==+1=+1,∵是整数,k也是整数,∴1﹣=或,解得b=2a,或b=8a,此时k=15或k=9.所以k值共有15或9两个.故应填2.19.(2013•湖州)如图,已知点A是第一象限内横坐标为2的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是.分析:(1)首先,需要证明线段B0B n就是点B运动的路径(或轨迹),如答图②所示.利用相似三角形可以证明;(2)其次,如答图①所示,利用相似三角形△AB0B n∽△AON,求出线段B0B n的长度,即点B运动的路径长.解答:解:由题意可知,OM=,点N在直线y=﹣x上,AC⊥x轴于点M,则△OMN为等腰直角三角形,ON=OM=×=.如答图①所示,设动点P在O点(起点)时,点B的位置为B0,动点P在N点(起点)时,点B的位置为B n,连接B0B n.∵AO⊥AB0,AN⊥AB n,∴∠OAC=∠B0AB n,又∵AB0=AO•tan30°,AB n=AN•tan30°,∴AB0:AO=AB n:AN=tan30°,∴△AB0B n∽△AON,且相似比为tan30°,∴B0B n=ON•tan30°=×=.现在来证明线段B0B n就是点B运动的路径(或轨迹).如答图②所示,当点P运动至ON上的任一点时,设其对应的点B为B i,连接AP,AB i,B0B i.∵AO⊥AB0,AP⊥AB i,∴∠OAP=∠B0AB i,又∵AB0=AO•tan30°,AB i=AP•tan30°,∴AB0:AO=AB i:AP,∴△AB0B i∽△AOP,∴∠AB0B i=∠AOP.又∵△AB0B n∽△AON,∴∠AB0B n=∠AOP,∴∠AB0B i=∠AB0B n,∴点B i在线段B0B n上,即线段B0B n就是点B运动的路径(或轨迹).综上所述,点B运动的路径(或轨迹)是线段B0B n,其长度为.故答案为:.20.(2013•河东区一模)如图,点A的坐标为(﹣2,0),点B在直线上运动,当线段AB最短时,点B的坐标是(﹣,).分析:当线段AB最短时,直线AB一定与直线垂直,则AB的解析式的一次项系数是2,利用待定系数法即可求得AB的解析式,然后两个解析式组成方程组,即可求得B的坐标.解答:解:当线段AB最短时,直线AB一定与直线垂直,则AB的解析式的一次项系数是2,设AB的解析式是:y=2x+b,把(﹣2,0)代入解析式得:﹣4+b=0,解得:b=4,则直线的解析式是:y=2x+4.根据题意得:,解得:,则B的坐标是:(﹣,).故答案是:(﹣,).21.(2013•广安)已知直线y=x+(n为正整数)与坐标轴围成的三角形的面积为S n,则S1+S2+S3+…+S2012=.分析:令x=0,y=0分别求出与y轴、x轴的交点,然后利用三角形面积公式列式表示出S n,再利用拆项法整理求解即可.解答:解:令x=0,则y=,令y=0,则﹣x+=0,解得x=,所以,S n=••=(﹣),所以,S1+S2+S3+…+S2012=(﹣+﹣+﹣+…+﹣)=(﹣)=.故答案为:.22.(2013•拱墅区二模)若点P(m2﹣2,m)在直线y=﹣x上,则点(|m|,m﹣1)关于y轴的对称点坐标是(﹣1,1)或.分析:根据一次函数图象上点的坐标特征可以求得m的值;然后将其代入(|m|,m﹣1),即可求得该点的坐标.另外,关于y轴对称的点的横坐标互为相反数,纵坐标相等.解答:解:∵点P(m2﹣2,m)在直线y=﹣x上,∴m=2﹣m2,即(m﹣1)(m+2)=0解得m=1或m=﹣2.①当m=1时,点(|m|,m﹣1)的坐标是(1,1),它关于y轴对称的点的坐标是(﹣1,1).②当m=﹣2时,点(|m|,m﹣1)的坐标是(2,﹣),它关于y轴对称的点的坐标是;综上所述,点(|m|,m﹣1)关于y轴的对称点坐标是(﹣1,1)或.故填:(﹣1,1)或.23.(2013•包头)如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为y=﹣2x﹣2.分析:先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.解答:解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,因为平移后的图形与原图形平行,故平移以后的函数解析式为:y=﹣2x﹣2.故答案为y=﹣2x﹣2.24.(2013•安徽模拟)函数的最大值为4.分析:分别根据一次函数的性质判断出函数在每一段取值范围上的增减性,再求出其最大值即可.解答:解:∵y=4x+3中k=4>0,∴此函数是增函数,∵x≤0,∴当x=0时,y最大=3;∵函数y=x+3中,k=1>0,∴此函数是增函数,∵0<x≤1,∴当x=1时,y最大=4;∵函数y=﹣x﹣5中k=﹣1<0,∴此函数是减函数,∵x>1,∴y最大<﹣1+5=4;∴此函数的最大值为:4.故答案为:4.25.(2013•宝山区一模)如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标为O(0,0),A(2,0),B(2,2),C(4,2),D(4,4),E(0,4),若如图过点M(1,2)的直线MP(与y轴交于点P)将多边形OABCDE分割成面积相等的两部分,则直线MP的函数表达式是y=x+.