数学人教版八年级上册探究等腰三角形的性质
八年级数学上册《等腰三角形的性质》教案、教学设计
-利用几何画板等教学工具,直观演示等腰三角形的性质,帮助学生加深理解。
-通过典型例题,引导学生运用等腰三角形的性质进行计算和证明,巩固所学知识。
4.实践应用,拓展提高
-设计具有挑战性的练习题,让学生在解决问题的过程中提高几何素养。
-鼓励学生将所学知识运用到实际生活中,如设计等腰三角形图案,培养他们的创新意识和实际操作能力。
4.结合教材,引导学生学习等腰三角形的相关定理和公式,如等腰三角形的面积公式、周长公式等。
(三)学生小组讨论
1.教师将学生分成若干小组,每组讨论一个问题,如等腰三角形的性质、判定方法、应用等。
2.学生在小组内交流观点,共同解决问题,教师巡回指导,给予提重难点和教学设想
(一)教学重难点
1.理解并掌握等腰三角形的定义及其性质,特别是等腰三角形的底角相等、底边上的高、中线和顶角的平分线相互重合。
2.学会运用等腰三角形的性质解决相关问题,如周长、面积的计算,以及几何证明。
3.培养学生的空间想象能力和逻辑推理能力,提高他们在几何领域的解题技巧。
(二)教学设想
在教学过程中,要注意关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,注重启发式教学,激发学生的学习兴趣和求知欲,让他们在探索中发现问题,解决问题,从而提高他们的数学素养。
二、学情分析
八年级的学生已经具备了一定的几何知识基础,掌握了三角形的基本概念和性质,能够进行简单的几何推理和论证。在此基础上,学生对等腰三角形的性质进行学习,有利于他们巩固和拓展已有的几何知识体系。然而,学生在几何方面的空间想象能力和逻辑推理能力仍有待提高,对等腰三角形性质的理解和应用可能存在困难。针对这种情况,教师在教学过程中应注重启发引导,关注学生的认知发展,通过直观演示、动手操作等教学手段,帮助他们突破难点,提高几何素养。同时,教师要关注学生的情感态度,鼓励他们积极参与课堂讨论,培养他们的自信心和合作精神,使他们在轻松愉快的氛围中学习等腰三角形的性质。
人教版初二数学上册:等腰三角形性质及判定(基础)知识讲解
等腰三角形性质及判定(基础)【学习目标】1. 掌握等腰三角形的性质,并能利用它证明两个角相等、两条线段相等以及两条直线垂直.2. 掌握等腰三角形的判定定理.3. 熟练运用等腰三角形的判定定理与性质定理进行推理和计算.【要点梳理】要点一、等腰三角形的定义有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,则它叫等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.要点诠释:等腰直角三角形的两个底角相等,且都等于45°.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠.【高清课堂:389301 等腰三角形的性质及判定,知识要点】要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).2.等腰三角形的性质的作用性质1证明同一个三角形中的两角相等.是证明角相等的一个重要依据.性质2用来证明线段相等,角相等,垂直关系等.3.等腰三角形是轴对称图形等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.要点三、等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理. 【典型例题】类型一、等腰三角形中有关度数的计算题【高清课堂:389301 等腰三角形的性质及判定:例1】1、如图,在△ABC中,D在BC上,且AB=AC=BD,∠1=30°,求∠2的度数.【答案与解析】解:∵AB=AC∴∠B =∠C∵AB=BD∴∠2=∠3∵∠2=∠1+∠C∴∠2=∠1+∠B∵∠2+∠3+∠B=180°∴∠B=180°-2∠2∴∠2=∠1+180°-2∠2∴3∠2=∠1+180°∵∠1=30°∴∠2=70°【总结升华】解该题的关键是要找到∠2和∠1之间的关系,显然∠2=∠1+∠C,只要再找出∠C与∠2的关系问题就好解决了,而∠C=∠B,所以把问题转化为△ABD的角之间的关系,问题就容易的多了.关于角度问题可以通过建立方程进行解决.【高清课堂:389301 等腰三角形的性质及判定:例1练习】举一反三:【变式】已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.【答案】解:∵AC=BC=BD,AD=AE,DE=CE,∴设∠ECD=∠EDC=x,∠BCD=∠BDC=y,则∠AED=∠ADE=2x,∠A=∠B=180°-4x在△ABC中,根据三角形内角和得,x+y+180°-4x+180°-4x=180°①又∵A、D、B在同一直线上,∴2x+x+y=180°②由①,②解得x=36°∴∠B=180°-4x=180°-144°=36°.类型二、等腰三角形中的分类讨论2、在等腰三角形中,有一个角为40°,求其余各角.【思路点拨】唯独等腰三角形的角有专用名词“顶角”“底角”,别的三角形没有,然而此题没有指明40°的角是顶角还是底角,所以要分类讨论.【答案与解析】解:(1)当40°的角为顶角时,由三角形内角和定理可知:两个底角的度数之和=180°-40°=140°,又由等腰三角形的性质可知:两底角相等,故每个底角的度数1140702=⨯︒=︒;(2)当40°的角为底角时,另一个底角也为40°,则顶角的度数=180°-40°-40°=100°.∴其余各角为70°,70°或40°,100°.【总结升华】条件指代不明,做此类题应分类讨论,把可能出现的情况都讨论到,别遗漏.3.(2015春•安岳县期末)已知一个等腰三角形的两边长a、b满足方程组.(1)求a、b的值.(2)求这个等腰三角形的周长.【答案与解析】解:(1),②×2﹣①得5b=15,解得b=3,把b=3代入②得2a+3=13,解得a=5;(2)若a=5为腰长,5+5>3满足,此时三角形周长为:5×2+3=13;若b=3为腰长,3+3>5满足,此时三角形周长为:3×2+5=11.【总结升华】本题考查了等腰三角形的性质及解二元一次方程组,难度一般,关键是掌握分类讨论的思想解题.举一反三:【变式】(2015•裕华区模拟)若x,y满足|x﹣3|+=0,则以x,y的值为两边长的等腰三角形的周长为()A. 12 B.14 C.15 D.12或15【答案】C.解:根据题意得,x﹣3=0,y﹣6=0,解得x=3,y=6,①3是腰长时,三角形的三边分别为3、3、6,∵3+3=6,EB A DC F∴不能组成三角形,②3是底边时,三角形的三边分别为3、6、6, 能组成三角形,周长=3+6+6=15, 所以,三角形的周长为15. 故选C .类型三、等腰三角形性质和判定综合应用【高清课堂:389301 等腰三角形的性质及判定:例8】4、已知:如图,△ABC 中,∠ACB =45°,AD⊥B C 于D ,CF 交AD 于点F ,连接BF 并延长交AC 于点E ,∠BAD =∠FCD . 求证:(1)△ABD≌△CFD;(2)BE⊥AC.【思路点拨】此题由等腰三角形的判定知AD =DC ,易证△ABD ≌△CFD ,要证BE ⊥AC ,只需证∠BEC =90°即可,DF =BD ,可知∠FBD =45°,由已知∠ACD =45°,可知∠BEC =90°. 【答案与解析】证明:(1) ∵ AD⊥BC,∴ ∠ADC=∠FDB=90°.∵ 45ACB ∠=︒,∴ 45ACB DAC ∠=∠=︒ ∴ AD=CD∵ BAD FCD ∠=∠,∴ △ABD≌△CFD(2)∵△ABD≌△CFD∴ BD=FD.∵ ∠FDB=90°,∴ 45FBD BFD ∠=∠=︒.∵ 45ACB ∠=︒, ∴ 90BEC ∠=︒. ∴ BE⊥AC.【总结升华】本题主要考查全等三角形判定定理及性质,垂直的性质,三角形内角和定理,等腰直角三角形的性质等知识点,关键在于熟练的综合运用相关的性质定理,通过求证△ABD≌△CFD,推出BD=FD ,求出∠FBD=∠BFD=45°. 举一反三:【变式】(2016•海淀区校级模拟)如图,已知∠BAC=90°,AD ⊥BC 于点D ,∠1=∠2,EF ∥BC 交AC 于点F .试说明AE=CF .【思路点拨】作EH⊥AB于H,作FG⊥BC于G,根据角平分线的性质可得EH=ED,再证ED=FG,则EH=FG,通过证明△AEH≌△CFG即可.