有限体积法及其网格简介.ppt
有限体积法

enum u e x / 2
(3.10)
在多维问题中, 如果流动方向和网格是斜交的, 截断误差会在垂直于流动方向以及流线方向 产生扩散,这是一种非常严重的误差,函数的峰值或函数值的快速变化会被抹平,为了得到 高精度结果需要采用非常精细的网格。
3.4.2 线性插值(CDS)
e E E (1 E ) P
a e u e a nb u nb Q ( p P p E ) Ae
3.4.1 迎风插值(UDS)
e 用上游计算节点的函数值近似相当于对一阶偏导数采用迎风格式,因此用 UDS 来表示这
种近似方法,在 UDS 中:
if v n e 0 e P E if v n e 0
(3.9)
UDS 是唯一无条件满足有界性要求的近似格式,在数值过程中不会产生数值振荡。UDS 存 在数值粘性。根据 Taylor 公式,该格式具有一阶精度,并具有数值粘性:
(3.11)
E
xe x P xE xP
3
(3.12)
线性插值具有二阶精度,线性插值相当于 FDM 中的 CDS 格式,因此用 CDS 表示。CDS 格 式会产生数值振荡。 对于扩散项
P E x e x E x P
(3.13)
3.4.3 三阶迎风格式(QUICK)
第 3 章 有限体积法
3.1 有限体积法基本原理
上一章讲到的有限差分法将数值网格的节点上定义为计算节点, 并在网格节点上对微分 形式的流体基本方程进行离散,用网格节点上的物理量的代数方程作为原 PDE 的近似。 在本章所要学习的有限体积法则采用了不同的离散形式。 首先, 有限体积法离散的是积 分形式的流体力学基本方程:
有限体积法介绍

有限体积法介绍有限体积法1 有限体积法基本原理上⼀章讲到的有限差分法将数值⽹格的节点上定义为计算节点,并在⽹格节点上对微分形式的流体基本⽅程进⾏离散,⽤⽹格节点上的物理量的代数⽅程作为原PDE 的近似。
在本章所要学习的有限体积法则采⽤了不同的离散形式。
⾸先,有限体积法离散的是积分形式的流体⼒学基本⽅程:d q ds ds SSΩΩ+??Γ=?φφρφn n v(1)计算域⽤数值⽹格划分成若⼲⼩控制体。
和有限差分法不同的是,有限体积法的⽹格定义了控制体的边界,⽽不是计算节点。
有限体积法的计算节点定义在⼩控制体内部。
⼀般有限体积法的计算节点有两种定义⽅法,⼀种是将⽹格节点定义在控制体的中⼼,另⼀种⽅法中,相邻两个控制体的计算节点到公共边界的距离相等。
第⼀种⽅法的优点在于⽤计算节点的值作为控制体上物理量的平均值具有⼆阶的精度;第⼆种⽅法的好处是在控制体边界上的中⼼差分格式具有较⾼的精度。
积分形式的守恒⽅程在⼩控制体和计算域上都是成⽴的。
为了获得每⼀个控制体上的代数⽅程,⾯积分和体积分需要⽤求⾯积公式来近似。
2 ⾯积分的近似采⽤结构化⽹格,在⼆维情况下,每⼀个控制体有4个⾯,⼆维情况,每⼀个控制体有6个表⾯。
计算节点⽤⼤写字母表⽰,控制体边界和节点⽤⼩写字母表⽰。
为了保证守恒性,控制体不能重叠,每⼀个⾯都是相邻两个控制体的唯⼀公共边界。
控制体边界上的积分等于控制体个表⾯的积分的和:∑??=kkfds fdS(2)上式中,f 可以表⽰n u ρφ或nΓφ。
显然,为了获得边界上的积分,必须知道f 在边界上的详细分布情况,这是不可能实现的,由于只是计算节点上的函数值,因此必须采⽤近似的⽅法来计算积分。
整个近似过程分成两步第⼀步:⽤边界上⼏个点的近似积分公式第⼆步:边界点上的函数值⽤计算节点函数值的插值函数近似⾯积分可采⽤以下不同精度的积分公式:⼆阶精度积分:e e e e S e Sf S f fds F e≈==?(3)上式中e f 为边界中点出的函数值。
计算流体力学讲义CFD2013-第7讲-有限体积法1

守恒变 量重构 原始变 量重构 特征变 量重构
U
U I 1/ 2 min mod(U I 1 U I ,U I U I 1 )
U IR1/2 U I 1 1/ 2 min mod(U I 1 U I ,U I 2 U I 1 ) qIL1/2 qI 1/ 2 min mod(qI 1 q I , qI qI 1 ) qIR1/2 qI 1 1/ 2 min mod(qI 1 q I , qI 2 qI 1 )
Q11 R11 / a11
Qij (Rij dij Qi 1, j eij Qi , j 1 ) / aij
Qmn Rmn / amn
Qij (aij Qij bij Qi 1, j cij Qi , j 1 ) / aij
3
§ 7.1 结构网格有限体积法
有限体积法主要优势: 处理复杂网格 差分法处理复杂外形 —— 坐标变换
