2020年漳州市七上数学精选常考60解答题汇总word含答案
福建漳州2023年七年级上学期数学新生学业检测题-参考答案
漳州市2023年七年级新生学业质量监测数学参考答案及评分细则一、认真思考,准确填空。
(3+2+3+2+2+2,共14分)1.< > =2.(1)0.048 (2)361 3. 东偏北45°或北偏东45°(如果只答出方向或角度只得1分)或东北 124. 9 45. 3146. 24二、仔细斟酌,认真选择。
(每题2分,共30分)7.B 8.C 9.A 10.B 11.D 12.C 13.A14.C 15.D 16.B 17.D 18.B 19.C 20.D21.B三、看清数据,巧思妙算。
(能简算的要简算,每题3分,共12分) 22. 320+1836÷18×15 23. 43+0.12×0.5+1.57 =320+102×15 ……1分 =43+0.06+1.57 ……1分 =320+1530 ……2 分 =43.06+1.57 ……2分 =1850 ……3 分 =44.63 ……3分 24.1811691811×−× 25.+−÷207417653 =)(691811−× ……1 分÷53-7653 ……1 分 =31811× ……2分 =35953÷ ……2 分 =611 ……3 分 =37 ……3分 第24题没用简便方法、计算正确的只给2分四、明确要求,操作说理。
(7+4,共11分)26. 按要求画一画,填一填。
(2+2+3=7)(1) (2)……2分 ……4分(3)层次1:只答底不变、高不变、角度变了……(酌情给分,不超过2分); 层次2:形状变了(1分);图形的大小或图形的面积不变(2分)。
……7分27.他说的对。
……………………………………………………………………1分 评分意见1:将左(右)侧三角形平移到右(左)侧三角形,拼成空白的平行四边形(1分),阴影部分的平行四边形和空白部分的平行四形等底等高,因此阴影部分面积和空白部分面积相等(2分)。
漳州市七年级上册数学期末试卷(含答案)
漳州市七年级上册数学期末试卷(含答案)一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是()A.30°B.40°C.50°D.90°2.4 =( )A.1 B.2 C.3 D.4 3.一个角是这个角的余角的2倍,则这个角的度数是()A.30B.45︒C.60︒D.75︒4.计算32a a⋅的结果是()A.5a;B.4a;C.6a;D.8a.5.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.120206.解方程121123x x+--=时,去分母得()A.2(x+1)=3(2x﹣1)=6 B.3(x+1)﹣2(2x﹣1)=1C.3(x+1)﹣2(2x﹣1)=6 D.3(x+1)﹣2×2x﹣1=67.计算:2.5°=()A.15′B.25′C.150′D.250′8.如图,能判定直线a∥b的条件是( )A.∠2+∠4=180°B.∠3=∠4 C.∠1+∠4=90°D.∠1=∠49.如果+5米表示一个物体向东运动5米,那么-3米表示( ).A.向西走3米B.向北走3米C.向东走3米D.向南走3米10.已知a﹣b=﹣1,则3b﹣3a﹣(a﹣b)3的值是()A.﹣4 B.﹣2 C.4 D.211.已知点A,B,P在一条直线上,则下列等式中,能判断点P是线段AB中点个数有()①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个12.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了()A.40分钟B.42分钟C.44分钟D.46分钟二、填空题13.若x=2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____. 14.已知单项式245225n m xy x y ++与是同类项,则m n =______.15.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____. 16.|-3|=_________;17.写出一个比4大的无理数:____________.18.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.19.如图,在长方形ABCD 中,10,13.,,,AB BC E F G H ==分别是线段,,,AB BC CD AD 上的定点,现分别以,BE BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH 的重合部分恰好是一个正方形,且,BE DG =,Q I 均在长方形ABCD 内部.记图中的阴影部分面积分别为123,,s s s .若2137S S =,则3S =___20.15030'的补角是______.21.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.22.52.42°=_____°___′___″. 23.计算:3+2×(﹣4)=_____. 24.用“>”或“<”填空:13_____35;223-_____﹣3.三、解答题25.已知直线AB 与CD 相交于点O ,且∠AOD =90°,现将一个直角三角尺的直角顶点放在点O处,把该直角三角尺OEF绕着点O旋转,作射线OH平分∠AOE.(1)如图1所示,当∠DOE=20°时,∠FOH的度数是.(2)若将直角三角尺OEF绕点O旋转至图2的位置,试判断∠FOH和∠BOE之间的数量关系,并说明理由.(3)若再作射线OG平分∠BOF,试求∠GOH的度数.26.小明爸爸给小明出了一道题,说明他本月炒股的盈亏情况(单位:元)股票每股净赚(元)股票招商银行+23500浙江医药﹣(﹣2.8)1000晨光文具﹣1.51500金龙汽车﹣1452000请你也来计算一下,小明爸爸本月投资炒股到底是赔了还是赚了?赔了或赚了多少元?27.解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)111234x yx y-+⎧+=⎪⎨⎪+=⎩28.已知:∠AOD=150°,OB,OM,ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当射线OB绕点O在∠AOD内旋转时,∠MON= °;(2)OC也是∠AOD内的射线,如图2,若∠BOC=m°,OM平分∠AOC,ON平分∠BOD,求∠MON的大小(用含m的式子表示);(3)在(2)的条件下,若m=20,∠AOB=10°,当∠BOC在∠AOD内部绕O点以每秒2°的速度逆时针旋转t秒,如图3,若3∠AOM=2∠DON时,求t的值.29.如图,已知数轴上点A 表示的数为6,点B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为11,动点P 从点A 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)数轴上点B 表示的数是 ,当点P 运动到AB 中点时,它所表示的数是 ; (2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若P ,Q 两点同时出发,求点P 与Q 运动多少秒时重合?(3)动点Q 从点B 出发,以每秒2个单拉长度的速度沿数轴向左匀速运动,若P ,Q 两点同时出发,求:①当点P 运动多少秒时,点P 追上点Q ?②当点P 与点Q 之间的距离为8个单位长度时,求此时点P 在数轴上所表示的数.30.如图所示,OC 是AOD ∠的平分线,OE 是BOD ∠的平分线,65 25EOC DOC ∠=︒∠=,,求AOB ∠的度数.四、压轴题31.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).32.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.33.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案. 【详解】解:∵一个角的补角是130︒, ∴这个角为:50︒,∴这个角的余角的度数是:40︒. 故选:B . 【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.2.B解析:B 【解析】 【分析】根据算术平方根的概念可得出答案. 【详解】解:根据题意可得:,故答案为:B. 【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.3.C解析:C 【解析】 【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解. 【详解】解:根据题意列方程的:2(90°-α)=α, 解得:α=60°. 故选:C . 【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).4.A解析:A 【解析】此题考查同底数幂的乘法运算,即(0)mnm na a a a +⋅=>,所以此题结果等于325a a +=,选A ;5.B【解析】 【分析】根据倒数的概念即可解答. 【详解】解:根据倒数的概念可得,﹣2020的倒数是12020-, 故选:B . 【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.6.C解析:C 【解析】 【分析】方程两边都乘以分母的最小公倍数即可. 【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=, 故选:C . 【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.7.C解析:C 【解析】 【分析】根据“1度=60分,即1°=60′”解答. 【详解】解:2.5°=2.5×60′=150′. 故选:C . 【点睛】考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.8.D解析:D 【解析】 【分析】根据平行线的判定方法逐一进行分析即可得. 【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b ,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.9.A解析:A【解析】∵+5米表示一个物体向东运动5米,∴-3米表示向西走3米,故选A.10.C解析:C【解析】【分析】由题意可知3b-3a-(a-b)3=3(b-a)-(a-b)3,因此可以将a-b=-1整体代入即可.【详解】3b-3a-(a-b)3=3(b-a)-(a-b)3=-3(a-b)-(a-b)3=3-(-1)=4;故选C.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.11.A解析:A【解析】①项,因为AP=BP,所以点P是线段AB的中点,故①项正确;②项,点P可能是在线段AB的延长线上且在点B的一侧,此时也满足BP=12AB,故②项错误;③项,点P可能是在线段BA的延长线上且在点A的一侧,此时也满足AB=2AP,故③项错误;④项,因为点P为线段AB上任意一点时AP+PB=AB恒成立,故④项错误.故本题正确答案为①.12.C解析:C【解析】试题解析:设开始做作业时的时间是6点x分,∴6x﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y分,∴6y﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选C.二、填空题13.5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.14.9【解析】【分析】根据同类项的定义进行解题,则,解出m、n的值代入求值即可. 【详解】解:和是同类项且 , 【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出解析:9 【解析】 【分析】根据同类项的定义进行解题,则25,24n m +=+=,解出m 、n 的值代入求值即可. 【详解】 解:242n x y +和525m x y +是同类项∴25n +=且24m += ∴3n =,2m =∴239m n ==【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出m 、n 的值即可.15.【解析】 【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C 运算”的结果. 【详解】 解:由题意可得, 当n =26时,第一次输出的结果为:13解析:【解析】 【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C 运算”的结果. 【详解】 解:由题意可得, 当n =26时,第一次输出的结果为:13, 第二次输出的结果为:40, 第三次输出的结果为:5, 第四次输出的结果为:16, 第五次输出的结果为:1, 第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.17.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.18.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 19.【解析】【分析】设CG =a ,然后用a 分别表示出AE 、PI 和AH ,根据,列方程可得a 的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG =a ,则DG =GI =BE =10−a , 解析:1214【解析】【分析】设CG =a ,然后用a 分别表示出AE 、PI 和AH ,根据2137S S =,列方程可得a 的值,根据正方形的面积公式可计算S 3的值.【详解】解:如图,设CG=a ,则DG =GI=BE=10−a,∵AB=10,BC=13,∴AE=AB−BE=10−(10−a)=a, PI=IG−PG=10−a−a=10−2a,AH=13−DH=13−(10−a)=a+3,∵213 7S S =,即23(3)7aa a=+,∴4a2−9a=0,解得:a1=0(舍),a2=94,则S3=(10−2a)2=(10−92)2=1214,故答案为121 4.