分析:延长CB交y轴于点F,根据O(0,0),A(2,0),B(2,2),C(4,2),D(4,4),E(0,4)求出多边形OABCDE的面积,设直线PG的解析式为y=kx+b(k≠0),把点M代入即可得到k+b=2,再用k、b表示出P、G两点坐标,再由S梯形PGDE=S多边形OABCDE即可得出kb的值,故可得出结论.解答:解:长CB交y轴于点F,∵A(2,0),B(2,2),C(4,2),D(4,4),E(0,4),∴S正方形OABF=OA•AB=2×2=4,S矩形CDEF=CF•CD=4×2=8,∴S多边形OABCDE=4+8=12,设直线PG的解析式为y=kx+b(k≠0),∵M(1,2),∴k+b=2①,∵点P在y轴上,∴P(0,b),∵C(4,2),D(4,4),∴G(4,4k+b),∴S梯形PGDE=(DG+PE)•DE=S多边形OABCDE=×(4﹣4k﹣b+4﹣b)×4=6,即8k+4b=10②,①②联立得,,解得,故此一次函数的解析式为:y=x+.故答案为:y=x+.26.(2013•江都市模拟)若点(a,b)在一次函数y=2x﹣3上,则代数式3b﹣6a+1的值是﹣8.分析:先把点(a,b)代入一次函数y=2x﹣3求出2a﹣b的值,再代入代数式进行计算即可.解答:解:∵点(a,b)在一次函数y=2x﹣3上,∴b=2a﹣3,即2a﹣b=3,∴原式=﹣3(2a﹣b)+1=(﹣3)×3+1=﹣8.故答案为:﹣8.27.(2013•浦东新区模拟)已知点P在直线y=﹣2x﹣3上,且点P到x轴的距离是4,那么点P的坐标是.分析:根据题意知点P的纵坐标是4或﹣4,然后将其分别代入直线方程,即可求得点P所对应的横坐标.解答:解:∵点P到x轴的距离是4,∴设P(x,4)或P(x,﹣4).∵点P在直线y=﹣2x﹣3上,∴4=﹣2x﹣3或﹣4=﹣2x﹣3,解得,x=﹣或x=.故点P的坐标是.故填:.28.(2013•上海)李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是2升.分析:先运用待定系数法求出y与x之间的函数关系式,然后把x=240时带入解析式就可以求出y的值,从而得出剩余的油量.解答:解:设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:,则y=﹣x+3.5.当x=240时,y=﹣×240+3.5=2升.故答案为:229.(2013•瑶海区一模)小明同学从家步行到公交车站台,在等公交车去学校,图中的折线表示小明同学的行程s (km)与所花时间t(min)之间的函数关系,从图中可以看出公交车的速度是500m/min.分析:根据图象得出公交车行驶的距离以及行驶的时间即可得出公交车的速度.解答:解:利用图象得出:公交车行驶的距离为:8﹣1=7(km),公交车行驶的时间为:30﹣16=14(mint),从图中可以看出公交车的速度是:7000÷14=500(m/min).故答案为:500.30.(2013•邢台一模)如图,正方形ABCD的边长为2,M是CD边上的动点,设CM=x,梯形ABCM的面积为y,那么y与x之间的函数关系表达式是y=x+2.分析:根据梯形的面积公式列出函数关系式即可.解答:解:y=(MC+AB)×BC=(x+2)×2=x+2.故答案为:y=x+2.。
一次函数练习题及答案
一次函数练习题及答案一、选择题1. 一次函数y = 2x - 3的斜率是:A. 2B. -3C. -2D. 3答案:A2. 如果一次函数y = kx + b的图象经过点(1, 0)和(0, -1),那么k 的值是:A. 1B. -1C. 0D. 2答案:A3. 函数y = 3x + 5与x轴的交点坐标是:A. (-5/3, 0)B. (0, 5)C. (1, 0)D. (-1, 0)答案:A二、填空题4. 已知一次函数y = 4x + 1,当x = 2时,y的值为________。
答案:95. 一次函数y = -2x + 4的图象与y轴的交点坐标是________。
答案:(0, 4)三、解答题6. 已知直线y = 3x + 2与直线y = -x + 4相交于点P,求点P的坐标。
解:将两个方程联立求解:\[ \begin{cases} y = 3x + 2 \\ y = -x + 4 \end{cases} \]解得:\[ x = \frac{2}{4}, y = 3 \times \frac{2}{4} + 2 \] 所以点P的坐标为(\(\frac{1}{2}\), 3)。
7. 一次函数y = kx + b的图象经过点A(-1, -2)和点B(2, 6),求k 和b的值。
解:将点A和点B的坐标代入一次函数方程得:\[ \begin{cases} -k + b = -2 \\ 2k + b = 6 \end{cases} \] 解得:\[ k = 2, b = 0 \]8. 已知直线y = 5x - 7在x轴上的截距为a,在y轴上的截距为b,求a和b的值。
解:当y = 0时,x = \frac{7}{5},所以a = \frac{7}{5};当x = 0时,y = -7,所以b = -7。
四、应用题9. 某工厂生产一种产品,每件产品的成本为c元,售价为p元。
已知当生产x件时,利润为y元,且利润函数为y = 20x - 30。
一次函数练习题(带答案)
