人教版数学七年级下册《93一元一次不等式组》习题2

合集下载

2020-2021学年人教版七年级下册数学 9.3一元一次不等式组(应用题)(含答案)

2020-2021学年人教版七年级下册数学 9.3一元一次不等式组(应用题)(含答案)

9.3一元一次不等式组(应用题篇)一、单选题1.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人能分到笔记本但数量不足3本,则共有学生( )A .4人B .5人C .6人D .5人或6人 2.如图,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m(g)的取值范围,在数轴上可表示为( )A .B .C .D . 3.在平面直角坐标系中,若点 ,(2P m m +)在第二象限,且m 为负整数,则点P 坐标为( ) A .()1,3- B .()1,1- C .()1,1- D .()2,0- 4.生物小组要在温箱里培养A 、B 两种菌苗,A 种菌苗的生长温度()x C ︒的范围是3538x ≤≤,B 种菌苗的生长温度()y C ︒的范围是3436x ≤≤,那么温箱里的温度()T C ︒应该设定的范围是( )A .3538T ≤≤B .3536T ≤≤C .3436T ≤≤D .3638T ≤≤ 5.用若干量载重量为6吨的火车运一批货物,若每辆货车只装4吨,则剩下18吨货物;若每辆货车装6吨,则最后一辆车装的货物不足5吨,若设有x 辆货车,则x 应满足的不等式组是( )A .()()6418064185x x x x ⎧-+⎪⎨-+≤⎪⎩>B .()()()()418610418615x x x x >⎧+--⎪⎨+--≤⎪⎩C .()()()()614180614185x x x x ⎧--+⎪⎨--+⎪⎩><D .()()()()418610418615x x x x ⎧+--⎪⎨+--⎪⎩>< 6.2015年4月份的尼泊尔强震曾经导致珠峰雪崩,在珠峰抢险时,需8组登山队员步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是()A.10B.11C.12D.137.如图是某月的月历表,从表的竖列任取三个数相加,不可能得到的是()A.33B.42C.55D.548.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排,A B两种货厢的节数,有几种运输方案()A.1种B.2种C.3种D.4种9.某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米都收7元车费),超过3千米以后,超过部分每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共支付19元,设此人从甲地到乙地经过的路程是x千米,那么x的取值范围是( )A.1<x≤11B.7<x≤8C.8<x≤9D.7<x<810.如图,这是王彬同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥13”为一次运行过程.如果程序运行两次就停止,那么x的取值范围是()A.x≥4B.4≤x<7C.4<x≤7D.x≤7二、填空题11.某校计划组织七年级师生外出研学,若学校租用30座的客车x辆,则有15人无法乘坐;若租用45座的客车则可少租用2辆,且最后一辆车还没坐满.那么乘坐最后一辆45座客车的师生人数是_______人(用含x 的代数式表示),师生总人数可能为_________.12.某宾馆一楼房间比二楼房间少5间,一旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.问宾馆一楼的房间有_______间.13.我校为组织八年级的234名同学去看电影,租用了某公交公司的几辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.他们共租了___辆公共汽车.14.如图,用如图①中的a 张长方形和b 张正方形纸板作侧面和底面,做成如图①的竖式和横式两种无盖纸盒.若295305a b <+<,用完这些纸板做竖式纸盒比横式纸盒多30个,则a =_____,b =_____.15.在“新冠肺炎”这场没有硝烟的战争中,各行各业都涌现出了一批“最美逆行者”,其中抗疫最前沿的就是护士.某医院护安排护士若干名负责护理新冠病人,每名护士护理4名新冠病人,有20名新冠病人没人护理,如果每名护士护理8名新冠病人,有一名护士护理的新冠病人多于1人不足8人,这个医院安排了________名护士护理新冠病人.三、解答题16.2020年春节新冠肺炎疫情期间,小明妈妈手工制作了一些抗疫英雄的人偶,待小明开学后送给同班同学.如果每组分10个,那么余5个;如果前面的组每个组分13个,那么最后一个组虽然分有人偶,但不足4个.小明所在班级有多少个组?小明妈妈一共做了多少个人偶?17.安庆外国语为创建书香校园,去年购进一批图书,经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?18.列方程组或不等式解决实际问题某汽车专卖店销售A ,B 两种型号的新能源汽车,上周和本周的销售情况如下表:(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?参考答案1.C2.A3.B4.B5.D6.C7.C8.C9.B10.B11.-15x+150 255人或285人12.1013.814.225,75.15.616.小明所在班级有5个组,小明妈妈一共做了人偶55个.17.(1)文学书的单价为8元,科普书的单价为12元;(2)至多还能购进466本科普书18.(1)每辆A型车的售价为18万元,B型车的售价为26万元;(2)有两种购车方案:购进A 型车2辆,则购进B型车5辆;购进A型车3辆,则购进B型车4辆。

9.3一元一次不等式组课时2-2022-2023学年七年级数学下册同步精品随堂教学课件(人教版)

9.3一元一次不等式组课时2-2022-2023学年七年级数学下册同步精品随堂教学课件(人教版)
3 − 7 ≤ 8, ②
解不等式①,得 x≥3.
解不等式②,得 x≤5.
∴ 不等式组的解集为 3≤x≤5.
∴ x 可取的整数值是 3,4,5.
课堂小结
1.求一元一次不等式组的特殊解的方法:
先求出不等式组的解集,然后在不等式组的解集中找出符
合条件的特殊解(如非负整数解、最小整数解等),还可以借
助数轴直观地找特殊解.
第九章
不等式与不等式组
9.3 一元一次不等式组(课时2)
人教版七年级◑下册
主讲:XXX
温故知新
一元一次不等式组的解集有四种情况:
不等式组
(a>b>0)
各不等式组
的解集在数
轴上的表示
不等式组的
解集
巧记口诀
0 b a
0 b a
0 b a
0 b a
x>a
x<b
无解
b<x<a
同大取大 同小取小
大大小小 大小小大
都成立?
5 + 2 > 3( − 1),
1

2
−1≤7−
3
.
2
求不等式组解集中
的整数值
新知探究
知识点1:一元一次不等式组的应用
解:解不等式组
5 + 2 > 3( − 1), ①
1

2
−1≤7−
x>
3
, ②
2
5
2
解不等式①,得
.
解不等式②,得 x≤4.
5
所以不等式组的解集是− <x≤4,
中间找
无处找
解不等式组:
8 − 4 < 0, ①

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案) (44)

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案) (44)

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案)(1)计算题:0011 -330(2017)()3π-+-+ (2)计算题: 124(2)22x x x x ---÷++ (3)解不等式组:3(2)41123x x x x --≤⎧⎪-+⎨<⎪⎩ 【答案】(1)4(2)答案见解析(3)答案见解析【解析】试题分析:(1)根据绝对值、特殊角的三角函数值、零指数幂、负整数指数幂可以解答本题;(2)根据分式的减法和除法可以解答本题;(3)根据解一元一次不等式组的方法可以解答本题.试题解析:解:(1)原式﹣2﹣1+3 =3+1﹣2﹣1+3=4;(2)原式=2212224x x x x x-+-+⋅+-()() =44224x x x x x ()()+-+⋅+- =﹣(x +4)=﹣x ﹣4;(3)324{1123x x x x --≤-+()①<②,解不等式①,得:x ≥1,解不等式②,得:x <5,∴原不等式组的解集是1≤x <5.32.(1)化简:(31a +﹣a+1)÷2441a a a -++. (2)解不等式组:1422123x x x x ->+⎧⎪+⎨>⎪⎩ 【答案】(1)22a a +-- ,(2)x <﹣1 【解析】【分析】(1)括号内先进行通分,然后进行分式的加减法运算,最后再进行分式的乘除法运算即可;(2)分别求出每一个不等式的解集,然后再确定出解集的公式部分即可得不等式组的解集.【详解】(1)原式=()()()23111·12a a a a a --+++- =()()()2221·12a a a a a +-++- =22a a+-; (2)1422123x x x x ->+⎧⎪⎨+>⎪⎩①②, 由①得:x <﹣1,由②得:x <14, 所以原不等式组的解集为:x <﹣1.33.“中华紫薇园”景区今年“五一”期间开始营业,为方便游客在园区内游玩休息,决定向一家园艺公司采购一批户外休闲椅,经了解,公司出售两种型号休闲椅,如下表:景区采购这批休闲椅共用去56000元,购得的椅子正好可让1300名游客同时使用.(1)求景区采购了多少条长条椅,多少条弧形椅?(2)景区现计划租用A、B两种型号的卡车共20辆将这批椅子运回景区,已知A型卡车每辆可同时装运4条长条椅和11条弧形椅,B型卡车每辆可同时装运12条长条椅和7条弧形椅.如何安排A、B两种卡车可一次性将这批休闲椅运回来?(3)又知A型卡车每辆的运费为1200元,B型卡车每辆的运费为1050元,在(2)的条件下,若要使此次运费最少,应采取哪种方案?并求出最少的运费为多少元.【答案】(1)采购了100条长条椅,200条弧型椅;(2)有三种方案,见解析;(3)最省钱的租车方案是租用A型卡车15辆、B型卡车5辆,最低运费为23250元.【解析】试题分析:(1)设景区采购长条椅x条,弧型椅y条,然后根据游客人数和花费钱数两个等量关系列出方程组求解即可;(2)设租用A型卡车m辆,则租用B种卡车(20﹣m)辆,根据两种型号卡车装运的休闲椅的数量不小于两种休闲椅的数量列出不等式组,求解即可,再根据车辆数是正整数写出设计方案;(3)设租车总费用为W元,列出W的表达式,再根据一次函数的增减性求出最少费用.试题解析:解:(1)设景区采购长条椅x 条,弧型椅y 条,由题意得: 35130016020056000x y x y +=⎧⎨+=⎩,解得:100200x y =⎧⎨=⎩. 答:采购了100条长条椅,200条弧型椅;(2)设租用A 型卡车m 辆,则租用B 种卡车(20﹣m )辆,由题意得:4122010011720200m m m m +-≥⎧⎨+-≥⎩()(),解得:15≤m ≤17.5,由题意可知,m 为正整数,所以,m 只能取15、16、17,故有三种租车方案可一次性将这批休闲椅运回来,可这样安排:方案一:A 型卡车15辆,B 型卡车5辆,方案二:A 型卡车16辆,B 型卡车4辆,方案三:A 型卡车17辆,B 型卡车3辆;(3)设租车总费用为W 元,则W =1200m +1050(20﹣m )=150m +21000.∵150>0,∴W 随m 的增大而增大.又∵15≤m ≤17.5,∴当m =15时,W 有最小值,W 最小=150×15+21000=23250,∴最省钱的租车方案是租用A 型卡车15辆、B 型卡车5辆,最低运费为23250元.点睛:本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式组的应用,读懂题目信息,理解数量关系并确定出等量关系和不等量关系是解题的关键,(3)利用一次函数的增减性和自变量的取值范围求最值是常用的方法.34.解不等式组:2132x x x +≥⎧⎨+>⎩,并在所给的数轴上表示解集.【答案】-1≤x<3【解析】分析:根据不等式的解法,先分别求解两个不等式的解集,再根据不等式组的解集的确定方法求出不等式的解集,并表示在数轴上即可.详解:解不等式①,得:1x ≥-解不等式②,得:3x <在数轴上表示解集为:点睛:此题主要考查了不等式组的解法,关键是明确不等式组的解集的确定方法:都大取大,都小取小,大小小大取中间,大大小小无解.35.(1)计算:(﹣12)﹣1﹣°+(π﹣4)0 (2)解不等式组3(2)64113x x x x --≥⎧⎪-⎨+>⎪⎩.并写出它的整数解. 【答案】(1)0;(2)整数解为2 , 3【解析】分析:(1)先分别计算有理数的负指数幂、绝对值、特殊角的三角函数值以及零次幂,最后再计算加减即可求得答案;(2)分别求出每个不等式的解集,然后再取它们的公共部分,进而求出整数解即可本题解析:(1)(﹣)﹣1﹣|1﹣|+2sin60°+(π﹣4)0=-2﹣+1+2×+1=-2﹣+1++1=0.(2)解:由①得2x ≥由②得4x <∴此不等式组的解集为24x ≤<整数解为2, 336.求不等式组231320x x -≤⎧⎨+>⎩的解集. 【答案】223x -<≤. 【解析】分析:分别解不等式,找出解集的公共部分即可.详解:231,320x x -≤⎧⎨+>⎩①②解不等式①,得 2x ≤;解不等式②,得2 3x >-; 原不等式组的解集为223x -<≤. 点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.37.解不等式组2(1)31132x x x x +≤-⎧⎪+⎨<⎪⎩【答案】x ≥3.【解析】分析:首先分别求出每一个不等式的解,从而得出不等式组的解集. 详解:解不等式①:2x+2≤3x-1 即x ≥3; 解不等式②:2x<3(x+1) 即x>-3;∴该不等式组的解集为x ≥3.点睛:本题主要考查的是不等式组的解法,属于基础题型.理解不等式的性质是解题的关键.38.(1)解不等式组:22(1)43x x x x --⎧⎪⎨≤-⎪⎩< (2)解方程:3323x x x x --=- 【答案】(1)0<x ≤3(2)x=32或x=-32 【解析】试题分析:()1分别解不等式找出解集的公共部分即可.()2设3x y x -=,方程变形为:32y y ,-=解方程求出y 的值,再代入3x y x -=,求出x ,注意检验.试题解析:(1)()2214,3x x x x <①②⎧--⎪⎨≤-⎪⎩由①得:0x >,由②得:3x ≤,则不等式组的解集为03x <≤;(2)设3x y x-=,方程变形为:32y y ,-= 去分母得:2230y y --=,解得:1y =-或3y ,= 可得31x x -=-或33x x-=, 解得:32x =或32x =-, 经检验32x =与32x =-都是分式方程的解. 39.解不等式组12655x x x ->⎧⎨≤+⎩①② 请结合题意填空,完成本题的解答. (Ⅰ)解不等式Ⅰ,得 ;(Ⅰ)解不等式Ⅰ,得 ;(Ⅰ)把不等式Ⅰ和Ⅰ的解集在数轴上表示出来.(Ⅰ)原不等式组的解集为 .【答案】(Ⅰ)x >3;(Ⅰ)x ≤5;(Ⅰ)见解析;(Ⅰ)3<x ≤5.【解析】【分析】【详解】解:(Ⅰ)解不等式Ⅰ,得:x >3;(Ⅰ)解不等式Ⅰ,得:x ≤5;(Ⅰ)把不等式Ⅰ和Ⅰ的解集在数轴上表示出来.(Ⅰ)原不等式组的解集为3<x ≤5.40.解不等式(组),并把它的解集在数轴上表示出来: (1)0.10.81120.63x x x ++-<-; (2)13(1)8321232x x x x --<-⎧⎪--⎨≤-⎪⎩ 【答案】(1) x <3 ;(2) -2<x ≤2【解析】分析:(1)根据一元一次不等式的解法思路有移项、化简(同乘除)可求得;(2)根据求一元一次不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)可求得.详解:(1)x 0.1x 0.8x 1120.63++-<-, 化简得:2x −x 86+<1−x 13+, 去分母得:3x −(x+8)<6−2(x+1),去括号得:3x −x −8<6−2x −2,移项合并得:4x<12,化系数为1得:x<3.在数轴上表示得:(2)()1318x 3x 21232x x ⎧--<-⎪⎨--≤-⎪⎩①②,由①得:x>−2,由②得:x⩽2,∴原不等式组的解集为:−2<x⩽2;在数轴上表示为:点睛:本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.。