【点睛】本题考查正方形和长方形边长之间的关系、面积公式以及解一元二次方程等知识,解题的关键是学会利用参数列方程解决问题.20.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】-=.解:18015030'2930'故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.21.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2+2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.22.52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即解析:52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.52.42°=52°25′12″.故答案为52、25、12.【点睛】此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.23.﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是解析:﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.24.<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:<;>﹣3.故答解析:<>【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:13<35;223->﹣3.故答案为:<、>.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.三、解答题25.(1)35°;(2)∠BOE=2∠FOH,理由详见解析;(3)45°或135°.【解析】【分析】(1)根据∠AOD=90︒,∠DOE=20︒得∠AOE=∠AOD+∠DOE=110︒,再根据OH平分∠AOE,即可求解;(2)可以设∠AOH=x,根据OH平分∠AOE,可得∠HOE=∠AOH=x,进而∠FOH=90︒﹣∠HOE=90︒﹣x,∠BOE=180︒﹣∠AOE=180︒﹣2x,即可得结论;(3)分两种情况解答:当OE落在∠BOD内时,OF落在∠AOD内,当OE落在其他位置时,根据OH平分∠AOE,OG平分∠BOF即可求解.【详解】解:(1)因为∠AOD=90︒,∠DOE=20︒所以∠AOE=∠AOD+∠DOE=110︒因为OH平分∠AOE所以∠HOE=12∠AOE=55︒所以∠FOH=90︒﹣∠HOE=35︒;故答案为35︒;(2)∠BOE=2∠FOH,理由如下:设∠AOH=x,因为OH平分∠AOE所以∠HOE=∠AOH=x所以∠FOH=90︒﹣∠HOE=90︒﹣x∠BOE=180︒﹣∠AOE=180︒﹣2x所以∠BOE=2∠FOH;(3)如图3,当OE落在∠BOD内时,OF落在∠AOD内因为OH平分∠AOE所以∠HOE=∠AOH=12∠AOE因为OG平分∠BOF∠FOG=∠GOB=12∠BOF所以∠GOH=∠GOF﹣∠FOH=12∠BOF﹣(∠AOH﹣∠AOF)=12(180︒﹣∠AOF)﹣12∠AOE+∠AOF=90︒﹣12∠AOF﹣12(90︒+∠AOF)+∠AOF=90︒﹣12∠AOF﹣45︒﹣12∠AOF+∠AOF=45︒;所以∠GOH的度数为45︒;如图4,当OE落在其他位置时因为OH平分∠AOE所以∠HOE=∠AOH=12∠AOE因为OG平分∠BOF∠FOG=∠GOB=12∠BOF所以∠GOH=∠GOF+∠FOH=12∠BOF+∠AOH+∠AOF=12(180︒﹣∠AOF)+12∠AOE+∠AOF=90︒﹣12∠AOF+12(90︒﹣∠AOF)+∠AOF=90︒﹣12∠AOF+45︒﹣12∠AOF+∠AOF=135︒;所以∠GOH的度数为135︒;综上所述:∠GOH的度数为45︒或135︒.【点睛】本题考查了余角和补角、角平分线定义,解决本题的关键是掌握角平分线定义,进行角的和差计算.26.赚了,赚了950元.【解析】【分析】先分别求出招商银行、浙江医药、晨光文具、金龙汽车这4种股票分别赚了多少钱;然后把它们相加,根据计算的结果即可判定投资者是赔了还是赚了,赔了或赚了多少元.【详解】解: 500×23 +2.8×1000﹣1.5×1500﹣1.8×2000,=4000+2800﹣2250﹣3600,=950(元),答:赚了,赚了950元.【点睛】本题主要考查了有理数的混合运算的应用,根据题意正确列出算式是解决问题的关键.27.(1)x=12;(2)15xy=-⎧⎨=⎩.【解析】【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)3(2x﹣1)=2(1﹣x)﹣1,6x﹣3=2﹣2x﹣1,x=12,(2)111234x yx y-+⎧+=⎪⎨⎪+=⎩,整理得:3x+2y=72x+2y=8①②⎧⎨⎩,②﹣①得:﹣x=1,x=﹣1,把x=﹣1代入①中得:y=5,∴方程组的解为:15xy=-⎧⎨=⎩.【点睛】此题考查了解二元一次方程组和一元一次方程,熟练掌握运算法则是解本题的关键.28.(1)75;(2)(75-12m)°;(3)t为19秒.【解析】【分析】(1)根据角平分线的定义,以及角度和的关系,可得∠MON=12∠AOD即可得出;(2)根据角平分线的定义,得出∠MOC=12∠AOC,∠BON=12∠BOD,利用角度和与差的关系,得出∠MON=∠MOC+∠BON﹣∠BOC,角度代换即可得出结果;(3)由题意知,∠AOM=12(10+2t+20°),∠DON=12(150﹣10﹣2t)°,根据3∠AOM=2∠DON,列出方程求解即可.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠MOB=12∠AOB,∠BON=12∠BOD,∴∠MON=∠MOB+∠BON,=12∠AOB+12∠BOD,=12∠AOD,=12×150°,=75°,故答案为:75;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC ,∠BON=12∠BOD , ∠MON=∠MOC+∠BON ﹣∠BOC =12∠AOC+12∠BOD ﹣∠BOC =12(∠AOC+∠BOD )﹣∠BOC =12(∠AOB+∠BOC+∠BOD )﹣∠BOC =12(∠AOD+∠BOC )﹣∠BOC =12×(150°+m°)﹣m° =(75-12m)°, 故答案为:(75-12m)°; (3)∵∠AOM=12 ∠AOC=12(10+2t+20°)=(15+t )°, ∠DON=12∠BOD=12(150﹣10﹣2t )°=(70-t )°, 又∵3∠AOM=2∠DON ,∴3(15+t )=2(70﹣t ),得t=19.答:t 为19秒,故答案为:19秒.【点睛】本题考查了角平分线的定义,角度的和差关系式,一元一次方程的列式求解,掌握角平分线的定义是解题的关键.29.(1)-5,0.5;(2)点P 与Q 运动2.2秒时重合;(3)①当点P 运动11秒时,点P 追上点Q ;②当点P 与点Q 之间的距离为8个单位长度时,此时点P 在数轴上所表示的数为﹣3或﹣51.【解析】【分析】(1)由题意得出数轴上点B 表示的数是5-,由点P 运动到AB 中点得出点P 对应的数是1(56)0.52⨯-+=即可; (2)设点P 与Q 运动t 秒时重合,点P 对应的数为63t -,点Q 对应的数为52t -+,得出方程6352t t -=-+,解方程即可;(3)①运动t 秒时,点P 对应的数为63t -,点Q 对应的数为52t --,由题意得出方程6352t t -=--,解方程即可;②由题意得出|63(52)|8t t ----=,解得3t =或19t =,进而得出答案.【详解】解:(1)数轴上点A 表示的数为6,点B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为11,∴数轴上点B 表示的数是6115-=-,点P 运动到AB 中点,∴点P 对应的数是:1(56)0.52⨯-+=,故答案为:5-,0.5;(2)设点P 与Q 运动t 秒时重合,点P 对应的数为:63t -,点Q 对应的数为:52t -+, 6352t t ∴-=-+,解得: 2.2t =,∴点P 与Q 运动2.2秒时重合;(3)①运动t 秒时,点P 对应的数为:63t -,点Q 对应的数为:52t --,点P 追上点Q ,6352t t ∴-=--,解得:11t =,∴当点P 运动11秒时,点P 追上点Q ; ②点P 与点Q 之间的距离为8个单位长度,|63(52)|8t t ∴----=,解得:3t =或19t =,当3t =时,点P 对应的数为:63693t -=-=-,当19t =时,点P 对应的数为:6365751t -=-=-,∴当点P 与点Q 之间的距离为8个单位长度时,此时点P 在数轴上所表示的数为3-或51-.【点睛】此题考查的知识点是一元一次方程的应用与两点间的距离及数轴,根据已知得出各线段之间的等量关系是解题关键.30.130︒【解析】【分析】根据题意直接利用角平分线的性质得出∠AOD 和∠BOD ,进而求出AOB ∠的度数.【详解】解:∠EOD=∠EOC -∠DOC=65°-25°=40°,∵OC 是∠AOD 的平分线,OE 是∠BOD 的平分线,∴∠AOD=2∠DOC=2⨯25°=50°,∠BOD=2∠EOD=2⨯40°=80°,∴∠AOB=∠AOD+∠BOD =50°+80°=130°.【点睛】本题主要考查角的运算,熟练运用角平分线的定义以及正确掌握角平分线的性质是解题关键.四、压轴题31.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;(3)t=703秒.【解析】【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键.32.(1)-12,8-5t;(2)94或114;(3)10;(4)MN的长度不变,值为10.【解析】【分析】(1)根据已知可得B点表示的数为8﹣20;点P表示的数为8﹣5t;(2)运动时间为t秒,分点P、Q相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10,②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=10,∴线段MN的长度不发生变化,其值为10.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.33.(1)16;(2)①t的值为3或143秒;②存在,P表示的数为314.【解析】【分析】(1)由数轴可知,AB=3,则CD=6,所以D表示的数为16,(2)①当运动时间是t秒时,在运动过程中,B点表示的数为3+2t,A点表示的数为2t,C点表示的数为10-t,D点表示的数为16-t,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=143秒时,满足3BD PA PC-=的点P, 注意P为线段AB上的点对x的值的限制.【详解】(1)16(2)①在运动过程中,B点表示的数为3+2t,A点表示的数为2t,C点表示的数为10-t,D点表示的数为16-t.当BC =2,点B 在点C 的右边时,由题意得:32-10-2BC t t =+=(),解得:t =3,当AD=2,点A 在点D 的左边时,由题意得:16--22AD t t ==,解得:t =143. 综上,t 的值为3或143秒 ②存在,理由如下:当t=3时,A 点表示的数为6,B 点表示的数为9,C 点表示的数为7,D 点表示的数为13. 则13-94-6|-7|BD PA x PC x ====,,,-3BD PA PC =,()4--6|-7|x x ∴=, 解得:314x =或112, 又P 点在线段AB 上,则69x ≤≤314x ∴=. 当143t =时,A 点表示的数为283,B 点表示的数为373,C 点表示的数为163,D 点表示的数为343. 则37343816-1-|-|3333BD PA x PC x ====,,, -3BD PA PC =, ∴ 28161--|-|33x x ⎛⎫= ⎪⎝⎭, 解得:7912x =或176, 又283733x ≤≤, x ∴无解 综上,P 表示的数为314. 【点睛】本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)由路程=速度×时间结合运动方向找出运动t 秒时点A 、B 、C 、D 所表示的数,(2)根据3BD PA PC -=列出关于t 的含绝对值符号的一元一次方程.。
最新中考初中七年级上册数学解答题集锦附答案解析
最新中考初中七年级上册数学解答题集锦
附答案解析
本文档是初中七年级上册数学解答题集锦,旨在帮助学生复和理解数学知识。
以下是每个章节的题目解答和答案解析。
第一章:整数
1.1 整数的概念
题目:什么是整数?请举例说明。
解答:整数是包括正整数、负整数和零的集合。
例如,-2、0和3都是整数。
1.2 整数的加法与减法
题目:计算下列整数的和与差:-7 + 5,-12 - 8。
解答:
-7 + 5 = -2
-12 - 8 = -20
...
第二章:小数与分数
2.1 小数的概念
题目:什么是小数?请举例说明。
解答:小数是无限不循环小数或有限小数的集合。
例如,0.25和3.6都是小数。
2.2 小数的加法与减法
题目:计算下列小数的和与差:0.7 + 0.3,1.5 - 0.8。
解答:
0.7 + 0.3 = 1
1.5 - 0.8 = 0.7
...
第三章:代数式与方程
3.1 代数式的概念
题目:什么是代数式?请举例说明。
解答:代数式是由数字、字母和运算符号组成的表达式。
例如,2x + 3和4y - 2都是代数式。
3.2 一元一次方程
题目:解方程2x + 5 = 13。
解答:
2x + 5 = 13
2x = 13 - 5
2x = 8
x = 8 / 2
x = 4
...
