常德市初中中考模拟试题 (6)

合集下载

常德市重点中学2023-2024学年中考生物模拟试题含解析

常德市重点中学2023-2024学年中考生物模拟试题含解析

常德市重点中学2023-2024学年中考生物模拟试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

1、在米酒制作的发酵过程中,把淀粉转化成葡萄糖的是()A.曲霉和毛霉B.曲霉和酵母菌C.毛霉和酵母菌D.酵母菌2、下列有关呼吸系统的知识,错误的是()A.呼出的气体能够使澄清的石灰水明显变浑浊B.呼出的气体中二氧化碳含量最多C.呼吸道对吸入的空气有温暖、清洁、湿润的作用3、在植树过程中,为了提高树苗成活率,应该采取的措施是()①带土移栽②去掉部分叶片移栽③在烈日炎炎的中午移栽④尽量利用早晚移栽A.②④B.①②④C.②③D.①③④4、下图示人的膈肌收缩和舒张时在胸腔内的位置,下列有关表述正确的是A.膈肌从甲到乙时,呼气B.膈肌从甲到乙时,吸气C.呼气完成的瞬间,膈肌处于乙状态D.吸气完成的瞬间,膈肌处于甲状态5、世界上没有完全一样的两个人,这体现了生物多样性中的()A.物种多样性B.数量多样性C.遗传多样性D.生态系统多样性6、枯叶蝶在进化过程中逐渐形成了体色随环境变化的特点;飞行过程中身体呈鲜艳的黄色,便于吸引异性,降落后的体态和体色像一片枯叶。

下列叙述中错误的是A.枯叶蝶体色随环境而改变是一种性状B.为了应对敌害,枯叶蝶产生了体色随环境变化的定向变异C.在进化过程中,敌害对枯叶蝶的不同变异起到了选择的作用D.在进化过程中,枯叶蝶也能产生不利于应对敌害的变异7、在北半球植物繁茂的中纬度地区,一年中大气CO2浓度相对较高的季节是()A.春季B.夏季C.秋季D.冬季8、如图为某些科学概念间的关系,表格中符合该关系的是()A B C DⅠ消化道微生物无性生殖生物圈Ⅱ消化腺细菌有性生殖生产者Ⅲ肝脏真菌克隆分解者A.A B.B C.C D.D9、人的有耳垂和没耳垂是一对相对性状,有耳垂是显性,没耳垂是隐性,有耳垂基因用B表示,没耳垂用b表示,如果父亲母亲基因都是Bb,则这对夫妇生出没耳垂孩子的可能性是()A.0% B.25% C.75% D.100%10、下列有关玉米种子的说法,正确的是()A.胚由胚芽、胚根、子叶组成B.胚是玉米新植株的幼体C.酒精能使玉米种子的纵切面变蓝D.种子中的子叶发育为叶11、诗句“雨露滋润禾苗壮”所隐含的影响植物生长的非生物因素是A.阳光B.温度C.水分D.空气12、男女生殖器官中,既能产生生殖细胞,又能分泌性激素的分别是A.附睾和子宫B.睾丸和卵巢C.附睾和阴道D.精囊腺和卵巢13、生活中,人们采取的下列措施与其目的不一致的是()A.给植物施加肥料——主要是给植物生长提供有机物B.干燥、低温、适当通风——延长种子寿命,保存种子的条件C.园艺工人在移栽树苗时去掉部分枝叶——降低移栽树苗的蒸腾作用D.制作洋葱鳞片叶内表皮细胞临时装片时滴清水——维持细胞形态14、人属于生态系统中的()A.分解者B.消费者C.生产者D.以上都对15、某生物兴趣小组在一次实地考察中,观察到了蚯蚓、青蛙、家燕、家兔四种动物。

常德市初中模拟考试试题

常德市初中模拟考试试题

常德市初中模拟考试试题一、语文1. 阅读理解:阅读以下古文,回答下列问题:《岳阳楼记》是北宋文学家范仲淹所作,记述了作者登岳阳楼所见的景色和抒发的感慨。

请回答:(1)《岳阳楼记》中“先天下之忧而忧,后天下之乐而乐”一句,体现了作者怎样的情怀?(2)文中“不以物喜,不以己悲”表达了作者怎样的人生态度?2. 现代文阅读:阅读以下现代文,回答下列问题:《我的母亲》是朱自清的散文,通过回忆母亲的形象,表达了对母亲的怀念和敬爱。

请回答:(1)文章中母亲的形象有哪些特点?(2)作者通过哪些细节描写来表现母亲的慈爱?3. 作文:请以“我的梦想”为题,写一篇不少于600字的作文。

要求内容真实,语言流畅,能够表达出你对梦想的理解和追求。

二、数学1. 选择题:(1)下列哪个数是无理数?A. 0.33333...(无限循环)B. πC. √2D. 12. 解答题:(1)已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。

(2)一个长方体的长、宽、高分别是8cm、6cm和5cm,求这个长方体的体积。

三、英语1. 阅读理解:阅读以下短文,回答下列问题:The story of "The Little Match Girl" is a famous fairy tale written by Hans Christian Andersen. What is the main theme of this story?2. 完形填空:Read the following passage and fill in the blanks with the appropriate words.Once upon a time, there was a little girl who lived in asmall village. She was very poor and had to sell matches to make a living. One cold winter's night, she was still out in the street trying to sell her matches. She was very cold and hungry, but she had no money to buy food or warm clothes.Suddenly, she saw a beautiful light in the distance. She walked towards it and found a warm and cozy house. Sheknocked on the door, hoping to sell some matches to thepeople inside. However, no one answered. She felt very sadand lonely.Then, she decided to light a match to warm herself. As the match burned, she saw a vision of her family and friends. Shefelt a little warmer and happier. She lit another match and saw a vision of a feast with delicious food. She wished she could join them.Finally, she lit the last match and saw a vision of her grandmother. Her grandmother was smiling and holding out her arms to her. The little girl felt a warmth and love she had never felt before. She knew she was not alone anymore.3. 作文:Write an essay on the topic "The Importance of Helping Others". Your essay should be at least 120 words in length and should include the following points:- Why helping others is important.- How helping others can benefit both the helper and the receiver.- Your personal experience or opinion on helping others.四、科学1. 实验题:设计一个实验来验证植物的光合作用需要光。

常德市物理中考模拟试卷检测题含答案

常德市物理中考模拟试卷检测题含答案
请回答下列问题:[1个标准大气压取1×105Pa,海水的密度取1×103kg/m3,g取10N/kg,c水=4.2×103J/(kg·℃),甲烷的热值取4.2×107J/m3]
(1)可燃冰的主要成分是_________和__________。
(2)若要在0℃的海底生成可燃冰,海水的深度至少要_______m。
(1)[1]木块静止时漂浮在水面,受到的浮力等于木块本身的重力,即
[2]由图乙可知,木块静止时木块浸入水中的深度为 ,则木块静止漂浮时排开水的体积为
根据漂浮时受到的浮力等于物体本身重力,则有
则木块的密度
(2)[3]木块开始下沉到恰好浸没的过程中,木块在重力方向移动了
则重力对木块做功
(3)[4]由[2]已知水和木块的密度关系是
(1)当木块浸入水中的深度为 时,木块受到的浮力;
(2)当木块浸入水中的深度为 时,水对容器底部的压强;
(3)当木块下有表面刚接触容器底部时,弹簧的长度;
(4)当硬板向上移动 时,容器对硬板的压强。
【答案】(1)1N;(2)1600Pa;(3)6cm;(4)2100 Pa
【解析】
【分析】
【详解】
(1)当木块浸入水中的深度为2cm时,其所受的浮力为
(2)容器底面积为 ,当木块浸入水中的深度为6cm时,容器中水面增加的高度
此时容器底部受到的压强
(3)当木块下表面刚接触容器底部时,水的深度(木块浸入的深度)为H1,容器中水的体积不变,即
代入得
解得
即水未溢出。此时木块受到的浮力
弹簧对木块的弹力
弹簧的长度
(4)容器中水的重力
当硬板向上移28cm时,弹簧的长度
(3)当木块下有表面刚接触容器底部时,弹簧的长度为6cm;

初中数学湖南省常德市中考模拟数学考试题(含解析)

初中数学湖南省常德市中考模拟数学考试题(含解析)

