概率论与数理统计复习题概率A

合集下载

概率论与数理统计复习参考题

概率论与数理统计复习参考题

概率论与数理统计复习参考题随机事件与概率1.已知事件、A B 满足)()(B A P AB P I =且p A P =)(,求= 1)(B P −p 。

2.一批产品共有10个正品2个次品,从中任取两次,每次取一个(不放回)。

则第二次取出的是次品的概率为 1/6 。

3.设10件产品中有4件是不合格品,从中任取两件,已知所取两件中有一件是不合格品,则另一件也是不合格品的概率为 1/5 。

4.从数1,2,3,4中任取一数,记为X ,再从1X ~中任取一数,记为Y ,则==}2{Y P 13/48 。

5.设一批产品中一、二、三等品各占60%、30%、10%,从中任取一件,结果不是三等品,则取到的是一等品的概率为 2/3 。

6.设两两相互独立的三个事件满足条件:C B A ,,2/1)()()(<==C P B P A P ,φ=ABC ,且已知,则16/9)(=C B A P U U =)(A P 1/4 。

7.设两个相互独立的事件都不发生的概率为1/9,A 发生B A 和B 不发生的概率与B 发生不发生的概率相等,则A =)(A P 2/3 。

8.设是两个事件, B A ,4.0)(=A P ,5.0)(=B P , )|()|(B A P B A P =,则=)(B A P 0.2 。

9.设和A B 是任意两个概率不为零的不相容事件,则下列结论肯定正确的是 []。

D (A )A 与B 不相容 (B )A 与B 相容 (C ))()()(B P A P AB P = (D ))()(A P B A P =−10.对于任意二事件和A B ,与B B A =U 不等价的是 [ ]D ()A B A ⊂ (B )A B ⊂ (C )φ=B A ()D φ=B A11.设和A B 为任意两个事件,且A B ⊂,P B ()>0,则必有 [ B ](A ) ()|()(B A P A P <B )P A P A B ()(|)≤(C ) (D )P A P A B ()(|)>P A P A B ()(|)≥12.对于任意二事件和A B()若A φ≠AB ,则、A B 一定独立。

概率论与数理统计复习资料2

概率论与数理统计复习资料2

概率论与数理统计A一、填空题1.设A, B 为随机事件, 5.0)(=A P , 6.0)(=B P , 8.0)(=A B P , 则=)(AUB P __. 2.设随机变量),(~p n B X ,且05.1)(,5.3)(==X D X E ,则 ,.3.设()4,()1,0.6,XY D X D Y ρ===则=-)23,(Y X X COV __ _.4.设二维随机变量(),X Y 的概率密度函数为⎩⎨⎧≤≤≤≤=,,0;10,10,1),(其他y x y x f则)2(Y X P >=__ .5.设总体X 服从参数为2=λ的泊松分布,321,,X X X 为X 的一个样本,则=+),(221X X X Cov __ _ ;)(2321X X X E +=__ __.6. 随机变量X 和Y 数学期望都是2,方差分别为1和4,而相关系数为5.0,则根据契比雪夫不等式≤≥-)6(Y X P .二、选择题1、设)(1x F 和)(2x F 分别为随机变量1X 和2X 的分布函数,为使)()()(21x bF x aF X F -=为某一随机变量的分布函数,在下列各组数值中应取( )A. 5/2,5/3-==b aB. 3/2,3/2==b aC. 2/3,2/-1==b aD. 2/3,2/1-==b a 2. 随机变量,,且相互独立,( )A .7-B . 6-C .6D .0.6 3.设随机变量1~3,3X B ⎛⎫⎪⎝⎭,则(1)P X ≥= ( ) A .271 B .278 C .2719 D .27264.设离散型随机变量()Y X ,的联合概率分布律为记()Y X ,的联合分布函数为),(y x F ,则)0,1(F =( ) A .121 B . 61 C .32 D .21 5.设总体()2~,X N μσ,其中μ未知,1234,,,X X X X 为来自总体X 的一个样本,下列关于μ的三个无偏估计:1ˆμ=12341(),4X X X X +++ 212341112ˆ5555X X X X μ=+++,312341221ˆ6666X X X X μ=+++中,哪一个方差最小?( ) A .1ˆμB .2ˆμC .3ˆμD . 无法比较三、综合题1. 100个电子元件中,甲类80个,乙类12个,丙类有8个。

《概率论与数理统计A》期末习题一答案

《概率论与数理统计A》期末习题一答案

《概率论与数理统计A 》期末习题一答案一、简答题(本题满分30分,共含6小题,每小题5分)1、设A ,B 为随机事件,A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,求()P AB 。

解:32.04.08.0)()()(=⨯==B P A P B A P 。

(5分)2、设随机变量X 的概率密度为⎩⎨⎧<<=其他 010 )(x cx x f ,求常数c 的值。

解:121)(1===⎰⎰+∞∞-c dx cx dx x f ,因此2=c 。

(5分) 3、 已知随机变量)4,1(~N X ,求}21{<<X P 。

解:()021}21221211{}21{Φ-⎪⎭⎫⎝⎛Φ=-<-<-=<<X P X P (3分) 1915.05.06915.0=-=。

(2分)4、设随机变量X 和Y 相互独立,)4,3(~N X ,)9,2(~N Y ,求变量12+-=Y X Z 的数学期望和方差。

解:()()()()51261212=+-=+-=+-=Y E X E Y X E Z E ; (2分)()()()()25916412=+=+=+-=Y D X D Y X D Z D 。

(3分) 5、 已知10个产品中有3个次品,现从中有放回地取3次,每次任取1个,求所取的3个产品中恰有2个次品的概率。

解:设X :所取得3个产品中次品的个数,则⎪⎭⎫⎝⎛103,3~B X (2分)1000189107103}2{223=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛⋅==C X P (3分) 6、设随机变量X 、Y 相互独立,且都服从标准正态分布,则Z(同时要写出分布的参数) ?~(1)t 。

(5分)二、(本题满分10分) 编号为1,2,3的三台仪器正在工作的概率分别为0.9,0.8和0.4,从中任选一台。

(1) 求此台仪器正在工作的概率;(2) 已知选到的仪器正在工作,求它编号为2的概率。

《概率论与数理统计》分章复习题

《概率论与数理统计》分章复习题

第一章 随机事件与概率一、 选择题1、以A 表示甲种产品畅销,乙种产品滞销,则A 为( ).(A) 甲种产品滞销,乙种产品畅销 (B) 甲、乙产品均畅销(C) 甲种产品滞销 (D) 甲产品滞销或乙产品畅销2、设A 、B 、C 为三个事件,则A 、B 、C 中至少有一个发生的事件可以表示为( ).(A)ABC (B) A B C ⋂⋂ (C) A B C ⋃⋃ (D) ABC3、已知事件B A ,满足A B =Ω(其中Ω是样本空间),则下列式( )是错的. (A) B A = (B ) Φ=B A (C) B A ⊂ (D ) A B ⊂4、设A 、B 、C 为三个事件,则A 、B 、C 中至少有一个不发生的事件可以表示为( )。