依此类推,本文档包含了七年级上册数学各章节的解答题目和答案解析。
希望能够帮助学生更好地理解和掌握数学知识。
漳州市七年级上学期期末数学试题题及答案
漳州市七年级上学期期末数学试题题及答案一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .123.根据等式的性质,下列变形正确的是( )A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3bD .若23a b=,则2a =3b 4.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或735.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .1126.若21(2)0x y -++=,则2015()x y +等于( ) A .-1B .1C .20143D .20143-7.下列式子中,是一元一次方程的是( ) A .3x+1=4x B .x+2>1 C .x 2-9=0 D .2x -3y=0 8.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .D .9.用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A .3(a ﹣b )2B .(3a ﹣b )2C .3a ﹣b 2D .(a ﹣3b )210.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x ) 11.如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .6-C .6-或6D .无法确定12.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( ) A .45010⨯B .5510⨯C .6510⨯D .510⨯二、填空题13.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。
漳州市七年级上学期期末数学试题题及答案
漳州市七年级上学期期末数学试题题及答案一、选择题1.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30 B .45︒C .60︒D .75︒2.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+3.下列说法中正确的有( ) A .连接两点的线段叫做两点间的距离 B .过一点有且只有一条直线与已知直线垂直 C .对顶角相等D .线段AB 的延长线与射线BA 是同一条射线4.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( )A .410 +415x -=1 B .410 +415x +=1 C .410x + +415=1 D .410x + +15x=1 5.下列因式分解正确的是()A .21(1)(1)xx x +=+- B .()am an a m n +=- C .2244(2)m m m +-=-D .22(2)(1)aa a a --=-+6.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28 B .30C .32D .347.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( ) A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm8.﹣2020的倒数是( ) A .﹣2020B .﹣12020C .2020D .120209.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( ) A .m=2,n=1B .m=2,n=0C .m=4,n=1D .m=4,n=010.若a<b,则下列式子一定成立的是( ) A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 11.下列图形中,哪一个是正方体的展开图( ) A .B .C .D .12.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题13.已知关于x 的一元一次方程320202020xx n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 14.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单 日期交易明细 10.16 乘坐公交¥ 4.00- 10.17 转帐收入¥200.00+ 10.18 体育用品¥64.00- 10.19 零食¥82.00- 10.20 餐费¥100.00-15.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.16.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.17.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.18.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______.19.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.20.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.21.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.22.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.23.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______. 24.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.三、解答题25.“十一”期间,小聪跟爸爸一起去A 市旅游,出发前小聪从网上了解到A 市出租车收费标准如下: 行程(千米) 3千米以内 满3千米但不超过8千米的部分8千米以上的部分 收费标准(元)10元2.4元/千米3元/千米()1若甲、乙两地相距8千米,乘出租车从甲地到乙地需要付款多少元?()2小聪和爸爸从火车站乘出租车到旅馆,下车时计费表显示17.2元,请你帮小聪算一算从火车站到旅馆的距离有多远?()3小聪的妈妈乘飞机来到A 市,小聪和爸爸从旅馆乘出租车到机场去接妈妈,到达机场时计费表显示70元,接完妈妈,立即沿原路返回旅馆(接人时间忽略不计),请帮小聪算一下乘原车返回和换乘另外的出租车,哪种更便宜?26.如图1,将一副直角三角板的两顶点重合叠放于点O ,其中一个三角板的顶点C 落在另一个三角板的边OA 上.已知90ABO DCO ∠=∠=,45AOB ∠=,60COD ∠=,作AOD ∠的平分线交边CD 于点E . (1)求∠BOE 的度数;(2)如图2,若点C 不落在边OA 上,当15COE ∠=时,求BOD ∠的度数.27.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为-200,B 点对应的数为-20,C 点对应的数为40.甲从C 点出发,以6单位/秒的速度向左运动. (1)当甲在B 点、C 点之间运动时,设运时间为x 秒,请用x 的代数式表示: 甲到A 点的距离: ; 甲到B 点的距离: ; 甲到C 点的距离: .(2)当甲运动到B 点时,乙恰好从A 点出发,以4单位/秒的速度向右运动,设两人在数轴上的D 点相遇,求D 点对应的数;(3)若当甲运动到B 点时,乙恰好从A 点出发,以4单位/秒的速度向左运动,设两人在数轴上的E 点相遇,求E 点对应的数.28.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克) 售价(元/千克)甲种 5 8 乙种913(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元? 29.如图所示,OC 是AOD ∠的平分线,OE 是BOD ∠的平分线,65 25EOC DOC ∠=︒∠=,,求AOB ∠的度数.30.陈老师打算购买装扮学校“六一”儿童节活动会场,气球种类有笑脸和爱心两种.两种气球的价格不同,但同一种类的气球价格相同.由于会场布置需要,购买了三束气球(每束4个气球),每束价格如图所示,()1若笑脸气球的单价是x 元,请用含x 的整式表示第②束、第③束气球的总价格; (要求结果化简后,填在方框内的相应位置上)()2若第②束气球的总价钱比第③束气球的总价钱少2元,求这两种气球的单价.四、压轴题31.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______; ()3求当t 为何值时,1PQ AB 2=?()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.32.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).33.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为-20和40.(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.①求整个运动过程中,P点所运动的路程.②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题解析:C 【解析】 【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解. 【详解】解:根据题意列方程的:2(90°-α)=α, 解得:α=60°. 故选:C . 【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).2.D解析:D 【解析】 【分析】方程两边同乘以6即可求解. 【详解】12132x x +-=, 方程两边同乘以6可得, 2x-6=3(1+2x ). 故选D. 【点睛】本题考查了一元一次方程的解法—去分母,方程两边同乘以各分母的最小公倍数是去分母的基本方法.3.C解析:C 【解析】 【分析】分别利用直线的性质以及射线的定义和垂线定义分析得出即可. 【详解】A .连接两点的线段的长度叫做两点间的距离,错误;B .在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;C .对顶角相等,正确;D .线段AB 的延长线与射线BA 不是同一条射线,错误. 故选C . 【点睛】本题考查了直线的性质以及射线的定义和垂线的性质,正确把握相关定义和性质是解题的关键.解析:B 【解析】 【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可. 【详解】设乙独做x 天,由题意得方程:410+415x +=1. 故选B .【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.5.D解析:D 【解析】 【分析】分别利用公式法以及提取公因式法对各选项分解因式得出答案. 【详解】解:A 、21x +无法分解因式,故此选项错误; B 、()am an a m n +=+,故此选项错误; C 、244m m +-无法分解因式,故此选项错误; D 、22(2)(1)aa a a --=-+,正确;故选:D . 【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.6.B解析:B 【解析】 【分析】根据同底数幂的乘除法法则,进行计算即可. 【详解】解:(1.8−0.8)×220=220(KB ), 32×211=25×211=216(KB ), (220−216)÷215=25−2=30(首), 故选:B . 【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.解析:C【解析】【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm.综上所述,线段AM的长为3cm或7cm.故选C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.8.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是1 2020 ,故选:B.【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.9.A解析:A【解析】根据同类项的相同字母的指数相同可直接得出答案. 解:由题意得: m=2,n=1. 故选A .10.B解析:B 【解析】 【分析】根据不等式的基本性质逐一进行分析判断即可. 【详解】A.由a<b ,两边同时加上c ,可得 a+c<b+c ,故A 选项错误,不符合题意;B. 由a<b ,两边同时减去c ,得a-c<b-c ,故B 选项正确,符合题意;C. 由a<b ,当c>0时,ac<bc ,当c<0时,ac<bc ,当c=0时,ac=bc ,故C 选项错误,不符合题意;D.由 a<b ,当a>0,c ≠0时,a b c c <,当a<0时,a bc c>,故D 选项错误, 故选B. 【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.11.D解析:D 【解析】 【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题. 【详解】解:A 、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图; B 、C 、四个面连在了起不能折成正方体,故不是正方体的展开图;D 、是“141"型,所以D 是正方体的表面展开图. 故答案是D. 【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键.12.B解析:B 【解析】 【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9. 【详解】解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数.故选:B【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题13.y =﹣.【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程①的解为x =2020,∴关于y 的一元一次方程②中﹣(3y ﹣2)=2020,解解析:y =﹣20183. 【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程320202020x x n +=+①的解为x =2020, ∴关于y 的一元一次方程3232020(32)2020y y r --=--②中﹣(3y ﹣2)=2020, 解得:y =﹣20183. 故答案为:y =﹣20183. 【点睛】此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.14.