例1. (1)y与x成正比例函数,当时,y=5.求这个正比例函数的解析式.(2)已知一次函数的图象经过A(-1,2)和B(3,-5)两点,求此一次函数的解析式.解:(1)设所求正比例函数的解析式为把,y=5代入上式得,解之,得∴所求正比例函数的解析式为(2)设所求一次函数的解析式为∵此图象经过A(-1,2)、B(3,-5)两点,此两点的坐标必满足,将、y=2和x=3、分别代入上式,得解得∴此一次函数的解析式为点评:(1)不能化成带分数.(2)所设定的解析式中有几个待定系数,就需根据已知条件列几个方程.例2. 拖拉机开始工作时,油箱中有油20升,如果每小时耗油5升,求油箱中的剩余油量Q(升)与工作时间t(时)之间的函数关系式,指出自变量x的取值范围,并且画出图象. 分析:拖拉机一小时耗油5升,t小时耗油5t升,以20升减去5t升就是余下的油量.图象如下图所示点评:注意函数自变量的取值范围.该图象要根据自变量的取值范围而定,它是一条线段,而不是一条直线.例3. 已知一次函数的图象经过点P(-2,0),且与两坐标轴截得的三角形面积为3,求此一次函数的解析式.分析:从图中可以看出,过点P作一次函数的图象,和y轴的交点可能在y轴正半轴上,也可能在y轴负半轴上,因此应分两种情况进行研究,这就是分类讨论的数学思想方法.点评:(1)本题用到分类讨论的数学思想方法.涉及过定点作直线和两条坐标轴相交的问题,一定要考虑到方向,是向哪个方向作.可结合图形直观地进行思考,防止丢掉一条直线.(2)涉及面积问题,选择直角三角形两条直角边乘积的一半,结果一定要得正值.【综合测试】一、填空题:1. 若一次函数y=kx+b的图象经过(0,1)和(-1,3)两点,则此函数的解析式为_____________.2. (2006年北京市中考题)若正比例函数y=kx的图象经过点(1,2),则此函数的解析式为_____________.二、一次函数的图象与y轴的交点为(0,-3),且与坐标轴围成的三角形的面积为6,求这个一次函数的解析式.三、某种内燃动力机车在青藏铁路试验运行前,测得该种机车机械效率η和海拔高度h(,单位km)的函数关系式如图所示.(1)请你根据图象写出机车的机械效率η和海拔高度h(km)的函数关系;(2)求在海拔3km的高度运行时,该机车的机械效率为多少?四、如图建立羽毛球比赛场景的平面直角坐标系,图中球网高OD为1.55米,双方场地的长OA=OB=6.7(米).羽毛球运动员在离球网5米的点C处起跳直线扣杀,球从球网上端的点E直线飞过,且DE为0.05米,刚好落在对方场地点B处.(1)求羽毛球飞行轨迹所在直线的解析式;(2)在这次直线扣杀中,羽毛球拍击球点离地面的高度FC为多少米?(结果精确到0.1米)。
第二十一章 一次函数 综合素质评价(含答案)冀教版数学八年级下册
第二十一章一次函数综合素质评价一、选择题(1~10题每题3分,11~16题每题2分,共42分) 1.下列函数中,正比例函数是()A.y=-8x B.y=8 xC.y=8x2D.y=8x-42.【教材P111复习题T2(2)变式】已知点(-5,y1),(3,y2)都在直线y=-8x+7上,则y1,y2的大小关系是()A.y1>y2B.y1=y2 C.y1<y2 D.无法比较3.【2022·哈尔滨】一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示.如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35 L 时,那么该汽车已行驶的路程为()A.150 kmB.165 kmC.125 kmD.350 km4.【2022·北京八中模拟】在平面直角坐标系中,将一次函数y=3x+5的图像沿y 轴向下平移4个单位长度,得到的图像的表达式为()A.y=3x+9 B.y=3x+1C.y=-3x+9 D.y=-3x+15.一次函数的图像经过点(1,2)和(-3,-1),则它的表达式为()A.y=34x-54B.y=43x-45C.y=34x+45D.y=34x+546.若实数a,b满足ab<0,且a<b,则函数y=ax+b的图像可能是()7.【2022·济南实验中学模拟】关于函数y=-2x+1,下列结论正确的是() A.图像必经过点(-2,1)B.图像经过第一、二、三象限C.当x>12时,y<0D.y随x的增大而增大8.已知一次函数y=x-2,当函数值y>0时,自变量x的取值范围在数轴上表示正确的是()9.一次函数y=kx+b(k,b为常数,且k≠0)的图像如图所示,根据图像信息可求得关于x的方程kx+b=0的解为()A.x=-1B.x=2C.x=0D.x=310.已知一次函数y=kx-k,y随x的增大而减小,则该函数的图像不经过() A.第一象限B.第二象限C.第三象限D.第四象限11.定义(p,q)为一次函数y=px+q的特征数.若特征数是(2,k-2)的一次函数为正比例函数,则k的值是()A.0 B.-2 C.2 D.任何数12.已知A,B两地相距4 km,8:00甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的距离y(km)与甲所用的时间x(min)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为()A.8:30 B.8:35 C.8:40 D.8:4513.