中学数学第一单元知识小结
海口实验中学七年级数学上册第一单元《有理数》-选择题专项知识点总结(含解析)
一、选择题1.在数轴上距原点4个单位长度的点所表示的数是( ).A .4B .-4C .4或-4D .2或-2C解析:C【解析】解:距离原点4个单位长度的点在原点的左边和右边各有一个,分别是4和-4,故选C . 2.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a ﹣b <0D .ab >0A解析:A【分析】根据数轴判断出a 、b 的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b <﹣1<0,0<a <1,∴a+b <0,故选项A 符合题意,选项B 不合题意;a ﹣b >0,故选项C 不合题意;ab <0,故选项D 不合题意.故选:A .【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a 、b 的符号,熟知有理数的运算法则是解题关键.3.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C 解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.4.已知有理数a ,b 满足0ab ≠,则||||a b a b +的值为( ) A .2±B .±1C .2±或0D .±1或0C解析:C【分析】 根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果.【详解】∵0ab ≠,∴当0a >,0b <时,原式110=-=; 当0a >,0b >时,原式112=+=; 当0a <,0b <时,原式112=--=-;当0a <,0b >时,原式110=-+=.故选:C .【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.5.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0C 解析:C【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n 大于m ,并从数轴知m 小于0,n 大于0,所以mn 小于0,则A ,B ,D 均错误.故选C .6.6-的相反数是( )A .6B .-6C .16D .16- B 解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B .7.当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,记作( )A .海拔23米B .海拔﹣23米C .海拔175米D .海拔129米B 解析:B【解析】由已知,当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,则应该记作“海拔-23米”,故选B.8.计算-3-1的结果是( )A .2B .-2C .4D .-4D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.9.若a ,b 互为相反数,则下面四个等式中一定成立的是( )A .a+b=0B .a+b=1C .|a|+|b|=0D .|a|+b=0A 解析:A【解析】 a ,b 互为相反数0a b ⇔+= ,易选B.10.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作().A .+0.02克B .-0.02克C .0克D .+0.04克B 解析:B【解析】-0.02克,选A.11.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .-12 B .12 C .56 D .56A 解析:A【分析】根据有理数加减法法则计算即可得答案.【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A .【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.12.下列各组数中,互为相反数的是( )A .(﹣3)2和﹣32B .(﹣3)2和32C .(﹣2)3和﹣23D .|﹣2|3和|﹣23|A 解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A 、(﹣3)2=9,﹣32=﹣9,互为相反数;B 、(﹣3)2=32=9,不互为相反数;C 、(﹣2)3=﹣23=﹣8,不互为相反数;D 、|﹣2|3=|﹣23|=8,不互为相反数,故选:A .【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键. 13.下列正确的是( )A .5465-<-B .()()2121--<+-C .1210823-->D .227733⎛⎫--=-- ⎪⎝⎭A 解析:A【分析】根据不等式的性质对各选项进行判断即可.【详解】解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A .【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键. 14.有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a < C解析:C【分析】 根据数轴可得0a b <<且a b >,再逐一分析即可.【详解】由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误.故选:C .【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键.15.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( )A .提高20元B .减少20元C .提高10元D .售价一样B解析:B【分析】根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解.【详解】解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元),所以现在的售价与原售价相比减少20元,故选:B .【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.16.下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯- A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 17.计算112123123412542334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值( )A .54B .27C .272D .0C 解析:C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】 解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27 =27×12 =272. 故选:C .【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.18.计算4(8)(4)(1)+-÷---的结果是( )A .2B .3C .7D .43C 解析:C【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【详解】解:原式421=++ 7=,故选:C .【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 19.下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2)D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】A. +(-2)=-2,-2=-2,故A选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D选项中的两个数互为相反数,故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键. 20.下列说法中,其中正确的个数是()(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a表示正有理数,则-a一定是负数;(4)a是大于-1的负数,则a2小于a3A.1 B.2 C.3 D.4C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a表示正有理数,则-a一定是负数,符合题意;(4)a是大于-1的负数,则a2大于a3,不符合题意,故选:C.【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.21.下列说法正确的是()A.近似数5千和5000的精确度是相同的B.317500精确到千位可以表示为31.8万,也可以表示为53.1810C.2.46万精确到百分位D.近似数8.4和0.7的精确度不一样B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A.近似数5千精确度到千位,近似数5000精确到个位,所以A选项错误;B.317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯,所以B选项正确;C.2.46万精确到百位,所以C选项错误;D.近似数8.4和0.7的精确度是一样的,所以D选项错误.故选B.【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.22.定义一种新运算2x yx yx+*=,如:2212122+⨯*==.则()(42)1**-=()A.1 B.2 C.0 D.-2C 解析:C【分析】先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可.【详解】4*2=4224+⨯=2, 2*(-1)=()2212+⨯-=0.故(4*2)*(-1)=0.故答案为C.【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键. 23.下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3600C.6.610精确到千分位D.2.708×104精确到千分位C解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A、近似数1.50和1.5是不同的,A错B、3520精确到百位是3500,B错D、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.24.下列各式中,不相等的是()A.(﹣5)2和52B.(﹣5)2和﹣52C.(﹣5)3和﹣53D.|﹣5|3和|﹣53|B解析:B【分析】本题运用有理数的乘方,相反数以及绝对值的概念进行求解.【详解】选项A :22(5)(5)(5)5-=--=选项B :22(5)(5)(5)525-=--==;25(55)25-=-⨯=-∴22(5)5-≠-选项C :3(5)(5)(5)(5)125-=---=-;35(555)125-=-⨯⨯=-∴33(5)5-=-选项D :35555555125-=-⨯-⨯-=⨯⨯=;35(555)125125-=-⨯⨯=-= ∴3355-=-故选B .【点睛】本题考查了有理数的乘方,相反数(只有正负号不同的两个数互称相反数),绝对值(一个有理数的绝对值是这个有理数在数轴上的对应点到原点的距离),其中正数和零的绝对值是其本身,负数的绝对值是它的相反数.25.下列计算正确的是( )A .|﹣3|=﹣3B .﹣2﹣2=0C .﹣14=1D .0.1252×(﹣8)2=1D 解析:D【分析】根据绝对值的性质,有理数的减法法则,有理数的乘方法则即可求出答案.【详解】A 、原式=3,故A 错误;B 、原式=﹣4,故B 错误;C 、原式=﹣1,故C 错误;D 、原式=[0.125×(﹣8)]2=1,故D 正确.故选:D .【点睛】本题考查了绝对值的化简,有理数的运算法则,熟练掌握有理数运算的运算法则是本题的关键,要注意符号变号问题.26.如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如下四个结论:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14;上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④D解析:D【分析】数轴上单位长度是统一的,利用图象,根据两点之间单位长度是否统一,判断即可.【详解】:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6,故①说法正确;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12,故②说法正确;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7,故③说法正确;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14,故④说法正确.故选:D.【点睛】本题考查了数轴表示数,数轴的三要素是:原点,正方向和单位长度,因此本题的关键是确定原点的位置和单位长度.27.在-1,2,-3,4,这四个数中,任意三数之积的最大值是()A.6 B.12 C.8 D.24B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B.【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.28.数轴上点A和点B表示的数分别为-4和2,若要使点A到点B的距离是2,则应将点A向右移动()A.4个单位长度B.6个单位长度C.4个单位长度或8个单位长度D.6个单位长度或8个单位长度C解析:C【分析】A点移动后可以在B点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C.【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.29.13-的倒数的绝对值()A.-3 B.13-C.3 D.13C解析:C 【分析】首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】13-的倒数为-3,-3绝对值是3,故答案为:C.【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.30.下列各组数中,不相等的一组是()A.-(+7),-|-7| B.-(+7),-|+7| C.+(-7),-(+7)D.+(+7),-|-7|D 解析:D【详解】A.-(+7)=-7,-|-7|=-7,故不符合题意;B.-(+7)=-7,-|+7|=-7,故不符合题意;C.+(-7)=-7,-(+7)=-7,故不符合题意;D.+(+7)=7,−(−7)=−7,故符合题意,故选D.。