人教版数学七年级下册第九章 9.2一元一次不等式习题练习(附答案)

人教版数学七年级下册第九章 9.2一元一次不等式习题练习(附答案)

人教版数学七年级下册第九章 9.2一元一次不等式习题练习(附答案)一、选择题1.若关于x 、y 的二元一次方程组{3x −y =−1−a,x −3y =3的解满足x -y >-2,则a 的取值范围是( ) A .a <4B . 0<a <4C . 0<a <10D .a <102.若不等式ax -2>0的解集为x <-2,则关于y 的方程ay +2=0的解为( )A .y =-1B .y =1C .y =-2D .y =23.小明用100元钱去购买笔记本和钢笔共30件,如果每枝钢笔5元,每个笔记本2元,那么小明最多能买多少枝钢笔.( )A . 11B . 12C . 13D . 144.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计),某人从甲地到乙地经过的路程是x 千米,出租车费为21.5元,那么x 的最大值是( )A . 11B . 8C . 7D . 55.初三的几位同学拍了一张合影作留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为( )A . 至多6人B . 至少6人C . 至多5人D . 至少5人6.定义运算:a *b ,当a >b 时,有a *b =a ,当a <b 时,有a *b =b ,如果(x +3)*2x =x +3,那么x 的取值范围是( )A .x <3B .x >3C .x <1D . 1<x <37.不等式|x -2|>1的解集是( )A .x >3或x <1B .x >3或x <-3C . 1<x <3D . -3<x <3二、填空题8.关于x 的方程3(x +2)=k +2的解是正数,则k 的取值范围是________.9.若-3是关于x 的方程x−a 3-2−x 4=1的解,则x−a 3-2−x 4≥1的解集是__________.10.为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,最多用____________资金购买书桌、书架等设施.11.一个工程队计划用6天完成300土方的工程,实际上第一天就完成了60方土,因进度需要,剩下的工程所用的时间不能超过3天,那么以后几天平均至少要完成的土方数是_________. 12.若关于x 的不等式(a -2)x >a -2解集为x <1,化简|a -3|=______.三、解答题13.已知方程组{x −y =2a,2x +3y =5−a的解为非负数,求整数a 的值. 14.若关于x 的方程2x -3m =2m -4x +4的解不小于78-1−m 3,求m 的最小值.15.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4:3,单价和为42元.(1)甲、乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,问甲种票最多买多少张?16.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为________.(2)解不等式|x -3|+|x +4|≥9;(3)若|x -3|+|x +4|≥a 对任意的x 都成立,求a 的取值范围.17.解不等式:5x+12-x−24>5x−16+x−33.答案解析1.【答案】D【解析】在关于x 、y 的二元一次方程组{3x −y =−1−a①,x −3y =3②中, ①+②,得4x -4y =2-a ,即x -y =12-a 4,∵x -y >-2,∴12-a 4>-2,解得a <10,故选D.2.【答案】D【解析】ax -2>0,移项,得ax >2,∵解集为x <-2,则a =-1,则ay +2=0,即-y +2=0,解得y =2.故选D.3.【答案】C【解析】设买x 支钢笔,则笔记本有(30-x )本,则有5x +2(30-x )≤100,即3x ≤40,解得x ≤1313.因此最多能买13支钢笔.故答案为13.4.【答案】B【解析】根据题意得8+2.6(x -3)≤21.5,解得x ≤8.19,∵不足1千米按1千米计,∴x 的最大值是8.故选B.5.【答案】B【解析】设参加合影的同学人数为x 人,则有5+0.5x <1.5x ,解得x >5,∵x 取正整数,∴参加合影的同学人数至少为6人.故选B.6.【答案】A【解析】∵(x +3)*2x =x +3,∴x +3>2x ,x <3,故选A.7.【答案】A【解析】∵|x -2|>1,∴x -2>1或x -2<-1;所以解集为x >3或x <1;故选A.8.【答案】k >4【解析】由方程3(x +2)=k +2去括号移项,得3x =k -4,∴x =k−43, ∵关于x 的方程3(x +2)=k +2的解是正数,∴x =k−43>0,∴k >4. 9.【答案】x ≥-3【解析】把x =-3代入方程x−a 3-2−x 4=1,可得a =-394, 把a =-394代入x−a 3-2−x 4≥1,解得x ≥-3,故答案为x ≥-3.10.【答案】7 500元【解析】设用于购买书桌、书架等设施的资金为x 元,则购买书籍的有(30 000-x )元, 根据题意得30 000-x ≥3x ,解得x ≤7 500.即最多用7 500元购买书桌、书架等设施;故答案是7 500元.11.【答案】80【解析】设以后几天平均每天完成x 土方.由题意得:3x ≥300-60,解得x ≥80答:以后几天平均至少要完成的土方数是80土方.故答案为80.12.【答案】3-a【解析】∵关于x 的不等式(a -2)x >a -2解集为x <1,∴a -2<0,即a <2,∴原式=3-a .故答案为3-a .13.【答案】解:{x −y =2a①,2x +3y =5−a②,①×3+②,得5x =6a +5-a ,即x =a +1≥0,解得a ≥-1;②-①×2,得5y =5-a -4a ,即y =1-a ≥0,解得a ≤1;则-1≤a ≤1,即a 的整数值为-1,0,1.【解析】用加减消元法解方程组,求出x 和y (x 和y 均为含有a 的代数式),再根据x 、y 的取值即可列出关于a 的不等式组,即可求出a 的取值范围,进一步即可求解.14.【答案】解:关于x 的方程2x -3m =2m -4x +4的解为x =5m+46, 根据题意,得5m+46≥78-1−m 3,去分母,得4(5m +4)≥21-8(1-m ),去括号,得20m +16≥21-8+8m ,移项,合并同类项,得12m ≥-3,系数化为1,得m ≥-14.所以当m ≥-14时,方程的解不小于78-1−m 3,m 的最小值为-14. 【解析】首先求解关于x 的方程2x -3m =2m -4x +4,即可求得x 的值,根据方程的解的解不小于78-1−m 3,即可得到关于m 的不等式,即可求得m 的范围,从而求解.15.【答案】解:(1)设甲票价为4x 元,乙为3x 元,∴3x +4x =42,解得x =6,∴4x =24,3x =18, 答:甲乙两种票的单价分别是24元、18元;(2)设甲种票有y 张,则乙种票(36-y )张,根据题意得24y +18(36-y )≤750,解得y ≤17,答:甲种票最多买17张.【解析】(1)设甲票价为4x元,乙为3x元,根据单价和为42元得到关于x的一元一次方程,解方程得x的值,然后分别计算4x与3x即可;(2)设甲种票有y张,则乙种票(36-y)张,根据购买的钱不超过750元得到不等式,求出解集中的最大整数即可.16.【答案】解:(1)方程|x+3|=4的解就是在数轴上到-3这一点,距离是4个单位长度的点所表示的数,是1和-7.故解是1和-7;(2)由绝对值的几何意义知,该方程表示求在数轴上与3和-4的距离之和为大于或等于9的点对应的x的值.在数轴上,即可求得x≥4或x≤-5.(3)|x-3|+|x+4|即表示x的点到数轴上与3和-4的距离之和,当表示对应x的点在数轴上3与-4之间时,距离的和最小,是7.故a≤7.【解析】(1)根据已知条件可以得到绝对值方程,可以转化为数轴上,到某个点的距离的问题,即可求解;(2)不等式|x-3|+|x+4|≥9表示到3与-4两点距离的和,大于或等于9个单位长度的点所表示的数;(3)|x-3|+|x+4|≥a对任意的x都成立,即求到3与-4两点距离的和最小的数值.17.【答案】解:去分母得6(5x+1)-3(x-2)>2(5x-1)+4(x-3),去括号得30x+6-3x+6>10x-2+4x-12,移项得30x-3x-10x-4x>-2-12-6-6,合并同类项,得13x>-26,系数化为1,得x>-2.【解析】利用不等式的基本性质,即可求得原不等式的解集.。

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案) (27)

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案) (27)

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案) 解不等式组205121123x x x -+-≥⎪+⎧⎪⎨⎩>,把它的解集在数轴上表示出来,并求该不等式组所有整数解的和.【答案】-1≤x <2.0.【解析】试题分析:先求出不等式组的解集,再在数轴上表示出不等式组的解集,最后求出不等式组的整数解的和即可. 试题解析:205121123x x x -+-⎧+≥⎪⎨⎪⎩>①② 解不等式①,得:x <2;解不等式②,得:x ≥-1;所以不等式组的解集为:-1≤x <2.在数轴上表示为:该不等式组所有整数解的和为:-1+0+1=0.考点:1.解一元一次不等式组;2.在数轴上表示不等式组的解集.62.解不等式(组):(1)2151 0?39x x ---< (2)321 541x x x x -+++⎧⎨⎩<>.【答案】(1)x <2;(2)x <43. 【解析】试题分析:按解一元一次不等式(组)的步骤求解即可.试题解析:(1)去分母得:3(2x-1)-(5x-1)<0去括号,得:6x-3-5x+1<0合并同类项,得:x-2<0解得:x <2;(2)321 541x x x x ⎧⎩-+++⎨<①>②解不等式①,得:x <32; 解不等式②,得:x <43. 所以,不等式组的解集为:x <43. 考点:解一元一次不等式(组).63.解不等式组21511{32513(1)x x x x -+-≤-+①<②,把它的解集在数轴上表示出来,并求该不等式组所有整数解的和.【答案】不等式组的解集为:-1≤x <2,不等式组所有整数解的和0.【解析】试题分析:求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,找出不等式组的整数解,相加即可. 试题解析:21511{32513(1)x x x x -+-≤-+①<②∵解不等式①得:x ≥-1,解不等式②得:x <2,∵不等式组的解集为:-1≤x <2,在数轴上表示不等式组的解集为:∵不等式组的整数解为-1,0,1,∵不等式组所有整数解的和是:-1+0+1=0.考点:1.解一元一次不等式组;2.不等式的性质;3.在数轴上表示不等式的解集;4.解一元一次不等式;5.一元一次不等式组的整数解.64.(1)解方程:2x -1+x +2=0(2)解不等式组:11123x x +-+≤. 【答案】(1)x=-13;(2)x ≤1. 【解析】试题分析:(1)首先进行去分母,然后得出方程的解;(2)首先进行去分母,然后得出不等式的解.试题解析:(1)2x -1+x +2=0解得:x=-13经检验:x =-13是原方程的根 (2)3(x +1)+2(x -1)≤6解得:x ≤1∵原不等式的解集是x ≤1考点:(1)解分式方程;(2)解不等式.65.(1)计算:12301(3)sin-︒+;(2)解不等式组:21312223xx x-+⎧-+⎪⎨⎪⎩><.【答案】(1)72;(2)2<x<135.【解析】试题分析:(1)原式利用算术平方根的定义,特殊角的三角函数值,以及负整数指数幂法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.试题解析:(1)原式=312322-⨯+=72;(2)21312223xx x-+-+⎧⎪⎨⎪⎩>①<②,由①得:x>2,由②得:x<135,则不等式组的解集为2<x<135.考点:1.实数的运算;2.负整数指数幂;3.解一元一次不等式组;4.特殊角的三角函数值.66.为了迎接“五•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:已知:用3600元购进甲种运动鞋的数量与用3000元购进乙种运动鞋的数量相同.(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21600元,且不超过22440元,问该专卖店有多少种进货方案?【答案】(1) m=120;(2)15种.【解析】试题分析:(1)用总价除以单价表示出购进鞋的数量,根据两种鞋的数量相等列出方程求解即可;(2)设购进甲种运动鞋x 双,表示出乙种运动鞋(200-x )双,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据鞋的双数是正整数解答即可.试题解析:(1)依题意得360030002m m =-, 整理得,3600(m-2)=3000m ,解得m=120,经检验,m=120是原分式方程的解,所以,m=120;(2)设购进甲种运动鞋x 双,则乙种运动鞋(200-x )双,根据题意得,()()()()()()24012016010020021600{24012016010020022440x x x x -+--≥-+--≤, 不等式组的解集是160≤x ≤174,∵x 是正整数,174-160+1=15,∵共有15种方案.考点:分式方程的应用;一元一次不等式组的应用.67.学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房也不满;则学校有多少间宿舍,七年级一班有多少名女生?【答案】5间宿舍,30名女生.【解析】试题分析:首先设学校有x 间宿舍,则七年级一班有(5x+5)名女生,根据题意列出不等式,然后根据x 为正整数,求出x 的值,从而得出班级女生的人数.试题解析:设学校有x 间宿舍,则七年级一班有(5x+5)名女生由题意得55358(1)55x x x +<⎧⎨->+⎩ 解得:1363x << 又∵x 为正整数 ∴x=5 则5x+5=30答:学校有5间宿舍,则七年级一班有30名女生考点:不等式组的应用68.解下列不等式(组),并把解集在数轴上表示出来(1)121133x x x -+-≤+ (2)⎪⎩⎪⎨⎧-<--≥+-xx x x 6)1(31324 【答案】(1)、12x ≥;(2)、21≤-x . 【解析】试题分析:(1)、首先将原不等式的分母去掉,然后进行去括号,移项,合并同类型求出不等式的解,最后将不等式的解在数轴上表示出来;(2)、首先分别求出每个不等式的解,从而求出不等式组的解集,最后求出不等式组的解.试题解析:(1)、原不等式可化为:3(1)213x x x --≤++ 去括号得:3151x x -+≤+移项,合并同类项得:63x -≤- 系数化为1,得:12x ≥ 数轴为:(2)、原不等式组可化为:4621336x x x x -+≥⎧⎨-+<-⎩ 222x x -≥-⎧⇔⎨-<⎩ 21x x ≤⎧⇔⎨>-⎩ 12x ⇔-<≤ 数轴为:考点:(1)、解不等式;(2)、解不等式组 69.解一元一次不等式组3(3)42113x x x x -≥-⎧⎪+⎨-⎪⎩> 【答案】1≤x <4.【解析】试题分析:分别求出每个不等式的解集,再取它们的公共部分即可. 试题解析:3(3)42113x x x x -≥-⎧⎪⎨+-⎪⎩①>② 解不等式①,得x ≥1解不等式②,得x <4∴此不等式组的解集为1≤x <4.考点:解一元一次不等式组.70.求一元一次不等式组⎩⎨⎧->-<43343x x x 的整数解,将解得的整数分别写在相同的卡片上,背面朝上,随机抽取一张,不放回,再抽出一张,把先抽出的数字作为横坐标,后抽出的作为纵坐标,这样的点在平面直角坐标系内有若干个,请用列表或树状图等方法表示出来,并求出点在坐标轴上的概率. 【答案】23. 【解析】试题分析:首先求出不等式组的解,然后得出整数解,根据题意画出表格,然后得出概率.试题解析:不等式组解得-1<x <3 ; 整数解 0,1,2列表得:6个点:(0,1);(0,2);(1,0);(1,2);(2,0);(2,1) 点在坐标轴上的概率为32. 考点:(1)、解不等式组;(2)、概率的计算.。