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解. 15.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.16.3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把代入方程组得:,①+②得:3(a +b )=9,则a +b =3,故答案为:3.【解析:3【解析】【分析】把x 与y 的值代入方程组得到关于a 和b 的方程组,然后整体求出a +b 的值即可.【详解】解:把12x y =⎧⎨=⎩代入方程组得:2722a b b a +=⎧⎨+=⎩, ①+②得:3(a +b )=9,则a +b =3,故答案为:3.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.17.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,,,平分,.故答案为60.【点睛】解析:60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=,BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到. 18.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键. 19.2+【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2+2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.20.6×【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 010解析:6×9【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.21.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.22.36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等∴∴x=2,A=14∴数字总和为:9+3+6+6+解析:36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等 ∴()934322x x x A +=++=+- ∴x=2,A=14∴数字总和为:9+3+6+6+14-2=36,故答案为36.【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面23.【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解x=-解析:5【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解24.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.三、解答题25.(1)22;(2)6;(3)换乘另外出租车更便宜【解析】【分析】(1)根据图表分3千米以内以及超过3千米但不足8千米两部分列式,再进行计算即可;(2)根据(1)得出的费用,得出火车站到旅馆的距离超过3千米,但不超过8千米,再根据图表列出方程,求出x的值即可;(3)根据(1)得出的费用,得出出租车行驶的路程超过8千米,设出租车行驶的路程为y 千米,根据图表中的数量,列出方程,求出y 的值,从而得出乘原车返回需要的花费,再与换乘另一辆出租车需要的花费进行比较,即可得出答案.【详解】解:(1)10+2.4×(8-3)=22(元).答:乘出租车从甲地到乙地需要付款22元.(2)设火车站到旅馆的距离为x 米,∵10﹤17.2﹤22,∴3≤x ≤8.∴10+2.4(x-3)=17.2,∴x=6.答:从火车站到旅馆的距离6千米.(3)设旅馆到机场的距离为y 米,∵70﹥22,∴y ﹥8.10+2.4×(8-3)+3(y-8)=70,∴y=24.所以乘原车返回的费用为:10+2.4×(8-3)+3×(24×2-8)=142(元);换乘另外车辆的费用为:70×2=140(元).所以换乘另外出租车更便宜.【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.26.(1)75;(2)135.【解析】【分析】(1)根据角平分线的定义可求出∠AOE 的度数,根据角的和差关系即可求出∠BOE 的度数;(2)根据角的和差关系可求出∠DOE 的度数,根据角平分线的定义可求出∠AOD 的度数,进而根据角的和差关系即可求出∠BOD 的度数.【详解】(1)∵60AOD ∠=,OE 平分AOD ∠, ∴1302AOE AOD ∠=∠= ∵45AOB ∠=∴75BOE AOE AOB ∠=∠+∠=(2)∵60COD ∠=,15COE ∠=,∴45DOE COD COE ∠=∠-∠=∵OE 平分AOD ∠,∴290AOD DOE ∠=∠=∵45AOB ∠=∴135BOD AOD AOB ∠=∠+∠=.【点睛】本题考查角平分线的定义及角的和与差,从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线;熟练掌握定义是解题关键.27.(1)240-6x ,60-6x ,6x ;(2)-128;(3)-560.【解析】【分析】(1)根据题意结合甲的速度得出甲到A 点的距离以及甲到B 点的距离和甲到C 点的距离;(2)利用甲、乙的速度结合运动方向得出等式求出答案;(3)利用甲、乙的速度结合运动方向得出等式求出答案.【详解】(1)当甲在B 点、C 点之间运动时,设运时间为x 秒,请用x 的代数式表示:甲到A 点的距离:240-6x ;甲到B 点的距离:60-6x ;甲到C 点的距离:6x .故答案为240-6x ,60-6x ,6x ;(2)设t 秒时,两人在数轴上的D 点相遇,根据题意可得:6t+4t=180,解得:t=18,则D 点对应的数为:-(18×6+20)=-128;(3)设y 秒时,两人在数轴上的E 点相遇,根据题意可得:6y-4y=180,解得:y=90,则E 点对应的数为:-(90×6+20)=-560.【点睛】此题主要考查了一元一次方程的应用,根据题意结合甲、乙运动的方向和距离得出等式是解题关键.28.(1)、甲种65千克,乙种75千克;(2)、495元.【解析】试题分析:首先设甲种水果x 千克,则乙种水果(140-x )千克,根据进价总数列出方程,求出x 的值;然后根据利润得出总利润.试题解析:(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据题意得: 5x+9(140﹣x )=1000, 解得:x=65, ∴140﹣x=75(千克),答:购进甲种水果65千克,乙种水果75千克.(2)3×65+4×75=495,答:利润为495元.考点:一元一次方程的应用.29.130︒【解析】【分析】根据题意直接利用角平分线的性质得出∠AOD 和∠BOD ,进而求出AOB ∠的度数.【详解】解:∠EOD=∠EOC -∠DOC=65°-25°=40°,∵OC 是∠AOD 的平分线,OE 是∠BOD 的平分线,∴∠AOD=2∠DOC=2⨯25°=50°,∠BOD=2∠EOD=2⨯40°=80°,∴∠AOB=∠AOD +∠BOD =50°+80°=130°.【点睛】本题主要考查角的运算,熟练运用角平分线的定义以及正确掌握角平分线的性质是解题关键.30.()1(42-8x )元,(28-4x )元;()2笑脸气球的单价是4元,爱心气球的单价是2元【解析】【分析】(1)若笑脸气球的单价是x 元,由第①束气球的总价钱为14元得出爱心气球的单价是(14-3x )元,根据每束气球的总价钱=笑脸气球的价钱+爱心气球的价钱即可求出第②束、第③束气球的总价格;(2)根据第②束气球的总价钱比第③束气球的总价钱少2元列出方程,解方程即可.【详解】解:(1)若笑脸气球的单价是x 元,则爱心气球的单价是(14-3x )元,根据题意得 第②束气球的总价格是:x+3(14-3x )=x+42-9x=42-8x (元);第③束气球的总价格是:2x+2(14-3x )=2x+28-6x=28-4x (元);(2)由题意得42-8x=28-4x-2,解得x=4,14-3x=2.答:笑脸气球的单价是4元,爱心气球的单价是2元.【点睛】本题考查了学生的观察能力和识图能力,列一元一次方程解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键.四、压轴题31.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.32.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB ,从而可得到问题的答案;(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB=90°.故答案为:90°(2)∠AOM﹣∠NOC=30°.理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,∴∠AOC=60°.∴∠NOC=60°﹣∠AON.∵∠NOM=90°,∴∠AOM=90°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.(3)如图1所示:当OM为∠BOC的平分线时,∵OM为∠BOC的平分线,∴∠BOM=∠BOC=60°,∴t=60°÷5°=12秒.如图2所示:当OM的反向延长为∠BOC的平分线时,∵ON为为∠BOC的平分线,∴∠BON=60°.∴旋转的角度=60°+180°=240°.∴t=240°÷5°=48秒.故答案为:12秒或48秒.【点睛】本题主要考查的是三角形的综合应用,解答本题主要应用了旋转的定义、直角三角形的定义以及角的和差计算,求得三角板旋转的角度是解题的关键.33.(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【解析】【分析】(1)根据数轴上两点间的距离公式结合A、B两点表示的数,即可得出结论;(2)①点P运动的时间与A、B相遇所用时间相等,根据路程=速度×时间即可求得;②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的;③点P与点A的距离越来越小,而点P与点B的距离越来越大,不存在PA=PB的时候.【详解】解:(1)∵A、B所对应的数值分别为-20和40,∴AB=40-(-20)=60,∵P是AB的中点,∴AP=60=30,∴点P表示的数是-20+30=10;∵如图,点A、B对应的数值分别是a和b,∴AB=b-a,∵P是AB的中点,∴AP=(b-a)∴点P表示的数是a+(b-a) =(a+b).(2)①点A和点B相向而行,相遇的时间为=20(秒),此即整个过程中点P运动的时间.所以,点P的运动路程为3×20=60(单位长度),故答案是60个单位长度.②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的.所以这个过程中0≤t≤7.5.P点经过t秒钟后,在数轴上对应的数值为10-3t.故答案是:10-3t,0≤t≤7.5.③不存在.由②可知,点P是和点A相向而行的,整个过程中,点P与点A的距离越来越小,而点P 与点B的距离越来越大,所以不存在相等的时候.故答案为:(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【点睛】本题考查了数轴上点与点的距离和动点问题.。
2020年福建省漳州市数学七年级(上)期末质量检测模拟试题
2020年福建省漳州市数学七年级(上)期末质量检测模拟试题一、选择题1.如图,甲从A 点出发向北偏东60°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则BAC ∠的度数是( )A.105°B.115°C.125°D.135°2.如图所示,将一张长方形纸的一角斜折过去,使顶点A 落在点A′处,BC 为折痕,如果BD 为∠A′BE 的平分线,则∠CBD 等于( )A.80°B.90°C.100°D.70°3.如图,AB ∥CD ,CD ⊥EF ,若∠1=125°,则∠2=( )A .25° B.35° C.55° D.65°4.已知关于x 的一次方程(3a+4b )x+1=0无解,则ab 的值为( )A.正数B.非正数C.负数D.非负数5.同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了( )A .10场B .11场C .12场D .13场6.如果方程2x+1=3和203a x --=的解相同,则a 的值为( ) A.7B.5C.3D.0 7.在代数式 a+b ,37x 2,5a ,m ,0,3a b a b +-,32x y -中,单项式的个数是( ) A.6 B.5 C.4 D.38.如图,题中图形是用棋子按照一定规律摆成的,按照这种摆法,第n 个图形中共有棋子( )A .2n 枚B .(n 2+1)枚C .(n 2-n )枚D .(n 2+n )枚9.若x 1=时,3ax bx 7++式子的值为2033,则当x 1=-时,式子3ax bx 7++的值为( )A .2018B .2019C .2019-D .2018-10.下列结论不正确的是( )A .若a >0,b >0,则ab >0B .若a <0,b <0,则a ﹣b <0C .若a >0,b <0,且|a|>|b|,则a ﹣b >0D .若a <0,b >0,且|a|>|b|,则a ﹣b <011.如图,数轴上每两个相邻的点之间距离均为1个单位长度,数轴上的点Q ,R 所表示数的绝对值相等,则点P 表示的数为( )A.0B.3C.5D.712.在数轴上表示﹣2,0,6.3,15的点中,在原点右边的点有( ) A.0个B.1个C.2个D.3个二、填空题 13.如图,点C 在线段AB 上,D 是线段AC 的中点,若CB=2,CD=3CB ,则线段AB 的长_____.14.如下图,在已知角内画射线,画1条射线,图中共有 个角;画2条射线,图中共有 个角;画3条射线,图中共有 个角;求画n 条射线所得的角的个数 .15.一个两位数,设它的个位上的数字为x ,十位上的数字比个位上的数字大1,这个两位数的2倍加2等于66,根据题意所列方程是_____.16.如果x =23是关于x 的方程3x ﹣2m =4的解,则m 的值是_____. 17.由一些正整数组成的数表如下(表中下一行中数的个数是上一行中数的个数的2倍):若规定坐标号(m,n )表示第m 行从左向右第n 个数,则(7,4)所表示的数是_____;(5,8)与(8,5)表示的两数之积是_______;数2012对应的坐标号是_________18.设一列数1a 、2a 、3a 、…、 a 2010中任意三个相邻数之和都是35,已知a 3=2x,a 20=15,993a x =-,那么a 2011=_________________。
漳州市七年级数学试卷有理数解答题复习题(及答案)