人教版高中数学必修一《基本初等函数》全章知识小结
数学·必修1(人教版)基本初等函数一、目标解读函数是高中数学的主要内容之一,这是因为函数思想方法灵活多样,逻辑思维性强,许多数学问题都可以从函数的角度来认识、研究.函数知识与数学的其他各分支的巧妙结合容易形成综合性较强的新颖的试题,这样的试题往往成为高考中极具份量的一类解答题,综合考查考生应用函数知识分析问题、解决问题的能力.而在命题的具体设计上,总是具有从易到难、逐步设问的特点,以较隐蔽的方式给出解题思路,在考查函数内容的同时也考查应用函数的思想方法,观察问题、分析问题和解决问题的能力,同时考查学生数形结合的思想和分类讨论的思想的应用能力.函数是中学数学的重要组成部分.它所涉及的内容是升入大学继续学习的基础,因此,函数不仅是中学数学教学的重点,也是高考考查的重点.近年来,函数的分值占30%左右.函数是高中代数的主线.它体系完整,内容丰富,应用广泛.由于它描述的是自然界中量的依存关系,是对问题本身数量的制约关系的一种刻画,所以是对数量关系本质特征的一种揭示,为我们从运动、变化、联系、发展的角度认识问题打开了思路.本章主要研究的是基本初等函数:指数函数、对数函数和幂函数的概念、图象和性质.包括理解分数指数幂的概念,掌握有理指数幂的运算性质,理解对数的概念,掌握对数的运算性质,能运用函数的一般性质和指数函数、对数函数的特征性质解决某些简单的实际问题.指数函数与对数函数都是初等超越函数.在历年的高考题中出现的频率较大.出现在小题时是较基本的考查方式;出现在大题中时,往往与其他知识综合形成开放性问题,加大对开放性问题的考查力度.通过本章的学习达到以下基本目标:①了解指数函数模型的实际背景,体会指数函数是一类重要的函数模型.②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③理解指数函数的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.④了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型.⑤能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.⑥理解对数的概念及其运算性质,能用换底公式将一般对数转化成自然对数或常用对数.⑦了解指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数.⑧了解幂函数的概念,结合函数y =x α(α=1,2,3,12,-1)的图象,了解它们的变化情况.二、主干知识(一)指数与指数幂的运算 1.整数指数幂的概念. (1)正整数指数幂的意义:(2)零指数幂:a 0=1(a ≠0).(3)负整数指数幂:a -n =1an (a ≠0,n ∈N *).2.整数指数幂的运算性质: ①a m ·a n =a m +n ;②(a m )n =a mn ;③(ab )n =a n b n .3.如果x n =a ,那么x 叫做a 的n 次方根,其中n >0,且n ∈N *.(1)当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.此时a 的n 次方根用符号na 表示.(2)方根的性质:①当n 是奇数时,na n=a ; ②当n 是偶数时,nan=|a |=⎩⎪⎨⎪⎧aa ≥0,-a a <0.4.分数指数幂.(1)正数的分数指数幂的意义:设a >0,m ,n ∈N *,n >1,规定(2)0的正分数指数幂等于0,0的负分数指数幂没有意义.5.有理指数幂的运算性质: ①a r ·a s =a r +s(a >0,r ,s ∈Q);②(a r )s =a rs(a >0,r ,s ∈Q);③(ab )r =a r b r(a >0,b >0,r ∈Q).(二)指数函数及其性质1.函数y =a x(a >0,且a ≠1)叫做指数函数,其中x 是自变量.2.指数函数y =a x(a >0,且a ≠1)的图象和性质(见下表):(1.如果a x=N (a >0,a ≠1),那么数x 叫做以a 为底N 的对数.记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.对数式的书写格式:(1)以10为底的对数叫做常用对数,并把常用对数log 10N 简记为lg N ;(2)以无理数e =2.718 28……为底的对数,叫自然对数,并把自然对数log e N 简记为ln N .2.指数与对数的关系:设a >0,且a ≠1,则a x=N ⇔log a N =x .3.对数的性质.(1)在指数式中N >0,故0和负数没有对数,即式子log a N 中N 必须大于0;(2)设a >0,a ≠1,则有a 0=1,所以log a 1=0,即1的对数为0;(3)设a >0,a ≠1,则有a 1=a ,所以log a a =1,即底数的对数为1.4.对数恒等式.(1)如果把a b=N 中的b 写成log a N 形式,则有(2)如果把x =log a N 中的N 写成a x 形式,则有log a a x=x .5.对数的运算性质.设a >0,a ≠1,M >0,N >0,则有:(1)log a (MN )=log a M +log a N ,简记为:积的对数=对数的和;(2)log a M N =log a M -log a N ,简记为:商的对数=对数的差;(3)log a M n=n log a M (n ∈R).(四)对数函数及其性质1.函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).2.对数函数的图象、性质(见下表):函数y=log a x(a>1)y=log a x(0<a<1)图象定义域R+R+值域R R单调性增函数减函数过定点(1,0)(1,0)(1)当a>1时,若x>1,则log a x>0,若0<x<1,则log a x<0;(2)当0<a<1时,若0<x<1,则log a x>0,若x>1,则log a x<0.3.函数y=a x与y=log a x(a>0,且a≠1)互为反函数,互为反函数的两个函数的图象关于直线y=x对称.(五)幂函数1.形如y=xα(α∈R)的函数叫做幂函数,其中α为常数.只研究α为有理数的情形.3.幂函数的性质.(1)幂函数在(0,+∞)都有定义,并且图象都过点(1,1).(2)当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸.(3)当α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于+∞时,图象在x轴上方无限地逼近x轴正半轴.4.图象形状:当α>0(α≠1)时,图象为抛物线型;当α<0时,图象为双曲线型;当α=0,1时,图象为直线型.1.正数的分数指数幂的意义:设a>0,m,n∈N*,n>1,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义.2.有理指数幂的运算性质:①a r·a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).答案:12 011►跟踪训练解析:由平方差公式化简即得答案.答案:-27答案:-6a指数幂的运算3.幂函数y =f (x )的图象经过点⎝⎛⎭⎪⎫-2,-18,则满足f (x )=27的x 的值是________.答案:131.设a >0,且a ≠1,则a x =N ⇔log a N =x ;a log a N =N; log a a x=x .2.设a >0,a ≠1, M >0,N >0 ,则有 (1)log a (MN )=log a M +log a N ,(2)log a M N=log a M -log a N ,(3)log a M n=n log a M (n ∈R).3.设a >0,a ≠1,b >0,b ≠1,则log a x =log b xlog b a.设2a =5b=m ,且1a +1b=2,则m =( )A.10 B .10 C .20 D .100解析:由2a =5b=m 得a =log 2m ,b =log 5m , ∴1a +1b=log m 2+log m 5=log m 10=2,∴m 2=10,又∵m >0,∴m =10.答案:A►跟踪训练4.已知函数f (x )=log 2(x +1),若f (α)=1,则α=( ) A .0 B .1C .2D .3解析:α+1=2,故α=1,选B. 答案:B指数与对数运算5.2log 510+log 50.25=( ) A .0 B .1C .2D .4解析:2log 510+log 50.25=log 5100+log 50.25=log 525=2. 答案:C6.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,2x,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=( ) A .4 B.14C .-4D .-147.设g (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,则g ⎝ ⎛⎭⎪⎫g ⎝ ⎛⎭⎪⎫12=________.解析:答案:121.指数函数y =a x(a >0,且a ≠1)的定义域是R ,值域是()0,+∞,过定点(0,1).当a >1时,指数函数y =a x 是R 上的增函数;当0<a <1时,指数函数y =a x是R 上的减函数.2.对数函数y =log a x (a >0,且a ≠1)的定义域是()0,+∞,值域是R ,过定点(1,0). 当a >1时,对数函数y =log a x 是()0,+∞上的增函数;当0<a <1时,对数函数y =log a x 是()0,+∞上的减函数.函数y =1log 0.54x -3的定义域为( )指数函数与对数函数的性质A.⎝ ⎛⎭⎪⎫34,1B.⎝ ⎛⎭⎪⎫34,+∞ C .(1,+∞) D.⎝ ⎛⎭⎪⎫34,1∪(1,+∞) 解析:由log 0.5(4x -3)>0且4x -3>0可解得34<x <1,故A 正确.答案:A►跟踪训练8.函数y =2x 的图象大致是()答案:C9.函数f (x )=lg(x -1)的定义域是( ) A .(2,+∞) B .(1,+∞)C .[1,+∞)D .[2,+∞) 解析:x -1>0,得x >1,选B. 答案:B10.函数f (x )=log 2(3x+1)的值域为( ) A .(0,+∞) B .[0,+∞)C .(1,+∞)D .[1,+∞)答案:A研究由基本初等函数的和与差等运算构成的新函数的性质时,必须明确各基本初等函数的相关性质.设函数的集合P =f (x )=log 2(x +a )+研究基本初等函数及其组合的性质A .4个B .6个C .8个D .10个解析:当a =0,b =0;a =0,b =1;a =12,b =0; a =12,b =1;a =1,b =-1;a =1,b =1时满足题意,选B.答案:B►跟踪训练11.若函数f (x )=3x +3-x 与g (x )=3x -3-x的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数解析:f (-x )=3-x +3x =f (x ),g (-x )=3-x -3x=-g (x ). 答案:BA .①②B .②③C .③④D .①④答案:B13.设函数f (x )=x (e x +a e -x)(x ∈R)是偶函数,则实数a =________.解析:由条件知,g (x )=e x +a e -x为奇函数,故g (0)=0,得a =-1. 答案:-1数形结合的思想方法是根据数量与图形的对应关系,通过数与形的相互转化来解决问题的一种思想方法.转化与化归的思想方法则是将问题不断转化,直到转化为比较容易解决或已经解决的问题.而分类讨论的核心是通过增强条件来分情况逐一研究,使问题易于解决.一、数形结合思想数学思想方法的应用直线y =1与曲线y =x 2-||x +a 有四个交点,则a 的取值范围是 _______ .解析:曲线y =x 2-|x |+a 关于y 轴对称,当x ≥0时,y =x 2-x +a =⎝ ⎛⎭⎪⎫x -122+a -14,结合图象要使直线y =1与曲线y =x 2-|x |+a 有四个交点,需⎩⎪⎨⎪⎧a >1,a -14<1,解得1<a <54.故a 的取值范围是⎝ ⎛⎭⎪⎫1,54.答案:⎝ ⎛⎭⎪⎫1,54►跟踪训练14.已知c <0,下列不等式中成立的一个是( )A .c >2cB .c >⎝ ⎛⎭⎪⎫12cC .2c <⎝ ⎛⎭⎪⎫12cD .2c>⎝ ⎛⎭⎪⎫12c解析:在同一直角坐标系下作出y =x ,y =⎝ ⎛⎭⎪⎫12x ,y =2x 的图象,显然c <0时,x <2x <⎝ ⎛⎭⎪⎫12x ,即c <0时,c <2c<⎝ ⎛⎭⎪⎫12c .答案:C15.下列函数图象中,正确的是( )答案:C16.已知y =f (x )是偶函数,当x >0时,y =f (x )是减函数,并且f (1)>0>f (2),则方程f (x )=0的实根的个数是_________个.答案:2二、转化与化归的思想设a =333+1334+1,b =334+1335+1,试比较a 、b 的大小. 