U IJ t
残差=净通量=右端项
9
2. 无粘通量的计算
F nds
常用方法 (流过AB边的通量): a. 利用周围点的值,计算出(I+1/2,J)
点处的物理量; b. 利用该处的物理量,计算出流过 AB边的流通量
方法1: 中心型有限体积法
U I 1/2, J
1 U I , J U I 1, J 2
f 3 f 3 f f z 3 z 3 z z
ˆ J 1 ( f f f ) f 1 x 1 y 2 z 3
ˆ J 1 ( f f f ) f 2 x 1 y 2 z 3 ˆ J 1 ( f f f ) f 3 x 1 y 2 z 3
有限体积法介绍

有限体积法1 有限体积法基本原理上一章讲到的有限差分法将数值网格的节点上定义为计算节点,并在网格节点上对微分形式的流体基本方程进行离散,用网格节点上的物理量的代数方程作为原PDE 的近似。
在本章所要学习的有限体积法则采用了不同的离散形式。
首先,有限体积法离散的是积分形式的流体力学基本方程:•d q ds ds SS⎰⎰⎰ΩΩ+∇⋅Γ=⋅φφρφn n v(1)计算域用数值网格划分成若干小控制体。
和有限差分法不同的是,有限体积法的网格定义了控制体的边界,而不是计算节点。
有限体积法的计算节点定义在小控制体内部。
一般有限体积法的计算节点有两种定义方法,一种是将网格节点定义在控制体的中心,另一种方法中,相邻两个控制体的计算节点到公共边界的距离相等。
第一种方法的优点在于用计算节点的值作为控制体上物理量的平均值具有二阶的精度;第二种方法的好处是在控制体边界上的中心差分格式具有较高的精度。
积分形式的守恒方程在小控制体和计算域上都是成立的。
为了获得每一个控制体上的代数方程,面积分和体积分需要用求面积公式来近似。
2 面积分的近似采用结构化网格,在二维情况下,每一个控制体有4个面,二维情况,每一个控制体有6个表面。
计算节点用大写字母表示,控制体边界和节点用小写字母表示。
为了保证守恒性,控制体不能重叠,每一个面都是相邻两个控制体的唯一公共边界。
控制体边界上的积分等于控制体个表面的积分的和:∑⎰⎰=kS Skfds fdS(2)上式中,f 可以表示n u ρφ或n∂∂Γφ。
显然,为了获得边界上的积分,必须知道f 在边界上的详细分布情况,这是不可能实现的,由于只是计算节点上的函数值,因此必须采用近似的方法来计算积分。
整个近似过程分成两步第一步:用边界上几个点的近似积分公式第二步:边界点上的函数值用计算节点函数值的插值函数近似 面积分可采用以下不同精度的积分公式: 二阶精度积分:e e e e S e Sf S f fds F e≈==⎰(3)上式中e f 为边界中点出的函数值。
有限体积法介绍

?SfdS???fds kSk(2)
上式中,f可以表示??un或???。 ?n
1
有限体积法
1 有限体积法基本原理
上一章讲到的有限差分法将数值网格的节点上定义为计算节点,并在网格节点上对微分形式的流体基本方程进行离散,用网格节点上的物理量的代数方程作为原PDE的近似。 在本章所要学习的有限体积法则采用了不同的离散形式。首先,有限体积法离散的是积分形式的流体力学基本方程:
???v?nds???n???ds??SS?q?d?? 算域上都是成立的。为了获得每一个控制体上的代数方程,面积分和体积分需要用求面积公式来近似。
2 面积分的近似
采用结构化网格,在二维情况下,每一个控制体有4个面,二维情况,每一个控制体有6个表面。计算节点用大写字母表示,控制体边界和节点用小写字母表示。为了保证守恒性,控制体不能重叠,每一个面都是相邻两个控制体的唯一公共边界。 控制体边界上的积分等于控制体个表面的积分的和:
有限体积方法

有限体积方法引言有限体积法(FVM)是在物理空间上积分形式的守恒方程进行直接离散的数值方法。
与有限差分方法相比有限体积方法更具有一般性,适用于任意形式的网格,结构网格与非结构网格均适用。
有限体积法是一种基于将CFD中最基本的量在单元内的平均值,这是与有限差分及有限元方法区别的地方,后边两种方法的数值量都取为在网格点上。
FVM方法一个重要优势是跟守恒性离散这个重要的概念联系起来,它可以自动满足具有守恒性的离散。
另一个优点就是适用于任意的网格。