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.(1)如图1,当M在线段BO上时,求证:MO=NO;(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.试题2:如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.评卷人得分试题3:如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.试题4:某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.试题5:图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)试题6:某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?试题7:如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y1<y2时x的取值范围.试题8:先化简,再求值:(+)÷,其中x=.试题9:求不等式组的正整数解.试题10:计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.试题11:自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是.试题12:15.(3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB= .试题13:某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为.视力x 频数4.0≤x<4.3 204.3≤x<4.6 404.6≤x<4.9 704.9≤x≤5.2 605.2≤x<5.5 10试题14:若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b的值可能是试题15:一组数据3,﹣3,2,4,1,0,﹣1的中位数是试题16:已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为千米.试题17:分式方程﹣=0的解为x=试题18:﹣8的立方根是试题19:阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为试题20:把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A. B. C. D.试题21:如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.3试题22:从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲 B.乙 C.丙 D.丁试题23:若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2 B.k>2 C.k>0 D.k<0试题24:已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b| C.ab>0 D.﹣a>b试题25:已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.11试题26:﹣2的相反数是()A.2 B.﹣2 C.2﹣1 D.﹣试题1答案:【解答】解:(1)∵正方形ABCD的对角线AC,BD相交于O,∴OD=OA,∠AOM=∠DON=90°,∴∠OND+∠ODN=90°,∵∠ANH=∠OND,∴∠ANH+∠ODN=90°,∵DH⊥AE,∴∠DHM=90°,∴∠ANH+∠OAM=90°,∴∠ODN=∠OAM,∴△DON≌△AOM,∴OM=ON;(2)连接MN,∵EN∥BD,∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD,∴EN=CN,同(1)的方法得,OM=ON,∵OD=OD,∴DM=CN=EN,∵EN∥DM,∴四边形DENM是平行四边形,∵DN⊥AE,∴▱DENM是菱形,∴DE=EN,∴∠EDN=∠END,∵EN∥BD,∴∠END=∠BDN,∴∠EDN=∠BDN,∵∠BDC=45°,∴∠BDN=22.5°,∵∠AHD=90°,∴∠AMB=∠DME=90°﹣∠BDN=67.5°,∵∠ABM=45°,∴∠BAM=67.5°=∠AMB,∴BM=AB;(3)设CE=a(a>0)∵EN⊥CD,∴∠CEN=90°,∵∠ACD=45°,∴∠CNE=45°=∠ACD,∴EN=CE=a,∴CN=a,设DE=b(b>0),∴AD=CD=DE+CE=a+b,根据勾股定理得,AC=AD=(a+b),同(1)的方法得,∠OAM=∠ODN,∵∠OAD=∠ODC=45°,∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,∴△DEN∽△ADE,∴,∴,∴a=b(已舍去不符合题意的)∴CN=a=b,AC=(a+b)=b,∴AN=AC﹣CN=b,∴AN2=2b2,AC•CN=b•b=2b2∴AN2=AC•CN.试题2答案:【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,∴B点坐标为(6,0),设抛物线解析式为y=ax(x﹣6),把A(8,4)代入得a•8•2=4,解得a=,∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;(2)设M(t,0),易得直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得,∴直线AB的解析式为y=2x﹣12,∵MN∥AB,∴设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=﹣2t,∴直线MN的解析式为y=2x﹣2t,解方程组得,则N(t,t),∴S△AMN=S△AOM﹣S△NOM=•4•t﹣•t•t=﹣t2+2t=﹣(t﹣3)2+3,当t=3时,S△AMN有最大值3,此时M点坐标为(3,0);(3)设Q(m,m2﹣m),∵∠OPQ=∠ACO,∴当=时,△PQO∽△COA,即=,∴PQ=2PO,即|m2﹣m|=2|m|,解方程m2﹣m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,28);解方程m2﹣m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,4);∴当=时,△PQO∽△CAO,即=,∴PQ=PO,即|m2﹣m|=|m|,解方程m2﹣m=m得m1=0(舍去),m2=8(舍去),解方程m2﹣m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,﹣1);综上所述,P点坐标为(14,28)或(﹣2,4)或(2,﹣1).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.试题3答案:【解答】证明:(1)连接OD,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A、B、C、D四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAF=∠CAF,在△BAD和△CAF中,∵,∴△BAD≌△CAF,∴BD=CF.【点评】本题考查了全等三角形的性质和判定,等边三角形及外接圆,四点共圆等知识点的综合运用,属于基础题,熟练掌握等边三角形的性质是关键.试题4答案:【解答】解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),所以喜欢乒乓球的学生所占的百分比=×100%=28%,补全条形统计图如下:(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目的有60名;(3),篮球”部分所对应的圆心角=360×40%=144°;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,所以抽取的两人恰好是甲和乙的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.试题5答案:【解答】解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示.∵AB=CD,AB+CD=AD=2,∴AB=CD=1.在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8.在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7.∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC为平行四边形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=≈1.4,∴B与C之间的距离约为1.4米.试题6答案:【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得:.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a),解得:a≤90.∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.试题7答案:【解答】解:(1)∵反比例函数y2=(k2≠0)的图象过点A(4,1),∴k2=4×1=4,∴反比例函数的解析式为y2=.∵点B(n,﹣2)在反比例函数y2=的图象上,∴n=4÷(﹣2)=﹣2,∴点B的坐标为(﹣2,﹣2).将A(4,1)、B(﹣2,﹣2)代入y1=k1x+b,,解得:,∴一次函数的解析式为y=x﹣1.(2)观察函数图象,可知:当x<﹣2和0<x<4时,一次函数图象在反比例函数图象下方,∴y1<y2时x的取值范围为x<﹣2或0<x<4.【点评】本题考查了待定系数法求一次函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出点B的坐标;(2)根据两函数图象的上下位置关系,找出不等式y1<y2的解集.试题8答案:【解答】解:原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,把x=代入得:原式=﹣3=﹣.试题9答案:【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,4.【点评】本题考查了解一元一次不等式组,利用解一元一次不等式组的解集的表示方法是解题关键.试题10答案:解:原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.试题11答案:9【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.【点评】本题属于阅读理解和探索规律题,考查的知识点有平均数的相关计算及方程思想的运用.规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.本题还可以根据报2的人心想的数可以是6﹣x,从而列出方程x﹣12=6﹣x求解.试题12答案:75°分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.试题13答案:0.35【分析】直接利用频数÷总数=频率进而得出答案.【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,则视力在4.9≤x<5.5这个范围的频率为:=0.35.故答案为:0.35.【点评】此题主要考查了频率求法,正确把握频率的定义是解题关键.试题14答案:6 (只写一个).【分析】根据方程的系数结合根的判别式△>0,即可得出关于b的一元二次不等式,解之即可得出b的取值范围,取其内的任意一值即可得出结论.【解答】解:∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,∴△=b2﹣4×2×3>0,解得:b<﹣2或b>2.故答案可以为:6.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.1.【分析】将数据按照从小到大重新排列,根据中位数的定义即可得出答案.【解答】解:将数据重新排列为﹣3、﹣1、0、1、2、3、4,所以这组数据的中位数为1,故答案为:1.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.试题16答案:1.5×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1 5000 0000=1.5×108,故答案为:1.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.试题17答案:﹣1 .【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣2﹣3x=0,解得:x=﹣1,经检验x=1是分式方程的解.故答案为:﹣1【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.﹣2 .【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.试题19答案:C【分析】分别根据行列式的定义计算可得结论.【解答】解:A、D==﹣7,正确;B、D x==﹣2﹣1×12=﹣14,正确;C、D y==2×12﹣1×3=21,不正确;D、方程组的解:x===2,y===﹣3,正确;故选:C.【点评】本题是阅读理解问题,考查了2×2阶行列式和方程组的解的关系,理解题意,直接运用公式计算是本题的关键.试题20答案:D【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.试题21答案:D.试题22答案:A.试题23答案:B.【点评】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大.试题24答案:D.试题25答案:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.试题26答案:A.。

2024届湖南省常德市市直校中考生物模拟预测题含解析

2024届湖南省常德市市直校中考生物模拟预测题含解析

2024届湖南省常德市市直校中考生物模拟预测题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

1、“落叶不是无情物,化作春泥更护花”,请从生态学角度分析,在落叶化作“春泥”的过程中,起决定作用的是()A.生产者B.消费者C.分解者D.水分2、“西湖春色归,春水绿于染”,所描述的生物基本特征是()A.生活需要营养B.遗传和变异C.生长和繁殖D.对外界刺激作出反应3、下列各项中属于生物的是()A.机器人B.珊瑚虫C.石钟乳D.珊瑚礁4、发酵技术和我们的日常生活息息相关.下列产品的生产与发酵技术无关的是()A.醋B.酱油C.蒙牛酸奶D.双汇火腿肠5、我国自新中国成立初期,就开始了预防接种工作,现在婴儿刚一出生医院就给接种卡介苗和乙肝疫苗,这属于A.非特异性免疫B.增加吞噬细胞数量C.特异性免疫D.预防神经炎6、下列各图表示高等动物的四种组织。

其中能够接受刺激、产生兴奋并传导兴奋的是A.B.C.D.7、水分在植物茎内运输的结构是:()A.叶脉B.导管C.筛管D.气孔8、下列有关动植物体结构层次的叙述中,不正确的是()A.动植物的各种组织是由细胞分化形成的B.植物叶片的表皮、动物的血液都属于组织C.植物的叶、花、种子和人体的心脏都属于器官D.动植物共有的结构层次是“细胞、组织、器官、系统”9、尿液与原尿相比,一般不含葡萄糖,这是由于A.肾小球的过滤作用B.肾小管的重吸收作用C.膀胱的储存D.输尿管的输送10、血吸虫病、H7N9患者、艾滋病病毒(HIV)、注射抗蛇毒血清分别属于①病原体②传染源③传染病④易感人群⑤抗体A.③②①⑤B.②③①⑤C.④①②⑤D.⑤②④①11、“应怜屐齿印苍苔,小扣柴扉久不开,春色满园关不住,一枝红杏出墙来”,诗句中描写的植物分别属于()A.藻类植物裸子植物B.藻类植物被子植物C.苔藓植物裸子植物D.苔藓植物被子植物12、幼儿的骨骼比较脆弱,很容易引起手臂脱臼。

2021年湖南省常德市中考数学模拟试卷(解析版)

2021年湖南省常德市中考数学模拟试卷(解析版)