直线y=k1x+b与y=k2x在同一平面直角坐标系的图像如图所示,则关于x的不等式k1x+b<k2x的解集为()A.x<-1 B.x>-1 C.x<-2 D.x>-2 14.【数学建模】如图,在长方形ABCD中,AB=6,AD=4,P是CD上的动点,且不与点C,D重合,设DP=x,梯形ABCP的面积为y,则y与x之间的函数关系式和自变量的取值范围是()A.y=24-2x(0<x<6)B.y=24-2x(0<x<4)C.y=24-3x(0<x<6)D.y=24-3x(0<x<4)15.某商店在节日期间开展优惠促销活动:购买原价超过200元的商品,超过200元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所示,则超过200元的部分可以享受的优惠是()A.打八折B.打七折C.打六折D.打五折16.某通讯公司提供了两种移动电话收费方式:方式1,收月基本费20元,再以每分钟0.1元的价格按通话时间计费;方式2,收月基本费20元,送80分钟通话时间,超过80分钟的部分,以每分钟0.15元的价格计费.下列结论:①如图描述的是方式1的收费方法;②若月通话时间少于240分钟,则选择方式2省钱; ③若月通讯费为50元,则方式1比方式2的通话时间多;④若方式1比方式2的通讯费多10元,则方式1比方式2的通话时间多100分钟.其中正确的是( ) A .只有①②B .只有③④C .只有①②③D .①②③④二、填空题(17,18题每题3分,19题4分,共10分) 17.一次函数y =2x -6的图像与x 轴的交点坐标为________.18.如图所示,已知函数y =3x +b 和y =ax -3的图像交于点P (-2,-5),则关于x ,y 的二元一次方程组⎩⎨⎧y =3x +b ,y =ax -3的 解是______________.19.【2022·辽宁】如图,直线y =2x +4与x 轴交于点A ,与y 轴交于点B ,点D 为OB 的中点,▱OCDE 的顶点C 在x 轴上,顶点E 在直线AB 上,则▱OCDE 的面积为________.三、解答题(20,21题每题8分,22~25题每题10分,26题12分,共68分) 20.【教材P 108复习题T 9变式】把一个长10 cm 、宽5 cm 的长方形的长减少x cm ,宽不变,得到的长方形的面积为y cm 2. (1)请写出y 与x 之间的函数关系式; (2)请写出自变量x 的取值范围; (3)画出函数的图像.21.【2022·厦门五缘实验学校模拟】如图,一次函数y=kx+3的图像经过点A(1,4).(1)求这个一次函数的表达式;(2)试判断点B(-1,5),C(0,3),D(2,1)是否在这个一次函数的图像上.22.【2022·黑龙江】如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴、y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2-14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的表达式;(3)在直线MN上是否存在点P,使以P,B,C三点为顶点的三角形是等腰三角形?请直接写出点P的坐标.23.【数学建模】某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示.其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30时,求y与x之间的函数关系式;(2)若小李4月份上网35小时,他应付多少元的上网费用?24.【2022·河北】如图,在平面直角坐标系中,线段AB的端点为A(-8,19),B(6,5).(1)求AB所在直线的表达式.(2)某同学设计了一个动画:在函数y=mx+n(m≠0,y≥0)中,分别输入m和n的值,便得到射线CD,其中C(c,0),当c=2时,会从C处弹出一个光点P,并沿CD飞行;当c≠2时,只发出射线而无光点弹出.①若有光点P弹出,试推算m,n应满足的数量关系;②当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)时,线段AB就会发光,求此时整数m的个数.25.【数学建模】一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/(元/箱) B种水果/(元/箱)甲店11 17乙店9 13(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元;(2)在甲、乙两店各配货10箱(按整箱配货),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少.26.高铁的开通,给衢州市民出行带来了极大的方便.“五一”期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1 h后,颖颖乘坐高铁从衢州出发,先到杭州火车东站,然后转乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(km)与乘车时间t(h)的关系如图所示.请结合图像解决下面的问题:(1)高铁的平均速度是多少千米/时?