数学人教版七年级下册9.3.2一元一次不等式组第二课时同步测试题

数学人教版七年级下册9.3.2一元一次不等式组第二课时同步测试题

9.3.2一元一次不等式组的运用同步测试题一、选择题1、若不等式组的解集为,则的取值范围为()A. B. C. D.2、若关于的不等式组有3个整数解,则的值可以是()A.-2B.-1C.0 D.13、不等式的解集是,则m的取值范围是()A.m≤2 B.m≥2 C.m≤l D.m>l4、某商品的进价为120元,现打8折出售,为了不亏损,该商品的标价至少应为()A.96元;B.130元;C.150元;D.160元.5、某商品原价800元,出售时,标价为1200元,要保持利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折6、小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是()A.18千克B.22千克C.28千克D.30千克7、某旅行社某天有空房10间,当天接待了一个旅游团,当每个房间只住3人时,有一个房间住宿情况是不满也不空,若旅游团的人数为偶数,求旅游团共有多少人()A. 27B. 28C.29D.308、一家服装商场,以1 000元/件的价格进了一批高档服装,出售时标价为1 500元/件,后来由于换季,需要清仓处理,因此商场准备打折出售,但仍希望保持利润率不低于5%,那么该商场至多可以打________折.A.9B.8C.7D.69. 小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x根火腿肠,则关于x的不等式表示正确的是()A. 3×4+2x<4 B.3×4+2x≤24 C.3x+2×4≤24 D.3x+2×4≥2410. 小颖准备用21元钱买笔和笔记本,已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买几支笔()A.1 B.2 C.3 D.411. 某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打()A.六折B.七折C.八折D.九折12 现用甲、乙两种运输车将46吨抗震物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排()A.4辆B.5辆C.6辆D.7辆二、填空题13、如果不等式组的解集是,那么的值为.14、若不等式组无解.则m的取值范围是______.15、已知关于x的不等式3x-a>x+1的解集如图所示,则 a的值为_________.16、某次数学测验中共有16道题目,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对___12___道题,成绩才能在60分以上.17、若干名学生分宿舍,每间4人余20人,每间8人,其中一间不空也不满,则宿舍有间。

人教版七年级数学下册第九章第三节一元一次不等式组复习题(含答案) (73)

人教版七年级数学下册第九章第三节一元一次不等式组复习题(含答案) (73)

人教版七年级数学下册第九章第三节一元一次不等式组复习试题(含答案)解下列方程或不等式(组):(1)()3142x x -+≥ (2)()3511211x x x -<+⎧⎨->⎩【答案】(1)1x ≥-;(2)382x << 【解析】【分析】(1)先去括号,再移项合并同类项即可;(2)先根据解一元一次不等式的一般步骤:去括号、移项、合并同类项、系数化为1,解得各自的解集,再求得不等式组的解集即可.【详解】(1)原不等式去括号得:3342x x -+≥移项得:3234x x -≥-合并同类项1x ≥-∴原不等式的解集为:1x ≥-;(2)先解不等式:3511x x -<+移项得:3115x x -<+合并同类项得:216x <系数化成1得:8x <再解不等式:()211x ->去括号得:221x ->移项得:212x>+合并同类项得:23x>系数化成1得:32x>∴原不等式组的解集为:38 2x<<【点睛】本题考查一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.52.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【答案】(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【解析】【分析】(1)设该旅行团中成人x 人,少年y 人,根据儿童10人,成人比少年多12人列出方程组求解即可;(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可;②分情况讨论,分别求出在a 的不同取值范围内b 的最大值,得到符合题意的方案,并计算出所需费用,比较即可.【详解】解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩. 答:该旅行团中成人17人,少年5人.(2)∵①成人8人可免费带8名儿童,∴所需门票的总费用为:()10081000.851000.6108=1320⨯+⨯⨯+⨯⨯-(元).②设可以安排成人a 人、少年b 人带队,则11715a b ,. 当1017a 时,(ⅰ)当10a =时,10010801200b ⨯+,∴52b , ∴2b =最大值,此时12a b +=,费用为1160元.(ⅱ)当11a =时,10011801200b ⨯+,∴54b, ∴1b =最大值,此时12a b +=,费用为1180元.(ⅲ)当12a 时,1001200a ,即成人门票至少需要1200元,不合题意,舍去.当110a <时,(ⅰ)当9a =时,100980601200b ⨯++,∴3b ≤,∴3b =最大值,此时12a b +=,费用为1200元.(ⅱ)当8a =时,100880601200b ⨯++,∴72b ≤, ∴3b =最大值,此时1112a b +=<,不合题意,舍去.(ⅲ)同理,当8a <时,12a b +<,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【点睛】本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.53.解不等式组523(2)15x x x x ->-⎧⎨->-⎩,并把不等式组的解集表示在数轴上. 【答案】﹣2<x ≤3,见解析.【解析】【分析】首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集.【详解】解:523(2)15x x x x ->-⎧⎨->-⎩①② 由①得:x >﹣2,由②得:x ≤3,∴不等式组的解集为:﹣2<x ≤3.在数轴表示为.【点睛】本题考查解一元一次不等式组,熟练掌握计算法则是解题关键.54.解不等式组:523(1)37122x xx x-+⎧⎪⎨-≥-⎪⎩>,并把它的解在数轴上表示出来.【答案】52<x≤4【解析】【分析】依次求出各不等式,再找到其公共解集. 【详解】解:523(1)37122x xx x-+⎧⎪⎨-≥-⎪⎩>①②,解不等式组:解①得:x>52解①得:x≤4,故不等式组的解是52<x≤4.故答案为:52<x≤4.【点睛】此题主要考查不等式的解集,解题的关键是熟知不等式的性质.55.如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①x ﹣(3x +1)=﹣5;②23x +1=0;③3x ﹣1=0 中,不等式组25312x x x x -+>-⎧⎨->-+⎩的关联方程是 (填序号); (2)若不等式组1321x x x +>-+⎧⎨-<⎩的某个关联方程 2x-m=1 的解是整数, 求 m 的值;(3)若方程12﹣12 x =12 x ,3+x =2(x +1 2)都是关于 x 的不等式组22x x m x m <-⎧⎨-≤⎩的关联方程,直接写出 m 的取值范围. 【答案】(1)①;(2)m =3;(3)0≤m <0.5.【解析】【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其整数解,根据关联方程的定义写出一个解为2的方程即可;(3)先求出方程的解和不等式组的解集,即可得出答案.【详解】(1)由不等式组25312x x x x -+>-⎧⎨->-+⎩得,3 3.54x <<, 由x ﹣(3x+1)=﹣5,解得,x =2,故方程①x ﹣(3x+1)=﹣5 是不等式组的关联方程,由23x +1=0 得,x =32-,故方程②23x +1=0 不是不等式组25312x x x x -+>-⎧⎨->-+⎩的关联方程, 由 3x ﹣1=0,得 x =13,故方程③3x ﹣1=0 不是不等式组25312x x x x -+>-⎧⎨->-+⎩的关联方程, 故答案为:①;(2)由不等式组1321x x x +>-+⎧⎨-<⎩,解得,1<x <3,则它的关联方程的解是整数,x=2 关联方程 2x-m=1 的解,故 m =3;(3)由12 ﹣12 x =12 x ,得 x =0.5,由 3+x =2(x +12)得 x =2, 由不等式组 22x x m x m<-⎧⎨-⎩ ,解得,m <x ≤2+m , ∵方程 12﹣1 2 x =12x ,3+x =2(x +1 2 )都是关于 x 的不等式组22x x m x m <-⎧⎨-⎩的关联方程, ∴ 0.522m m <⎧⎨+⎩ ,得 0≤m <0.5, 即 m 的取值范围是 0≤m <0.5. 【点睛】本题主要考查解一元一次方程和一元一次不等式组,熟练掌握解一元一次方程和一元一次不等式组的技能是解题的关键.56.(1)解不等式:2x ≤3(x ﹣1)+4(并把解集在数轴上表示出来)(2)解不等式组21321 3232x xx++⎧->⎪⎨⎪-≥⎩【答案】(1) x ≥-1; 解集在数轴上表示见解析;(2) x<-2.【解析】【分析】(1)先解出不等式的解集,再在数轴上表示;(2)先分别求出个不等式的解集,再求不等式组的解集.【详解】解:(1)2x ≤3(x﹣1)+42x≤3x-3+4-x≤1x≥-1在数轴上表示如下:(2)213213232x xx++⎧->⎪⎨⎪-≥⎩①②由①得x<-2由②得x<1所以不等式组的解集为:x<-2 【点睛】本题考查不等式和不等式组的解法,运用数轴确定不等式组的解集是解答本题的关键.57.解不等式组11211x x ①②+-⎧⎨-≤⎩;请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得____________________;(Ⅱ)解不等式②,得____________________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为_______________________.【答案】(Ⅰ)2x -;(Ⅱ)1x ≤;(Ⅲ)见解析;(Ⅳ)21x -.【解析】【分析】(I )先移项合并,再未知数的系数化为1,即可得到不等式的解集; (II )先移项合并,再未知数的系数化为1,即可得到不等式的解集; (III )根据求出每一个不等式的解集,将解集表示在数轴上表示出来; (IV )取不等式①②的解集的公共部分即可.【详解】解:(Ⅰ).解不等式①,得2x -,故答案为:2x -,(Ⅱ)解不等式②,得1x ≤;故答案为:1x ≤,(III )把不等式①和②的解集在数轴上表示出来.如图:(IV )原不等式组的解集为:21x - ;故答案为: 21x - ;【点睛】本题考查了解一元一次不等式组以及把不等式组的解集画在数轴上,掌握不等式的解法是解题的关键.58.解下列不等式组,并把解集在数轴上表示出来.(1) 2+134+)17(-x x ⎧⎨⎩①<≥② ;(2) 3(2)8143x x x x +>+⎧⎪⎨-≥⎪⎩①② 【答案】(1)1⩽x<3;(2)1<x ⩽4【解析】【分析】(1)求出不等式的解集,根据不等式的解集找出不等式组的解集即可.(2)求出不等式的解集,根据不等式的解集找出不等式组的解集即可.【详解】(1)∵解不等式①得:x ⩾1,解不等式②得:x<3,∴不等式组的解集为:1⩽x<3,在数轴上表示不等式组的解集为:(2)∵解不等式①得:x>1,解不等式②得:x ⩽4,∴不等式组的解集为:1<x ⩽4,在数轴上表示不等式组的解集为:【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则59.解不等式或方程组:(1)221123x x +--≥; (2)4143314312x y x y +=⎧⎪⎨---=⎪⎩①,②. 【答案】(1)14x ≤; (2)3114x y =⎧⎪⎨=⎪⎩. 【解析】【分析】(1)根据一元一次不等式解法去分母、去括号、移项、合并同类项,即能得到答案.(2)先把方程组整理成一般形式,再利用加减消元法解答.【详解】(1) 解:去分母,得3(2+x)≥2(2x-1)-6去括号,得6+3x ≥4x-2-66+2+6≥4x-3x合并同类项,得14≥x即x ≤14(2)方组可化为x+4y=14① 3x −4y=−2②,①+②得,4x=12,解得x=3,把x=3代入①得,3+4y=14,解得y=114所以,原方程组的解是x=3 y=114 经验证x=3 y=114是原方程组的解. 【点睛】 本题考察了(1)一元一次不等式的解法, 解一元一次不等式的步骤一般为:去分母、去括号、移项、合并同类项、系数化为1,具体要使用哪些步骤要根据具体情况而定.(2)解二元一次方程组,灵活掌握加减消元法,进行解题是关键.60.定义:对于任何有理数m ,符号[]m 表示不大于m 的最大整数.例如:[4.5]4=,[8]8=,[ 3.2]4-=-.(1)填空:[]π=________,[ 2.1]5-+=________;(2)如果52[]43x -=-,求满足条件的x 的取值范围; (3)求方程43[]50x x -+=的整数解.【答案】(1)3,2;(2)1772x <≤;(3)5x =-【分析】(1)根据题目中所给的运算方法求解即可;(2)根据题目中所给的运算方法得到不等式组52433x --≤<-,解不等式组即可求得x 的取值范围;(3)把43[]50x x -+=化为45[]3x x +=,根据题目中所给的运算方法可得4513x x x +-<≤,解不等式组可得85x -<≤-,已知[]x 是整数,设453x n +=(n 是整数),可得354n x -=,即可得35854n --<≤-,解得不等式组可得95n -<≤-,再由n 是整数确定8,7,6,5n =----,因题目求方程43[]50x x -+=的整数解,即可得只有当5n =-,方程的整数解为5x =-.【详解】(1)3,2(2)由题:52433x --≤<- 解得不等式组的解集为:1772x <≤(3)由题得:45[]3x x +=∴4513x x x +-<≤ 解得不等式组的解集为:85x -<≤-∵[]x 是整数设453x n +=(n 是整数) ∴354n x -= 35854n --<≤- 解得不等式组的解集为:95n -<≤-∵n 是整数∴8,7,6,5n =----,∵x 是方程43[]50x x -+=的整数解,∴只有当5n =-,方程的整数解为5x =-.【点睛】本题是阅读理解题,还考查了一元一次不等式组的应用,解题的关键是根据题意列出不等式组,求出不等式组的解集.。