解析:如果比较a -b 与0或a b与1的大小,即用作差法、作商法来做,较繁杂、不易判断.由于a 、b 两数的结构特点可构造函数f (x )=3x +13x +1+1,则a =f (33),b =f (34),若能判断出此函数的单调性,那么就可简捷地比较出a 、b 的大小.f (x )=3x +13x +1+1=3x +1+333x +1+1=3x +1+1+233x +1+1=13+233x +1+1. ∵3x +1在R 上递增,∴233x +1+1在R 上递减. ∴ f (x )=13+233x +1+1在R 上递减. ∴ f (33)>f (34),即a >b .►跟踪训练17.解方程:(lg 2x )·(lg 3x )=lg 2·lg 3.解析:原方程可化为(lg 2+lg x )(lg 3+lg x )=lg 2·lg 3,即lg 2x +lg 6·lg x =0,解得lg x =0或lg x =-lg 6.∴x =1或x =16, 经检验x =1,x =16都是原方程的解. ∴原方程的解为x 1=1或 x 2=16.18.比较log 0.30.1和log 0.20.1的大小.解析:log 0.30.1=1log 0.10.3>0, log 0.20.1=1log 0.10.2>0. ∵log 0.10.3<log 0.10.2,∴log 0.30.1>log 0.20.1.19.某池塘中野生水葫芦的面积与时间的函数关系的图象如下图所示.假设其关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30 m 2;③野生水葫芦从4 m 2蔓延到12 m 2只需1.5个月;④设野生水葫芦蔓延到2 m 2,3 m 2,6 m 2所需的时间分别为t 1,t 2,t 3, 则有t 1+t 2=t 3;⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.其中正确的说法有 ______________ (填序号).答案:①②④三、分类讨论思想若a >0,且a ≠1,p =log a (a 3+a +1),q =log a (a 2+a +1),则p 、q 的大小关系为( )A .p =qB .p <qC .p >qD .a >1时,p >q ;0<a <1时,p <q解析:要比较p 、q 的大小,只需先比较a 3+a +1与a 2+a +1的大小,再利用对数函数的单调性.而决定a 3+a +1与a 2+a +1的大小的a 值的分界点为使(a 3+a +1)-(a 2+a +1)=a 2(a -1)=0的a 值:a =1,当a >1时,a 3+a +1>a 2+a +1,此时log a (a 3+a +1)>log a (a 2+a +1),即p >q .当0<a <1时,a 3+a +1<a 2+a +1,此时log a (a 3+a +1)>log a (a 2+a +1),即p >q .可见,不论a >1还是0<a <1,都有p >q .答案:C►跟踪训练20.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x ,x ≤0. 若f (a )=12,则a =( ) A .-1 B. 2C .-1或 2D .1或- 2解析:讨论a >0和a ≤0两种情况.答案:C21.已知函数f (x )=log a x 在[2,π]上的最大值比最小值大1,则a 等于( ) A.2π B.π2C.2π或π2D .不同于A 、B 、C 答案解析:研究函数的最值需考查函数的单调性,而题中对数函数的增减性与底数a 的取值有关,故应对a 进行分类讨论.(1)当a >1时,f (x )在[2,π]上是增函数,最大值是f (π),最小值是f (2),据题意,f (π)-f (2)=1,即log a π-log a 2=1,∴a =π2. (2)当0<a <1时,f (x )在[2,π]上是减函数,最大值是,最小值是f (π),故f (2)-f (π)=1,即log a 2-log a π=1,∴a =2π. 由(1)(2)知,选C.答案: C22.已知f (x )=1+log x 3,g (x )=2log x 2试比较f (x )和g (x )的大小.解析:f (x )-g (x )=log x 3x 4. (1)当⎩⎪⎨⎪⎧ x >1,3x 4>1⇒x >43,或⎩⎪⎨⎪⎧ 0<x <1,0<3x 4<1⇒0<x <1,即x >43或0<x <1时,f (x )>g (x ). (2)当3x 4=1即x =43时,f (x )=g (x ). (3)当⎩⎪⎨⎪⎧ x >1,0<3x 4<1⇒1<x <43,或⎩⎪⎨⎪⎧ 0<x <1,3x 4>1⇒x ∈∅,即1<x <43时,f (x )<g (x ). 综上所述:①当x ∈(0,1)∪⎝ ⎛⎭⎪⎫43,+∞时,f (x )>g (x ); ②当x =43时,f (x )=g (x ); ③当x ∈⎝ ⎛⎭⎪⎫1,43时,f (x )<g (x ).23.已知f (x )=log a (a x -1)(a >0且a ≠1).(1)求定义域;(2)讨论函数的单调区间.解析:(1)由a x -1>0⇒a x >1,当a >1时,函数定义域为(0,+∞),当0<a <1时,函数定义域为(-∞,0).点评:底数含字母a ,要进行分类讨论.。
《中学数学》第1册 代数 第1章 数、数的运算— 知识重点
《中学数学》第1册代数第1章数、数的运算知识重点在“第1章数、数的运算”中,主要叙述了实数和复数2部分内容。
其中,实数部分的基本概念有:自然数、整数、有理数、无理数等。
虚数部分的基本概念有:“i”的性质、复数系、复数相等、复数的几何表示、共轭复数、模数和幅角、复数的2种表示形式、复数运算等。
一、实数⒈自然数自然数(正整数)指的就是正整数。
如:1、2、3、4、5、6、……。
任意的一个自然数,都可以用10的“幂的多项式”的形式,来表示的。
即:a0·10n + a1·10n-1 + a2·10n-2 + ……+ a n-1·101 + a n·100其中:a0、a1、a2、a n分别是“0、1、2、3、4、5、6、7、8、9”这10个数字中的1个。
①质数:在自然数中,除了“1”以外(不包括“1”),只能被“1”和这个数本身整除的数,叫做质数(或:素数)。
②合数:在自然数中,除了能被“1”和本身以外(不包括“1”和这个数本身)的数整除的数,叫做合数。
注意:“1”既不是质数。
“1”也不是合数。
③因数:如果数“A”,能被数“B”整除,则“B”叫做“A”的因数(或:因数)。
④质因数:如果“C”是“A”的因数,而且“C”是质数,则“C”叫做“A”的质因数。
⑤公约数:“几个数”所有公有的约数,叫做这“几个数”的公约数。
⑥最大公因数:在几个公约数中,最大的公约数,叫做最大公约数。
⑦互质数:如果“2个数”的最大公约数是“1”,就称这“2个数”是互质的数。
⑧倍数:如果数“A”能被数“B”整除,则“A”叫“B”的倍数。
⑨公倍数:“几个数”所有的倍数,叫做这个“几个数”的公倍数。
⑩最小公倍数:公倍数中,最小的1个,叫做最小公倍数。
⒉整数整数:是指正整数、0、负整数,总称为整数。
⑴关于整数的表示方法:①能被“2”整除的整数,叫做偶数。
可用“2n”(n是整数)来表示。
②不能被“2”整除的整数,叫做奇数。
七年级上册第一章内容
七年级上册第一章内容
七年级上册第一章的内容主要是有理数。
这个章节主要包括以下内容:
1. 有理数的概念:包括正数、负数、整数、分数等。
2. 有理数的四则运算:包括加法、减法、乘法和除法。
特别地,加减法主要涉及到绝对值的计算和两数相加的符号法则(同号得正、异号得负);乘除法主要涉及到乘法交换律、乘法结合律和乘法的分配律。
3. 有理数的运算律:包括加法交换律、加法结合律、乘法交换律、乘法结合律和乘法分配律。
4. 有理数的运算顺序:先乘除后加减,并注意括号在运算中的作用。
此外,七年级上册第一章还会介绍数轴的概念,这是理解有理数和四则运算的重要工具。
在学习过程中,应重视理解有理数的意义,掌握四则运算的方法,并注意培养运算的准确性和熟练度。
七上数学每个单元的知识点
七上数学每个单元的知识点七年级上册数学是中学数学的起点,包含了一些基础的数学概念和技巧。
下面是对每个单元的知识点进行总结,帮助您复习和掌握这些重要的数学内容。
1.单元一:数与代数-自然数、整数和有理数的概念及其性质。
-整数的四则运算(加法、减法、乘法、除法)。
-有理数的加法和减法运算。
-用代数式表示数学关系,并进行简单的代数式计算。
2.单元二:图形与几何-点、线、线段、射线和平面的概念及其性质。
-角的概念及其分类。
-直角、钝角和锐角的判断与性质。
-正方形、长方形、平行四边形和三角形的特征和性质。
3.单元三:分数与小数-分数的概念及其意义。
-分数的化简、比较大小和运算(加法、减法、乘法、除法)。
-小数的概念及其转化为分数的方法。
-分数和小数在实际生活中的应用。
4.单元四:数据与统计-数据的收集和整理方法。
-表格、折线图和条形图的制作和分析。
-平均数的概念及其计算方法。
-数据的描述性统计(范围、中位数、众数等)。
5.单元五:方程与不等式-方程的概念及其解的意义。
-一次方程的解法及其应用。
-不等式的概念及其解的性质。
-不等式在实际问题中的应用。
6.单元六:比例与相似-比例的概念及其运算。
-比例的应用,如比例尺、速度和利润等。
-相似的概念及其判断和性质。
-利用相似性进行图形的放缩和测量。
7.单元七:函数与线性函数-函数的概念及其表示。
-函数的自变量和因变量的关系。
-线性函数的概念及其特征。
-线性函数的图象和表达式的确定。
通过对七年级上册数学每个单元知识点的总结,我们可以更好地复习和掌握这些重要的数学概念和技巧。
希望这个总结对您的学习和复习有所帮助!。
七年级数学第一章
七年级数学第一章摘要:1.七年级数学第一章概述2.第一章的主要内容3.如何学习七年级数学第一章正文:【七年级数学第一章概述】七年级数学第一章是中学数学的一个重要部分,它为学生提供了一个学习数学的基础。
本章节涵盖了有理数、整式和一元一次方程等主题,为学生进一步学习代数、几何等数学领域打下了坚实的基础。
通过学习七年级数学第一章,学生可以培养自己的逻辑思维、分析问题和解决问题的能力,从而提高数学素养。
【第一章的主要内容】1.有理数:有理数是本章的重要内容,包括有理数的定义、分类、运算和性质等。
学生需要掌握有理数的概念,了解有理数的正负、大小比较以及有理数的加减乘除等运算。
2.整式:整式是代数学的基本概念之一,指由若干个单项式通过加减运算组合而成的代数式。
学生需要学习整式的概念、分类、运算和性质等,为进一步学习代数奠定基础。
3.一元一次方程:一元一次方程是代数学的基本内容,指含有一个未知数的一次方程。
学生需要掌握一元一次方程的解法,学会如何通过列方程求解实际问题。
【如何学习七年级数学第一章】1.掌握基础知识:学习七年级数学第一章需要掌握有理数、整式和一元一次方程等基础知识,理解概念、性质和运算规律,为后续学习打下基础。
2.解决实际问题:通过解决实际问题,将所学知识应用到实际生活中,提高自己分析问题和解决问题的能力。
3.多做练习:学习数学需要多做练习,通过练习巩固所学知识,提高解题能力。
4.总结归纳:在学习过程中,要注重总结和归纳,整理知识点和解题方法,形成自己的知识体系。
5.寻求帮助:遇到问题不要害怕,可以向老师、同学或家长请教,或者查阅相关资料,积极寻求帮助。
【结语】七年级数学第一章是中学数学学习的重要阶段,学生需要认真学习,掌握基础知识,为后续学习打下坚实基础。
初一数学第一单元小结
初一数学第一单元小结第一单元主要介绍了初中数学的基本概念和基本运算,包括数的分类、数的大小比较、整数的加减运算、分数的加减乘除运算等内容。
通过学习这些内容,我们能够建立起初中数学的基本框架,为以后的学习打下坚实的基础。
在第一单元中,我们首先学习了数的分类和数的大小比较。
数的分类主要分为自然数、整数、有理数和实数等几个部分。
自然数是我们最早接触的数,包括1、2、3、4等,它们用来表示事物的个数。
而整数则包括自然数及其相反数,例如-1、-2、-3等。
有理数包括整数和分数,它们可以用来表示任意一个有限小数和无限循环小数。
实数则包括有理数和无理数,例如根号2和圆周率π等。
在比较数的大小时,我们需要掌握整数比较大小时的规则,以及分数大小比较时的通分和约分方法。
接下来,我们学习了整数的加减运算。
整数的加法运算遵循“正加正得正,负加负得负”的原则,即同号相加得正,异号相加得负。
而整数的减法运算可以转化为加法运算进行计算,例如a-b可以等价地表示为a+(-b)。
我们可以利用数轴和计算规则来进行加减运算,并通过练习题加深对这些知识的理解和掌握。
在学习完整数的加减运算后,我们开始学习分数的加减运算。
分数的加减运算涉及到通分和约分两个步骤。
首先,我们需要将分数的分母调整为相同的数,即通分。
通过找到最小公倍数,我们可以将分数的分母调整为相同的数,然后再进行加减运算。
其次,我们需要对得到的分数进行约分,即将分子和分母的公约数约去。
通过掌握通分和约分的方法,我们可以较为方便地进行分数的加减运算,并可以进行运算结果的化简。
此外,我们在第一单元中还学习了分数的乘法和除法运算。
分数的乘法运算简单直观,只需要将两个分数的分子相乘,分母相乘即可。
而分数的除法运算可以转化为乘法运算进行计算,例如a/b可以等价地表示为a乘以1/b。
通过对分数的乘除法进行练习,我们可以熟练掌握这些运算的方法和技巧。
综上所述,初一数学第一单元主要介绍了数的基本概念和基本运算方法。
甘肃省酒泉中学七年级数学上册第一单元《有理数》-填空题专项知识点总结(含答案)
