高中数学选修12人教A教案导学案数系的扩充与复数的概念
人教版高中数学全套教案导学案3.1.1数系的扩充与复数的概念
3.1.1数系的扩充与复数的概念课前预习学案课前预习:(1)预习目标:在问题情境中了解数系的扩充过程,体会实际需求在数系扩充过程中的作用(2)1) 结合实例了解数系的扩充过程2)引进虚数单位i的必要性及对i的规定3)对复数的初步认识及复数概念的理解(3)提出疑惑:通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案学习目标:(1)在问题情境中了解数系的扩充过程,体会实际需求在数系扩充过程中的作用理解复数的基本概念(2)理解复数的基本概念以及复数相等的充要条件(3)了解复数的代数表示方法学习过程一、自主学习问题1:我们知道,对于实系数一元二次方程,没有实数根.我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?问题2:类比引进,就可以解决方程在有理数集中无解的问题,怎么解决在实数集中无解的问题呢问题3:把实数和新引进的数i 像实数那样进行运算,并希望运算时有关的运算律仍成立,你得到什么样的数?二、探究以下问题1、如何解决-1的开平方问题,即一个什么数它的平方等于-12、虚数单位i有怎样的性质3、复数的代数形式4、复数集C和实数集R之间有什么关系?5、如何对复数a+bi(a,b∈R)进行分类?三、精讲点拨、有效训练见教案反思总结1、你对复数的概念有了比较清醒的认识了吗?2、对复数a+bi(a,b∈R)的正确分类3、复数相等的概念的理解及应用当堂检测1. m ∈R ,复数z=(m-2)(m+5)+(m-2)(m-5)i ,则z 为纯虚数的充要条件是m 的值为 ( )A.2或5B.5C.2或-5D.-52、设a ∈R.复数a 2-a-6+(a 2-3a-10)i 是纯虚数,则a 的取值为 ( )(A)5或-2 (B)3或-2 (C)-2 (D)33、如果(2 x- y)+(x+3)i=0(x ,y ∈R)则x+y 的值是( )A 18BC 3D 9. . . .12-4、x y R (3x +2y)+(x y)i =i [ ]A 5B 5CD ,,且,则的值是 . . . .∈-+---x yx y 15153.1.1数系的扩充与复数的概念【教学目标】(1)在问题情境中了解数系的扩充过程,体会实际需求在数系扩充过程中的作用理解复数的基本概念(2)理解复数的基本概念以及复数相等的充要条件(3)了解复数的代数表示方法【教学重难点】重点:引进虚数单位i的必要性、对i的规定、复数的有关概念难点:实数系扩充到复数系的过程的理解,复数概念的理解【教学过程】一、创设情景、提出问题问题1:我们知道,对于实系数一元二次方程,没有实数根.我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?问题2:类比引进,就可以解决方程在有理数集中无解的问题,怎么解决在实数集中无解的问题呢?问题3:把实数和新引进的数i 像实数那样进行运算,并希望运算时有关的运算律仍成立,你得到什么样的数?二、学生活动1.复数的概念:⑴虚数单位:数__叫做虚数单位,具有下面的性质:①_________②______________________________________________⑵复数:形如__________叫做复数,常用字母___表示,全体复数构成的集合叫做______,常用字母___表示.⑶复数的代数形式:_________,其中____叫做复数的实部,___叫做复数的虚部,复数的实部和虚部都是___数.(4)对于复数a+bi(a,b∈R),当且仅当_____时,它是实数;当且仅当_____时,它是实数0;当_______时, 叫做虚数;当_______时, 叫做纯虚数;2.学生分组讨论⑴复数集C和实数集R之间有什么关系?⑵如何对复数a+bi(a,b∈R)进行分类?⑶复数集、实数集、虚数集、纯虚数集之间的关系,可以用韦恩图表示出来吗?3.练习:(1).下列数中,哪些是实数,哪些是虚数,哪些是纯虚数?并分别指出这些复数的实部与虚部各是什么?2+ 2i , 0.618, 2i/7 , 0,5 i +8, 3-9 i(2)、判断下列命题是否正确:(1)若a、b为实数,则Z=a+bi为虚数(2)若b为实数,则Z=bi必为纯虚数(3)若a为实数,则Z= a一定不是虚数三、归纳总结、提升拓展例1 实数m分别取什么值时,复数z=m+1+(m-1)i是(1)实数?(2)虚数?(3)纯虚数?解:归纳总结:确定复数z=a+bi是实数、虚数、纯虚数的条件是:练习:实数m分别取什么值时,复数z=m2+m-2+(m2-1)i是(1)实数?(2)虚数?(3)纯虚数?两个复数相等,即两个复数相等的充要条件是它们的实部与虚部分别对应相等.也就是a+bi=c+di _______________________(a、b、c、d为实数)由此容易出:a+bi=0 _______________________例2已知x +2y +(2x+6)i=3x-2 ,其中,x,y为实数,求x与y.四、反馈训练、巩固落实1、若x,y为实数,且 2x -2y+(x+ y)i=x-2 i求x与y.2、若x为实数,且(2x2-3x-2)+(x2-5x+6)i=0,求x的值.。
数系的扩充和复数的概念(教学设计)
§7.1.1 数系的扩充和复数的概念一、内容和内容解析内容:从实数系扩充到复数系的过程与方法,复数的概念.内容解析:本节课选自《普通高中课程标准数学教科书必修第二册》(人教A版)第七章第1节的内容.本节内容是数系的扩充和复数的概念,基于之前所学的数系的发展历程,由一元二次方程的根的问题导入,将数学扩充到复数范围,并研究复数的概念,为复数的运算打好基础。
复数的引入是中学阶段数系的又一次扩充,引入复数以后,这不仅可以使学生对于数的概念有一个初步的、完整的认知,也为进一步学习数学打下基础.通过本节课学习,要使学生在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用.二、目标和目标解析目标:(1)了解引进虚数单位i的必要性,了解数集的扩充过程.(2)理解复数的概念、表示法及相关概念.(3)掌握复数的分类及复数相等的充要条件.目标解析:(1)能够通过方程的解,感受引入复数的必要性,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用.(2)学生能够从自然数系逐步扩充到实数系的过程中,归纳出数系扩充的一般“规则",体会扩充的合理性及人类理性思维在数系扩充中的作用.(3)学生能说明虚数i的由来,能够明晰复数代数表示式的基本结构,会对复数进行分类,会用Venn 图表示复数集、实数集、虚数集、纯虚数集之间的关系;知道两个复数相等的含义,能利用复数概念和复数相等的含义解决相关的简单问题.基于上述分析,本节课的教学重点定为:复数的分类及复数相等的充要条件.三、教学问题诊断分析1.教学问题一:因为现实生活中没有任何事物支持虚数,学生可能会怀疑引入复数的必要性,在教学中,如果单纯地讲解或介绍复数的概念会显得枯燥无味,学生不易接受.解决方案:适当介绍数的发展简史,增强学生学习的生动性.2.教学问题二:由于知识储备和认知能力的限制,学生对数系扩充的一般规则并不熟悉,对虚数单位的引入,以及虚数单位和实数进行形式化运算的理解会出现一定困难.解决方案:通过解方程问题引导,借助已有的数系扩充的经验,特别是从有理数系扩充到实数系的经验,从特殊到一般,帮助学生梳理出数系扩充过程中体现的“规则”,进而在“规则”的引导下进行从实数系到复数系的扩充,感受引入复数的必要性和合理性.3.教学问题三:学生以前学习过的数都是单纯的一个数,而复数的代数形式是两项和的形式,学生比较陌生,因此理解上会存在一定困难.解决方案:引导学生按照“规则”自主探究出复数集中可能存在的各种数,并归纳总结出复数的一般表示方法,经历复数形式化的过程.基于上述情况,本节课的教学难点定为:理解复数的概念、表示法及相关概念.四、教学策略分析本节课的教学目标与教学问题为我们选择教学策略提供了启示.为了让学生类比得到复数的概念,应该为学生创造积极探究的平台,可以让学生从被动学习状态转到主动学习状态中来.在教学设计中,采取问题引导方式来组织课堂教学.问题的设置给学生留有充分的思考空间,让学生围绕问题主线,通过自主探究达到突出教学重点,突破教学难点.在教学过程中,重视复数概念的理解和表示,让学生体会数系扩充的基本过程.五、教学过程与设计纯虚数.[课堂练习2]已知M={2,m2-2m +(m2+m-2)i},N={-1,2,4i},若M∪N=N,求实数m的值.课堂小结升华认知[问题10]通过这节课,你学到了什么知识?在解决问题时,用到了哪些数学思想?[课后练习]z=a2-(2-b)i的实部和虚部分别是2和3,则实数a,b的值分别是()A.2,1B.2,5C.±2,5D.±2,12.下列复数中,满足方程x2+2=0的是()A.±1B.±iC.±2iD.±2i2 021=________.4.设i为虚数单位,若关于x的方程x2-(2+i)x+1+m i=0(m∈R)有一实根为n,则m=________.教师14:提出问题10.学生14:学生14:学生课后进行思考,并完成课后练习.师生共同回顾总结.引领学生感悟数学认知的过程,体会数学核心素养.课后练习是对定理巩固,是对本节知识的一个深化认识,同时也为下节内容做好铺垫.。