5.1 守恒性离散对于量U守恒律的一般积分形式可以由式(1.1.1)给出如下将上式的最终表面源项合并到通量项中得到该表达式的基本特点是存在表面积分以及在体积内U的时间变化只依赖于表面上的通量. 如图5.1.1所示可将一个体积元分解成三个亚体元,对于每个亚体元写出守恒律表达式将这些表面积分进行加和,内部线ADB以及DE总是两次出现,但是方向相反,将三部分积分守恒律相加,这些内部的贡献量就会抵消,只剩下外边界的贡献量.例如,对于有一个通量的贡献量而对于也有一个相似的项:这样这两项相加就可以抵消. 故要保证格式是守恒的,通量的数值离散必须满足这样一个基本性质.下面我们以一维守恒律的情形来说明这个问题结合图5.1.2来说明这个问题其中f是矢量通量的x方向分量, 参考上图, 定义一个一维有限体积网格,并把中间点定义为“单元面”. 例如, 对于元(i), 单元面就是i-1/2与i+1/2的中点.对该有限体积网格应用中心差分, 在i, i+1与i-1点处分别离散得到将以上三个方程加和就得到了与元AB(i-3/2, i+3/2)上的守恒律相容的离散方程,即从上式可以看出内部点的通量贡献已经抵消掉. 有时这种特性称为通量项的“telescoping property”, 对于元AB, 只考虑中间点i(不考虑i-1与i+1点),则离散形式可以直接写为从 5.1.7的两式对比中, 我们可以看到通量部分的离散具有统一的形式, 这就是我们所要强调的守恒的特性.如果我们要考虑方程(5.1.3)的非守恒形式, 则通量的导数就可以写为其中, a(u)为Jacobian函数, , 故非守恒形式可以写为利用图5.1.2所示的有限体积网格, 对非守恒形式在i点应用二阶中心差分得到其中是的值.同样,对于i+1点以及i-1点有,将9式中三个离散式子进行加和得到参考5.1.7b, 将5.1.8式直接在AB上进行离散,可得我们发现5.1.10a右边由元AB内部点贡献的通量部分并不能互相抵消掉, 表现出源项的特点,这导致计算机程序不能将之与物理源项相区分, 故非守恒形式的离散会产生内部源.这些项被认为在网格点处展开为一项的二阶形式. 在连续流情况下可以忽略它, 但是对于计算非连续流动,比如流动中有激波产生, 就会产生巨大的误差. 数值实验显示非守恒形式比守恒形式的精度更低,尤其是在遇到梯度大的地方,由于数值源项的存在会产生更大的误差.5.1.1 守恒的离散化的正式表示方法对于5.1.3式,如果离散成如下的形式就可以满足守恒性要求,为数值通量, 其为u在(2k)个邻域内点的函数.此外, 方程5.1.11与原方程相容性要求当所有的均相等时,有这些都可以直接推广到多维的情形, 以上条件必须分别对矢量通量的所有分量均成立.定理: 当趋近于0时,若离散方程5.1.11的解几乎处处收敛于某个函数值, 则是方程 5.1.3的弱解(可以存在有限个间断——Rankine-Hugoniot条件)5.2 有限体积方法基础有限体积方法是积分形式的守恒律方程的直接离散,这是有限体积方法与有限差分方法最大的区别,由于积分形式是守恒律的最一般的表达式,它不要求通量一定是连续的,这就是有限体积方法接近真实流动的原因.FVM需要按以下步骤来构建:1.划分网格,由空间离散得到有限体积,一个控制体积与每一个网格点都相关联2.在每一个有限体积上应用积分形式的守恒律.有限体积选择的条件由于具有普遍性,有限体积方法能够适用于任何类型的网格,结构与非结构.单元居中的方法: 未知量定义在网格单元的中心,网格线定义了有限体积及表面积, 此处, 变量与单元相关,如图5.2.1a及c. 流动变量是在整个单元的平均值, 可以认为是单元内部某些有代表性点的值, 例如单元中心点.单元顶点的方法: 未知量定义在网格角上,此处变量与网格点相关,例如单元顶点, 如图5.2.1b,d所示在相容的有限体积方法的体积的选择上,以下的限制条件必须得到满足:(i)它们的总数应该覆盖整个区域(ii)亚区域是允许重叠的,条件是表面的每一部分作为一个偶数个不同亚区域的部分而出现,这样整体的总积分守恒律就适用于任何相邻亚区域的组合域.(iii)通量沿单元表面必须由不依赖于当地单元的公式来计算.(iii)确保了守恒特性的满足,因为通量的内部边界的贡献量会抵消掉(相关的有限体积相加之后)5.2.2 有限体积离散的定义将积分型守恒律应用到每一个控制体积, 关联到网格点J, 因此对于依附于该点或单元上未知量的离散化方程可定义为:该方法的优点(对于无源项方程尤其有优势)是通量只在二维表面上计算,而不是三维空间中. 5.2.1可由其离散形式代替,对于参考图5.2.1a对于单元1(i, j), 用统一表示, 是ABCD面. 通量项在4条边AB, BC, CD, DA求和.式(5.2.2) 说明了有限体积法与有限差分及有限元法区别的一些重要特性: 1.点J的坐标是变量的准确位置,在控制体积内它将不会明确的标出.因此在控制体内联结到一个固定点,将之看作是整个控制元上该流动变量U的一个平均值(图5.2.1a). 