漳州市七年级数学试卷有理数解答题复习题(及答案)一、解答题1.阅读材料:我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说表示在数轴上数与数对应的点之间的距离,这个结论可以推广为表示数轴上与对应点之间的距离.例1:已知,求的值.解:容易看出,在数轴上与原点距离为2的点的对应数为-2和2,即的值为-2和2.例2:已知,求的值.解:在数轴上与的距离为2的点的对应数为3和-1,即的值为3和-1.仿照阅读材料的解法,求下列各式中的值.(1)(2)(3)由以上探索猜想:对于任何有理数是否有最小值?如果有,写出最小值;如果没有,请说明理由.2.如图所示,在一条不完整的数轴上从左到右有点,其中,.设点所对应的数之和是,点所对应的数之积是 .(1)若以为原点,写出点所对应的数,并计算的值;若以为原点,又是多少?(2)若原点在图中数轴上点的右边,且,求的值.3.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒(1)数轴上点B表示的数是________;点P表示的数是________(用含t的代数式表示) (2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长。
4.阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.5.(阅读理解):A,B,C为数轴上三点,若点C到A的距离CA是点C到B的距离CB 的2倍,我们就称点C是(A,B)的好点.例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离CA是2,到点B的距离CB是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离DA是1,到点B的距离DB是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.(知识运用):(1)如图1,表示数______和_______的点是(A,B)的好点;6.已知:是最大的负整数,且、b、c满足(c﹣5)2+| +b|=0,请回答问题.(1)请直接写出、b、c的值: =________,b=________,c=________.(2)、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到1之间运动时(即0≤x≤1时),请化简式子:|x+1|﹣|x﹣1|+2|x-5|(请写出化简过程). (3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和8个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.7.如图,已知点A、B、C是数轴上三点,O为原点,点A表示的数为-12,点B表示的数为8,点C为线段AB的中点.(1)数轴上点C表示的数是________;(2)点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当P、Q相遇时,两点都停止运动,设运动时间为t(t>0)秒.①当t为何值时,点O恰好是PQ的中点;②当t为何值时,点P、Q、C三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(三等分点是把一条线段平均分成三等分的点).(直接写出结果)8.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=________,AC=________,BE=________;(2)当线段CE运动到点A在C、E之间时,①设AF长为 x,用含 x 的代数式表示BE的值(结果需化简);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.9.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.10.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式的几何意义是数轴上x所对应的点与2所对应的点之间的距离;因为,所以的几何意义就是数轴上x所对应的点与-1所对应的点之间的距离.⑴发现问题:代数式的最小值是多少?⑵探究问题:如图,点分别表示的是,.∵的几何意义是线段与的长度之和∴当点在线段上时, ;当点点在点的左侧或点的右侧时∴的最小值是3.⑶解决问题:①. 的最小值是 ________ ;②.利用上述思想方法解不等式:________③.当为何值时,代数式的最小值是2________.11.观察下面的等式:回答下列问题:(1)填空:________ ;(2)已知,则的值是________;(3)设满足上面特征的等式最左边的数为,则的最大值是________,此时的等式为________ .12.如图,点A、B、C在数轴上表示的数分别是-3、1、5。
2020初中数学 七年级上 解答题 汇总.docx
初中数学七年级上解答题汇总一.解答题(共50小题)1.规定 & 七=ad- be,例如】2 = 1X3 - 2X0=3.c d| 0 3(1)计算3 2的值;4 3(2)若2x-3 x+2= 求* 的值.2 42.计算(1)(A+A- _Z_) X362 6 12(2)- 14+74- (2 - 32)3.计算.(1)(L 2-旦)x( - 60)2 3 6(2)(A- 6x2) 4- ( - A) 24 3 24.计算:(1) 4 - 3X ( - 2) + ( - 3);3(2)- 16+2X ( - 3) 2 - 5:【X2.25.计算:(1)一6-|-0. 6 |+ (-5)号;(2)(-I)2020-(I--|-)4-3X 11-(-2) 3 I-6.在数轴上表示下列各数,并按从小到大的顺序用号把这些数连接起来:-2.5, 1A, 0, - 1, 3.527.数学老师布置了一道思考题“计算(-1):(【-旦)”.小明仔细思考了一番,用了12 3 6一种不同的方法解决了这个问题:原式的倒数为(1-旦):(-D_) = (1-5) x3 6 12 3 6(-12) = - 4+10=6,所以(-J-) 4- (1•-旦)=A.12 3 6 6(1)请你通过计算验证小明的解法的正确性.(2)由此可以得到结论:一个数的倒数的倒数等于.(3)请你运用小明的解法计算:(-Z):(12-Z-JL)8 4 8 128.计算:(1)( - 3) 2+ ( - 2) 3(2)( - 36) X (旦-J_)6 129 .计算(1)9.6 - ( - 9.4) + ( - 9)(2)- 52 - 16X ( - A) 3+33210.计算:X ( - 36)4 6 1211.'已知a、b互为相反数,c、d互为倒数,m是绝对值等于2的数,求:a*b +应-cd 的值.a+b+c a+b+c12.某玩具厂计划一周生产某种玩具700件,平均每天生产100件,但由于种种原因,实际每天生产量与计划量相比有出入.如表是某周的生产情况(超产记为正、减产记为负): 星期一二三四五六0增减+5-2-4+13-6+6-3(1)根据记录的数据可知该厂星期四生产玩具件;(2)产量最多的一天比产量最少的一天多生产玩具件;(3)根据记录的数据可知该厂本周实际生产玩具件;(4)该厂实行每周计件工资制,每生产一件玩具可得20元,若超额完成任务,则超过部分每件另奖5元;少生产一件扣4元,那么该厂工人这一周的工资总额是多少元?13.已知:点A、B在数轴上表示的数分别是a、b,线段AB的中点P表示的数为请你结合所给数轴,解答下列各题:■^6~~^4~~_^1"""0~~I~~2_34_5__6*(1)填表:a-1-1 2.5—b13—-2m——4-4(2)用含a、》的代数式表示m,则《1=(3)当a=2021, m=2020时,求》的值.14.先化简,再求值:(-U+3 - 4x) + (5x - 3+由2),其中x= - 2.15.先化简,再求值:x- (3x2 - 2%) +3 (U+2),其中x+2= - 1.16.(1)计算:(§4)+(-(4)3;⑵化简求值:4(x-1)-2(乂2+1)+*^(4乂2-2乂),其中了=-3.17.在一条直路上的A、B、C、。
漳州市2020年七年级上学期数学期末考试试卷(II)卷
漳州市2020年七年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2020七下·甘南期中) 若2m-4与3m-1是同一个数的平方根,则m的值是()A . -3B . -1C . 1D . -3或12. (2分) (2019七上·惠山期末) ﹣3的相反数是()A . 3B .C . ﹣3D .3. (2分) (2018七上·山东期中) 武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为().A . 1.68×103mB . 16.8×103mC . 0.168×104mD . 1.68×104m4. (2分)已知﹣7是关于x的方程2x﹣7=ax的解,则a的值是()A . -2B . -3C . 3D . -145. (2分)(2017·龙华模拟) 下列运算正确的是()A . a2+a2=a4B . (ab)2=ab2C . a6÷a2=a3D . (2a2)3=8a66. (2分)(2019·青海模拟) 某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母22个或螺栓16个.若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套.则下面所列方程中正确的是()A . 2×16x=22(27﹣x)B . 16x=22(27﹣x)C . 22x=16(27﹣x)D . 2×22x=16(27﹣x)7. (2分) (2020七下·思明月考) 如图,某计算器中有、、三个按键,以下是这三个按键的功能:① :将荧幕显示的数变成它的算术平方根;② :将荧幕显示的数变成它的倒数;③ :将荧幕显示的数变成它的平方.小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为10,那么第2020步之后,显示的结果是()A . 100B . 1C . 0.01D . 108. (2分)下面语句中,正确的是().A . 两个互补的角是平角;B . 一条直线就是一个平角;C . 两条直线相交,形成4个小于平角的角;D . 点A、B分别在∠O的两条边上,则它们到点O的距离越大,∠O也越大.二、填空题 (共6题;共6分)9. (1分) (2019七上·朝阳期末) 比较大小:﹣11________﹣12(填“<”、或“>”).10. (1分)用四舍五入将数0.00356精确到万分位约等于________.11. (1分) (2018七上·余干期末) 若a3﹣2nb2与5a3n﹣2b2是同类项,则n=________.12. (1分)(2017·祁阳模拟) 钟表在12时15分时刻的时针与分针所成的角是________°.13. (1分) (2019七下·长春月考) 我们知道,无限循环小数都可以转化为分数,如:将转化为分数时,可设 = 两边乘以10,可得 =10x ,则3+ =10x即3+x=10x ,解得即 = 仿此方法,将化成分数是________.14. (1分)(2020·石家庄模拟) 如图, ...,都是等腰直角三角形,点...均在轴正半轴上,直角顶点 ...,均在直线上.设的面积分别为···,则 ________;依据图形所反映的规律, ________.三、解答题 (共9题;共86分)15. (15分)(2018九上·阜宁期末)(1)计算:(2)解方程:16. (5分)已知由4个相同的小立方体组成的几何体如图所示,请画出它的三视图.17. (10分) (2018七上·腾冲期末) 解方程:18. (10分) (2017七上·青岛期中) 一辆客车从甲地开往乙地,车上原有(5a﹣2b)人,中途停车一次,有一些人下车,此时下车的人数比车上原有人数一半还多2人,同时又有一些上车,上车的人数比(7a﹣4b)少3人.(1)用代数式表示中途下车的人数;(2)用代数式表示中途下车、上车之后,车上现在共有多少人?(3)当a=10,b=9时,求中途下车、上车之后,车上现在的人数?19. (10分)高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17-9+7-15-3+11-6-8+5+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车每千米耗0.3升,则这次养护共耗油多少升?20. (5分)(2017·襄城模拟) 某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?21. (10分) (2017七下·温州期中) 如图,直线AB,CD被直线EF所截,AB∥CD,FG平分∠EFD .(1)若∠1=54° ,求∠2的度数(完成填空).解:(1)∵AB∥CD(已知)∴∠ ________= 180 ° -∠1(________)∵ FG平分∠EFD,∠1=54°(已知)∴∠GFD= ∠EFD = ________°∵ AB∥CD∴∠2 = ________-∠GFD = ________° (两直线平行,同旁内角互补)(2)作∠FGB 的角平分线GH交CD于点H. 若GH∥E F 时,求∠1的度数.22. (10分) (2017七上·北海期末) 由于换季,一家服装店的老板想将某服装打折销售,于是她和正在上七年级的儿子商量打折方案,下面是她和儿子商量时的对话情景:妈妈:“儿子,每件衣服按标价的5折出售,可以吗?”儿子:“若每件衣服按标价的5折出售会亏本30元.”妈妈:“那每件衣服按标价的8折出售呢?”儿子:“若每件衣服按标价的8折出售将会赚60元.”……请根据上面的信息,解决问题:(1)求这种服装的标价.(2)若要不亏本,至少打几折?23. (11分)如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是________数(填“无理”或“有理”),这个数是________;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是________;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共9题;共86分)15-1、15-2、16-1、17-1、18-1、18-2、18-3、19-1、19-2、19-3、20-1、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。
福建省漳州市2020年七年级上学期数学期末考试试卷D卷