最新 同步练习9.3一元一次不等式组 练习卷 2021-2022学年人教版数学七年级下册

最新 同步练习9.3一元一次不等式组 练习卷 2021-2022学年人教版数学七年级下册

9.3 一元一次不等式组(练习卷)-2022年人教新版数学七年级下册一.选择题(共12小题)1.已知关于x的不等式组只有四个整数解,则实数a的取值范围()A.﹣3≤a<﹣2B.﹣3≤a≤﹣2C.﹣3<a≤﹣2D.﹣3<a<﹣22.不等式组的整数解有()A.0个B.1个C.2个D.3个3.若关于x的一元一次不等式组的解集为,且关于y的方程的解为非负整数,则符合条件的所有整数m的和为()A.2B.7C.11D.104.如果关于x的方程ax﹣3(x+1)=1﹣x有整数解,且关于y的不等式组有解,那么符合条件的所有整数a的个数为()A.3B.4C.5D.65.把不等式组的解集表示在数轴上,下列符合题意的是()A.B.C.D.6.平面直角坐标系中,点A(2x﹣6,x+1)在第二象限,x的取值范围在数轴上表示为()A.B.C.D.7.已知一种新运算定义为:a⊙b=a•b﹣|a﹣2|,则不等式组的非正整数解有()A.1个B.2个C.3个D.4个8.不等式组的最大整数解是()A.﹣3B.﹣2C.﹣1D.09.对于任意的实数m和n,定义一种运算m※n=mn﹣m﹣n+2,例如:2※3=2×3﹣2﹣3+2=3.根据上述定义,不等式组的解集在数轴上表示为()A.B.C.D.10.从﹣3,﹣1,,1,2这五个数中随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的一元一次方程ax+3=5﹣x有整数解,那么这5个数中所有满足条件的a的值之和是()A.﹣2B.﹣C.﹣3D.11.某班数学兴趣小组对不等式组讨论得到以下结论:①若a=5,则不等式组的解集为2<x≤5;②若a=1,则不等式组无解;③若不等式组无解,则a的取值范围为a<2;④若不等式组有且只有两个整数解,则a的值可以为5.1,以上四个结论,正确的序号是()A.①②③B.①③④C.①②④D.①②③④12.若不等式组的最小整数解是a,最大整数解是b,则a+b=()A.2B.1C.4D.0二.填空题(共5小题)13.如果关于x的不等式组的整数解只有1,2,3,那么a的取值范围是,b的取值范围是.14.满足﹣<x<的所有整数x的和是.15.不等式组的解集是.16.如图是一个运行程序,从“输入整数x”到“结果是否>19”为一次操作程序,若输入x后程序操作仅进行了二次就停止,则输入整数x的值可能是.A.7B.9C.11D.1317.已知不等式组的解集为x>﹣1,则k的取值范围是.三.解答题(共3小题)18.(1)解方程组;(2)解不等式(组).19.对x,y定义一种新运算F(x,y)=(ax+by)(x+3y)(其中a,b均为非零常数).例如:F(1,1)=4a+4b;已知F(3,1)=0,F(0,1)=﹣9.(1)求a,b的值;(F(3t+1,t)≥k;(2)若关于F的不等式组恰好只有1个整数解,求k的取值范围.20.对x,y定义一种新运算T,规定:T(x,y)=ax+2by﹣1(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a•0+2b•1﹣1=2b﹣1.(1)已知T(1,1)=4,T(4,﹣2)=7.①求a、b的值;②若关于m的不等式组恰好有4个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x、y都成立(这里T(x,y)和T(y,x)均有意义),则a、b应满足怎样的关系式?10.2直方图-课堂练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知一组数据8,6,10,10,13,11,8,10,12,12,9,8,7,12,9,11,9,10,11,10.那么频率是0.2的一组数据的范围是() A .68x ≤<B .810x ≤<C .1012x ≤<D .1214x ≤<2.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,•7,6,第五组的频率是0.2,故第六组的频率是() A .0.2B .0.1C .0.3D .0.43.某校为了了解七年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15-20次之间的频率是(). A .0.4B .0.33C .0.17D .0.14.在频数分布表中,所有频数之和() A .是1B .等于所有数据的个数C .与所有数据的个数无关D .小于所有数据的个数5.有40个数据,其中最大值为35,最小值为15,若取组距为4,则应该分的组数是(). A .4B .5C .6D .76.如图是若干只电灯泡的使用寿命进行检测的频数分布折线图,由图可知检测的频数为() A .20B .14C .12D .10二、填空题7.在对某班的一次数学测验成绩进行统计分析中,各分数段的人数如图所示.由图可知: (1)该班有________名学生;(2)69.5~79.5这一组的频数是________,频率是________.8.对某班同学的身高进行统计(单位:厘米),频数分布表中,这一组学生人数是12,频率是0.24,则该班共有________名学生;这一组学生人数是8,频率是________.9.在频率分布直方图中,小长方形的面积等于_______,各小长方形的面积和等于_______. 10.一个样本容量为80的样本最大值是123,最小值是50,取10为组距,则可分为_____组11.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的________(填百分数). 三、解答题12.为了调查居民的生活水平,有关部门对某个地区5个街道的50户居民的家庭存款额进行了调查,数据(单位:万元)如下:1.6 3.52.3 6.5 2.2 1.9 6.8 4.8 5.0 4.7 2.31.5 3.1 5.6 3.72.23.3 5.84.3 3.6 3.8 3.05.1 7.0 3.1 2.9 4.4 5.8 3.8 3.7 3.3 5.2 4.14.2 4.8 3.0 4.0 4.6 6.0 2.4 3.3 6.15.0 4.93.0 3.1 7.2 1.8 5.0 1.9将数据适当分组,并绘制相应的频数直方图.13.一个面粉批发商统计了前48个星期的销售量(单位:t):24.4 19.1 22.7 20.4 21.0 21.6 22.8 20.9 21.8 18.624.3 20.5 19.7 23.5 21.6 19.8 20.3 22.4 20.2 22.321.9 22.3 21.4 19.2 23.5 20.5 22.1 22.7 23.2 21.721.1 23.1 23.4 23.3 21.0 24.1 18.5 21.5 24.4 22.621.0 20.0 20.7 21.5 19.8 19.1 19.1 22.4请将数据适当分组,列出频数分布表,画出频数分布直方图,并分析这个面粉批发商每星期进面粉多少吨比较合适.14.为了改进银行的服务质量,随机抽随机抽查了30名顾客,统计了顾客在窗口办理业务所用的时间(单位:分钟)下图是这次调查得到的统计图。

人教版七年级数学下册第九章第三节一元一次不等式组复习题(含答案) (80)

人教版七年级数学下册第九章第三节一元一次不等式组复习题(含答案) (80)