5.2.2式中第一项代表在选定的控制体积上流动变量的平均值的时间变化率.2.网格坐标只出现在确定的单元体积以及侧面上. 因此, 参照图5.2.1a, 考察点1的控制元ABCD只有A,B,C,D的坐标将是需要用到的.3.当不存在源项的时候,有限体积方程式表示时间间隔内U的平均值变化等于相邻单元之间通量的交换量,对稳态流动,得到的数值解是通量进入控制体平衡的结果, 即例子: 图5.2.1a中AB面,对于1则通量贡献量为正,而8则为负.4. 有限体积也允许边界条件的自然引入, 例如固壁, 法向分量为0, 对连续方程. 在固壁处. 因此对(5.2.2)及(5.2.3)的相应的贡献变为0.5.2.3 数值格式的一般表达式假设守恒律的积分形式(5.2.1)对于控制体积, 从到进行积分有,引入单元平均守恒变量, 在时间的源, 单元与时间平均源, 以及每个边上的数值通量, 分别定义如下守恒的离散化采用如下形式:其中与任何网格点无关, 它是整个单元上的平均. 为了在离散化的水平上实现守恒,在给定的单元面上的数值通量的估计必须独立于其所属的单元.如果考虑空间离散完全由其数值通量来定义,时间积分项暂不处理,则以上的数值方法就会得到其一般形式. 一个一般的数值格式可以定义为对时间的常微分方程为定义残差为整个单元上的通量平衡减去源项贡献. 5.2.6是5.2.7的时间的向前差分,也有其他的时间离散方法,例如龙格-库塔法.守恒性条件可选择的公式在任意数量的单元上对5.1.2进行展开, J=1-N. 对所有的单元进行加和,削去所有单元内表面的贡献项得,定义为在整个单元的平均值,该格式的守恒性要求,在每一个时间步,如下的条件要得到满足,边界以及源项5.3 有限体积方法的实际应用5.3.1 二维有限体积方法如图5.2.1a,考察控制单元ABCD, 方程5.2.1可写为f, g为矢量通量F的直角坐标分量,对边AB,表面矢量可定义为对于单元,可以得到有限体积方程ABCD展开求和包括ABCD的四条边,对于一般的四边形,面积可由对角线矢量乘积表示,如图5.3.1, 平行四边形1234的面积是ABCD的两倍,因此, 为点A的位置矢量.对于单元ABCD,上式右边为正.通过单元表面通量的计算沿侧边通量分量,如的计算(a)对于中心离散格式以及单元中心化的有限体积方法,有以下做法:1.通量平均2.由于通量分量一般是U的线性函数,以下的式子与5.3.5不等价3.将取为通量在A及B处的平均这里,可以在A及B处求变量的值, 例如以及也可以进行通量的直接平均, 例如:可以看到, 5.3.7与5.3.10比5.3.8与5.3.11需要更少的通量计算(b)对于中心格式及单元-顶点的有限体积方法:5.3.7, 5.3.8是对通量的直接近似, 5.3.8是对应着对积分梯形公式的应用通过加和在单元ABCD四个边积分的贡献量(如图5.2.1b), 可以得到例子: 在笛卡儿网格下的中心离散格式. 在笛卡儿坐标, 均匀网格下,上述有限体积公式与有限差分的公式是一致的. 由可以得到(此处记, 同样其他的量也采用类似的记法)两边除以可以得到中心差分格式将5.3.5式应用到图5.2.1a, 方程E5.3.3变为而由5.3.8与5.3.11将推出如下的公式(c)单元-中心化有限体积的迎风格式(利用上游点求下游)对流通量以相关的对流速度传播方向的函数来计算,其中由图5.2.1a可以定义(d)对于迎风-单元顶点的有限体积方法(图5.2.1b), 可以定义例子:E5.3.2 “笛卡儿坐标网格中的迎风格式”考虑二维线性对流方程的离散如图5.2.1a所示, 在单元ABCD应用有限体积的公式:通量定义为, 选择方程5.3.14, AB,CD为竖直边,有对于水平边BC, DA有故其得到的格式为一阶迎风格式的推广, 具有一阶精度5.3.2 梯度的有限体积的计算对于任意一个体积,由高斯定理得此处,S是封闭的边界表面,定义平均化的梯度为以及对于二维控制单元,可以得到如图5.2.1d, 在公式两边应用梯形积分公式, 得到此处对所有的顶点求和,从1到6, 以及. 经过整理可得到对于y同样存在这样的关系计算单元面积: 当U=x时,方程5.3.21左侧为1. 对于任意一个单元的面积可用如下的式子进行计算,对任意一个四边形ABCD, 如图5.3.2, 可以得到以及对于y方向导数有,对于同一单元的封闭面与体有如下关系对于二维单元, 取, 可以推出如下的公式例子: E5.3.3 二维扩散方程考虑二维扩散方程对于扩散的通量分量(k为常数) 在图5.2.1a的网格上进行有限体积的离散,将整个单元ABCD的通量表示如下,在单元的格点A,B上计算导数, 对于单元(i, j),方程5.3.3可写为对于A点, U的导数取整个元1,6,7,8的平均值,由5.3.26得对于B可以得到与A类似的关系通过边AB对通量的贡献为E5.3.14与E5.3.15两式的加和, 并与相乘而得到的,同理通过BC通量的贡献为类似的关系对于C有最后,对于方程E5.3.13有, 可以写为该数值离散对应的是图4.2.3中Laplace算子的离散.更简单的办法为这样就推出了扩散方程的标准有限差分格式(对应图4.2.2)以上可以推广到多维的情况以及流行的结构及非结构网格上去.。