高中数学(人教A版选修)教案:章《数系的扩充与复数的引入》教材分析
《第三章数系的扩充与复数的引入》教材分析数系的扩充与复数的引入是选修1-2与选修2-2的内容,是高中生的共同数学基础之一.数系的扩充过程体现了数学的发现和创造过程,同时了数学产生、发展的客观需求,复数的引入襀了中学阶段数系的又一次扩充.《课标》将复数作为数系扩充的结果引入,体现了实际需求与数学内部的矛盾在数系扩充过程中的作用,以及数系扩充过程中数系结构与运算性质的变化.这部分内容的学习,有助于学生体会理论产生与发展的过程,认识到数学产生和发展既有来自外部的动力,也有来自数学内部的动力,从而形成正确的数学观;有助于发展学生的全新意识和创新能力.复数的内容是高中数学课程中的传统内容.对于复数,《课标》要求在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以数与现实世界的联系;理解复数的基本概念以及复数相等的充要条件;了解复数的代数表示法及其几何意义;能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.本章内容分为2节,教学时间约4课时.第一节数系的扩充和复数的概念本节的主要教学内容是数系的扩充和复数的概念、复数的几何意义(几何表示和向量表示).●教学目标(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.(2)理解复数的基本概念以及复数相等的充要条件.(3)了解复数的代数表示法及其几何意义.●教学重点(1)数系的扩充过程.(2)复数的概念、复数的分类和复数相等的充要条件.(3)复数的几何意义.●教学难点(1)虚数单位i的引进.(2)复数的几何意义.●教学时数本节教学,建议用2课时.第1课时处理数系的扩充和复数的概念;第2课时研究复数的几何意义.●课标对本节内容的处理特点数系的扩充和复数的概念,《课标》与《大纲》教学内容相同,但在处理方式和目标定位上存在差异:(1)《课标》将复数作为数系扩充的结果引入.《大纲》教科书先安排复数的概念,再研究复数的运算,最后介绍数系的扩充.《课标》实验教科书在介绍数系扩充的思想方法的基础上引入复数的概念,力求还原复数的发现与建构过程.(2)《课标》强调在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.从这上点上看,《课标》要求提高了.(3)在复数的代数表示法及其几何意义上,《课标》的教学定位是“了解”,而《大纲》要求“掌握”.从这上点上看,《课标》要求降低了.●教学建议1.关于“数系的扩充的复数的概念”的教学建议(1)课题的引入.教学时,可从方程在给定范围内是否有解提出问题: ① 在自然数集N 中,方程10x +=有解吗?② 在整数集Z 中,方程21x =有解吗?③ 在有理数集Q 中,方程2x =2有解吗?④ 在实数集R 中,方程.有解吗?(2)回顾从自然数集N 扩充到实数集R 的过程.帮助学生认识数系扩充的主要原因和共同特征.可让学生思考如下问题:① 从自然数集N 扩充到实数集R 经历了几次扩充?② 每一次扩充的主要原因是什么?③ 每一次扩充的共同特征是什么?然后师生共同归纳总结:扩充原因:① 满足实际问题解决的需要;② 满足数学自身完善和发展的需要.扩充特征:① 引入新的数;② 原数集中的运算规则在新数集中得到保留和扩展.(3)提出新的问题:如何对实数集进行扩充,使方程210x +=在新的数集中的解?(4)引入虚数单位i .(5)学习复数的概念.(6)规定复数相等的意义.(7)研究复数的分类.(8)告诉学生“两个复数只能说相等或不相等,不能比较大小”的理由: ① ,a bi c di a c b d +=+⇔==;在,a c b d ==两式中,只要有一个不成立,则a bi c di +≠+.② 如果两个复数都是实数,则可以比较大小;否则,不能比较大小.③ “不能比较大小”的确切含义是指:不论怎样定义两个复数之间的一个关系“<”,都不能使这种关系同时满足实数集中大小关系的四条性质:对于任意实数a ,b 来说,a b <,a b =,b a <这种情况有且只有一种成立; 如果,a b b c <<,那么a c <;如果a b <,那么a c b c +<+;如果,0a b c <<,那么ac bc <.一一对应一一对应 2.关于“复数的几何意义”的教学建议(1)帮助学生认识复数的几何表示.复数的几何表示就是指用复平面内的点Z (,a b )来表示复数z a bi =+.① 明确“复平面”的概念.② 建立复数集C 和复平面内所有的点所成的集合之间的一一对应关系,即 复数z a bi =+ 复平面内的点Z (,a b ).(2)帮助学生认识复数的向量表示.复数的向量表示就是指用复平面内的向量OZ u u u r 来表示复数z a bi =+. ①认识复平面内的点Z (,a b )与向量OZ u u u r 的一一对应关系.② 在相互联系中把握复数的向量表示:复数z a bi =+一一对应 一一对应点Z (,a b ) 向量OZ u u u r(3)用数形结合的思想方法,强化对复数几何意义的认识.在复平面内,实数与实轴上的点一一对应,纯虚数与虚轴上的点(原点除外)一一对应,非纯虚数的虚数与象限内的点一一对应.可通过一组练习题来强化这一认识.第二节 复数代数形式的四则运算本节的主要教学内容是复数代数形式的加减运算及其几何意义,复数代数形式的乘除运算.●教学目标(1)掌握复数代数形式的加减运算法则.(2)了解复数代数形式的加减运算的几何意义.(3)理解复数代数形式的乘除运算法则.(4)体验复数问题实数化的思想方法.●教学重点(1)复数代数形式的加减运算及其几何意义.(2)复数代数形式的乘除运算.(3)复数问题实数化的思想方法复数的理解与运用.●教学难点(1)复数代数形式的加减运算的规定.(2)复数代数形式的加减运算的几何意义的理解.(3)复数代数形式的乘除运算法则的运用.●教学时数本节教学,建议用2课时.第1课时处理复数代数形式的加减运算及其几何意义;第2课时研究复数代数形式的乘除运算.●课标对本节内容的处理特点复数代数形式的四则运算,《课标》与《大纲》教学内容与要求基本相同,但在目标定位上存在差异:(1)《课标》要求了解复数代数形式的加减运算的几何意义,对复数的向量表示提出了要求,强化了数形结合思想方法;(2)《课标》明确强调“淡化烦琐的计算和技巧性训练,突出了复数问题实数化的思想方法.●教学建议1.复数代数形式的加法和乘法的运算法则是一种规定,要让学生理解其合理性.这种合理性应从数系扩充的角度来理解:这种规定与实数加法、乘法的法则是一致的,而且实数加法、乘法的有关运算律在这里仍然成立.2.复数的减法、除法分别规定为复数的加法和乘法的逆运算,要让学生按照这种规定自主得出复数减法和除法的运算法则.3.复数代数形式的四则运算可以类比代数运算中的“合并同类项”“分母有理化”,利用21i=-,将它们归结为实数的四则运算.在具体运算情境中,引入共轭复的概念,明确公式22+-=+是复数除法中“分母实数化”的基础,()()a bi a bi a b不必让学生专门计忆复数除法法则.从而让学生体验复数问题实数化的思想方法.4.要引领学生从平面向量的加法、减法的平行四边形或三角形法则来认识并理解复数代数形式的加减运算的几何意义.。
数系的扩充与复数的概念》教案
数系的扩充与复数的概念》教案教案:数系的扩充与复数的概念一、教学目标:1.理解数系的扩充是为了解决方程$x^2=a$(a<0)而引入复数的概念;2.掌握复数的定义与基本运算;3.了解复数在平面直角坐标系中的表示方式;4.掌握解一元二次方程及其应用。
二、教学重难点:1.复数的定义与基本运算;2.复数在平面直角坐标系中的表示;3.解一元二次方程及其应用。
三、教学过程:Step 1: 引入教师在黑板上写下方程$x^2=-1$,并询问学生这个方程有没有实数解。
引导学生思考并让他们发表自己的观点。
Step 2: 数系的扩充1.教师讲解当a<0时,方程$x^2=a$没有实数解的情况。
为了解决这个问题,数学家们引入了复数的概念,即数系从实数扩充为复数。
2.教师简要介绍复数的历史背景和意义,以增加学生对复数概念的兴趣。
Step 3: 复数的定义与表示1. 教师引导学生理解复数的定义:复数表示为 a + bi,其中 a 和b 都是实数,i 是虚数单位,满足 $i^2 = -1$。
2. 通过例子引导学生掌握复数的表示方式,如 2 + 3i、-5i、$\sqrt{2} + \sqrt{3}i$。
Step 4: 复数的基本运算1.教师简要介绍复数的基本运算法则:加法、减法、乘法和除法。
2.通过例子分别演示复数的加减乘除运算,并指导学生进行练习。
Step 5: 复数的图示表示1. 教师引导学生理解复数在平面直角坐标系中的表示方法。
将实部和虚部分别看作是复平面上的横坐标和纵坐标,复数 a + bi 对应复平面上的一个点。
2.通过例子和练习让学生熟悉复数在复平面上的图示表示。
Step 6: 一元二次方程的解及其应用1. 教师复习一下一元二次方程的一般形式:$ax^2 + bx + c = 0$,其中 a、b 和 c 都是实数,且 $a \neq 0$。