【答案与解析】解:作EH⊥AB于H,作FG⊥BC于G,∵∠1=∠2,AD⊥BC,∴EH=ED(角平分线的性质)∵EF∥BC,AD⊥BC,FG⊥BC,∴四边形EFGD是矩形,∴ED=FG,∴EH=FG,∵∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,又∵∠AHE=∠FGC=90°,∴△AEH≌△CFG(AAS)∴AE=CF.【总结升华】本题考查了角平分线的性质;综合利用了角平分线的性质、同角的余角相等、全等三角形的判定等知识点.附录资料:《三角形》全章复习与巩固(基础)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质 1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围. 2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外. (2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形. (3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数; ②已知正多边形边数,求外角度数. (2)多边形的边数与内角和、外角和的关系:①n 边形的内角和等于(n -2)·180°(n≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同. 要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边. (2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用. 【典型例题】类型一、三角形的三边关系1. (2016•丰润区二模)若三角形的两条边长分别为6cm 和10cm ,则它的第三边长不可能为( )A .5cmB .8cmC .10cmD .17cm【思路点拨】直接利用三角形三边关系得出第三边的取值范围,进而得出答案. 【答案与解析】解:∵三角形的两条边长分别为6cm 和10cm , ∴第三边长的取值范围是:4<x <16, ∴它的第三边长不可能为:17cm . 故选:D .【总结升华】此题主要考查了三角形三边关系,正确得出第三边的取值范围是解题关键. 【高清课堂:与三角形有关的线段 例1】举一反三【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8. 【答案】(1)能; (2)不能; (3)能.2.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______. 【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7,即 5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b.举一反三【变式】(浙江金华)已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可)【答案】5,注:答案不唯一,填写大于4,小于12的数都对.类型二、三角形中重要线段3. (江苏连云港)小华在电话中问小明:“已知一个三角形三边长分别为4,9,12,如何求这个三角形的面积?”小明提示:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( ) .【答案】C【解析】三角形的高就是从三角形的顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.解答本题首先应找到最长边,再找到最长边所对的顶点.然后过这个顶点作最长边的垂线即得到三角形的高.【总结升华】锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交于一点.这里一定要注意钝角三角形的高中有两条高在三角形的外部.举一反三【变式】如图所示,已知△ABC,试画出△ABC各边上的高.【答案】解:所画三角形的高如图所示.4.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC =8cm,求边AC的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD=BD,②△BCD的周长比△ACD的周长大3.【答案与解析】解:依题意:△BCD的周长比△ACD的周长大3cm,故有:BC+CD+BD-(AC+CD+AD)=3.又∵ CD为△ABC的AB边上的中线,∴ AD =BD ,即BC-AC =3. 又∵ BC =8,∴ AC =5. 答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法. 举一反三【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1类型三、与三角形有关的角5、(2014春•新泰市期末)已知:如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 平分线,∠B=50°,∠DAE=10°, (1)求∠BAE 的度数; (2)求∠C 的度数.【思路点拨】(1)根据AD 是BC 边上的高和∠DAE=10°,求得∠AED 的度数;再进一步根据三角形的外角等于和它不相邻的两个内角的和求解;(2)根据(1)的结论和角平分线的定义求得∠BAC 的度数,再根据三角形的内角和定理就可求得∠C 的度数. 【答案与解析】 解:(1)∵AD 是BC 边上的高,∴∠ADE=90°.∵∠ADE+∠AED+∠DAE=180°,∴∠AED=180°﹣∠ADE﹣∠DAE=180°﹣90°﹣10°=80°. ∵∠B+∠BAE=∠AED,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°. (2)∵AE 是∠BAC 平分线,∴∠BAC=2∠BAE=2×30°=60°. ∵∠B+∠BAC+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°. 【总结升华】本题主要考查了三角形的内角和定理、角平分线的定义以及三角形的外角性质. 【高清课堂:与三角形有关的角 例1、】举一反三:【变式】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.类型五、多边形内角和及外角和公式7.一个多边形的内角和等于它的外角和的5倍,它是几边形?【思路点拨】本题实际告诉了这个多边形的内角和是.【答案与解析】设这个多边形是边形,则它的内角和是,∴,解得.∴这个多边形是十二边形.【总结升华】本题是多边形的内角和定理和外角和定理的综合运用. 只要设出边数,根据条件列出关于的方程,求出的值即可,这是一种常用的解题思路.举一反三【变式】(2015•徐州)若正多边形的一个内角等于140°,则这个正多边形的边数是.【答案】9.解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,边数:360°÷40°=9.类型六、多边形对角线公式的运用8.一个十二边形有几条对角线.【思路点拨】根据多边形对角线条数公式,把边数代入计算即可.【答案与解析】解:∵过十二边形的任意一个顶点可以画9条对角线,∴十二个顶点可以画12×9条对角线,但每条对角线在每个顶点都数了一次,∴实际对角线的条数应该为12×9÷2=54(条)∴十二边形的对角线共有54条.【总结升华】对于一个n边形的对角线的条数,我们可以总结出规律条,牢记这个公式,以后只要用相应的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢.举一反三【变式】一个多边形共有20条对角线,则多边形的边数是().A.6 B.7 C.8 D.9【答案】C;类型七、镶嵌问题9.分别用形状、大小完全相同的①三角形木板;②四边形木板;③正五边形木板;④正六边形木板作平面镶嵌,其中不能镶嵌成地板的是( )A、①B、②C、③D、④【答案】C【总结升华】用多边形组合成平面图形,实质上是相关多边形“交接处各角之和能否拼成一个周角”的问题.。
2024年人教版八年级上册数学第13章第3节第1课时等腰三角形
感悟新知
知3-讲
特别提醒 1.等腰三角形的定义也是一种判定方法. 2.“等角对等边”是我们以后证明两条线段相
等的常用方法,在证明过程中,经常通过 计算三角形各角的度数,或利用角的关系 得到角相等,从而得到所对的边相等.