计算流体力学(中科院力学所)第10讲有限体积法2精品PPT课件

5
u f (u) 0 t x
uj fˆj1/2fˆj1/2
x
x
uj fj1/2fj1/2
x
x
概念:MUSCL与 非MUSC类方法
差分 有限体积
fˆ j 1 / 2
切线 u j
uj
j-1
fˆ j 1 / 2
f j1/ 2
如何计算 fˆ j 1 / 2 或 f j 1 / 2 ?
方法1 (非MUSCL类): 直接利用周围几个点的函数
利用积分关系计算接触间断的速度及其左右 的物理量
ZL U *L
Z* ZR U *R
根据积分关系,可知
红色区域积分可得 f* L fL Z L (U * L U L )
蓝色区域积分可得 f* R fR Z R (U * R U R )
TZ L
x TZ R
R-H关系式; 弱解定义式 含义: 控制体内质量的增加等于
求解方程组:
riemannsolversnumericalmethodsfluiddynamicsspringer2009thirdedition控制体内质量动量能量的减少等于流出控制面的通量lixinliang若控制体空间足够大或时间跨度足够小扰动波未达到控制体的边界如图未扰动把积分域分成三段
计算流体力学讲义
[ U ( x ,T ) U ( x ,0 )d ] x [ f( x L ,U t) ) f(( x U R ,t)d ) 0 ] t
x L
0
Ref.: E. F. Toro: Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, 2009 (Third Edition)
教学课件:第1章-有限体积法

在应用中,有限体积法能够处理复杂的多物理场耦合问题,如流体与结 构的相互作用、热力电化学反应等,为复杂系统设计和优化提供重要依 据。
04
有限体积法的优缺点
教学与人才培养
为了更好地推广和应用有限体积法, 需要加强教学和人才培养工作。例如 ,在高校开设相关课程,介绍有限体 积法的基本原理和应用实例;组织学 术交流活动,促进研究人员之间的合 作与交流;提供实践机会,让学生在 实际项目中锻炼和掌握有限体积法的 应用技能。
THANKS
感谢观看
在应用中,有限体积法能够处理复杂 的流动问题,如湍流、分离流和多相 流等,为工程设计和优化提供重要依 据。
通过将连续的流体离散成有限个控制 体,有限体积法能够求解流体动力学 的控制方程,如Navier-Stokes方程, 得到流场的数值解。
有限体积法在传热学中的应用
传热学是研究热量传递规律的科学,有限体积法在传热学中广泛应用于数值传热学 模拟。
通过具体的应用实例,如一维稳态对 流方程、二维非稳态对流方程等,展 示了有限体积法的计算过程和结果。 这些实例表明,有限体积法能够准确 地模拟流体流动和传热过程,为工程 实际问题提供了有效的数值解决方案 。
有限体积法的局限性 和改进方向
尽管有限体积法具有许多优点,但在 某些情况下也存在一些局限性,如处 理复杂边界条件、非均匀网格划分等 问题。为了提高计算精度和效率,未 来的研究可以针对这些局限性进行改 进,如开发更高效的数值格式、研究 自适应网格技术等。
有限体积法的优点
精度高
有限体积法在计算流体 动力学问题时,能够得 到高精度的数值结果。
有限体积法介绍

有限体积法1 有限体积法基本原理上一章讲到的有限差分法将数值网格的节点上定义为计算节点,并在网格节点上对微分形式的流体基本方程进行离散,用网格节点上的物理量的代数方程作为原PDE 的近似。
在本章所要学习的有限体积法则采用了不同的离散形式。
首先,有限体积法离散的是积分形式的流体力学基本方程:•d q ds ds SS⎰⎰⎰ΩΩ+∇⋅Γ=⋅φφρφn n v(1)计算域用数值网格划分成若干小控制体。
和有限差分法不同的是,有限体积法的网格定义了控制体的边界,而不是计算节点。
有限体积法的计算节点定义在小控制体部。
一般有限体积法的计算节点有两种定义方法,一种是将网格节点定义在控制体的中心,另一种方法中,相邻两个控制体的计算节点到公共边界的距离相等。