2.教师讲解如何用复数解一元二次方程,通过例题引导学生理解。
四、课堂练习与讨论五、作业布置1.练习册上的相关习题;2.解一些一元二次方程。
高中数学 专题3.1.1 数系的扩充和复数的概念教案 新人教A版选修12
数系的扩充和复数的概念一、教学内容数系的三次扩充过程,复数的引入过程,复数概念的知识二、教学目标三、教学重点引入复数的必要性与复数的相关概念、复数的分类,复数相等的充要条件四、教学难点虚数单位i 的引进和复数的概念五、学生分析学生在本章之前已经学习了《推理与证明》的内容,有了一定的推理与证明能力,有利于本节课运用类比思想对实数集进行扩充。
六、教学方法及教学用具启发引导、类比探究并运用多媒体课件展示相关知识七、教学过程(一)问题引入问题:若223x y +=,3xy =,求(1)x+y 的值; (2)求x 和y 的值生(独立完成):求出x+y=3或-3师:既然和能够求出来,那能不能求出x 和y 的值呢?生:30∆=-<的存在,我们求不了x 、y 的值师:事实上在实数范围内x 和y 确实不存在?为什么会这样呢?假设x 和y 是存在的,那么就肯定是一些不是实数的数,那么,这些数是什么呢?我们能不能解决这个问题呢?这就是我们今天要学习的内容《数系的扩充和复数的引入》(二)回顾数系的扩充历程师:其实对于这种“数不够用”的情况,我们并不陌生。
大家记得吗?从小学到现在,我们一直在经历着数的不断扩充。
现在就让我们来回顾一下,看看我们以前是怎么解决“数不够用”的问题的。
(三)类比,引入新数,将实数集扩充1、 类比数系的扩充规律,引导学生找出解决“实数不够用”这个问题的办法 生:引入新数,使得平方为负数师:我们希望引入的数的平方为负数,但是负数有无穷多个,我们不肯能一下子引入那么多,只要引入平方为多少就行呢?(引导学生找到1-,因为任何一个负数都可以写成正数与-1的乘积)2、 历史重现:在历史上数学家们碰到我们前面这个问题的时候一开始是解决不了的,导致在此问题上徘徊了百年之久,直到18世纪末,数学家才认识到解决21x =-的重要性,于是他们就像我们一样引入新的数,使得引入的数的平方等于1-,并把这个数记为英文字母i ,就是虚构、想象的意思。
高中数学《数系的扩充和复数的概念》教案
高中数学《数系的扩充和复数的概念》教案一、教学目标1. 让学生理解实数和虚数的概念,了解复数的基本形式。
2. 让学生掌握复数的运算规则,包括加、减、乘、除以及共轭复数的概念。
3. 培养学生运用复数解决实际问题的能力。
二、教学内容1. 实数和虚数的概念:介绍实数和虚数的定义,举例说明实数和虚数的区别。
2. 复数的基本形式:介绍复数的一般形式,解释实部和虚部的意义。
3. 复数的运算规则:讲解复数的加、减、乘、除运算方法,并通过例题演示。
4. 共轭复数的概念:介绍共轭复数的定义,讲解共轭复数的性质和运用。
三、教学重点与难点1. 教学重点:实数和虚数的概念,复数的基本形式,复数的运算规则,共轭复数的概念。
2. 教学难点:复数的运算规则,共轭复数的性质和运用。
四、教学方法1. 采用讲授法,讲解实数、虚数和复数的概念,复数的运算规则,共轭复数的性质和运用。
2. 利用例题演示,让学生直观地理解复数的运算方法。
3. 设计练习题,让学生巩固所学知识。
五、教学步骤1. 引入实数和虚数的概念,举例说明实数和虚数的区别。
2. 讲解复数的一般形式,解释实部和虚部的意义。
3. 讲解复数的加、减、乘、除运算方法,并通过例题演示。
4. 介绍共轭复数的定义,讲解共轭复数的性质和运用。
5. 设计练习题,让学生运用所学知识解决问题。
教案仅供参考,具体教学过程中请根据学生的实际情况进行调整。
六、教学评价1. 通过课堂讲解、例题分析和练习题,评价学生对实数、虚数和复数的概念的理解程度。
2. 通过复数运算的练习题,评价学生对复数运算规则的掌握情况。
3. 通过共轭复数相关练习题,评价学生对共轭复数性质和运用的理解程度。
七、教学拓展1. 介绍复数在工程、物理等领域的应用,激发学生学习复数的兴趣。
2. 引导学生思考复数运算的规律,培养学生的逻辑思维能力。
八、教学资源1. PPT课件:实数、虚数和复数的概念,复数的运算规则,共轭复数的性质和运用。
高中数学《数系的扩充和复数的概念》教案
高中数学《数系的扩充和复数的概念》教案一、教学目标1. 让学生了解数系的扩充过程,理解实数和复数的概念。
2. 培养学生运用数系知识解决实际问题的能力。
3. 提高学生对数学美的感受,培养学生的创新意识。
二、教学内容1. 数系的扩充过程:有理数、实数、复数。
2. 实数和复数的概念及其性质。
3. 复数的几何意义。
三、教学重点与难点1. 教学重点:数系的扩充过程,实数和复数的概念及其性质。
2. 教学难点:复数的几何意义,复数方程的求解。
四、教学方法1. 采用问题驱动法,引导学生探究数系的扩充过程。
2. 运用实例讲解法,让学生理解实数和复数的概念。
3. 利用数形结合法,揭示复数的几何意义。
五、教学过程1. 导入新课:通过复习实数的概念,引出数系的扩充过程。
2. 讲解数系的扩充过程:有理数、实数、复数。
3. 讲解实数和复数的概念:实数的定义、性质;复数的定义、性质。
4. 讲解复数的几何意义:复平面、复数的几何表示。
5. 巩固练习:解决一些与实数和复数有关的实际问题。
6. 课堂小结:总结本节课的主要内容和知识点。
7. 布置作业:布置一些有关实数和复数的练习题,巩固所学知识。
六、教学拓展1. 介绍复数在工程、物理等领域的应用,如电路分析中的复数表示法。
2. 引导学生探究复数的运算规则,如复数的乘法、除法、乘方等。
七、案例分析1. 分析实际问题,如利用复数解决几何问题、信号处理问题等。
2. 引导学生运用复数知识解决实际问题,提高学生的应用能力。
八、课堂互动1. 组织学生进行小组讨论,探讨复数的几何意义。
2. 开展课堂提问,检查学生对实数和复数概念的理解。
3. 引导学生进行互动交流,分享学习心得和解决问题的方法。
九、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况。
2. 作业完成情况:检查学生作业的完成质量,巩固所学知识。
3. 课后反馈:收集学生对课堂内容的反馈,了解学生的学习效果。
十、教学反思1. 反思教学内容:检查教学内容是否全面、深入,是否符合学生的实际需求。
高中数学《数系的扩充和复数的概念》教案
高中数学《数系的扩充和复数的概念》教案一、教学目标1. 让学生理解实数和复数的概念,掌握实数和复数的关系。
2. 让学生掌握复数的代数表示法,了解复数的几何表示。
3. 让学生学会运用复数的概念和性质解决实际问题。
二、教学内容1. 实数和复数的概念2. 复数的代数表示法3. 复数的几何表示4. 复数的运算5. 复数的应用三、教学重点与难点1. 重点:实数和复数的概念,复数的代数表示法,复数的几何表示,复数的运算。
2. 难点:复数的几何表示,复数的运算。
四、教学方法采用问题驱动法、案例分析法、小组讨论法、讲授法等,引导学生主动探究,提高学生分析问题、解决问题的能力。
五、教学过程1. 实数和复数的概念(2)引入复数的概念,解释复数的概念。
(3)通过实例让学生理解实数和复数的关系。
2. 复数的代数表示法(1)介绍复数的代数表示法,让学生掌握复数的标准形式。
(2)讲解复数的实部和虚部的含义。
(3)通过实例让学生学会写出复数的标准形式。
3. 复数的几何表示(1)介绍复数的几何表示,让学生了解复平面的概念。
(2)讲解复数在复平面上的位置与实部和虚部的关系。
(3)通过实例让学生学会在复平面上表示复数。
4. 复数的运算(1)讲解复数的加减乘除运算规则。
(2)通过实例让学生掌握复数的运算方法。
5. 复数的应用(1)讲解复数在实际问题中的应用,如电路分析、信号处理等。
(2)通过实例让学生学会运用复数解决实际问题。
(3)引导学生思考复数的在其他领域中的应用。
六、课后作业2. 练习复数的代数表示法,写出给定复数的标准形式。
3. 学习复数的几何表示,画出给定复数在复平面上的位置。
4. 练习复数的运算,掌握加减乘除运算规则。
5. 思考复数在实际问题中的应用,举例说明。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 课后作业:检查学生的作业完成情况,评估学生对知识点的掌握程度。
3. 小组讨论:评估学生在小组讨论中的表现,了解学生的合作能力和解决问题的能力。
数系的扩充与复数的概念教案