感悟新知
知3-讲
3. 已知底边及底边上的高作等腰三角形已知:一个等腰三 角形底边长为a,底边上的高为h(如图13 .3 -9). 求作:这个等腰三角形.
感悟新知
几何语言:如图13 .3 -3,在△ ABC 中, (1)∵ AB=AC,AD ⊥ BC, ∴ AD 平分∠ BAC(或BD=CD); (2)∵ AB=AC,BD=DC, ∴ AD ⊥ BC(或AD 平分∠ BAC); (3)∵ AB=AC,AD 平分∠ BAC, ∴ BD=DC(或AD ⊥ BC).
感悟新知
知2-练
3-1.[中考·宿迁] 如图,已知AB=AC=AD,且AD ∥ BC,求 证:∠ C=2 ∠ D.
感悟新知
证明:∵AB=AC=AD, ∴∠C=∠ABC,∠D=∠ABD. ∵∠ABC=∠ABD+∠CBD, ∴∠ABC=∠CBD+∠D. ∵AD∥BC,∴∠CBD=∠D. ∴∠ABC=∠D+∠D=2∠D. 又∵∠C=∠ABC,∴∠C=2∠D.
知3-讲
感悟新知
知3-练
例6 如图13.3-11, 在△ ABC 中,D 为AC 的中点,DE ⊥ AB,DF ⊥ BC,垂足分别为点E,F,且DE=DF.求 证:△ ABC 是等腰三角形.
解题秘方:利用“等角对等边” 判定等腰三角形,只需证明三 角形两个内角相等即可.
感悟新知
知3-练
证明:∵ DE ⊥ AB,DF ⊥ BC,垂足分别为点E,F, ∴∠ AED= ∠ CFD=9 0 °. ∵ D 为AC 的中点,∴ AD=DC.
八年级上册数学1等腰三角形(人教版)
设∠A=x,则 ∠BDC=∠A+∠ABD=2x
从而 ∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有 ∠A+∠ABC+∠C=x+2x+2x=180°
解得x=36° 所以, 在△ABC中,∠A=36°, ∠ABC=∠C=72°
在等腰三角形性质的探索过程和证明过程中,“折 痕”“辅助线”发挥了非常重要的作用,由此,你能发 现等腰三角形具有什么特征?
等腰三角形是轴对称图形,底边上的中线(顶角平 分线、底边上的高)所在直线就是它的对称轴.
例 如图,在△ABC中,AB=AC,点D在AC上, 且BD=BC=AD.求△ABC各角的度数
∵ ∠ADB +∠ADC =180°, 例 如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.
的中线.求证:∠BAD =∠CAD,AD⊥BC. 证明:作底边的中线AD.
(1)你能根据结论画出图形,写出已知、求证吗? 你还有其他方法证明性质1吗?
(3)已知等腰三角形的一个内角为70°,则它的另外两 探索并证明等腰三角形的性质
∴ ∠B =∠C.
B
C
D
探索并证明等腰三角形的性质
你还有其他方法证明性质1吗? 可以作底边的高线或顶角的角平分线.
A
B
C
D
探索并证明等腰三角形的性质
性质2可以分解为三个命题,本节课证明“等腰三 角形的底边上的中线也是底边上的高和顶角平分线”.
探索并证明等腰三角形的性质
已知:如图,△ABC 中,AB =AC,AD 是底边BC
探索并证明等腰三角形的性质 2.能利用性质证明两个角相等或两条线段相等.
人教版八年级数学上册 等腰三角形的性质 讲义
等腰三角形的性质知识点一、等腰三角形的概念与性质顾名思义,至少有两边相等的三角形叫等腰三角形,这两条边就是等腰三角形的“腰”,另一边叫做“底边”腰和底边的夹角叫做“底角”,两腰的夹角叫做“顶角”如图,过等腰三角形ABC的顶点A,作垂线AD⊥BC于D,则△ADB与△ADC有什么关系?为什么?等腰三角形性质总结:1、两腰相等2、两底角相等3、等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(简称:三线合一)例1、等腰三角形的一个外角等于100°,则这个三角形的三个内角分别为()A、50°,50°,80°B、80°,80°,20°C、100°,100°,20°D、50°,50°,80°或80°,80°,20°例2、等腰三角形中的一个角等于100°,则另两个内角的度数分别为( )A 、40°,40°B 、100°,20°C 、50°,50°D 、40°,40°或100°,20°例3、一个等腰三角形的一边是6,周长是12,则它的三边长分别为_____________1、已知等腰三角形的一个内角为70°,则另外两个内角的度数是( )A 、55°,55°B 、70°,40°C 、55°,55°或70°,40°D 、以上都不对2、在下列命题中,正确的是( )A 、等腰三角形是锐角三角形B 、等腰三角形两腰上的高相等C 、两个等腰直角三角形全等D 、等腰三角形的角平分线是中线3、已知等腰三角形的一边长为5cm ,另一边长为6cm ,则它的周长为( )A 、11cmB 、17cmC 、16cmD 、16cm 或17cm4、在ABC ∆中,x BC AC AB ==,,若ABC ∆的周长为24,则x 的取值范围是()A 、121≤≤xB 、120≤<xC 、120<<xD 、126<<x5、三角形一边上的高和这边上的中线重合,则这个三角形一定是( )A 、锐角三角形B 、钝角三角形C 、等腰三角形D 、等边三角形6、若△ABC三条边的长度分别为m,n,p,且()02=-+-pnnm,则这个三角形为()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形7、有一个内角为40°的等腰三角形的另外两个内角的度数为______.8、有一个内角为140°的等腰三角形的另外两个内角的度数为________.9、如果△ABC中,AB=AC,它的两边长为2cm和4cm,那么它的周长为________.10、如果等腰三角形的三边均为整数且它的周长为cm10,那么它的三边长为______.11、如果等腰三角形的周长为cm18,那么它的底边x的取值范围是_______.12、已知等腰三角形的一个顶角与一个底角的和为︒110,则其顶角的度数为______.13、等边三角形的周长为cm15,则它的边长为________14、在等腰三角形中,如果顶角是一个底角的2倍,那么顶角等于_____度;如果一个底角是顶角的2倍,那么顶角等于_______度.15、如图,AB=AC,AD⊥BC交BC于点D,BD=5cm,那么BC的长为_________.16、如图,D是等腰三角形ABC的腰AC上一点,DE⊥AC于E,EF⊥AB于F,若∠BDE=158°,则∠DEF=_____.17、如图,在△ABC中,AB=AC,∠A=30°,BD是△ABC的角平分线,求∠ADB的度数。