第一种方法的优点在于用计算节点的值作为控制体上物理量的平均值具有二阶的精度;第二种方法的好处是在控制体边界上的中心差分格式具有较高的精度。
积分形式的守恒方程在小控制体和计算域上都是成立的。
为了获得每一个控制体上的代数方程,面积分和体积分需要用求面积公式来近似。
2 面积分的近似采用结构化网格,在二维情况下,每一个控制体有4个面,二维情况,每一个控制体有6个表面。
计算节点用大写字母表示,控制体边界和节点用小写字母表示。
为了保证守恒性,控制体不能重叠,每一个面都是相邻两个控制体的唯一公共边界。
控制体边界上的积分等于控制体个表面的积分的和:∑⎰⎰=kS Skfds fdS(2)上式中,f 可以表示n u ρφ或n∂∂Γφ。
显然,为了获得边界上的积分,必须知道f 在边界上的详细分布情况,这是不可能实现的,由于只是计算节点上的函数值,因此必须采用近似的方法来计算积分。
整个近似过程分成两步第一步:用边界上几个点的近似积分公式第二步:边界点上的函数值用计算节点函数值的插值函数近似 面积分可采用以下不同精度的积分公式: 二阶精度积分:e e e e S e Sf S f fds F e≈==⎰(3)上式中e f 为边界中点出的函数值。
有限体积法()ppt课件

*1980年Patankar教授的名著“Numerical Heat Transfer and Fluid Flow”出版。
这本书内容精炼,说理透彻,注重物理概念的阐述,深 受全世界数值传热的研究者与使用者的欢迎。出版后 不久,被相继译成俄文、日文、波兰文及中文等,成 为数值传热学领域中的一本经典著作
19
精选ppt
非结构网格在有限体积法中的应用
●非结构网格最早用于FEM; ●但题水流使流体得(流基如动于浅是F水E高流M度动的非,非线水结性波构问运网题动格,等技而)术且计未F算E能M 上在得计对到算流重量问视较题;大为,主这的些地面问 ●八了十广年泛代的以发来展,和基应于用F;VM 的非结构网格技术在空气动力学得到 ●九十年代开始一些专家学者根据浅水流动特征,将这些算法引
4
精选ppt
发展情况
1980年,S.V.Patanker在其专著《Numericacl Heat Transfer and Fluid Flow》中对有限体积 法作了全面的阐述。
此后,该方法得到了广泛应用,是目前CFD 应用最广的一种方法。
FLUENT、PHOENIX等软件都基于有限体积 法
47
精选ppt
解:
48
精选ppt
对中间节点2,3,4:
49
精选ppt
边界节点1:
50
精选ppt
整理得到:
51
精选ppt
边界节点5:
整理得到:
52
精选ppt
工况1
53
精选ppt
54
精选ppt
工况2
改进办法:需要增加网格数
55
精选ppt
工况3
56
精选ppt
差分格式问题
2有限体积法及其网格简介

Typical control volume
(节点排列有序,称之为结构网格)
W P E
1
i-1
NW
i
Dx
N
n
i+1
NE
N
dyn
W j,y,v i,x,u w
P s
e
E
Dy
dys
SW
S
SE
dxw
dxe
6
非结构网格
非结构网格的网格节点以一 种不规则的形式布置在流场 中。这种网格虽然生成过程 比较复杂,但对具有复杂边 界的流场计算问题特别有效。 非结构网格一般通过专门的 程序或软件来生成。
t d iv ( ρ φ u ) d iv ( g r a d ) S
它代表的物理意义是:
φ 随 时 间 的 变 化 量 φ由 于 边 界 对 流 引 起 的 净 减 少 量 φ由 边 界 扩 散 引 起 的 净 增 加 量 φ由 内 源 引 起 的 净 产 生 量
7
网格几何要素的标记
P表示所研究的节点。 东、西侧相邻节点用E、W表示。 东、西侧界面用e、w表示。 两个界面间的距离用 D x 表示。 二维、三维问题增加上下标识。 W P
i
E
i+1 N
8
1
i-1
问题的描述
通用守恒型方程:无论是连续方程、动 量方程还是能量方程,都可以写成通用 形式。
利用高斯散度定理将方程中的两个散度项(方程左 端的对流项和方程右端的扩散项)的体积分转换为 关于控制体积表面上的面积分。 高斯定理:
V
div ( a ) dV
有限体积方法

第三讲 空间离散方法—有限体积法由于控制方程的复杂性,很难求出其解析解,一般采用数值方法对其进行求解。
采用数值求解方法,首先要对流场空间进行离散,即用一些基本体积单元对物理空间进行填充,要求这些体积单元既不能重叠,也不应有间隙,我们称这些体积单元为网格,或控制体积,填充的过程则称为网格生成。