一、填空题1.一个班有45个人,其中45是_____数;大门约高1.90 m ,其中1.90是_____数.准确近似【分析】根据准确数和近似数的定义对数据进行判断【详解】一个班有45个人其中45是准确数;大门约高190m 其中190是近似数故答案为:准确;近似【点睛】本题考查了近似数近似数与精确数的接近程度解析:准确 近似【分析】根据准确数和近似数的定义对数据进行判断.【详解】一个班有45个人,其中45是准确数;大门约高1.90 m ,其中1.90是近似数. 故答案为:准确;近似.【点睛】本题考查了近似数. 近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位.2.用计算器计算:(1)-5.6+20-3.6=____;(2)-6.25÷25=____;(3)-7.2×0.5×(-1.8)=____;(4)-15×(-2.4)÷(-1.2)=____; (5)4.6÷113-6×3=____; (6)42.74.23.5-≈____(精确到个位).【分析】(1)利用计算器计算有理数的加减法即可得;(2)利用计算器计算有理数的除法即可得;(3)利用计算器计算有理数的乘法即可得;(4)利用计算器计算有理数的乘除法即可得;(5)利用计算器先计算有理解析:10.8 0.25- 6.48 30- 14.55- 76【分析】(1)利用计算器计算有理数的加减法即可得;(2)利用计算器计算有理数的除法即可得;(3)利用计算器计算有理数的乘法即可得;(4)利用计算器计算有理数的乘除法即可得;(5)利用计算器先计算有理数的乘除法、再计算有理数的减法即可得;(6)利用计算器先计算有理数的乘方与减法、再计算有理数的除法即可得.【详解】(1)原式14.4 3.610.8=-=;(2)原式0.25=-;(3)原式 3.6 1.8() 6.48-==-⨯;(4)原式 1.236()30=÷-=-;(5)原式434.618 4.618 4.60.7518 3.451814.5534÷-=⨯-=⨯-=-=-; (6)原式53.1441760.7=≈; 故答案为:10.8,0.25-,6.48,30-,14.55-,76.【点睛】本题考查了利用计算器计算有理数的加减乘除法与乘方运算、近似数,掌握计算器的使用是解题关键.3.某班同学用一张长为1.8×103mm ,宽为1.65×103mm 的大彩色纸板制作一些边长为3×102mm 的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.4.若2(1)20a b -+-=,则2015()a b -= _______________.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质解析:-1【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案.【详解】由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1.故答案为-1.【点睛】本题考查了非负数的性质,正确得出a ,b 的值是解题的关键.5.比较大小:364--_____________()6.25--.【分析】利用绝对值的性质去掉绝对值符号再根据正数大于负数两个负数比较大小大的数反而小可得答案【详解】∵由于∴故答案为:【点睛】本题考查了绝对值的化简以及有理数大小比较两个负数比较大小绝对值大的数反而小解析:<【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】∵3276 6.7544--=-=-,()6.25 6.25--=,由于 6.75 6.25-<,∴36( 6.25)4--<--,故答案为:<.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.6.一个数的25是165-,则这个数是______.−8【分析】把这个数看成单位1它的对应的数量是求这个数用除法【详解】()÷=−8故答案为−8【点睛】此题考查有理数的除法解题关键在于这个数看成单位1解析:−8【分析】把这个数看成单位“1”,它的25对应的数量是165-,求这个数用除法【详解】(165-)÷25=−8.故答案为−8.【点睛】此题考查有理数的除法,解题关键在于这个数看成单位“1”7.如果数轴上原点右边 8 厘米处的点表示的有理数是 32,那么数轴上原点左边 12 厘米处的点表示的有理数是__________.﹣48【分析】数轴上原点右边8厘米处的点表示的有理数是32即单位长度是cm即1cm表示4个单位长度数轴左边12厘米处的点表示的数一定是负数再根据1cm表示4个单位长度即可求得这个数的绝对值【详解】数解析:﹣48【分析】数轴上原点右边 8厘米处的点表示的有理数是 32,即单位长度是14cm,即 1cm表示 4个单位长度,数轴左边12厘米处的点表示的数一定是负数,再根据 1cm表示 4个单位长度,即可求得这个数的绝对值.【详解】数轴左边 12 厘米处的点表示的有理数是﹣48.故答案为﹣48.【点睛】本题主要考查了在数轴上表示数.借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小既直观又简捷.8.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.9.在数轴上,距离原点有2个单位的点所对应的数是________.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x 由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型解析:2【分析】由绝对值的定义可知:|x|=2,所以x=±2.【详解】设距离原点有2个单位的点所对应的数为x,由绝对值的定义可知:|x |=2,∴x =±2.故答案为±2.【点睛】本题考查了绝对值的性质,属于基础题型.10.绝对值小于100的所有整数的积是______.0【分析】先找出绝对值小于100的所有整数再求它们的乘积【详解】:绝对值小于100的所有整数为:0±1±2±3…±100因为在因数中有0所以其积为0故答案为0【点睛】本题考查了绝对值的性质要求掌握绝解析:0【分析】先找出绝对值小于100的所有整数,再求它们的乘积.【详解】:绝对值小于100的所有整数为:0,±1,±2,±3,…,±100,因为在因数中有0所以其积为0.故答案为0.【点睛】本题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.11.A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【解析:90【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】因为205070>->-,所以最高点的海拔高度为20米,最低点的海拔高度70-米,则20(70)207090--=+=(米),即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.12.如果点A 表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.13.阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a3•a4=(a•a•a)•(a•a•a•a)=__;(2)归纳、概括:a m•a n=__;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=__.a7am+n36【分析】(1)根据题意乘方的意义7个a相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n=xm•xn即解析:a7 a m+n 36【分析】(1)根据题意,乘方的意义,7个a相乘可以写成a7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决;(3)运用以上的结论,可以知道:x m+n=x m•x n,即可解决问题.【详解】解:(1)根据材料规律可得a3•a4=(a•a•a)•(a•a•a•a)=a7;(2)归纳、概括:a m•a n=m na a a a⎛⎫⎛⎫⎪⎪⎪⎪⎝⎭⎝⎭=a m+n;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=x m•x n=4×9=36.故答案为:a7,a m+n,36.【点睛】本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.14.(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____;(2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____;(3)用四舍五入法,把36.547精确到百分位的近似数是____.(1)56(2)2000(3)3655【分析】(1)精确到哪一位即对下一位的数字进行四舍五入据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可【详解】解解析:(1)5.6 (2)2000 (3)36.55【分析】(1)精确到哪一位,即对下一位的数字进行四舍五入,据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可.【详解】解:(1)5.649≈5.6.(2)1999.58≈2000(3)36.547≈36.55故答案为:5.6;2000;36.55【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.15.计算:(1)(2)(3)(4)(2019)(2020)++-+++-++++-=_____.【分析】第1个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两解析:1010-【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】原式(12)(34)(20192020)11111010=-+-++-=-----=-.故答案为:1010-.【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.16.对于有理数a 、b ,定义一种新运算,规定a ☆2b a b =-,则3☆(2)-=__.【分析】根据新定义把新运算转化为常规运算进行解答便可【详解】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7故答案为:7【点睛】本题主要考查了有理数的混合运算读懂新定义运算是解题的关键解析:【分析】根据新定义把新运算转化为常规运算进行解答便可.【详解】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7,故答案为:7.【点睛】本题主要考查了有理数的混合运算,读懂新定义运算是解题的关键.17.有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中是准确数的有_____,是近似数的有_____.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.18.运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算.19.填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.20.若两个不相等的数互为相反数,则两数之商为____.-1【分析】设其中一个数为a (a≠0)它的相反数为-a 然后作商即可【详解】解:设其中一个数为a (a≠0)则它的相反数为-a 所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a(a≠0),它的相反数为-a,然后作商即可.【详解】解:设其中一个数为a(a≠0),则它的相反数为-a,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.21.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[________]+1.2=________+1.2=____;(2)32.5+46+(-22.5)=[____]+46=_____+46=____.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56【分析】(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.【详解】解:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2=-2.4;(2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56.故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56.【点睛】本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.22.(1)-23与25的差的相反数是_____.(2)若|a+2|+|b-3|=0,则a-b=_____.(3)-13的绝对值比2的相反数大_____.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab 的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a +2|+|b - 解析:1615 -5 123【分析】 (1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a 、b 的值,再求出答案即可;(3)由题意列出式子进行计算,即可得到答案.【详解】解:(1)根据题意,则221616()()351515---=--=; (2)∵|a +2|+|b -3|=0,∴20a +=,30b -=,∴2a =-,3b =,∴235a b -=--=-;(3)根据题意,则111(2)22333---=+=; 故答案为:1615;5-;123. 【点睛】 本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.23.若有理数a ,b 满足()26150a b -+-=,则ab =__________.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab 的值再把ab 的值代入ab 中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a ,b 的值,再把a 、b 的值代入ab 中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.24.