八年级数学上册《等腰三角形的性质和判定定理》优秀教学案例
(一)知识与技能
1.理解并掌握等腰三角形的定义、性质及判定定理,能够运用相关性质解决实际问题。
2.学会运用等腰三角形的性质进行图形的画法和构造,提高几何作图能力。
3.能够运用等腰三角形的判定定理,判断一个三角形是否为等腰三角形,并给出合理的证明。
4.掌握等腰三角形在实际生活中的应用,如建筑、设计等领域,提高知识运用能力。
五、案例亮点
1.创设生活化情境,紧密联系实际
本教学案例的最大亮点之一是充分联系学生的生活实际,创设丰富多样的教学情境。通过引入生活中的实例,如建筑、艺术、交通标志等,让学生在实际问题中感知、探索等腰三角形的性质和判定定理。这种教学方式既激发了学生的学习兴趣,又使他们认识到数学知识在现实生活中的重要性,增强了学习的针对性和实用性。
小组合作学习是本章节教学的重要环节。我将根据学生的知识水平、性格特点等进行合理分组,确保每个小组的成员在合作学习中能够发挥各自的优势。通过小组讨论、合作探究等形式,让学生在互动交流中共同解决问题,提高他们的沟通能力和团队协作精神。同时,关注每个学生的学习进度,及时给予个别辅导,使全体学生都能在小组合作学习中得到提高。
2.以问题为导向,培养思维能力
本案例以问题为导向,设计了富有启发性和挑战性的问题,引导学生进行思考、探索。这种教学策略有助于培养学生的问题意识,提高他们分析问题和解决问题的能力。同时,鼓励学生提出自己的疑问,充分调动了他们的学习积极性,促学习在本案例中得到了充分体现。学生通过小组讨论、合作探究等形式,共同解决问题,提高了沟通能力和团队协作精神。同时,教师关注每个学生的学习进度,给予个别辅导,确保了小组合作学习的效果。
四、教学内容与过程
(一)导入新课
在导入新课环节,我将利用学生已经学习的三角形知识作为切入点,通过以下步骤引导学生进入等腰三角形的学习:
人教版八年级上册数学课件 第十三章轴对称 等腰三角形 等腰三角形 第1课时 等腰三角形的性质 (2)
A.∠B=∠C
B.AD⊥BC
C.AD平分∠BAC D.AB=2BD
(2)若∠BAD=35°,则∠C的度数为( C )
A.35° B.45° C.55° D.65°
7.(4分)如图,△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD =4,则△ABC的周长是__2_0_.
8.(8分)如图,在△ABC中,AB=AC,D为BC边的中点,DE⊥AB. (1)求证:∠BAD=∠BDE; (2)若AC=6,DE=2,求△ABC的面积.
16.(15分)如图,在△ABC中,AB=AC,D是射线BC上一点,E是射 线AC上一点,且AD=AE.
(212).如5°图 ① , 若 ∠ BAC = 90° , D 是 BC 中 点 , 则 ∠ EDC 的 度 数 为 _________;
(2)如图②,当点D在线段BC上时,若∠BAD=40°,求∠EDC的度数; (3)如图③,当点D在线段BC延长线上时,试判断∠BAD和∠EDC的数 量关系,并证明.
13.(易错题)(青海中考)等腰三角形的一个内角为70°,则另外两个内 角的度数分别为____5_5_°__,__5_5_°__或__7_0_°__,__4_0_°____________________.
【变式】等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三
角形的底角的度数为___6_3_°__或__2_7_°________.
八年级数学人教版(上册)第2课时等腰三角形的判定
讲授新课
方法总结:“等角对等边”是判定等腰三角形 的重要依据,是先有角相等再有边相等,只限 于在同一个三角形中,若在两个不同的三角形 中,此结论不一定成立.
侵权必究
讲授新课
如图,在△ABC中,AB=AC,∠ABC和∠ACB
的平分线交于点O.过O作EF∥BC交AB于E,交AC于F.
探究EF、BE、FC之间的关系.
∴ AC=AB. ( 等角对等边 ) B
C
即△ABC为等腰三角形. 侵权必究
讲授新课
辨一辨:如图,下列推理正确吗?
A 12
B
D
C
∵∠1=∠2 ,
∴ BD=DC
(等角对等边).
C D
1
A2
B
∵∠1=∠2, ∴ DC=BC (等角对等边).
错,因为都不是在同一个三角形中.
侵权必究
讲授新课
求证:如果三角形一个外角的平分线平行于 三角形的一边,那:1.作线段AB=a. 2.作线段AB的垂直平分线MN,交AB
于点D. 3.在MN上取一点C,使DC=h. 4.连接AC,BC,则△ABC即为所求.
C
M A DB
N
侵权必究
讲授新课
如图,在△ABC中,∠ACB=90°,CD是AB 边上的高,AE是∠BAC的平分线,AE与CD交于点F, 求证:△CEF是等腰三角形.
第十三章 轴对称
13.3 等腰三角形
第2课时 等腰三角形的判定
侵权必究
目录页
新课导入
讲授新课
当堂练习
课堂小结
侵权必究
新课导入
✓ 教学目标 ✓ 教学重点
侵权必究
学习目标
探索等腰三角形的判定定理及其应用
人教版八年级数学上册等腰三角形的性质优秀
21
思考、应用2
已知:如图,△ABC中,∠ACB=90°, AD=AC,BE=BC,求∠DCE的度数。
22
一.基本概念
等边三角形
1.定义: 三条边都相等的三角形叫做等边三角形.
如图AB=AC=BC ,△AB,C就是等边(正三三角角形 形)
A
2.等边三角形的基本性质:
三条边都相等。即AB=AC=BC
A
证明: 作顶角的平分线AD,
则有∠1=∠2
12
在△ABD和△ACD中
AB=AC ∠1=∠2
BD C
AD=AD (公共边)
∴ △ABD≌ △ACD (SAS)
∴ ∠B=∠C(全等三角形对应角相等)
人教版八年级数学上册等腰13三.3角.1形等的腰性三质角优形秀的p性pt质 课件(共26张PPT)
人教版八年级数学上册等腰13三.3角.1形等的腰性三质角优形秀的p性pt质 课件(共26张PPT)
变式1.已知,在△ABC中,AB=AC, ∠A=80º,求∠C和∠B的度数.