2021年湖南省常德市中考数学模拟试卷一、选择题:(每小题3分,共计24分)1.(3分)|﹣2|的相反数为()A.2B.﹣2C.D.﹣2.(3分)已知三角形中,某两条边的长分别为4和9,则另一条边的长可能是()A.4B.5C.12D.133.(3分)若函数y=(k+1)x+2中,y的值随x值的增大而减小,则k的取值范围为()A.k<0B.k>0C.k<1D.k<﹣14.(3分)若实数a、b、c在数轴上的对应点的位置如图所示,则正确的结论是()A.|c|>|a|B.bc>0C.b+c<0D.a+c<05.(3分)某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别为S甲2=26.5,S乙2=29,则两组成绩的稳定性是()A.甲组比乙组的成绩稳定B.乙组比甲组的成绩稳定C.甲、乙两组的成绩一样稳定D.无法确定6.(3分)如图,矩形ABCD中,O为BD的中点,过点O作EF⊥BD分别交AB、CD于点E、F,若AD=2,AB=4,则DE的长为()A.2B.C.D.7.(3分)下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy28.(3分)已知实数a≠1,我们把称为a的差倒数,如:﹣2的差倒数是的差倒数是.如果a1=﹣1,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…依此类推,则a1+a2+…+a100=()A.48.5B.49.5C.50D.51.5二、填空题:(每题3分,共24分)9.(3分)﹣27的立方根等于.10.(3分)一个多边形的内角和是1080°,这个多边形的边数是.11.(3分)为防疫新冠病毒,我国的口罩产能大幅提升,今年四月初我国日产口罩达到210000000只,将210000000用科学记数法表示为.12.(3分)5个正整数中,中位数是6,唯一的众数是8,则这5个数的和的最大值为.13.(3分)若关于x的一元二次方程x2+(k+3)x+2=0的一个根是﹣1,则另一个根是.14.(3分)如图,要用纸板制作一个母线长为8cm,底面圆半径为6cm的圆锥形漏斗,若不计损耗,则所需纸板的面积是cm2.15.(3分)把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为.16.(3分)如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为.三.(每小题5分,共10分)17.(5分)计算:.18.(5分)解不等式组.四、(每小题4分,共12分)19.(4分)先化简,再求值:,其中,.20.(4分)如图Rt△OAB的面积为6,∠OBA=90°,反比例函数的图象经过点A.(1)求反比例函数的解析式;(2)从M(1,6),N(3,4),P(﹣1,12),Q(﹣6,﹣2)四个点中任取两个点,请用树状图或列表法,求恰有一个点在反比例函数图象上的概率.五、(每小题7分,共14分)21.(7分)为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球,已知篮球和排球的单价比为3:2.单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?22.(7分)如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠P AC=90°,AB=2,求PD的长.六、(每小题8分,共16分)23.(8分)某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.24.(8分)在日常生活中,我们经常看到一些窗户上安装着遮阳篷,如图(a),现在要为一个面向正南的窗户设计安装一个遮阳篷,已知该地区冬天正午太阳最低时,光线与水平线的夹角为30°;夏天正午太阳最高时,光线与水平线的夹角为60°.把图(a)画成图(b),其中AB表示窗户的高,BCD表示直角形遮阳篷.(1)遮阳篷BCD怎样设计,才能正好在冬天正午太阳最低时光线最大限度地射入室内,而夏天正午太阳最高时光线刚好不射入室内?请在图(c)中画图表示;(2)已知AB=150cm,在(1)的条件下,求出BC,CD的长度.七、(每小题10分,共20分)25.(10分)如图,已知抛物线y=ax2+bx+c经过点B(﹣4,﹣3),与x轴交于A(﹣5,0),C(﹣1,0)两点,D为顶点,P为抛物线上一动点(与点B、C不重合).(1)求该抛物线的解析式;(2)当点P在直线BC的下方运动时,求△PBC的面积的最大值;(3)该抛物线上是否存在点P,使∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.26.(14分)已知四边形ABCD是菱形,∠ABC=60°,∠EAF的两边分别与射线CB、DC 相交于点E、F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,求证:AE =EF;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上时,设AF交BC于点G,求证:AG•CF=AF•CG.2021年湖南省常德市中考数学模拟试卷参考答案与试题解析一、选择题:(每小题3分,共计24分)1.(3分)|﹣2|的相反数为()A.2B.﹣2C.D.﹣【分析】先计算|﹣2|,再写出它的相反数.【解答】解:|﹣2|=2,2的相反数时﹣2,所以|﹣2|的相反数是﹣2故选:B.2.(3分)已知三角形中,某两条边的长分别为4和9,则另一条边的长可能是()A.4B.5C.12D.13【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:9+4=13,9﹣4=5,所以第三边在5到13之间,只有C中的12满足.故选:C.3.(3分)若函数y=(k+1)x+2中,y的值随x值的增大而减小,则k的取值范围为()A.k<0B.k>0C.k<1D.k<﹣1【分析】根据一次函数y=(k+1)x+2的增减性列出不等式k+1<0,通过解该不等式即可求得k的取值范围.【解答】解:∵一次函数y=(k+1)x+2图象是函数值y随自变量x的值增大而减小,∴k+1<0,解得,k<﹣1;故选:D.4.(3分)若实数a、b、c在数轴上的对应点的位置如图所示,则正确的结论是()A.|c|>|a|B.bc>0C.b+c<0D.a+c<0【分析】根据a、b、c在数轴上的位置即可得到答案.【解答】解:A、|c|<2,|a|>2,则|c|<|a|,故A不符合题意,B、b<0,c>0,则bc<0,故B不符合题意,C、b<0,c>0,且|c|>|b|,则b+c>0,故C不符合题意,D、a<0,c>0,且|c|<|a,则a+c<0,故D符合题意,故选:D.5.(3分)某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别为S甲2=26.5,S乙2=29,则两组成绩的稳定性是()A.甲组比乙组的成绩稳定B.乙组比甲组的成绩稳定C.甲、乙两组的成绩一样稳定D.无法确定【分析】根据方差的意义求解即可.【解答】解:∵S甲2=26.5,S乙2=29,∴S甲2<S乙2,∴甲组比乙组的成绩稳定,故选:A.6.(3分)如图,矩形ABCD中,O为BD的中点,过点O作EF⊥BD分别交AB、CD于点E、F,若AD=2,AB=4,则DE的长为()A.2B.C.D.【分析】根据题意可得EF垂直平分BD,EB=ED,再根据勾股定理即可求出DE的长.【解答】解:根据题意可知:EF垂直平分BD,∴EB=ED,∴AE=AB﹣BE=AB﹣ED=4﹣DE,根据勾股定理,得DE2=AE2+AD2,∴DE2=(4﹣DE)2+22,解得DE=.故选:B.7.(3分)下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy2【分析】选项A为单项式×单项式;选项B为积的乘方;选项C为同底数幂的除法;选项D为合并同类项,根据相应的公式进行计算即可.【解答】解:选项A,单项式×单项式,(a3b)•(ab2)=a3•a•b•b2=a4b3,选项正确选项B,积的乘方,(﹣mn3)2=m2n6,选项正确选项C,同底数幂的除法,a5÷a﹣2=a5﹣(﹣2)=a7,选项错误选项D,合并同类项,xy2﹣xy2=xy2﹣xy2=xy2,选项正确故选:C.8.(3分)已知实数a≠1,我们把称为a的差倒数,如:﹣2的差倒数是的差倒数是.如果a1=﹣1,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…依此类推,则a1+a2+…+a100=()A.48.5B.49.5C.50D.51.5【分析】先求出数列的前4个数,从而得出这个数列以﹣2,,依次循环,用100除以3,从而可以求得答案.【解答】解:∵a1=﹣1,∴a2==,a3==2,a4==﹣1,∴这列数是以﹣1,,2依次循环,且﹣1++2=,∵100÷3=33…1,∴a1+a2+…+a100=33×﹣1=48.5;故选:A.二、填空题:(每题3分,共24分)9.(3分)﹣27的立方根等于﹣3.【分析】根据立方根的定义求出即可.【解答】解:﹣27的立方根是﹣3.故答案为:﹣3.10.(3分)一个多边形的内角和是1080°,这个多边形的边数是8.【分析】根据多边形内角和定理:(n﹣2)•180 (n≥3)可得方程180(x﹣2)=1080,再解方程即可.【解答】解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.11.(3分)为防疫新冠病毒,我国的口罩产能大幅提升,今年四月初我国日产口罩达到210000000只,将210000000用科学记数法表示为 2.1×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:210000000=2.1×108,故答案为:2.1×108.12.(3分)5个正整数中,中位数是6,唯一的众数是8,则这5个数的和的最大值为31.【分析】根据中位数和众数的定义分析可得答案.【解答】解:因为五个正整数从小到大排列后,其中位数是6,这组数据的唯一众数是8,所以这5个数据分别是x,y,6,8,8,其中x=3或4,y=4或5.所以这5个数的和的最大值是4+5+6+8+8=31.故答案为:31.13.(3分)若关于x的一元二次方程x2+(k+3)x+2=0的一个根是﹣1,则另一个根是﹣2.【分析】设方程的另一个根为t,利用两根之积为﹣2得到﹣1×t=2,然后解方程即可.【解答】解:设方程的另一个根为t,根据题意得﹣1×t=2,解得t=﹣2,即方程的另一个根为﹣2.故答案为﹣2.14.(3分)如图,要用纸板制作一个母线长为8cm,底面圆半径为6cm的圆锥形漏斗,若不计损耗,则所需纸板的面积是48πcm2.【分析】根据圆锥的侧面展开是扇形,即求扇形的面积,根据圆锥的母线长即扇形的半径,再由扇形的面积公式S=lR即可得出答案.【解答】解:∵l=2×6×π=12π(cm),∴S=lR=×12π×8=48π(cm2).故答案为:48π.15.(3分)把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为y=﹣(x+1)2+3.【分析】抛物线的平移问题,实质上是顶点的平移,原抛物线y=﹣x2顶点坐标为(0,0),向左平移1个单位,然后向上平移3个单位后,顶点坐标为(﹣1,3),根据抛物线的顶点式可求平移后抛物线的解析式.【解答】解:根据题意,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣1,3),∴平移后抛物线解析式为:y=﹣(x+1)2+3.故答案为:y=﹣(x+1)2+3.16.(3分)如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为1.【分析】由三角形的中位线定理得:A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,所以△A2B2C2的周长等于△A1B1C1的周长的一半,以此类推可求出△A5B5C5的周长为△A1B1C1的周长的.【解答】解:∵A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,∴以此类推:△A5B5C5的周长为△A1B1C1的周长的,∴则△A5B5C5的周长为(7+4+5)÷16=1.故答案为:1三.(每小题5分,共10分)17.(5分)计算:.【分析】直接利用负整数指数幂的性质以及特殊角的三角函数值、零指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:原式=﹣1+1+3﹣3×=﹣1+1+3﹣=3.18.(5分)解不等式组.【分析】本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.【解答】解:由①得:去括号得,x﹣3x+6≤4,移项、合并同类项得,﹣2x≤﹣2,化系数为1得,x≥1.(12分)由②得:去分母得,1+2x>3x﹣3,移项、合并同类项得,﹣x>﹣4,化系数为1得,x<4(4分)∴原不等式组的解集为:1≤x<4.四、(每小题4分,共12分)19.(4分)先化简,再求值:,其中,.【分析】先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算即可.【解答】解:原式=•=•=,当时,原式=.20.(4分)如图Rt△OAB的面积为6,∠OBA=90°,反比例函数的图象经过点A.(1)求反比例函数的解析式;(2)从M(1,6),N(3,4),P(﹣1,12),Q(﹣6,﹣2)四个点中任取两个点,请用树状图或列表法,求恰有一个点在反比例函数图象上的概率.【分析】(1)直接利用反比例函数的性质得出函数解析式;(2)直接利用树状图得出所有的可能,进而求出答案.【解答】解:(1)∵Rt△OAB的面积为6,∴k=12,∴反比例函数的解析式为y=;(2)如图所示:,∵只有N(3,4),Q(﹣6,﹣2)在反比例函数图像上,∴恰有一个点在反比例函数图象上的有8种情况,故恰有一个点在反比例函数图象上的概率为:=.五、(每小题7分,共14分)21.(7分)为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球,已知篮球和排球的单价比为3:2.单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?【分析】(1)设篮球的单价为x元,则排球的单价为x元.根据等量关系“单价和为80元”,列方程求解;(2)设购买的篮球数量为n个,则购买的排球数量为(36﹣n)个.根据不等关系:①买的篮球数量多于25个;②不超过1600元的资金购买一批篮球和排球.列不等式组,进行求解.【解答】解:(1)设篮球的单价为x元,∵篮球和排球的单价比为3:2,则排球的单价为x元.依题意,得:x+x=80,解得x=48,∴x=32.即篮球的单价为48元,排球的单价为32元.(2)设购买的篮球数量为n个,则购买的排球数量为(36﹣n)个.∴,解,得25<n≤28.而n为整数,所以其取值为26,27,28,对应的36﹣n的值为10,9,8.所以共有三种购买方案:方案一:购买篮球26个,排球10个;方案二:购买篮球27个,排球9个;方案三:购买篮球28个,排球8个.22.(7分)如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠P AC=90°,AB=2,求PD的长.【分析】(1)由圆周角定理可知∠ABC=∠BAC=60°,从而可证得△ABC是等边三角形;(2)由△ABC是等边三角形可得出“AC=BC=AB=2,∠ACB=60°”,在直角三角形P AC和DAC通过特殊角的正、余切值即可求出线段AP、AD的长度,二者作差即可得出结论.【解答】(1)证明:∵∠ABC=∠APC,∠BAC=∠BPC,∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC是等边三角形.(2)解:∵△ABC是等边三角形,AB=2,∴AC=BC=AB=2,∠ACB=60°.在Rt△P AC中,∠P AC=90°,∠APC=60°,AC=2,∴AP==.在Rt△DAC中,∠DAC=90°,AC=2,∠ACD=60°,∴AD=AC•tan∠ACD=2.∴PD=AD﹣AP=.六、(每小题8分,共16分)23.(8分)某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.【分析】(1)根据题意列出函数关系式;(2)由条形统计图得到需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,即可.(3)分两种情况计算【解答】解:(1)当n=9时,y==;(2)根据题意,“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,则“更换笔芯的个数不大于同时购买笔芯的个数”的频数大于或等于30×0.5=15,根据统计图可得,需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,因此当n=9时,“更换笔芯的个数不大于同时购买笔芯的个数”的频数=4+6+8=18>15.因此n的最小值为9.(3)30支笔在购买时每支笔同时购买9个笔芯所需费用的平均数为:27+=,30支笔在购买时每支笔同时购买10个笔芯所需费用的平均数为:30+=,而,∴购买一支水彩笔的同时应购买9个笔芯的费用最省.24.(8分)在日常生活中,我们经常看到一些窗户上安装着遮阳篷,如图(a),现在要为一个面向正南的窗户设计安装一个遮阳篷,已知该地区冬天正午太阳最低时,光线与水平线的夹角为30°;夏天正午太阳最高时,光线与水平线的夹角为60°.把图(a)画成图(b),其中AB表示窗户的高,BCD表示直角形遮阳篷.(1)遮阳篷BCD怎样设计,才能正好在冬天正午太阳最低时光线最大限度地射入室内,而夏天正午太阳最高时光线刚好不射入室内?请在图(c)中画图表示;(2)已知AB=150cm,在(1)的条件下,求出BC,CD的长度.【分析】(1)夏天,光线最高经过点A,冬天,光线最低经过点B.应过点A作与水平线成60°的角,过B作∠CBD=60°与前一个60°的角交于点D,过D向AB引垂线,垂足为C即可;(2)根据题意可知:∠BDA=∠BAD=30°,根据30度角的直角三角形可得结果.【解答】解:(1)根据题意画出图形:(2)根据题意可知:∠BDA=∠BAD=30°,∴∠CBD=60°,∴∠CDB=30°,∴BD=AB=150cm,∴BC=BD=75(cm),∴CD=BC=75(cm);答:BC、CD长度分别为.七、(每小题10分,共20分)25.(10分)如图,已知抛物线y=ax2+bx+c经过点B(﹣4,﹣3),与x轴交于A(﹣5,0),C(﹣1,0)两点,D为顶点,P为抛物线上一动点(与点B、C不重合).(1)求该抛物线的解析式;(2)当点P在直线BC的下方运动时,求△PBC的面积的最大值;(3)该抛物线上是否存在点P,使∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.【分析】(1)由待定系数法即可求解;(2)由,即可求解;(3)证明△BCD是直角三角形,且.①当点P在直线BC下方时,求出直线BH的表达式为,进而求解,②当点P在直线BC上方时,BP∥CD求出直线BP的表达式为y=2x+5,进而求解.【解答】解:(1)∵抛物线过A(﹣5,0),C(﹣1,0)两点,可设为y=a(x+5)(x+1),又过点B(﹣4,﹣3),∴﹣3=a(﹣4+5)(﹣4+1),∴a=1,∴解析式为y=x2+6x+5;(2)由点B、C的坐标得:直线BC的解析式为:y=x+1,过点P作x轴的垂线,交BC于点Q,设点P的横坐标为t,则点P的坐标为(t,t2+6t+5),点Q的坐标为(t,t+1),∴PQ=t+1﹣(t2+6t+5)=﹣t2﹣5t﹣4,∴,∵,﹣4<1<﹣1.∴当时,△PBC的面积最大,最大值为;(3)存在.理由:由抛物线的表达式知,点D的坐标为(﹣3,﹣4),连接BD,则BD2=2,CD2=20,BC2=18,∴BD2+BC2=CD2,∴△BCD是直角三角形,且.①当点P在直线BC下方时,设CD的中点为H,则H(﹣2,﹣2),且点P为直线BH与抛物线的交点(不与点B重合)易得直线BH的表达式为,令,解得x=﹣4(舍去)或,∴此时P的坐标为;②当点P在直线BC上方时,BP∥CD.由C、D的坐标得:直线CD的表达式为y=2x+2,则可设直线BP的表达式为y=2x+c,将点B(﹣4,﹣3)代入y=2x+c,解得c=5故直线BP的表达式为y=2x+5.令2x+5=x2+6x+5,解得x=﹣4或x=0,∴此时点P的坐标为(0,5),综上所述,点P的坐标为或(0,5).26.(14分)已知四边形ABCD是菱形,∠ABC=60°,∠EAF的两边分别与射线CB、DC 相交于点E、F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,求证:AE =EF;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上时,设AF交BC于点G,求证:AG•CF=AF•CG.【分析】(1)连接AC,可得△ABE≌△ACF,进而判断出△AEF是等边三角形,即可得出结论;(2)连接AC,可得△ABE≌△ACF,进而得出结论;(3)由已知可得△AEG~△CFG,进而得出,再判断出AE=AF,即可得出结论.【解答】(1)证明:如图1,连接AC,∵四边形ABCD是菱形,∴AB=BC,∠BCD=120°,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠ACD=60°=∠ABC,∵∠EAF=60°=∠BAC,∴∠BAE+∠CAE=∠CAF+∠CAE,∴∠BAE=∠CAF,∴△ABE≌△ACF(ASA).∴AE=AF,∵∠EAF=60°,∴△AEF为等边三角形,∴AE=EF;(2)如图2,连接AC,∵四边形ABCD是菱形,∴AB=BC,∠BCD=120°,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠ACD=60°=∠ABC,∵∠EAF=60°=∠BAC,∴∠BAE+∠CAE=∠CAF+∠CAE,∴∠BAE=∠CAF,∴△ABE≌△ACF(ASA).∴BE=CF;(3)由(1)知,∠FCG=60°=∠EAF,∵∠AGE=∠FGC,∴△AEG~△CFG,∴,同(1)知,△AEF为等边三角形,∴AE=AF,∴即.。