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18 min到达游乐园,问:私家车的速度必须达到多少千米/时?答案一、1.A 2.A 3.A 4.B5.D 点拨:设该一次函数的表达式为y =kx +b (k ≠0),将点(1,2)和(-3,-1)的坐标分别代入,得⎩⎨⎧k +b =2,-3k +b =-1,解得⎩⎪⎨⎪⎧k =34,b =54.∴该一次函数的表达式为y =34x +54.故选D.6.A 点拨:∵ab <0,且a <b ,∴a <0,b >0,∴函数y =ax +b 的图像经过第一、二、四象限,故选A. 7.C 8.B 9.A10.C 点拨:∵一次函数y =kx -k 中y 随x 的增大而减小,∴k <0,∴-k >0,∴该函数的图像经过第一、二、四象限,不经过第三象限. 11.C12.C 点拨:易知甲行进的函数表达式为y =115x ,令y =2,得x =30.设当x ≥20时,乙行进的函数表达式为y =kx +b ,将点(30,2)和(20,4)的坐标分别代入,求得y =-15x +8,令y =0,得x =40,即乙到达A 地的时间为8:40. 13.B14.A 点拨:∵DP =x ,∴CP =6-x ,∴y =12(AB +CP )·BC =12(6+6-x )×4=2(12-x )=24-2x . ∵P 是CD 上的动点,且不与点C ,D 重合,∴0<x <6. 15.B16.C 点拨:根据题意得,方式1对应的函数表达式为y =0.1x +20(x ≥0),方式2对应的函数表达式为y =⎩⎨⎧20(0≤x ≤80),20+0.15(x -80)(x >80).①当x =80时,方式1中y =28,方式2中y =20,故①正确; ②0.1x +20>20+0.15×(x -80),解得x <240,故②正确;③当y =50时,方式1:0.1x +20=50,解得x =300,方式2:20+0.15×(x -80)=50,解得x =280,300>280,故③正确;④假设方式1的通讯费为40元,则方式2的通讯费为30元,那么方式1的通话时间为40-200.1=200(分钟),方式2的通话时间为80+30-200.15≈147(分钟),200-147=53(分钟),因此方式1比方式2的通话时间多大约53分钟,故④错误. 二、17.(3,0) 18.⎩⎨⎧x =-2y =-519.2 点拨:∵当x =0时,y =2×0+4=4,∴点B 的坐标为(0,4).∴OB =4. ∵点D 为OB 的中点, ∴OD =12OB =12×4=2.∵四边形OCDE 为平行四边形,点C 在x 轴上, ∴DE ∥x 轴,DE =OC .∵当y =2时,2x +4=2,解得x =-1, ∴点E 的坐标为(-1,2). ∴DE =1. ∴OC =1.∴S ▱OCDE =OC ·OD =1×2=2. 三、20.解:(1)y =5(10-x ),整理,得y =-5x +50. (2)0≤x <10. (3)如图所示.21.解:(1)由题意,得k +3=4,解得k =1,所以这个一次函数的表达式是y =x+3.(2)由(1),知一次函数的表达式是 y =x +3.当x =-1时,y =2,即点B (-1,5)不在这个一次函数的图像上; 当x =0时,y =3,即点C (0,3)在这个一次函数的图像上; 当x =2时,y =5,即点D (2,1)不在这个一次函数的图像上. 22.解:(1)由x 2-14x +48=0,解得x 1=6,x 2=8.∵OA ,OC (OA >OC )的长分别是一元二次方程x 2-14x +48=0的两个实数根, ∴OC =6,OA =8. ∴C (0,6).(2)设直线MN 的表达式为y =kx +b (k ≠0). 由(1),知OA =8,则A (8,0). ∵点A ,C 都在直线MN 上, ∴⎩⎨⎧8k +b =0,b =6,解得⎩⎪⎨⎪⎧k =-34,b =6. ∴直线MN 的表达式为y =-34x +6.(3)点P 的坐标分别为(4,3)或⎝ ⎛⎭⎪⎫-325,545或(325,65)或(25625,-4225).点拨:∵A (8,0),C (0,6), ∴根据题意,知B (8,6). ∵点P 在直线y =-34x +6上, ∴设P ⎝ ⎛⎭⎪⎫a ,-34a +6. 当以P ,B ,C 三点为顶点的三角形是等腰三角形时,需要分三种情况讨论: ①当PC =PB 时,点P 是线段BC 的垂直平分线与直线MN 的交点,把x =4代入y =-34x +6,解得y =3,则P (4,3); ②当PC =BC 时,a 2+(-34a +6-6)2=82, 解得a =±325,则P ⎝ ⎛⎭⎪⎫-325,545或P ⎝ ⎛⎭⎪⎫325,65;③当PB =BC 时,(a -8)2+(-34a +6-6)2=82,解得a =0(舍去)或a =25625,则P ⎝ ⎛⎭⎪⎫25625,-4225. 综上所述,符合条件的点P 的坐标分别为(4,3)或⎝ ⎛⎭⎪⎫-325,545或⎝ ⎛⎭⎪⎫325,65或⎝ ⎛⎭⎪⎫25625,-4225. 23.解:(1)设当x ≥30时,y 与x 之间的函数关系式是y =kx +b ,由题意,得⎩⎨⎧30k +b =60,40k +b =90,解得⎩⎨⎧k =3,b =-30,即当x ≥30时,y 与x 之间的函数关系式是y =3x -30.