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案) 解不等式组2x 1125x 23x-⎧<⎪⎨⎪+≥⎩,并将它的解集在数轴上表示出来. 【答案】不等式组的解集为31x 2-≤<. 【解析】【分析】首先解每个不等式,然后把每个解集在数轴上表示出来,确定不等式的解集的公共部分就是不等式组的解集.【详解】 解不等式2x 112-<,得:3x 2<, 解不等式5x 23x +≥,得:x 1≥-,将不等式的解集表示在数轴上如下:所以不等式组的解集为31x 2-≤<. 【点睛】本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(,>≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.82.阅读下列材料:小明在一本课外读物上看到一道有意思的数学题:例1、解不等式:1x<,根据绝对值的几何意义,到原点距离小于1的点在数轴上集中在-1和+1之间,如图:所以,该不等式的解集为-1<x<1.因此,不等式1x>的解集为x<-1或x>1.根据以上方法小明继续探究:例2:求不等式:25<<的解集,即求到原x点的距离大于2小于5的点的集合就集中在这样的区域内,如图:所以,不等式25<<的解集为-5<x<-2或2<x<5.x仿照小明的做法解决下面问题:(1)不等式5x<的解集为____________.(2)不等式13x<<的解集是____________.(3)求不等式22x-<的解集.【答案】(1)-5<x<5 ;(2)-3<x<-1或1<x<3;(3)0<x<4.【解析】【分析】(1)参照范例1解答即可;(2)参照范例2解答即可;(3)先把(2)x-看作一个整体,再参照范例2解答即可.【详解】(1)由范例1可知:不等式5x <的解集就是数轴上到原点的距离小于5的点所对应的数组成的,如下图所示:∴不等式5x <的解集为:55x -<<;(2)由范例2可知:求不等式13x <<的解集就是由数轴上到原点的距离大于1,而小于3的点所对应的数组成,如下图所示:∴不等式13x <<的解集是31x -<<-或13x <<;(3)由(1)可知,在不等式22x -<中,当把(2)x -看作一个整体时,(2)x -的取值范围就是数轴上到原点的距离小于2的点表示的数组成的,如下图所示:∴222x -<-<,解得:04x <<∴不等式22x -<的解集是04x <<.【点睛】本题的解题要点有以下两点:(1)知道“绝对值的几何意义:一个数的绝对值就是在数轴上表示这个数的点到原点的距离”;(2)读懂范例,能根据绝对值的几何意义结合每个小题中所给不等式画出对应的图形.83.为了更好地保护环境,某区污水处理厂决定购买A,B两种型号污水处理设备10台,其中每台的价格、月处理污水量如下表.已知购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值;(2)某区污水处理厂决定购买污水处理设备的资金既不少于108万元也不超过110万元,问有几种购买方案?每月最多能处理污水多少吨?【答案】(1)12;10;(2)2000吨.【解析】【分析】(1)由“购买一台A型设备比购买一台B型设备多2万元,购买2台A 型设备比购买3台B型设备少6万元”结合A型设备的售价为a万元/台,B型设备为b万元/台列出方程组,解方程组即可求得a、b的值;(2)根据(1)中所得结果可知,购买这批设备共需资金1210(10)x x+-(万元),结合购买这批设备的资金既不少于108万元也不超过110万元列出不等式组,解不等式组求得其整数解,即可得到所求答案.【详解】(1)根据题意,得:2 326a bb a-=⎧⎨-=⎩,解得:1210a b =⎧⎨=⎩, 答:的值是12,的值是10.(2)设购买A 型设备x 台,则B 型设备购买了(10x -)台,根据题意得: ()()121010108121010110x x x x ⎧+-≥⎪⎨+-≤⎪⎩, 解得:45x ≤≤,∵x 为正整数,∴有两种购买方案,方案1:购买A 型设备4台,则B 型设备6台;方案2:购买A 型设备5台,则B 型设备5台;若按方案1购买设备,每月能处理污水:220×4+180×6=1960(吨); 若按方案2购买设备,每月能处理污水:220×5+180×5=2000(吨); ∵2000>1960,∴每月最多能处理污水2000吨.【点睛】“读懂题意,找到包含未知量和已知量的等量关系与不等关系,并由此列出对应的方程组和不等式组”是解答本题的关键.84.解不等式组:5178(1),852x x x x -<-⎧⎪⎨--≤⎪⎩并写出它的所有的非负整数解. 【答案】不等式组的非负整数解为012,,. 【解析】【分析】先按解一元一次不等式组的一般步骤求出不等式组的解集,再找到符合解集要求的非负整数即可.【详解】解不等式5178(1)x x -<-,得x >-3, 解不等式852x x --≤,得2x ≤, ∴原不等式组的解集为32x -≤<.∴原不等式组的非负整数解为012,,. 【点睛】掌握“解一元一次不等式组的一般步骤和确定不等式组解集的方法:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”是解答本题的关键.” 85.先化简,再求值:221111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x 为整数且满足不等式组11822x x ->⎧⎨-≥⎩. 【答案】1x x +,34. 【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,由x 为整数且满足不等式组11822x x ->⎧⎨-≥⎩可以求得x 的值,然后代入化简后的结果进行计算即可得答案. 【详解】22x 11x 1x 1⎛⎫÷+ ⎪--⎝⎭=()()211111x x x x x +-÷+--=()()21·11x x x x x-+- =1x x +, 由11822x x ->⎧⎨-≥⎩得,2<x ≤3, ∵x 是整数,∴x=3,∴原式=33314=+. 【点睛】本题考查分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解,熟练掌握分式的化简求值的方法是解答本题的关键.86.(1)计算(2)解方程组257320x y x y -=⎧⎨-=⎩(3)解不等式组,()3241213x x x x ⎧--≤⎪⎨+>-⎪⎩并把解集在数轴上表示出来 【答案】(1)-6.5;(2)55x y =⎧⎨=⎩;(3)1≤x<4. 【解析】【详解】分析:(1)根据立方根的意义,平方根的意义求解即可;(2)根据代入消元法解二元一次方程组即可;(3)分别求解两个不等式,然后根据不等式的解集的确定方法求解即可,并表示在数轴上.详解:(1=-2+0-12-4 =-6.5(2)25 7320x yx y-=⎧⎨-=⎩①②由①得y=2x-5 ③把③代入②可得7x-3(2x-5)=20 解得x=5,把x=5代入③可得y=5所以55 xy=⎧⎨=⎩(3)()3241213x xxx⎧--≤⎪⎨+>-⎪⎩①②解不等式①得x≥1解不等式②得x<4所以不等式组的解集为1≤x<4.用数轴表示为:.点睛:此题主要考查了实数的计算、解二元一次方程组、解不等式组,关键是明确各种计算的特点,选择合适的解法求解即可.解二元一次方程组的方法:加减消元法、代入消元法.判断解集的方法:都大取大,都小取小,大小小大取中间,大大小小无解.87.新农村实行大面积机械化种植,为了更好地收割庄稼,农田承包大户张大叔决定购买8台收割机,现有久保田和春雨两种品牌的收割机,其中每台收割机的价格、每天的收割面积如下表.销售商又宣传说,购买一台久保田收割机比购买一台春雨收割机多8万元,购买2台久保田收割机比购买3台春雨收割机多4万元.()1求两种收割机的价格;()2如果张大叔购买收割机的资金不超过125万元,那么有哪几种购买方案?()3在()2的条件下,若每天要求收割面积不低于150亩,为了节约资金,那么有没有一种最佳购买方案呢?【答案】()1久保田收割机的价格为每台20万元,春雨收割机的价格为每台12万元;()2有以下4种购买方案:①久保田收割机3台,春雨收割机5台;②久保田收割机2台,春雨收割机6台;③久保田收割机1台,春雨收割机7台;④久保田收割机0台,春雨收割机8台;()3最佳购买方案为久保田收割机1台,春雨收割机7台.【解析】【分析】()1此题可设两种收割机的价格分别为x 万元,y 万元,根据题中的等量关系列出二元一次方程组解答即可;()2设购买久保田收割机m 台.由“购买收割机的资金不超过125万元”列出关于m 的不等式,通过解不等式求得整数m 的值.()3根据每天要求收割面积不低于150亩列出关于m 的不等式,解答即可.【详解】()1设两种收割机的价格分别为x 万元,y 万元,依题意得x y 82x 3y 4-=⎧-=⎨⎩, 解得{x 20y 12==,故久保田收割机的价格为每台20万元,春雨收割机的价格为每台12万元; ()2设购买久保田收割机m 台,依题意得()20m 128m 125+-≤ 解得5m 38≤, 故有以下4种购买方案:①久保田收割机3台,春雨收割机5台; ②久保田收割机2台,春雨收割机6台;③久保田收割机1台,春雨收割机7台;④久保田收割机0台,春雨收割机8台;()3由题意可得()24m 188m 150+-≥,解得m 1≥,由()1得购买久保田收割机越少越省钱,所以最佳购买方案为久保田收割机1台,春雨收割机7台.【点睛】本题主要考查二元一次方程组和一元一次不等式组的实际应用,解题关键是弄清题意,找到合适的数量关系.88.()12-;()2解方程:4311213x y x y -=⎧+=⎨⎩. ()3解不等式组,()()281043131132x x x x ⎧+≤--⎪⎨++-<⎪⎩并将解集表示在数轴上. 【答案】(1)-2;(2){53x y ==;(3)11x -<≤,将解集表示在数轴上见解析.【解析】【分析】 ()1根据实数混合运算顺序和运算法则计算可得;()2利用加减法求解可得;()3先求出每个不等式的解集,再根据“大小小大中间找”确定不等式组的解集即可得.【详解】()1原式30.52222=-++=-; ()4x 3y 1122x y 13-=⎧⎨+=⎩①② 由2⨯-②①得5y 15=,y 3=,把y 3=代入②得x 5=,所以原方程组的解为{x 5y 3==;()3解不等式()()2x 8104x 3+≤--得:x 1≤, 解不等式x 13x 1132++-<得x 1>-, 则不等式组的解集为1x 1-<≤,将解集表示在数轴上如图所示:【点睛】本题主要考查实数的混合运算、解二元一次不等式组和一元一次不等式组,解题的关键是掌握这些基本运算.89.学校准备举行社团活动,需要向商家购买A,B 两种型号的文化衫50件,己知一件A 型号文化衫的售价比一件B 型号文化衫的售价贵9元,用200元恰好可以买到2件A 型号文化衫和S 件B 型号文化杉.(1)求A 、B 两种型号的文化衫每件的价格分别为多少元?(2)如果用于购买A 、B 两种型号文化杉的金额不少于1500元但不超过1530元,请体求出所有的购买方案?(3)试问在(2)的条件下,学校采用哪种购买方案花钱最少?最少是多少?【答案】(1)购买一件A 型文化衫和一套B 型文化衫各需35元和26元.(2)共有3种方案.(3)学校购买A 型文化衫23件,购买B 型文化衫27件花钱最少,最少花费2070元.【解析】【分析】(1)设B 型号文化衫售价x 元,则A 型号文化衫售价(x+9)元,根据用200元恰好可以买到2件A 型号文化衫和5件B 型号文化衫,列出方程组求解即可;(2)设购买A 型号文化衫y 件,则购买B 型号文化衫(50-y )件,根据购买A 、B 两种型号文化衫的金额不少于1500元但不超过1530元,列出不等式组,求出y 的取值范围,再根据y 只能取整数,即可得出购买方案;(3)根据(2)得出的值分别求出方案1、方案2、方案3的费用,再进行讨论,即可得出答案.【详解】(1)设:A 型文化衫每件x 元,B 型文化衫每件(9x -)元∴()259200x x +-= (列方程组也可)解得:x=35 x-9=26答:购买一件A 型文化衫和一套B 型文化衫各需35元和26元.(2)设购买A 型文化衫a 件,则购买B 型(50-y )件依题意得:()15003526501530y y ≤+-≤ 解得:25222599y ≤≤. ∵a 为整数,所以a =23、24、25所以共有3种方案.方案一:购买A 型文化衫23件,购买B 型文化衫27件.方案二:购买A 型文化衫24件,购买B 型文化衫26件.方案三:购买A 型文化衫25件,购买B 型文化衫25件.(3)方案一花费2070元,方案二花费2160元,方案三花费2250元. 所以,方案一:即:学校购买A 型文化衫23件,购买B 型文化衫27件花钱最少,最少花费2070元【点睛】此题考查了一元一次不等数组的应用和一元一次方程的应用,关键是读懂题意,找出题目中的数量关系,列出方程和不等式组;注意y 只能取整数.90.解不等式组,并将解集在数轴上表示出来 ()121532122x x x ⎧--≤⎪⎨-<+⎪⎩ 【答案】13x -≤<.【解析】【分析】先求出两个不等式的解集,再求其公共解,然后在数轴上表示出来即可.【详解】()121532122x x x ⎧--≤⎪⎨-<+⎪⎩①② 解不等式①,得1x ≥-.解不等式②,得3x <.不等式①、②的解集在数轴上表示如下:∴原不等式组的解集为13x -≤<.【点睛】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.。

9.3 一元一次不等式组 人教版数学七年级下册同步练习(含解析)

9.3 一元一次不等式组 人教版数学七年级下册同步练习(含解析)

第九章 不等式与不等式组9.3 一元一次不等式组基础过关全练知识点1 一元一次不等式组及其解法1.(2022山东潍坊中考)不等式组x+1≥0,x―1<0的解集在数轴上表示正确的是( )A B C D2.(2021广西贵港中考)不等式1<2x-3<x+1的解集是( )A.1<x<2B.2<x<3C.2<x<4D.4<x<53.(2020四川广元中考)关于x的不等式组x―m>0,7―2x>1的整数解只有4个,则m的取值范围是( )A.-2<m≤-1B.-2≤m≤-1C.-2≤m<-1D.-3<m≤-24.如图所示,点C位于点A、B之间(点C不与A、B重合),点C表示1-2x,则x的取值范围是 .5.(2022天津中考)解不等式组2x≥x―1,①x+1≤3.②请结合题意填空,完成本题的解答.(1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .6.(2020山东聊城中考)<7―32x,≥x3+x―44,并写出它的所有整数解.7.(2019湖北黄石中考)若点P,2x―9,其中x满足不―10≥2(x+1),x―1≤7―32x,求点P所在的象限.知识点2 列一元一次不等式组解决实际问题8.李华爸爸计划以60 km/h的平均速度行驶4 h从家去往某地开会,因路上堵车,实际行驶2 h时只行驶了100 km,但是前方路段限速80 km/h.为了按时参会,他在后面的行程中的平均速度为v km/h,则v的取值范围是 .9.【新独家原创】已知某商店某品牌水杯的售价是156元/个,商家出售一个该品牌水杯可获利20%~30%.设该品牌水杯的进价为x元/个,则x的取值范围是 .10.【教材变式·P130T6变式】为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质羊若干只.在准备发放的过程中发现:公羊刚好每户1只,若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.求这批优质羊共多少只.11.(2020河北石家庄二中期末)王老师为了准备奖品,购买了笔记本和钢笔共16件,笔记本一本5元,钢笔一支8元,一共110元.(1)笔记本、钢笔各多少件?(2)王老师计划再购买笔记本和钢笔共8件(钢笔和笔记本每样至少一件),但是两次总花费不得超过160元,有多少种购买方案?请将购买方案一一写出.能力提升全练12.(2022湖南邵阳中考,10,★★☆)关于x的不等式组13x>23―x,x―1<12(a―2)有且只有三个整数解,则a的最大值是( )A.3B.4C.5D.613.(2021广西北部湾经济区中考,12,★★☆)定义一种运算:a*b= a,a≥b,b,a<b,则不等式(2x+1)*(2-x)>3的解集是( )A.x>1或x<13B.―1<x<13C.x>1或x<-1D.x>13或x<-114.(2022福建漳州期中,12,★☆☆)甲种蔬菜保鲜的适宜温度t(单位:℃)的范围是1≤t≤5,乙种蔬菜保鲜的适宜温度t的范围是3≤t≤8,将这两种蔬菜放在一起同时保鲜,则保鲜的适宜温度t的范围是 .15.(2022青海中考,12,★★☆)不等式组2x+4≥0,6―x>3的所有整数解的和为 .16.(2021黑龙江龙东地区中考,15,★★☆)关于x的一元一次不等式组2x―a>0,3x―4<5无解,则a的取值范围是 .17.(2022四川遂宁中考,19,★★☆)某中学为落实教育部办公厅印发的《关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5 500元,有哪几种购买方案?素养探究全练18.【运算能力】某计算程序如图所示,若开始输入的x的值为正整数.规定:程序运行到“判断结果是否大于10”为一次运算,当x=2时,输出结果为 .若经过2次运算输出结果,求x可以取的所有值. 19.【运算能力】(2022吉林省第二实验学校期中)如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x-6=0的解为x=3,不等式组x―1>0,x<4的解集为1<x<4,则方程2x-6=0是不等式组x―1>0,x<4的关联方程.(1)在方程①3x-3=0;②23x+1=0;③x-(3x+1)=-9中,不等式组2x―9<0,―x+8<x+1的关联方程是 .(填序号)(2)若不等式组3x+6>x+1,x>3(x+1)的一个关联方程的解是整数,且这个关联方程是x+m=0,则常数m= .(3)①解两个方程:x+32=1和x+22+1=x+73.②是否存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程?若存在,直接写出所有符合条件的整数m的值;若不存在,请说明理由.答案全解全析基础过关全练1.B x+1≥0①,x―1<0②,由①得x≥-1,由②得x<1,∴不等式组的解集为-1≤x<1,表示在数轴上如图所示:故选B.2.C 不等式可化为1<2x―3,①2x―3<x+1,②由不等式①,得x>2,由不等式②,得x<4,故原不等式的解集是2<x<4,故选C.3.C 由题意得,不等式组的解集为m<x<3,由不等式组的整数解只有4个,得到整数解为2,1,0,-1,∴-2≤m<-1.4.答案-12<x<0解析 根据题意得1<1-2x<2,解得-12<x<0,∴x的取值范围是-12<x<0.5.解析 (1)解不等式①,得x≥-1.(2)解不等式②,得x≤2.(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为-1≤x≤2.6.解析<7―32x,①≥x3+x―44,②解不等式①,得x<3,解不等式②,得x≥-45,∴不等式组的解集为-45≤x<3,它的所有整数解为0,1,2.7.解析―10≥2(x+1),①x―1≤7―32x,②解不等式①得x≥4,解不等式②得x≤4,则不等式组的解集是x=4,∴x―13=1,2x-9=-1,∴点P的坐标为(1,-1),∴点P在第四象限.8.答案70≤v≤80解析 由题意可得,(4―2)v+100≥60×4,v≤80,解得70≤v≤80.9.答案120≤x≤130解析 可列不等式:1561+30%≤x≤1561+20%,解得120≤x≤130.10.解析 设该村共有x户,则母羊共有(5x+17)只.由题意,得5x+17―7(x―1)>0,5x+17―7(x―1)<3,解得212<x<12.∵x为整数,∴x=11,∴这批优质羊共11+5×11+17=83(只).答:这批优质羊共83只.11.解析 (1)设笔记本有x本,钢笔有y支,依题意,得x+y=16,5x+8y=110,解得x=6,y=10.答:笔记本有6本,钢笔有10支.(2)设购买笔记本m本,则购买钢笔(8-m)支,依题意,得5m+8(8―m)+110≤160, 8―m>0,解得423≤m<8.又∵m为正整数,∴m可以为5,6,7,∴共有3种购买方案,方案1:购买笔记本5本,钢笔3支;方案2:购买笔记本6本,钢笔2支;方案3:购买笔记本7本,钢笔1支.能力提升全练12.C13x>23―x①,x―1<12(a―2)②,由①得x>1,由②得x<a,∴1<x<a,∵不等式组有且仅有三个整数解,即2,3,4,∴4<a≤5,∴a的最大值是5,故选C.13.C 由题意得2x+1≥2―x,2x+1>3或2x+1<2―x, 2―x>3,解得x>1或x<-1,故选C.14.答案3≤t≤5解析 根据题意可知1≤t≤5, 3≤t≤8,解得3≤t≤5.故答案为3≤t≤5.15.答案0解析 2x+4≥0①,6―x>3②,由①得x≥-2,由②得x<3,∴-2≤x<3,x可取的整数有-2,-1,0,1,2,∴所有整数解的和为-2-1+0+1+2=0,故答案为0.16.答案a≥6解析 2x―a>0,①3x―4<5,②解不等式①得x>12a,解不等式②得x<3,∵不等式组无解,∴12a≥3,∴a≥6,故答案为a≥6.17.解析 (1)设篮球的单价为a元,足球的单价为b元,由题意可得2a+3b=510, 3a+5b=810,解得a=120, b=90.答:篮球的单价为120元,足球的单价为90元. (2)设采购篮球x个,则采购足球(50-x)个,∵要求篮球不少于30个,且总费用不超过5 500元,∴x≥30,120x+90(50―x)≤5 500,解得30≤x≤3313,∵x为整数,∴x的值可以为30,31,32,33,∴共有四种购买方案,方案一:采购篮球30个,采购足球20个;方案二:采购篮球31个,采购足球19个;方案三:采购篮球32个,采购足球18个;方案四:采购篮球33个,采购足球17个.素养探究全练18.解析 当x =2时,第1次运算结果为2×2+1=5,第2次运算结果为5×2+1=11,∴当x =2时,输出结果为11.若经过2次运算输出结果,则有(2x +1)×2+1>10,2x +1≤10,解得1.75<x ≤4.5.∵x 为正整数,∴x 可以取的所有值是2、3、4.19.解析 (1)①3x -3=0,3x =3,x =1;②23x +1=0,23x =-1,x =-32;③x -(3x +1)=-9,x -3x -1=-9,-2x =-8,x =4,解不等式组2x ―9<0,―x +8<x +1,得3.5<x <4.5,所以不等式组2x ―9<0,―x +8<x +1的关联方程是③,故答案为③.(2)解不等式组3x +6>x +1,x >3(x +1),得-2.5<x <-1.5,所以不等式组的整数解是x =-2,∵不等式组3x +6>x +1,x >3(x +1)的一个关联方程的解是整数,且这个关联方程是x +m =0,∴把x =-2代入方程x +m =0,得-2+m =0,解得m =2,故答案为2.(3)①x +32=1,x +3=2,x =-1.x +22+1=x +73,3(x +2)+6=2(x +7),3x +6+6=2x +14,3x -2x =14-6-6,x =2.②不存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程,理由:解不等式组x+m>2,2x+3m≤2,得2―m<x≤2―3m2,假如方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程,则2-m<-1且2―3m2≥2,<―1,≥2,得不等式组无解,所以不存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x 的不等式组x+m>2,2x+3m≤2的关联方程.。