(A)ABC (B )ABC (C) A B C ⋃⋃ (D ) ABC5、假设事件,A B 满足(|)1P B A =,则( ).(A) A 是必然事件 (B) (|)0P B A = (C)A B ⊃ (D)A B ⊂6、设()0P AB =, 则有( ).(A) A 和B 不相容 (B) A 和B 独立 (C) P(A)=0或P(B)=0 (D) P(A-B)=P(A)7、设A 和B 是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是(). (A )A 与B 不相容 (B )A 与B 相容(C )()()()P AB P A P B = (D )()()P A B P A -=8、设A B ⊂,则下面正确的等式是( ). (A) )(1)(A P AB P -= (B) )()()(A P B P A B P -=-(C) )()|(B P A B P = (D) )()|(A P B A P =9、事件,A B 为对立事件,则下列式子不成立的是( ).(A)()0P AB = (B )()0P AB = (C)()1P A B ⋃= (D )()1P A B ⋃=10、对于任意两个事件,A B ,下列式子成立的是( ).(A) ()()()P A B P A P B -=- (B ) ()()()()P A B P A P B P AB -=-+(C) ()()()P A B P A P AB -=- (D ) ()()()P A B P A P AB -=+11、设事件B A ,满足1)(=B A P , 则有( ).(A )A 是必然事件 (B )B 是必然事件(C )A B φ⋂=(空集) (D ))()(B P A P ≥ 12、设,A B 为两随机事件,且B A ⊂,则下列式子正确的是( ).(A )()()P A B P A ⋃=; (B )()P(A);P AB =(C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -13、设,A B 为任意两个事件,0)(,>⊂B P B A ,则下式成立的为( )(A )B)|()(A P A P < (B )B)|()(A P A P ≤(C )B)|()(A P A P > (D )B)|()(A P A P ≥14、设A 和B 相互独立,()0.6P A =,()0.4P B =,则()P A B =( )(A )0.4 (B )0.6 (C )0.24 (D )0.515、设 (),(),(),P A c P B b P A B a ==⋃= 则 ()P AB 为 ( ).(A) a b - (B ) c b - (C) (1)a b - (D ) b a -16、设A ,B 互不相容,且()0,()0P A P B >>,则必有( ). (A) 0)(>A B P (B ))()(A P B A P = (C) )()()(B P A P AB P = (D ) 0)(=B A P17、设,A B 相互独立,且()0.82P A B ⋃=,()0.3P B =,则()P A =( )。

概率论与数理统计复习资料

概率论与数理统计复习资料

山东科技大学2010—2011学年第一学期《概率论与数理统计》考试试卷(A 卷)一、填空题(本大题共6小题,每小题3分,总计18分)1、1.设随机事件A ,B 互不相容,且3.0)(=A P ,6.0)(=B P ,则=)(A B P 。

2、设D(X)=4, D(Y)=9, 0.4xy ρ=,则D(X+Y)= 。

3、设随机变量X 服从参数为2的泊松分布,则应用切比雪夫不等式估计得{}22P X -≥≤ 。

4、设随机变量X 的期望()3E X =,方差()5D X =,则期望()24E X ⎡⎤+=⎣⎦。

5、设123,,X X X 是来自正态总体X ~(),1N μ的样本,则当a = 时,12311ˆ32X X aX μ=++是总体均值μ的无偏估计。

6、设n X X X ,,,21 为正态总体),(2σμN (2σ未知)的一个样本,则μ的置信 度为1α-的单侧置信区间的下限为 。

二、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题共6个小题,每小题3分,总计18分)1、设随机变量的概率密度21()01qx x f x x -⎧>=⎨≤⎩,则q=( )。

(A)1/2 (B)1 (C)-1 (D)3/22、设每次试验成功的概率为)10(<<p p ,重复进行试验直到第n 次才取得)1(n r r ≤≤次成功的概率为( ).(A)r n r r n p p C ----)1(11;(B)r n r r n p p C --)1( ;(C)1111)1(+-----r n r r n p pC ;(D)r n r p p --)1(. 3、设)4,5.1(~N X ,则P{-2<x<4}=( )。

(A)0.8543 (B)0.1457 (C)0.3541 (D)0.25434、设,X Y 相互独立,且211~(,)X N μσ,222~(,)Y N μσ,则Z X Y =-服从正态分布,且Z 服从( ).(A) 22112(,)N μσσ+ ; (B)22212(,)N μσσ⋅; (C)221212(,)N μμσσ-+; (D)221212(,)N μμσσ++。

概率论与数理统计习题含解答,答案)

概率论与数理统计习题含解答,答案)

概率论与数理统计复习题(1)一.填空.1.3.0)(,4.0)(==B P A P 。

若A 与B 独立,则=-)(B A P ;若已知B A ,中至少有一个事件发生的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σμN X ,且3.0}42{ },2{}2{=<<≥=<X P X P X P ,则=μ ;=>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独立,则=-<-<-}12{Y X P (用Φ表示),=XY ρ 。

8.已知X 的期望为5,而均方差为2,估计≥<<}82{X P 。

9.设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。

但当增大置信水平时,则相应的置信区间长度总是 。

二.假设某地区位于甲、乙两河流的汇合处,当任一河流泛滥时,该地区即遭受水灾。

设某时期内甲河流泛滥的概率为0.1;乙河流泛滥的概率为0.2;当甲河流泛滥时,乙河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受水灾的概率;(2)当乙河流泛滥时,甲河流泛滥的概率。

三.高射炮向敌机发射三发炮弹(每弹击中与否相互独立),每发炮弹击中敌机的概率均为0.3,又知若敌机中一弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