3.1.1数系的扩充与复数的概念【教学目标】(1)在问题情境中了解数系的扩充过程,体会实际需求在数系扩充过程中的作用理解复数的基本概念(2)理解复数的基本概念以及复数相等的充要条件(3)了解复数的代数表示方法【教学重难点】重点:引进虚数单位i的必要性、对i的规定、复数的有关概念难点:实数系扩充到复数系的过程的理解,复数概念的理解【教学过程】一、创设情景、提出问题问题1:我们知道,对于实系数一元二次方程,没有实数根.我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?问题2:类比引进,就可以解决方程在有理数集中无解的问题,怎么解决在实数集中无解的问题呢?问题3:把实数和新引进的数i 像实数那样进行运算,并希望运算时有关的运算律仍成立,你得到什么样的数?二、学生活动1.复数的概念:⑴虚数单位:数__叫做虚数单位,具有下面的性质:①_________②______________________________________________⑵复数:形如__________叫做复数,常用字母___表示,全体复数构成的集合叫做______,常用字母___表示.⑶复数的代数形式:_________,其中____叫做复数的实部,___叫做复数的虚部,复数的实部和虚部都是___数.(4)对于复数a+bi(a,b∈R),当且仅当_____时,它是实数;当且仅当_____时,它是实数0;当_______时, 叫做虚数;当_______时, 叫做纯虚数;2.学生分组讨论⑴复数集C和实数集R之间有什么关系?⑵如何对复数a+bi(a,b∈R)进行分类?⑶复数集、实数集、虚数集、纯虚数集之间的关系,可以用韦恩图表示出来吗?3.练习:(1).下列数中,哪些是实数,哪些是虚数,哪些是纯虚数?并分别指出这些复数的实部与虚部各是什么?2+ 2i , 0.618, 2i/7 , 0,5 i +8, 3-9 i(2)、判断下列命题是否正确:(1)若a、b为实数,则Z=a+bi为虚数(2)若b为实数,则Z=bi必为纯虚数(3)若a为实数,则Z= a一定不是虚数三、归纳总结、提升拓展例1 实数m分别取什么值时,复数z=m+1+(m-1)i是(1)实数?(2)虚数?(3)纯虚数?解:归纳总结:确定复数z=a+bi是实数、虚数、纯虚数的条件是:练习:实数m分别取什么值时,复数z=m2+m-2+(m2-1)i是(1)实数?(2)虚数?(3)纯虚数?两个复数相等,即两个复数相等的充要条件是它们的实部与虚部分别对应相等.也就是a+bi=c+di _______________________(a、b、c、d为实数)由此容易出:a+bi=0 _______________________例2已知x +2y +(2x+6)i=3x-2 ,其中,x,y为实数,求x与y.四、反馈训练、巩固落实1、若x,y为实数,且 2x -2y+(x+ y)i=x-2 i求x与y.2、若x为实数,且(2x2-3x-2)+(x2-5x+6)i=0,求x的值.。
数系的扩充和复数的概念教案
数系的扩充和复数的概念教案一、教学目标1. 了解数系的扩充,掌握实数集、有理数集、无理数集和复数集的概念;2. 掌握复数的定义和表示方法;3. 理解复数加法和乘法的几何意义;4. 能够计算复数的模、共轭和商。
二、教学重难点1. 数系的扩充,包括实数集、有理数集、无理数集和复数集的概念;2. 复数的定义和表示方法;3. 复数加法和乘法的几何意义。
三、教学内容1. 数系的扩充(1)实数集:包括有理数和无理数两部分,用符号“R”表示。
(2)有理数集:可以表示为两个整数之比(分母不为0),用符号“Q”表示。
(3)无理数集:不能表示为两个整数之比,用符号“Q'”表示。
(4)复数集:由实部和虚部构成,形如a+bi,其中a和b均为实数,i是虚单位,用符号“C”表示。
2. 复数的定义与表示方法(1)定义:由一个实部a和一个虚部b构成的有序数组(a,b)称为一个复数z,即z=a+bi。
其中a称为z的实部,b称为z的虚部。
(2)表示方法:用复平面上的点表示。
3. 复数加法和乘法的几何意义(1)复数加法:设z1=a1+b1i,z2=a2+b2i,则z1+z2=(a1+a2)+(b1+b2)i。
即把两个复数看作向量,在复平面上用平行四边形法则相加。
(2)复数乘法:设z1=a1+b1i,z2=a2+b2i,则z1×z2=(a1a2-b1b2)+(a1b2+a2b1)i。
即把两个复数看作向量,在复平面上用角度叠加原理相乘。
4. 计算方法(1)模:|a+bi|=√(a²+b²)。
(2)共轭:若z=a+bi,则其共轭为z*=a-bi。
(3)商:设z1=a+bi,z2=c+di,则它们的商为(z1/z2)=(ac+bd)/(c²+d²)+((bc-ad)/(c²+d²))i。
四、教学过程Step 1 引入新知识介绍实数集、有理数集和无理数集,并引入复数集的概念。
高中数学《第三章 复数》(4个课时)章节学案 新人教A版选修12
第三章 复数二.课标要求:复数的概念:①理解复数的基本概念;②理解复数相等的充要条件;③了解复数的代数表示法及其几何意义。
复数的四则运算:①会进行复数代数形式的四则运算;②了解复数代数形式的加、减运算的几何意义。
第一节 数系的扩充和复数的概念学习目标:①理解复数的基本概念;②理解复数相等的充要条件;③了解复数的代数表示法及其几何意义。
第一课时 复数的概念 一.归纳重点1.复数的代数形式:形如 的数叫做复数,其中 叫做虚数单位。
复数的实部为 ,虚部为 。
2.虚数和纯虚数:对于),(R b a bi a z ∈+=,当 时,它是实数;当 时,它是虚数;当 时,它是纯虚数。
3.复数集、实数集、虚数集、纯虚数集之间关系如右图所示:4.复数的相等:di c bi a +=+的充要条件为 。
二.典型例题例1.实数m 取什么值时,复数i m m z )1(1-++=是(1)实数?(2)虚数?(3)纯虚数?例2.如果i y y x i y y x )12()32()1()(+++=-++,求实数y x ,的值。
三.延伸训练1.下列四个命题中,真命题是( )①1-的平方根只有一个i ;②i 是方程012=+x 的一个根;③i 2是一个无理数;④)(1R a ai ∈-是一个复数。
.A ①② .B ②③ .C ①④ .D ②④ 2.对于复数bi a +,下列结论正确的是( ).A bi a a +⇔=0为纯虚数 .B bi a b +⇔=0为实数 .C 3,323)1(-==⇔+=-+b a i i b a .D 1-的平方等于i 3.复数i a a 234--与复数ai a 42+相等,则实数a 的值为( ).A 1 .B 1或4- .C 4- .D 0或4-4.复数i 312+-的实部为 ,虚部为 。
5.下列数中,其中实数为 ,虚数为 ,纯虚数为 。
①72+;②e ;③i 72;④0;⑤i ;⑥2i ;⑦3i ;⑧85+i ;⑨)31(-i ;⑩i -2。
高中数学 第三章 数系的扩充与复数的引入教学案 新人教A版选修12
第三章 数系的扩充与复数的引入(复习课)掌握复数的的概念,复数的几何意义以及复数的四则运算.【知识链接】(预习教材P 72找出疑惑之处)复习1:复数集C 、实数集R 、有理数集Q 、整数集Z 和自然数集N 之间的关系为:复习2:已知1510z i =+,234z i =-,12111z z z =+,求z .【学习过程】※ 学习探究探究任务:复数这一章的知识结构问题:数系是如何扩充的?本章知识结构是什么?新知:试试:若122,34z a i z i =+=-,且12z z 为纯虚数,求实数a 的值.变式:(1)12z z 对应的点在复平面的下方(不包括实轴),求a 的取值范围.(2)12z z 对应的点在直线0x y +=,求实数a 的值.反思:若复数(,)a bi a b R +∈是实数,则是虚数,则 ;是纯虚数,则 ;其模为 ;其共轭复数为 .若(,,,)a bi c di a b c d R +=+∈,则 .※ 典型例题例1 已知m R ∈,复数2(2)(23)1m m z m m i m +=++--,当m 为何值时, (1)z R ∈?(2)z 是纯虚数?(3)z 对应的点位于复平面第二象限?(4)z 对应的点在直线30x y ++=上?变式:已知11m ni i=-+,其中,m n 是实数,i 是虚数单位,则m ni +=小结:掌握复数分类是解此题的关键.在计算时,切不可忘记复数(,)a bi a b R +∈为纯虚数的一个必要条件是0b ≠,计算中分母不为0也不可忽视.例2 设存在复数z 同时满足下列条件:(1)在复平面内对应的点位于第二象限;(2)28()zz iz ai a R +=+∈;试求z 的取值范围变式:已知复数z 满足||28z z i +=+,求复数z小结:复数问题实数化是解决复数问题的主要方法,其转化的依据主要就是复数相等的充要条件.基本思路是:设出复数的代数形式(,)z a bi a b R =+∈,由复数相等得到两个实数等式所组成的方程组,从而可以确定两个独立的基本量.例3 在复平面内(1)复数22(24)(22)z a a a a i =-+--+,(2)满足|1||1|4z z ++-=的复数z ,对应的点的轨迹分别是什么?※ 动手试试练1. 已知复数26(2)2(1)1m z i m i i=+----,当实数m 取什么值时,复数是(1)零;(2)虚数;(3)纯虚数;(4)复平面内第二、四象限角平分线上的点对应的复数.练2. 若2222log (32)log (21)1x x i x x --+++>,则实数的值(或范围)是 .【学习反思】※ 学习小结复数问题实数化是解决复数问题最基本的也是最重要的思想方法,其转化的依据主要就是复数相等的充要条件.基本思路是:设出复数的代数形式(,)z a bi a b R =+∈,由复数相等可以得到两个实数等式所组成的方程组,从而可以确定两个独立的基本量.根据复数相等一般可解决如下问题:(1)解复数方程;(2)方程有解时系数的值;(3)求轨迹问题.※ 知识拓展※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 设134z i =-,223z i =-+,则12z z +在复平面内对应的点( )A .第一象限B .第二象限C .第三象限D .第四象限2. 2(1)i i -⋅等于( )A .22i -B .22i +C .2-D .23. 复数21(1)i+的值是( ) A .2i B .2i - C .2 D .2-4.复数21i+的实部是 ,虚部是 5. (158)(12)i i +--的值是1. 已知(12)43i z i +=+,求z 及zz .2. 设1z 是虚数,2111z z z =+是实数,且211z -≤≤(1)求1||z 的值以及1z 的实部的取值范围;(2)若1111z z ω-=+,求证ω为纯虚数.。