对于二维流动,基本的网格单元有三角形和四边形网格,而对于三维流动,则基本的网格单元可由四面体、三棱柱、金字塔和六面体单元组成,图3.1即为机翼附近网格。
网格划分完成后,就可以应用相应的数值求解方法把每个网格单元中心点处的流动变量求解出来,也就完成了全部流场的计算。
有限体积法就是针对每个控制体积直接对积分形式的控制方程进行离散,从而把积分型方程近似为代数方程进行求解的方法。
图3.1 机翼附近网格3.1 N-S 方程的半离散形式积分形式的N-S 方程为: ∫∫Ω∂Ω=⋅−+Ω∂∂0)(dS n F F Qd t V c r (3-1) 针对空间某一控制体I Ω,首先对时间导数项进行处理,假设守恒变量Q 在控制体积内为常数分布,即等于控制体中心点处的值I Q (也即为控制体积内守恒变量的平均值),有∫Ω∂∂Ω=Ω∂∂t Q Qd t I (3-2) 式(3-1)变为 ∫Ω∂⋅−Ω−=∂∂dS n F F t Q v c I r )(1 (3-3)假设对流通量和粘性通量在控制体界面上为常值分布,且等于界面中心点(面心)处的值,则有 ⎥⎦⎤⎢⎣⎡Δ⋅−Ω−=∂∂∑=F N m m m v c I S F F t Q 1)(1 (3-4) 对式(3-3)右端项的近似称为空间离散,而式(3-4)时间方向暂时保留连续的形式,所以称该式为半离散控制方程。
式(3-4)中的m S Δ为第m 个界面的有向面积,即该面的外法线矢量与界面面积的乘积,为一矢量,又称面积矢量。
仔细观察半离散方程可以发现:时间导数项是由单元中心点处的守恒变量值表示的,我们称其为单元中心法;式(3-4)右端项中的通量是关于界面处流动变量的函数,需由界面处的流动变量来确定,由此可看出,流动变量I Q 与流动通量m S F Δ⋅的空间存储位置不同,要想求出流动通量,需先假设流动变量在控制体积内的分布规律,这一过程称为重构,然后确定界面处的流动变量值,再求出界面处的流动通量。
有限体积法1

为控制面上的流体质量流量
式(a)-式(b)×φP 得到
0 φP − φP ρ ∆x + J e − J w − (Fe − Fw )φ P = (S C + S P φ P )∆x ∆t 0 P
12
构造通量的离散格式。 最简单的做法: 假设φ在结点之间近似为线性分布,得
J e = (ρuφ)e + (Γ δx )e (φP − φE )
27
采用松弛技术可以改变迭代的进度。 方程 改写成
a P φ P = ∑ a nb φnb + b
∑ a nb φ nb + b φP = φ∗ + − φ∗ P P a P
φP*为 φP 的上一步的迭代值,下标 nb 代表与 P 相邻的结点。 引入松弛因子α来修改每步迭代中 φP 的变化幅度
∂ρφ ∂J + =S ∂t ∂x
流速为 u,通量
J = J x = ρuφ − Γ ∂φ ∂x
8
有限体积法步骤如下: , (1) 划分网格,取结点 xi+1 = xi +δxi (i = 0,1,2,…) δxi 为结点间距。网格可以是不均匀的。 (2) 利用守恒型方程的积分对任一内部结点 P 构造离散化 的代数方程。 从而得到一封 (3) 根据边界条件构造边界结点的离散方程, 闭的代数方程组。 (4) 求解方程组得到各结点上的φ值。 与差分法的主要区别在于其离散化方程的构造。
(4.5.15a) 类似地可以导出界面 w 上的通量离散式
exp(Pw ) φ − φP ( ) J w = Fw φW + W F = φ + φ − φ w P W P exp(Pw ) − 1 exp(Pw ) − 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t div(ρφu) div( grad) S 它代表的物理意义是:
φ随时间的变化量 φ由于边界对流引起的净减少量 φ由边界扩散引起的净增加量 φ由内源引起的净产生量
9
方程的分类
瞬态扩散方程
t div( grad) S
稳态扩散方程
div( grad) S 0
瞬态对流扩散方程
非结构网格一般通过专门的 程序或软件来生成。
7
网格几何要素的标记
P表示所研究的节点。 东、西侧相邻节点用E、W表示。 东、西侧界面用e、w表示。 两个界面间的距离用Dx表示。 二维、三维问题增加上下标识。
WP E
1
i-1 i i+1
N
8
问题的描述
通用守恒型方程:无论是连续方程、动 量方程还是能量方程,都可以写成通用 形式。
在离散过程中,将一个控制体积上的物理量定 义并储存在该节点处。
5
Typical control volume