湖南省常德市物理中考试题及解答参考(2024年)

湖南省常德市物理中考试题及解答参考(2024年)

2024年湖南省常德市物理中考仿真试题及解答参考一、单项选择题(本大题有10小题,每小题3分,共30分)1、一个物体做匀速直线运动,如果它在前5秒内的位移是25米,那么它在第6秒末的位置相对于起始位置将是多少米?A. 30米B. 35米C. 40米D. 无法确定【答案】A. 30米【解析】由题意知物体做匀速直线运动,前5秒内位移25米,则速度v = s/t = 25m / 5s = 5 m/s。

第6秒末的位置相对于起始位置的距离为前5秒的位移加上第6秒的位移,即25米 + 5米 = 30米。

2、当光线从空气斜射入水中时,会发生折射现象。

如果入射角大于临界角,则光线会在水面上发生什么现象?A. 反射B. 折射C. 全反射D. 散射【答案】C. 全反射【解析】当光线从光密介质(如空气)进入光疏介质(如水)时,若入射角大于临界角,光线将不会进入光疏介质,而是在界面上发生全反射,完全返回到原来的介质中。

此现象称为全内反射,选项C正确。

3、在下列关于光的传播特性的描述中,正确的是:A、光在同种均匀介质中沿直线传播B、光在任何情况下都沿直线传播C、光在真空中的传播速度比在水中的传播速度慢D、光的传播速度在不同介质中都是相同的答案:A解析:光在同种均匀介质中确实沿直线传播,这是光的直线传播特性。

选项B错误,因为光在遇到不同介质的界面时会发生折射,不会总是沿直线传播。

选项C错误,光在真空中的传播速度是最快的,为约3×10^8 m/s,而在水中的传播速度会减慢。

选项D 错误,光的传播速度在不同介质中是不同的,通常在光密度较大的介质中传播速度会减慢。

4、一个物体在水平地面上以2m/s的速度做匀速直线运动,如果在接下来的5秒内受到一个恒定的水平力作用,物体的速度将:A、增加2m/sB、减少2m/sC、保持不变D、增加10m/s答案:A解析:根据牛顿第二定律,物体受到的力会导致其加速度。

在这个问题中,物体受到一个恒定的水平力作用,意味着会有一个恒定的加速度。

湖南省常德市九年级语文中考模拟试卷

湖南省常德市九年级语文中考模拟试卷

湖南省常德市九年级语文中考模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共2题;共4分)1. (2分) (2018八上·鱼台期中) 下列句子中加横线的词语使用正确的一项是()A . 秋季校运会即将举行,同学们一个个摩拳擦掌,蠢蠢欲动,决心为班级争光。

B . 我们来到郊外,登上开满杂花的小山坡,俯瞰山下的沧海桑田,真是心旷神怡!C . 小林学习很虚心,每到课间,他都会捧着书本不耻下问地向老师请教。

D . 生活对于任何人都非易事,我们必须有坚韧不拔的精神。

2. (2分)下列句子没有语病的一项是()A . 我们在江淮河汉区域,不再是树木,而是森林了。

B . 纳粹将其所有的愤怒残酷地发泄在这个温情的小城里。

C . 更难能可贵的是,他深察世故人情,很能体谅人,很快成了这所小学的主心骨。

D . 这也许可能是导致包括所有恐龙在内的许多地球生物灭绝的原因。

二、句子默写 (共1题;共5分)3. (5分) (2019七下·桐乡期中) 古诗文名句填空。

(1) ________,弹琴复长啸。

(王维《竹里馆》)(2) ________,惟解漫天作雪飞。

(韩愈《晚春》)(3)家国情怀,是人类共有的一种朴素情感。

岑参《逢入京使》“________,________”两句诗写出了思念家园的悲伤;《木兰诗》中“________,________”两句诗写出了木兰为报效国家,奔赴战场的飒爽英姿。

(4)士别三日,________。

(《孙权劝学》)三、字词书写 (共1题;共1分)4. (1分)下面的词语中有四个错别字,请找出来并加以改正。

迟疑蓦地拽起撒泻坠下顷刻脑髓联珠脆骂拳打脚踢天公浇地涓涓细流精瘦短小牛嘴裂开一声唿哨千钧之力战战兢兢________ ________ ________ ________四、语言表达 (共1题;共5分)5. (5分) (2017八下·重庆月考) 用一句话概括下面这则新闻的主要内容,不超过15字。