变式2.已知,在△ABC中,AB=AC,
底角比顶角大15º,
A
求∠A、∠B 和∠C
的度数.
B
C
19
例2
如图,在△ABC中,AB=AC,D是BC边上的中点, ∠B=30。求∠ADC 和∠1的度数.
(1)∵ AB=AC,BD=DC(已知)
图片欣赏
人教版八年级数学上册等腰13三.3角.1形等的腰性三质角优形秀的p性pt质 课件(共26张PPT)
(二)回顾定义,引出新知
定义:有两条边相等的三角形叫做等腰三角形.
A
顶角
人教版八年级数学上册等腰13三.3角.1形等的腰性三质角优形秀的p性pt质 课件(共26张PPT)
八年级数学人教版(上册)第1课时等腰三角形的性质
证明:∵△ABC为等腰三角形,AB=AC,
∴∠ABC=∠ACB.
又∵BD、CE为底角的平分线,
∴ DBC 1 ABC,ECB 1 ACB,
2
2
∴∠DBC=∠ECB.
∵∠DBC=∠F,∴∠ECB=∠F,
∴EC∥DF. 侵权必究
当堂练习
7.A、B是4×4网格中的格点,网格中的每个小正方 形的边长为1,请在图中标出使以A、B、C为顶点 的三角形是等腰三角形的所有格点C的位置.
侵权必究
当堂练习
✓ 当堂反馈 ✓ 即学即用
侵权必究
当堂练习
1.等腰三角形有一个角是90°,则另两个角分别是( B )
A.30°,60°
B.45°,45°
C.45°,90°
D.20°,70°
2.如图,在△ABC中,AB=AC,过点A作AD∥BC,
若∠1=70°,则∠BAC的大小为( A ) A.40° B.30° C.70° D.50°
侵权必究
讲授新课
(1)解:∵AB=AC,AD是BC边上的中线,
∴∠BAD=∠CAD,∴∠BAC=2∠BAD=50°.
∵AB=AC,
∴
∠C=∠ABC
= =
112(1(18800°-°-50°)=∠6A5)°.
2
(2)证明:∵AB=AC,AD是BC边上的中线,
∴ED⊥BC,
又∵BG平分∠ABC,EF⊥AB,
B
C
∠A=36°,∠ABC=∠C=72°.
归纳 在含多个等腰三角形的图形中求角时,常常利用
方程思想,通过内角、外角之间的关系进行转化求解.
侵权必究
讲授新课
如图,在△ABC中,AB=AD=DC, ∠BAD=26°,求∠B和∠C的度数. 解:∵AB=AD=DC
探究等腰三角形的性质 初中八年级上册数学教案教学设计课后反思 人教版
课程名称:等腰三角形的性质
学 校:重庆29中
年级:初二年级
教 师:王真兰
案例名称
等腰三角形的性质
学校
重庆二十九中
教师姓名
王真兰
学生年级
八年级
课时
1
教学内容分析
等腰三角形是人教版八年级上十三章轴对称图形的第三节。在此之前,学生已经学习了三角形中的线段与角的基本概念和相关性质,掌握了用SSS、SAS、ASA、AAS以及HL来证明两个三角形全等的方法,也经历过用折叠的方法来作一个角角平分线以及用折叠的方法来验证一个图形是不是轴对称图形的过程,还通过本章一二两节掌握了轴对称图形的定义和性质。这一节内容既是对前面相关知识的综合运用,也是后续学习等边三角形、四边形、勾股定理的基础。通过对本节内容的学习,让学生参与了解、感知知识发生、发展的全过程,对他们体会数学的严谨性、逻辑性,拓宽学生探索图形变化的视野,感受数学的应用价值有重要的作用。
教学重点
学生了解、感悟等腰三角形的性质定理,归纳总结并对定理进行证明。
教学难点
等腰三角形性质定理的证明过程中辅助线的准确添加。
教学策略的选
择与设计
综合对学生学情分析和教学内容分析,为了突破教学的难点、突出教学的重点,本节课采用的是任务驱动法充分调动学生学习的内驱力;综合李庾南老师推广的“单元教学法”进行定理教学,把课堂真正还给学生,让他们在不断的“猜想-验证-质疑-再猜想-再验证”的过程中,充分感受数学的逻辑性和严谨性;在课堂中合理利用小蚂蚁移动操作平台实现“云”课堂,利用PPT、几何画板等多种现代多媒体技术实现数学教学中“由定到动”、“从特殊到一般”、“由具体到抽象”、“从感知到推理”的具有浓厚数学味道的数学教学,打造有情怀、充满人文气息的数学课堂。
共顶角顶点的等腰三角形的图形的性质
共顶角顶点的等腰三角形的图形的性质等腰三角形是人教版八年级数学上册第十三章《轴对称》的学习内容,是学习了全等三角形的性质与判定和轴对称的性质后研究的一个重要的几何图形。
对于等腰三角形的考查,教学中多着重于其性质与判定,而以等腰三角形构图从而发现图形性质却成为历年重要考试的一个高频考点,给八年级学生带来很大的困扰。
本文选取其中一个类别:共顶角顶点的等腰三角形,从三个不同的构图视角,去发现、论证其图形的性质。
一、知识点回顾⑴等腰三角形的性质:①在同一个三角形中,相等的两条边所对的角也相等.简称“等边对等角”.②等腰三角形顶角的角平分线与底边上的高、中线互相重合.简称“三线合一”.③等腰三角形是轴对称图形.(对称轴是底边上的高所在的直线)例1、如右图:在△OAB 中,OA =OB . 性质①:∵OA =OB∴∠A =∠B (等边对等角)性质②: ∵OA =OB ,OC ⊥AB∴OC 平分∠AOB ,AC =BC (三线合一)或 ∵OA =OB ,AC =BC ∴OC 平分∠AOB ,OC ⊥AB (三线合一)或 ∵OA =OB ,OC 平分∠AOB ∴AC =BC ,OC ⊥AB (三线合一)⑵等腰三角形的角:已知顶角,可求底角;已知底角,可求顶角.例2、如右图:在△OAB 中,OA =OB . ∵OA =OB ∴∠A =∠B =AOB AOB ∠°=∠°21-902-180∴∠AOB =180º-2∠A =180º-2∠B (三角形的内角和是180º)二、探究构图⑴共顶角顶点且共腰的几个等腰三角形 例3、如右图,OA =OB =OC发现1:已知顶角和,可求底角和;已知底角和,可求顶角和. 证明:∵∠1=180º-2∠7,∠2=180º-2∠6 ∴∠1+∠2=360º-2(∠7+∠6)∠7+∠6=180º-21(∠1+∠2)发现2:∠7+∠6-∠5=90º 证明:∵∠7+∠6=180º-21(∠1+∠2) ∠5=90º-21(∠1+∠2) ∴∠7+∠6-∠5=90º发现3:∠3=21∠2,∠4=21∠1, 证明:∵∠4=∠OCB -∠5 =(90º-21∠2)-[90º-21(∠1+∠2)] =21∠1同理可得:∠3=21∠2小结:构图⑴主要考查“等边对等角”这一性质,而发现角与角之间的关系的方法是等量代换、整体思想和设元导角的方程思想,这也是解决角关系的一般方法。
人教版八年级数学上册教学等腰三角形PPT精品课件
附:相关性质(性质1、2略)
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。 4.等腰三角形底边上的垂直平分线到两条腰的距离相等。 5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。 6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证 明)。 7.一般的等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是 它的对称轴。但等边三角形(特殊的等腰三角形)有条对称轴。每个角的角平分线 所在的直线,三条中线所在的直线,和高所在的直线就是等边三角形的对称轴。 8.等腰三角形中腰长的平方等于底边上高的平方加底的一半的平方(勾股定理)。 9.等腰三角形的腰与它的高的关系:腰大于高;腰的平方等于高的平方加底的一半 的平方。