(2)当x =35时,y =3×35-30=105-30=75,即若小李4月份上网35小时,他应付75元的上网费用.24.解:(1)设AB 所在直线的表达式为y =kx +b .把点A (-8,19),B (6,5)的坐标分别代入y =kx +b ,得⎩⎨⎧-8k +b =19,6k +b =5,解得⎩⎨⎧k =-1,b =11.∴AB 所在直线的表达式为y =-x +11.(2)①由题意,知直线y =mx +n 经过点C (2,0),∴2m +n =0.②设线段AB 上的整点为(t ,-t +11),则tm +n =-t +11.∵2m +n =0,∴(t -2)m =-t +11.易知t -2≠0.∴m =-t +11t -2=-1+9t -2. ∵-8≤t ≤6,且t 为整数,m 也是整数,∴t -2=±1,±3或±9,解得t =1,3,5,-1,-7或11.∵当t =1时,m =-10;当t =3时,m =8;当t =5时,m =2;当t =-1时,m =-4;当t =-7时,m =-2;当t =11时,m =0(不符合题意,舍去).∴符合题意的整数m 的个数为5.25.解:(1)经销商能盈利5×11+5×17+5×9+5×13=250(元).(2)设甲店配A 种水果x 箱,则甲店配B 种水果(10-x )箱,乙店配A 种水果(10-x )箱,乙店配B 种水果10-(10-x )=x (箱).∵9(10-x )+13x ≥100,∴x ≥2.5.设经销商盈利w 元,则w =11x +17(10-x )+9(10-x )+13x =-2x +260.∵-2<0,∴w 随x 的增大而减小,∴当x =3时,w 的值最大,最大值为-2×3+260=254.∴使水果经销商盈利最大的配货方案为甲店配A 种水果3箱、B 种水果7箱,乙店配A 种水果7箱、B 种水果3箱.最大盈利为254元.26.解:(1)2402-1=240(km/h), ∴高铁的平均速度是240 km/h.(2)设颖颖乘坐高铁到杭州火车东站的过程中y 与t 之间的函数表达式为y =kt +b .∵当t =1时,y =0,当t =2时,y =240,∴⎩⎨⎧0=k +b ,240=2k +b ,解得⎩⎨⎧k =240,b =-240.∴y =240t -240.把t=1.5代入y=240t-240,得y=120.设乐乐乘私家车到游乐园的过程中y与t之间的函数表达式为y=k′t,由t=1.5,y=120,得k′=80,∴y=80t.当t=2时,y=160,∴216-160=56(km),∴当颖颖到达杭州火车东站时,乐乐距离游乐园还有56 km.(3)把y=216代入y=80t,得t=2.7.2.7-1860=2.4(h),2162.4=90(km/h).∴乐乐要提前18 min到达游乐园,私家车的速度必须达到90 km/h.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数综合练习及答案姓名:_______________班级:_______________考号:_______________一、填空题(每空? 分,共? 分)1、已知一次函数的图像经过A (0,1),B (2,0),则当x 时,2、小明从家到图书馆看报然后返回,他离家的距离y 与离家的时间x 之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为___km.,3、直线y =2x +b 与x 轴的交点坐标是(2,0),则关于x 的方程2x +b =0的解是x =_______.4、若函数y =(a -3)x |a|-2+1是一次函数,则a =_______.5、将直线y =2x +1向下平移3个单位长度后所得直线的表达式是 ______.6、 已知函数是关于的正比例函数,则_________.7、.已知与成正比,且当时, ,则与的关系式是____________。
8、一次函数的图象经过原点,则m 的值为 。
9、如图,在△ABC 中,∠ACB =90°,斜边AB 在x 轴上,点C 在y 轴的正半轴上,直线AC 的解析式是y =-2x +4,则直线BC 的解析式为_________________10、请根据下列的一次函数解析式的特征按要求分类(填写字母序号).A .y=3xB .y=x ﹣4C .y=﹣5x ﹣4D .y=3x+6E .y=﹣5x+1(1)一次函数中,函数值y 随x 的增大而增大的有:__________;(2)几个一次函数图象的交点都在y 轴上的有:__________;(3)一次函数中,图象平行的有:__________.11、如图,已知一次函数y =2x +b 和y =kx ﹣3(k ≠0)的图象交于点P ,则二元一次方程组 的解是_____.二、简答题(每空? 分,共? 分)12、如图,一次函数的图象与x 轴,y 轴交于点A ,B ,如果点A 的坐标为(4,0),且OA =2OB ,求一次函数的表达式.13、已知函数y =(m +1)x 2-|m|+n +4.(1)当m ,n 为何值时,此函数是一次函数?(2)当m ,n 为何值时,此函数是正比例函数?14、一根弹簧的的原长是20 cm ,且每挂重1kg 就伸长0.5 cm ,它的挂重不超过10kg 。
(1)挂重后弹簧的长度y(cm)与挂重x(kg)之间的函数关系式;(2)写出自变量的取值范围;(3)挂重多少千克时,弹簧长度为22.5cm?15、一次函数y=kx+b的图象过点(-2,3)和(1,-3)。