初中数学湖南省常德市 中考模拟数学考试卷及答案

初中数学湖南省常德市 中考模拟数学考试卷及答案

xx 学校xx 学年xx 学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型 选择题填空题简答题xx 题 xx 题 xx 题 总分 得分一、xx 题(每空xx 分,共xx 分)试题1:如图,已知抛物线与x 轴交于A (﹣1,0),B (4,0),与y 轴交于C (0,﹣2). (1)求抛物线的解析式;(2)H 是C 关于x 轴的对称点,P 是抛物线上的一点,当△PBH 与△AOC 相似时,求符合条件的P 点的坐标(求出两点即可);(3)过点C 作CD ∥AB ,CD 交抛物线于点D ,点M 是线段CD 上的一动点,作直线MN 与线段AC 交于点N ,与x 轴交于点E ,且∠BME=∠BDC ,当CN 的值最大时,求点E 的坐标.试题2:已知四边形ABCD 中,AB=AD ,AB ⊥AD ,连接AC ,过点A 作AE ⊥AC ,且使AE=AC ,连接BE ,过A 作AH ⊥CD 于H 交BE 于F . (1)如图1,当E 在CD 的延长线上时,求证:①△ABC ≌△ADE ;②BF=EF ; (2)如图2,当E 不在CD 的延长线上时,BF=EF 还成立吗?请证明你的结论.评卷人得分试题3:如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.(1)求证:BE是⊙O的切线;(2)若BC=,AC=5,求圆的直径AD及切线BE的长.试题4:今年元月,国内一家网络诈骗举报平台发布了《2015年网络诈骗趋势研究报告》,根据报告提供的数据绘制了如下的两幅统计图:(1)该平台2015年共收到网络诈骗举报多少例?(2)2015年通过该平台举报的诈骗总金额大约是多少亿元?(保留三个有效数字)(3)2015年每例诈骗的损失年增长率是多少?(4)为提高学生的防患意识,现准备从甲、乙、丙、丁四人中随机抽取两人作为受骗演练对象,请用树状图或列表法求恰好选中甲、乙两人的概率是多少?试题5:南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732,=1.732,=1.414)试题6:某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?试题7:如图,直线AB与坐标轴分别交于A(﹣2,0),B(0,1)两点,与反比例函数的图象在第一象限交于点C(4,n),求一次函数和反比例函数的解析式.试题8:先化简,再求值:(),其中x=2.试题9:解不等式组,并把解集在是数轴上表示出来..试题10:计算:﹣14+sin60°+()﹣2﹣()0.试题11:平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5),B(﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是.试题12:如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD= .试题13:如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是.试题14:张朋将连续10天引体向上的测试成绩(单位:个)记录如下:16,18,18,16,19,19,18,21,18,21.则这组数据的中位数是.试题15:已知反比例函数y=的图象在每一个象限内y随x的增大而增大,请写一个符合条件的反比例函数解析式.试题16:如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为.试题17:计算:a2•a3= .试题18:使代数式有意义的x的取值范围是.试题19:某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天 B.11天 C.13天 D.22天试题20:二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是()A.1 B.2 C.3 D.4试题21:若﹣x3y a与x b y是同类项,则a+b的值为()A.2 B.3 C.4 D.5试题22:下列说法正确的是()A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上试题23:如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.试题24:如图,已知直线a∥b,∠1=100°,则∠2等于()A.80° B.60° C.100° D.70°试题25:下面实数比较大小正确的是()A.3>7 B.C.0<﹣2 D.22<3试题26:4的平方根是()A.2 B.﹣2 C.±D.±2试题1答案:【考点】二次函数综合题.【分析】(1)设抛物线的解析式为y=a(x+1)(x﹣4),然后将(0,﹣2)代入解析式即可求出a的值;(2)当△PBH与△AOC相似时,△PBH是直角三角形,由可知∠AHB=90°,所以求出直线AH的解析式后,联立一次函数与二次函数的解析式后即可求出P的坐标;(3)设M的坐标为(m,0),由∠BME=∠BDC可知∠EMC=∠MBD,所以△NCM∽△MDB,利用对应边的比相等即可得出CN与m的函数关系式,利用二次函数的性质即可求出m=时,CN有最大值,然后再证明△EMB∽△BDM,即可求出E的坐标.【解答】解:(1)∵抛物线与x轴交于A(﹣1,0),B(4,0),∴设抛物线的解析式为:y=a(x+1)(x﹣4),把(0,﹣2)代入y=a(x+1)(x﹣4),∴a=,∴抛物线的解析式为:y=x2﹣x﹣2;(2)当△PBH与△AOC相似时,∴△AOC是直角三角形,∴△PBH也是直角三角形,由题意知:H(0,2),∴OH=2,∵A(﹣1,0),B(4,0),∴OA=1,OB=4,∴∵∠AOH=∠BOH,∴△AOH∽△BOH,∴∠AHO=∠HBO,∴∠AHO+∠BHO=∠HBO+∠BHO=90°,∴∠AHB=90°,设直线AH的解析式为:y=kx+b,把A(﹣1,0)和H(0,2)代入y=kx+b,∴,∴解得,∴直线AH的解析式为:y=2x+2,联立,解得:x=1或x=﹣8,当x=﹣1时,y=0,当x=8时,y=18∴P的坐标为(﹣1,0)或(8,18)(3)过点M作MF⊥x轴于点F,设点E的坐标为(n,0),M的坐标为(m,0),∵∠BME=∠BDC,∴∠EMC+∠BME=∠BDC+∠MBD,∴∠EMC=∠MBD,∵CD∥x轴,∴D的纵坐标为﹣2,令y=﹣2代入y=x2﹣x﹣2,∴x=0或x=3,∴D(3,﹣2),∵B(4,0),∴由勾股定理可求得:BD=,∵M(m,0),∴MD=3﹣m,CM=m(0≤m≤3)∴由抛物线的对称性可知:∠NCM=∠BDC,∴△NCM∽△MDB,∴,∴,∴CN==﹣(m﹣)2+,∴当m=时,CN可取得最大值,∴此时M的坐标为(,﹣2),∴MF=2,BF=,MD=∴由勾股定理可求得:MB=,∵E(n,0),∴EB=4﹣n,∵CD∥x轴,∴∠NMC=∠BEM,∠EBM=∠BMD,∴△EMB∽△BDM,∴,∴MB2=MD•EB,∴=×(4﹣n),∴n=﹣,∴E的坐标为(﹣,0).试题2答案:【考点】全等三角形的判定与性质.【分析】(1)①利用SAS证全等;②易证得:BC∥FH和CH=HE,根据平行线分线段成比例定理得BF=EF,也可由三角形中位线定理的推论得出结论.(2)作辅助线构建平行线和全等三角形,首先证明△MAE≌△DAC,得AD=AM,根据等量代换得AB=AM,根据②同理得出结论.【解答】证明:(1)①如图1,∵AB⊥AD,AE⊥AC,∴∠BAD=90°,∠CAE=90°,∴∠1=∠2,在△ABC和△ADE中,∵∴△ABC≌△ADE(SAS);②如图1,∵△ABC≌△ADE,∴∠AEC=∠3,在Rt△ACE中,∠ACE+∠AEC=90°,∴∠BCE=90°,∵AH⊥CD,AE=AC,∴CH=HE,∵∠AHE=∠BCE=90°,∴BC∥FH,∴==1,∴BF=EF;(2)结论仍然成立,理由是:如图2所示,过E作MN⊥AH,交BA、CD延长线于M、N,∵∠CAE=90°,∠BAD=90°,∴∠1+∠2=90°,∠1+∠CAD=90°,∴∠2=∠CAD,∵MN∥AH,∴∠3=∠HAE,∵∠ACH+∠CAH=90°,∠CAH+∠HAE=90°,∴∠ACH=∠HAE,∴∠3=∠ACH,在△MAE和△DAC中,∵∴△MAE≌△DAC(ASA),∴AM=AD,∵AB=AD,∴AB=AM,∵AF∥ME,∴==1,∴BF=EF.试题3答案:【考点】切线的判定;三角形的外接圆与外心.【分析】(1)先根据等弦所对的劣弧相等,再结合∠EBD=∠CAB从而得到∠BAD=∠EBD,最后用直径所对的圆周角为直角即可;(2)利用三角形的中位线先求出OF,再用平行线分线段成比例定理求出半径R,最后用切割线定理即可.【解答】解:如图,连接OB,∵BD=BC,∴∠CAB=∠BAD,∵∠EBD=∠CAB,∴∠BAD=∠EBD,∵AD是⊙O的直径,∴∠ABD=90°,OA=BO,∴∠BAD=∠ABO,∴∠EBD=∠ABO,∴∠OBE=∠EBD+∠OBD=∠ABD+∠OBD=∠ABD=90°,∵点B在⊙O上,∴BE是⊙O的切线,(2)如图2,设圆的半径为R,连接CD,∵AD为⊙O的直径,∴∠ACCD=90°,∵BC=BD,∴OB⊥CD,∴OB∥AC,∵OA=OD,∴OF=AC=,∵四边形ACBD是圆内接四边形,∴∠BDE=∠ACB,∵∠DBE=∠ACB,∴△DBE∽△CAB,∴,∴,∴DE=,∵∠OBE=∠OFD=90°,∴DF∥BE,∴,∴,∵R>0,∴R=3,∵BE是⊙O的切线,∴BE===.试题4答案:【考点】列表法与树状图法;用样本估计总体;条形统计图;折线统计图.【分析】(1)利用条形统计图求解;(2)利用2015年每例诈骗的损失乘以2015年收到网络诈骗举报的数量即可;(3)用2015年每例诈骗的损失减去2014年每例诈骗的损失,然后用其差除以2014年每例诈骗的损失即可;(4)画树状图(用A、B、C、D分别表示甲乙丙丁)展示所有12种等可能的结果数,再找出选中甲、乙两人的结果数,然后根据概率公式求解.【解答】解:(1)该平台2015年共收到网络诈骗举报24886例;(2)2015年通过该平台举报的诈骗总金额大约是24886×5.106≈1.27亿元;(3)2015年每例诈骗的损失年增长率=÷2070=147%;(4)画树状图为:(用A、B、C、D分别表示甲乙丙丁)共有12种等可能的结果数,其中选中甲、乙两人的结果数为2,所以恰好选中甲、乙两人的概率==.试题5答案:【考点】解直角三角形的应用-方向角问题.【分析】过B作BD⊥AC,在直角三角形ABD中,利用勾股定理求出BD与AD的长,在直角三角形BCD中,求出CD的长,由AD+DC求出AC的长即可.【解答】解:过B作BD⊥AC,∵∠BAC=75°﹣30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理得:BD=AD=×20=10(海里),在Rt△BCD中,∠C=25°,∠CBD=75°,∴tan∠CBD=,即CD=10×3.732=52.77048,则AC=AD+DC=10+10×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.试题6答案:【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x﹣10)元,再根据等量关系:第二批进的件数=×第一批进的件数可得方程;(2)设第二批衬衫每件售价y元,由利润=售价﹣进价,根据这两批衬衫售完后的总利润不低于1950元,可列不等式求解.【解答】解:(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x﹣10)元,根据题意可得:,解得:x=150,经检验x=150是原方程的解,答:第一批T恤衫每件进价是150元,第二批每件进价是140元,(件),(件),答:第一批T恤衫进了30件,第二批进了15件;(2)设第二批衬衫每件售价y元,根据题意可得:30×+15(y﹣140)≥1950,解得:y≥170,答:第二批衬衫每件至少要售170元.试题7答案:【考点】反比例函数与一次函数的交点问题.【分析】设一次函数的解析式为y=kx+b,把A(﹣2,0),B(0,1)代入得出方程组,解方程组即可;求出点C的坐标,设反比例函数的解析式为y=,把C(4,3)代入y=求出m即可.【解答】解:设一次函数的解析式为y=kx+b,把A(﹣2,0),B(0,1)代入得:,解得:,∴一次函数的解析式为y=x+1;设反比例函数的解析式为y=,把C(4,n)代入得:n=3,∴C(4,3),把C(4,3)代入y=得:m=3×4=12,∴反比例函数的解析式为y=.试题8答案:【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把x的值代入进行计算即可.【解答】解:原式=[+]÷[﹣] =÷=÷=•=,当x=2时,原式==.试题9答案:【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.【解答】解:,由①得:x≥﹣,由②得:x<4,∴不等式组的解集为﹣≤x<4,试题10答案:【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式﹣14+sin60°+()﹣2﹣()0的值是多少即可.【解答】解:﹣14+sin60°+()﹣2﹣()0=﹣1+2×+4﹣1=﹣1+3+3=5试题11答案:(1,8).【考点】点的坐标.【分析】先根据以O,A,B,C四点为顶点的四边形是“和点四边形”,判断点C为点A、B的“和点”,再根据点A、B 的坐标求得点C的坐标.【解答】解:∵以O,A,B,C四点为顶点的四边形是“和点四边形”∴点C的坐标为(2﹣1,5+3),即C(1,8)故答案为:(1,8)试题12答案:55°.【考点】平行四边形的性质.【分析】由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE=55°即可.【解答】解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°;故答案为:55°.试题13答案:3π.【考点】三角形的外接圆与外心;圆周角定理;扇形面积的计算.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算可得.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=3π,故答案为:3π.试题14答案:18 .【考点】中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:先对这组数据按从小到大的顺序重新排序:16,16,18,18,18,18,19,19,21,21.位于最中间的两个数都是18,所以这组数据的中位数是18.故答案为:18.试题15答案:y=﹣.【考点】反比例函数的性质.【分析】由反比例函数的图象在每一个象限内y随x的增大而增大,结合反比例函数的性质即可得出k<0,随便写出一个小于0的k值即可得出结论.【解答】解:∵反比例函数y=的图象在每一个象限内y随x的增大而增大,∴k<0.故答案为:y=﹣.试题16答案:3 .【考点】角平分线的性质.【分析】过P作PD⊥OA于D,根据角平分线上的点到角的两边的距离相等可得PD=PC,从而得解.【解答】解:如图,过P作PD⊥OA于D,∵OP为∠AOB的平分线,PC⊥OB,∴PD=PC,∵PC=3,∴PD=3.故答案为:3.试题17答案:a5.【考点】同底数幂的乘法.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.试题18答案:x≥3 .【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件:被开方数为非负数求解即可.【解答】解:∵代数式有意义,∴2x﹣6≥0,解得:x≥3.故答案为:x≥3.试题19答案:B【考点】二元一次方程组的应用.【分析】根据题意设有x天早晨下雨,这一段时间有y天;有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,①总天数﹣早晨下雨=早晨晴天;②总天数﹣晚上下雨=晚上晴天;列方程组解出即可.【解答】解:设有x天早晨下雨,这一段时间有y天,根据题意得:①+②得:2y=22y=11所以一共有11天,故选B.试题20答案:C【考点】二次函数图象与系数的关系.【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x轴有两个交点等条件来判断各结论的正误即可.【解答】解:∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故②正确;∵0<﹣<1,∴b>0,故①错误;当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故④正确正确的有3个,故选:C.试题21答案:C【考点】同类项.【分析】根据同类项中相同字母的指数相同的概念求解.【解答】解:∵﹣x3y a与x b y是同类项,∴a=1,b=3,则a+b=1+3=4.故选C.试题22答案:D【考点】概率的意义.【分析】根据概率的意义对各选项进行逐一分析即可.【解答】解:A、袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球的概率是,故本选项错误;B、天气预报“明天降水概率10%”,是指明天有10%的概率会下雨,故本选项错误;C、某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,可能会中奖,故本选项错误;D、连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,故本选项正确.故选D.试题23答案:A【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,故选A.试题24答案:A【考点】平行线的性质.【分析】先根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:如图,∵∠1与∠3是对顶角,∴∠3=∠1=100°,∵a∥b,∴∠2=180°﹣∠3=180°﹣100°=80°.故选A.试题25答案:B【考点】实数大小比较.【分析】根据实数比较大小的法则对各选项进行逐一分析即可.【解答】解:A、3<7,故本选项错误;B、∵≈1.7,≈1.4,∴>,故本选项正确;C、0>﹣2,故本选项错误;D、22>3,故本选项错误.故选B.试题26答案:D【考点】平方根.【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:D.。