概率论与数理统计(A)期末复习资料

概率论与数理统计(A)期末复习资料

《概率论与数理统计(A )》期末复习资料一、选择题:1.设A ,B 为两个任意事件,那么与事件B A B A B A ++相等的事件是().(A) AB (B) B A + (C) A (D) B2.设B A ,为两个随机事件,若0)(=AB P ,则( ).(A)A 和B 两事件互不相容(互斥); (B)AB 是不可能事件; (C)AB 未必是不可能事件; (D)0)(=A P 或0)(=B P . 3.如果0)(=AB P ,则( ).(A))()(A P B A P =-; (B)A 与B 不相容; (C)A 与B 不相容; (D))()()(B P A P B A P -=-. 4.如果1)()(=+B P A P ,则( ).(A)1)(=⋃B A P ; (B)0)(=⋂B A P ; (C))()(B A P B A P ⋂=⋂; (D))()(B A P B A P ⋃=⋂. 5.设A 和B 相互独立,则下列结论错误的是( ).(A)B ,A 独立; (B)B ,A 独立; (C))()()(B P A P B A P =; (D)φ=AB .6.设B A ⊂且相互独立,则( ).(A)0)(=A P ; (B)1)(0)(==B P A P 或; (C)1)(=A P ; (D)上述都不对. 7.设随机变量~(2,)X B p ,若()159X P ≥=,则p =( ). (A)32; (B)21; (C)31; (D)2719.8.设随机变量X 概率分布为,,2,1)1()( =+==k k k ak X P ,则a 为( ).(A)0; (B)1; (C)2; (D)3.9.设随机变量X 服从泊松分布,且(1)(2)P X P X ===,则λ=( ). (A)2; (B)1; (C)4; (D)0.5.10.若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞-=x x F b d )() (B) X a P <(≤⎰=bax x F b d )()(C) X a P <(≤⎰=b ax x f b d )() (D) X a P <(≤⎰∞+∞-=x x f b d )()11.设随机变量),(~2σμN X ,且022=++X x x 无实根的概率为0.5,=μ( ). (A)-1; (B)0; (C)1; (D)2.12.随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<<=其他,0,20,20,),(y x cx y x f ,则c 为( ).(A)0.25; (B)1; (C)2; (D)4.13.设随机变量Y X ,相互独立,它们的密度函数分别为⎩⎨⎧≤>=-000x ,;x ,e )x (f x X ,⎩⎨⎧≤>=-00022y ,;y ,e )y (f y Y ,则=>)Y X (P ( ).(A)31; (B)21; (C)32; (D)43.14.设X ~)4,2(N 且b aX +~)1,0(N ,则( ). (A)22-==b a ,; (B)12-=-=b a ,; (C)121==b a ,; (D)121-==b a ,.15.设)1(~P X ,)2(~P Y ,且X 与Y 相互独立,则~Y X +( ). (A) (1,2)b (B) (3)P (C) (1.5)P(D) (2,1)b16.设随机变量)6.0,20(~b X ,)6.0,10(~b Y ,且X 与Y 相互独立,则~Y X +( ). (A) (10,0.6)b (B) (20,0.6)b (C) b(30,0.6) (D) (18)P17.设),(~p n b X 且6 3.6EX DX ==,,则有()(A) 100.6n p ==, (B) 200.3n p ==,(C) 150.4n p ==, (D) 120.5n p ==, 18.设12,,n X X X 是取自正态总体X ~)1,0(N 的样本,2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)X ~)1,0(N ; (B)X n ~)1,0(N ; (C)S X /~)1(-n t ; (D)∑=ni i X 12~)(2n χ.19.设n X X X 21,是取自正态总体X ~),(2σμN 的样本(2>n ), 2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)1--n SX μ~)1(-n t ; (B)22)(S X n μ-~)1,1(-n F ; (C)22σS ~)1(2-n χ; (D)122X X -~),(2σμN .20.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211(())1ni i S X X n ==--∑ X 分别为样本方差和样本均值,则下面结论中不正确的是( ). (A)2~(,)X N n σμ ;(B)22()E S σ=; (C)22()1nE S n σ=-; (D)222(1)/~(1)n S n σχ--. 21.已知随机变量X 与Y 相互独立,且2~(40)X χ,2~(80)Y χ,则~/2Y X ().(A)2(40)χ (B) (20,40)F (C) (40,80)F (D) 2(80)χ22.设n X X X ,,,21 是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计.(A) 321X X X ++ (B) 321525252X X X ++ (C) 321515151X X X ++ (D) 321535151X X X ++23.对正态总体),(2σμN 的假设检验问题中,Z 检验解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值(C) 已知均值,检验方差 (D) 未知均值,检验方差24.对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,则下列各式中( )不是统计量.(A)1X (B) μ+X(C)221σX (D)1X μ25.设n X X X ,,,21 是正态总体),(~2σμN X (2σ已知)的一个样本,按给定的显著性水平α检验0H :0μμ=(已知);1H :0μμ≠时,判断是否接受0H 与( )有关.(A) 样本值,显著水平α (B) 样本值,样本容量(C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α 26.在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差 27.假设检验时,若增大样本容量,则犯两类错误的概率( ). (A) 有可能都增大 (B) 有可能都减小(C) 有可能都不变 (D) 一定一个增大,一个减小二、填空题:1.设B A ,是两个事件,且=)(B A P 1,则=-)(A B P .2.设()0.7P A =,()0.3P A B -=,则()AB P = ,()B A P = .3.设事件B A ,和B A ⋃的概率分别为0.2,0.3和0.4,则=)(A B P _______.4.设B A ,是两个随机事件,()0.4()0.3P A P B ==,,若B A ,相互独立,则()P A B ⋃= ,则()P B A = .5.三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为 .6.设甲、乙两人投篮命中率分别为0.7和0.8,每人投篮3次,则有人投中的概率为 .7.从0,1,2,,9这10个数字中任意选出3个不同的数字,则3个数字中不含0或5的概率为 .8.某工厂一个班组共有男工9人,女工5人,现在要选出3个代表,则选的3 个代表中至少有1个女工的概率为 .9.