数轴上A、B两点所表示的有理数的和是 ________.-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1【解析】由数轴得,点A表示的数是﹣3,点B表示的数是2,∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.25.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是___.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键. 26.若230x y ++-= ,则x y -的值为________.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,故答案为: 5.-【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.27.绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2 解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.28.数轴上,如果点 A 所表示的数是3-,已知到点 A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.-7【分析】根据在数轴上点A 所表示的数为3可以得到到点A 的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A 所表示的数是-3到点A 的距离等于4个单位长度的点所表示的数解析:-7【分析】根据在数轴上,点A所表示的数为3,可以得到到点A的距离等于4个单位长度的点所表示的数是什么,再根据负数的定义即可求解.【详解】解:∵点A所表示的数是-3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是-3-4=-7.故答案为:-7.【点睛】本题考查了数轴,解题的关键是明确数轴的特点,知道到一个点的距离等3个单位长度的点表示的数有两个.29.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.30.等边三角形ABC(三条边都相等的三角形是等边三角形)在数轴上的位置如图所-,若ABC绕着顶点顺时针方向在数轴上翻转1次示,点A,B对应的数分别为0和1后,点C所对应的数为1,则再翻转3次后,点C所对应的数是________.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C在数轴上∴点C对应的数是故答案为:4【点睛】本题考查了数轴及数的解析:4【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C在数轴上,+⨯=.∴点C对应的数是1134故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.。
初一数学小结5篇
初一数学小结5篇初中数学是一个整体。
初二的难点最多,初三的考点最多。
相对而言,初一数学知识点虽然很多,但都比较简单。
下面是店铺为大家带来的关于初一数学小结5篇,希望会给大家带来帮助。
初一数学小结(一)1、对知识点的理解停留在一知半解的层次上;2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力;3、解题时,小错误太多,始终不能完整的解决问题;4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏;5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点;以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。
相反,如果能够打好初一数学基础,初二的学习只会是知识点上的增多和难度的增加,在学习方法上同学们是很容易适应的。
那怎样才能打好初一的数学基础呢?(1)细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。
例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。
这样就不能很好的将学到的知识点与解题联系起来。
三是,一部分同学不重视对数学公式的记忆。
记忆是理解的基础。
如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
(2)总结相似的类型题目这个工作,不仅仅是老师的事,我们的同学要学会自己做。
当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。
这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。
最新-湖北省公安县博雅中学高一数学《第一章》知识小结 精品
湖北省公安县博雅中学高一数学《第一章》知识小结附:一、函数的定义域的常用求法:1、分式的分母不等于零;,,,().A B A x B y f B A B x y x f y y x y f x →=映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。
那么就是的函数。
记作近函数及其表示函数{[][][][][],,()()(),,1212()()(),,12I a b a x x b f x f x f x a b a b f x f x f x a b a b ≤<≤<>⎧⎪⎪⎧⎪⎨⎨⎩⎪⎧⎪⎨⎪⎩⎩代定义:函数是从一个数集到另一个数集的映射。
定义域函数的三要素值域对应法则解析法函数的表示方法列表法图象法单调性最大值:设函数的定义域为,如最值函数的基本性质的定义:在区间上,若如,则在上递增,是 递增区间;如,则在上递减,是的递减区间。
1()2()()001()2()()00M x I f x M x I f x M M y f x I N x I f x N x I f x N N y f x ∈≤∈==∈≥∈==⎧⎪⎨⎪⎩果存在实数满足:()对于任意的,都有; ()存在,使得。
则称是函数的最大值最小值:设函数的定义域为,如果存在实数满足:()对于任意的,都有; ()存在,使得。
则称是函数的最小值奇偶性(1)()(),()(2)()(),()12f x f x x D f x f x f x x D f x y -=-∈-=∈⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎪⎩⎧⎪⎨⎪⎩⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩定义域,则叫做奇函数,其图象关于原点对称。
新高一数学书第一章知识点
新高一数学书第一章知识点引言:数学作为一门基础学科,贯穿于我们的日常生活和各个学科领域。
高中数学作为中学数学的重要部分,对于培养学生的逻辑思维和数学素养具有重要的作用。
新高一数学书第一章是数学基础知识的巩固和拓展,为我们打下扎实的数学基础。
本文将对新高一数学书第一章的主要知识点进行分析和总结,从而帮助我们更好地理解和应用这些知识。
一、集合论集合论是数学的基础,它描述了事物之间的关系和分类。
在高中数学中,集合论是一个重要且基础的内容。
我们需要了解基本概念,如集合的定义、元素、子集、交集、并集和补集等。
在解决实际问题时,应能够将问题转化为集合的表示方式,从而更好地进行分析和求解。
二、逻辑与命题逻辑是高中数学中的一大重要内容,它使我们能够有条理地思考和解决问题。
在逻辑推理中,我们需要掌握命题的分类以及命题之间的关系,如命题的否定、合取、析取、条件、双条件等。
通过学习逻辑与命题,我们能够提高自己的思维能力,逻辑思维的训练也有助于培养我们的分析和解决问题的能力。
三、函数基础函数是高中数学的核心概念之一,它在我们的日常生活中无处不在。
我们需要了解函数的定义和基本性质,如定义域、值域、单调性、奇偶性等。
通过学习函数基础知识,我们能够更好地理解和分析实际问题,掌握利用函数来模拟和描述现实情况的能力。
四、二次函数二次函数是高中数学中的重要内容,它具有广泛的应用。
我们需要了解二次函数的定义、图像、性质和应用。
熟练掌握二次函数的性质和图像变化规律,对于解决实际问题和理解数学模型有着重要的作用。
同时,二次函数的学习也为后续章节的内容打下了基础。
五、数列与求和数列与求和是数学中的常见概念,它描述了一系列有规律的数的排列和求和过程。
我们需要了解数列的定义和基本性质,如等差数列、等比数列、递推公式和通项公式等。
通过掌握数列与求和的方法,我们能够更好地解决实际问题,也能够培养我们的逻辑思维和数学抽象能力。
六、三角函数三角函数是高中数学中的重点内容,它在几何学和物理学等领域有着重要的应用。
八上数学第一章三角形知识点总结
八上数学第一章三角形知识点总结三角形是中学数学中的重要概念,深入理解三角形的性质和定理对于解决相关数学问题至关重要。
本文将对八年级上册数学第一章中的三角形知识点进行总结。
首先,我们会讨论三角形的定义和分类,然后介绍三角形的内角和外角性质以及重心、垂心和内心等特殊点的性质。
接下来,我们将介绍线段延长定理、角平分线定理和中线定理等与三角形相关的重要定理。
最后,我们还会解释勾股定理和正弦定理等常用的三角形定理。
通过本文的学习,读者将能够系统地了解八年级上册数学第一章中涉及的三角形知识点,为进一步学习和应用提供基础支持。
1. 三角形的定义和分类三角形是由三条线段组成的图形,其中任意两条线段的和大于第三条线段,而任意两条线段的差小于第三条线段。
根据边的长度和角的大小,三角形可以分为等边三角形、等腰三角形、直角三角形以及一般三角形。
2. 三角形的内角和外角性质对于任意三角形ABC,其内角和为180度。
同时,三角形的外角等于不相邻的两个内角之和。
此外,三角形的内角和与外角和均为360度。
3. 三角形特殊点的性质(1)重心:三角形的三条中线交于一点,称为重心。
重心到三角形各顶点的距离满足一个性质:重心到顶点距离之和等于重心到对边中点的距离之和。
(2)垂心:三角形的三条高线交于一点,称为垂心。
垂心到各顶点的距离满足一个性质:垂心到顶点距离之和最小。
(3)内心:三角形的三条角平分线交于一点,称为内心。
内心到各边的距离满足一个性质:内心到三条边的距离之和最小。
4. 三角形定理(1)线段延长定理:在三角形ABC中,若AB>AC,则延长线段AB会大于线段AC。
(2)角平分线定理:在三角形ABC中,角BAC的平分线会把线段BC分成相等的两部分。
(3)中线定理:在三角形ABC中,连接顶点A与线段BC的中点M,则AM是线段BC的中线,即AM=MC=MB/2。
5. 常用的三角形定理(1)勾股定理:在直角三角形ABC中,设直角边分别为AB和AC,斜边BC的长度为c,则有a^2 + b^2 = c^2。
八年级上数学单元知识点
八年级上数学单元知识点作为中学数学的基础阶段,八年级上学期的数学单元知识点覆盖了大量的数学知识。
具体来说,本文将从四个方面介绍这些知识点。
一、小数运算小数运算是八年级数学中的重要内容之一。
在这个单元中,学生需要掌握小数的四则运算,包括加减乘除。
在小数相加时,需要先将小数点对其,然后逐位相加即可;在小数相乘时,需要先快速估算得到科学记数法,然后进行乘法运算,最后还原到正常的小数形式。
在除法运算中,需要注意小数点的位置和小数的进位与舍位规则。
二、平面图形在八年级数学单元中,平面图形也是非常重要的一部分。
学生需要掌握梯形、菱形、矩形、正方形等平面图形的周长和面积计算方法。
此外,学生还需要掌握平行四边形、直角三角形、等边三角形、等腰三角形等特殊平面图形的性质和计算方法。
在学习这些知识点时,学生需要理解对应的公式和应用方法。
三、代数式代数式是另一个重要的数学单元知识点,也是中学数学中的核心内容。
在八年级数学单元中,学生需要学会使用代数式来解决现实生活中的问题,例如简单的线性方程等。
在学习代数式时,学生需要理解字母代表未知数的概念,并根据给定的条件,将问题转化为代数式的形式,并进行求解。
此外,学生还需要掌握代数式化简和展开,以及用代数式表示简单的几何问题等技巧。
四、统计与概率统计与概率是八年级数学单元中的最后一个主题,也是应用范围非常广的数学内容之一。
在统计方面,学生需要学会根据给定的数据,进行数据的分析、整理和可视化展示,并进一步利用统计指标,如平均数、中位数、众数等,来解读和分析数据。
在概率方面,学生需要理解随机事件的概念,掌握基本的概率计算方法和规律,并应用到实际问题中。
综上所述,八年级上学期数学单元知识点非常丰富,覆盖了小数运算、平面图形、代数式、统计与概率等多个方面。
在学习这些知识点时,学生需要注重理解,并适当运用,以便更好地应对高中学习和日常生活中的数学问题。
初中一年级数学上册知识点总结
初中一年级数学上册知识点总结目录初中一年级数学上册知识点总结七年级数学代数初步知识点初中一年级数学上册知识点数学的学习方法学好数学的几条建议初中一年级数学上册知识点总结一、正数和负数1、以前学过的0以外的数前面加上负号-的数叫做负数。
2、以前学过的0以外的数叫做正数。
3、零既不是正数也不是负数,零是正数与负数的分界。
4、在同一个问题中,分别用正数和负数表示的量具有相反的意义。
二、有理数1、正整数、0、负整数统称整数,正分数和负分数统称分数。
2、整数和分数统称有理数。
3、把一个数放在一起,就组成一个数的集合,简称数集。
三、数轴1、规定了原点、正方向、单位长度的直线叫做数轴。
2、数轴的作用:所有的有理数都可以用数轴上的点来表达。
3、注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
4、性质:(1)在数轴上表示的两个数,右边的数总比左边的数大。
(2)正数都大于零,负数都小于零,正数大于负数。
四、相反数1、只有符号不同的两个数叫做互为相反数。
2、数轴上表示相反数的两个点关于原点对称。
3、零的相反数是零。
五、绝对值1、一般地,在数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。
2、一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
六、有理数的大小比较1、正数大于0,0大于负数,正数大于负数。