最新湖南省常德市中考语文模拟试卷(有配套答案)

最新湖南省常德市中考语文模拟试卷(有配套答案)

常德市初中毕业学业考试语文试题卷准考证号姓名考生注意:1.请考生在试题卷首填写好准考证号及姓名。

2.请将答案填写在答题卡上,填写在试题卷上的无效。

3.本学科试题卷共8页,24道小题,满分120分,考试时量120分钟。

一、语言积累与运用(19分)1.读下面的诗,给加点字注音,根据拼音写汉字。

(每空1分,共5分)当蜘蛛网无情地chá( )封了我的炉.()台/当灰烬的余烟叹息着贫困的悲哀/我依然固执地铺平失望的灰烬/用美丽的雪花写下:相信未来当我的紫葡萄化为深秋的露水/当我的鲜花yī wēi ( )( )在别人的情怀/我依然固执地用凝.()霜的枯藤/在凄凉的大地上写下:相信未来——食指《相信未来》2.依次填入下面括号里的关联词语,恰当的一项是()(3分)我们()爱好写作,()想在这方面成才,()不能不首先掌握好(语言)这个工具,()要像木匠爱斧锯、画家爱颜料、战士爱武器那样爱我们赖以进行工作的工具。

A.如果并且所以而且B.既然并且就因此C.既然又就而且D.如果又所以因此3.下列各句中,标点符号使用正确的一项是()(3分)A.(困惑地叉开两手)这是怎么啦?诸位?说真的,我们大伙儿怎么这么傻呀?(《钦差大臣》)B.麻雀、斑鸠、白鶴、鸭子、还有老公鸡和老母鸡,趁蒞天色昏黑,就从小道旁开小差了。

(《骆驼寻宝记》)C.“同学们,拿出毅力來”!查老师鼓励道,“当然,我也很需要毅力”!(《选举风波》)D.过了一个钟头,又一个钟头……天边变得喑沉沉的;静止的空气中发散出火辣辣的热气。

(《树林和草原》)4.下列各句中,没有语病的一句是( )(3分)A.随着绿地面积的逐年増加,中心城区要找到供市民义务植树的合适地点越来越不容易了。

B.在“德馨杯”国际少儿邀请赛中,北正街小学代表队一路过关斩将,获得冠军,近日胜利凯旋。

C.今年是“作弊入刑”的酋次高考,各地区都具体出台了一些举措,以防范各种舞弊行为的发生。

D.实施创新驱动发展,需要释放科技人员活力,破除不合理的体制,加快从量的积累到质的飞跃。

湖南省常德市中考语文模拟试卷

湖南省常德市中考语文模拟试卷

湖南省常德市中考语文模拟试卷姓名:________ 班级:________ 成绩:________一、语言文字积累与运用(共29分) (共6题;共29分)1. (6分)(2019·宁波) 结合语境辨音形。

(1)【任务一】为下面句中划线字选择正确读音。

一个对读书着迷的孩子,一捧起书,心中便觉得有了着落,有了依靠。

①着迷________ ②着落________A.zhāo B.zháo C.zhe D.zhuó(2)【任务二】找出下图中的错别字,并改正。

①________改为________;②________改为________2. (3分)依次填入下列横线处的句子,语序恰当,语意连贯的一组是()。

瑙鲁为什么没有土地呢?;。

①鸟粪经过长期的化学变化,形成了厚达10米左右的磷酸盐层,因而全国没有一寸可供作物生长的泥土②原来自古以来,栖息于此的数不清的海鸟在岛上留下了厚厚的鸟粪,完全掩盖了土地③地处太平洋上的瑙鲁共和国,是一个面积狭小、人口稀少的鸟国,被称为“无土之国”④瑙鲁的经济以开采和出口优质磷酸盐为支柱,粮食、果蔬以及各种日用商品都依赖进口A . ③④①②B . ③②①④C . ④②①③D . ④③②①3. (3分)下列各句中,没有语病的一句是()A . 那是一个寒风料峭的严冬日子,那间屋子冷若冰窖,我们身体上穿着大衣,还冷得头皮发麻。

B . 电影《无极》上映以后,郭敬明的同名小说也备受青睐,观众认为其画面精美,善于营造视觉氛围。

C . 一个人在学习与生活中是否浮躁,关键在于他的使命感、理想志趣及品格修养强不强。

D . 政府应进一步加大改革力度,整合并均衡教育资源,真正让每个孩子都能接受平等的教育、优质的教育。

4. (8分) (2017七上·梅江月考) 根据课文默写古诗文。

(1)正是江南好风景,________。

(2) ________,________,古道西风瘦马。

常德市初中中考模拟试题 (32)

常德市初中中考模拟试题 (32)

模拟试题(六)参考答案第一部分听力技能(共四节,满分25分)第一节听音选图(共5小题,每题1分,满分5分)1-5 EDBCA第二节对话理解(共7小题,每题1分,满分7分)6-7 BA 8-9 AA 10-12 ACC第三节摘录信息(共3小题,每题1分,满分3分)13. breakfast 14. rich 15. leaves第四节情景反应(共5题,每题2分,满分10分)16. A. Good morning.17. See you.18. Yes, I am./ No, I haven’t.19. Spring./Summer./Autumn./Winter20. A. May 23rd.第二部分知识运用(共两节,满分25分)第一节单项填空(共10小题,每小题1分,满分10分)21-25 BBBCB 26-30 ACCCA第二节完形填空(共15小题,每题1分,满分15分)31-35 ACCAC36-40 BACBA41-45 CCCBC第三部分阅读理解(共三节,满分45分)第一节理解选择(共15小题,每题2分,满分30分)46-50 CACAB51-55BCBAC56-60BCCAC第二节摘录要点(共5小题,每题2分,满分10分)61. Eating Habits / Different eating habits62. Have / Eat good things63. Have / Eat a small lunch64. Eat less65.Like to talk and laugh / Talk and laugh / Talking and laughing / Like talking and laughing第三节回答问题(共5小题,每题2分,满分10分)66. It was set up in the 1960s.67. No, it wasn’t.68. 冲浪69. Yes , I think so. / No, I don’t think so.70. The history of the Internet.第四部分写作技能(共两节,满分25分)第一节英汉互译(共10小题,每题2分,满分20分)71. 这是地震过后她最开心的一天。