福建省漳州市2020年七年级上学期数学期末考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) a,b是有理数,它们在数轴上的对应点的位置如下图所示,把a,﹣a,b,﹣b,a+b,a﹣b按照从小到大的顺序排列,正确的是()A . a﹣b<﹣b<a<﹣a<a+b<bB . ﹣b<a﹣b<a<﹣a<b<a+bC . a﹣b<a<﹣b<a+b<﹣a<bD . ﹣b<a<a﹣b<﹣a<b<a+b2. (2分)-的相反数是()A . 2B . -2C .D .3. (2分)(2018·钦州模拟) 下列几何体是棱锥的是()A .B .C .D .4. (2分) (2017七上·上城期中) 李白出生于公元年,记作,那么秦始皇出生于公元前年,可记作().A .B .C .D .5. (2分) (2018七上·武汉期中) 计算的结果为()A . 1B .C .D .6. (2分) (2018七下·柳州期末) 某新品种葡萄试验基地种植了5亩新品种葡萄,为了解这些新品种葡萄的单株产量,从中随封机抽查了10株葡萄,在这个统计工作中,10株葡萄的产量是()A . 总体B . 总体中的一个样本C . 样本容量D . 个体7. (2分) (2020七上·宿州期末) 下面运算结果为负数的是()A . (-1)2B . -(-1)C . |-1|D . (-1)38. (2分) x克盐溶解在a克水中,取这种盐水m克,其中含盐()A . 克B . 克C . 克D . 克9. (2分)观察下列关于x的单项式,探究其规律:2x,﹣4x2 , 6x3 ,﹣8x4 , 10x5 ,﹣12x6 ,…,按照上述规律,第2016个单项式是()A . 2016x2016B . ﹣2016x2016C . ﹣4032x2016D . 4032x201610. (2分)若与互为相反数,则a=()A .B . 10C .D . ﹣10二、填空题 (共5题;共5分)11. (1分) (2016七上·南开期中) 在3,﹣4,5,﹣6这四个数中,任取两个数相乘,所得的积最大的是________.12. (1分) (2016七上·腾冲期中) 把(﹣5)﹣(﹣6)+(﹣5)﹣(﹣4)写成省略加号和括号的形式为________.13. (1分) (2020七上·丹东期末) 年月日,丹东市统计局公布:前三季度,全市生产总值实现元.则数用科学计数法可以表示为________.14. (1分)为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a,b对应的密文为a﹣2b,2a+b.例如,明文1,2对应的密文是﹣3,4.当接收方收到密文是1,7时,解密得到的明文是________15. (1分) (2016七上·肇源月考) 一种钢材长米,重吨,这种钢材每米重________吨。
漳州市七年级上学期期末数学试题题及答案
漳州市七年级上学期期末数学试题题及答案一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线 2.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( ) A .10- B .10 C .5- D .5 3.在0,1-, 2.5-,3这四个数中,最小的数是( )A .0B .1-C . 2.5-D .34.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或735.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .112 6.如果a ﹣3b =2,那么2a ﹣6b 的值是( ) A .4 B .﹣4 C .1 D .﹣1 7.单项式﹣6ab 的系数与次数分别为( )A .6,1B .﹣6,1C .6,2D .﹣6,2 8.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513B .﹣511C .﹣1023D .10259.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-10.如果一个有理数的绝对值是6,那么这个数一定是( ) A .6B .6-C .6-或6D .无法确定11.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离12.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元二、填空题13.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米. 14.若523m xy +与2n x y 的和仍为单项式,则n m =__________.15.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.16.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.17.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____. 18.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.19.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.20.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).21.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.22.方程x +5=12(x +3)的解是________. 23.若523m xy +与2n x y 的和仍为单项式,则n m =__________.24.已知7635a ∠=︒',则a ∠的补角为______°______′.三、压轴题25.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.26.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12.东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题:(1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为,取得最佳值最小值的数列为(写出一个即可);(3)将2,-9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a的值.27.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.28.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P 到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Q的d追随值为d[PQ]=3.问题解决:(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的d追随值d[MN]=a(a≥0),则点N表示的数是_____(用含a的代数式表示);(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b,设运动时间为t(t>0).①当b=4时,问t为何值时,点A到点B的d追随值d[AB]=2;②若0<t≤3时,点A到点B的d追随值d[AB]≤6,求b的取值范围.29.在数轴上,图中点A 表示-36,点B 表示44,动点P 、Q 分别从A 、B 两点同时出发,相向而行,动点P 、Q 的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O ,动点Q 到达点C ,设运动的时间为t (t >0)秒. (1)求OC 的长;(2)经过t 秒钟,P 、Q 两点之间相距5个单位长度,求t 的值;(3)若动点P 到达B 点后,以原速度立即返回,当P 点运动至原点时,动点Q 是否到达A 点,若到达,求提前到达了多少时间,若未能到达,说明理由.30.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示). (4)直接写出点B 为AC 中点时的t 的值.31.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空) ()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.32.(阅读理解)若A ,B ,C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离的2倍,我们就称点C 是(A ,B )的优点.例如,如图①,点A 表示的数为﹣1,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是(A ,B )的优点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是(A ,B )的优点,但点D 是(B ,A )的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.2.D解析:D【解析】【分析】根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k的值.【详解】解:∵方程2k-3x=4与x-2=0的解相同,∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5. 故选:D . 【点睛】本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.3.C解析:C 【解析】 【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可. 【详解】解:∵ 2.5-<1-<0<3, ∴最小的数是 2.5-, 故选:C . 【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.4.A解析:A 【解析】 【分析】先求出方程的解,把x 的值代入方程得出关于m 的方程,求出方程的解即可. 【详解】解:(x+3)2=4, x ﹣3=±2, 解得:x =5或1,把x =5代入方程mx+3=2(m ﹣x )得:5m+3=2(m ﹣5), 解得:m =13, 把x =﹣1代入方程mx+3=2(m ﹣x )得:﹣m+3=2(1+m ), 解得:m =﹣1, 故选:A . 【点睛】本题考查了解一元一次方程的解的应用,能得出关于m 的方程是解此题的关键.5.B解析:B 【解析】 【分析】观察图形,正确数出个数,再进一步得出规律即可.【详解】摆成第一个“H”字需要2×3+1=7个棋子,第二个“H”字需要棋子2×5+2=12个;第三个“H”字需要2×7+3=17个棋子;第n个图中,有2×(2n+1)+n=5n+2(个).∴摆成第 20 个“H”字需要棋子的个数=5×20+2=102个.故B.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n.6.A解析:A【解析】【分析】将a﹣3b=2整体代入即可求出所求的结果.【详解】解:当a﹣3b=2时,∴2a﹣6b=2(a﹣3b)=4,故选:A.【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.7.D解析:D【解析】【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】解:单项式﹣6ab的系数与次数分别为﹣6,2.故选:D.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.8.D解析:D【解析】【分析】观察数据,找到规律:第n个数为(﹣2)n+1,根据规律求出第10个数即可.【详解】解:观察数据,找到规律:第n 个数为(﹣2)n +1, 第10个数是(﹣2)10+1=1024+1=1025 故选:D . 【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.9.C解析:C 【解析】 【分析】根据相反数的定义进行判断即可. 【详解】A. 2的相反数是-2,所以2与12不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意; C. 2与-2互为相反数,符合题意;D. 211=--,所以-1与21-不是相反数,不符合题意; 故选:C . 【点睛】本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.10.C解析:C 【解析】 【分析】由题意直接根据根据绝对值的性质,即可求出这个数. 【详解】解:如果一个有理数的绝对值是6,那么这个数一定是6-或6. 故选:C . 【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.11.A解析:A 【解析】 【分析】根据公理“两点确定一条直线”来解答即可. 【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A . 【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.12.A解析:A 【解析】 【分析】设这种商品每件进价为x 元,根据题中的等量关系列方程求解. 【详解】设这种商品每件进价为x 元,则根据题意可列方程270×0.8-x =0.2x ,解得x =180.故选A. 【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.二、填空题13.【解析】 【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可. 【详解】解:20﹣(﹣9)=20+9=29, 故答案为:29. 【点睛】此题主要考查了有理数的减法,关键是解析:【解析】 【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可. 【详解】解:20﹣(﹣9)=20+9=29, 故答案为:29. 【点睛】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.14.9 【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9 【解析】 根据523m xy +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9. 15.2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x 的值,使得输入的数和第2次输出的数相等即可.【详解】解析:2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x 的值,使得输入的数和第2次输出的数相等即可.【详解】解:∵第1次输出的结果为7+3=10,第2次输出的结果为12×10=5, 第3次输出结果为5+3=8,第4次输出结果为12×8=4, 第5次输出结果为12×4=2, 第6次输出结果为12×2=1, 第7次输出结果为1+3=4,第8次输出结果为12×4=2, …… ∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,∴第2018次输出的数是2,如图,若x=14x,则x=0;若x=12x+3,则x=6;若x=12(x+3),则x=3;故答案为:2、0或3或6.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.16.30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.考点:列代数式17.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.18.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.19.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA 表示北偏东61°方向的一条射线,OB 表示南偏东38°方向的一条射线, ∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.20.