等腰三角形的性质
目录
1
教材分析
2
学情分析
3
教学目标
4
教学重难点
内容:本节课是义务教育教科书数学八年级上册第十三章 第三节 13.31 等腰三角形。
编写意图:等腰三角形是特殊的三角形,也是多边形中最简单 的轴对称图形,利用它的轴对称性研究等腰三角形,进而通过推理 论证得到等腰三角形的性质和判定方法,同时从中找到证明这些性 质的思路,由此体会图形变化在几何研究中的作用。借助图形的变 化研究图形的性质是几何中常用的方法。学习等腰三角形的性质不 仅可以进一步认识三角形,而且还可以了解一些几何中研究问题的 基本思路和方法。
讲授新课
(应用新知)
你可以用学过的知识证明性质1吗?有哪些证明方法?
已知:如图,△ABC 中,AB=AC。
A
求证:∠B=∠C
可以运用全等三角
形的性质“对应角
相等”来证明。
B
2022八年级数学上册 第十三章 轴对称13.3 等腰三角形 1等腰三角形第1课时 等腰三角形的性质
考查角度二 运用等腰三角形的性质判断线段间的数量关系与位置关系
13.如图,在等腰三角形ADC中,AD=CD,且AB∥DC,CB⊥AB于点B, CE⊥AD交AD的延长线于点E. (1)求证:CE=CB; (2)连接BE,请写出BE与AC的位置关系,并证明.
B.AD平分∠BAC
C.AB=2BD
D.∠B=∠C
7.如图,在△ABC中,AB=AC,AD平分∠BAC,若△ABC的周长为36, △ABD的周长为30,求AD的长.
解:∵AB=AC,AD平分∠BAC,∴BD=CD. ∵△ABC的周长为36,∴AB+BC+AC=36, ∴AB+BD=18. ∵△ABD的周长为30, ∴AB+BD+AD=30, ∴AD=30-18=12.
∠OPP′的度数为( B )
A.40° B.50°
C.70°
D.80°
3.某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为 48°,若CF与EF的长度相等,则∠C的度数为___2_4_°___.
4.(课本P77练习T3改编)如图,在△ABC中,AD=BD=BC,若∠DBC= 28°,求∠ABC和∠C的度数. 解:设∠A=x°.∵AD=BD, ∴∠ABD=∠A=x°,∴∠BDC=2x°. ∵BD=BC,∴∠C=∠BDC=2x°. ∵∠DBC=28°,∠BDC+∠C+∠DBC=180°, ∴2x+2x+28=180,∴x=38, ∴∠C=76°,∠ABC=∠ABD+∠DBC=38°+28°=66°.
8.如图,在△ABC中,AB=AC,AD是边BC上的中线,BE⊥AC于点E.求 证:∠CBE=∠BAD.
人教版八年级数学上等腰等边三角形及其性质
第1讲 等腰三角形(一)1.等边△ABC 中,D 为AC 的中点,CE =CD .求证:BD =DE .2.如图,AC =AD ,BC =BE ,∠DCE =045,求证:AC ⊥BC .3.如图,已知AC =CD , EF =DF ,AF =AG ,求∠A.一、全等中的几何画图(一)动态画图,周密思考4.如图,AC ⊥BC ,AC =BC ,过G 点任画直线l ,过A 点、B 点分别作l 的垂线AE 、BF ,垂足为E 、F ,试画图探究AE 、BF 与EF 的大小关系.5.如图,1l ∥2l ,∠1=∠2,∠3=∠4,过C 点任画直线交1l 、2l 于E 、F ,试探究AE 、BF 、AB 三线段的数量关系,并证明.6.在ABC中,AD,CE为高,两条高所在的直线相交于H点,若CH=AB,求∠ACB的大小.(二)动态画图,由此及彼7.如图∠B=2∠C,AD为∠A的平分线交BC于D点(1) 求证:AB+BD=AC(2) 如图,若AD为∠A的外角平分线,问上结论是否成立,画图证明45.8.如图AC=BC,点O为AB的中点,AC⊥BC,∠MON=0(1) 求证CN+MN=AM(2) 若点M在AC上,点N在BC的延长线上,上结论是否成立,画图证明9.已知Rt △ABC ,∠A =090,AB =AC ,过点B 的直线BF 交直线AC 于D ,CE ⊥BE 于E(1) 当BE 平分∠ABC ,求证:AB +AD =BC ;(2) BE 转到△ABC 外,平分∠ABC 的一个外角,请画出图形,上述结果是否还成立,若成立请说明理由.(一)直角三角形全等问题10.如图,等腰△ABC ,∠ACB =090,D 为CB 延长线上一点,AF =AD ,且AE ⊥AD ,BE 交AC 的延长线于点P .(1) 求证:BP =PE ;(2) 若32 BC BD ,求PCAC 的值.(二)延长、截取法运用11.已知:CA =CB ,AD 平分∠CAB ,且AB =AC +CD ,求证:AC ⊥BC12.如图在平面直角坐标系中,A (0,4),B (4,0),E 点与A 点关于x 轴对称,B 点与F 点 关于y 轴对称,∠GEP =045,交直线AB 于G 点,交直线AF 于P 点,求证:EG 平分 ∠PGB .13.如图1,点A 、B 分别为x 轴、y 轴正半轴上一点,P 为第二象限一点,P A ⊥PB ,P A 交y 轴于点C ,且C 为P A 的中点.(1) 求证:∠PBO =∠P AO ;(2) 已知A (a ,0)、C (0,b ),若()02322=-+-b a ,求P 点的坐标; (3) 如图2,若P A =PB ,求BCOC 的值.第2讲 等腰三角形(二)1.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”;(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).2.等腰三角形的判定:(1)等腰三角形定义;(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”) 基础回顾例1 如图,△ABC 中,AB >AC ,AD 平分∠BAC ,EF ⊥AD 交BC 延长线于M .(1) 求证:∠BME =21(∠ACB -∠B ); (2) 若EM 平分AD ,求证:∠CAM =∠B .分析:(1)由AD 平分∠BAC ,设∠1=∠2=α,根据内角和定理及外角与内角关系定理,建立∠BME 、∠B 、∠ACB 与α之间的关系式,消去参数α“即得;(2)由EM 垂直平分AD ,得MA =MD ,∠MAD =∠MDA ,于是∠2+∠CAM =∠1+∠B ,得证.证明:点评:(1)问是“设参法”,先建立含有“参数”和相关量的关系式,再消去参数,便得所求证的关系式(2)问则是运用“等边对等角”的性质证明角相等,这种方法是证明角相等的又一方法,例2等腰△ABC 中,过其中一个顶点的直线把这个等腰三角形分成两个等腰三角形,求三内角的度数.分析:按直角、锐角、钝角三角形来分类讨论.解:点评:(1) 当面对的问题情形较多时,应注意分类讨论;(2) 当难以直接计算求角时,可考虑通过建立方程求解.1.若等腰三角形一腰上的高,等于腰长的一半,求这个等腰三角形的顶角.2.如图,过△ABC的顶点A,作直线AE与∠B的内角平分线BE垂直相交于E点,且与∠C的内角平分线交于P点.(1) 直接回答:当∠B与∠C满足什么条件时,点P在△ABC内,在△ABC外,在△ABC 的边上?(2) 若P在△ABC内,过P作PQ∥BC交AB、AC于Q、R.求证:QR=AQ+CR例3如图,△ABC中,AB=7,AC=11,点M是BC中点,AD平分∠BAC,MF∥AD 交AC于F.求FC的长.分析:“角平分线+平行线”易构造等腰三角形,对于中点的条件,类比“倍长中线”的方法,移动CF,构造等腰三角形,寻找CF、AB、AC之间的关系。