最新 同步练习9.3 一元一次不等式组 -期末复习训练2021-2022学年人教版数学七年级下册

最新 同步练习9.3 一元一次不等式组 -期末复习训练2021-2022学年人教版数学七年级下册

专题05 : 2022年人教新版七年级(下)9.3 一元一次不等式组- 期末复习专题训练一、选择题(共10小题)1.不等式组中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.2.如图,这是李强同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥15”为一次运行过程.如果程序运行两次就停止,那么x的取值范围是()A.x≥3B.3≤x<7C.3<x≤7D.x≤73.已知不等式组的解集如图所示,则不等式组的整数解个数为()A.2个B.3个C.4个D.5个4.使不等式x﹣2≥﹣3与2x+3<5同时成立的x的整数值是()A.﹣2,﹣1,0B.0,1C.﹣1,0D.不存在5.已知不等式组的解集是x≥2,则实数a的取值范围是()A.a>2B.a≥2C.a<2D.a≤26.已知不等式组无解,则a的取值范围是()A.a≥3B.a≥﹣3C.a≤3D.a≤﹣37.不等式组的解集在数轴上用阴影表示正确的是()A.B.C.D.8.关于x的不等式组有解,那么m的取值范围为()A.m≤﹣1B.m<﹣1C.m≥﹣1D.m>﹣19.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4≤a≤﹣310.不等式组的整数解的个数是()A.2B.3C.4D.5二、填空题(共5小题)11.不等式组的解集是.12.关于x的不等式组有2个整数解,则a的取值范围为.13.数学何老师网购了一本《魔法数学》,同学们想知道书的价格,何老师让他们猜.甲说:“至少15元.”乙说:“至多25元.”丙说:“至多20元.”何老师说:“你们三个人中只有一人说对了”.则这本书的价格x(元)所在的范围为.14.不等式组的解集是.15.已知关于x的不等式组恰好有2个整数解,则整数a的值是.三、解答题(共5小题)16.解不等式组.17.解不等式组:,并写出它的所有整数解.18.列方程组或不等式解决实际问题:某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和2辆B型车,销售额为70万元;本周已售出3辆A型车和1辆B型车,销售额为80万元.(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?19.求不等式组的整数解.20.解不等式组:,并将解集在数轴上表示.专题05 : 2022年人教新版七年级(下)9.3 一元一次不等式组- 期末复习专题训练参考答案与试题解析一、选择题(共10小题)1.不等式组中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.【解答】解:解不等式①,得:x<1,解不等式②,得:x≥﹣3,则不等式组的解集为﹣3≤x<1,将两不等式解集表示在数轴上如下:故选:C.2.如图,这是李强同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥15”为一次运行过程.如果程序运行两次就停止,那么x的取值范围是()A.x≥3B.3≤x<7C.3<x≤7D.x≤7【解答】解:依题意,得:,解得:3≤x<7.故选:B.3.已知不等式组的解集如图所示,则不等式组的整数解个数为()A.2个B.3个C.4个D.5个【解答】解:由数轴知,不等式组的整数解为﹣1、0、1、2,故选:C.4.使不等式x﹣2≥﹣3与2x+3<5同时成立的x的整数值是()A.﹣2,﹣1,0B.0,1C.﹣1,0D.不存在【解答】解:解不等式x﹣2≥﹣3得x≥﹣1,解2x+3<5得x<1.则公共部分是:﹣1≤x<1.则整数值是﹣1,0.故选:C.5.已知不等式组的解集是x≥2,则实数a的取值范围是()A.a>2B.a≥2C.a<2D.a≤2【解答】解:,∵解不等式①得:x≥2,解不等式②得:x>a,又∵不等式组的解集是x≥2,∴a<2故选:C.6.已知不等式组无解,则a的取值范围是()A.a≥3B.a≥﹣3C.a≤3D.a≤﹣3【解答】解:∵不等式组无解,∴2a﹣5≥3a﹣2,解得:a≤﹣3,故选:D.7.不等式组的解集在数轴上用阴影表示正确的是()A.B.C.D.【解答】解:,由①得x≤2,由②得x>﹣2,故此不等式组的解集为:故选:C.8.关于x的不等式组有解,那么m的取值范围为()A.m≤﹣1B.m<﹣1C.m≥﹣1D.m>﹣1【解答】解:,解不等式x﹣m<0,得:x<m,解不等式3x﹣1>2(x﹣1),得:x>﹣1,∵不等式组有解,∴m>﹣1.故选:D.9.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4≤a≤﹣3【解答】解:解不等式1+5x>3(x﹣1),得:x>﹣2,解不等式≤8﹣+2a,得:x≤4+a,则不等式组的解集为﹣2<x≤4+a,∵不等式组恰有两个整数解,∴不等式组的整数解为﹣1、0,则0≤4+a<1,解得﹣4≤a<﹣3,故选:B.10.不等式组的整数解的个数是()A.2B.3C.4D.5【解答】解:解不等式x+5>3,得:x>﹣2,解不等式x+6>4x﹣3,得:x<3,则不等式组的解集为﹣2<x<3,所以不等式组的整数解为﹣1、0、1、2这4个,故选:C.二、填空题(共5小题)11.不等式组的解集是≤x<2.【解答】解:,解①得:x<2,解②得:x≥,则不等式组的解集是:≤x<2.故答案是:≤x<2.12.关于x的不等式组有2个整数解,则a的取值范围为0≤a<1.【解答】解:解不等式8+2x>0,得:x>﹣4,解不等式x﹣a≤﹣2,得:x≤a﹣2,∵不等式组有两个整数解,∴不等式组的整数解为﹣3、﹣2,∴﹣2≤a﹣2<﹣1,解得0≤a<1,故答案为:0≤a<1.13.数学何老师网购了一本《魔法数学》,同学们想知道书的价格,何老师让他们猜.甲说:“至少15元.”乙说:“至多25元.”丙说:“至多20元.”何老师说:“你们三个人中只有一人说对了”.则这本书的价格x(元)所在的范围为x>25.【解答】解:根据题意可得:,如图:∵三个人中只有一人说对了,∴这本书的价格x(元)所在的范围为x>25.故答案为:x>25.14.不等式组的解集是x≤3.【解答】解:由①得,x≤3,由②得,x<4,故原不等式组的解集为:x≤3.故答案为x≤3.15.已知关于x的不等式组恰好有2个整数解,则整数a的值是﹣2,﹣1.【解答】解:不等式组,由①得:x≥,由②得:x<2,又∵关于x的不等式组恰好有2个整数解,∴不等式组的解集是≤x<2,即整数解为1,0,∴﹣1<≤0,解得:﹣3<a≤﹣1,则整数a的值为﹣2,﹣1,故答案为:﹣2,﹣1.三、解答题(共5小题)16.解不等式组.【解答】解:,解①得x<2,解②得x≥﹣1,所以不等式组的解集为﹣1≤x<2.17.解不等式组:,并写出它的所有整数解.【解答】解:,解不等式①得:x≤1,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤1,∴不等式组的所有整数解为0,1.18.列方程组或不等式解决实际问题:某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和2辆B型车,销售额为70万元;本周已售出3辆A型车和1辆B型车,销售额为80万元.(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?【解答】解:(1)设每辆车A型车的售价为x万元,每辆车B型车的售价为y万元,依题意,得:,解得:,答:每辆车A型车的售价为18万元,每辆车B型车的售价为26万元.(2)设购进A型车m辆,则购进B型车(7﹣m)辆,依题意,得:,解得:3.5≥m≥2.∵m为整数,∴m=2或3,答:有2种购车方案:购进A型车2辆,购B型5辆;购进A型车3辆,购B型4辆.19.求不等式组的整数解.【解答】解:,解不等式①得:x>﹣1,解不等式②得:x≤1,∴原不等式组的解集为:﹣1<x≤1,∴它的整数解是0、1.20.解不等式组:,并将解集在数轴上表示.【解答】解:由①得,x≤2,由②得,x>﹣1,故不等式组的解集为:﹣1<x≤2.在数轴上表示为:用坐标表示地理位置练习题一、选择题1..海事救灾船前去救援某海域失火货轮,需要确定()A.方位B.距离C.方位和距离D.失火轮船的国籍2.如图所示是某动物园的平面示意图,若以猴山为原点,向右的水平方向为x轴正方向,向上的竖直方向为y 轴正方向建立平面直角坐标系,则熊猫馆所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为()A.(2,3)B.(0,3)C.(3,2)D.(2,2)4.点A可用(2,3)表示,如果小惠不想因走到地雷上而结束游戏的话,下列选项中,她应该走()A.(7,2)B.(2,6)C.(7,6)D.(4,5)5.如图,是做课间操时,李明,李刚和李红三人的相对位置,如果用(4,5)表示李明的位置,(2,4)表示李刚的位置,则李红的位置可表示为()A.(0,0)B.(0,1)C.(1,0)D.(1,2)6.如图所示是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向上B.在5km处C.在南偏东15°方向5km处D.在南偏东75°方向5km处二、填空题7.如图,用坐标原点O表示学校的位置,用x轴正方向表示正东方向,用y轴正方向表示正北方向.若李威家在王聪家的正西方向、张颜家的正北方向,则李威家的位置用坐标表示是____距离学校最近的是____家. 8.观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是____.9.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别是A(-2,1)和B(-2,-3),那么第一架轰炸机C的平面坐标是____.10.如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图,若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是____.三、解答题11.常用的确定物体位置的方法有两种.如图10,在4×4的边长为1的小正方形组成的网格中,标有A,B两点(点A,B之间的距离为m).请你用两种不同的方法表述点B相对于点A的位置.12.如图为某废墟示意图,由于雨水冲蚀,残缺不全,依稀可见钟楼坐标为A(5,-2),街口坐标为B(5,2),•资料记载阿明先生的祖居的坐标为(2,1),你能帮助阿明先生找到他家的老屋吗?13.回答下列问题:如图②,已知过点O的所有射线等分圆周且相邻两射线的夹角为15°.(1)点A的极坐标是____;点D的极坐标是__.(2)请在图②中标出点B(5,45°),点E(2,-90°).(3)怎样从点B运动到点C?小明设计的一条路线为:点B→(4,45°)→(3,45°)→(3,30°)→点C.请你设计与小明不同的一条路线,也可以从点B运动到点C.14.国家实施西部大开发,大力进行电网建设,某电厂决定给A,B,C,D四个村庄架设输电线路,已知电厂O及A,B,C,D四个村的位置如图所示.若点A表示为(2,3),那么点O,B,C,D怎样表示?。