人教A版选修1-2《3.1.1数系的扩充和复数的概念》教案设计
3.1.1 数系的扩充和复数的概念●三维目标1.知识与技能(1)了解数系的扩充过程.(2)理解复数的基本概念.2.过程与方法(1)通过回顾数系扩充的历史,让学生体会数系扩充的一般性方法.(2)类比前几次数系的扩充,让学生了解数系扩充后,实数运算律均可应用于新数系中,在此基础上,理解复数的基本概念.3.情感、态度与价值观(1)虚数单位的引入,产生复数集,让学生体会在这个过程中蕴含的创新精神和实践能力,感受人类理性思维的作用以及数与现实世界的联系;(2)初步学会运用矛盾转化,分与合,实与虚等辩证唯物主义观点看待和处理问题.●重点难点重点:理解虚数单位i的引进的必要性及复数的有关概念.难点:复数的有关概念及应用.(教师用书独具)●教学建议建议本节课采用自主学习,运用自学指导法,通过创设问题情境,引导学生自学探究数系的扩充历程,体会数系扩充的必要性及现实意义,思考数系扩充后需考虑的因素,譬如运算法则、运算律、符号表示等问题,为本节学习奠定知识基础.本节内容比较简单,通过学生自学加讨论的方式,基本上可以解决基础内容的理解,教师可以启发引导学生辨析实数、虚数、纯虚数及复数相等的概念,达到透彻理解、触类旁通、学以致用的熟练程度.高考对该部分知识要求不高,练习要控制难度,以低中档题目为主.●教学流程创设问题情境,引出问题,引导学生认识虚数单位i,了解复数的概念、分类及复数相等的条件.让学生自主完成填一填,使学生进一步熟悉复数的有关概念,提炼出其中的关键因素、重点、难点.由学生自主分析例题1的各个选项,对应有关概念,确定出正确答案.教师只需指导完善解、答疑惑,并要求学生独立完成变式训练.学生分组探究例题2解法,找出实数、虚数、纯虚数的特征,总结求相关参数的方程、不等式的确定方法.完成互动探究.完成当堂双基达标,巩固所学知识及应用方法.并进行反馈矫正.归纳整理,进行课堂小结,整体认识本节所学知识,强调重点内容和规律方法.学生自主完成例题3变式训练,老师抽查完成情况,对出现问题及时指导.让学生自主分析例题3,老师适当点拨解题思路,学生分组讨论给出解法.老师组织解法展示,引导学生总结解题规律.1.为解决方程x2=2,数系从有理数扩充到实数;那么怎样解决方程x2+1=0在实数系中无根的问题?【提示】引入新数i,规定i2=-1,这样i就是方程x2+1=0的根.2.设想新数i和实数b相乘后再与a相加,且满足加法和乘法的运算律,则运算的结果可以写成什么形式?【提示】a+b i(a,b∈R)的形式.(1)复数的定义:把集合C={a+b i|a,b∈R}中的数,即形如a+b i(a,b∈R)的数叫做复数.(2)虚数单位:i,其满足i2=-1.(3)复数集:全体复数构成的集合C.(4)复数的代数形式:z=a+b i(a,b∈R).(5)实部、虚部:对于复数z=a+b i(a,b∈R),a叫做复数的实部,b叫做复数的虚部.若a ,b ,c ,a =c 且b =d .(1)对于复数时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +b i(a ,b ∈R )可以分类如下:复数a +b i(a ,b ∈R )⎩⎨⎧实数b =,虚数b⎩⎪⎨⎪⎧纯虚数a =,非纯虚数a(2)集合表示.①若x ,y ∈C ,则x +y i =1+i 的充要条件是x =y =1; ②若a ,b ∈R 且a >b ,则a +i>b +i ; ③若x 2+y 2=0,则x =y =0;④一个复数为纯虚数的充要条件是这个复数的实部等于零; ⑤-1没有平方根;⑥若a ∈R ,则(a +1)i 是纯虚数.A .0B .1C .2D .3 【思路探究】 根据复数的有关概念判断.【自主解答】 ①由于x ,y ∈C ,所以x +y i 不一定是复数的代数形式,不符合复数相等的充要条件,①是假命题.②由于两个虚数不能比较大小,∴②是假命题. ③当x =1,y =i 时,x 2+y 2=0也成立,∴③是假命题.④当一个复数实部等于零,虚部也等于零时,复数为0,∴④错. ⑤-1的平方根为±i,∴⑤错.⑥当a =-1时,(a +1)i =0是实数,∴⑥错.故选A. 【答案】 A正确理解复数的有关概念是解答复数概念题的关键,另外在判断命题的正确性时,需通过逻辑推理加以证明,但否定一个命题的正确性时,只需举一个反例即可,所以在解答这类题型时,可按照“先特殊,后一般”、“先否定,后肯定”的方法进行解答.已知下列命题: ①复数a +b i 不是实数; ②当z ∈C 时,z 2≥0;③若(x 2-4)+(x 2+3x +2)i 是纯虚数,则实数x =±2; ④若复数z =a +b i ,则当且仅当b ≠0时,z 为虚数;⑤若a ,b ,c ,d ∈C 时,有a +b i =c +d i ,则a =c ,且b =d .其中真命题的个数是________. 【解析】 根据复数的有关概念判断命题的真假.①是假命题,因为当a ∈R 且b =0时,a +b i 是实数.②假命题,如当z =i 时,则z 2=-1<0.③是假命题,因为由纯虚数的条件得⎩⎪⎨⎪⎧x 2-4=0,x 2+3x +2≠0,解得x =2,当x =-2时,对应复数为实数.④是假命题,因为没有强调a ,b ∈R .⑤是假命题,只有当a 、b 、c 、d ∈R 时,结论才成立.【答案】 0当实数m 为何值时,复数z =m+(m 2-2m )i 是(1)实数;(2)虚数;(3)纯虚数. 【思路探究】 根据复数的分类标准→ 列出方程(不等式)组→解出m →结论【自主解答】 (1)当⎩⎪⎨⎪⎧m 2-2m =0,m ≠0,即m =2时,复数z 是实数. (2)当m 2-2m ≠0,且m ≠0, 即m ≠0且m ≠2时,复数z 是虚数.(3)当⎩⎪⎨⎪⎧m 2+m -6m =0,m 2-2m ≠0,即m =-3时,复数z 是纯虚数.1.本例中,极易忽略对m ≠0的限制,从而产生增解,应注意严谨性.2.利用复数的代数形式对复数分类时,关键是根据分类标准列出实部、虚部应满足的关系式(等式或不等式),求解参数时,注意考虑问题要全面.把题中的“z ”换成“z =lg m +(m -1)i”,分别求相应问题.【解】 (1)当⎩⎪⎨⎪⎧m >0,m -1=0,即m =1时,复数z 是实数.(2)当m -1≠0且m >0,即m >0且m ≠1时,复数z 是虚数.(3)当lg m =0且m -1≠0时,此时无解,即无论实数m 取何值均不能表示纯虚数.已知x +1=(x 2-2x -3)i(x ∈R ),求x 的值.【思路探究】 根据复数相等的充要条件转化成关于x 的方程组求解.【自主解答】 ∵x ∈R ,∴x 2-x -6x +1∈R ,由复数相等的条件得:⎩⎪⎨⎪⎧x 2-x -6x +1=0,x 2-2x -3=0,解得x =3.1.复数相等的充要条件是化复为实的主要依据,利用实部与实部、虚部与虚部分别相等列方程组求实数x ,y 的值.2.求解复数的有关问题时,务必注意参数x ,y 的范围.求使等式(2x -1)+i =y -(3-y )i 成立的实数x ,y 的值.【解】 由⎩⎪⎨⎪⎧2x -1=y ,1=--y ,解得⎩⎪⎨⎪⎧x =52,y =4.因忽视虚数不能比较大小而出错求满足条件-2+a -(b -a )i>-5+(a +2b -6)i 的实数a ,b 的取值范围.【错解】 由已知,得⎩⎪⎨⎪⎧-2+a >-5,-b -a a +2b -6,解得a >-3,b <2.【错因分析】 想当然的认为大的复数所对应的实部和虚部都大,忽视了只有实数才能比较大小的前提.两个复数,如果不全是实数,则不能比较大小.所以当两个复数能比较大小时,可以确定这两个复数必定都是实数.【防范措施】 当两个复数不全是实数时,不能比较大小,只可判定相等或不相等,但两个复数都是实数时,可以比较大小.细心审题,解题前明确每个参数的取值范围,牢记复数相等的充要条件,才能避免此类错误的出现.【正解】 由-2+a -(b -a )i>-5+(a +2b -6)i 知,不等号左右两边均为实数,所以⎩⎪⎨⎪⎧b -a =0,a +2b -6=0,-2+a >-5,解得a =b =2.1.对于复数z =a +b i(a ,b ∈R ),可以限制a ,b 的值得到复数z 的不同情况. 2.两个复数相等,要先确定两个复数实虚部,再利用两个复数相等的条件. 3.一般来说,两个复数不能比较大小.1.(2012·北京高考)设a ,b ∈R ,“a =0”是“复数a +b i 是纯虚数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【解析】 “a =”D ⇒\“a +b i 为纯虚数”, “a +b i 为纯虚数”“⇒”“a =0”, ∴选B. 