2、两个负数,绝对值大的反而小。
七、有理数的加法1、有理数的加法法则(1)号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(3)互为相反数的两个数相加得零。
(4)一个数同零相加,仍得这个数。
2、有理数加法的运算律(1)加法交换律:两个数相加,交换加数的位置,和不变。
即a+b=b+a(2)加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。
即(a+b)+c=a+(b+c)八、有理数的减法1、有理数减法法则减去一个数,等于加这个数的相反数。
数学必修一知识点总结(3篇)
数学必修一知识点总结(3篇)数学必修一知识点总结(3篇)知识管理是企业管理的重要内容。
领导者要具备知识领导力和战略眼光。
学会根据不同的需求,挑选合适的学习方法和资源。
下面就让小编给大家带来数学必修一知识点总结,希望大家喜欢!数学必修一知识点总结1一、集合有关概念1、集合的含义2、集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3、集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:XKb1、Com非负整数集(即自然数集)记作:N正整数集:Nx或N+整数集:Z有理数集:Q实数集:R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xR|x—3 2},{x|x—3 2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合二、集合间的基本关系1、“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2、“相等”关系:A=B(5≥5,且5≤5,则5=5)实例:设A={x|x2—1=0}B={—1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。
AA②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)③如果AB,BC,那么AC④如果AB同时BA那么A=B3、不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。
数学高一第一册知识点归纳
数学高一第一册知识点归纳高一数学第一册知识点归纳高一数学是中学数学的重要阶段,第一册的学习内容包含了各个知识点。
今天我们就来对高一数学第一册的知识点进行归纳总结。
一、代数基础知识1.1 数与式在数与式这一部分,我们学习了整数、有理数、无理数以及它们之间的运算规则。
同时,我们还掌握了代数式的定义和简化方法,学会了如何进行整式和分式的加减乘除运算。
1.2 一元二次方程与解的讨论这一部分我们主要学习了一元二次方程的概念、一元二次方程的解的讨论以及解一元二次方程的方法。
我们学会了通过配方法、求根公式以及因式分解等方法解决一元二次方程问题。
1.3 比例与变量代数初步在比例与变量代数初步这一章节,我们学习了比例及其性质,并掌握了比例的计算方法。
同时,我们还了解了变量及其代数式的定义,学会了解析图和列式表示问题。
二、函数初步2.1 函数的概念与表示这一部分我们学习了函数的定义、函数的表示方法以及函数的性质。
同时,我们还学会了函数的图像的绘制方法,掌握了线性函数、仿射函数和二次函数的概念及其图像的性质。
2.2 一次函数与二次函数在一次函数与二次函数这一章节,我们主要学习了一次函数、二次函数的定义和性质。
我们了解了一次函数和二次函数的图像特征以及二次函数的最值问题的解法,也学会了通过方程解析法与图像法求二次函数的解。
2.3 幂函数与反比例函数在幂函数与反比例函数这一部分,我们学习了幂函数的概念与性质,了解了幂函数图像的特点以及幂函数的增减性。
同时,我们还掌握了反比例函数的定义和性质,并学会了通过反比例函数解决实际问题。
三、几何初步3.1 直线与角在直线与角这一章节,我们学习了直线的概念与性质,了解了线段和射线的定义。
同时,我们还掌握了角的概念及其分类,并学会了角的度量和角平分线的构造方法。
3.2 三角形的性质这一部分我们主要学习了三角形的定义及其分类。
我们了解了等边三角形、等腰三角形、直角三角形的性质,学会了三角形的角度关系和边长关系,还学习了三角形的面积计算方法。
嘉兴市第一中学七年级数学上册第一单元《有理数》-解答题专项知识点总结(答案解析)
一、解答题1.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,-8,12,-6,11,14,-3(超过30分钟的部分记为“+”,不足30分钟的部分记为“-”)(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米? 解析:(1)22分钟;(2)24千米. 【分析】(1)时间差=标准差的最大值-标准差的最小值;(2)先计算出一周的总运动时间,利用路程,速度,时间的关系计算即可. 【详解】(1)()14822--=(分钟).故小李跑步时间最长的一天比最短的一天多跑22分钟. (2)()30710812611143240⨯+-+-++-=(分钟),0.124024⨯=(千米).故这七天他共跑了24千米. 【点睛】本题考查了有理数的混合运算,熟练运用标准差计算时间差,标准时间计算总时间是解题的关键.2.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来.|3|-,5-,12,0, 2.5-,22-,(1)--. 解析:见解析,|-3|>-(-1)>12>0>-2.5>-22>-5. 【分析】先在数轴上表示出各数,从右到左用“>”连接起来即可. 【详解】解:|3|=3-;224=--,(1)=1-- 如图所示,,由图可知,|-3|>-(-1)>12>0>-2.5>-22>-5. 【点睛】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.3.(1)在图所示的数轴上标出以下各数:52-,-5.5,-2,+5, 132(2)比较以上各数的大小,用“<”号连接起来;(3) 若点A 对应 5.5-,点B 对应132,请计算点A 与点B 之间的距离.解析:(1)画图见解析;(2) 5.5-<52-<2-<132<+5;(3)9.【分析】(1)先画数轴,根据数轴上原点左边的为负数,原点右边的为正数,在数轴上描出对应各数的点即可得到答案;(2)根据数轴上的数,右边的数大于左边的数,直接用“<”连接即可得到答案; (3)数轴上点A 与点B 对应的数分别为,a b ,则AB a b =-或b a -,根据以上结论代入数据直接计算即可得到答案. 【详解】解:(1)如图,在数轴上表示各数如下:(2)因为数轴上的数,右边的数总大于左边的数: 所以按从小到大排列各数为:5.5-<52-<2-<132<+5(3)因为:A 表示 5.5-,B 表示132, 所以:点A 与点B 之间的距离为:()13 5.5 3.5 5.599.2AB =--=+==【点睛】本题考查的是利用数轴上的点表示有理数,利用数轴比较有理数的大小,数轴上两点之间的距离,绝对值的含义,掌握以上知识是解题的关键.4.出租车司机张师傅11月1日这一天上午的营运全在一条东西向的街道上进行,如果规定向东为正,那么他这天上午载了五位乘客所行车的里程如下(单位:km ):8+,6-,3+,7-,1+.(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何? (2)若汽车耗油为0.08L/km ,则这天上午汽车共耗油多少升? 解析:(1)在出车地点西边1千米处;(2)2升 【分析】(1)计算张师傅行驶的路程的和即可;(2)计算出每段路程的绝对值的和后乘以0.08,即为这天上午汽车共耗油数. 【详解】解:(1)规定向东为正,则向西为负, (+8)+(-6)+(+3)+(-7)+(+1) =8-6+3-7+1 =-1千米.答:将最后一名乘客送到目的地,张师傅在出车地点西边1千米处. (2)(8+6+3+7+1)×0.08=2升. 答:这天午共耗油2升. 【点睛】本题考查了有理数的混合运算,注意要针对不同情况用不同的计算方法. 5.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+= 算式2:()()()()34263824,-⨯-+-=-⨯-= 算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-= 故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.6.计算: (1)231+-+; (2)()3202111024⎡⎤-⨯+-÷⎣⎦. 解析:(1)6;(2)12- 【分析】(1)先化简绝对值,再算加法即可求解; (2)先算乘方,再算括号里面的,最后算乘除即可. 【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键. 7.计算:(1)()110822⎫⎛---÷-⨯- ⎪⎝⎭(2)()2313232154⎫⎛-⨯--⨯-÷-⎪⎝⎭解析:(1)12- ;(2)0 【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可 (2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可 【详解】(1)()110822⎫⎛---÷-⨯- ⎪⎝⎭=1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=102-- =-12(2)()2313232154⎫⎛-⨯--⨯-÷-⎪⎝⎭=()()2386154-⨯---⨯- =243660--+ =0 【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.8.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ; (2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁. 【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长; (2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可. 【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22; (3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键. 9.计算: (1)()213433⎛⎫---+-+ ⎪⎝⎭; (2)()()202011232---+-+. 解析:(1)-6;(2)132- 【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法;(2)先计算乘方,同时计算绝对值及去括号,再计算加减法. 【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+=142- =132-.【点睛】此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.10.某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表:(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克? 解析:(1)多1.75克;(2)9635克 【分析】(1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数. 【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克. (2)()5428001.56793+⨯=(克) 所以抽样检测的这些奶粉的总质量为9635克. 【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的. 11.计算:(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)131121346⎛⎫-⨯-+ ⎪⎝⎭解析:(1)1;(2)9- 【分析】(1)先算括号里面的,再算括号外面的即可; (2)根据乘法分配律计算即可; 【详解】(1)()222112136⎡⎤⎛⎫⎛⎫-+---÷-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 11463⎡⎤=-+-⨯⎢⎥⎣⎦,121=-+=;(2)131121346⎛⎫-⨯-+ ⎪⎝⎭, ()()()431121212346=-⨯--⨯+-⨯, 16929=-+-=-; 【点睛】 本题主要考查了有理数的混合运算,准确计算是解题的关键.12.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.解析:(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a 【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果; (2)利用点B 表示的数3减去9.5即可得到答案; (3)利用中点表示的数向左移动0.5a 个单位计算即可. 【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3; (2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3, ∴直尺此时左端点C 表示的数-3-0.5a . 【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.13.定义:数轴上给定不重合两点A ,B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.