设随机变量X 服从参数为λ的泊松分布,且()2D X =,则(1)p X ==________. 10.设随机变量),(N ~X 42,则~X Y 22-=. 11.设随机变量Y 在]5,0[上服从均匀分布,则关于x 的一元二次方程02442=+++Y xY x 有实根的概率为 .12.设)(1x F 与)(2x F 分别是任意两个随机变量分布函数,令=)(x F)()(21x bF x aF +,则下列各组数中使)(x F 为某随机变量的分布函数的有 =a , =b .13.已知连续随机变量X 的分布函数为1,0()0,0x e x F x x λ--≥=<⎧⎨⎩,0λ>,则其密度函数为 ,(2)P x ≤= ;已知随机变量X 的密度函数⎩⎨⎧≤≤=其它 , 010,2)(x x x f 则:)5.15.0(<<X p = .14.设随机变量X 分布律为令,12+=X Y 则随机变量X 分布律为 ;=)(Y E _________.15.若二维随机变量(,)X Y 具有分布律:则(21)P Y X ===________. 16.设随机变量X 分布列如下表则E (X )=________,D (X )=________.17.两独立随机变量X Y 和都服从正态分布,且()()~3,4~2,9X N Y N ,,则()D X Y +=________;又两个相互独立的随机变量~(3),V ~P(2)U E ,则(22)D U V ++=________.18.设X 服从[-1,2]上的均匀分布,令⎩⎨⎧<-≥=,01,01X X Y ,,则=)(Y E ,=)(Y D .19.设相互独立的随机变量X ,Y 均服从参数为5的指数分布,则当0,0x y >>时,(,)X Y 的概率密度(,)f x y =________.20.设总体)1,0(~N X ,1210,,,X X X 是来自总体X 的样本,则~X .21.设总体2~(0,)X N σ,921,X X X 为总体的一个样本,则)(9196521X X X X X X ++++++= 分布为 .22.设),(21n X X X 是取自参数为λ泊松分布的样本,则统计量i ni X Y ∑==1服从分布.23.设12n X X X ,,,为来自总体X 的样本,且~(0,1)X N ,则统计量21~nii X=∑ .24.设12,,,n X X X 是来自总体)1,0(~N X 的简单随机样本,则21()ni i X X =-∑服从的分布为 .25.设n X X X 21,是来自正态总体X ~N (μ,2σ)的样本,即它们是独立同分布,则~X ,~)1(22σS n - .26.在单边假设检验中,原假设为0H :μ≤0μ,则其备择假设为1H :_______________.27.设总体X 服从正态分布2(,)N μσ,其中2σ未知,12,,n X X X 为其样本.若假设检验问题为0010:,:,H H μμμμ=≠则采用的检验统计量表达式应为_______________.三、计算题1.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.2.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求: (1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.3.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率.4.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).5.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.6.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?8.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率.9.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1)在开始150小时内没有电子管损坏的概率;(2)在这段时间内有一只电子管损坏的概率; (3)F (x ).10.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.11.由某机器生产的螺栓长度(cm )~(10.05,0.062)X N ,规定长度在10.050.12±内为合格品,求一螺栓为不合格品的概率..12.设一工厂生产的电子管寿命X (小时)服从正态分布),160(2δN ,若要求{}8.0200120≥≤<X P ,允许δ最大不超过多少?13.设X ~N (3,22),(1)求P {2<X ≤5},P {4<X ≤10},P {|X |>2},P {X >3}; (2)确定c 使P {X >c }=P {X ≤c }.14.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.(2)求(X ,Y )的边缘分布律; (3)求W =X +Y 的分布律.16.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<--=.,0,42,20),6(,其他y x y x k y x f (1)确定常数k ;(2)求P {X <1,Y <3}; (3)求P {X <1.5}; (4)求P {X +Y ≤4}.17.设二维随机变量(X ,Y )的联合分布函数为()⎩⎨⎧>>--=--.,0,0,0),e 1)(e 1(,24其他y x y x F y x求(X ,Y )的联合分布密度.18.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤-+=.,0,10 ,1,01 ,1其他x x x x x f求)()(X D X E ,.19.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤=.,0,21,2,10,其他x x x x x f求)()(X D X E ,.20.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<=.,0,0,10,,其他x y x k y x f 试确定常数k ,并求)(XY E .21.设X ,Y 是相互独立的随机变量,其概率密度分别为()⎩⎨⎧≤≤=;,0,10,2其他x x x f X ()(5)e ,5,0,.y Y y f y --⎧>=⎨⎩其他 求E (XY ).22.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩估计.23.设总体X 的密度函数()2(x )2,,f x e x R μμ--=∈X 1,X 2,…,X n 为其样本,试求参数μ的矩估计. 24.设12,,,n x x x 为来自正态总体2~N(,)X μδ的一个样本的X1,X2, (X)观测值,试求总体未知参数2,μδ的极大似然估计.25.设总体X 的密度函数为⎩⎨⎧<<=-.,0,10,),(1其他x x x f θθθn X X X 21,为其样本,求θ 的极大似然估计.26.某车间生产的螺钉,其直径2~N(,)X μδ,由过去的经验知道2δ=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 求μ的置信概率为0.95的置信区间.27.来自正态总体2~N(,)X μδ的一个样本为X 1,X 2,…,X n ,并且2μδ未知,已知,求μ的置信概率为1α-的置信区间.28.在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差2s =0.1(2g ).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).。