【答案】 B2.(1+3)i 的实部与虚部分别是( ) A .1, 3 B .1+3,0 C .0,1+ 3D .0,(1+3)i 【解析】 根据复数的代数形式的定义可知(1+3)i =0+(1+3)i , 所以其实部为0,虚部为1+3,故选C. 【答案】 C3.下列命题中的假命题是( ) A .自然数集是非负整数集 B .实数集与复数集的交集为实数集 C .实数集与虚数集的交集是{0} D .纯虚数与实数集的交集为空集【解析】 本题主要考查复数集合的构成,即复数的分类.复数可分为实数和虚数两大部分,虚数中含有纯虚数,因此,实数集与虚数集没有公共元素,故选项C 中的命题是假命题.【答案】 C4.已知复数z =m +(m 2-1)i(m ∈R )满足z <0,则m =________.【解析】 ∵z <0,∴⎩⎪⎨⎪⎧m 2-1=0,m <0,∴m =-1.【答案】 -1一、选择题1.若复数2-b i(b ∈R )的实部与虚部互为相反数,则b 的值为( ) A .-2 B.23 C .-23D .2【解析】 2-b i 的实部为2,虚部为-b ,由题意知2=-(-b ),∴b =2. 【答案】 D2.i 是虚数单位,1+i 3等于( ) A .i B .-i C .1+i D .1-i【解析】 由i 是虚数单位可知:i 2=-1,所以1+i 3=1+i 2×i=1-i ,故选D. 【答案】 D3.(2012·陕西高考)设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 ab =0⇒a =0或b =0,当a ≠0,b =0时,a +b i 为实数,当a +bi 为纯虚数时⇒a =0,b ≠0⇒ab =0,故“ab =0”是“复数a +bi为纯虚数”的必要不充分条件.【答案】 B4.若复数z =(x 2-1)+(x -1)i 为纯虚数,则实数x 的值为( ) A .-1 B .0 C .1 D .-1或1【解析】 由题意可知,当⎩⎪⎨⎪⎧x 2-1=0,x -1≠0,即x =-1时,复数z 是纯虚数.【答案】 A5.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是( ) A .3-3iB .3+iC .-2+2iD .2+2i【解析】 3i -2的虚部为3,3i 2+2i =-3+2i 的实部为-3,则所求复数为3-3i.【答案】 A 二、填空题6.给出下列复数:2+3,0.618,i 2,5i +4,2i ,其中为实数的是________. 【解析】 2+3,0.618,i 2为实数,5i +4,2i 为虚数. 【答案】 2+3,0.618,i 27.已知x -y +2x i =2i ,则x =________;y =________. 【解析】 根据复数相等的充要条件得⎩⎪⎨⎪⎧x -y =0,2x =2.解得⎩⎪⎨⎪⎧x =1,y =1.【答案】 1 1 8.给出下列几个命题:①若x 是实数,则x 可能不是复数; ②若z 是虚数,则z 不是实数;③一个复数为纯虚数的充要条件是这个复数的实部等于零; ④-1没有平方根; ⑤两个虚数不能比较大小. 则其中正确命题的个数为________.【解析】 因实数是复数,故①错;②正确;因复数为纯虚数要求实部为零,虚部不为零,故③错;因-1的平方根为±i,故④错;⑤正确.故答案为2.【答案】 2 三、解答题9.实数m 分别为何值时,复数z =2m 2+m -3m +3+(m 2-3m -18)i 是:(1)实数;(2)虚数;(3)纯虚数.【解】 (1)要使所给复数为实数,必使复数的虚部为0.故若使z 为实数,则⎩⎪⎨⎪⎧m 2-3m -18=0m +3≠0,解得m =6.所以当m =6时,z 为实数.(2)要使所给复数为虚数,必使复数的虚部不为0. 故若使z 为虚数,则m 2-3m -18≠0,且m +3≠0, 所以当m ≠6且m ≠-3时,z 为虚数.(3)要使所给复数为纯虚数,必使复数的实部为0,虚部不为0. 故若使z 为纯虚数,则⎩⎪⎨⎪⎧2m 2+m -3=0m +3≠0m 2-3m -18≠0,解得m =-32或m =1.所以当m =-32或m =1时,z 为纯虚数.10.若m 为实数,z 1=m 2+1+(m 3+3m 2+2m )i ,z 2=4m +2+(m 3-5m 2+4m )i ,那么使z 1>z 2的m 值的集合是什么?使z 1<z 2的m 值的集合又是什么?【解】 当z 1∈R 时,m 3+3m 2+2m =0,m =0,-1,-2,z 1=1或2或5.当z 2∈R 时,m 3-5m 2+4m =0,m =0,1,4,z 2=2或6或18.上面m 的公共值为m =0, 此时z 1与z 2同时为实数, 此时z 1=1,z 2=2.所以z 1>z 2时m 值的集合为空集,z 1<z 2时m 值的集合为{0}.11.已知关于x 的方程x 2+(k +2i)x +2+k i =0有实根x 0,求x 0以及实数k 的值. 【解】 x =x 0是方程的实根,代入方程并整理,得 (x 20+kx 0+2)+(2x 0+k )i =0. 由复数相等的充要条件,得⎩⎪⎨⎪⎧x 20+kx 0+2=0,2x 0+k =0,解得⎩⎨⎧x 0=2,k =-22,或⎩⎨⎧x 0=-2,k =2 2.∴方程的实根为x 0=2或x 0=-2,相应的k 值为k =-22或k =2 2.(教师用书独具)/若z 1=m 2-(m 2-3m )i ,z 2=(m 2-4m +3)i +10(m ∈R ),z 1<z 2,求实数m 的取值.【思路探究】 由z 1<z 2推出z 1,z 2均为实数,利用复数为实数的条件列出参数m 的方程组,从而求出实数m 的值.【自主解答】 ∵z 1<z 2,∴z 1,z 2均为实数.∴⎩⎪⎨⎪⎧ m 2-3m =0, ①m 2-4m +3=0, ②∴⎩⎪⎨⎪⎧ m =0或m =3m =1或m =3∴m =3.又z 1=m 2=9<z 2,故m =3符合题意.∴m =3.复数z =a +b i 当且仅当其为实数时,才能比较大小,否则不能比较大小.若用“大于”或“小于”符号联系复数时,则只能是实数,故而本题需将复数问题转化到实数范围内研究讨论.已知集合M ={1,2,m 2-3m -1+(m 2-5m -6)i},N ={-1,3},且M ∩N ={3},求实数m 的值.【解】 ∵M ∩N ={3},N ={-1,3},∴3∈M ,且-1∉M .必有m 2-3m -1+(m 2-5m -6)i =3.由复数相等的定义,得⎩⎪⎨⎪⎧ m 2-3m -1=3,m 2-5m -6=0.解得m =-1.。
数系的扩充与复数的概念参考教案
数系的扩充与复数的概念一、教学目标:1、知识与技能:了解引进复数的必要性;理解并掌握虚数的单位i ;2、过程与方法:理解并掌握虚数单位与实数进行四则运算的规律;3、 情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念。
二、教学重点,难点:复数的基本概念以与复数相等的充要条件。
三、教学方法:阅读理解,探析归纳,讲练结合四、教学过程(一)、问题情境1、情境:数的概念的发展:从正整数扩充到整数,从整数扩充到有理数,从有理数扩充到实数,数的概念是不断发展的,其发展的动力来自两个方面.①解决实际问题的需要.由于计数的需要产生了自然数;为了刻画具有相反意义的量的需要产生了负数;由于测量等需要产生了分数;为了解决度量正方形对角线长的问题产生了无理数(即无限不循环小数).②解方程的需要.为了使方程40x +=有解,就引进了负数,数系扩充到了整数集;为了使方程320x -=有解,就要引进分数,数系扩充到了有理数集;为了使方程22x =有解,就要引进无理数,数系扩充到了实数集. 引进无理数以后,我们已经能使方程2x a =(0)a >永远有解.但是,这并没有彻底解决问题,当0a <时,方程2x a =在实数范围内无解.为了使方程2x a =(0)a <有解,就必须把实数概念进一步扩大,这就必须引进新的数.(可以以分解因式:44x -为例)2、问题:实数集应怎样扩充呢?(二)、新课探析1、为了使方程2x a =(0)a <有解,使实数的开方运算总可以实施,实数集的扩充就从引入平方等于1-的“新数”开始.为此,我们引入一个新数i ,叫做虚数单位(imaginary unit ).并作如下规定:①21i =-;②实数可以与i 进行四则运算,进行四则运算时,原有的加法、乘法运算律仍然成立.在这种规定下,i 可以与实数b 相乘,再同实数a 相加得i b a ⋅+.由于满足乘法交换律和加法交换律,上述结果可以写成a bi + (,a b R ∈)的形式.2、复数概念与复数集C形如a bi +(,a b R ∈)的数叫做复数。
人教A版高中数学选修高二新课程数系的扩充和复数的概念教案新