请解答下列问题: (1)若点A 表示的数为-3,点B 表示的数为1,点M 为点A 与点B 的“平衡点”,则点M 表示的数为_______;(2)若点A 表示的数为-3,点A 与点B 的“平衡点”M 表示的数为1,则点B 表示的数为________;(3)点A 表示的数为-5,点C ,D 表示的数分别是-3,-1,点O 为数轴原点,点B 为线段CD 上一点.①设点M 表示的数为m ,若点M 可以为点A 与点B 的“平衡点”,则m 的取值范围是________;②当点A 以每秒1个单位长度的速度向正半轴方向移动时,点C 同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t (0t >)秒,求t 的取值范围,使得点O 可以为点A 与点B 的“平衡点”.解析:(1)-1;(2)5;(3)①43t -≤≤-;②26t ≤≤且 5t ≠ 【分析】(1)根据平衡点的定义进行解答即可; (2)根据平衡点的定义进行解答即可;(3)①先得出点B 的范围,再得出m 的取值范围即可;②根据点A 和点C 移动的距离,求得点A 、C 表示的数,再由平衡点的定义得出答案即可. 【详解】解:(1)(1)点M 表示的数=312-+=−1; 故答案为:−1;(2)点B 表示的数=1×2−(−3)=5; 故答案为:5;(3)①设点B 表示的数为b ,则31b -≤≤-,∵点A 表示的数为-5,点M 可以为点A 与点B 的“平衡点”, ∴m 的取值范围为:43m -≤≤-, 故答案为:43m -≤≤-;②由题意得:点A 表示的数为5t -,点C 表示的数为33t -, ∵点O 为点A 与点B 的平衡点,∴点B 表示的数为:5t -, ∵点B 在线段CD 上, 当点B 与点C 相遇时,2t =, 当点B 与点D 相遇时,6t =, ∴26t ≤≤,且 5t ≠,综上所述,当26t ≤≤且 5t ≠时,点O 可以为点A 与点B 的“平衡点”. 【点睛】本题考查了实数与数轴,掌握数轴上点的表示方法,以及两点的中点表示方法是解题的关键.14.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)若经过这一周,该粮仓存有大米88吨. (1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用. 解析:(1)星期五粮仓当天运出大米20吨;(2)2700元. 【分析】(1)根据有理数的加法,可得答案; (2)根据单位费用乘以总量,可得答案. 【详解】(1)m =88﹣(132﹣32+26﹣23﹣16+42﹣21)=﹣20, ∴星期五粮仓当天运出大米20吨;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700(元), 答:这一周该粮仓需要支付的装卸总费用为2700元. 【点睛】本题考查了用正负数表示相反意义的量及有理数加减法的应用,第(2)问利用单位费用乘以总量是解题关键. 15.计算:(1)()()674-+--;(2)()3232--⨯.解析:(1)17-;(2)14 【分析】(1)根据有理数的加减法即可求出值;(2)原式先计算乘方,再计算乘法运算,最后算加减运算即可求出值; 【详解】解:(1)原式134=-17=-(2)原式()86=--14=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.计算: (1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11. 【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可. 【详解】 解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-, =13-7, =6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++- =11. 【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.17.某农户家准备出售10袋大米,称得质量如下:(单位:千克) 182,180,175,173,182,185,183,181,180,183(1)填空:以180千克作为基准数,可用正、负数表示这10袋大米的质量与180的差为;(2)试计算这10袋大米的总质量是多少千克?解析:(1)+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)1804千克【分析】(1)规定超出基准数为正数,则不足部分用负数表示,即可;(2)把第(1)题10个数相加,再加上180×10,即可.【详解】(1)以180千克为基准数,超过180千克的记作正数,低于180千克的记作负数,那么各袋大米的质量分别为:+2,0,−5,-7,+2,+5,+3,+1,0,+3,故答案是:+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)(+2+0−5-7+2+5+3+1+0+3)+ 180×10=1804(千克),答:这10袋大米的总质量是1804千克.【点睛】本题主要考查正负数的意义以及有理数的加减法的实际应用,熟练掌握有理数的加减法运算法则,是解题的关键.18.赣州享有“世界橙乡”的美誉,中华名果赣南脐橙热销世界各地.刚大学毕业的小明把自家的脐橙产品放到了网上售卖,他原计划每天卖100kg脐橙,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:kg).)根据记录的数据可知前三天共卖出kg(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售kg;(3)若脐橙按4.5元/kg出售,且小明需为买家支付运费(平均0.5元/kg),则小明本周一共赚了多少元?解析:(1)296;(2)29;(3)2868元【分析】(1)将前三天的销售量相加即可;(2)根据表格销量最多的一天为周六,最少的一天为周五,用周六的销量减去周五的销量即可得到答案;(3)先计算出本周的总销量,再乘以每千克的利润即可.【详解】(1)4-3-5+300=296(kg),故答案为:296;(2)(+21)-(-8)=29(kg),故答案为:29;(3)4-3-5+14-8+21-6=17(kg),17+100×7=717(kg),717×(4.5-0.5)=2868(元),小明本周一共赚了2868元.【点睛】此题考查正负数的实际应用,有理数混合运算的实际应用,正确理解表格意义列式计算是解题的关键.19.计算(1)(-1)2019+0.25×(-2)3+4÷2 3(2)21233()12323-÷+-⨯+解析:(1)3;(2)-2【分析】(1)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;(2)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;【详解】解:(1)原式=-1+0.25×(-8)+6=-1-2+6=3;(2)原式=12 931212323-÷+⨯-⨯+=-3+6-8+3=-2;【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算.20.将n个互不相同的整数置于一排,构成一个数组.在这n个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组.(1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m是“运算平衡”数组,则m的值可以是多少?(3)若某“运算平衡”数组中共含有n个整数,则这n个整数需要具备什么样的规律?解析:(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m的方程,解方程即可;(3)根据“运算平衡”数组的定义可以得到n 个数的规律.【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0;(2)要使数组1,4,6,m 是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况,经计算得m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0.【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键.21.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯- 解析:(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.22.计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.计算:(1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯. 解析:(1)6;(2)-5【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23=9﹣15+12=6;(2)20203221124(2)3()3-+÷--⨯ =﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1=﹣5.【点睛】 此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.24.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.解析:数轴表示见解析;-3<112-<0<112<3.【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可.【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3.故答案为:-3<112-<0<112<3.【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.25.计算: (1)4222(37)2(1)-+--⨯-; (2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭. 解析:(1)-2;(2)-19【分析】(1)先括号里,再计算乘方、乘法,最后相加减即可;(2)利用乘法的分配率进行计算.【详解】(1)4222(37)2(1)-+--⨯-=16162-+-=-2;(2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭=157(36)(36)(36)2912⨯--⨯-+⨯- =-18+20-21=-19【点睛】 考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.26.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; (2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭.解析:(1)19-;(2) 3.-【分析】(1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案; (2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案.【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; ()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭ ()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭ 16733=-+ 9 3.3=-=- 【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.27.计算(1)21145()5-÷⨯-(2)21(2)8(2)()2--÷-⨯-. 解析:(1)4125;(2)2. 【分析】第(1)和(2)小题都属于有理数的混合运算,根据混合运算的运算顺序:先算乘方,并利用有理数的除法法则将除法转化为乘法,再计算乘法,最后计算加减即可求出结果.【详解】解:(1)21145()5-÷⨯- 11116()55=-⨯⨯- 16125=+ 4125=; (2)21(2)8(2)()2--÷-⨯- 1148()()22=-⨯-⨯- 42=-2=.【点睛】本题考查了有理数的混合运算,解题的关键是确定正确的运算顺序并运用运算法则准确计算.28.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小红家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间?解析:(1)见解析;(2)4.5km ;(3)36分钟【分析】(1)根据题意在数轴上标出小彬家和小红家,再标出学校即可;(2)根据数轴上两点距离的计算方法计算即可得出答案;(3)先计算小明总共跑的路程,先向东跑了3.5km ,再向西跑了4.5km ,再向东跑了1km ,用总路程除以跑步速度即可得出答案.【详解】解:(1)如图所示:(2)3.5(1) 4.5()km --=,故小红家与学校之间的距离是4.5km ;(3)小明一共跑了(2 1.51)29()km ++⨯=,跑步用的时间是:900025036÷=(分钟).答:小明跑步一共用了36分钟.【点睛】本题主要考查了数轴上两点间的距离,根据题意列式计算式解决本题的关键. 29.计算:2334[28(2)]--⨯-÷-解析:21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.30.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.【详解】解:(1)点B 表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E在点B的右侧时,即点E在AB上,则点E表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.。
成都四川省成都市中和中学七年级数学上册第一单元《有理数》知识点总结