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案《概率论与数理统计》复习题一、填空题1.未知p(ab)?p(a),则a与b的关系就是单一制。

2.未知a,b互相矛盾,则a与b的关系就是互相矛盾。

3.a,b为随机事件,则p(ab)?0.3。

p(a)?0.4,p(b)?0.3,p(a?b)?0.6,4.已知p(a)?0.4,p(b)?0.4,p(a?b)?0.5,则p(a?b)?0.7。

25.a,b为随机事件,p(a)?0.3,p(b)?0.4,p(ab)?0.5,则p(ba)?____。

36.已知p(ba)?0.3,p(a?b)?0.2,则p(a)?2/7。

7.将一枚硬币重复投掷3次,则正、反面都至少发生一次的概率为0.75。

8.设立某教研室共计教师11人,其中男教师7人,贝内旺拉拜教研室中要自由选择3名叫优秀教师,则3名优秀教师中至少存有1名女教师的概率为___26____。

339.设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出1___。

611110.3人单一制截获一密码,他们能够单独所译的概率为,,,则此密码被所译的5343概率为______。

5后不送回,则第2次取出的就是次品的概率为___11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3235cp(1?p)7次顺利的概率为______。

12.已知3次独立重复试验中事件a至少成功一次的概率为1事件a顺利的概率p?______。

319,则一次试验中27c35813.随机变量x能取?1,0,1,取这些值的概率为,c,c,则常数c?__。

24815k14.随机变量x原产律为p(x?k)?,k?1,2,3,4,5,则p(x?3x?5)?_0.4_。

15x??2,?0?x?15.f(x)??0.4?2?x?0,是x的分布函数,则x分布律为__??pi?1x?0?0??__。

0.40.6??2?0,x?0??16.随机变量x的分布函数为f(x)??sinx,0?x??,则2?1,x2?p(x??3)?__3__。

概率论与数理统计复习题1

概率论与数理统计复习题1

概率论与数理统计复习题(一)A. 古典概型选择题1. 在所有两位数(10-99)中任取一两位数,则此数能被2或3整除的概率为 ( ) A. 6/5 B . 2/3 C. 83/100 D.均不对2. 对事件A,B.下列正确的命题是 ( ) A .如A,B 互斥,则A ,B 也互斥B. 如A,B 相容,则A ,B 也相容C. 如A,B 互斥,且P(A)>0,P(B)>0,则A.B 独立 D . 如A,B 独立,则A ,B 也独立3. 掷二枚骰子,事件A 为出现的点数之和等于3的概率为 ( ) A.1/11 B . 1/18 C. 1/6 D. 都不对5. 甲,乙两队比赛,五战三胜制,设甲队胜率为0.6,则甲队取胜概率为( ) A. 0.6B. C 35*0.63*0.42C. C 350.63*0.42+C 45*0.64*0.4D .C 35*0.63*0.42+C 45*0.64*0.4+0.656. 某果园生产红富士苹果,一级品率为0.6,随机取10个,恰有6个一级品之概率( ) A. 1B. 0.66C . C 466104.06.0 D.(0.6)460.4)(7. 一大楼有3层,1层到2层有两部自动扶梯,2层到3层有一部自动扶梯,各扶梯正常工作的概率为 P ,互不影响,则因自动扶梯不正常不能用它们从一楼到三楼的概率为( ) A.(1-P )3 B. 1-P 3C . 1-P 2(2-P )D.(1-P )(1-2P )8. 甲,乙,丙三人共用一打印机,其使用率分别p, q, r ,三人打印独立,则打印机空闲率为( ) A. 1-pqr B . (1-p )(1-q )(1-r ) C. 1-p-q-r D. 3-p-q-r 9. 事件A,B 相互独立, P(A)=0.6, P( A B )=0.3, 则 P(AB)=( ) A . 0.15 B. 0.2 C. 0.25 D. 0.110. 甲,乙各自射击一目标,命中率分别为0.6和0.5,已知目标被击中一枪,则此枪为甲命中之概率 ( ) A . 0.6 B. 0.3 C. 0.5 D. 0.55 11. 下列命题中,真命题为 ( )A. 若 P (A )=0 ,则 A 为不可能事件B .若A,B 互不相容,则1B A P )=(C.若 P(A)=1,则A 为必然事件D.若A,B 互不相容,则 P(A)=1-P(B)12. A,B 满足P(A)+P(B)>1,则A,B 一定( )A. 不独立B. 独立C. 不相容 D . 相容13. 若 ( ),则〕〕〔=〔)P(B)-1P(A)-1B A P( A. A,B 互斥 B. A>B C. 互斥,B A D . A,B 独立14. 6本中文书,4本外文书放在书架上。