§3.1数系的扩充和复数的概念§3.1.1数系的扩充和复数的概念教学目标:1. 知识与技能:了解引进复数的必要性;理解并掌握虚数的单位i2. 过程与方法:理解并掌握虚数单位与实数进行四则运算的规律3. 情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念教学重点:复数的概念,虚数单位i,复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.复数在现代科学技术中以及在数学学科中的地位和作用教学难点:虚数单位i的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i并同时规定了它的两条性质之后,自然地得出的.在规定i的第二条性质时,原有的加、乘运算律仍然成立教具准备:多媒体、实物投影仪教学设想:生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.教学过程:学生探究过程:数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N随着生产和科学的发展,数的概念也得到发展为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q.显然N Q.如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z,则有Z Q、N Z.如果把整数看作分母为1的分数,那么有理数集实际上就是分数集有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R.因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R以后,像x2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数i,叫做虚数单位.并由此产生的了复数讲解新课:1.虚数单位i:i=-;(1)它的平方等于-1,即21(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.2. i与-1的关系: i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i!3. i 的周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =14.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示*3. 复数的代数形式: 复数通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a +bi 的形式,叫做复数的代数形式4. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当b =0时,复数a +bi (a 、b ∈R)是实数a ;当b ≠0时,复数z =a +bi 叫做虚数;当a =0且b ≠0时,z =bi 叫做纯虚数;当且仅当a =b =0时,z 就是实数0.5.复数集与其它数集之间的关系:N Z Q R C.6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等这就是说,如果a ,b ,c ,d ∈R ,那么a +bi =c +di ⇔a =c ,b =d复数相等的定义是求复数值,在复数集中解方程的重要依据 一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i 与4+3i 不能比较大小.现有一个命题:“任何两个复数都不能比较大小”对吗?不对 如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小例1请说出复数i i i i 53,31,213,32---+-+的实部和虚部,有没有纯虚数? 答:它们都是虚数,它们的实部分别是2,-3,0,-3;虚部分别是3,21,-31,-5;-31i 是纯虚数. 例2 复数-2i +3.14的实部和虚部是什么?答:实部是3.14,虚部是-2.易错为:实部是-2,虚部是3.14!例3(课本例1)实数m 取什么数值时,复数z =m +1+(m -1)i 是:(1)实数? (2)虚数? (3)纯虚数?[分析]因为m ∈R ,所以m +1,m -1都是实数,由复数z =a +bi 是实数、虚数和纯虚数的条件可以确定m 的值.解:(1)当m -1=0,即m =1时,复数z 是实数;(2)当m -1≠0,即m ≠1时,复数z 是虚数;(3)当m +1=0,且m -1≠0时,即m =-1时,复数z 是纯虚数.例4 已知(2x -1)+i =y -(3-y )i ,其中x ,y ∈R ,求x 与y .解:根据复数相等的定义,得方程组⎩⎨⎧--==-)3(1,12y y x ,所以x =25,y =4 巩固练习:1.设集合C ={复数},A={实数},B ={纯虚数},若全集S=C ,则下列结论正确的是( )A.A ∪B =CB. S C A =BC.A ∩S C B =∅D.B ∪S C B =C2.复数(2x 2+5x +2)+(x 2+x -2)i 为虚数,则实数x 满足( )A.x =-21B.x =-2或-21 C.x ≠-2 D.x ≠1且x ≠-2 3.已知集合M ={1,2,(m 2-3m -1)+(m 2-5m -6)i },集合P ={-1,3}.M ∩P ={3},则实数m 的值为( )A.-1B.-1或4C.6D.6或-14.满足方程x 2-2x -3+(9y 2-6y +1)i =0的实数对(x ,y )表示的点的个数是______.5.复数z 1=a +|b |i ,z 2=c +|d |i (a 、b 、c 、d ∈R),则z 1=z 2的充要条件是______.6.设复数z =log 2(m 2-3m -3)+i log 2(3-m )(m ∈R),如果z 是纯虚数,求m 的值.7.若方程x 2+(m +2i )x +(2+mi )=0至少有一个实数根,试求实数m 的值.8.已知m ∈R ,复数z =1)2(-+m m m +(m 2+2m -3)i ,当m 为何值时, (1)z ∈R; (2)z 是虚数;(3)z 是纯虚数;(4)z =21+4i . 答案:1.D 2.D 3. 解析:由题设知3∈M ,∴m 2-3m -1+(m 2-5m -6)i =3∴⎩⎨⎧=--=--06531322m m m m ,∴⎩⎨⎧-==-==1614m m m m 或或∴m =-1,故选A. 4. 解析:由题意知⎩⎨⎧=+-=--,0169,03222y y x x ∴⎪⎩⎪⎨⎧=-==3113y x x 或 ∴点对有(3,31),(-1,31)共有2个.答案:2 5. 解析:z 1=z 2⇔⎩⎨⎧==⇔||||d b c a a =c 且b 2=d 2.答案:a =c 且b 2=d 26.解:由题意知⎩⎨⎧≠-=--,0)3(log ,0)33(log 222m m m ∴⎪⎩⎪⎨⎧>-≠-=--03131332m m m m∴⎩⎨⎧<≠=--320432m m m m 且∴⎩⎨⎧≠<-==2314m m m m 且或,∴m =-1.7. 解:方程化为(x 2+mx +2)+(2x +m )i =0.∴⎩⎨⎧=+=++02022m x mx x ,∴x =-2m ,∴,02242=+-m m ∴m 2=8,∴m =±22. 8. 解:(1)m 须满足⎩⎨⎧≠-=-+.11,0322m m m 解之得:m =-3.(2)m 须满足m 2+2m -3≠0且m -1≠0,解之得:m ≠1且m ≠-3.(3)m 须满足⎪⎩⎪⎨⎧≠-+=-+.032,01)2(2m m m m m 解之得:m =0或m =-2.(4)m 须满足⎪⎩⎪⎨⎧=-+=-+.432211)2(2m m m m m 解之得:m ∈∅课后作业:课本第106页 习题3.1 1 , 2 , 3教学反思:这节课我们学习了虚数单位i 及它的两条性质,复数的定义、实部、虚部及有关分类问题,复数相等的充要条件,复平面等等.基本思想是:利用复数的概念,联系以前学过的实数的性质,对复数的知识有较完整的认识,以及利用转化的思想将复数问题转化为实数问题复数的概念如果单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的历史,让学生体会到数集的扩充是生产实践的需要,也是数学学科自身发展的需要;介绍数的概念的发展过程,使学生对数的形成、发展的历史和规律,各种数集中之间的关系有着比较清晰、完整的认识.从而让学生积极主动地建构虚数的概念、复数的概念、复数的分类。
人教A版高中数学选修高二新课程数系的扩充和复数的概念导学案新
3.1.-1.2实数系与复数的引入【使用说明】1、课前完成导学案,牢记基础知识,掌握基本题型;2、认真限时完成,规范书写;课上小组合作探究,答疑解惑。
【重点难点】复数的定义虚数单位;复数集的构成;复数相等的应用.虚数单位;复数集的构成;复数相等的应用【学习目标】1、 知识与技能:实数系的总结,复数定义(1)通过实例分析复数的定义虚数单位;复数集的构成;复数相等的应用.虚数单位;复数集的构成;复数相等的应用,2、过程与方法:小组合作探究;3、情感态度与价值观:以极度的热情,自动自发,如痴如醉,投入到学习中,充分享受学习的乐趣感受人类理性思维对数学发展所起的重要作用,进行历史唯物主义教育与辩证唯物主义教育.。