人教版八年级数学上册等腰三角形的性质
等腰三角形是轴对称图形吗?
※等腰三角形是轴对称图形,对称轴是顶角平分线所在的直线。
把剪出的等腰三角形ABC沿折痕对折, 找出其中重合的线段和角.
重合的线段
AB=AC BD=CD AD=AD
重合的角
∠B = ∠C. ∠BAD = ∠CAD
∠ADB = ∠ADC B
A
D
C
大胆猜想
等腰三角形除了两腰相等以外, 你还能发现它的其他性质吗?
AC=AB, △ABC是等腰三角形
(1)什么是等腰三角形?
有两条边相等的三角形叫做等腰三角形.
(2)等腰三角形的有关概念 (3)三角形中学过哪些重要线段?
三角形的中线、角平分线和高线 如图:中线AD,角平分线AE,高AF
有两条边相等的三角形叫做等腰三角形.
A
顶角
腰
腰
底角
B
底角
C
底边
等腰三角形中,相等的两边都叫做腰, 另一边叫做底边,两腰的夹角叫做顶角,腰 和底边的夹角叫做底角.
轴对称图形 有两条边相等的三角形叫做等腰三角形.
互动探究1:如图所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A的度数. 性质1 等腰三角形的两个底角相等
(可简记为“三线合一”)
∴ △ABD≌ △ACD
(可简记为“三线合一”)
在△ABD和△ACD中
证明: 作△ABC 的高线AD
∵AB=AC , ∠ BAD=∠CAD
∴BD=CD, AD⊥BC (三线合一)
小试牛刀
1.已知顶角为70°,其余两个角分别为__。
2.已知等腰三角形的两边长分别是4和6, 则它的周长是__
小试牛刀
3、下列说法中,正确的有 ( ) ①等腰三角形的两腰相等;②等腰三角形的
人教版八年级数学上册:13.3等腰三角形的性质(教案)
其次,在教学难点部分,如底角平分线相等这一性质,学生们普遍感到困惑。我尝试通过画图和实际操作来解释,但感觉讲解还不够透彻。下次,我可以尝试用不同的方法或角度来阐述这个性质,让学生们更容易理解。
在总结回顾环节,学生们对今天学习的知识点有了较好的把握。但在课后,我还是要关注那些课堂上表现出疑问的学生,确保他们能够真正掌握等腰三角形的性质。
4.培养学生的团队协作能力,通过小组讨论、合作探究等腰三角形的性质,培养学生的交流沟通能力和团队协作精神。
三、教学难点与重点
1.教学重点
-理解并掌握等腰三角形的定义及判定方法,明确等腰三角形的两腰相等、两底角相等的基本性质;
-学会运用等腰三角形的性质解决实际问题,如求等腰三角形的周长、面积等;
-掌握等腰三角形底角的平分线相等、顶角平分线、底边上的中线、底边上的高相互重合的性质,并能应用于几何证明和计算。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解等腰三角形的基本概念。等腰三角形是两条边长度相等的三角形。它在几何学中具有重要地位,广泛应用于日常生活和建筑等领域。
2.案例分析:接下来,我们来看一个具体的案例。通过分析等腰三角形在桥梁建筑中的应用,了解它如何帮助我们解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调等腰三角形的两腰相等、两底角相等这两个重点。对于难点部分,如底角平分线相等,我会通过举例和比较来帮助大家理解。
举例:针对底角平分线相等的难点,通过图形演示和实际操作,帮助学生理解并掌握这一性质。在解决具体问题时,指导学生如何找到关键信息,运用该性质进行解题。对于顶角平分线、中线、高线的性质,通过构造直观的图形,引导学生观察并理解它们的相互关系,以便在几何证明中正确运用。
人教版八年级上册13.3.1《等腰三角形》
《等腰三角形》◆教材分析本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。
◆教学目标【知识与能力目标】1、理解并掌握等腰三角形的性质。
2、会运用等腰三角形的概念和性质解决有关问题。
3、观察等腰三角形的对称性、发展形象思维。
4、探索等腰三角形的判定定理【过程与方法目标】1、通过实践、观察、证明等腰三角形的性质,培养学生的推理能力。
2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。
3、探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念【情感态度价值观目标】1、引导学生对图形的观察、发现,激发学生的好奇心和求知欲。
2、在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。
3、感受图形中的动态美、和谐美、对称美,感受合作交流带来的成功感,树立自信心。
4、通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力【教学重点】1、等腰三角形的概念和性质及其应用。
2、等腰三角形的判定定理及其应用【教学难点】1、等腰三角形的性质的证明。
2、探索等腰三角形的判定定理◆教学过程一、情景导入:师:日常生活中,我们会经常看到一些美丽的图案,其中一些是平面几何图形,接下来我们观察几幅图片,说一说你们看到了什么图形?(课件向学生展示平常见到的有关等腰三角形的图片)学生观察一组图片,回答问题。
【设计意图】使学生能从实际生活中抽象出等腰三角形,初步感知等腰三角形在实际生活中的广泛应用,用美丽的画面激发学生的求知欲。
培养学生勤观察,肯思考的学习习惯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《等腰三角形的性质》教学设计
利川民族实验中学翁成军
一、教学目标
1、知识与能力:
①掌握等腰三角形的性质。
②运用等腰三角形的性质进行有关证明和计算。
2、过程与方法:
①让学生体验等腰三角形是一个轴对称性图形。
②经历操作、发现、猜想、证明的过程,培养学生的逻辑思维能力。
3、情感、态度、价值观:
培养学生协作学习精神,使学生理解事物之间是相互联系和运动变化,培养学生辩证唯
物主义观念。
二、教学重点
等腰三角形的性质及应用。
三、教学难点
等腰三角形的性质的证明。
四、教学准备
长方形纸片、剪刀、自制等腰三角形纸片
五、教学过程
(一)、创设情景,引入新知
活动1:请同学们把一张长方形的纸片对折,剪去(或用刀子裁)一个角,再把它展开,得到的是什么样三角形?