概率论与数理统计a综合练习答案

概率论与数理统计a综合练习答案

综合练习一一、单项选择题1.设A 与B 为两个随机事件,则表示A 与B 不都发生是【 】.(A )A B (B )AB (C )AB (D )AB2.设A 、B 、C 为三个随机事件,则表示A 与B 都不发生,但C 发生的是【】. (A )A BC (B )()A B C + (C )ABC (D )A B C +3.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为【】. (A )甲种产品滞销,乙种产品畅销 (B )甲、乙两种产品均畅销 (C )甲种产品滞销 (D )甲种产品滞销或乙种产品畅销4.对于任意两个事件A 与B ,均有=-)(B A P 【】. (A) )()(B P A P - (B) )()()(AB P B P A P +- (C) )()(AB P A P - (D) )()()(AB P B P A P -+5.已知事件A 与B 互斥,8.0)(=+B A P ,5.0)(=B P ,则=)(A P 【】. (A) 0.3 (B) 0.7 (C) 0.5 (D) 0.6 6.若21)(=A P ,31)(=B P ,61)(=AB P ,则A 与B 的关系为【】. (A) 互斥事件 (B) 对立事件 (C) 独立事件 (D) A B ⊃7.已知事件A 与B 相互独立,8.0)(=+B A P ,5.0)(=B P ,则()P A =【】. (A) 0.3 (B) 0.2 (C) 0.5 (D) 0.6 8.若事件A 与B 相互独立,0)(>A P ,0)(>B P ,则错误的是【 】. (A) A 与B 独立 (B) A 与B 独立 (C) )()()(B P A P B A P = (D) A 与B 一定互斥 9. 设事件A 与事件B 互不相容,则【 】.(A )()0P AB = (B )()()()P AB P A P B = (C )()1()P A P B =- (D )()1P AB =10. 设A 、B 为任意两个事件,且,()0A B P B ⊂>, 则下列选项必然成立的是【】. C A D C B C D D D B(A )()()P A P A B < (B ) ()()P A P A B ≤ (C )()()P A P A B > (D )()()P A P A B ≥二、填空题11.设C B A ,,为三个事件,试用C B A ,,表示下列事件:(1)C B A ,,中至少有一个发生 ; (2)C B A ,,中恰好有一个发生 ;(3)C B A ,,三个事件都发生 ; (4)C B A ,,三个事件都不发生 ;(5)B A ,都发生而C 不发生 ; (6)A 发生而C B ,都不发生 ;12. 某人向目标射击三次,事件=i A {第i 次击中},3,2,1=i ,用事件的运算关系表示下列各事件,(1)只击中第一枪 ; (2)只击中一枪 ___________; (3)三枪都未击中 ; (4)至少击中一枪 ; (5)目标被击中 ; (6)三次都击中 ;(7)至少有两次击中 _______________________________; (8)三次恰有两次击中 _____________. 13. 已知事件A 与B 相互对立,则AB = ,A B += ,()P AB = ,()P A B += .14. 已知3.0) (=B A P ,则=+)(B A P .15. 已知事件B A ⊂,9.0)(=+B A P ,3.0)(=AB P ,则=-)(A B P. 16. 设A 与B 为两个事件,且7.0)(=A P ,3.0)(=-B A P ,则=)(AB P .17. 已知事件A 与B 相互独立,4.0)(=A P ,3.0)(=B P ,则=+)(B A P. 18. 设,,A B C 是三个相互独立事件,且5.0)(=A P ,6.0)(=B P ,7.0)(=C P ,则()P A B C ++=. 19. 一张考卷上有5道选择题,每道题列出4个可能答案,其中有1个答案是正确的.某学生靠猜测能答对4道题的概率是 . 20. 已知在3次独立重复试验中,事件A 至少发生一次的概率为2726,则事件A 在一次试验中A B C ++ABC ABC ABC ++ABC ABC ABC ABC 123A A A 123123123A A A A A A A A A ++123A A A 123A A A ++123A A A ++123A A A 123123123123A A A A A A A A A A A A +++123123123A A A A A A A A A ++∅U 01.07.06.06.058.094()()44151344C21. 设A 与B 相互独立,()0.5,()0.8P A P A B =+=,则()P B =,()P AB = . 22. 若112(),(),(),233P A P B P B A === 则()P A B = .23.投掷两个均匀骰子,出现点数之和为6*24. 设两个相互独立的事件A 和B 都不发生的概率为1/9,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则)(A P三、计算题24. 设4.0)(=A P ,3.0)(=B P ,6.0)(=+B A P ,求(1))(AB P ;(2)) (B A P ;(3)) (B A P ;(4))(B A P +.25. 已知7.0)(=A P ,()0.9P B =,()0.7P A B =,求()P A B +.四、解答题26. 某城市中发行2种报纸A 与B , 经调查, 在全市人中, 订阅A 报的有45%,订阅B 报的有35%, 同时订阅2种报纸A , B 的有10%. 求只订一种报纸的概率..06.021解:()由()()()()1P A B P A P B P AB +=+-得()()()()P AB P A P B P A B =+-+....;04030601=+-=()()()2P AB P A B =-()()P A P AB =-...;040103=-=()()()31P AB P A B =-+..;10604=-=()()()4P A B P AB +=()1P AB =-...10109=-=解:()()(|)P AB P B P A B =...,0907063=⨯=()()()()P A B P A P B P AB +=+-...0709063=+-..097=解:由题意得().,().,().,04503501P A P B P AB ===()()()P AB AB P AB P AB ∴+=+()()P A B P B A =-+-()()()()P A P AB P B P AB =-+-....0450103501=-+-..06=答:只订一种报纸的概率为..0627. 袋中有10个球,其中7个白球,3个红球,从中任取三个,求(1)全是白球的概率; (2)恰有两个白球的概率;(3)至少一个白球的概率.28. 一副扑克牌52张,每次抽一张,共抽取2次,分两种方式抽取, 求两张都是A 的概率. (1)取后不放回; (2)取后放回.*29.(配对问题)三个学生证混放在一起,现将其随意发给三名学生,试求事件A ={学生都没有拿到自己的学生证}的概率.解:()(全是白球)373101C P C =;724=()(恰有个白球)217331022C C P C =;2140=()(至少有个白球)(全是红球)311P P =-333101C C =-11120=-.119120=解:()(张都是)43125251P A =⨯;1221=()(张都是)44225252P A =⨯.1169=解:()2111323P A =⨯⨯=综合练习二一、单项选择题1. 已知离散型随机变量X 的概率分布表为:则下列计算结果中正确是【 】. (A) {3}0P X == (B) {0}0P X== (C) {1}1P X >-= (D) {4}1P X <= 2. 设随机变量X 的分布列如下,则c =【 】.(A) 0.1 (B) 0.2 (C) 1 (D) 2*3. 设随机变量X 的分布函数()F x ,在下列概率中可表示为}{)(a X P a F <-的是【 】.(A )}{a X P ≤ (B )}{a X P > (C )}{a X P ≥ (D )}{a X P =4. 设随机变量X 的概率密度为:(),020,cx x f x ≤≤⎧=⎨⎩其它 ,则c =【 】.(A) 1 (B) 2 (C)12 (D) 145. 设随机变量X 的概率密度为:()1,080,x x cf x ⎧≤≤⎪=⎨⎪⎩其它 ,则c =【 】.(A) 1 (B) 2 (C) 3 (D) 46. 设随机变量~(3,4)X N -,则随机变量=Y 【】~(0,1)N . (A)43-X (B) 43+X (C) 23-X (D) 23+X 7.设随机变量2~(10,)X N σ,且3.0}2010{=<<X P ,则=<<}100{X P 【】. (A) 0.3 (B) 0.2 (C) 0.1 (D) 0.58. 设随机变量X 服从泊松分布,且已知{}{}02P X P X ===,则参数λ=【 】.(A)12 (B) 2A A C D D A D D9. 设随机变量X 的概率分布律为⎪⎪⎭⎫⎝⎛1.03.06.0210,则E X =()【 】. (A) 1 (B)13(C) 0 (D) 05. 10. 有一批钢球,重量为10克、15克、20克的钢球分别占55%、20%、25%,现从中任取一个钢球,重量X 的期望为【 】. (A )12.1克 (B )13.5克 (C )14.8克 (D )17.6克11. 设随机变量~(,)X B n p ,则下列等式中【】恒成立. (A )12(-X E np 2)=(B )14)12(-=-np X E (C )1)1(4)12(--=-p np X D(D ))1(4)12(p np X D -=-12. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其它,010,)(x b ax x f ,且0E X =(),则【 】. (A) 6,4a b =-= (B) 1,1a b =-= (C) 6,1a b == (D) 1,5a b ==13. 设随机变量~(2,16)X N ,则下列等式中不成立的是【 】.(A )()2E X =(B )()4D X =(C ){16}0P X == (D ) {2}0.5P X ≤=14. 设随机变量X ,且10)10(=X D ,则=)(X D 【 】.(A )101(B ) 1 (C ) 10 (D )100 二、填空题15. 某射手射击目标的命中率为8.0=p ,他向目标射击3枪,用X 表示命中的枪数,则随机变量2=X 的概率为___________.16. 设随机变量~(2,)X B p ,若9{1}25P X ≥=,则p ={2}P X = 17. 设随机变量X 服从泊松分布,且{1}{2}P X P X ===,则参数λ= ,{0}P X == ;{2}P X == ;{4}P X == . 18. 设X 服从()0,5上的均匀分布,则==}5{X P ____,=≤≤}42{X P ______,=≤≤}64{X P. D B D A B A .038422e -223e -0.02.0422e -19. 设每次试验失败的概率为(01)p p <<, 则在3次重复独立试验中成功2次的概率为________________.20. 设随机变量X ,4)13(=+-X E ,则=)(X E .21. 设随机变量)21,100(~B X ,则=)(X E _________; =+)32(X E _________. 22. 已知随机变量X ,且9)3(=X E ,4)2(=X D ,则=)(2X E . 23. 设X 和Y 相互独立,4)(=X D ,2)(=Y D ,则(32)D X Y -= .24. 设X 服从参数为λ的泊松分布,4)(=X D ,则=)(X E ,=λ .25. 设),(~b a U X ,3)(=X E ,3)(=X D ,则=a ,=b .26. 设X 服从指数分布,4)4(=X D ,则=)(X E .27. 设)4,2(~N X ,则=)(X E ,()D X = ,=)(2X E .三、计算题28. 6个零件中有4个正品2个次品,从中任取 3个零件,用X 表示所取出的 3 个零件中正品的个数, 求随机变量X 的概率分布.29.设随机变量X 在[2,5]上服从均匀分布,现对X 进行三次独立观测。