(1)求一次函数的解析式;(2)画出该函数图像。
16、已知一次函数的图象经过A(0,2),B(﹣1,3)两点.求:(1)该直线解析式;(2)画出图象并求出△AOB的面积.17、已知一次函数y=(k﹣2)x﹣3k2+12.(1)k为何值时,图象经过原点;(2)k为何值时,图象与直线y=﹣2x+9的交点在y轴上;(3)k为何值时,图象平行于y=﹣2x的图象;(4)k为何值时,y随x增大而减小.18、小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?19、.已知函数3x+2y=1(1)将其改成y=kx+b的形式为__________.(2)判断点B(﹣5,3)是否在这个函数的图象上.20、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式;(2)通话2分钟应付通话费多少元?通话7分钟呢?21、如图正比例函数y=2x的图像与一次函数 y=kx+b的图像交于点A(m,2),一次函数的图像经过点B(-2,-1)与y轴交点为C与x轴交点为D.(1)求一次函数的解析式;(2)求C点的坐标;(3)求△AOD的面积。
22、如图,与分别表示步行与骑车同一路上行驶的路程与时间的关系.(1)出发时与相距多少千米?(2)走了一段路后,自行车发生故障,进行修理,所用的时间是多少小时?(3)出发后经过多少小时与相遇?(4)若的自行车不发生故障,保持出发时的速度前进,那么经过多少时间与相遇?在图中表示出这个相遇点.23、、已知一次函数y =-2x +2.(12分)(1)画出它的图象;(2)求图象与x 轴的交点A 、与y 轴的交点B 的坐标;(3)求A 、B 两点之间的距离;(4)观察图象回答,当x 为何值时,y ≥0?24、如图所示为某汽车行驶的路程S (km )与时间t (min )的函数关系图,观察图中所提供的信息解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车中途停了多长时间?(3)当16≤t ≤30时,求S 与t 的函数关系式?三、选择题(每空? 分,共? 分)25、关于函数,下列结论正确的是 ( )A .图象必经过点(﹣2,1)B .图象经过第一、二、三象限C .图象与直线=-2+3平行D .随的增大而增大26、 一次函数y =kx +k 的图象可能是( )27、已知某一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数为()A .y=﹣x ﹣2B .y=﹣x+10C .y=﹣x ﹣6D .y=﹣x ﹣10 评卷人 得分28、关于x的一次函数y=kx+k2+1的图象可能正确的是( )A. B. C. D.29、若方程x-2=0的解也是直线y=(2k-1)x+10与x轴的交点的横坐标,则k的值为A.2B.0C.-2D. ±230、在平面直角坐标系xoy中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是A.一象限B. 二象限C. 四象限D.不能确定31、一次函数y=﹣2x﹣1的图象不经过( )A.第一象限 B.第二象限 C.第三象限 D.第四象限32、若2y+1与x-5成正比例,则( )A.y是x的一次函数 B.y与x没有函数关系C.y是x的函数,但不是一次函数 D.y是x的正比例函数33、如图2是一次函数y=kx+b的图象,当y<-2时,x的取值范围是()A.x<3B.x>3C.x<-1D.x>-134、如图,直线y=kx+b与x轴、y轴分别相交于点A(﹣3,0)、B(0,2),则不等式kx+b>0的解集是()A.x>﹣3 B.x<﹣3 C.x>2 D.x<2参考答案一、填空题1、2、0.3_3、2_4、-3_5、_y=2x-26、﹣1;7、y=-8x+28、-19、10、【考点】一次函数的性质.【分析】(1)根据一次函数中k的符号进行判断即可;(2)根据直线与y轴的交点进行解答;(3)根据一次函数中k的值即可作出判断.【解答】解:(1)∵y=3x中k=3>0,y=x﹣4中k=1>0,y=3x+6中,k=3>0,∴这几个一次函数中,函数值y随x的增大而增大.故答案为:A、B、D;(2)∵五个函数中只有y=x﹣4与y=﹣5x﹣4与y轴的交点均为(0,﹣4),∴这两个一次函数图象的交点都在y轴上.故答案为:B与C;(3)∵直线y=3x与y=3x+6中k的值相同,y=﹣5x﹣4与y=﹣5x+1中k的值相同,∴两条直线互相平行.故答案为:A与D,C与E.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大是解答此题的关键.11、【解析】根据一次函数和二元一次方程组的关系,可知方程组的解为两个一次函数的交点的坐标,故可知方程组的解为.故答案为:二、简答题12、解:设一次函数的表达式为y=kx+b(k≠0,k,b都是常数),由点A的坐标为(4,0),且OA=2OB,可知B(0,2).又点A,B的坐标满足一次函数表达式,∴b=2,4k+b=0,解得k=-.则一次函数的表达式为y=-x+213、解:(1)根据一次函数的定义,得:2-|m|=1,解得m=±1.