一,自主学习1. :N 、Z 、Q 、R 分别代表什么?它们的如何发展得来的?(让学生感受数系的发展与生活是密切相关的)2 . 判断下列方程在实数集中的解的个数(引导学生回顾根的个数与∆的关系):(1)2340x x --= (2)2450x x ++= (3)2210x x ++= (4)210x +=3. 人类总是想使自己遇到的一切都能有合理的解释,不想得到“无解”的答案。
讨论:若给方程210x +=一个解i ,则这个解i 要满足什么条件?i 是否在实数集中?实数a 与i 相乘、相加的结果应如何?4请对实数系进行分类1.复数的概念:①定义复数:复数 代数形式实部 虚部 虚数单位复数集例1:下列数是否是复数,试找出它们各自的实部和虚部。
23,84,83,6,,29,7,0i i i i i i +-+--规定:a bi c di a c +=+⇔=且b=d ,强调:两复数不能比较大小,只有等与不等。
②讨论:复数的代数形式中规定,a b R ∈,,a b 取何值时,它为实数?数集与实数集有何关系?③定义虚数:,(0)a bi b +≠叫做虚数,,(0)bi b ≠叫做纯虚数。
④ 数集的关系:0,0)0)0,0)Z a a ⎧⎪≠≠⎧⎨≠⎨⎪≠=⎩⎩实数 (b=0)复数一般虚数(b 虚数 (b 纯虚数(b 上述例1中,根据定义判断哪些是实数、虚数、纯虚数?二合作探究,展示,点评例2.求适合下列方程的(,)x y x y R ∈和的值(1)(2)6()(2)(1)(2)0x y i x x y ix y x y i +-=+-++--+=.例3实数x 取何值时,复数i x x z )3()2(++-=(1)是实数 (2)是虚数 (3)是纯虚数三总结四检测1.指出下列复数哪些是实数、虚数、纯虚数,是虚数的找出其实部与虚部。
【了解】高中数学数系概念的扩展导学案新人教版选修12
【关键字】了解陕西省榆林市育才中学高中数学数系概念的扩展导学案新人教版选修1-2学习目标:1.使学生了解引入单数的必要性,了解数系的扩充过程.2.理解并掌握单数的有关概念及分类,并掌握单数相等的概念.3.单数的概念的理解及两个单数相等的充要条件.一、自主学习【复习回顾】:1.数系的扩充数系扩充的脉络是:________→________→________,用集合符号表示为________⊆________⊆________,实际上前者是后者的真子集.2.判断下列方程在实数集中的解的个数(引导学生回顾根的个数与的关系):(1)(2)(3)(4)二、合作探究探究一:单数的定义问题:方程的解是什么?为了解决此问题,我们定义,把新数添进实数集中去,得到一个新的数集,那么此方程在这个数集中就有解为.新知:形如的数叫做单数,通常记为(单数的代数形式),其中是虚数单位,,是实数.对于单数,其中叫做单数的实部,叫做单数的虚部.当时,它是实数;当时,它是虚数;当时,它是纯虚数. 单数的全体组成的集合叫作单数集,记作.例1:说出下列单数的实部和虚部,并指出他们是实数还是虚数,若是虚数请指出是否是纯虚数.,,,,,,,0变式:实数取什么值时,单数是:(1)实数?(2)虚数?(3)纯虚数?探究二:单数的相等若两个单数与的实部与虚部分别,即: ,,则说这两个单数相等.;.例2.已知单数与相等,且的实部、虚部分别是方程的两根,试求:的值.三、课堂检测1. 变式:设单数,则为纯虚数的必要不充分条件是()A.B.且C.且D.且2. 若是纯虚数,则实数的值是3.若,求的值.四、课堂小结1.单数的有关概念及它们之间的关系;2. 两单数相等的充要条件;3. 数集的扩充.五、课后训练:1. 如果为实数,那么实数的值为()A.1或B.或2C.1或2 D.或2. 已知是虚数单位,单数,当取何实数时,是:(1)实数;(2)虚数;(3)纯虚数;(4)零.3.求适合下列方程的实数与的值:(1)(2)此文档是由网络收集并进行重新排版整理.word可编辑版本!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.1数系的扩充与复数的概念
课前预习学案
课前预习:(1)预习目标:在问题情境中了解数系的扩充过程,体会实际需求在数系扩充过程中的作用
(2)1) 结合实例了解数系的扩充过程
2)引进虚数单位i的必要性及对i的规定
3)对复数的初步认识及复数概念的理解
(3)提出疑惑:
通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点疑惑内容
课内探究学案
学习目标:
(1)在问题情境中了解数系的扩充过程,体会实际需求在数系扩充过程中的作用理解复数的基本概念
(2)理解复数的基本概念以及复数相等的充要条件
(3)了解复数的代数表示方法
学习过程
一、自主学习
问题1:我们知道,对于实系数一元二次方程,没有实数根.我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?
问题2:类比引进,就可以解决方程在有理数集中无解的问题,怎么解决在实数集中无解的问题呢
问题3:把实数和新引进的数i 像实数那样进行运算,并希望运算时有关的运算律仍成立,你得到什么样的数?
二、探究以下问题
1、如何解决-1的开平方问题,即一个什么数它的平方等于-1
2、虚数单位i有怎样的性质
3、复数的代数形式
4、复数集C和实数集R之间有什么关系?
5、如何对复数a+bi(a,b∈R)进行分类?
三、精讲点拨、有效训练
见教案
反思总结
1、你对复数的概念有了比较清醒的认识了吗?
2、对复数a+bi(a,b∈R)的正确分类
3、复数相等的概念的理解及应用
当堂检测
1. m ∈R ,复数z=(m-2)(m+5)+(m-2)(m-5)i ,则z 为纯虚数的充要
条件是m 的值为 ( )
A.2或5
B.5
C.2或-5
D.-5
2、设a ∈R.复数a 2-a-6+(a 2-3a-10)i 是纯虚数,则a 的取值为 ( )
(A)5或-2 (B)3或-2 (C)-2 (D)3
3、如果(2 x- y)+(x+3)i=0(x ,y ∈R)则x+y 的值是( )
A 18
B
C 3
D 9
. . . .1
2-
4、
x y R (3x +2y)+(x y)i =i [ ]
A 5
B 5
C
D ,,且,则的值是 . . . .∈-+---x y
x y 151
5
3.1.1数系的扩充与复数的概念
【教学目标】
(1)在问题情境中了解数系的扩充过程,体会实际需求在数系扩充过程中的作用理解复数的基本概念
(2)理解复数的基本概念以及复数相等的充要条件
(3)了解复数的代数表示方法
【教学重难点】
重点:引进虚数单位i的必要性、对i的规定、复数的有关概念
难点:实数系扩充到复数系的过程的理解,复数概念的理解
【教学过程】
一、创设情景、提出问题
问题1:我们知道,对于实系数一元二次方程,没有实数根.我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?
问题2:类比引进,就可以解决方程在有理数集中无解的问题,怎么解决在实数集中无解的问题呢?
问题3:把实数和新引进的数i 像实数那样进行运算,并希望运算时有关的运算律仍成立,你得到什么样的数?
二、学生活动
1.复数的概念:
⑴虚数单位:数__叫做虚数单位,具有下面的性质:
①_________
②______________________________________________
⑵复数:形如__________叫做复数,常用字母___表示,全体复数构成的集合叫做______,常用字母___表示.
⑶复数的代数形式:_________,其中____叫做复数的实部,___叫做复数的虚部,复数的实部和虚部都是___数.
(4)对于复数a+bi(a,b∈R),
当且仅当_____时,它是实数;
当且仅当_____时,它是实数0;
当_______时, 叫做虚数;
当_______时, 叫做纯虚数;
2.学生分组讨论
⑴复数集C和实数集R之间有什么关系?
⑵如何对复数a+bi(a,b∈R)进行分类?
⑶复数集、实数集、虚数集、纯虚数集之间的关系,可以用韦恩图表示出来吗?
3.练
习:
(1).下列数中,哪些是实数,哪些是虚数,哪些是纯虚数?并分别指出这些复数的实部与虚部各是什么?
2+ 2i , 0.618, 2i/7 , 0,
5 i +8, 3-9 i
(2)、判断下列命题是否正确:
(1)若a、b为实数,则Z=a+bi为虚数
(2)若b为实数,则Z=bi必为纯虚数
(3)若a为实数,则Z= a一定不是虚数
三、归纳总结、提升拓展
例1 实数m分别取什么值时,复数
z=m+1+(m-1)i
是(1)实数?(2)虚数?(3)纯虚数?
解:
归纳总结:
确定复数z=a+bi是实数、虚数、纯虚数的条件是:
练习:实数m分别取什么值时,复数
z=m2+m-2+(m2-1)i
是(1)实数?(2)虚数?(3)纯虚数?
两个复数相等,即两个复数相等的充要条件是它们的实部与虚部分别对应相等.也就是
a+bi=c+di _______________________(a、b、c、d为实数)
由此容易出:a+bi=0 _______________________
例2已知x +2y +(2x+6)i=3x-2 ,其中,x,y为实数,求x与y.
四、反馈训练、巩固落实
1、若x,y为实数,且 2x -2y+(x+ y)i=x-2 i
求x与y.
2、若x为实数,且(2x2-3x-2)+(x2-5x+6)i=0,求x的值.。