概率论与数理统计练习册复习题和自测题解答

概率论与数理统计练习册复习题和自测题解答
7、设两个相互独立的事件A和B都不发生的概率为1/9,A发生B不发生 的概率与B发生A不发生的概率相等,求P(A)。
解:由 得到
8、一射手对同一目标独立的进行4次射击,若至少命中一次的概率为 80/81,求该射手的命中率。 解:设命中率为p,则有 9、设有来自三个地区的各10名,15名,和25名考生的报名表,其中女 生的报名表分别为3份,7份和5份,随机地取一个地区的报名表,从中 先后抽取两份。 (1)求先抽到的一份是女生表的概率; (2)已知后抽到的一份是男生表,求先抽到的一份是女生表的概率。 解:-取第i个地区;(i=1,2);B-第i份取到女生的报名表(i= 1,2,3)
则利润 要使得达到最大值,即当时
第四章 自测题
6、某流水生产线上每个产品不合格的概率p,各产品合格与否相互独 立,当出现一个不合格产品时即停机检修,设开机后第一次停机时已生 产了的产品个数为X,求X的数学期望和方差。 解:
7、设随机变量X的概率密度函数为 (1)求,; (2)求与的协方差,并问与是否相关? (3)问与是否独立?为什么? 解:1)
9、某型号的高射炮,每门命中敌机的概率为0.4,现若干门炮同时射 击,欲以99%的把握击中敌机,问至少要配置几门高射炮? 解:由解得
10、一居民区间有6部户用电话,平均每小时每用户用6分钟,而且各用 户是否用电话是相互独立的。求(1)刚好有2户用电话的概率;(2) 至少有2户用电话的概率;(3)最多有2户用电话的概率。 解:A-用户使用电话
1) 2) 3)
第一章 自测题
1、 设在一次实验中,事件A发生的概率为p,现进行n次独立重复试 验,则A至少发生一次的概率是多少?事件A至多发生一次的概率 是多少?
解: 2、三个箱子,第一个箱子中有4个黑球1个白球,第二个箱子中有3个黑 球3个白球,第三个箱子中有3个黑球5个白球。现随机地取一箱,再从 这个箱子中取出一球,求这个球为白球的概率。若已知取出的一球为白 球,此球属于第二个箱子的概率是多少?

中国海洋大学成人高等教育概率论与数理统计期末考试复习题 完整版

中国海洋大学成人高等教育概率论与数理统计期末考试复习题  完整版

高等教育概率论与数理统计期末考试复习题一、填空题(把正确的答案填在横格上。

每小题3分,共30分)1.若A、B是两个互不相容的随机事件,则P(A∪B=P(A)+P(B)-P(AB)2.已知P(A)=06,则P(A)=0.43.设A、B是两个任意随机事件,且P(AB)=p(A)P(A/B),则称事件A与B 相互独立4.已知随机变量X服从标准正态分布,其密度函数d(x)=5.设X与Y是相互独立的随机变量,则E(XY)=E(X)E(Y)6已知随机变量ⅹ服从正态分布N(A,a2),则D(X)=7.设x1,X2,……,Xn,是相互独立的随机变量,它们分别有有限的数学期望和方差,且方差有公共的,则任的0恒有xx小8.假若总体分布为连续型随机变量,其概率密度函数为f(x),则样本X1X2X的联合密度函数为f(xx,x2,……,xn)=9.总体均值μ的无偏估计量是X10.在假设检验中,判断原假设H0成立的原理是小概率事件原理二、是非判断题(认为正确的在题后括号内划∨,错误的打Ⅹ,每小题3分,共15分)1、正确若A、B是两个互不相容的事件,则P(AB)=0,2、若A与B相互独立,则A与B不独立错误3、若X,Y是两个任意的随机变量,则D(X±Y)=D(X)±D(Y)错误4、正确设X1,X2,Xn,是来自总体X的样本,S(X,-X)2,则S2是总体方差的无偏估计量。

5、)错误已知随机变量X的概率分布表为三、甲、已两人同时向一目标射击,已知甲的命中率为06,已的命中率是07,试求目标被击中的概率(8分)答:未命中率是(1-0.6)/(1-0.7)=0.12命中率是1-0.12=0.88四、一批同样规格的产品是由甲、已、丙三个车间共同生产,三个车间的产品数量分别占这批产品总量的20%,40%,40%,已知这三个车间的次品率分别为5%,4%,3%,现从这批产品中任取1件,求其为次品的概率(12分)五、设随机变量X的概率密度函数为f(x)=√1-x0其它试求:(1)系数A;(2X落在(-,)内的概率(12分) 2’2六、设随机变量X的概率分布表为0.2求随机变量X的方差D(X)(8分)七、在某林地随机抽取测得树高如下(单位:cm)24.8 23.5 26.4 26.7 20.8 23.924.23819.7出20.121.921.018.626.325.0试求样本均值,极差(8分)八、证明:当随机变量X,}不相关时D(X±Y)=D(X)+D(Y)(7分)1、证明充分:由于D(X+Y)=D(X)+D(Y)+2Cov(x,y),根据D(X+Y)=D(X)+D(Y),可推出Cov(x,y)=0 ,根据相关系数的定义,可以知道相关系数是0,所以x,y不相关。

(完整版)大学概率论与数理统计试题库及答案a

(完整版)大学概率论与数理统计试题库及答案a

<概率论>试题一、填空题1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

则P(B)A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===⋅⋅⋅则A=______________7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<=13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。

2015-2016-2概率论与数理统计A(N)复习练习题题目

2015-2016-2概率论与数理统计A(N)复习练习题题目

前四章一、 选择题(四选一)1.设事件B A 、至少有一个发生发生的概率为0.8,事件A 发生的概率为0.5,事件B 发生的概率为0.7,则B A 、同时发生的概率为 ( )(A ) 0.2 (B )0.3 (C ) 0.4 (D )0.5 2.已知随机变量X 服从(,)B n p , 则 ( ) (A) (),()(1)E X np D X np p ==- (B) (),()(1)E X p D X n p ==- (C) ()(1),()E X np p D X np =-= (D)()(1),()(1)E X p p D X np p =-=-二、填空题1. 设事件A 发生的概率为0.5,事件B 发生的概率为0.7,若A 与B 是互不相容(互斥),则事件B A 、至少有一个发生的概率为 ;若B A 、相互独立,则事件B A 、至少有一个发生的概率为 ; 2、设A 与B 互为逆事件(对立事件),(),P A p =,则 ()P B = 。

3、设A 、B 是两个随机事件,()0.5P B =且,(|)0.5P A B =,则,则()P AB = _____。

4、 设),(~p n B X ,则(23)E X -=_5、如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事恰好发生....K .次.的概率_____;至少发生一次的概率_____;一次都不发生的概率为_____;6、 设随机变量~(0,1)X N ,X 的分布函数为 ()x Φ, 则(0)Φ= 。

7、 设随机变量()2~2,X N σ,则可以有以下结论:1)()2P X <= ;2)若已知()(),P X C P X C <=≥则 C = ;3)若P (2<X <4)=0.3, 求P {X <0}= 。

8、 设随机变量的概率密度1,02()20,x f x others ⎧≤≤⎪=⎨⎪⎩ 则P (X >0.9)= 9、设(),X U a b ,则(23)E X -=_10、 设随机变量服从[-a , a ]上均匀分布,其中a >0, 若P (X >1)=1/3,则a = . 11、 已知随机变量的密度函数为,others ,01()0ax b x f x +<<⎧=⎨⎩且P (X >0.5)=5/8, 则a = , b =12、 设离散型随机变量的分布律为1{}5(1,2,)2kP X k A k ⎛⎫=== ⎪⎝⎭则A= 。