一、选择题1.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度2.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b 3.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=4.计算:11322⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .﹣3 B .3 C .﹣12D .12 5.下列各式中,不相等的是( )A .(﹣5)2和52B .(﹣5)2和﹣52C .(﹣5)3和﹣53D .|﹣5|3和|﹣53| 6.下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2)7.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0 8.一个数的绝对值是3,则这个数可以是( )A .3B .3-C .3或者3-D .139.若a ,b 互为相反数,则下面四个等式中一定成立的是( )A .a+b=0B .a+b=1C .|a|+|b|=0D .|a|+b=0 10.如果a ,b ,c 为非零有理数且a + b + c = 0,那么a b c abc a b c abc +++的所有可能的值为(A .0B .1或- 1C .2或- 2D .0或- 2 11.如果向右走5步记为+5,那么向左走3步记为( )A .+3B .-3C .+13D .-13 12.下列说法中正确的是( )A .a -表示的数一定是负数B .a -表示的数一定是正数C .a -表示的数一定是正数或负数D .a -可以表示任何有理数 13.若1<x <2,则|2||1|||21x x x x x x ---+--的值是( ) A .﹣3 B .﹣1 C .2 D .114.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0 15.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18 B .1-C .18-D .2 二、填空题 16.23(2)0x y -++=,则x y 为______.17.绝对值小于2018的所有整数之和为________.18.若有理数a ,b 满足()26150a b -+-=,则ab =__________.19.观察下面一列数:—1,2,—3,4,—5,6,—7,…,将这列数排成下列形式.按照上述规律排下去,那么第10行从左边数第9个数是______;数—201是第______行从左边数第______个数20.截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.21.若三个互不相等的有理数,既可以表示为3,a b +,b 的形式,也可以表示为0,3a b,a 的形式,则4a b -的值________. 22.在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ . 23.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________. 24.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.25.比较大小:364--_____________()6.25--. 26.绝对值小于4.5的所有负整数的积为______.三、解答题27.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).28.在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.29.计算:(1)()213433⎛⎫---+-+ ⎪⎝⎭; (2)()()202011232---+-+. 30.计算题:(1)()()121876---+-+;(2)()231513221428⎫⎛---⨯-+ ⎪⎝⎭; (3)2111(3)[]()63⨯--÷-.。
初中数学华东师大版八年级上册第一单元小结教学设计
初中数学华东师大版八年级上册第一单元小结教学设计【名师授课教案】1教学目标1.掌握平方根、算术平方根、立方根和实数的概念2.会用平方、立方的概念求某些数的平方根和立方根3.了解无理数和实数的概念,知道实数的分类,建立实数与数轴上的点一一对应的数学思想。
4.会进行简单的实数运算,并能以此解决一些实际问题2学情分析初中数学是中学数学的基础,打好这个基础,对减少两极分化,开发智力,发展思维,培养人才都是至关重要的。
而初二的数学又是初中数学的重中之重,起到承上启下的作用,因此,提高中学的教学质量,必须从八年级抓起。
根据近段时间对班级里面学生情况的了解主要体现在以下几个方面:1、学习状态。
绝大部分同学都能跟上现有的进度,上课发言尚积极,个别同学表现的还比较出色,但也有部分同学的理解能力和接受能力不尽人意,学习成绩极不理想。
从课堂上看,他们的注意力不能长时间集中,很容易分心,作业和试卷上的错误比较多,对于老师的问题一问三不知,在今后的教学过程中对这些孩子要特别注意。
2、学习习惯。
部分学生有主动学习的行为,深得老师赞赏。
比较喜欢上数学课,学习热情也很高,并喜欢与老师友好相处,同学之间、师生之间常在一起交流学习体会。
但仍有少部分学生学习懒散、学习习惯差,如:粗心大意、书写不认真,不愿思考问题,上课开小差,依赖老师讲解,依赖同学的帮助,有些学生抄作业现象比较严重。
因此,对每一章进行小结和复习很有必要,这样可以通过系统来让学生有一个整体了解这一章内容。
3重点、难点重、难点:平方根、算术平方根的联系与区别。
掌握平方根和立方根求法4教学过程4.1第一学时教学活动。
西安长安兴国初级中学七年级数学上册第一单元《有理数》知识点复习(含解析)
一、选择题1.下列说法中,①a-一定是负数;② a-一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有()A.2个B.3个C.4个D.5个2.数轴上点A和点B表示的数分别为-4和2,若要使点A到点B的距离是2,则应将点A向右移动()A.4个单位长度B.6个单位长度C.4个单位长度或8个单位长度D.6个单位长度或8个单位长度3.某测绘小组的技术员要测量A,B两处的高度差(A,B两处无法直接测量),他们首先选择了D,E,F,G四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A,B之间的高度关系为()A.B处比A处高B.A处比B处高C.A,B两处一样高D.无法确定4.计算:11322⎛⎫⎛⎫-÷-÷-⎪ ⎪⎝⎭⎝⎭的结果是()A.﹣3 B.3 C.﹣12 D.12 5.有理数a、b在数轴上,则下列结论正确的是()A.a>0 B.ab>0 C.a<b D.b<0 6.下列各式中,不相等的是()A.(﹣5)2和52B.(﹣5)2和﹣52C.(﹣5)3和﹣53D.|﹣5|3和|﹣53|7.用计算器求243,第三个键应按()A.4 B.3 C.y x D.= 8.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|9.如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 210.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12B .2或-12C .-2或12D .-2或-1211.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A .312⎛⎫ ⎪⎝⎭米B .512⎛⎫ ⎪⎝⎭米 C .612⎛⎫ ⎪⎝⎭米 D .1212⎛⎫ ⎪⎝⎭米 12.当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,记作( ) A .海拔23米B .海拔﹣23米C .海拔175米D .海拔129米13.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( ) A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m14.下列分数不能化成有限小数的是( )A .625 B .324C .412D .11615.有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a <二、填空题16.若a 、b 、c 、d 、e 都是大于1、且是不全相等的五个整数,它们的乘积2000abcde =,则它们的和a b c d e ++++的最小值为__.17.对于有理数a 、b ,定义一种新运算,规定a ☆2b a b =-,则3☆(2)-=__.18.数轴上表示 1 的点和表示﹣2 的点的距离是_____. 19.若230x y ++-= ,则x y -的值为________. 20.计算3253.1410.31431.40.284⨯+⨯-⨯=__. 21.一个班有45个人,其中45是_____数;大门约高1.90 m ,其中1.90是_____数. 22.某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元. 23.如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.24.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.25.点A 表示数轴上的一个点,将点A 向右移动10个单位长度,再向左移动8个单位长度,终点恰好是原点,则点A 到原点的距离为______.26.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位; (2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.三、解答题27.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a ba b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a ba b c+++++的值. 28.计算下列各题: (1)(14﹣13﹣1)×(﹣12); (2)(﹣2)3+(﹣3)×[(﹣4)2﹣6].29.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.30.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一单元知识小结
一、易读错的字
昙.花(tán) 秉.
性(bǐng) 瞥.见(piē) 蛱.
蝶(jiá) 暂.时(zàn) 蹒跚..
(pán shān) 二、易写错的字 浇:右上部是“”,不要写成“戈”。
蜓:右半部是“廷”,不要写成“延”。
庞:里面是“龙”,不要写成“尤”。
三、重点词语
试验 计较 珍贵 惟有 温驯
彻底 菊秧 循环 骄傲 耘田
仰望 领略 暂时 蝴蝶 拨弄
三年五载 幕天席地 置之不理
腰酸腿疼 秉烛夜游 玲珑娇小
庞然大物 心魂俱静 奇花异草
四、多音字
载⎩⎪⎨⎪⎧zǎi (记载)zài (载歌载舞) 供⎩
⎪⎨⎪⎧gōng (提供)gòng (口供) 调⎩⎪⎨⎪⎧diào (单调)tiáo (调节) 禁⎩
⎪⎨⎪⎧jīn (情不自禁)jìn (禁止) 屏⎩⎪⎨⎪⎧bǐng (屏息)píng (屏障) 舍⎩
⎪⎨⎪⎧shě(舍不得)shè(宿舍) 五、形近字
⎩⎪⎨⎪⎧蛱jiá(蛱蝶)颊jiá(脸颊) ⎩
⎪⎨⎪⎧拨bō(拨弄)拔bá(拔草) ⎩⎪⎨⎪⎧幕mù(幕天席地)慕mù(羡慕) ⎩
⎪⎨⎪⎧秧yāng (秧苗)殃yāng (遭殃) ⎩⎪⎨⎪⎧蜓tíng (蜻蜓)蜒yán (蜿蜒) ⎩
⎪⎨⎪⎧浇jiāo (浇花)烧shāo (燃烧) 六、近义词
试验—实验 适当—适宜 珍贵—宝贵
骄傲—自豪 驯良—驯服 狡猾—奸猾
七、反义词
循环—间断 真理—谬论 关心—冷漠
稀疏—繁密 朦胧—清晰 焦躁—镇静
八、词语搭配
1.填入恰当的动词
(闹)霜冻 (嚼)青草 (探望)小鸟
(拨弄)着玫瑰花叶 (仰卧)在草地上
2.填入恰当的量词
一(只)小白狗 一(条)小虫
3.填入恰当的修饰词
(珍贵)的花草 (弱不禁风)的小仙子
(朦胧)的晓风 (闪烁)的萤虫
九、词语归类
1.ABAC 式的词语:自生自灭 不慌不忙
自惊自跳 自由自在 无拘无束 无影无踪
2.形容人高兴的词语:喜不自胜喜上眉梢
欣喜若狂心花怒放喜笑颜开兴高采烈
3.带有近义词的词语:奇花异草抓耳挠腮
翻山越岭调兵遣将东张西望胡言乱语
十、句子积累
1.诗句:
(1)日长篱落无人过,惟有蜻蜓蛱蝶飞。
(2)童孙未解供耕织,也傍桑阴学种瓜。
2.比喻句:这树的枝干铁硬,但扭来扭去,卷来卷去,活像是苍老的龙和蛇一样!
3.反问句:不劳动,连棵花也养不活,这难道不是真理吗?
4.排比句:有喜有忧,有笑有泪,有花有果,有香有色,既须劳动,又长见识,这就是养花的乐趣。
十一、考点提示
1.《养花》中对两次出现的“腰酸腿疼,热汗直流”会以判断、问答的形式考查;第7自然段总结全文,直接写出了作者养花的乐趣,会以课内阅读的形式考查。
2.《古诗二首》会考查默写,对诗中词语、诗句意思的理解。
3.《山中杂记》第11自然段描写了小鸟一家相亲相爱的情景,表达了作者对鸟儿的喜爱之情,会以课内阅读的形式考查。
1、数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。
2、数学是研究现实生活中数量关系和空间形式的数学。
3、我总是尽我的精力和才能来摆脱那种繁重而单调的计算。
4、一个数学家越超脱越好。
5、数学是各式各样的证明技巧。
6、数学是锻炼思想的体操。
7、整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。
8、数学是研究抽象结构的理论。
9、历史使人贤明,诗造成气质高雅的人,数学使人高尚,自然哲学使人深沉,道德使人稳重,而伦理学和修辞学则使人善于争论。
10、数学方法渗透并支配着一切自然科学的理论分支。
它愈来愈成为衡量科学成就的主要标志了。