(节点排列有序,称之为结构网格)
WP E
1
i-1 i i+1
N
Dx
NW
N
NE
dyn
j,y,v
dys
i,x,u
n
W w
P e
s
SW
S
E
Dy
SE
dxw
dxe
6
非结构网格
非结构网格的网格节点以一 种不规则的形式布置在流场 中。这种网格虽然生成过程 比较复杂,但对具有复杂边 界的流场计算问题特别有效。
conservation is satisfied exactly over the control
volume.
4
节点、控制体积、界面、网格线
节点:需要求解的未知物理量的位置 控制体积:应用控制方程或守恒定律的最小几
何单位 界面:它规定了与各节点相对应的控制体积的
分界面位置。 网格线:联结相邻两节点而形成的曲线簇。 有限体积法中,把节点看做控制体积的代பைடு நூலகம்。
volume and apply the divergence theorem. To evaluate derivative terms, values at the control
volume faces are needed: have to make an assumption about how the value varies. Result is a set of linear algebraic equations: one for each control volume. Solve iteratively or simultaneously.
The grid defines the boundaries of the control volumes while the computational node lies at the center of the control volume.
The advantage of FVM is that the integral
t div(u) div( grad) S
稳态对流扩散方程 div(u) div( grad) S
10
有限体积法的关键步骤:
将控制方程在控制体积内积分
ρφ
V
t
dV div(ρφu)dV div(Γ gradφ)dV SφdV
V
V
V
利用高斯散度定理将方程中的两个散度项(方程左
端的对流项和方程右端的扩散项)的体积分转换为
关于控制体积表面上的面积分。
高斯定理:
div(a)dV n• adA
V
A
11
控制方程改写为:
t
V
ρφdV
A
n
(ρφu)dA
A
n
(Γ
gradφ)dA
V
SφdV
用文字表述的特征变量在控制体积内的 守恒关系为:
φ随时间的变化量 φ由于边界对流引起的净减少量 φ由边界扩散引起的净增加量 φ由内源引起的净产生量
有限体积法获得的离散方程,物理上表示的是控制容 积的通量平衡,方程中各项有明确的物理意义。这也 是有限体积法与有限差分法和有限元法相比更具有优 势的地方。
2
Finite volume: basic methodology
Divide the domain into control volumes. Integrate the differential equation over the control
t
V
ρφdV
dt
Δt
A
n
φρu dAdt
Δt
A
n
Γ
grad
φdAdt
Δt
V
SφdV
13
3
2.2.2有限体积法所使用 的网格
Cells and nodes
Boundary node Control volume
Computational node
Using finite volume method, the solution domain is subdivided into a finite number of small control volumes (cells网格单元) by a grid.
2.2有限体积法及其网格介绍
1
2.2.1 有限体积法思想
有限体积法是在有限差分法基础上发展起来的,同时 它又吸收了有限元法的一些优点。
基本思路:将计算区域划分为网格,并使每个网格点 周围有一个互不重复的控制体积,将待解微分方程 (控制方程)对每一个控制体积分,从而得出一组离
散方程。其中的未知量是网格点上的因变量 。
φ随时间的变化量 φ由边界流进控制容积的量 φ由边界扩散进入控制体积的量 φ由内源产生的量
12
对稳态,时间相关项为零,方程为:
n ρφudA n Γ grad φdA SφdV
A
A
V
对瞬态,还需对时间积分,以表明从时刻t到 (t+△t)的时间段内未知量仍保持其守恒性
Δt