概率论与数理统计考试a(含答案)

概率论与数理统计考试a(含答案)

深圳大学期末考试试卷参考解答及评分标准开/闭卷 闭卷A/B 卷A 课程编号 2219002801-2219002811课程名称概率论与数理统计学分3命题人(签字) 审题人(签字) 年 月 日 基本题6小题,每小题5分,满分30分。

在每小题给出的四个选项中,只有一(每道选择题选对满分,选0分)事件表达式A B 的意思是 ( ) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生 D ,根据A B 的定义可知。

假设事件A 与事件B 互为对立,则事件A B ( ) 是不可能事件 (B) 是可能事件 发生的概率为1 (D) 是必然事件 A ,这是因为对立事件的积事件是不可能事件。

已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 自由度为1的F 分布 (D) 自由度为2的F 分布选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的2分布。

已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3) 选C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。

样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。

中国石油大学《概率论与数理统计》复习题及答案

中国石油大学《概率论与数理统计》复习题及答案

《概率论与数理统计》期末复习题一、填空题1.(公式见教材第10页P10) 设A,B 为随机事件,已知P(A)=0.7,P(B)=0.5,P(A-B)=0.3,则P (B-A )= 。

2.(见教材P11-P12) 设有20个零件,其中16个是一等品,4个是二等品,今从中任取3个,则至少有一个是一等品的概率是 . 3.(见教材P44-P45) 设()4 ,3~N X ,且c 满足()()c X P c X P ≤=>,则=c 。

4. (见教材P96) 设随机变量X 服从二项分布,即===n p EX p n B X 则且,7/1,3),,(~ .5.(见教材P126) 设总体X 服从正态分布)9,2(N ,921,X X X 是来自总体的样本,∑==9191i i X X 则=≥)2(X P 。

6. (见教材P6-7)设B A ,是随机事件,满足===)(,)(),()(B P p A P B A P AB P 则 .7. (见教材P7) B A ,事件,则=⋃B A AB 。

8. (见教材P100-P104) 设随机变量Y X ,相互独立,且)16,1(~),5,1(~N Y N X,12--=Y X Z 则的相关系数为与Z Y9.(见教材P44-P45) 随机变量=≤≤-=Φ=Φ}62{,9772.0)2(,8413.0)1(),4,2(~X P N X 则 . 10. (见教材P96)设随机变量X 服从二项分布,即===n p EX p n B X 则且,5/1,3),,(~ .11 (见教材P42) 连续型随机变量X 的概率密度为()⎩⎨⎧≤>=-00,0,3x x e x f x λ则=λ .12.(见教材P11-P12) 盒中有12只晶体管,其中有10只正品,2只次品.现从盒中任取3只,设3只中所含次品数为X ,则()==1X P .13. (见教材P73-P74) 已知二维随机变量221212(,)~(,;,;)X Y N μμσσρ,且X 与Y 相互独立,则ρ=______.二、选择题1.(见教材其分布函数为F(x),则F(3)= .A. 0B. 0.3C. 1D. 0.82.(见教材P39-40) 设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤<-≤≤=其它,021,210,x x x x x f则X 落在区间()2.1 ,4.0内的概率为( ).(A) 0.64;(B) 0.6;(C) 0.5;(D) 0.42.3. (见教材P133-136)矩估计是( )A. 点估计B. 极大似然估计C. 区间估计D. 无偏估计4. (见教材P31)甲乙两人下棋,每局甲胜的概率为0.4,乙胜的概率为0.6,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级学号姓名考试科目概率与数理统计(理工科)A卷闭卷共 4 页····································密························封························线································学生答题不得超过此线班级学号姓名考试科目A卷闭卷共 4 页····································密························封························线································学生答题不得超过此线····································密························封························线································4.令X 是随机变量,它的密度函数是:⎩⎨⎧≤≤= 其它 010)(2x cx x f ,求:(1)系数c ;(2))-(2X E 2;(3)、3X Y =的概率密度。

5、设)36,25(~X ,试确定C ,使9544.0)|25(|=≤-C X P (参考数据 ,9772.0)2(=φ9544.0)69.1(=φ )班级 学号 姓名 考试科目 A 卷 闭卷 共 4 页···································· 密························封························线································2.某厂生产的电子管的使用寿命服从正态分布2(15,2)N ,今从一批产品中抽出16只检查,测得使用寿命的均值为14.5(万小时),问这批电子管的使用寿命的均值是否正常?(0.05α=) (参考数据:65.105.0=Z ,96.1025.0=Z ,1199.2)16(025.0=t ,1315.2)15(025.0=t )3.设1X ,2X 是来自正态总体(1)N μ,的样本,下列三个估计量是不是参数μ 的无偏估计量,若是无偏估计量,试判断哪一个较优? 2112122112121,4341,3132X X X X X X +=+=+=μμμ。

试卷A 评分标准及参考答案一.1.0.6 2. (16, 13)N -3.4. λ45. ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 二. D D B B B B D B C A三1、4.0)()()(=-=-AB P A P B A P 5.0)(=AB P 95)(=B P 2分 9.0944.0)()()|(===B P B A P B A P 5分 8654.0955.095)()()|(=+-=+=+B A P B A P B A A P 8分 2.2,1A ――分别表示从第1,2个盒子中取球,B ――表示取到蓝球。

2分 111111122()(|)()(|)(|)()()(|)()(|)1321251312312527P A P B A P A P B A P A B P B P A P B A P A P B A ==+⨯==⨯+⨯ 5分 8分 3.X,Y (2)4)40,31(=<<<<Y X P 6分 (3)X,Y 不独立 8分4.1)(=⎰+∞∞-dx x f 解得:3=c 2分57)()2()2(22-=-=-⎰+∞∞-dx x f x X E 4分 23231(3)01101()300Y y y y f y y ⎧≤≤⎪≤≤⎧⎪==⎨⎨⎩⎪⎪⎩ 其它 其它8分5.(|25|)2)10.95446cP X C -≤=Φ-=( 5分 )0.97726c Φ=(,解得12=c 8分 四.1.分 4ln )1()2ln()(ln ln 11∑∏==+++==ni in i i X n X f L θθ0ln 2ln 1=++=∂∂∑=n i i X n L θθ 2ln ˆ1--=∑=n i iXn θ 9分 2.15:15:10≠=μμH H 总体方差已知,选取Z 统计量, 2分 拒绝域:025.02/Z Z n X =≥-ασμ=1.96 6分 96.114/2155.14<=-=Z ,未落在拒绝域中,所以接受0H 9分 3.95,11==μμμD E ,1610,22==μμμD E ,21,33==μμμD E 6分 所以,三个都是无偏估计量,3μ最优7分。

相关文档
最新文档