11.6《一元一次不等式组》同步练习2(含答案)

11.6《一元一次不等式组》同步练习2(含答案)
x b
A.a b B.a b C.a b 0 D.a b 0
x y 3
7、如果关于 x、y 的方程组 的解是负数,则 a 的取值范围是( )
5km 后,每增加 1km,1.2 元(不足 1km,加价 1.2 元;不足 1km 部分按 1km 计)。现在某
人乘这种出租车从甲地到乙地,支付 17.2 元,则从甲地到乙地路程大约是多少?
2、如果不等式组 无解,问不等式组 的解集是怎样的?
x b y b 1
3、已知 35x 2 5 4x 6 x 1 ,化简 3x 1 1 3x 。
3、已知不等式组 3 的解集为 x 2 ,则( )
x m
A.m 2 B.m 2 C.m 2 D.m 2
x 2
4x 5
2、不等式 1的正整数解为( )
11
A.1 个 B.3 个 C.4 个 D.5 个
2x 1
1
x n 2
-大于-1,又不大于 3,则 m 的取值范围是( )
A.1 m 3 B. 3 m 1 C. 2 m 2 D. 2 m 2


2x 3 5
- 5 -
2、 不等式组 的解集是
x 2
x 1
3、 不等式组 的解集是
x 2
x 2
3 2
- 4 -
探究创新乐园
x 3
1、已知不等式组 。
x a
5、关于不等式组 的解集是( )
x m
A.任意的有理数 B.无解 C.x=m D.x= -m

人教版七年级数学下册第九章第三节一元一次不等式组作业习题(含答案) (38)

人教版七年级数学下册第九章第三节一元一次不等式组作业习题(含答案) (38)

人教版七年级数学下册第九章第三节一元一次不等式组作业复习题(含答案) 解不等式组512(1)131722x x x x +-⎧⎪⎨--⎪⎩ ,并在数轴上表示它的解集. 【答案】14x -【解析】【分析】解不等式组中的每一个不等式,再根据“大大取较大,小小取较小,大小小大取中间,大大小小无解”确定不等式组的解集;【详解】由①得1x - x ≥-1, 由②得:4x ,∴不等式组的解集为14x -正确表示不等式组的解集:【点睛】本题考查解一元一次不等式组,熟练掌握计算法则是解题关键.72.(1)分解因式:①22363mx mxy my -+ ②2x (x 2)(x 2)---(2)解不等式组,并把解集在数轴上表示出来. 45133(1)7x x x x -⎧-≤⎪⎨⎪--<⎩ 【答案】(1)① 23()m x y -;②(1)(1)(2)x x x +--;(2)122x -<≤【解析】【分析】(1)①直接提取公因式3m ,再利用完全平方公式分解因式得出答案;②先去括号合并同类项,再利用平方差公式进行计算即可;(2)分别解不等式进而得出不等式组的解;【详解】解:(1)①原式223(2)m x xy y =-+23()m x y =-②原式 2(1)(2)x x =--(1)(1)(2)x x x =+--(2)解不等式①,得:12x ≤解不等式②,得:2x >- 则不等式组的解集为122x -<≤【点睛】此题考查提公因式法与公式法分解因式,解一元一次不等式组,在数轴上表示不等式的解集,解题关键在于掌握运算法则.73.如果关于x 的方程20x m ++=的解也是不等式组()122238x x x x -⎧>-⎪⎨⎪-≤-⎩一个解,求m 的取值范围.【答案】m ≥0.【解析】【分析】已知方程的解也是不等式组的一个解,则先要解一元一次方程,用含m 的代数式表示出方程的解;接下来解不等式组,确定x 的取值范围;用含m 的代数式替换x 可建立关于m 的不等式,通过解不等式便可使问题得解.【详解】解方程x+2+m=0得x=-m-2. 解不等式12x ->x-2,得x <53, 解不等式2(x-3)≤x-8,得x ≤-2, 所以不等式组()122238x x x x -⎧>-⎪⎨⎪-≤-⎩的解集为x ≤-2. 结合题意可得-2-m ≤-2,解得m ≥0.【点睛】此题考查一元一次不等式组的解,解题关键在于掌握运算法则.74.解不等式组,并在数轴上表示它们的解集.26321054x x x x -<⎧⎪+-⎨-≥⎪⎩ 【答案】613x <≤,数轴见解析【解析】【分析】分别解两个不等式,取两个不等式解集的交集,并在数轴上表示出来即可.【详解】26321054x x x x -<⎧⎪⎨+--≥⎪⎩①② 由①解得:x >-6,由②解得:x ≤13,故不等式组的解集为−6<x ⩽13,在数轴上表示为:【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则.75.解方程(组)()10.20.10.1-0.3-10.30.2x x -=- ()2()()()2134123223x y x y x y x y -⎧+-=-⎪⎨⎪+--=⎩()3212143x x -+-≥- ()4()2731423133x x x x ⎧--⎪⎨+≥-⎪⎩< 【答案】()1-1x =;()221x y =⎧⎨=⎩;()3 x ⩾−12;()4 x ⩾−1. 【解析】【分析】(1)按照解方程的步骤依次进行即可得;(2)将原方程组化为一般式后加减消元法求解即可得;(3)根据解不等式的基本步骤依次进行即可得;(4)根据解不等式组的步骤求解即可.【详解】 (1)213-1=32x x --, 去分母,得:2(2x −1)−6=3(x −3),去括号,得:4x −2−6=3x −9,移项、合并,得:x=−1;(2)原方程组化简为511153x y x y -=--+=⎧⎨⎩①② ①+②×5,得:14y=14,解得y=1,将y=1代入①,得:5x −11=−1,解得:x=2,∴方程组的解为:21x y =⎧⎨=⎩; (3)去分母,得:3(2x −1)−4(x+2)⩾−12,去括号,得:6x −3−4x −8⩾−12,移项、合并,得:2x ⩾−1,系数化为1,得:x ⩾−12; (4)解不等式2x −7<3(x −1),得:x>−4, 解不等式43x+3⩾1−23x ,得:x ⩾−1, ∴不等式组的解集为x ⩾−1.【点睛】此题考查解一元一次不等式组,解一元一次方程,解二元一次方程组,解题关键在于掌握运算法则.76.记()R x 表示正数x 四舍五入后的结果,例如(2.7)3,(7.11)7(9)9R R R ===(1)()R π =_ , R =(2)若1132R x ⎛⎫-= ⎪⎝⎭,则x 的取值范围是 。

人教版七年级数学下册第九章《不等式与不等式组》培优试题(二)

人教版七年级数学下册第九章《不等式与不等式组》培优试题(二)

人教版七年级数学下册第九章《不等式与不等式组》培优试题(二)一.选择题(共10小题,每小题3分,共30分) 1.不等式3(2)4x x -+…的解集是( )A .5x …B .3x …C .5x …D .5x -…2.若点(1,)P m m -在第二象限,则(1)1m x m ->-的解集为( ) A .1x <B .1x <-C .1x >D .1x >-3.如果a b >,则下列不等式一定成立的是( ) A .11a b -<-B .a b ->-C .22ac bc >D .22a b -<-4.已知两个不等式的解集在数轴上如图表示,那么这个解集为( )A .1x -…B .1x >C .31x -<-…D .3x >-5.已知关于x 的不等式(2)1a x ->的解集是12x a<-;则a 的取值范围是( ) A .0a >B .0a <C .2a <D .2a >6.把不等式组13264x x +⎧⎨-->-⎩…中每个不等式的解集在同一条数轴上表示出来, 正确的为( ) A . B . C .D .7.若方程3(1)1(3)5m x m x x ++=--的解是负数,则m 的取值范围是( ) A . 1.25m >-B . 1.25m <-C . 1.25m >D . 1.25m <8.某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( ) A .5千米B .7千米C .8千米D .15千米9.关于x 的不等式组24351x x -<⎧⎨-<⎩的所有整数解是( )A .0,1B .1-,0,1C .0,1,2D .2-,0,1,210.如图,天平右盘中的每个砝码的质量为10g ,则物体M 的质量()m g 的取值范围在数轴上可表示为( )A .B .C .D .二.填空题(共8小题,每小题3分,共24分) 11.x 与5-的差不小于3-,用不等式表示为 .12.不等式13x ->-的正整数解是 . 13.若代数式315x -的值不小于代数式156x -的值,则x 的取值范围是 . 14.小马用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,那么小马最多能买支 钢笔.15.已知实数x ,y ,a 满足34x y a ++=,30x y a --=.若11a -剟,则2x y +的取值范围是 . 16.同时满足310x >和161043x x -<的整数解是 . 17.若关于x 的不等式组010x m x -⎧⎨-<⎩…无解,则m 的取值范围是 .18.武汉东湖高新开发区某企业新增了一个项目,为了节约资源,保护环境,该企业决定购买A 、B 两种型号的污水处理设备共8台,具体情况如下表:经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.设购买A 种型号的污水处理设备x 台,可列不等式组 .三.解答题(共7小题,满分46分,其中19、20、21每小题6分,22题9分,23题6分,24题8分,25题5分)19.解不等式组,并将解集在数轴上表示出来.()()2731,1542x x x x -<-⎧⎪⎨-+⋅⎪⎩①②…20.已知不等式1()23x m m ->-.(1)若其解集为3x >,求m 的值;(2)若满足3x >的每一个数都能使已知不等式成立,求m 的取值范围. 21.方程组323x y x y a -=⎧⎨+=-⎩的解为负数,求a 的范围.22.为了抓住梵净山文化艺术节的商机,某商店决定购进A 、B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件,需要800元. (1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?23.若不等式组2311(3)2x x x +<⎧⎪⎨>-⎪⎩的整数解是关于x 的方程24x ax -=的根,求a 的值. 24.某博物馆的门票每张10元,一次购买30张到99张门票按8折优惠,一次购买100张以上(含100张)按7折优惠.甲班有56名学生,乙班有54名学生.(1)若两班学生一起前往参观博物馆,请问购买门票最少共需花费多少元?(2)当两班实际前往该博物馆参观的总人数多于30人且不足100人时,至少要多少人,才能使得按7折优惠购买100张门票比实际人数按8折优惠购买门票更便宜?25.阅读解题:解方程:|3|1x=.解:①当30x…时,原方程可化为一元一次方程为31x=,它的解是13x=;②当30x<时,原方程可化为一元一次方程为31x-=,它的解是13x=-.请你模仿上面例题的解法,解方程:2|3|513x-+=.2018—2019学年人教版七年级数学下册第九章《不等式与不等式组》培优试题(二)参考简答一.选择题(共10小题)1.A . 2.D . 3.A . 4.A . 5.D . 6.B . 7.A . 8.C . 9.B . 10.C . 二.填空题(共8小题)11. 53x +-… . 12. 1,2 . 13. 1143x … . 14. 13 . 15. 026x y +剟 . 16. 4、5、6、7 . 17. 1m … . 18. 1210(8)89200160(8)1380x x x x +-⎧⎨+-⎩……. 三.解答题(共7小题)19.解不等式组,并将解集在数轴上表示出来.()()2731,1542x x x x -<-⎧⎪⎨-+⋅⎪⎩①②…【解】:解不等式①,得4x >-, 解不等式②,得2x …,把不等式①②的解集在数轴上表示如图,原不等式组的解集为42x -<…. 20.已知不等式1()23x m m ->-. (1)若其解集为3x >,求m 的值;(2)若满足3x >的每一个数都能使已知不等式成立,求m 的取值范围. 【解】:(1)不等式整理得:63x m m ->-, 解得:62x m >-,由不等式的解集为3x >,得到623m -=, 解得: 1.5m =;(2)由满足3x >的每一个数都能使已知不等式成立,得到623m -…, 解得: 1.5m …. 21.方程组323x y x y a -=⎧⎨+=-⎩的解为负数,求a 的范围.【解】:(1)-(2)得:603a y -=< 可得6a <代入(1)得:1103x a =+< 解得3a <-3a ∴<-.22.为了抓住梵净山文化艺术节的商机,某商店决定购进A 、B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件,需要800元. (1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元? 【解】:(1)设该商店购进一件A 种纪念品需要a 元,购进一件B 种纪念品需要b 元,根据题意得方程组得:8395056800a b a b +=⎧⎨+=⎩,解方程组得:10050a b =⎧⎨=⎩, ∴购进一件A 种纪念品需要100元,购进一件B 种纪念品需要50元;(2)设该商店购进A 种纪念品x 个,则购进B 种纪念品有(100)x -个,∴10050(100)750010050(100)7650x x x x +-⎧⎨+-⎩……,解得:5053x 剟,x为正整数,50x =,51,52,53 ∴共有4种进货方案,分别为:方案1:商店购进A 种纪念品50个,则购进B 种纪念品有50个; 方案2:商店购进A 种纪念品51个,则购进B 种纪念品有49个; 方案3:商店购进A 种纪念品52个,则购进B 种纪念品有48个; 方案4:商店购进A 种纪念品53个,则购进B 种纪念品有47个. (3)因为B 种纪念品利润较高,故B 种数量越多总利润越高, 设利润为W ,则关于W 的代数式为:2030(100)103000W x x x =+-=-+.x 越大,103000x -+的值越小,∴选择购A 种50件,B 种50件.总利润502050302500=⨯+⨯=(元)∴当购进A 种纪念品50件,B 种纪念品50件时,可获最大利润,最大利润是2500元.23.若不等式组2311(3)2x x x +<⎧⎪⎨>-⎪⎩的整数解是关于x 的方程24x ax -=的根,求a 的值. 【解】:()231132x x x +<⎧⎪⎨>-⎪⎩①② 解①得22x <-,即1x <-, 解②得23x x >-,即3x >-, 综上可得31x -<<-,x 为整数,故2x =-将2x =-代入24x ax -=, 解得4a =.24.某博物馆的门票每张10元,一次购买30张到99张门票按8折优惠,一次购买100张以上(含100张)按7折优惠.甲班有56名学生,乙班有54名学生.(1)若两班学生一起前往参观博物馆,请问购买门票最少共需花费多少元? (2)当两班实际前往该博物馆参观的总人数多于30人且不足100人时,至少要多少人,才能使得按7折优惠购买100张门票比实际人数按8折优惠购买门票更便宜?【解】:(1)当两个班分别购买门票时, 甲班购买门票的费用为56100.8448⨯⨯=元 乙班购买门票的费用54100.8432⨯⨯=元 甲乙两班分别购买门票共需花费880元 当两个班一起购买门票时,甲乙两班共需花费(5654)100.7770+⨯⨯=元 答:甲乙两班购买门票最少共需花费770元.(2)当多于30人且不足100人时,设有x 人前往参观,才能使得按7折优惠购买100张门票比根据实际人数按8折优惠购买门票更便宜,根据题意得301000.8101000.710x x <<⎧⎨⨯>⨯⨯⎩解得87.5100x <<答:当多于30人且不足100人时,至少有88人前往参观,才能使得按7折优惠购买100张门票比根据实际人数按8折优惠购买门票更便宜. 25.阅读解题:解方程:|3|1x =.解:①当30x …时,原方程可化为一元一次方程为31x =,它的解是13x =; ②当30x <时,原方程可化为一元一次方程为31x -=,它的解是13x =-. 请你模仿上面例题的解法,解方程:2|3|513x -+=. 【解】:当30x -…时,原方程可化为34x -= 它的解是7x =;当30x -<时,原方程可化为(3)4x --= 它的解是1x =-;所以原方程的解是7x =或1x =-.人教版七年级下册第九章《不等式与不等式组》测试题一、单选题(每小题只有一个正确答案)1.下列各式中:①:②:③:④;⑤:⑥,不等式有()A.2个B.3个C.4个D.5个2.若,则下列各式中一定成立的是( )A.B.C.D.3.下列各数中,能使不等式x–3>0成立的是()A.–3 B.5 C.3 D.24.下列说法中,错误的是( )A.不等式x<5的整数解有无数多个 B.不等式x>-5的负整数解集有有限个C.不等式-2x<8的解集是x<-4 D.-40是不等式2x<-8的一个解5.四个小朋友在公园玩跷跷板,他们的体重分别为P,Q,R,S,由图可知,这四个小朋友体重的大小关系是()A.P>R>S>Q B.Q>S>P>R C.S>P>Q>R D.S>P>R>Q6.下列式子①7>4;②3x≥2π+1;③x+y>1;④x2+3>2x;⑤>4中,是一元一次不等式的有()A.4个B.3个C.2个D.1个7.“x的3倍与2的差不大于7”列出不等式是( )A.3x-2>7 B.3x-2<7 C.3x-2≥7 D.3x-2≤78.不等式组的解集在数轴上表示为( )A.B.C.D.9.若关于x的不等式(a–1)x>a–1的解集是x>1,则a的取值范围是()A.a<0 B.a>0 C.a<1 D.a>110.某次知识竞赛共有30道题,每一题答对得5分,答错或不答都扣3分,小亮得分要超过70分,他至少要答对多少道题?如果设小亮答对了x道题,根据题意列式得()A.5x﹣3(30﹣x)>70 B.5x+3(30﹣x)≤70C.5x﹣3(30+x)≥70 D.5x+3(30﹣x)>7011.已知点在第四象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.12.若关于x的不等式组有6个整数解,则m的取值范围是()A.-4<m≤-3 B.-3≤m<-2 C.-4≤m<-3 D.-3<m≤-2二、填空题13.请你写出一个满足不等式2x-1<6的正整数x的值:________.14.不等式12-4x≥0的非负整数解是_______15.x的与12的差是负数,用不等式表示为________.16.某种商品的进价为每件100元,商场按进价提高60%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打________折.17.已知关于X的不等式组的解集为-1<x<2,则(m+n)2019的值是_______.三、解答题18.用不等式表示:(1)7x与1的差小于4;(2)x的一半比y的2倍大;(3)a的9倍与b的的和是正数.19.解下列不等式(或组),并把解集表示在数轴上.①②③④20.解不等式组:并写出它的所有整数解.21.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式已知小诚家距离学校2200米,他步行的平均速度为80米分,跑步的平均速度为200米分若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?22.某单位需要将一批商品封装入库,因此打算购进A、B两种型号的包装盒共100个,若购买3个A型包装盒和2个B型包装盒共需550元,且A型包装盒的单价是3型包装盒单价的3倍,每个A型包装盒可容纳500件该商品,每个B型包装盒可容纳200件该商品。