教师示范操作,然后学生跟着动手操作,观察得出结论:“剪刀剪过的两条边是相等的;剪出的图形是等腰三角形”,根据学生回答,板书:等腰三角形
师生共同回顾:有两条边相等的三角形,叫做等腰三角形,相等的两边叫做腰,另一条边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角
教师提问:剪出的三角形是轴对称图形吗?你能发现这个三角形有哪些特点吗?说一说你的猜想
学生思考并发表自已的看法,教师提出本节课所要解决的问题
师生归纳:等腰三角形是轴对称图形,底边上的中线所在的直线是它的对称轴(板书)
教师说明:对称轴是一条直线,而三角形的中线是线段,因此不能说等腰三角形底边上的中线是它的对称轴。
(二)、合作交流,探索新知
活动2:教师出示刚才剪下的等腰三角形纸片,标上字母如图所示:
把边AB叠合到边AC上,这时点B与C重合,并出现折痕AD,观察图形,△ADB与△ADC 有什么关系?图中哪些线段或角相等?AD与BC垂直吗?为什么?
学生回答:△ADB与△ADC重合,∠B=∠C,∠BAD=∠CAD,∠ADB=∠CDA,BD=CD 活动3:由上面的性质我们可以得到等腰三角形如下性质:
性质1:等腰三角形的两个底角相等,简称:等边对等角(板书)
教师提问:这个命题的题设是什么?结论是什么?学生可结合图形回答
(板书)已知:在△ABC中,AB=AC
求证:∠B=∠C
说明:将等腰三角形写成已知时,通常写成“在△ABC中,AB=AC”而不写成“等腰”两个字
教师引等学生回答:要证两个角相等可以转化前面所学过的三角形全等,而图形只有一个三角形,如何添加辅助线使它转化为两个三角形?
通过刚才的折叠等腰三角形的实验,很容易得到辅助线,作高AD或作顶角的平分线AD,可由两位学生板演,教师巡视,并给订正。
同学们思考一下,还有没有其它辅助线的作法,教师可作提示:作中线AD,由学生口答,或者指导学生看课本证明。
教师归纳等腰三角形性质1,并指出它的几何符号语言的书写:
如上图:∵AB=AC(已知)
∴∠B=∠C(等边对等角)
教师提出问题:练习1(口答)
1、等腰直角三角形每一个锐角的度数是多少度?
2、如果等腰三角形的底角等于40°,那么它的顶角的度数是多少?
3、如果等腰三角形的顶角是40°,那么它的底角的度数是多少?
1、如果等腰三角形的一个角是40°,那么其它的两个角各是多少度?
2、如果等腰三角形的一个内角是120°,则其它的两个角各是多少度?
要求学生完成教师提出的问题,教师归纳:
等腰三角形中顶角与底角的关系:顶角十2 ×底角=180°
教师与学生合作分析,口述(2)的证明过程。
活动4:提出问题:从性质1的证明过程可以知道,BD=CD,
∠ADB=∠ADC=90°,由此,你能得出等腰三角形还具有什么性质?
让学生运用数学语言表述所发现的规律,师生共同归纳得出:
性质2 等腰三角形的顶角的平分线垂直平分底边(板书)
即:等腰三角形顶角的平分线、底边上的中线和底边上的高互相
重合三线合一(板书)
活动5:教师出示课本例1
分析例1,剖析推理方法及依据,提出讨论问题,引导学生思考,根据学生回答教师板书例1过程,解略
(三)、巩固练习,强化新知
练习2:(出示小黑板)
如图,在ABC中,AB=AC
(1)∵AD⊥BD ∴∠______ = ∠_____;______ = ______(等腰三角形底边上的高与______、______重合)
(2)∵AD是中线∴_____ ⊥_____;∠_____= ∠_____(等腰三角形底边上的中线与_____、_____重合)
(3)∵AD是角平分线∴____ ⊥____;____= ____(等腰三角形顶角的平分线与______、_____重合)
(四)、师生互动,总结新知
请同学们回顾本节课所学的内容,有哪些收获?
师生活动:学生思考后,用自己语言归纳,教师适时点评,并关注以下几个问题:1、等边对等角;2、等腰三角形三线合一;3、等腰三角形常用辅助线作法(作底边上的高、作底边上的中线、作顶角的平分线)
(五)、作业设计,深化新知
课本51页练习第1,2,3题。
六、教学反思
本节课通过对等腰三角形叠合操作引出等腰三角形是轴对称图形,进而得到等腰三角形的性质1:等边对等角,这种操作有利于学生发现等腰三角形性质的证明,给出三种不同的辅助线,是用来培养学生的发散思维能力。
在讲完性质1后,设计如教案中练习1,一方面是用来巩固性质1,其中练习1中2、3、4具有变式教学思想,另一方面是为推论及性质2作准备。
教案中练习2是用来巩固性质2,重点是培养学生的几何符号语言表达能力。
让学生回顾,是为了培养学生的语言表达能力,同时加深学生对所学知识的理解,促进学生对学习过程的进行反思。
在整个教学过程中,本人利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯。
总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,培养学生应用意识,提高学生学习数学素养。