常德市中考数学六模试卷

常德市中考数学六模试卷

常德市中考数学六模试卷姓名:________班级:________一、 选择题 (共 8 题;共 16 分)成绩:________1. (2 分) 在﹣5,0,π, 这四个数中,最大的有理数的是( ) A . ﹣5 B.0 C.πD. 2. (2 分) 云南省鲁甸县 2014 年 8 月 3 日发生 6.5 级地震,造成重大人员伤亡和经济损失.灾情牵动亿万同 胞的心,在灾区人民最需要援助的时刻,全国同胞充分发扬“一方有难、八方支援”的中华民族优良传统,及时向 灾区同胞伸出援助之手.截至 9 月 19 日 17 时,云南省级共接收昭通鲁甸“8.3”地震捐款 80100 万元.科学记数 法表示为( )元. A . 8.01×107 B . 80.1×107 C . 8.01×108 D . 0.801×109 3. (2 分) 如图,几何体的俯视图是( )A. B.C. D. 4. (2 分) (2019 七下·包河期中) 如图,数轴上所示不等式组的解集是( ).A . x<-1 或 x≥3第 1 页 共 16 页B . x≤-1 或 x>3 C . -1≤x<3 D . -1<x≤3 5. (2 分) (2017·增城模拟) 下列说法正确的是( )A . 一个游戏中奖的概率是,则做 100 次这样的游戏一定会中奖B . 为了了解全国中学生的心理健康状况,应采用普查的方式C . 一组数据 0,1,2,1,1 的众数和中位数都是 1D . 若甲组数据的方差 S 甲 2=0.2,乙组数据的方差 S 乙 2=0.5,则乙组数据比甲组数据稳定6. (2 分) 如图,等腰梯形 ABCD 中,AD∥BC,BD 平分∠ABC,∠DBC=30°,AD=5,则 BC=A.5 B . 7.5C. D . 10 7. (2 分) (2020·鹿邑模拟) 如图,在等腰中,①分别以为圆心,以大于连接 .则下面说法错误的为(的长为半径作弧,两弧相交于两点 ),,按图下步骤作图:;②作直线 交 于点 D,A. B. C.D. 8. (2 分) (2015 八下·福清期中) 如图所示,平行四边形 ABCD 中,∠C=108°,BE 平分∠ABC,则∠AEB 等 于( )第 2 页 共 16 页A . 180°B . 36°C . 72°D . 108°二、 填空题 (共 6 题;共 8 分)9. (1 分) (2016·高邮模拟) 分解因式 x2(x﹣2)+4(2﹣x)=________10.(3 分)(2018 九上·黄冈月考) 一元二次方程中,________,可得________,________.11. (1 分) 如图△ABC 中,BE 平分∠ABC,DE∥BC,若 DE=2AD,AE=2,那么 EC=________ .12. (1 分) (2013·连云港) 如图,△ABC 内接于⊙O,∠ACB=35°,则∠OAB=________.13. (1 分) (2017 八下·柯桥期中) 已知在平面直角坐标系中,点 A、B、C、D 的坐标依次为(﹣1,0),(m, n),(﹣1,10),(﹣9,p),且 p≤n.若以 A、B、C、D 四个点为顶点的四边形是菱形,则 n 的值是________.14. (1 分) (2019·长沙模拟) 若一次函数 y=(1﹣2m)x+m 的图象经过点 A(x1 , y1)和点 B(x2 , y2), 当 x1<x2 时,y1<y2 , 且与 y 轴相交于正半轴,则 m 的取值范围是________.三、 解答题 (共 10 题;共 91 分)15. (5 分) (2020·岱岳模拟) 先化简: 欢的 x 的值代入求值.÷在从﹣1≤x≤3 的整数 中选取一你喜16. (5 分) (2020 九上·兰考期末) 有两个构造完全相同(除所标数字外)的转盘 A、B,游戏规定,转动两第 3 页 共 16 页个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?17. (5 分) 解方程: =.18. (5 分) (2019 八下·海安期中) 已知:如图 ABCD 中,点 O 是 AC 的中点,过点 O 画 AC 的垂线,分别交AD、BC 于点 E、F.求证:四边形 AFCE 是菱形.19. (5 分) (2016·孝义模拟) 为了加快我省城乡公路建设,我省计划“十三五”期间高速公路运营里程达 1000 公里,进一步打造城乡快速连接通道,某地计划修建一条高速公路,需在小山东西两侧 A,B 之间开通一条隧 道,工程技术人员乘坐热气球对小山两侧 A、B 之间的距离进行了测量,他们从 A 处乘坐热气球出发,由于受西风 的影响,热气球以 30 米/分的速度沿与地面成 75°角的方向飞行,25 分钟后到达 C 处,此时热气球上的人测得小 山西侧 B 点的俯角为 30°,则小山东西两侧 A、B 两点间的距离为多少米?20. (11 分) (2018·兴化模拟) 九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项 目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下 两幅不完整的统计图,请根据图中所给信息解答下列问题:(1) 在这次评价中,一共抽查了________名学生; (2) 请将条形图补充完整; (3) 如果全市有 6000 名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?第 4 页 共 16 页21. (10 分) (2020·淮南模拟) 如图,直线 、 是紧靠某湖泊的两条相互垂直的公路,曲线段 是该湖泊环湖观光大道的一部分.现准备修建一条直线型公路 ,用以连接两条公路和环湖观光大道,且直线与曲线段有且仅有一个公共点 .已知点 到 、 的距离分别为和,点 到 的距离为,点 到 的距离为.若分别以 、 为 轴、 轴建立平面直角坐标系,则曲线段 对应的函数解析式为.(1) 求 的值,并指出函数的自变量的取值范围;(2) 求直线 的解析式,并求出公路 的长度(结果保留根号).22. (15 分) 如图 1,在△ABC 中,∠BAC=90°,AB=AC.MN 是过点 A 的直线,BD⊥MN 于 D,CE⊥MN 于 E.(1) 求证:BD=AE. (2) 若将 MN 绕点 A 旋转,使 MN 与 BC 相交于点 G(如图 2),其他条件不变,求证:BD=AE. (3) 在(2)的情况下,若 CE 的延长线过 AB 的中点 F(如图 3),连接 GF,求证:∠AFE=∠BFG.23. (15 分) (2020·深圳模拟) 如图,已知二次函数的图象交 轴于 , 两点,交 轴于点 ,其中.(1) 求点 (2) 连接的坐标,并用含 , ,当的式子表示 ; 为锐角时,求的取值范围;(3) 若为 轴上一个动点,连接 ,当点 的坐标为时,直接写出的最小值.第 5 页 共 16 页24. (15 分) (2019 九上·武昌期中) 已知抛物线顶点 在 轴负半轴上,与 轴交于点 ,,为等腰直角三角形.(1) 求抛物线解析式(2) 若点 在抛物线上,若为直角三角形,求点(3) 已知直线 过点,交抛物线于点 、求证:直线 经过一个定点,并求定点的坐标.的坐标 ,过 作轴,交抛物线于点 ,第 6 页 共 16 页一、 选择题 (共 8 题;共 16 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、二、 填空题 (共 6 题;共 8 分)9-1、参考答案10-1、 11-1、 12-1、 13-1、 14-1、三、 解答题 (共 10 题;共 91 分)第 7 页 共 16 页15-1、16-1、17-1、第 8 页 共 16 页18-1、19-1、 20-1、第 9 页 共 16 页20-2、 20-3、21-1、21-2、第 10 页 共 16 页22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、。

湖南省常德市2021年中考模拟试题(6无答案 )

湖南省常德市2021年中考模拟试题(6无答案 )
〔1〕试管中参加的两种液体除初温一样外,还应该保证一样。
〔2〕加热2min时,甲吸收的热量乙吸收的热量〔选填“大于〞、“等于〞或“小于〞〕。
〔3〕由于没有直接测量比热容的仪器,此实验中是通过来比拟比热容大小的。
〔4〕分析表中数据,可知:液体的比热容大〔选填“甲〞或“乙〞〕。
假如甲的比热容为2.1×103J/〔kg•℃〕,那么乙比热容为J/〔kg•℃〕。
请你想一想会发生的现象是〔 〕
A.通电螺线管仍保持静止不动
B.通电螺线管能在任意位置静止
C.通电螺线管转动,直至A端指向地磁的南极
D.通电螺线管转动,直至B端指向地磁的南极
8.家庭电路中,以下操作符合要求的是〔 〕
A.输电线进户后,应先接电能表
B.家庭电路的开关,接在零线或火线上都可以
C.使用试电笔时,手指不能碰到笔尾金属体,以免发生触电事故
22.如图甲所示是现代城市某路口安装的监控摄像头,它可以拍下违章行驶或发生交通事故时的现场照片。摄像头的镜头相当于一个透镜。如图乙和丙是摄像头先后拍下的两张照片,由图可以看出汽车是逐渐〔选填“靠近〞或“远离〞〕摄像头。
23.物理兴趣小组的同学用图甲所示的装置来提升重物M,图乙是物体上升过程某段时间内的s﹣t图线。物体重为1N,闭合开关后,在2.4s~2.8s这段时间内,电流表和电压表的示数分别为0.2A和4V,那么2.4s~2.8s这段时间内该装置提升重物做得有用功为J,它的效率是%。
A.仍能平衡
B.不能平衡,小球端翘起
C.不能平衡,小球端下沉
D.无法判断
15.如下图,在程度拉力F的作用下,物体沿程度面以速度v向右匀速运动了间隔S,假设物重G,桌面对物体的摩擦力为f〔滑轮、滑轮与轴间的摩擦及绳重不计〕,以下说法不正确的选项是〔 〕

2024年常德市九年级中考语文一模试题卷附答案解析

2024年常德市九年级中考语文一模试题卷附答案解析

2024年常德市九年级中考语文一模试题卷注意事项:1.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考场和座位号;2.必须在答题卡上答题,在草稿纸、试题卷上答题无效;3.答题时,请考生注意各题题号后面的答题要求;4.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5.答题卡上不准使用涂改液、涂改胶和贴纸;6.本学科试卷共21道题目,考试时量120分钟,满分120分。

一、积累与运用(共20分)1. 读语段,请根据拼音写汉字,或给加点字注音。

历史是最生动的教科书,是最丰富的营养剂,一代代仁人志士前仆.______后继,救民族于存亡之时;一代代革命先烈赴汤dǎo______火,救人民于水火之中;一代代新中国的建设者为了国家的繁荣富强而鞠躬尽cuì______。