人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案) (63)

人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案) (63)

人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)不等式组21xx>-⎧⎨<⎩的解集在数轴上表示正确的是A.B.C.D.【答案】C【解析】【分析】先求出的解集,然后在数轴上把解集表示出来即可,不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.【详解】∵21 xx>-⎧⎨<⎩∴解集是-2<x<1,在数轴上可表示为:.故选C.【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.22.某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A.44个B.45个C.104个D.105个【答案】D【解析】【分析】根据题意设出未知数,找出不等关系列出相应的不等式即可.【详解】设这批闹钟至少有x个,根据题意得5500×60+5000(x-60)>550000∴5000(x-60)>5500×40x-60>44∴x>104答:这批闹钟最少有105个.故选D.【点睛】本题考查了实际问题与一元一次不等式,解题的关键是理解题意,根据不等关系列出相应的不等式.二、解答题23.甲、乙两商场以同样价格出售同样的商品,并且各自又推出不同的优惠方案:在甲商场累计购物超过200元后,超出200元的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费.设小李在同一商场累计购物x元,其中x>200.(1)当x为何值时,小李在甲、乙两商场的实际花费相同?(2)根据小李购物花费的不同金额,请你确定在哪家商场购物更合算?【答案】(1)300;(2)当小李购物花费多于200元,少于300元时,在乙商场购物合算;当小李购物花费多于300元时,在甲商场购物合算;当小李购物花费等于300元时,到两家商场购物一样多.【解析】【分析】(1)根据已知得出甲商场200+(x﹣200)×90%以及乙商场100+(x﹣100)×95%,相等列等式,进而得出答案;(2)根据200+(x﹣200)×90%与100+(x﹣100)×95%大于、小于、等于,列三个式子,从而得出正确结论.【详解】(1)依题意,得200+(x﹣200)×90%=100+(x﹣100)×95%,解得x=300.即当x=300时,小李在甲、乙两商场的实际花费相同;(2)①当200+(x﹣200)×90%>100+(x﹣100)×95%时,解得x<300.②当200+(x﹣200)×90%<100+(x﹣100)×95%时,解得x>300.③当200+(x﹣200)×90%=100+(x﹣100)×95%时,解得x=300.答:当小李购物花费少于300元时,在乙商场购物合算;当小李购物花费多于300元时,在甲商场购物合算,当小李购物等于300元时,到两家商场花费一样多.【点睛】本题考查了一元一次不等式和一元一次方程的应用,关键是读懂题意,列出不等式,再根据实际情况进行讨论,不要漏项.24.求不等式5(x+2)≤28﹣2x的非负整数解.【答案】不等式的非负整数解为0、1、2.【解析】【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得不等式的解集,继而可得答案.【详解】解:去括号,得:5x+10≤28﹣2x,移项,得:5x+2x≤28﹣10,合并同类项,得:7x≤18,,系数化为1,得:x≤187则不等式的非负整数解为0、1、2.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.25.解不等式:1123x x +-+≤1并把解集在数轴上表示出来. 【答案】x ≤1,数轴表示见解析.【解析】【详解】去分母得:3x+3+2x ﹣2≤6,移项合并得:5x ≤5,解得:x ≤1,把解集在数轴上表示出来为:【点睛】本题主要考查解不等式和在数轴上表示不等式的解集.用数轴表示不等式解集的方法:(1)定边界点,若含有边界点,解集为实心点,若不含边界,解集为空心圆圈;(2)定方向,大于向右,小于向左.26.先阅读,再完成练习一般地,数轴上表示数x 的点与原点的距离,叫做数x 的绝对值,记作|x|. |x|<3x 表示到原点距离小于3的数,从如图1所示的数轴上看:大于﹣3而小于3的数,它们到原点距离小于3,所以|x|<3的解集是﹣3<x<3;|x|>3x表示到原点距离大于3的数,从如图2所示的数轴上看:小于﹣3的数或大于3的数,它们到原点距离大于3,所以x>3的解集是x<﹣3或x>3解答下面的问题:(1)不等式|x|<5的解集为,不等式|x|>5的解集为.(2)不等式|x|<m(m>0)的解集为.不等式|x|>m(m>0)的解集为.(3)解不等式|x﹣3|<5.(4)解不等式|x﹣5|>3.【答案】(1)﹣5<x<5、x<﹣5或x>5;(2)﹣m<x<m、x<﹣m或x>m;(3)﹣2<x<8;(4)x>8或x<2【解析】【分析】(1)根据题意即可得;(2)根据题意可得;(3)将x−3看做整体得−5<x−3<5,解之即可;(4)将x−5看做整体得x﹣5>3或x﹣5<﹣3,解之即可.【详解】解:(1)不等式|x|<5的解集为﹣5<x<5,不等式|x|>5的解集为x<﹣5或x>5,故答案为﹣5<x<5、x<﹣5或x>5;(2)不等式|x|<m(m>0)的解集为﹣m<x<m,不等式|x|>m(m>0)的解集为x<﹣m或x>m,故答案为﹣m<x<m、x<﹣m或x>m;(3)|x﹣3|<5,∴﹣5<x﹣3<5,∴﹣2<x<8;(4)|x﹣5|>3,∴x﹣5>3或x﹣5<﹣3,∴x>8或x<2.【点睛】此题考查解一元一次不等式,首先通过阅读把握题目中解题规律和方法,然后利用这些方法解决所给出的题目,所以解题关键是正确理解阅读材料的解题方法,才能比较好的解决问题.此题是一个绝对值的问题,有点难以理解,要反复阅读,充分理解题意.27.某学校为了庆祝国庆节,准备购买一批盆花布置校园.已知1盆A种花和2盆B种花共需13元;2盆A种花和1盆B种花共需11元.(1)求1盆A种花和1盆B种花的售价各是多少元?(2)学校准备购进这两种盆花共100盆,并且A种盆花的数量不超过B 种盆花数量的2倍,请求出A种盆花的数量最多是多少?【答案】(1)1盆A种花的售价为3元,1盆B种花的售价是5元;(2)A 种盆花最多购进66盆.【解析】【分析】(1)1盆A 种花的售价为x 元,1盆B 种花的售价是y 元,根据:“1盆A 种花和2盆B 种花共需13元;2盆A 种花和1盆B 种花共需11元”列方程组求解即可;(2)首先根据“A 种盆花的数量不超过B 种盆花数量的2倍”确定m 的取值范围,然后得出最值即可.【详解】解:(1)1盆A 种花的售价为x 元,1盆B 种花的售价是y 元,根据题意可得:213211,x y x y +=⎧⎨+=⎩解得:35.x y =⎧⎨=⎩答:1盆A 种花的售价为3元,1盆B 种花的售价是5元;(2)设购进A 种花m 盆,依据题意可得:()2100,m m ≤- 解得:266,3m ≤ 而m 为正整数, ∴m 最多=66,答:A 种盆花最多购进66盆.【点睛】此题主要考查了二元一次方程组的应用以及一次函数的应用等知识,根据题意得出正确的等量关系是解题关键.28.解不等式543132(32)3x x x -⎧⎨--≤⎩>①②,并在数轴上表示不等式组的解.【答案】x ≥73,图见解析. 【解析】【详解】 解:()543132323x x x -⎧⎪⎨--≤⎪⎩>①②, 由①得:x >2,由②得:x ≥73,则不等式组的解集为x≥73. 【点睛】本题主要考查解不等式组和数轴上表示不等式组的解. 用数轴表示不等式解集的方法:(1)定边界点,若含有边界点,解集为实心点,若不含边界,解集为空心圆圈;(2)定方向,大于向右,小于向左.29.已知不等式219836x x -+≤所有负整数解的和是关于y 的方程2y -3a =6的解,求a 的值.【答案】-4【解析】试题分析:先解不等式219836x x -+≤ 求出其所有的负整数解,再求得所有负整数解的和,将所得和代入方程236y a -=中,即可求得a 的值.试题解析:解不等式219836x x -+≤ 得:2x ≥-,∴不等式219836x x -+≤ 的负整数解有:-2,-1两个, ∵-2+(-1)=-3,∴由题意可知:方程236y a -=的解为3y =-, ∴2(3)36a ⨯--=,解得:4a =-.30.已知不等式mx -3>2x +m.(1)若它的解集是x <32m m +-,求m 的取值范围; (2)若它的解集是x >6,求m 的值.【答案】(1)m <2(2)m=3【解析】试题分析:(1)不等式32mx x m ->+可化为:(2)3m x m ->+,由其解集为:32m x m +<-可得20m -<,由此解得:2m <;(2)不等式32mx x m ->+可化为:(2)3m x m ->+,由其解集为:6x >可得362m m +=-且20m ->,由此即可解得:3m =. 试题解析:不等式32mx x m ->+可化为:(2)3m x m ->+,.(1)∵它的解集是32m x m +<-, ∴ 20m -<,解得2m <;(2)∵它的解集是6x >,∴ 36220m m m +⎧=⎪-⎨⎪->⎩ ,解得3m =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档