又∵m+1≠0即m≠-1,∴当m=1,n为任意实数时,这个函数是一次函数; (4分)(2)根据正比例函数的定义,得:2-|m|=1,n+4=0,解得m=±1,n=-4,又∵m+1≠0即m≠-1,∴当m=1,n=-4时,这个函数是正比例函数. (8分)14、(1)(2)(3)5千克15、(1)(2)略16、【考点】待定系数法求一次函数解析式;一次函数的图象.【分析】(1)设这个一次函数的表达式为y=kx+b,把A(0,2),B(﹣1,3)代入得出方程组,求出方程组的解即可;(2)画出图象,过B作BD⊥y轴于D,求出高BD和边OA的长,根据面积公式求出即可.【解答】解:(1)设这个一次函数的表达式为y=kx+b,把A(0,2),B(﹣1,3)代入得:,解得:k=﹣1,b=2,所以这个一次函数的表达式为y=﹣x+2;(2)图象如下,过B作BD⊥y轴于D,则BD=1,△AOB的面积=×OA×BD=×2×1=1.【点评】本题考查了用待定系数法求一次函数的解析式,函数的图象,三角形的面积,解二元一次方程组的应用,能根据题意求出函数的解析式是解此题的关键.17、【解答】解:(1)∵一次函数y=(k﹣2)x﹣3k2+12的图象经过原点,∴﹣3k2+12=0,∴,∴k=﹣2;(2)∵直线y=﹣2x+9求出此直线与y轴的交点坐标为(0,9),∴﹣3k2+12=9,∴k=1或k=﹣1;(3)∵一次函数的图象平行于y=﹣2x的图象,∴k﹣2=﹣2,∴k=0;(4)∵一次函数为减函数,∴k﹣2<0,∴k<2.18、【考点】一次函数的应用.【分析】(1)首先由小明的爸爸以96m/min速度从邮局同一条道路步行回家,求得小明的爸爸用的时间,即可得点D的坐标,然后由E(0,2400),F(25,0),利用待定系数法即可求得答案;(2)首先求得直线BC的解析式,然后求直线BC与EF的交点,即可求得答案.【解答】解:(1)∵小明的爸爸以96m/min速度从邮局同一条道路步行回家,∴小明的爸爸用的时间为:=25(min),即OF=25,如图:设s2与t之间的函数关系式为:s2=kt+b,∵E(0,2400),F(25,0),∴,解得:,∴s2与t之间的函数关系式为:s2=﹣96t+2400;(2)如图:小明用了10分钟到邮局,∴D点的坐标为(22,0),设直线BD即s1与t之间的函数关系式为:s1=at+c(12≤t≤22),∴,解得:,∴s1与t之间的函数关系式为:s1=﹣240t+5280(12≤t≤22),当s1=s2时,小明在返回途中追上爸爸,即﹣96t+2400=﹣240t+5280,解得:t=20,∴s1=s2=480,∴小明从家出发,经过20min在返回途中追上爸爸,这时他们距离家还有480m.19、【考点】一次函数图象上点的坐标特征.【分析】(1)根据一次函数的解析式解答即可;(2)把点B代入解析式即可.【解答】解:(1)函数3x+2y=1改成y=kx+b的形式为;故答案为:;(2)因为当x=﹣5时,y=≠3,所以点B不在这个函数的图象上.【点评】本题考查了待定系数法求一次函数解析式.此题比较简单,解答此题的关键是熟知函数图象上点的坐标一定适合此函数的解析式.20、(1)当0<t≤3时,y=2.4;当t>3时,y=t-0.6;(2)2.4元;6.4元21、(1)y=x+1;(2)C(0,1);(3)122、(1)10km (2)1h (3)3h (4)h23、解:(1)略(2)当y=0时0=-2x+2∴x=1∴图象与x轴的交点A的坐标为(1,0)当x=0时y=2 ,∴图象与y轴的交点B的坐标为(0,2)(3)AB=(4)x<1时24、【解答】解:(1)平均速度==km/min;(2)从9分到16分,路程没有变化,停车时间t=16﹣9=7min.(3)设函数关系式为S=kt+b,将(16,12),C(30,40)代入得,,解得.所以,当16≤t≤30时,求S与t的函数关系式为S=2t﹣20.三、选择题25、C26、B27、B.28、C【考点】一次函数的图象.【专题】压轴题.【分析】根据图象与y轴的交点直接解答即可.【解答】解:令x=0,则函数y=kx+k2+1的图象与y轴交于点(0,k2+1),∵k2+1>0,∴图象与y轴的交点在y轴的正半轴上.故选C.【点评】本题考查一次函数的图象,考查学生的分析能力和读图能力.29、C30、A31、A【考点】一次函数图象与系数的关系.【分析】因为k=﹣2<0,b=﹣1<0,根据一次函数y=kx+b(k≠0)的性质得到图象经过第二、四象限,图象与y轴的交点在x轴下方,于是可判断一次函数y=﹣2x﹣1的图象不经过第一象限.【解答】解:对于一次函数y=﹣2x﹣1,∵k=﹣2<0,∴图象经过第二、四象限;又∵b=﹣1<0,∴一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第三象限,∴一次函数y=﹣2x﹣1的图象不经过第一象限.故选A.【点评】本题考查了一次函数y=kx+b(k≠0)的性质:当k<0,图象经过第二、四象限,y随x的增大而减小;当k >0,经图象第一、三象限,y随x的增大而增大;当b>0,一次函数的图象与y轴的交点在x轴上方;当b<0,一次函数的图象与y轴的交点在x轴下方.32、A33、C34、A【考点】FD:一次函数与一元一次不等式.【分析】根据图象和A的坐标得出即可.【解答】解:∵直线y=kx+b和x轴的交点A的坐标为(﹣3,0),∴不等式kx+b>0的解集是x>﹣3,故选A.。