回顾历史,不是为了从成功中寻求慰藉.______,而是为了让红色基因薪火相传,激励青年一代为实现伟大中国梦而不懈奋斗。

2. 依次填入下面语段横线处的词语,全都恰当的一项是()它背靠中国经济大海,______保护主义浊流,秉持互利共赢理念,与各国发展意愿相汇相融,______具象为进博会现场一个个展台、一次次研讨、一场场签约,促进各方共同把全球市场的蛋糕做得更大,把全球共享的机制做得更实,把全球合作的方式做得更活。

透过进博会的窗口,人们可以看到中国经济的“蓝海”______。

A. 扫荡从而波澜壮阔B.涤荡进而气势磅礴C. 扫荡从而气势磅礴D.涤荡进而波澜壮阔3. 下列句子中有语病的一项是()A. 央视龙年春晚分会场之一花落长沙,长沙将首次站在春晚的舞台,向全世界释放千年古城的魅力。

B. 湖南省近现代重要史迹代表性建筑数量全国第一,为重点实验室成果孵化和基础研究提供了丰富的样本。

C. 新闻纪录片《袁隆平老师,我们来迟了》报道了马达加斯加的朋友带着一碗产自非洲的杂交水稻米祭奠袁老的故事。

D. 龙年新春开工以来,尽管天气条件不利,全省500多名植保员仍深入田间地头调查病虫害情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10网络3
的空格内。

1.下四幅图中,比例尺中最大的是
2.京广线、陇海线都经过的省级行政区和地形区是
A.甘肃和河西走廊 B.新疆和华北平原
C.河南和华北平原 D.湖南和长江中下游平原
3.有四个同学提出了对于长江的利用和治理,你认为谁的措施不当
A. 小林:在下游多建水电站B.小立:在荆江河段加固堤防
C.小桃:在中上游利用水能发电D.小民:保护好长江沿岸森林4.张、王、成、李四家,10.1长假从常德去湘西旅游归来,谈论各自的感受,你认为是谁说错了。

A 张:湘西人中少数民族较多 B.王:那里的山地绵延
C.成:湘西的风景很美丽 D.李:湘西的平原广阔
5.下列因果关系,不正确的是
①我国南北跨纬度近50度②我国东西跨经度62度③我国东临太平洋
④北回归线穿过我国⑤我国大部分处于北温带⑥我国东西相差4小时
⑦我国南北气候差异大⑧我国东部降水多⑨我国地势西高东低⑩我国大
部分河流是“一江春水向东流”
A ②--⑥
B ①--⑦
C ③--⑨
D ⑨--⑩
6.下列有关气候与生产、生活关系密切的事例中,你认为不符合事实的是
A.推销员去科威特推销雨衣
B.埃及人穿白色长袍防晒挡沙
C.西双版纳居民住吊脚楼
D.西伯利亚人,喜欢喝烈酒驱寒
7. “天涯海角隆冬暖,青藏高原盛夏寒”,这两地气候特征的成因
A.都与纬度位置的影响有关
B.都与地形的影响有关
C.前者与纬度位置的影响有关,后者与地形的影响有关
D.前者与地形的影响有关,后者与纬度位置的影响有关
8.读下图,表达正确的一组是
A.①地形雨②对流雨③锋面雨
B.①对流雨②锋面雨③地形雨
C.①锋面雨②地形雨③对流雨
D.①对流雨②地形雨③锋面雨
9.我国横断山区“一山有四季,十里不同天”的主要成因是()
A.迎风坡降水多的缘故
B.地形地势对气候的影响
C.洋流对气候的影响
D.植被对气候的影响
10.下列节日中,我国白昼时间最长的是()
A.元旦1月1日
B.劳动节5月1日
C.儿童节6月1日
D.国庆节10月1日
11.下列现象由地球公转引起的是()
A.家住淄博的小明早晨给远在美国纽约的姨妈打电话,姨妈却说“晚上好”
B.我们每天自东方迎来黎明的曙光,由西方送走黄昏的落日
C.正午时学校操场上旗杆的影子冬天长夏天短
D.昼夜以24小时为周期交替
12.下图所示各点,位于我国镜内的是
读下面四种气候类型图,完成13—15题
13.D图反映的是下列那一地区的气候类型
A、意大利
B、中南半岛
C、美国东部
D、湖南省
14.位于亚洲东部,受季风影响较大的气候是
A、AB
B、CD
C、BD
D、AC
15属于“冬雨夏干”式气的是
A、A
B、B
C、C
D、D
16.读左图回答,A地降水丰富,下列地区从降水
的成因上看与A地相似的是
A、马来群岛
B、台湾火烧寮
C、刚果盆地
D、洞庭湖平原
17.下列关于长江、黄河的说法错误的是
A.都流经青海、四川和青藏高原 B.上游的水能资源都很丰富C.分别是我国的第一、第二大河 D.黄河有凌汛,长江没有凌汛。

18.关于湖南的长株潭城市群的说法不正确的是
A. 是长沙、株洲、湘潭三城市合为一体B.位于京广线和陇海线的交汇处
C.是湖南最大的城市群D.三城市都位于湘江沿岸19.丽丽一家5.1去贵州旅游,有时看见景点就在眼前,却要绕道很久,原因是这里
A 地形崎岖
B 河网密布
C 雪山绵延
D 沃野千里
20.7月份,张、王、成、李四同学新疆旅游归来,谈论各自的感受。

你认为是谁说错了。

A.张:新疆的瓜果很甜 B.王:那里的沙漠很广
C.成:盆地里石油很多 D.李:家家的生猪很肥
21.关于下图四省区的叙述错误的是
A. ①省是我国少数民族数
目最多的省份
B. ③省是有长江最长的支流流

C.②省简称越,主要河流是珠
江 D.我国最北、最东位于④省
22.农村人口大量迁移到城市会给城市带来
①交通拥挤②住房紧张③环境污染④人口老龄化⑤劳动力资源增加
A.①②③④ B. ①②④⑤ C. ①②③⑤ D ①③④⑤
23.下图中正
确反映我国人口变化曲线的是
24 .下列粮食产区均位于长江流域的是
A.洞庭湖平原、渭河平原 B.鄱阳湖平原、成都平原
C.三江平原、江汉平原
D. 河套平原、洞庭湖平原
25.小涛制作了美国、日本、俄罗斯的地理信息卡片,但漏掉了国家名字,请帮忙辨认出属于日本的地理信息
①是世界最大的农产品出口国;②地跨亚欧两洲;③是一个群岛国家;
④工业分布具有临海的特点;⑤位于太平洋东岸;⑥世界面积最大的国家
A.①② B. ③④ C.⑤⑥ D. ②③
2010年2月13日—3月1日第21届冬奥会在北美洲加拿大的温哥华举行。

据此回答27—27题
26.关于北美洲的说法不正确的是
A.濒临三大洋 B.大洲的面积居各大洲的第三位
C. 地形分为三大南北纵列带
D.主要包括加拿大和墨西哥两个国家
27.在举行冬奥会期间,下列现象不可信的是。

A、澳大利亚人穿着棉衣欣赏冬奥会比赛项目
B、中国南极考察队正利用一年中这段比较好的时候进行科学考察
C、埃及北部的农民正利用雨季在田间劳作
D、非洲南部草原上的动物正享受着丰盛的食物
28.下列气候灾害在常德难以发生的是
A.寒潮
B.龙卷风
C.伏旱
D.强沙尘暴
29.有甲、乙、丙、丁四个中国商人分别带上自己生产的商品到埃及参加产品订货会。

请分析收到订单最少的商人可能是
A.甲商人:其产品是棉衣 B.乙商人:其产品是汽车、飞机
C.丙商人:其产品是方便面 D.丁商人:其产品是儿童玩具
30. 沙特阿拉伯位于西亚,该国主要的经济来源是
A.铁矿出口收入
B.石油出口收入
C.淡水出口收入
D.羊毛、小麦出口收入
二.综合题(40分)
31.读世界轮廓图回答下列问题(14分)
⑴.从图中看出世界陆地主要分布
在(南、北)半球。

地跨寒、温、热
三带的大洲是、。

⑵.在下面方框内设计图例,然后用图例在右图中标出五带,并在图上标出南北回归线和南北极圈。

带带带
⑶.在图中设计画出,一艘海轮从意大利航行到上海的海上运输路线。

并写出经过的主要海域。

⑷.在①②③④⑤⑥中:小华想选择四季分明,降水还比较丰富的地方居住,你认为他应该选择哪个地方。

世界最大的平原位于地。

④地是世界最大的沙漠沙漠。

⑥地的代表动物是。

②地的主要语言和人种是、。

想欣赏亚寒带针叶林的风光应该去地。

32.读珠江三角洲地区图,回答下列问题(9分)
⑴、看图说说香港的地理坐标大约是
多少
经度、纬度。

⑵、看图说说香港特别行政区的地理
位置。

分析珠海设立经济特区的优势。

⑶、现有一万吨钢材从香港运往广州,你认为采取什么运输方式比较合适,并说明理由。

⑷、说说我国为什么选择在大亚湾附近建立核电站。

33.读湖南省略图,回答:(6分)
(1)衡山祝融峰是我省著名的旅游
胜地,该山位于我省的市。

(2)从湘江的流向判断我省中部的
地势特点是____________。

(3)根据图中提供的信息,从张家
界乘火车到长沙开会,请设计一条合
理的路线,依次写出所经过的铁路干
线名称。

34.读两小岛图回答(5分)
⑴ A岛上有三条小河,从河流的流向判断该岛的地势哪里高哪里低。

该岛降水的分布大体是从方向向方向减少。

⑵两小岛中,位于西半球的是岛,位于南半球的是岛。

A岛位于B岛的方。

35.读下图回答下列问题(6分)
⑴.观察几幅地图,可以知道,往往成为海上交通要道。

⑵.从中国上海去往英国伦敦不需要经过的是(填代号)地。

⑶.位于大洲之间的是地和地(填代号)。

2010年常德市初中毕业考试仿真试题地理答题卡(三)
二.综合题
31.⑴


32.⑴


33.(1)
(2)
(3)
34.(1)(2)
35.⑴⑵⑶.
参考答案
二.综合题
31.⑴北亚洲北美洲⑵略⑶略意大利→地中海→苏伊士运河→红海→印度洋→马六甲海峡→太平洋→上海⑷②①撒哈拉沙漠企鹅汉语黄种人⑤
32.⑴ 114°E 22°20′N ⑵香港位于珠江口东侧,临广东省深圳市。

珠海位于珠江口西侧,临澳门特别行政区。

⑶略⑷珠江三角洲地区经济发达,但能源不足。

33 。

(1)衡阳(2)南高北低(3)第一条路线:焦柳线→湘黔线
→京广线;第二条路线:焦柳线→石长线,任答一条路线即可。

34. (1)中部高,四周低东西(2) B B 西北
35. ⑴.海峡⑵.乙⑶.甲丙。

相关文档
最新文档