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.21.140【解析】【分析】【详解】解:∵OD 平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:140解析:140【解析】【分析】【详解】解:∵OD 平分∠AOC ,∴∠AOC =2∠AOD =40°,∴∠COB =180°﹣∠COA =140°故答案为:14022.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.23.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.24.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、压轴题25.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI))=12∠AOB=12×120°=60°,∠PON=12×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t=152或15;当OI在直线AO的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.26.(1)3;(2)12;-3,2,-4或2,-3,-4.(3)a=11或4或10.【解析】【分析】(1)根据上述材料给出的方法计算其相应的最佳值为即可;(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;(3)分情况算出对应的数值,建立方程求得a的数值即可.【详解】(1)因为|−4|=4,-4-32=3.5,-4-312+=3,所以数列−4,−3,1的最佳值为3.故答案为:3;(2)对于数列−4,−3,2,因为|−4|=4,432--=72,432||2--+=52,所以数列−4,−3,2的最佳值为52;对于数列−4,2,−3,因为|−4|=4,||422-+=1,432||2--+=52,所以数列−4,2,−3的最佳值为1;对于数列2,−4,−3,因为|2|=2,224-=1,432||2--+=52,所以数列2,−4,−3的最佳值为1;对于数列2,−3,−4,因为|2|=2,223-=12,432||2--+=52,所以数列2,−3,−4的最佳值为1 2∴数列的最佳值的最小值为223-=12,数列可以为:−3,2,−4或2,−3,−4.故答案为:12,−3,2,−4或2,−3,−4.(3)当22a+=1,则a=0或−4,不合题意;当92a-+=1,则a=11或7;当a=7时,数列为−9,7,2,因为|−9|=9,972-+=1,9722-++=0,所以数列2,−3,−4的最佳值为0,不符合题意;当972a-++=1,则a=4或10.∴a=11或4或10.【点睛】此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.27.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.28.(1)1+a或1-a;(2)12或52;(3)1≤b≤7.【解析】【分析】(1)根据d追随值的定义,分点N在点M左侧和点N在点M右侧两种情况,直接写出答案即可;(2)①分点A在点B左侧和点A在点B右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②【详解】解:(1)点N在点M右侧时,点N表示的数是1+a;点N在点M左侧时,点N表示的数是1-a;(2)①b=4时,AB相距3个单位,当点A在点B左侧时,t=(3-2)÷(3-1)=12,当点A在点B右侧时,t=(3+2)÷(3-1)=52;②当点B在点A左侧或重合时,即d≤1时,随着时间的增大,d追随值会越来越大,∵0<t≤3,点A到点B的d追随值d[AB]≤6,∴1-d+3×(3-1)≤6,解得d≥1,∴d=1,当点B在点A右侧时,即d>1时,在AB重合之前,随着时间的增大,d追随值会越来越小,∵点A到点B的d追随值d[AB]≤6,∴d≤7∴1<d≤7,综合两种情况,d的取值范围是1≤d≤7.故答案为(1)1+a或1-a;(2)①12或52;②1≤b≤7.【点睛】本题考查了数轴上两点之间的距离和动点问题.29.(1)20;(2)t=15s或17s (3)4 3 s.【解析】【分析】(1)设P、Q速度分别为3m、2m,根据12秒后,动点P到达原点O列方程,求出P、Q 的速度,由此即可得到结论.(2)分两种情况讨论:①当A、B在相遇前且相距5个单位长度时;②当A、B在相遇后且相距5个单位长度时;列方程,求解即可.(3)算出P运动到B再到原点时,所用的时间,再算出Q从B到A所需的时间,比较即可得出结论.【详解】(1)设P、Q速度分别为3m、2m,根据题意得:12×3m=36,解得:m=1,∴P、Q速度分别为3、2,∴BC=12×2=24,∴OC=OB-BC=44-24=20.(2)当A、B在相遇前且相距5个单位长度时:3t+2t+5=44+36,5t=75,∴t=15(s);当A、B在相遇后且相距5个单位长度时:3t+2t-5=44+36,5t=85,∴t=17(s).综上所述:t=15s或17s.(3)P运动到原点时,t=3644443++=1243s,此时QB=2×1243=2483>44+38=80,∴Q点已到达A点,∴Q点已到达A点的时间为:3644804022+==(s),故提前的时间为:1243-40=43(s).【点睛】本题考查了一元一次方程的应用-行程问题以及数轴上的动点问题.解题的关键是找出等量关系,列出方程求解.30.(1)-2;1;7;(2)4;(3)3+3t;9+5t;6+2t;(4)3.【解析】【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)分别写出点A、B、C表示的数为,用含t的代数式表示出AB、AC、BC即可;(4)由点B 为AC 中点,得到AB =BC ,列方程,求解即可.【详解】(1)∵|a +2|+(c ﹣7)2=0,∴a +2=0,c ﹣7=0,解得:a =﹣2,c =7.∵b 是最小的正整数,∴b =1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A 表示的数为:-2-t ,点B 表示的数为:1+2t ,点C 表示的数为:7+4t ,则AB =t +2t +3=3t +3,AC =t +4t +9=5t +9,BC =2t +6.故答案为3t +3,5t +9,2t +6.(4)∵点B 为AC 中点,∴AB =BC ,∴3t +3=2t +6,解得:t =3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.31.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm ,BD=4cm .∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm .故答案为2,4;(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .∵AB=12 cm ,CM=2 cm ,BD=4 cm ,∴AC+MD=AM ﹣CM+BM ﹣BD=AB ﹣CM ﹣BD=12﹣2﹣4=6 cm ;(3)根据C 、D 的运动速度知:BD=2MC .∵MD=2AC ,∴BD+MD=2(MC+AC ),即MB=2AM .∵AM+BM=AB ,∴AM+2AM=AB ,∴AM=13AB=4. 故答案为4;(4)①当点N 在线段AB 上时,如图1.∵AN ﹣BN=MN .又∵AN ﹣AM=MN ,∴BN=AM=4,∴MN=AB ﹣AM ﹣BN=12﹣4﹣4=4,∴MN AB =412=13; ②当点N 在线段AB 的延长线上时,如图2.∵AN﹣BN=MN.又∵AN﹣BN=AB,∴MN=AB=12,∴MNAB=1212=1.综上所述:MNAB=13或1.【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.32.(1)2或10;(2)当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【解析】【分析】(1)设所求数为x,根据优点的定义分优点在M、N之间和优点在点N右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P为(A,B)的优点;②P为(B,A)的优点;③B为(A,P)的优点.设点P表示的数为x,根据优点的定义列出方程,进而得出t的值.【详解】解:(1)设所求数为x,当优点在M、N之间时,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;当优点在点N右边时,由题意得x﹣(﹣2)=2(x﹣4),解得:x=10;故答案为:2或10;(2)设点P表示的数为x,则PA=x+20,PB=40﹣x,AB=40﹣(﹣20)=60,分三种情况:①P为(A,B)的优点.由题意,得PA=2PB,即x﹣(﹣20)=2(40﹣x),解得x=20,∴t=(40﹣20)÷4=5(秒);②P为(B,A)的优点.由题意,得PB=2PA,即40﹣x=2(x+20),解得x=0,∴t=(40﹣0)÷4=10(秒);③B为(A,P)的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,∴t=30÷4=7.5(秒);综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【点睛】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.。
漳州市七年级上册数学期末试卷(含答案)
漳州市七年级上册数学期末试卷(含答案)一、选择题1.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( ) A .49 B .59 C .77D .1392.在222,7-四个数中,属于无理数的是( )A .0.23BC .2-D .2273.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() m A .21.0410-⨯ B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯4.下列分式中,与2x yx y---的值相等的是() A .2x yy x +-B .2x yx y+-C .2x yx y--D .2x yy x-+ 5.下列各数中,绝对值最大的是( ) A .2B .﹣1C .0D .﹣36.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =7.( ) A .1,2 B .2,3 C .3,4 D .4,5 8.单项式﹣6ab 的系数与次数分别为( )A .6,1B .﹣6,1C .6,2D .﹣6,2 9.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513B .﹣511C .﹣1023D .102510.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( ) A .45010⨯ B .5510⨯ C .6510⨯ D .510⨯ 11.若2m ab -与162n a b -是同类项,则m n +=( )A .3B .4C .5D .712.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题13.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.14.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………15.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______. 16.36.35︒=__________.(用度、分、秒表示) 17.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 18.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.19.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.20.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)21.五边形从某一个顶点出发可以引_____条对角线.22.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P2019的坐标是_____.23.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.24.观察“田”字中各数之间的关系:则c的值为____________________.三、解答题25.(1)3x+5(x+2)=2(2)33-x﹣1=242+x26.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等, B款瓷砖的长大于宽.已知一块A 款瓷砖和-块B款瓷砖的价格和为140元; 3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).27.如图,点P是线段AB上的一点,请在图中完成下列操作.(1)过点P画BC的垂线,垂足为H;(2)过点P画AB的垂线,交BC于Q;(3)线段的长度是点P到直线BC的距离.28.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克)售价(元/千克)甲种58乙种913(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?、、、的位置如图所示,根据下列语句,画出图形.29.已知:四点A B C D()1画直线AD、直线,BC画射线AB;()2画一点O,使点O既在直线AD上又在直线,BC上;()3在上面所作的图形中,以A B C D O、、、、为端点的线段共有条.30.我们已学习了角平分线的概念,现用正方形纸折叠:将正方形纸片的一角折叠,使点A落在点A′处,折痕为EF,再把BE折过去与EA′重合,EH为折痕.(1)若∠AEF=54°,求∠BEB′ 和∠FEH的度数;(2)将正方形的形状大小完全一样的四个角按上面的方式折叠就得到了图如图所示的正方形EFGH,且不重合的部分也是一个正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、解答题1.先化简,再求值:-2x 2•4x 4+(x 4)2÷x 2-(-3x 3)2,其中x 3=12. 2.311()()(2)424-⨯-÷-3.某制衣厂计划若干天完成一批服装的订货任务.如果每天生产服装33套,那么就比订货任务少生产150套;如果每天生产服装42套,那么就比原计划提前2天完成任务.这批服装的订货任务是多少套?原计划多少天完成任务?4.先化简,再求值:22[3]23x y x y x xy --+(),其中12x =-,y =2.5.(1)已知多项式A ,B ,计算A ﹣B .某同学做此题时误将A ﹣B 看成了A+B ,求得其结果为A+B=3m 2﹣2m ﹣5,若B=2m 2﹣3m ﹣2,请你帮助他求得正确答案.(2)已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是5,n 是最大的负整数,求代数式2019(a+b )﹣4cd+2mn 的值.6.大客车上原有(3a -b )人,中途下去一半人,又上车若干人,使车上共有乘客(8a -5b )人,问中途上车乘客是多少人?当a =10,b =8时,上车乘客是多少人? 7.去括号,并合并相同的项:﹣(y+x )﹣(5x ﹣2y )8.已知3a ﹣7b =﹣3,求代数式2(2a+b ﹣1)+5(a ﹣4b )﹣3b 的值. 9.先化简,再求值:()()()222m 2n m 2n 8m n n +--+- ,其中1m 2=- ,n 3=.10.(1)计算:(1572912-+)×(﹣36) (2)计算:100÷(﹣2)2﹣(﹣2)÷(﹣23) (3)化简:(﹣x 2+3xy ﹣212y )﹣(﹣12x 2+4xy ﹣32y 2) (4)先化简后求值:x 2+(2xy ﹣3y 2)﹣2(x 2+yx ﹣2y 2),其中x=﹣12,y=3. 11.2008年奥运期间,小区物业用花盆妆点院落。
下列的每一个图都是由若干个花盆组成的正方形图案.(1)若用n 表示每条边上(包括两个端点)的花盆数,用s 表示组成每个图案的花盆数.按上图所表现出来的规律推算,当n=8时,s 的值应是多少? (2)用含n 的代数式表示s .12.先化简再求值:3(a 2+2b )-(2a 2-b ),其中a =-2,b =1.13.已知a 、b 、c 在数轴上的对应点如图所示,化简:|a |+|a +b |+|a -c |-|c -b |.14.计算(1)2235(6)(4)(2)-+⨯---÷-.(22+.(3)383672.5'︒+︒.(结果用度表示) 15.先化简,再求值.()()222x y xy 3x y xy 5xy +---,其中x 1=-,1y 3=. 16.如图,点A ,O ,E 在同一条直线上,∠AOB=40°,∠COD=28°,OD 平分∠COE . (1)求∠COE 的度数. (2)求∠BOD 的度数.17.先化简再求值:(3x 2﹣xy+y)﹣2(5xy ﹣4x 2+y),其中x=2,y=﹣1. 18.先化简,再求值4xy ﹣(2x 2+5xy )+2(x 2+y 2),其中x =﹣2,y =1219.已知代数式4x 2+ax ﹣y+5﹣2bx 2+7x ﹣6y ﹣3的值与x 的取值无关,求代数式17a 3﹣2b 2+3b 3的值.20.先化简,再求值:2(3a 2b ﹣ab 2+1)﹣(a 2b ﹣2ab 2),其中a =﹣2,b =﹣1 21.王红有5张写着以下数字的卡片,请按要求抽出卡片,完成下列各题:(1)从中取出2张卡片,使这2张卡片上数字乘积最小,最小值是 . (2)从中取出2张卡片,使这2张卡片数字相除商最大,最大值是 .(3)从中取出除0以外的4张卡片,将这4个数字进行加、减、乘、除或乘方等混合运算,使结果为24,(注:每个数字只能用一次,如:23×[1﹣(﹣2)]),请另写出一种符合要求的运算式子 . 22.计算:(1)-2-(+10); (2)0-(-3.6);(3)(-30)-(-6)-(+6)-(-15); (4)()232321 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 23.计算:(1)﹣18×(125236+-); (2)(﹣1)3﹣(1﹣12)÷3×[2﹣(﹣3)2]. 24.(1)计算111()462+-×12(2)计算1031(1)2()2-÷+-×16 (3)先化简,再求值:3(2x 2y ﹣xy 2)﹣(5x 2y+2xy 2),其中x=﹣1,y=2.25.有理数a ,b ,c 在数轴上的位置如图所示,且表示数a 的点、数b 的点到原点的距离相等.(1)用“>”“=”“<”填空:b 0,a+b 0,a-c 0,b-c 0; (2)化简 a b c a b ++-- . 26.观察下列等式: 第一个等式:122211a 132222121==-+⨯+⨯++ 第二个等式:2222223211a 1322(2)2121==-+⨯+⨯++ 第三个等式:3333234211a 1322(2)2121==-+⨯+⨯++ 第四个等式:4444245211a 1322(2)2121==-+⨯+⨯++ 按上述规律,回答下列问题:()1请写出第六个等式:6a =______=______;()2用含n 的代数式表示第n 个等式:n a =______=______; ()1234563a a a a a a +++++=______(得出最简结果); ()4计算:12n a a a ++⋯+.27.数轴上点A 、B 、C 的位置如图所示,A 、B 对应的数分别为−5和1,已知线段AB 的中点D 与线段BC 的中点E 之间的距离为5. (1)求点D 对应的数; (2)求点C 对应的数.28.已知,如图,A 、B 分别为数轴上的两点,A 点对应的数为-20,B 点对应的数为100.请写出AB 中点M 对应的数。
(2)现有一只电子蚂蚁P 从B 点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4单位/秒的速度向右运动。
设两只电子蚂蚁在数轴上的C 点相遇,你知道C 点对应的数是多少吗?(3)若当电子蚂蚁P 从B 点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4单位/秒的速度也向左运动。
设两只电子蚂蚁在数轴上的D 点相遇,你知道D 点对应的数是多少吗? 29.712311263-+ 30.先化简再求值:3(3x 2+y)﹣2(2x 2﹣y),其中x =12,y =﹣1. 31.解下列方程: (1)2(x +3)=5(x -3)2123x -()=435x --x32.如图,∠AOB=90°,OE 、OF 分别平分∠BOC 、∠AOB ,如果∠EOF=60°,求∠AOC 的度数.33.如图,直线AB 与CD 相交于点E ,射线EG 在∠AEC 内(如图1). (1)若∠BEC 的补角是它的余角的3倍,则∠BEC = °;(2)在(1)的条件下,若∠CEG 比∠AEG 小25度,求∠AEG 的大小;(3)若射线EF 平分∠AED ,∠FEG =m °(m >90°)(如图2),则∠AEG ﹣∠CEG = °(用m 的代表式表示).34.已知直线于点,,射线平分.(1)如图1,在直线的右侧,且点在点的上方.①若,求和的度数;②请判断与之间存在怎样的数量关系?并说明理由.(2)如图2,在直线的左侧,且点在点的下方.①请直接写出与之间的数量关系;②请直接写出与之间的数量关系.35.已知线段AB=10cm,在直线..AB..上有一点C,且BC=4cm,点D是线段AC的中点,试求线段AD的长.A B C;(2)在x轴上确定一点P,使36.如下图所示.(1)作出△ABC关于y轴对称的图形111得PA+PC最小.37.如图,AB、CD交于点O,OE⊥AB,且OC平分∠AOE.(1)如图1,求∠BOD的度数;(2)如图2,过O点作射线OF,且∠DOF=4∠AOF,求∠FOC的度数.38.已知线段AB=8厘米,在直线AB上画线段BC=3厘米,求线段AC的长.39.画出下面几何体从正面、左面、上面看到的平面图形.40.如图,点B、D在线段AC的两侧,根据变求完成下列问题:(1)画直线BC、射线AD交于点E;(2)过点C画射线AD的垂线,垂足为P,过点C画线段AC的垂线,交射线AD于点Q;(3)线段______的长度是点A到直线CD的距离;(4)在线段AC上画出一点M,使点M到点B、D的距离的和最小(保留画图痕迹).41.解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3);(2)1311 48x x---=.42.某超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?43.如图所示,一幅地图上有A,B,C三地,地图被墨迹污染,C地具体位置看不清楚了,但知道C地在A地的北偏东30°方向,在B地的南偏东45°方向,你能确定C地位置吗?44.某件商品的价格是按获利润25%计算出的,后因库存积压和急需加收资金,决定降价出售,如果每件商品仍能获得10%的利润,试问应按现售价的几折出售?(减价到原标价的百分之几就叫做几折,例如标价一元的商品售价七角五分,叫做“七五折”)45.(题文)已知|a-3|+(b+1)2=0,式子 的值比b-a+m 的值多1,求m 的值.46.以直线AB 上点O 为端点作射线OC ,使∠BOC=60°,将直角△DOE 的直角顶点放在点O 处.(1)如图1,若直角△DOE 的边OD 放在射线OB 上,则∠COE= ;(2)如图2,将直角△DOE 绕点O 按逆时针方向转动,使得OE 平分∠AOC ,说明OD 所在射线是∠BOC 的平分线;(3)如图3,将直角△DOE 绕点O 按逆时针方向转动,使得∠COD=15∠AOE .求∠BOD 的度数.47.已知:如图,点A 、B 分别是∠MON 的边OM 、ON 上两点,OC 平分∠MON ,在∠CON 的内部取一点P (点A 、P 、B 三点不在同一直线上),连接PA 、PB . (1)探索∠APB 与∠MON 、∠PAO 、∠PBO 之间的数量关系,并证明你的结论; (2)设∠OAP=x°,∠OBP=y°,若∠APB 的平分线PQ 交OC 于点Q ,求∠OQP 的度数(用含有x 、y 的代数式表示).48.先化简,再求值()()()222222232322x y yx y x --+---,其中1x =-,2y =.49.在对多项式(23x 2y+5xy 2+5)﹣[(3x 2y 2+23x 2y )﹣(3x 2y 2﹣5xy 2﹣2)]代入计算时,小明发现不论将x 、y 任意取值代入时,结果总是同一个定值,为什么?50.用◎定义一种新运算:对于任意有理数a 和b ,规定a ◎b=ab 2+2ab+a ,如:1◎2=1×22+2×1×2+l=9. (1)求(﹣4)◎3; (2)若(12a +◎3)=8,求a 的值. 51.解方程52.如图所示,从一点O出发引射线OA、OB、OC、OD,请你数一数图中有多少个角,并把它们表示出来.53.冬至过后,昼夜温差逐渐加大,山城的市民们已然感受到了深冬的寒意.在还未普遍使用地暖供暖设备的山城,小型电取暖器仍然深受市民的青睐.某格力专卖店销售壁挂式电暖器和卤素/石英式取暖器(俗称“小太阳”),其中壁挂式电暖器的售价是“小太阳”售价的5倍还多100元,2016年12月份壁挂式电暖器和“小太阳”共销售500台,壁挂式电暖器与“小太阳”销量之比是4∶1,销售总收入为58.6万元.(1)分别求出每台壁挂式电暖器和“小太阳”的售价;(2)随着“元旦、春节”双节的来临和气温的回升,销售进入淡季,2017年1月份,壁挂式电暖器的售价比2016年12月下调了4m﹪,根据经验销售量将比2016年12月下滑6m ﹪,而“小太阳”的销售量和售价都维持不变,预计销售总收入将下降到16.04万元,求m 的值.54.春节将至,市区两大商场均推出优惠活动:①商场一全场购物每满100元返30元现金(不足100元不返);②商场二所有的商品均按8折销售.某同学在两家商场发现他看中的运动服的单价相同,书包的单价也相同,这两件商品的单价之和为470元,且运动服的单价是书包的单价的7倍少10元.(1)根据以上信息,求运动服和书包的单价.(2)该同学要购买这两件商品,请你帮他设计出最佳的购买方案,并求出他所要付的费用. 55.有一群鸽子和一些鸽笼,如果每个鸽笼6只鸽子,则剩余3只鸽子无鸽笼可住;如果在飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.原来有多少只鸽子和鸽笼?56.某项工作,甲单独做要6天完成,乙单独做要l2天完成,若甲、乙合作完成此项工作,求多少天可以完成?(列一元一次方程求解)57.小明班上男生人数比全班人数的58少5人,班上女生有23人.求小明班上全班的人数.58.《孙子算经》中有过样一道题,原文如下:“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.59.为了防控冬季呼吸道疾病,某校积极进行校园环境消毒工作,购买了甲、乙两种消毒液共80瓶,其中甲种每瓶6元,乙种每瓶8元,如果购买这两种消毒液共花去500元,求甲、乙两种消毒液各购买了多少瓶?60.中,三个内角的平分线交于点.过点作,交边于点.(1)如图1, ①若,则___________,_____________;②猜想与的关系,并说明你的理由:(2)如图2,作外角的平分线交的延长线于点.若,,求的度数.【参考答案】***试卷处理标记,请不要删除一、解答题 1.-4. 2.16-3.这批服装的订货任务是1008套,原计划26天完成任务. 4.2x 2y+3x , 1-25.(1)﹣m 2+4m ﹣1;(2)数式2019(a+b )﹣4cd+2mn 的值是﹣14或6. 6.5a-4.5b ;29人 7.y ﹣6x . 8.-6 9.4mn ,-6.10.(1)-19;(2)22;(3)﹣12x 2﹣xy+y 2;(4)834. 11.(1)28 ;(2)4(1)s n =- 12. 13.a -2b .14.(1)-31;(2)73)111.1︒. 15.13-16.(1)∠COE=56°;(2)∠BOD=112°. 17.11x 2-11xy-y ;67.18.12. 19.-33. 20.5a 2b+2;-18.21.(1)﹣6;(2)3;(3) [3﹣(﹣2)]2﹣1=24(答案不唯一,符合题意正确即可). 22.(1)-12;(2)3.6(3)-15;(4)-1. 23.(1)-6;(2)16; 24.(1) ﹣1 (2) 32-(3) 22 25.(1)<,=, >, <;(2)a-c+b 26.(1)()6266213222+⨯+⨯,6121+-7121+;(2)()2213222nn n +⨯+⨯,121n +-1121n ++;(3)1443;(4)()1122321n n ++-+. 27.(1)D 点对应的数是−2;(2)C 点对应的数是+3. 28.(1)40; (2)28;(3)﹣260. 29.131230.5x 2+5y ,154-. 31.(1)x=7;(2)x=12. 32.120°33.(1)45°;(2)∠AEG =80°;(3)2m ﹣180 34.(1)①;;②;(2)①;②.35.3cm 或7cm36.(1) 见解析;(2)见解析. 37.(1)45°;(2)72°.38.线段AC 的长是5厘米或11厘米. 39.见解析.40.(1)作图见解析;(2)作图见解析;(3)AH ;(4)作图见解析. 41.(1):x =5;(2)x =﹣9.42.(1) 该超市第一次购进甲种商品150件、乙种商品90件.(2) 1950元. 43.画图见解析.44.应按现售价的八八折出售 45.m 的值为0.46.(1)30;(2)答案见解析;(3)65°或52.5°.47.(1)见解析;(2)∠OQP=180°+12x°﹣12y°或∠OQP=12x°﹣12y°.48.1349.结果是定值,与x、y取值无关.50.(1)﹣64;(2)a=0.51.-13.52.6个角,分别为∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD,53.(1)每台壁挂式电暖器和小太阳的售价为:1400元,260元;(2)10. 54.(1)设书包的单价为60元,运动服的单价为410元;(2)他应在商场一购买运动服,在商场二购买书包,此时所付的费用为338元. 55.鸽笼有4个,鸽子有27只.56.4天可以完成.57.小明班上全班有48人.58.城中有75户人家.59.甲种消毒液购买了70瓶,乙两种消毒液购买了10瓶.60.(1)①,;②,见解析;(2).。